1 /* 2 * nicstar.c 3 * 4 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. 5 * 6 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. 7 * It was taken from the frle-0.22 device driver. 8 * As the file doesn't have a copyright notice, in the file 9 * nicstarmac.copyright I put the copyright notice from the 10 * frle-0.22 device driver. 11 * Some code is based on the nicstar driver by M. Welsh. 12 * 13 * Author: Rui Prior (rprior@inescn.pt) 14 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 15 * 16 * 17 * (C) INESC 1999 18 */ 19 20 /* 21 * IMPORTANT INFORMATION 22 * 23 * There are currently three types of spinlocks: 24 * 25 * 1 - Per card interrupt spinlock (to protect structures and such) 26 * 2 - Per SCQ scq spinlock 27 * 3 - Per card resource spinlock (to access registers, etc.) 28 * 29 * These must NEVER be grabbed in reverse order. 30 * 31 */ 32 33 /* Header files */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/skbuff.h> 38 #include <linux/atmdev.h> 39 #include <linux/atm.h> 40 #include <linux/pci.h> 41 #include <linux/dma-mapping.h> 42 #include <linux/types.h> 43 #include <linux/string.h> 44 #include <linux/delay.h> 45 #include <linux/init.h> 46 #include <linux/sched.h> 47 #include <linux/timer.h> 48 #include <linux/interrupt.h> 49 #include <linux/bitops.h> 50 #include <linux/slab.h> 51 #include <linux/idr.h> 52 #include <asm/io.h> 53 #include <linux/uaccess.h> 54 #include <linux/atomic.h> 55 #include <linux/etherdevice.h> 56 #include "nicstar.h" 57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 58 #include "suni.h" 59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 61 #include "idt77105.h" 62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 63 64 /* Additional code */ 65 66 #include "nicstarmac.c" 67 68 /* Configurable parameters */ 69 70 #undef PHY_LOOPBACK 71 #undef TX_DEBUG 72 #undef RX_DEBUG 73 #undef GENERAL_DEBUG 74 #undef EXTRA_DEBUG 75 76 /* Do not touch these */ 77 78 #ifdef TX_DEBUG 79 #define TXPRINTK(args...) printk(args) 80 #else 81 #define TXPRINTK(args...) 82 #endif /* TX_DEBUG */ 83 84 #ifdef RX_DEBUG 85 #define RXPRINTK(args...) printk(args) 86 #else 87 #define RXPRINTK(args...) 88 #endif /* RX_DEBUG */ 89 90 #ifdef GENERAL_DEBUG 91 #define PRINTK(args...) printk(args) 92 #else 93 #define PRINTK(args...) 94 #endif /* GENERAL_DEBUG */ 95 96 #ifdef EXTRA_DEBUG 97 #define XPRINTK(args...) printk(args) 98 #else 99 #define XPRINTK(args...) 100 #endif /* EXTRA_DEBUG */ 101 102 /* Macros */ 103 104 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) 105 106 #define NS_DELAY mdelay(1) 107 108 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) 109 110 #ifndef ATM_SKB 111 #define ATM_SKB(s) (&(s)->atm) 112 #endif 113 114 #define scq_virt_to_bus(scq, p) \ 115 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) 116 117 /* Function declarations */ 118 119 static u32 ns_read_sram(ns_dev * card, u32 sram_address); 120 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 121 int count); 122 static int ns_init_card(int i, struct pci_dev *pcidev); 123 static void ns_init_card_error(ns_dev * card, int error); 124 static scq_info *get_scq(ns_dev *card, int size, u32 scd); 125 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); 126 static void push_rxbufs(ns_dev *, struct sk_buff *); 127 static irqreturn_t ns_irq_handler(int irq, void *dev_id); 128 static int ns_open(struct atm_vcc *vcc); 129 static void ns_close(struct atm_vcc *vcc); 130 static void fill_tst(ns_dev * card, int n, vc_map * vc); 131 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); 132 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 133 struct sk_buff *skb); 134 static void process_tsq(ns_dev * card); 135 static void drain_scq(ns_dev * card, scq_info * scq, int pos); 136 static void process_rsq(ns_dev * card); 137 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); 138 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); 139 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); 140 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); 141 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); 142 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); 143 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); 144 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); 145 #ifdef EXTRA_DEBUG 146 static void which_list(ns_dev * card, struct sk_buff *skb); 147 #endif 148 static void ns_poll(unsigned long arg); 149 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 150 unsigned long addr); 151 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); 152 153 /* Global variables */ 154 155 static struct ns_dev *cards[NS_MAX_CARDS]; 156 static unsigned num_cards; 157 static struct atmdev_ops atm_ops = { 158 .open = ns_open, 159 .close = ns_close, 160 .ioctl = ns_ioctl, 161 .send = ns_send, 162 .phy_put = ns_phy_put, 163 .phy_get = ns_phy_get, 164 .proc_read = ns_proc_read, 165 .owner = THIS_MODULE, 166 }; 167 168 static struct timer_list ns_timer; 169 static char *mac[NS_MAX_CARDS]; 170 module_param_array(mac, charp, NULL, 0); 171 MODULE_LICENSE("GPL"); 172 173 /* Functions */ 174 175 static int nicstar_init_one(struct pci_dev *pcidev, 176 const struct pci_device_id *ent) 177 { 178 static int index = -1; 179 unsigned int error; 180 181 index++; 182 cards[index] = NULL; 183 184 error = ns_init_card(index, pcidev); 185 if (error) { 186 cards[index--] = NULL; /* don't increment index */ 187 goto err_out; 188 } 189 190 return 0; 191 err_out: 192 return -ENODEV; 193 } 194 195 static void nicstar_remove_one(struct pci_dev *pcidev) 196 { 197 int i, j; 198 ns_dev *card = pci_get_drvdata(pcidev); 199 struct sk_buff *hb; 200 struct sk_buff *iovb; 201 struct sk_buff *lb; 202 struct sk_buff *sb; 203 204 i = card->index; 205 206 if (cards[i] == NULL) 207 return; 208 209 if (card->atmdev->phy && card->atmdev->phy->stop) 210 card->atmdev->phy->stop(card->atmdev); 211 212 /* Stop everything */ 213 writel(0x00000000, card->membase + CFG); 214 215 /* De-register device */ 216 atm_dev_deregister(card->atmdev); 217 218 /* Disable PCI device */ 219 pci_disable_device(pcidev); 220 221 /* Free up resources */ 222 j = 0; 223 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); 224 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { 225 dev_kfree_skb_any(hb); 226 j++; 227 } 228 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); 229 j = 0; 230 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, 231 card->iovpool.count); 232 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { 233 dev_kfree_skb_any(iovb); 234 j++; 235 } 236 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); 237 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 238 dev_kfree_skb_any(lb); 239 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 240 dev_kfree_skb_any(sb); 241 free_scq(card, card->scq0, NULL); 242 for (j = 0; j < NS_FRSCD_NUM; j++) { 243 if (card->scd2vc[j] != NULL) 244 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); 245 } 246 idr_destroy(&card->idr); 247 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 248 card->rsq.org, card->rsq.dma); 249 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 250 card->tsq.org, card->tsq.dma); 251 free_irq(card->pcidev->irq, card); 252 iounmap(card->membase); 253 kfree(card); 254 } 255 256 static struct pci_device_id nicstar_pci_tbl[] = { 257 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, 258 {0,} /* terminate list */ 259 }; 260 261 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); 262 263 static struct pci_driver nicstar_driver = { 264 .name = "nicstar", 265 .id_table = nicstar_pci_tbl, 266 .probe = nicstar_init_one, 267 .remove = nicstar_remove_one, 268 }; 269 270 static int __init nicstar_init(void) 271 { 272 unsigned error = 0; /* Initialized to remove compile warning */ 273 274 XPRINTK("nicstar: nicstar_init() called.\n"); 275 276 error = pci_register_driver(&nicstar_driver); 277 278 TXPRINTK("nicstar: TX debug enabled.\n"); 279 RXPRINTK("nicstar: RX debug enabled.\n"); 280 PRINTK("nicstar: General debug enabled.\n"); 281 #ifdef PHY_LOOPBACK 282 printk("nicstar: using PHY loopback.\n"); 283 #endif /* PHY_LOOPBACK */ 284 XPRINTK("nicstar: nicstar_init() returned.\n"); 285 286 if (!error) { 287 init_timer(&ns_timer); 288 ns_timer.expires = jiffies + NS_POLL_PERIOD; 289 ns_timer.data = 0UL; 290 ns_timer.function = ns_poll; 291 add_timer(&ns_timer); 292 } 293 294 return error; 295 } 296 297 static void __exit nicstar_cleanup(void) 298 { 299 XPRINTK("nicstar: nicstar_cleanup() called.\n"); 300 301 del_timer(&ns_timer); 302 303 pci_unregister_driver(&nicstar_driver); 304 305 XPRINTK("nicstar: nicstar_cleanup() returned.\n"); 306 } 307 308 static u32 ns_read_sram(ns_dev * card, u32 sram_address) 309 { 310 unsigned long flags; 311 u32 data; 312 sram_address <<= 2; 313 sram_address &= 0x0007FFFC; /* address must be dword aligned */ 314 sram_address |= 0x50000000; /* SRAM read command */ 315 spin_lock_irqsave(&card->res_lock, flags); 316 while (CMD_BUSY(card)) ; 317 writel(sram_address, card->membase + CMD); 318 while (CMD_BUSY(card)) ; 319 data = readl(card->membase + DR0); 320 spin_unlock_irqrestore(&card->res_lock, flags); 321 return data; 322 } 323 324 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 325 int count) 326 { 327 unsigned long flags; 328 int i, c; 329 count--; /* count range now is 0..3 instead of 1..4 */ 330 c = count; 331 c <<= 2; /* to use increments of 4 */ 332 spin_lock_irqsave(&card->res_lock, flags); 333 while (CMD_BUSY(card)) ; 334 for (i = 0; i <= c; i += 4) 335 writel(*(value++), card->membase + i); 336 /* Note: DR# registers are the first 4 dwords in nicstar's memspace, 337 so card->membase + DR0 == card->membase */ 338 sram_address <<= 2; 339 sram_address &= 0x0007FFFC; 340 sram_address |= (0x40000000 | count); 341 writel(sram_address, card->membase + CMD); 342 spin_unlock_irqrestore(&card->res_lock, flags); 343 } 344 345 static int ns_init_card(int i, struct pci_dev *pcidev) 346 { 347 int j; 348 struct ns_dev *card = NULL; 349 unsigned char pci_latency; 350 unsigned error; 351 u32 data; 352 u32 u32d[4]; 353 u32 ns_cfg_rctsize; 354 int bcount; 355 unsigned long membase; 356 357 error = 0; 358 359 if (pci_enable_device(pcidev)) { 360 printk("nicstar%d: can't enable PCI device\n", i); 361 error = 2; 362 ns_init_card_error(card, error); 363 return error; 364 } 365 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { 366 printk(KERN_WARNING 367 "nicstar%d: No suitable DMA available.\n", i); 368 error = 2; 369 ns_init_card_error(card, error); 370 return error; 371 } 372 373 card = kmalloc(sizeof(*card), GFP_KERNEL); 374 if (!card) { 375 printk 376 ("nicstar%d: can't allocate memory for device structure.\n", 377 i); 378 error = 2; 379 ns_init_card_error(card, error); 380 return error; 381 } 382 cards[i] = card; 383 spin_lock_init(&card->int_lock); 384 spin_lock_init(&card->res_lock); 385 386 pci_set_drvdata(pcidev, card); 387 388 card->index = i; 389 card->atmdev = NULL; 390 card->pcidev = pcidev; 391 membase = pci_resource_start(pcidev, 1); 392 card->membase = ioremap(membase, NS_IOREMAP_SIZE); 393 if (!card->membase) { 394 printk("nicstar%d: can't ioremap() membase.\n", i); 395 error = 3; 396 ns_init_card_error(card, error); 397 return error; 398 } 399 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); 400 401 pci_set_master(pcidev); 402 403 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { 404 printk("nicstar%d: can't read PCI latency timer.\n", i); 405 error = 6; 406 ns_init_card_error(card, error); 407 return error; 408 } 409 #ifdef NS_PCI_LATENCY 410 if (pci_latency < NS_PCI_LATENCY) { 411 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, 412 NS_PCI_LATENCY); 413 for (j = 1; j < 4; j++) { 414 if (pci_write_config_byte 415 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) 416 break; 417 } 418 if (j == 4) { 419 printk 420 ("nicstar%d: can't set PCI latency timer to %d.\n", 421 i, NS_PCI_LATENCY); 422 error = 7; 423 ns_init_card_error(card, error); 424 return error; 425 } 426 } 427 #endif /* NS_PCI_LATENCY */ 428 429 /* Clear timer overflow */ 430 data = readl(card->membase + STAT); 431 if (data & NS_STAT_TMROF) 432 writel(NS_STAT_TMROF, card->membase + STAT); 433 434 /* Software reset */ 435 writel(NS_CFG_SWRST, card->membase + CFG); 436 NS_DELAY; 437 writel(0x00000000, card->membase + CFG); 438 439 /* PHY reset */ 440 writel(0x00000008, card->membase + GP); 441 NS_DELAY; 442 writel(0x00000001, card->membase + GP); 443 NS_DELAY; 444 while (CMD_BUSY(card)) ; 445 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ 446 NS_DELAY; 447 448 /* Detect PHY type */ 449 while (CMD_BUSY(card)) ; 450 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); 451 while (CMD_BUSY(card)) ; 452 data = readl(card->membase + DR0); 453 switch (data) { 454 case 0x00000009: 455 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); 456 card->max_pcr = ATM_25_PCR; 457 while (CMD_BUSY(card)) ; 458 writel(0x00000008, card->membase + DR0); 459 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); 460 /* Clear an eventual pending interrupt */ 461 writel(NS_STAT_SFBQF, card->membase + STAT); 462 #ifdef PHY_LOOPBACK 463 while (CMD_BUSY(card)) ; 464 writel(0x00000022, card->membase + DR0); 465 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); 466 #endif /* PHY_LOOPBACK */ 467 break; 468 case 0x00000030: 469 case 0x00000031: 470 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); 471 card->max_pcr = ATM_OC3_PCR; 472 #ifdef PHY_LOOPBACK 473 while (CMD_BUSY(card)) ; 474 writel(0x00000002, card->membase + DR0); 475 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); 476 #endif /* PHY_LOOPBACK */ 477 break; 478 default: 479 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); 480 error = 8; 481 ns_init_card_error(card, error); 482 return error; 483 } 484 writel(0x00000000, card->membase + GP); 485 486 /* Determine SRAM size */ 487 data = 0x76543210; 488 ns_write_sram(card, 0x1C003, &data, 1); 489 data = 0x89ABCDEF; 490 ns_write_sram(card, 0x14003, &data, 1); 491 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && 492 ns_read_sram(card, 0x1C003) == 0x76543210) 493 card->sram_size = 128; 494 else 495 card->sram_size = 32; 496 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); 497 498 card->rct_size = NS_MAX_RCTSIZE; 499 500 #if (NS_MAX_RCTSIZE == 4096) 501 if (card->sram_size == 128) 502 printk 503 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", 504 i); 505 #elif (NS_MAX_RCTSIZE == 16384) 506 if (card->sram_size == 32) { 507 printk 508 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", 509 i); 510 card->rct_size = 4096; 511 } 512 #else 513 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c 514 #endif 515 516 card->vpibits = NS_VPIBITS; 517 if (card->rct_size == 4096) 518 card->vcibits = 12 - NS_VPIBITS; 519 else /* card->rct_size == 16384 */ 520 card->vcibits = 14 - NS_VPIBITS; 521 522 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ 523 if (mac[i] == NULL) 524 nicstar_init_eprom(card->membase); 525 526 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ 527 writel(0x00000000, card->membase + VPM); 528 529 /* Initialize TSQ */ 530 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, 531 NS_TSQSIZE + NS_TSQ_ALIGNMENT, 532 &card->tsq.dma, GFP_KERNEL); 533 if (card->tsq.org == NULL) { 534 printk("nicstar%d: can't allocate TSQ.\n", i); 535 error = 10; 536 ns_init_card_error(card, error); 537 return error; 538 } 539 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); 540 card->tsq.next = card->tsq.base; 541 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); 542 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) 543 ns_tsi_init(card->tsq.base + j); 544 writel(0x00000000, card->membase + TSQH); 545 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); 546 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); 547 548 /* Initialize RSQ */ 549 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, 550 NS_RSQSIZE + NS_RSQ_ALIGNMENT, 551 &card->rsq.dma, GFP_KERNEL); 552 if (card->rsq.org == NULL) { 553 printk("nicstar%d: can't allocate RSQ.\n", i); 554 error = 11; 555 ns_init_card_error(card, error); 556 return error; 557 } 558 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); 559 card->rsq.next = card->rsq.base; 560 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); 561 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) 562 ns_rsqe_init(card->rsq.base + j); 563 writel(0x00000000, card->membase + RSQH); 564 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); 565 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); 566 567 /* Initialize SCQ0, the only VBR SCQ used */ 568 card->scq1 = NULL; 569 card->scq2 = NULL; 570 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); 571 if (card->scq0 == NULL) { 572 printk("nicstar%d: can't get SCQ0.\n", i); 573 error = 12; 574 ns_init_card_error(card, error); 575 return error; 576 } 577 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); 578 u32d[1] = (u32) 0x00000000; 579 u32d[2] = (u32) 0xffffffff; 580 u32d[3] = (u32) 0x00000000; 581 ns_write_sram(card, NS_VRSCD0, u32d, 4); 582 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ 583 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ 584 card->scq0->scd = NS_VRSCD0; 585 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); 586 587 /* Initialize TSTs */ 588 card->tst_addr = NS_TST0; 589 card->tst_free_entries = NS_TST_NUM_ENTRIES; 590 data = NS_TST_OPCODE_VARIABLE; 591 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 592 ns_write_sram(card, NS_TST0 + j, &data, 1); 593 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); 594 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); 595 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 596 ns_write_sram(card, NS_TST1 + j, &data, 1); 597 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); 598 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); 599 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 600 card->tste2vc[j] = NULL; 601 writel(NS_TST0 << 2, card->membase + TSTB); 602 603 /* Initialize RCT. AAL type is set on opening the VC. */ 604 #ifdef RCQ_SUPPORT 605 u32d[0] = NS_RCTE_RAWCELLINTEN; 606 #else 607 u32d[0] = 0x00000000; 608 #endif /* RCQ_SUPPORT */ 609 u32d[1] = 0x00000000; 610 u32d[2] = 0x00000000; 611 u32d[3] = 0xFFFFFFFF; 612 for (j = 0; j < card->rct_size; j++) 613 ns_write_sram(card, j * 4, u32d, 4); 614 615 memset(card->vcmap, 0, sizeof(card->vcmap)); 616 617 for (j = 0; j < NS_FRSCD_NUM; j++) 618 card->scd2vc[j] = NULL; 619 620 /* Initialize buffer levels */ 621 card->sbnr.min = MIN_SB; 622 card->sbnr.init = NUM_SB; 623 card->sbnr.max = MAX_SB; 624 card->lbnr.min = MIN_LB; 625 card->lbnr.init = NUM_LB; 626 card->lbnr.max = MAX_LB; 627 card->iovnr.min = MIN_IOVB; 628 card->iovnr.init = NUM_IOVB; 629 card->iovnr.max = MAX_IOVB; 630 card->hbnr.min = MIN_HB; 631 card->hbnr.init = NUM_HB; 632 card->hbnr.max = MAX_HB; 633 634 card->sm_handle = NULL; 635 card->sm_addr = 0x00000000; 636 card->lg_handle = NULL; 637 card->lg_addr = 0x00000000; 638 639 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ 640 641 idr_init(&card->idr); 642 643 /* Pre-allocate some huge buffers */ 644 skb_queue_head_init(&card->hbpool.queue); 645 card->hbpool.count = 0; 646 for (j = 0; j < NUM_HB; j++) { 647 struct sk_buff *hb; 648 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 649 if (hb == NULL) { 650 printk 651 ("nicstar%d: can't allocate %dth of %d huge buffers.\n", 652 i, j, NUM_HB); 653 error = 13; 654 ns_init_card_error(card, error); 655 return error; 656 } 657 NS_PRV_BUFTYPE(hb) = BUF_NONE; 658 skb_queue_tail(&card->hbpool.queue, hb); 659 card->hbpool.count++; 660 } 661 662 /* Allocate large buffers */ 663 skb_queue_head_init(&card->lbpool.queue); 664 card->lbpool.count = 0; /* Not used */ 665 for (j = 0; j < NUM_LB; j++) { 666 struct sk_buff *lb; 667 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 668 if (lb == NULL) { 669 printk 670 ("nicstar%d: can't allocate %dth of %d large buffers.\n", 671 i, j, NUM_LB); 672 error = 14; 673 ns_init_card_error(card, error); 674 return error; 675 } 676 NS_PRV_BUFTYPE(lb) = BUF_LG; 677 skb_queue_tail(&card->lbpool.queue, lb); 678 skb_reserve(lb, NS_SMBUFSIZE); 679 push_rxbufs(card, lb); 680 /* Due to the implementation of push_rxbufs() this is 1, not 0 */ 681 if (j == 1) { 682 card->rcbuf = lb; 683 card->rawcell = (struct ns_rcqe *) lb->data; 684 card->rawch = NS_PRV_DMA(lb); 685 } 686 } 687 /* Test for strange behaviour which leads to crashes */ 688 if ((bcount = 689 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { 690 printk 691 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", 692 i, j, bcount); 693 error = 14; 694 ns_init_card_error(card, error); 695 return error; 696 } 697 698 /* Allocate small buffers */ 699 skb_queue_head_init(&card->sbpool.queue); 700 card->sbpool.count = 0; /* Not used */ 701 for (j = 0; j < NUM_SB; j++) { 702 struct sk_buff *sb; 703 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 704 if (sb == NULL) { 705 printk 706 ("nicstar%d: can't allocate %dth of %d small buffers.\n", 707 i, j, NUM_SB); 708 error = 15; 709 ns_init_card_error(card, error); 710 return error; 711 } 712 NS_PRV_BUFTYPE(sb) = BUF_SM; 713 skb_queue_tail(&card->sbpool.queue, sb); 714 skb_reserve(sb, NS_AAL0_HEADER); 715 push_rxbufs(card, sb); 716 } 717 /* Test for strange behaviour which leads to crashes */ 718 if ((bcount = 719 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { 720 printk 721 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", 722 i, j, bcount); 723 error = 15; 724 ns_init_card_error(card, error); 725 return error; 726 } 727 728 /* Allocate iovec buffers */ 729 skb_queue_head_init(&card->iovpool.queue); 730 card->iovpool.count = 0; 731 for (j = 0; j < NUM_IOVB; j++) { 732 struct sk_buff *iovb; 733 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 734 if (iovb == NULL) { 735 printk 736 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", 737 i, j, NUM_IOVB); 738 error = 16; 739 ns_init_card_error(card, error); 740 return error; 741 } 742 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 743 skb_queue_tail(&card->iovpool.queue, iovb); 744 card->iovpool.count++; 745 } 746 747 /* Configure NICStAR */ 748 if (card->rct_size == 4096) 749 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; 750 else /* (card->rct_size == 16384) */ 751 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; 752 753 card->efbie = 1; 754 755 card->intcnt = 0; 756 if (request_irq 757 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { 758 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); 759 error = 9; 760 ns_init_card_error(card, error); 761 return error; 762 } 763 764 /* Register device */ 765 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, 766 -1, NULL); 767 if (card->atmdev == NULL) { 768 printk("nicstar%d: can't register device.\n", i); 769 error = 17; 770 ns_init_card_error(card, error); 771 return error; 772 } 773 774 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { 775 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, 776 card->atmdev->esi, 6); 777 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { 778 nicstar_read_eprom(card->membase, 779 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, 780 card->atmdev->esi, 6); 781 } 782 } 783 784 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); 785 786 card->atmdev->dev_data = card; 787 card->atmdev->ci_range.vpi_bits = card->vpibits; 788 card->atmdev->ci_range.vci_bits = card->vcibits; 789 card->atmdev->link_rate = card->max_pcr; 790 card->atmdev->phy = NULL; 791 792 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 793 if (card->max_pcr == ATM_OC3_PCR) 794 suni_init(card->atmdev); 795 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 796 797 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 798 if (card->max_pcr == ATM_25_PCR) 799 idt77105_init(card->atmdev); 800 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 801 802 if (card->atmdev->phy && card->atmdev->phy->start) 803 card->atmdev->phy->start(card->atmdev); 804 805 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ 806 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ 807 NS_CFG_PHYIE, card->membase + CFG); 808 809 num_cards++; 810 811 return error; 812 } 813 814 static void ns_init_card_error(ns_dev *card, int error) 815 { 816 if (error >= 17) { 817 writel(0x00000000, card->membase + CFG); 818 } 819 if (error >= 16) { 820 struct sk_buff *iovb; 821 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) 822 dev_kfree_skb_any(iovb); 823 } 824 if (error >= 15) { 825 struct sk_buff *sb; 826 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 827 dev_kfree_skb_any(sb); 828 free_scq(card, card->scq0, NULL); 829 } 830 if (error >= 14) { 831 struct sk_buff *lb; 832 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 833 dev_kfree_skb_any(lb); 834 } 835 if (error >= 13) { 836 struct sk_buff *hb; 837 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) 838 dev_kfree_skb_any(hb); 839 } 840 if (error >= 12) { 841 kfree(card->rsq.org); 842 } 843 if (error >= 11) { 844 kfree(card->tsq.org); 845 } 846 if (error >= 10) { 847 free_irq(card->pcidev->irq, card); 848 } 849 if (error >= 4) { 850 iounmap(card->membase); 851 } 852 if (error >= 3) { 853 pci_disable_device(card->pcidev); 854 kfree(card); 855 } 856 } 857 858 static scq_info *get_scq(ns_dev *card, int size, u32 scd) 859 { 860 scq_info *scq; 861 int i; 862 863 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) 864 return NULL; 865 866 scq = kmalloc(sizeof(*scq), GFP_KERNEL); 867 if (!scq) 868 return NULL; 869 scq->org = dma_alloc_coherent(&card->pcidev->dev, 870 2 * size, &scq->dma, GFP_KERNEL); 871 if (!scq->org) { 872 kfree(scq); 873 return NULL; 874 } 875 scq->skb = kmalloc_array(size / NS_SCQE_SIZE, 876 sizeof(*scq->skb), 877 GFP_KERNEL); 878 if (!scq->skb) { 879 dma_free_coherent(&card->pcidev->dev, 880 2 * size, scq->org, scq->dma); 881 kfree(scq); 882 return NULL; 883 } 884 scq->num_entries = size / NS_SCQE_SIZE; 885 scq->base = PTR_ALIGN(scq->org, size); 886 scq->next = scq->base; 887 scq->last = scq->base + (scq->num_entries - 1); 888 scq->tail = scq->last; 889 scq->scd = scd; 890 scq->num_entries = size / NS_SCQE_SIZE; 891 scq->tbd_count = 0; 892 init_waitqueue_head(&scq->scqfull_waitq); 893 scq->full = 0; 894 spin_lock_init(&scq->lock); 895 896 for (i = 0; i < scq->num_entries; i++) 897 scq->skb[i] = NULL; 898 899 return scq; 900 } 901 902 /* For variable rate SCQ vcc must be NULL */ 903 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) 904 { 905 int i; 906 907 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) 908 for (i = 0; i < scq->num_entries; i++) { 909 if (scq->skb[i] != NULL) { 910 vcc = ATM_SKB(scq->skb[i])->vcc; 911 if (vcc->pop != NULL) 912 vcc->pop(vcc, scq->skb[i]); 913 else 914 dev_kfree_skb_any(scq->skb[i]); 915 } 916 } else { /* vcc must be != NULL */ 917 918 if (vcc == NULL) { 919 printk 920 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); 921 for (i = 0; i < scq->num_entries; i++) 922 dev_kfree_skb_any(scq->skb[i]); 923 } else 924 for (i = 0; i < scq->num_entries; i++) { 925 if (scq->skb[i] != NULL) { 926 if (vcc->pop != NULL) 927 vcc->pop(vcc, scq->skb[i]); 928 else 929 dev_kfree_skb_any(scq->skb[i]); 930 } 931 } 932 } 933 kfree(scq->skb); 934 dma_free_coherent(&card->pcidev->dev, 935 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? 936 VBR_SCQSIZE : CBR_SCQSIZE), 937 scq->org, scq->dma); 938 kfree(scq); 939 } 940 941 /* The handles passed must be pointers to the sk_buff containing the small 942 or large buffer(s) cast to u32. */ 943 static void push_rxbufs(ns_dev * card, struct sk_buff *skb) 944 { 945 struct sk_buff *handle1, *handle2; 946 int id1, id2; 947 u32 addr1, addr2; 948 u32 stat; 949 unsigned long flags; 950 951 /* *BARF* */ 952 handle2 = NULL; 953 addr2 = 0; 954 handle1 = skb; 955 addr1 = dma_map_single(&card->pcidev->dev, 956 skb->data, 957 (NS_PRV_BUFTYPE(skb) == BUF_SM 958 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 959 DMA_TO_DEVICE); 960 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ 961 962 #ifdef GENERAL_DEBUG 963 if (!addr1) 964 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", 965 card->index); 966 #endif /* GENERAL_DEBUG */ 967 968 stat = readl(card->membase + STAT); 969 card->sbfqc = ns_stat_sfbqc_get(stat); 970 card->lbfqc = ns_stat_lfbqc_get(stat); 971 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 972 if (!addr2) { 973 if (card->sm_addr) { 974 addr2 = card->sm_addr; 975 handle2 = card->sm_handle; 976 card->sm_addr = 0x00000000; 977 card->sm_handle = NULL; 978 } else { /* (!sm_addr) */ 979 980 card->sm_addr = addr1; 981 card->sm_handle = handle1; 982 } 983 } 984 } else { /* buf_type == BUF_LG */ 985 986 if (!addr2) { 987 if (card->lg_addr) { 988 addr2 = card->lg_addr; 989 handle2 = card->lg_handle; 990 card->lg_addr = 0x00000000; 991 card->lg_handle = NULL; 992 } else { /* (!lg_addr) */ 993 994 card->lg_addr = addr1; 995 card->lg_handle = handle1; 996 } 997 } 998 } 999 1000 if (addr2) { 1001 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 1002 if (card->sbfqc >= card->sbnr.max) { 1003 skb_unlink(handle1, &card->sbpool.queue); 1004 dev_kfree_skb_any(handle1); 1005 skb_unlink(handle2, &card->sbpool.queue); 1006 dev_kfree_skb_any(handle2); 1007 return; 1008 } else 1009 card->sbfqc += 2; 1010 } else { /* (buf_type == BUF_LG) */ 1011 1012 if (card->lbfqc >= card->lbnr.max) { 1013 skb_unlink(handle1, &card->lbpool.queue); 1014 dev_kfree_skb_any(handle1); 1015 skb_unlink(handle2, &card->lbpool.queue); 1016 dev_kfree_skb_any(handle2); 1017 return; 1018 } else 1019 card->lbfqc += 2; 1020 } 1021 1022 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); 1023 if (id1 < 0) 1024 goto out; 1025 1026 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); 1027 if (id2 < 0) 1028 goto out; 1029 1030 spin_lock_irqsave(&card->res_lock, flags); 1031 while (CMD_BUSY(card)) ; 1032 writel(addr2, card->membase + DR3); 1033 writel(id2, card->membase + DR2); 1034 writel(addr1, card->membase + DR1); 1035 writel(id1, card->membase + DR0); 1036 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), 1037 card->membase + CMD); 1038 spin_unlock_irqrestore(&card->res_lock, flags); 1039 1040 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", 1041 card->index, 1042 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), 1043 addr1, addr2); 1044 } 1045 1046 if (!card->efbie && card->sbfqc >= card->sbnr.min && 1047 card->lbfqc >= card->lbnr.min) { 1048 card->efbie = 1; 1049 writel((readl(card->membase + CFG) | NS_CFG_EFBIE), 1050 card->membase + CFG); 1051 } 1052 1053 out: 1054 return; 1055 } 1056 1057 static irqreturn_t ns_irq_handler(int irq, void *dev_id) 1058 { 1059 u32 stat_r; 1060 ns_dev *card; 1061 struct atm_dev *dev; 1062 unsigned long flags; 1063 1064 card = (ns_dev *) dev_id; 1065 dev = card->atmdev; 1066 card->intcnt++; 1067 1068 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); 1069 1070 spin_lock_irqsave(&card->int_lock, flags); 1071 1072 stat_r = readl(card->membase + STAT); 1073 1074 /* Transmit Status Indicator has been written to T. S. Queue */ 1075 if (stat_r & NS_STAT_TSIF) { 1076 TXPRINTK("nicstar%d: TSI interrupt\n", card->index); 1077 process_tsq(card); 1078 writel(NS_STAT_TSIF, card->membase + STAT); 1079 } 1080 1081 /* Incomplete CS-PDU has been transmitted */ 1082 if (stat_r & NS_STAT_TXICP) { 1083 writel(NS_STAT_TXICP, card->membase + STAT); 1084 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", 1085 card->index); 1086 } 1087 1088 /* Transmit Status Queue 7/8 full */ 1089 if (stat_r & NS_STAT_TSQF) { 1090 writel(NS_STAT_TSQF, card->membase + STAT); 1091 PRINTK("nicstar%d: TSQ full.\n", card->index); 1092 process_tsq(card); 1093 } 1094 1095 /* Timer overflow */ 1096 if (stat_r & NS_STAT_TMROF) { 1097 writel(NS_STAT_TMROF, card->membase + STAT); 1098 PRINTK("nicstar%d: Timer overflow.\n", card->index); 1099 } 1100 1101 /* PHY device interrupt signal active */ 1102 if (stat_r & NS_STAT_PHYI) { 1103 writel(NS_STAT_PHYI, card->membase + STAT); 1104 PRINTK("nicstar%d: PHY interrupt.\n", card->index); 1105 if (dev->phy && dev->phy->interrupt) { 1106 dev->phy->interrupt(dev); 1107 } 1108 } 1109 1110 /* Small Buffer Queue is full */ 1111 if (stat_r & NS_STAT_SFBQF) { 1112 writel(NS_STAT_SFBQF, card->membase + STAT); 1113 printk("nicstar%d: Small free buffer queue is full.\n", 1114 card->index); 1115 } 1116 1117 /* Large Buffer Queue is full */ 1118 if (stat_r & NS_STAT_LFBQF) { 1119 writel(NS_STAT_LFBQF, card->membase + STAT); 1120 printk("nicstar%d: Large free buffer queue is full.\n", 1121 card->index); 1122 } 1123 1124 /* Receive Status Queue is full */ 1125 if (stat_r & NS_STAT_RSQF) { 1126 writel(NS_STAT_RSQF, card->membase + STAT); 1127 printk("nicstar%d: RSQ full.\n", card->index); 1128 process_rsq(card); 1129 } 1130 1131 /* Complete CS-PDU received */ 1132 if (stat_r & NS_STAT_EOPDU) { 1133 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); 1134 process_rsq(card); 1135 writel(NS_STAT_EOPDU, card->membase + STAT); 1136 } 1137 1138 /* Raw cell received */ 1139 if (stat_r & NS_STAT_RAWCF) { 1140 writel(NS_STAT_RAWCF, card->membase + STAT); 1141 #ifndef RCQ_SUPPORT 1142 printk("nicstar%d: Raw cell received and no support yet...\n", 1143 card->index); 1144 #endif /* RCQ_SUPPORT */ 1145 /* NOTE: the following procedure may keep a raw cell pending until the 1146 next interrupt. As this preliminary support is only meant to 1147 avoid buffer leakage, this is not an issue. */ 1148 while (readl(card->membase + RAWCT) != card->rawch) { 1149 1150 if (ns_rcqe_islast(card->rawcell)) { 1151 struct sk_buff *oldbuf; 1152 1153 oldbuf = card->rcbuf; 1154 card->rcbuf = idr_find(&card->idr, 1155 ns_rcqe_nextbufhandle(card->rawcell)); 1156 card->rawch = NS_PRV_DMA(card->rcbuf); 1157 card->rawcell = (struct ns_rcqe *) 1158 card->rcbuf->data; 1159 recycle_rx_buf(card, oldbuf); 1160 } else { 1161 card->rawch += NS_RCQE_SIZE; 1162 card->rawcell++; 1163 } 1164 } 1165 } 1166 1167 /* Small buffer queue is empty */ 1168 if (stat_r & NS_STAT_SFBQE) { 1169 int i; 1170 struct sk_buff *sb; 1171 1172 writel(NS_STAT_SFBQE, card->membase + STAT); 1173 printk("nicstar%d: Small free buffer queue empty.\n", 1174 card->index); 1175 for (i = 0; i < card->sbnr.min; i++) { 1176 sb = dev_alloc_skb(NS_SMSKBSIZE); 1177 if (sb == NULL) { 1178 writel(readl(card->membase + CFG) & 1179 ~NS_CFG_EFBIE, card->membase + CFG); 1180 card->efbie = 0; 1181 break; 1182 } 1183 NS_PRV_BUFTYPE(sb) = BUF_SM; 1184 skb_queue_tail(&card->sbpool.queue, sb); 1185 skb_reserve(sb, NS_AAL0_HEADER); 1186 push_rxbufs(card, sb); 1187 } 1188 card->sbfqc = i; 1189 process_rsq(card); 1190 } 1191 1192 /* Large buffer queue empty */ 1193 if (stat_r & NS_STAT_LFBQE) { 1194 int i; 1195 struct sk_buff *lb; 1196 1197 writel(NS_STAT_LFBQE, card->membase + STAT); 1198 printk("nicstar%d: Large free buffer queue empty.\n", 1199 card->index); 1200 for (i = 0; i < card->lbnr.min; i++) { 1201 lb = dev_alloc_skb(NS_LGSKBSIZE); 1202 if (lb == NULL) { 1203 writel(readl(card->membase + CFG) & 1204 ~NS_CFG_EFBIE, card->membase + CFG); 1205 card->efbie = 0; 1206 break; 1207 } 1208 NS_PRV_BUFTYPE(lb) = BUF_LG; 1209 skb_queue_tail(&card->lbpool.queue, lb); 1210 skb_reserve(lb, NS_SMBUFSIZE); 1211 push_rxbufs(card, lb); 1212 } 1213 card->lbfqc = i; 1214 process_rsq(card); 1215 } 1216 1217 /* Receive Status Queue is 7/8 full */ 1218 if (stat_r & NS_STAT_RSQAF) { 1219 writel(NS_STAT_RSQAF, card->membase + STAT); 1220 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); 1221 process_rsq(card); 1222 } 1223 1224 spin_unlock_irqrestore(&card->int_lock, flags); 1225 PRINTK("nicstar%d: end of interrupt service\n", card->index); 1226 return IRQ_HANDLED; 1227 } 1228 1229 static int ns_open(struct atm_vcc *vcc) 1230 { 1231 ns_dev *card; 1232 vc_map *vc; 1233 unsigned long tmpl, modl; 1234 int tcr, tcra; /* target cell rate, and absolute value */ 1235 int n = 0; /* Number of entries in the TST. Initialized to remove 1236 the compiler warning. */ 1237 u32 u32d[4]; 1238 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler 1239 warning. How I wish compilers were clever enough to 1240 tell which variables can truly be used 1241 uninitialized... */ 1242 int inuse; /* tx or rx vc already in use by another vcc */ 1243 short vpi = vcc->vpi; 1244 int vci = vcc->vci; 1245 1246 card = (ns_dev *) vcc->dev->dev_data; 1247 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, 1248 vci); 1249 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1250 PRINTK("nicstar%d: unsupported AAL.\n", card->index); 1251 return -EINVAL; 1252 } 1253 1254 vc = &(card->vcmap[vpi << card->vcibits | vci]); 1255 vcc->dev_data = vc; 1256 1257 inuse = 0; 1258 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) 1259 inuse = 1; 1260 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) 1261 inuse += 2; 1262 if (inuse) { 1263 printk("nicstar%d: %s vci already in use.\n", card->index, 1264 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); 1265 return -EINVAL; 1266 } 1267 1268 set_bit(ATM_VF_ADDR, &vcc->flags); 1269 1270 /* NOTE: You are not allowed to modify an open connection's QOS. To change 1271 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes 1272 needed to do that. */ 1273 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { 1274 scq_info *scq; 1275 1276 set_bit(ATM_VF_PARTIAL, &vcc->flags); 1277 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1278 /* Check requested cell rate and availability of SCD */ 1279 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 1280 && vcc->qos.txtp.min_pcr == 0) { 1281 PRINTK 1282 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", 1283 card->index); 1284 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1285 clear_bit(ATM_VF_ADDR, &vcc->flags); 1286 return -EINVAL; 1287 } 1288 1289 tcr = atm_pcr_goal(&(vcc->qos.txtp)); 1290 tcra = tcr >= 0 ? tcr : -tcr; 1291 1292 PRINTK("nicstar%d: target cell rate = %d.\n", 1293 card->index, vcc->qos.txtp.max_pcr); 1294 1295 tmpl = 1296 (unsigned long)tcra *(unsigned long) 1297 NS_TST_NUM_ENTRIES; 1298 modl = tmpl % card->max_pcr; 1299 1300 n = (int)(tmpl / card->max_pcr); 1301 if (tcr > 0) { 1302 if (modl > 0) 1303 n++; 1304 } else if (tcr == 0) { 1305 if ((n = 1306 (card->tst_free_entries - 1307 NS_TST_RESERVED)) <= 0) { 1308 PRINTK 1309 ("nicstar%d: no CBR bandwidth free.\n", 1310 card->index); 1311 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1312 clear_bit(ATM_VF_ADDR, &vcc->flags); 1313 return -EINVAL; 1314 } 1315 } 1316 1317 if (n == 0) { 1318 printk 1319 ("nicstar%d: selected bandwidth < granularity.\n", 1320 card->index); 1321 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1322 clear_bit(ATM_VF_ADDR, &vcc->flags); 1323 return -EINVAL; 1324 } 1325 1326 if (n > (card->tst_free_entries - NS_TST_RESERVED)) { 1327 PRINTK 1328 ("nicstar%d: not enough free CBR bandwidth.\n", 1329 card->index); 1330 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1331 clear_bit(ATM_VF_ADDR, &vcc->flags); 1332 return -EINVAL; 1333 } else 1334 card->tst_free_entries -= n; 1335 1336 XPRINTK("nicstar%d: writing %d tst entries.\n", 1337 card->index, n); 1338 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { 1339 if (card->scd2vc[frscdi] == NULL) { 1340 card->scd2vc[frscdi] = vc; 1341 break; 1342 } 1343 } 1344 if (frscdi == NS_FRSCD_NUM) { 1345 PRINTK 1346 ("nicstar%d: no SCD available for CBR channel.\n", 1347 card->index); 1348 card->tst_free_entries += n; 1349 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1350 clear_bit(ATM_VF_ADDR, &vcc->flags); 1351 return -EBUSY; 1352 } 1353 1354 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; 1355 1356 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); 1357 if (scq == NULL) { 1358 PRINTK("nicstar%d: can't get fixed rate SCQ.\n", 1359 card->index); 1360 card->scd2vc[frscdi] = NULL; 1361 card->tst_free_entries += n; 1362 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1363 clear_bit(ATM_VF_ADDR, &vcc->flags); 1364 return -ENOMEM; 1365 } 1366 vc->scq = scq; 1367 u32d[0] = scq_virt_to_bus(scq, scq->base); 1368 u32d[1] = (u32) 0x00000000; 1369 u32d[2] = (u32) 0xffffffff; 1370 u32d[3] = (u32) 0x00000000; 1371 ns_write_sram(card, vc->cbr_scd, u32d, 4); 1372 1373 fill_tst(card, n, vc); 1374 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { 1375 vc->cbr_scd = 0x00000000; 1376 vc->scq = card->scq0; 1377 } 1378 1379 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1380 vc->tx = 1; 1381 vc->tx_vcc = vcc; 1382 vc->tbd_count = 0; 1383 } 1384 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1385 u32 status; 1386 1387 vc->rx = 1; 1388 vc->rx_vcc = vcc; 1389 vc->rx_iov = NULL; 1390 1391 /* Open the connection in hardware */ 1392 if (vcc->qos.aal == ATM_AAL5) 1393 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; 1394 else /* vcc->qos.aal == ATM_AAL0 */ 1395 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; 1396 #ifdef RCQ_SUPPORT 1397 status |= NS_RCTE_RAWCELLINTEN; 1398 #endif /* RCQ_SUPPORT */ 1399 ns_write_sram(card, 1400 NS_RCT + 1401 (vpi << card->vcibits | vci) * 1402 NS_RCT_ENTRY_SIZE, &status, 1); 1403 } 1404 1405 } 1406 1407 set_bit(ATM_VF_READY, &vcc->flags); 1408 return 0; 1409 } 1410 1411 static void ns_close(struct atm_vcc *vcc) 1412 { 1413 vc_map *vc; 1414 ns_dev *card; 1415 u32 data; 1416 int i; 1417 1418 vc = vcc->dev_data; 1419 card = vcc->dev->dev_data; 1420 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, 1421 (int)vcc->vpi, vcc->vci); 1422 1423 clear_bit(ATM_VF_READY, &vcc->flags); 1424 1425 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1426 u32 addr; 1427 unsigned long flags; 1428 1429 addr = 1430 NS_RCT + 1431 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; 1432 spin_lock_irqsave(&card->res_lock, flags); 1433 while (CMD_BUSY(card)) ; 1434 writel(NS_CMD_CLOSE_CONNECTION | addr << 2, 1435 card->membase + CMD); 1436 spin_unlock_irqrestore(&card->res_lock, flags); 1437 1438 vc->rx = 0; 1439 if (vc->rx_iov != NULL) { 1440 struct sk_buff *iovb; 1441 u32 stat; 1442 1443 stat = readl(card->membase + STAT); 1444 card->sbfqc = ns_stat_sfbqc_get(stat); 1445 card->lbfqc = ns_stat_lfbqc_get(stat); 1446 1447 PRINTK 1448 ("nicstar%d: closing a VC with pending rx buffers.\n", 1449 card->index); 1450 iovb = vc->rx_iov; 1451 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 1452 NS_PRV_IOVCNT(iovb)); 1453 NS_PRV_IOVCNT(iovb) = 0; 1454 spin_lock_irqsave(&card->int_lock, flags); 1455 recycle_iov_buf(card, iovb); 1456 spin_unlock_irqrestore(&card->int_lock, flags); 1457 vc->rx_iov = NULL; 1458 } 1459 } 1460 1461 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1462 vc->tx = 0; 1463 } 1464 1465 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1466 unsigned long flags; 1467 ns_scqe *scqep; 1468 scq_info *scq; 1469 1470 scq = vc->scq; 1471 1472 for (;;) { 1473 spin_lock_irqsave(&scq->lock, flags); 1474 scqep = scq->next; 1475 if (scqep == scq->base) 1476 scqep = scq->last; 1477 else 1478 scqep--; 1479 if (scqep == scq->tail) { 1480 spin_unlock_irqrestore(&scq->lock, flags); 1481 break; 1482 } 1483 /* If the last entry is not a TSR, place one in the SCQ in order to 1484 be able to completely drain it and then close. */ 1485 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { 1486 ns_scqe tsr; 1487 u32 scdi, scqi; 1488 u32 data; 1489 int index; 1490 1491 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1492 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1493 scqi = scq->next - scq->base; 1494 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1495 tsr.word_3 = 0x00000000; 1496 tsr.word_4 = 0x00000000; 1497 *scq->next = tsr; 1498 index = (int)scqi; 1499 scq->skb[index] = NULL; 1500 if (scq->next == scq->last) 1501 scq->next = scq->base; 1502 else 1503 scq->next++; 1504 data = scq_virt_to_bus(scq, scq->next); 1505 ns_write_sram(card, scq->scd, &data, 1); 1506 } 1507 spin_unlock_irqrestore(&scq->lock, flags); 1508 schedule(); 1509 } 1510 1511 /* Free all TST entries */ 1512 data = NS_TST_OPCODE_VARIABLE; 1513 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { 1514 if (card->tste2vc[i] == vc) { 1515 ns_write_sram(card, card->tst_addr + i, &data, 1516 1); 1517 card->tste2vc[i] = NULL; 1518 card->tst_free_entries++; 1519 } 1520 } 1521 1522 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; 1523 free_scq(card, vc->scq, vcc); 1524 } 1525 1526 /* remove all references to vcc before deleting it */ 1527 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1528 unsigned long flags; 1529 scq_info *scq = card->scq0; 1530 1531 spin_lock_irqsave(&scq->lock, flags); 1532 1533 for (i = 0; i < scq->num_entries; i++) { 1534 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { 1535 ATM_SKB(scq->skb[i])->vcc = NULL; 1536 atm_return(vcc, scq->skb[i]->truesize); 1537 PRINTK 1538 ("nicstar: deleted pending vcc mapping\n"); 1539 } 1540 } 1541 1542 spin_unlock_irqrestore(&scq->lock, flags); 1543 } 1544 1545 vcc->dev_data = NULL; 1546 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1547 clear_bit(ATM_VF_ADDR, &vcc->flags); 1548 1549 #ifdef RX_DEBUG 1550 { 1551 u32 stat, cfg; 1552 stat = readl(card->membase + STAT); 1553 cfg = readl(card->membase + CFG); 1554 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); 1555 printk 1556 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", 1557 card->tsq.base, card->tsq.next, 1558 card->tsq.last, readl(card->membase + TSQT)); 1559 printk 1560 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", 1561 card->rsq.base, card->rsq.next, 1562 card->rsq.last, readl(card->membase + RSQT)); 1563 printk("Empty free buffer queue interrupt %s \n", 1564 card->efbie ? "enabled" : "disabled"); 1565 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", 1566 ns_stat_sfbqc_get(stat), card->sbpool.count, 1567 ns_stat_lfbqc_get(stat), card->lbpool.count); 1568 printk("hbpool.count = %d iovpool.count = %d \n", 1569 card->hbpool.count, card->iovpool.count); 1570 } 1571 #endif /* RX_DEBUG */ 1572 } 1573 1574 static void fill_tst(ns_dev * card, int n, vc_map * vc) 1575 { 1576 u32 new_tst; 1577 unsigned long cl; 1578 int e, r; 1579 u32 data; 1580 1581 /* It would be very complicated to keep the two TSTs synchronized while 1582 assuring that writes are only made to the inactive TST. So, for now I 1583 will use only one TST. If problems occur, I will change this again */ 1584 1585 new_tst = card->tst_addr; 1586 1587 /* Fill procedure */ 1588 1589 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { 1590 if (card->tste2vc[e] == NULL) 1591 break; 1592 } 1593 if (e == NS_TST_NUM_ENTRIES) { 1594 printk("nicstar%d: No free TST entries found. \n", card->index); 1595 return; 1596 } 1597 1598 r = n; 1599 cl = NS_TST_NUM_ENTRIES; 1600 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); 1601 1602 while (r > 0) { 1603 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { 1604 card->tste2vc[e] = vc; 1605 ns_write_sram(card, new_tst + e, &data, 1); 1606 cl -= NS_TST_NUM_ENTRIES; 1607 r--; 1608 } 1609 1610 if (++e == NS_TST_NUM_ENTRIES) { 1611 e = 0; 1612 } 1613 cl += n; 1614 } 1615 1616 /* End of fill procedure */ 1617 1618 data = ns_tste_make(NS_TST_OPCODE_END, new_tst); 1619 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); 1620 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); 1621 card->tst_addr = new_tst; 1622 } 1623 1624 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) 1625 { 1626 ns_dev *card; 1627 vc_map *vc; 1628 scq_info *scq; 1629 unsigned long buflen; 1630 ns_scqe scqe; 1631 u32 flags; /* TBD flags, not CPU flags */ 1632 1633 card = vcc->dev->dev_data; 1634 TXPRINTK("nicstar%d: ns_send() called.\n", card->index); 1635 if ((vc = (vc_map *) vcc->dev_data) == NULL) { 1636 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", 1637 card->index); 1638 atomic_inc(&vcc->stats->tx_err); 1639 dev_kfree_skb_any(skb); 1640 return -EINVAL; 1641 } 1642 1643 if (!vc->tx) { 1644 printk("nicstar%d: Trying to transmit on a non-tx VC.\n", 1645 card->index); 1646 atomic_inc(&vcc->stats->tx_err); 1647 dev_kfree_skb_any(skb); 1648 return -EINVAL; 1649 } 1650 1651 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1652 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", 1653 card->index); 1654 atomic_inc(&vcc->stats->tx_err); 1655 dev_kfree_skb_any(skb); 1656 return -EINVAL; 1657 } 1658 1659 if (skb_shinfo(skb)->nr_frags != 0) { 1660 printk("nicstar%d: No scatter-gather yet.\n", card->index); 1661 atomic_inc(&vcc->stats->tx_err); 1662 dev_kfree_skb_any(skb); 1663 return -EINVAL; 1664 } 1665 1666 ATM_SKB(skb)->vcc = vcc; 1667 1668 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, 1669 skb->len, DMA_TO_DEVICE); 1670 1671 if (vcc->qos.aal == ATM_AAL5) { 1672 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ 1673 flags = NS_TBD_AAL5; 1674 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); 1675 scqe.word_3 = cpu_to_le32(skb->len); 1676 scqe.word_4 = 1677 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, 1678 ATM_SKB(skb)-> 1679 atm_options & ATM_ATMOPT_CLP ? 1 : 0); 1680 flags |= NS_TBD_EOPDU; 1681 } else { /* (vcc->qos.aal == ATM_AAL0) */ 1682 1683 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ 1684 flags = NS_TBD_AAL0; 1685 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); 1686 scqe.word_3 = cpu_to_le32(0x00000000); 1687 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ 1688 flags |= NS_TBD_EOPDU; 1689 scqe.word_4 = 1690 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); 1691 /* Force the VPI/VCI to be the same as in VCC struct */ 1692 scqe.word_4 |= 1693 cpu_to_le32((((u32) vcc-> 1694 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> 1695 vci) << 1696 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); 1697 } 1698 1699 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1700 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); 1701 scq = ((vc_map *) vcc->dev_data)->scq; 1702 } else { 1703 scqe.word_1 = 1704 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); 1705 scq = card->scq0; 1706 } 1707 1708 if (push_scqe(card, vc, scq, &scqe, skb) != 0) { 1709 atomic_inc(&vcc->stats->tx_err); 1710 dev_kfree_skb_any(skb); 1711 return -EIO; 1712 } 1713 atomic_inc(&vcc->stats->tx); 1714 1715 return 0; 1716 } 1717 1718 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 1719 struct sk_buff *skb) 1720 { 1721 unsigned long flags; 1722 ns_scqe tsr; 1723 u32 scdi, scqi; 1724 int scq_is_vbr; 1725 u32 data; 1726 int index; 1727 1728 spin_lock_irqsave(&scq->lock, flags); 1729 while (scq->tail == scq->next) { 1730 if (in_interrupt()) { 1731 spin_unlock_irqrestore(&scq->lock, flags); 1732 printk("nicstar%d: Error pushing TBD.\n", card->index); 1733 return 1; 1734 } 1735 1736 scq->full = 1; 1737 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1738 scq->tail != scq->next, 1739 scq->lock, 1740 SCQFULL_TIMEOUT); 1741 1742 if (scq->full) { 1743 spin_unlock_irqrestore(&scq->lock, flags); 1744 printk("nicstar%d: Timeout pushing TBD.\n", 1745 card->index); 1746 return 1; 1747 } 1748 } 1749 *scq->next = *tbd; 1750 index = (int)(scq->next - scq->base); 1751 scq->skb[index] = skb; 1752 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", 1753 card->index, skb, index); 1754 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1755 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), 1756 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), 1757 scq->next); 1758 if (scq->next == scq->last) 1759 scq->next = scq->base; 1760 else 1761 scq->next++; 1762 1763 vc->tbd_count++; 1764 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { 1765 scq->tbd_count++; 1766 scq_is_vbr = 1; 1767 } else 1768 scq_is_vbr = 0; 1769 1770 if (vc->tbd_count >= MAX_TBD_PER_VC 1771 || scq->tbd_count >= MAX_TBD_PER_SCQ) { 1772 int has_run = 0; 1773 1774 while (scq->tail == scq->next) { 1775 if (in_interrupt()) { 1776 data = scq_virt_to_bus(scq, scq->next); 1777 ns_write_sram(card, scq->scd, &data, 1); 1778 spin_unlock_irqrestore(&scq->lock, flags); 1779 printk("nicstar%d: Error pushing TSR.\n", 1780 card->index); 1781 return 0; 1782 } 1783 1784 scq->full = 1; 1785 if (has_run++) 1786 break; 1787 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1788 scq->tail != scq->next, 1789 scq->lock, 1790 SCQFULL_TIMEOUT); 1791 } 1792 1793 if (!scq->full) { 1794 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1795 if (scq_is_vbr) 1796 scdi = NS_TSR_SCDISVBR; 1797 else 1798 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1799 scqi = scq->next - scq->base; 1800 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1801 tsr.word_3 = 0x00000000; 1802 tsr.word_4 = 0x00000000; 1803 1804 *scq->next = tsr; 1805 index = (int)scqi; 1806 scq->skb[index] = NULL; 1807 XPRINTK 1808 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1809 card->index, le32_to_cpu(tsr.word_1), 1810 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), 1811 le32_to_cpu(tsr.word_4), scq->next); 1812 if (scq->next == scq->last) 1813 scq->next = scq->base; 1814 else 1815 scq->next++; 1816 vc->tbd_count = 0; 1817 scq->tbd_count = 0; 1818 } else 1819 PRINTK("nicstar%d: Timeout pushing TSR.\n", 1820 card->index); 1821 } 1822 data = scq_virt_to_bus(scq, scq->next); 1823 ns_write_sram(card, scq->scd, &data, 1); 1824 1825 spin_unlock_irqrestore(&scq->lock, flags); 1826 1827 return 0; 1828 } 1829 1830 static void process_tsq(ns_dev * card) 1831 { 1832 u32 scdi; 1833 scq_info *scq; 1834 ns_tsi *previous = NULL, *one_ahead, *two_ahead; 1835 int serviced_entries; /* flag indicating at least on entry was serviced */ 1836 1837 serviced_entries = 0; 1838 1839 if (card->tsq.next == card->tsq.last) 1840 one_ahead = card->tsq.base; 1841 else 1842 one_ahead = card->tsq.next + 1; 1843 1844 if (one_ahead == card->tsq.last) 1845 two_ahead = card->tsq.base; 1846 else 1847 two_ahead = one_ahead + 1; 1848 1849 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || 1850 !ns_tsi_isempty(two_ahead)) 1851 /* At most two empty, as stated in the 77201 errata */ 1852 { 1853 serviced_entries = 1; 1854 1855 /* Skip the one or two possible empty entries */ 1856 while (ns_tsi_isempty(card->tsq.next)) { 1857 if (card->tsq.next == card->tsq.last) 1858 card->tsq.next = card->tsq.base; 1859 else 1860 card->tsq.next++; 1861 } 1862 1863 if (!ns_tsi_tmrof(card->tsq.next)) { 1864 scdi = ns_tsi_getscdindex(card->tsq.next); 1865 if (scdi == NS_TSI_SCDISVBR) 1866 scq = card->scq0; 1867 else { 1868 if (card->scd2vc[scdi] == NULL) { 1869 printk 1870 ("nicstar%d: could not find VC from SCD index.\n", 1871 card->index); 1872 ns_tsi_init(card->tsq.next); 1873 return; 1874 } 1875 scq = card->scd2vc[scdi]->scq; 1876 } 1877 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); 1878 scq->full = 0; 1879 wake_up_interruptible(&(scq->scqfull_waitq)); 1880 } 1881 1882 ns_tsi_init(card->tsq.next); 1883 previous = card->tsq.next; 1884 if (card->tsq.next == card->tsq.last) 1885 card->tsq.next = card->tsq.base; 1886 else 1887 card->tsq.next++; 1888 1889 if (card->tsq.next == card->tsq.last) 1890 one_ahead = card->tsq.base; 1891 else 1892 one_ahead = card->tsq.next + 1; 1893 1894 if (one_ahead == card->tsq.last) 1895 two_ahead = card->tsq.base; 1896 else 1897 two_ahead = one_ahead + 1; 1898 } 1899 1900 if (serviced_entries) 1901 writel(PTR_DIFF(previous, card->tsq.base), 1902 card->membase + TSQH); 1903 } 1904 1905 static void drain_scq(ns_dev * card, scq_info * scq, int pos) 1906 { 1907 struct atm_vcc *vcc; 1908 struct sk_buff *skb; 1909 int i; 1910 unsigned long flags; 1911 1912 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", 1913 card->index, scq, pos); 1914 if (pos >= scq->num_entries) { 1915 printk("nicstar%d: Bad index on drain_scq().\n", card->index); 1916 return; 1917 } 1918 1919 spin_lock_irqsave(&scq->lock, flags); 1920 i = (int)(scq->tail - scq->base); 1921 if (++i == scq->num_entries) 1922 i = 0; 1923 while (i != pos) { 1924 skb = scq->skb[i]; 1925 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", 1926 card->index, skb, i); 1927 if (skb != NULL) { 1928 dma_unmap_single(&card->pcidev->dev, 1929 NS_PRV_DMA(skb), 1930 skb->len, 1931 DMA_TO_DEVICE); 1932 vcc = ATM_SKB(skb)->vcc; 1933 if (vcc && vcc->pop != NULL) { 1934 vcc->pop(vcc, skb); 1935 } else { 1936 dev_kfree_skb_irq(skb); 1937 } 1938 scq->skb[i] = NULL; 1939 } 1940 if (++i == scq->num_entries) 1941 i = 0; 1942 } 1943 scq->tail = scq->base + pos; 1944 spin_unlock_irqrestore(&scq->lock, flags); 1945 } 1946 1947 static void process_rsq(ns_dev * card) 1948 { 1949 ns_rsqe *previous; 1950 1951 if (!ns_rsqe_valid(card->rsq.next)) 1952 return; 1953 do { 1954 dequeue_rx(card, card->rsq.next); 1955 ns_rsqe_init(card->rsq.next); 1956 previous = card->rsq.next; 1957 if (card->rsq.next == card->rsq.last) 1958 card->rsq.next = card->rsq.base; 1959 else 1960 card->rsq.next++; 1961 } while (ns_rsqe_valid(card->rsq.next)); 1962 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); 1963 } 1964 1965 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) 1966 { 1967 u32 vpi, vci; 1968 vc_map *vc; 1969 struct sk_buff *iovb; 1970 struct iovec *iov; 1971 struct atm_vcc *vcc; 1972 struct sk_buff *skb; 1973 unsigned short aal5_len; 1974 int len; 1975 u32 stat; 1976 u32 id; 1977 1978 stat = readl(card->membase + STAT); 1979 card->sbfqc = ns_stat_sfbqc_get(stat); 1980 card->lbfqc = ns_stat_lfbqc_get(stat); 1981 1982 id = le32_to_cpu(rsqe->buffer_handle); 1983 skb = idr_find(&card->idr, id); 1984 if (!skb) { 1985 RXPRINTK(KERN_ERR 1986 "nicstar%d: idr_find() failed!\n", card->index); 1987 return; 1988 } 1989 idr_remove(&card->idr, id); 1990 dma_sync_single_for_cpu(&card->pcidev->dev, 1991 NS_PRV_DMA(skb), 1992 (NS_PRV_BUFTYPE(skb) == BUF_SM 1993 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1994 DMA_FROM_DEVICE); 1995 dma_unmap_single(&card->pcidev->dev, 1996 NS_PRV_DMA(skb), 1997 (NS_PRV_BUFTYPE(skb) == BUF_SM 1998 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1999 DMA_FROM_DEVICE); 2000 vpi = ns_rsqe_vpi(rsqe); 2001 vci = ns_rsqe_vci(rsqe); 2002 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { 2003 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", 2004 card->index, vpi, vci); 2005 recycle_rx_buf(card, skb); 2006 return; 2007 } 2008 2009 vc = &(card->vcmap[vpi << card->vcibits | vci]); 2010 if (!vc->rx) { 2011 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", 2012 card->index, vpi, vci); 2013 recycle_rx_buf(card, skb); 2014 return; 2015 } 2016 2017 vcc = vc->rx_vcc; 2018 2019 if (vcc->qos.aal == ATM_AAL0) { 2020 struct sk_buff *sb; 2021 unsigned char *cell; 2022 int i; 2023 2024 cell = skb->data; 2025 for (i = ns_rsqe_cellcount(rsqe); i; i--) { 2026 sb = dev_alloc_skb(NS_SMSKBSIZE); 2027 if (!sb) { 2028 printk 2029 ("nicstar%d: Can't allocate buffers for aal0.\n", 2030 card->index); 2031 atomic_add(i, &vcc->stats->rx_drop); 2032 break; 2033 } 2034 if (!atm_charge(vcc, sb->truesize)) { 2035 RXPRINTK 2036 ("nicstar%d: atm_charge() dropped aal0 packets.\n", 2037 card->index); 2038 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ 2039 dev_kfree_skb_any(sb); 2040 break; 2041 } 2042 /* Rebuild the header */ 2043 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | 2044 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); 2045 if (i == 1 && ns_rsqe_eopdu(rsqe)) 2046 *((u32 *) sb->data) |= 0x00000002; 2047 skb_put(sb, NS_AAL0_HEADER); 2048 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); 2049 skb_put(sb, ATM_CELL_PAYLOAD); 2050 ATM_SKB(sb)->vcc = vcc; 2051 __net_timestamp(sb); 2052 vcc->push(vcc, sb); 2053 atomic_inc(&vcc->stats->rx); 2054 cell += ATM_CELL_PAYLOAD; 2055 } 2056 2057 recycle_rx_buf(card, skb); 2058 return; 2059 } 2060 2061 /* To reach this point, the AAL layer can only be AAL5 */ 2062 2063 if ((iovb = vc->rx_iov) == NULL) { 2064 iovb = skb_dequeue(&(card->iovpool.queue)); 2065 if (iovb == NULL) { /* No buffers in the queue */ 2066 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); 2067 if (iovb == NULL) { 2068 printk("nicstar%d: Out of iovec buffers.\n", 2069 card->index); 2070 atomic_inc(&vcc->stats->rx_drop); 2071 recycle_rx_buf(card, skb); 2072 return; 2073 } 2074 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2075 } else if (--card->iovpool.count < card->iovnr.min) { 2076 struct sk_buff *new_iovb; 2077 if ((new_iovb = 2078 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { 2079 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2080 skb_queue_tail(&card->iovpool.queue, new_iovb); 2081 card->iovpool.count++; 2082 } 2083 } 2084 vc->rx_iov = iovb; 2085 NS_PRV_IOVCNT(iovb) = 0; 2086 iovb->len = 0; 2087 iovb->data = iovb->head; 2088 skb_reset_tail_pointer(iovb); 2089 /* IMPORTANT: a pointer to the sk_buff containing the small or large 2090 buffer is stored as iovec base, NOT a pointer to the 2091 small or large buffer itself. */ 2092 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { 2093 printk("nicstar%d: received too big AAL5 SDU.\n", card->index); 2094 atomic_inc(&vcc->stats->rx_err); 2095 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2096 NS_MAX_IOVECS); 2097 NS_PRV_IOVCNT(iovb) = 0; 2098 iovb->len = 0; 2099 iovb->data = iovb->head; 2100 skb_reset_tail_pointer(iovb); 2101 } 2102 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; 2103 iov->iov_base = (void *)skb; 2104 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; 2105 iovb->len += iov->iov_len; 2106 2107 #ifdef EXTRA_DEBUG 2108 if (NS_PRV_IOVCNT(iovb) == 1) { 2109 if (NS_PRV_BUFTYPE(skb) != BUF_SM) { 2110 printk 2111 ("nicstar%d: Expected a small buffer, and this is not one.\n", 2112 card->index); 2113 which_list(card, skb); 2114 atomic_inc(&vcc->stats->rx_err); 2115 recycle_rx_buf(card, skb); 2116 vc->rx_iov = NULL; 2117 recycle_iov_buf(card, iovb); 2118 return; 2119 } 2120 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ 2121 2122 if (NS_PRV_BUFTYPE(skb) != BUF_LG) { 2123 printk 2124 ("nicstar%d: Expected a large buffer, and this is not one.\n", 2125 card->index); 2126 which_list(card, skb); 2127 atomic_inc(&vcc->stats->rx_err); 2128 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2129 NS_PRV_IOVCNT(iovb)); 2130 vc->rx_iov = NULL; 2131 recycle_iov_buf(card, iovb); 2132 return; 2133 } 2134 } 2135 #endif /* EXTRA_DEBUG */ 2136 2137 if (ns_rsqe_eopdu(rsqe)) { 2138 /* This works correctly regardless of the endianness of the host */ 2139 unsigned char *L1L2 = (unsigned char *) 2140 (skb->data + iov->iov_len - 6); 2141 aal5_len = L1L2[0] << 8 | L1L2[1]; 2142 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; 2143 if (ns_rsqe_crcerr(rsqe) || 2144 len + 8 > iovb->len || len + (47 + 8) < iovb->len) { 2145 printk("nicstar%d: AAL5 CRC error", card->index); 2146 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) 2147 printk(" - PDU size mismatch.\n"); 2148 else 2149 printk(".\n"); 2150 atomic_inc(&vcc->stats->rx_err); 2151 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2152 NS_PRV_IOVCNT(iovb)); 2153 vc->rx_iov = NULL; 2154 recycle_iov_buf(card, iovb); 2155 return; 2156 } 2157 2158 /* By this point we (hopefully) have a complete SDU without errors. */ 2159 2160 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ 2161 /* skb points to a small buffer */ 2162 if (!atm_charge(vcc, skb->truesize)) { 2163 push_rxbufs(card, skb); 2164 atomic_inc(&vcc->stats->rx_drop); 2165 } else { 2166 skb_put(skb, len); 2167 dequeue_sm_buf(card, skb); 2168 ATM_SKB(skb)->vcc = vcc; 2169 __net_timestamp(skb); 2170 vcc->push(vcc, skb); 2171 atomic_inc(&vcc->stats->rx); 2172 } 2173 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ 2174 struct sk_buff *sb; 2175 2176 sb = (struct sk_buff *)(iov - 1)->iov_base; 2177 /* skb points to a large buffer */ 2178 2179 if (len <= NS_SMBUFSIZE) { 2180 if (!atm_charge(vcc, sb->truesize)) { 2181 push_rxbufs(card, sb); 2182 atomic_inc(&vcc->stats->rx_drop); 2183 } else { 2184 skb_put(sb, len); 2185 dequeue_sm_buf(card, sb); 2186 ATM_SKB(sb)->vcc = vcc; 2187 __net_timestamp(sb); 2188 vcc->push(vcc, sb); 2189 atomic_inc(&vcc->stats->rx); 2190 } 2191 2192 push_rxbufs(card, skb); 2193 2194 } else { /* len > NS_SMBUFSIZE, the usual case */ 2195 2196 if (!atm_charge(vcc, skb->truesize)) { 2197 push_rxbufs(card, skb); 2198 atomic_inc(&vcc->stats->rx_drop); 2199 } else { 2200 dequeue_lg_buf(card, skb); 2201 skb_push(skb, NS_SMBUFSIZE); 2202 skb_copy_from_linear_data(sb, skb->data, 2203 NS_SMBUFSIZE); 2204 skb_put(skb, len - NS_SMBUFSIZE); 2205 ATM_SKB(skb)->vcc = vcc; 2206 __net_timestamp(skb); 2207 vcc->push(vcc, skb); 2208 atomic_inc(&vcc->stats->rx); 2209 } 2210 2211 push_rxbufs(card, sb); 2212 2213 } 2214 2215 } else { /* Must push a huge buffer */ 2216 2217 struct sk_buff *hb, *sb, *lb; 2218 int remaining, tocopy; 2219 int j; 2220 2221 hb = skb_dequeue(&(card->hbpool.queue)); 2222 if (hb == NULL) { /* No buffers in the queue */ 2223 2224 hb = dev_alloc_skb(NS_HBUFSIZE); 2225 if (hb == NULL) { 2226 printk 2227 ("nicstar%d: Out of huge buffers.\n", 2228 card->index); 2229 atomic_inc(&vcc->stats->rx_drop); 2230 recycle_iovec_rx_bufs(card, 2231 (struct iovec *) 2232 iovb->data, 2233 NS_PRV_IOVCNT(iovb)); 2234 vc->rx_iov = NULL; 2235 recycle_iov_buf(card, iovb); 2236 return; 2237 } else if (card->hbpool.count < card->hbnr.min) { 2238 struct sk_buff *new_hb; 2239 if ((new_hb = 2240 dev_alloc_skb(NS_HBUFSIZE)) != 2241 NULL) { 2242 skb_queue_tail(&card->hbpool. 2243 queue, new_hb); 2244 card->hbpool.count++; 2245 } 2246 } 2247 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2248 } else if (--card->hbpool.count < card->hbnr.min) { 2249 struct sk_buff *new_hb; 2250 if ((new_hb = 2251 dev_alloc_skb(NS_HBUFSIZE)) != NULL) { 2252 NS_PRV_BUFTYPE(new_hb) = BUF_NONE; 2253 skb_queue_tail(&card->hbpool.queue, 2254 new_hb); 2255 card->hbpool.count++; 2256 } 2257 if (card->hbpool.count < card->hbnr.min) { 2258 if ((new_hb = 2259 dev_alloc_skb(NS_HBUFSIZE)) != 2260 NULL) { 2261 NS_PRV_BUFTYPE(new_hb) = 2262 BUF_NONE; 2263 skb_queue_tail(&card->hbpool. 2264 queue, new_hb); 2265 card->hbpool.count++; 2266 } 2267 } 2268 } 2269 2270 iov = (struct iovec *)iovb->data; 2271 2272 if (!atm_charge(vcc, hb->truesize)) { 2273 recycle_iovec_rx_bufs(card, iov, 2274 NS_PRV_IOVCNT(iovb)); 2275 if (card->hbpool.count < card->hbnr.max) { 2276 skb_queue_tail(&card->hbpool.queue, hb); 2277 card->hbpool.count++; 2278 } else 2279 dev_kfree_skb_any(hb); 2280 atomic_inc(&vcc->stats->rx_drop); 2281 } else { 2282 /* Copy the small buffer to the huge buffer */ 2283 sb = (struct sk_buff *)iov->iov_base; 2284 skb_copy_from_linear_data(sb, hb->data, 2285 iov->iov_len); 2286 skb_put(hb, iov->iov_len); 2287 remaining = len - iov->iov_len; 2288 iov++; 2289 /* Free the small buffer */ 2290 push_rxbufs(card, sb); 2291 2292 /* Copy all large buffers to the huge buffer and free them */ 2293 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { 2294 lb = (struct sk_buff *)iov->iov_base; 2295 tocopy = 2296 min_t(int, remaining, iov->iov_len); 2297 skb_copy_from_linear_data(lb, 2298 skb_tail_pointer 2299 (hb), tocopy); 2300 skb_put(hb, tocopy); 2301 iov++; 2302 remaining -= tocopy; 2303 push_rxbufs(card, lb); 2304 } 2305 #ifdef EXTRA_DEBUG 2306 if (remaining != 0 || hb->len != len) 2307 printk 2308 ("nicstar%d: Huge buffer len mismatch.\n", 2309 card->index); 2310 #endif /* EXTRA_DEBUG */ 2311 ATM_SKB(hb)->vcc = vcc; 2312 __net_timestamp(hb); 2313 vcc->push(vcc, hb); 2314 atomic_inc(&vcc->stats->rx); 2315 } 2316 } 2317 2318 vc->rx_iov = NULL; 2319 recycle_iov_buf(card, iovb); 2320 } 2321 2322 } 2323 2324 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) 2325 { 2326 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { 2327 printk("nicstar%d: What kind of rx buffer is this?\n", 2328 card->index); 2329 dev_kfree_skb_any(skb); 2330 } else 2331 push_rxbufs(card, skb); 2332 } 2333 2334 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) 2335 { 2336 while (count-- > 0) 2337 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); 2338 } 2339 2340 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) 2341 { 2342 if (card->iovpool.count < card->iovnr.max) { 2343 skb_queue_tail(&card->iovpool.queue, iovb); 2344 card->iovpool.count++; 2345 } else 2346 dev_kfree_skb_any(iovb); 2347 } 2348 2349 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) 2350 { 2351 skb_unlink(sb, &card->sbpool.queue); 2352 if (card->sbfqc < card->sbnr.init) { 2353 struct sk_buff *new_sb; 2354 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2355 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2356 skb_queue_tail(&card->sbpool.queue, new_sb); 2357 skb_reserve(new_sb, NS_AAL0_HEADER); 2358 push_rxbufs(card, new_sb); 2359 } 2360 } 2361 if (card->sbfqc < card->sbnr.init) 2362 { 2363 struct sk_buff *new_sb; 2364 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2365 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2366 skb_queue_tail(&card->sbpool.queue, new_sb); 2367 skb_reserve(new_sb, NS_AAL0_HEADER); 2368 push_rxbufs(card, new_sb); 2369 } 2370 } 2371 } 2372 2373 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) 2374 { 2375 skb_unlink(lb, &card->lbpool.queue); 2376 if (card->lbfqc < card->lbnr.init) { 2377 struct sk_buff *new_lb; 2378 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2379 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2380 skb_queue_tail(&card->lbpool.queue, new_lb); 2381 skb_reserve(new_lb, NS_SMBUFSIZE); 2382 push_rxbufs(card, new_lb); 2383 } 2384 } 2385 if (card->lbfqc < card->lbnr.init) 2386 { 2387 struct sk_buff *new_lb; 2388 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2389 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2390 skb_queue_tail(&card->lbpool.queue, new_lb); 2391 skb_reserve(new_lb, NS_SMBUFSIZE); 2392 push_rxbufs(card, new_lb); 2393 } 2394 } 2395 } 2396 2397 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) 2398 { 2399 u32 stat; 2400 ns_dev *card; 2401 int left; 2402 2403 left = (int)*pos; 2404 card = (ns_dev *) dev->dev_data; 2405 stat = readl(card->membase + STAT); 2406 if (!left--) 2407 return sprintf(page, "Pool count min init max \n"); 2408 if (!left--) 2409 return sprintf(page, "Small %5d %5d %5d %5d \n", 2410 ns_stat_sfbqc_get(stat), card->sbnr.min, 2411 card->sbnr.init, card->sbnr.max); 2412 if (!left--) 2413 return sprintf(page, "Large %5d %5d %5d %5d \n", 2414 ns_stat_lfbqc_get(stat), card->lbnr.min, 2415 card->lbnr.init, card->lbnr.max); 2416 if (!left--) 2417 return sprintf(page, "Huge %5d %5d %5d %5d \n", 2418 card->hbpool.count, card->hbnr.min, 2419 card->hbnr.init, card->hbnr.max); 2420 if (!left--) 2421 return sprintf(page, "Iovec %5d %5d %5d %5d \n", 2422 card->iovpool.count, card->iovnr.min, 2423 card->iovnr.init, card->iovnr.max); 2424 if (!left--) { 2425 int retval; 2426 retval = 2427 sprintf(page, "Interrupt counter: %u \n", card->intcnt); 2428 card->intcnt = 0; 2429 return retval; 2430 } 2431 #if 0 2432 /* Dump 25.6 Mbps PHY registers */ 2433 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it 2434 here just in case it's needed for debugging. */ 2435 if (card->max_pcr == ATM_25_PCR && !left--) { 2436 u32 phy_regs[4]; 2437 u32 i; 2438 2439 for (i = 0; i < 4; i++) { 2440 while (CMD_BUSY(card)) ; 2441 writel(NS_CMD_READ_UTILITY | 0x00000200 | i, 2442 card->membase + CMD); 2443 while (CMD_BUSY(card)) ; 2444 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; 2445 } 2446 2447 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", 2448 phy_regs[0], phy_regs[1], phy_regs[2], 2449 phy_regs[3]); 2450 } 2451 #endif /* 0 - Dump 25.6 Mbps PHY registers */ 2452 #if 0 2453 /* Dump TST */ 2454 if (left-- < NS_TST_NUM_ENTRIES) { 2455 if (card->tste2vc[left + 1] == NULL) 2456 return sprintf(page, "%5d - VBR/UBR \n", left + 1); 2457 else 2458 return sprintf(page, "%5d - %d %d \n", left + 1, 2459 card->tste2vc[left + 1]->tx_vcc->vpi, 2460 card->tste2vc[left + 1]->tx_vcc->vci); 2461 } 2462 #endif /* 0 */ 2463 return 0; 2464 } 2465 2466 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) 2467 { 2468 ns_dev *card; 2469 pool_levels pl; 2470 long btype; 2471 unsigned long flags; 2472 2473 card = dev->dev_data; 2474 switch (cmd) { 2475 case NS_GETPSTAT: 2476 if (get_user 2477 (pl.buftype, &((pool_levels __user *) arg)->buftype)) 2478 return -EFAULT; 2479 switch (pl.buftype) { 2480 case NS_BUFTYPE_SMALL: 2481 pl.count = 2482 ns_stat_sfbqc_get(readl(card->membase + STAT)); 2483 pl.level.min = card->sbnr.min; 2484 pl.level.init = card->sbnr.init; 2485 pl.level.max = card->sbnr.max; 2486 break; 2487 2488 case NS_BUFTYPE_LARGE: 2489 pl.count = 2490 ns_stat_lfbqc_get(readl(card->membase + STAT)); 2491 pl.level.min = card->lbnr.min; 2492 pl.level.init = card->lbnr.init; 2493 pl.level.max = card->lbnr.max; 2494 break; 2495 2496 case NS_BUFTYPE_HUGE: 2497 pl.count = card->hbpool.count; 2498 pl.level.min = card->hbnr.min; 2499 pl.level.init = card->hbnr.init; 2500 pl.level.max = card->hbnr.max; 2501 break; 2502 2503 case NS_BUFTYPE_IOVEC: 2504 pl.count = card->iovpool.count; 2505 pl.level.min = card->iovnr.min; 2506 pl.level.init = card->iovnr.init; 2507 pl.level.max = card->iovnr.max; 2508 break; 2509 2510 default: 2511 return -ENOIOCTLCMD; 2512 2513 } 2514 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) 2515 return (sizeof(pl)); 2516 else 2517 return -EFAULT; 2518 2519 case NS_SETBUFLEV: 2520 if (!capable(CAP_NET_ADMIN)) 2521 return -EPERM; 2522 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) 2523 return -EFAULT; 2524 if (pl.level.min >= pl.level.init 2525 || pl.level.init >= pl.level.max) 2526 return -EINVAL; 2527 if (pl.level.min == 0) 2528 return -EINVAL; 2529 switch (pl.buftype) { 2530 case NS_BUFTYPE_SMALL: 2531 if (pl.level.max > TOP_SB) 2532 return -EINVAL; 2533 card->sbnr.min = pl.level.min; 2534 card->sbnr.init = pl.level.init; 2535 card->sbnr.max = pl.level.max; 2536 break; 2537 2538 case NS_BUFTYPE_LARGE: 2539 if (pl.level.max > TOP_LB) 2540 return -EINVAL; 2541 card->lbnr.min = pl.level.min; 2542 card->lbnr.init = pl.level.init; 2543 card->lbnr.max = pl.level.max; 2544 break; 2545 2546 case NS_BUFTYPE_HUGE: 2547 if (pl.level.max > TOP_HB) 2548 return -EINVAL; 2549 card->hbnr.min = pl.level.min; 2550 card->hbnr.init = pl.level.init; 2551 card->hbnr.max = pl.level.max; 2552 break; 2553 2554 case NS_BUFTYPE_IOVEC: 2555 if (pl.level.max > TOP_IOVB) 2556 return -EINVAL; 2557 card->iovnr.min = pl.level.min; 2558 card->iovnr.init = pl.level.init; 2559 card->iovnr.max = pl.level.max; 2560 break; 2561 2562 default: 2563 return -EINVAL; 2564 2565 } 2566 return 0; 2567 2568 case NS_ADJBUFLEV: 2569 if (!capable(CAP_NET_ADMIN)) 2570 return -EPERM; 2571 btype = (long)arg; /* a long is the same size as a pointer or bigger */ 2572 switch (btype) { 2573 case NS_BUFTYPE_SMALL: 2574 while (card->sbfqc < card->sbnr.init) { 2575 struct sk_buff *sb; 2576 2577 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2578 if (sb == NULL) 2579 return -ENOMEM; 2580 NS_PRV_BUFTYPE(sb) = BUF_SM; 2581 skb_queue_tail(&card->sbpool.queue, sb); 2582 skb_reserve(sb, NS_AAL0_HEADER); 2583 push_rxbufs(card, sb); 2584 } 2585 break; 2586 2587 case NS_BUFTYPE_LARGE: 2588 while (card->lbfqc < card->lbnr.init) { 2589 struct sk_buff *lb; 2590 2591 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2592 if (lb == NULL) 2593 return -ENOMEM; 2594 NS_PRV_BUFTYPE(lb) = BUF_LG; 2595 skb_queue_tail(&card->lbpool.queue, lb); 2596 skb_reserve(lb, NS_SMBUFSIZE); 2597 push_rxbufs(card, lb); 2598 } 2599 break; 2600 2601 case NS_BUFTYPE_HUGE: 2602 while (card->hbpool.count > card->hbnr.init) { 2603 struct sk_buff *hb; 2604 2605 spin_lock_irqsave(&card->int_lock, flags); 2606 hb = skb_dequeue(&card->hbpool.queue); 2607 card->hbpool.count--; 2608 spin_unlock_irqrestore(&card->int_lock, flags); 2609 if (hb == NULL) 2610 printk 2611 ("nicstar%d: huge buffer count inconsistent.\n", 2612 card->index); 2613 else 2614 dev_kfree_skb_any(hb); 2615 2616 } 2617 while (card->hbpool.count < card->hbnr.init) { 2618 struct sk_buff *hb; 2619 2620 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2621 if (hb == NULL) 2622 return -ENOMEM; 2623 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2624 spin_lock_irqsave(&card->int_lock, flags); 2625 skb_queue_tail(&card->hbpool.queue, hb); 2626 card->hbpool.count++; 2627 spin_unlock_irqrestore(&card->int_lock, flags); 2628 } 2629 break; 2630 2631 case NS_BUFTYPE_IOVEC: 2632 while (card->iovpool.count > card->iovnr.init) { 2633 struct sk_buff *iovb; 2634 2635 spin_lock_irqsave(&card->int_lock, flags); 2636 iovb = skb_dequeue(&card->iovpool.queue); 2637 card->iovpool.count--; 2638 spin_unlock_irqrestore(&card->int_lock, flags); 2639 if (iovb == NULL) 2640 printk 2641 ("nicstar%d: iovec buffer count inconsistent.\n", 2642 card->index); 2643 else 2644 dev_kfree_skb_any(iovb); 2645 2646 } 2647 while (card->iovpool.count < card->iovnr.init) { 2648 struct sk_buff *iovb; 2649 2650 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 2651 if (iovb == NULL) 2652 return -ENOMEM; 2653 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2654 spin_lock_irqsave(&card->int_lock, flags); 2655 skb_queue_tail(&card->iovpool.queue, iovb); 2656 card->iovpool.count++; 2657 spin_unlock_irqrestore(&card->int_lock, flags); 2658 } 2659 break; 2660 2661 default: 2662 return -EINVAL; 2663 2664 } 2665 return 0; 2666 2667 default: 2668 if (dev->phy && dev->phy->ioctl) { 2669 return dev->phy->ioctl(dev, cmd, arg); 2670 } else { 2671 printk("nicstar%d: %s == NULL \n", card->index, 2672 dev->phy ? "dev->phy->ioctl" : "dev->phy"); 2673 return -ENOIOCTLCMD; 2674 } 2675 } 2676 } 2677 2678 #ifdef EXTRA_DEBUG 2679 static void which_list(ns_dev * card, struct sk_buff *skb) 2680 { 2681 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); 2682 } 2683 #endif /* EXTRA_DEBUG */ 2684 2685 static void ns_poll(unsigned long arg) 2686 { 2687 int i; 2688 ns_dev *card; 2689 unsigned long flags; 2690 u32 stat_r, stat_w; 2691 2692 PRINTK("nicstar: Entering ns_poll().\n"); 2693 for (i = 0; i < num_cards; i++) { 2694 card = cards[i]; 2695 if (spin_is_locked(&card->int_lock)) { 2696 /* Probably it isn't worth spinning */ 2697 continue; 2698 } 2699 spin_lock_irqsave(&card->int_lock, flags); 2700 2701 stat_w = 0; 2702 stat_r = readl(card->membase + STAT); 2703 if (stat_r & NS_STAT_TSIF) 2704 stat_w |= NS_STAT_TSIF; 2705 if (stat_r & NS_STAT_EOPDU) 2706 stat_w |= NS_STAT_EOPDU; 2707 2708 process_tsq(card); 2709 process_rsq(card); 2710 2711 writel(stat_w, card->membase + STAT); 2712 spin_unlock_irqrestore(&card->int_lock, flags); 2713 } 2714 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); 2715 PRINTK("nicstar: Leaving ns_poll().\n"); 2716 } 2717 2718 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 2719 unsigned long addr) 2720 { 2721 ns_dev *card; 2722 unsigned long flags; 2723 2724 card = dev->dev_data; 2725 spin_lock_irqsave(&card->res_lock, flags); 2726 while (CMD_BUSY(card)) ; 2727 writel((u32) value, card->membase + DR0); 2728 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), 2729 card->membase + CMD); 2730 spin_unlock_irqrestore(&card->res_lock, flags); 2731 } 2732 2733 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) 2734 { 2735 ns_dev *card; 2736 unsigned long flags; 2737 u32 data; 2738 2739 card = dev->dev_data; 2740 spin_lock_irqsave(&card->res_lock, flags); 2741 while (CMD_BUSY(card)) ; 2742 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), 2743 card->membase + CMD); 2744 while (CMD_BUSY(card)) ; 2745 data = readl(card->membase + DR0) & 0x000000FF; 2746 spin_unlock_irqrestore(&card->res_lock, flags); 2747 return (unsigned char)data; 2748 } 2749 2750 module_init(nicstar_init); 2751 module_exit(nicstar_cleanup); 2752