xref: /openbmc/linux/drivers/atm/nicstar.c (revision 806b5228)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * nicstar.c
4  *
5  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6  *
7  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8  *            It was taken from the frle-0.22 device driver.
9  *            As the file doesn't have a copyright notice, in the file
10  *            nicstarmac.copyright I put the copyright notice from the
11  *            frle-0.22 device driver.
12  *            Some code is based on the nicstar driver by M. Welsh.
13  *
14  * Author: Rui Prior (rprior@inescn.pt)
15  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
16  *
17  *
18  * (C) INESC 1999
19  */
20 
21 /*
22  * IMPORTANT INFORMATION
23  *
24  * There are currently three types of spinlocks:
25  *
26  * 1 - Per card interrupt spinlock (to protect structures and such)
27  * 2 - Per SCQ scq spinlock
28  * 3 - Per card resource spinlock (to access registers, etc.)
29  *
30  * These must NEVER be grabbed in reverse order.
31  *
32  */
33 
34 /* Header files */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 
65 /* Additional code */
66 
67 #include "nicstarmac.c"
68 
69 /* Configurable parameters */
70 
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
76 
77 /* Do not touch these */
78 
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
84 
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
90 
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...) do {} while (0)
95 #endif /* GENERAL_DEBUG */
96 
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
102 
103 /* Macros */
104 
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 
107 #define NS_DELAY mdelay(1)
108 
109 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
110 
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
114 
115 #define scq_virt_to_bus(scq, p) \
116 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 
118 /* Function declarations */
119 
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 			  int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135 		     struct sk_buff *skb, bool may_sleep);
136 static void process_tsq(ns_dev * card);
137 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138 static void process_rsq(ns_dev * card);
139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147 #ifdef EXTRA_DEBUG
148 static void which_list(ns_dev * card, struct sk_buff *skb);
149 #endif
150 static void ns_poll(struct timer_list *unused);
151 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152 		       unsigned long addr);
153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
154 
155 /* Global variables */
156 
157 static struct ns_dev *cards[NS_MAX_CARDS];
158 static unsigned num_cards;
159 static const struct atmdev_ops atm_ops = {
160 	.open = ns_open,
161 	.close = ns_close,
162 	.ioctl = ns_ioctl,
163 	.send = ns_send,
164 	.send_bh = ns_send_bh,
165 	.phy_put = ns_phy_put,
166 	.phy_get = ns_phy_get,
167 	.proc_read = ns_proc_read,
168 	.owner = THIS_MODULE,
169 };
170 
171 static struct timer_list ns_timer;
172 static char *mac[NS_MAX_CARDS];
173 module_param_array(mac, charp, NULL, 0);
174 MODULE_LICENSE("GPL");
175 
176 /* Functions */
177 
178 static int nicstar_init_one(struct pci_dev *pcidev,
179 			    const struct pci_device_id *ent)
180 {
181 	static int index = -1;
182 	unsigned int error;
183 
184 	index++;
185 	cards[index] = NULL;
186 
187 	error = ns_init_card(index, pcidev);
188 	if (error) {
189 		cards[index--] = NULL;	/* don't increment index */
190 		goto err_out;
191 	}
192 
193 	return 0;
194 err_out:
195 	return -ENODEV;
196 }
197 
198 static void nicstar_remove_one(struct pci_dev *pcidev)
199 {
200 	int i, j;
201 	ns_dev *card = pci_get_drvdata(pcidev);
202 	struct sk_buff *hb;
203 	struct sk_buff *iovb;
204 	struct sk_buff *lb;
205 	struct sk_buff *sb;
206 
207 	i = card->index;
208 
209 	if (cards[i] == NULL)
210 		return;
211 
212 	if (card->atmdev->phy && card->atmdev->phy->stop)
213 		card->atmdev->phy->stop(card->atmdev);
214 
215 	/* Stop everything */
216 	writel(0x00000000, card->membase + CFG);
217 
218 	/* De-register device */
219 	atm_dev_deregister(card->atmdev);
220 
221 	/* Disable PCI device */
222 	pci_disable_device(pcidev);
223 
224 	/* Free up resources */
225 	j = 0;
226 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
227 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
228 		dev_kfree_skb_any(hb);
229 		j++;
230 	}
231 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
232 	j = 0;
233 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
234 	       card->iovpool.count);
235 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
236 		dev_kfree_skb_any(iovb);
237 		j++;
238 	}
239 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
240 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
241 		dev_kfree_skb_any(lb);
242 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
243 		dev_kfree_skb_any(sb);
244 	free_scq(card, card->scq0, NULL);
245 	for (j = 0; j < NS_FRSCD_NUM; j++) {
246 		if (card->scd2vc[j] != NULL)
247 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
248 	}
249 	idr_destroy(&card->idr);
250 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
251 			  card->rsq.org, card->rsq.dma);
252 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
253 			  card->tsq.org, card->tsq.dma);
254 	free_irq(card->pcidev->irq, card);
255 	iounmap(card->membase);
256 	kfree(card);
257 }
258 
259 static const struct pci_device_id nicstar_pci_tbl[] = {
260 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
261 	{0,}			/* terminate list */
262 };
263 
264 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
265 
266 static struct pci_driver nicstar_driver = {
267 	.name = "nicstar",
268 	.id_table = nicstar_pci_tbl,
269 	.probe = nicstar_init_one,
270 	.remove = nicstar_remove_one,
271 };
272 
273 static int __init nicstar_init(void)
274 {
275 	unsigned error = 0;	/* Initialized to remove compile warning */
276 
277 	XPRINTK("nicstar: nicstar_init() called.\n");
278 
279 	error = pci_register_driver(&nicstar_driver);
280 
281 	TXPRINTK("nicstar: TX debug enabled.\n");
282 	RXPRINTK("nicstar: RX debug enabled.\n");
283 	PRINTK("nicstar: General debug enabled.\n");
284 #ifdef PHY_LOOPBACK
285 	printk("nicstar: using PHY loopback.\n");
286 #endif /* PHY_LOOPBACK */
287 	XPRINTK("nicstar: nicstar_init() returned.\n");
288 
289 	if (!error) {
290 		timer_setup(&ns_timer, ns_poll, 0);
291 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
292 		add_timer(&ns_timer);
293 	}
294 
295 	return error;
296 }
297 
298 static void __exit nicstar_cleanup(void)
299 {
300 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
301 
302 	del_timer_sync(&ns_timer);
303 
304 	pci_unregister_driver(&nicstar_driver);
305 
306 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
307 }
308 
309 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
310 {
311 	unsigned long flags;
312 	u32 data;
313 	sram_address <<= 2;
314 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
315 	sram_address |= 0x50000000;	/* SRAM read command */
316 	spin_lock_irqsave(&card->res_lock, flags);
317 	while (CMD_BUSY(card)) ;
318 	writel(sram_address, card->membase + CMD);
319 	while (CMD_BUSY(card)) ;
320 	data = readl(card->membase + DR0);
321 	spin_unlock_irqrestore(&card->res_lock, flags);
322 	return data;
323 }
324 
325 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
326 			  int count)
327 {
328 	unsigned long flags;
329 	int i, c;
330 	count--;		/* count range now is 0..3 instead of 1..4 */
331 	c = count;
332 	c <<= 2;		/* to use increments of 4 */
333 	spin_lock_irqsave(&card->res_lock, flags);
334 	while (CMD_BUSY(card)) ;
335 	for (i = 0; i <= c; i += 4)
336 		writel(*(value++), card->membase + i);
337 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
338 	   so card->membase + DR0 == card->membase */
339 	sram_address <<= 2;
340 	sram_address &= 0x0007FFFC;
341 	sram_address |= (0x40000000 | count);
342 	writel(sram_address, card->membase + CMD);
343 	spin_unlock_irqrestore(&card->res_lock, flags);
344 }
345 
346 static int ns_init_card(int i, struct pci_dev *pcidev)
347 {
348 	int j;
349 	struct ns_dev *card = NULL;
350 	unsigned char pci_latency;
351 	unsigned error;
352 	u32 data;
353 	u32 u32d[4];
354 	u32 ns_cfg_rctsize;
355 	int bcount;
356 	unsigned long membase;
357 
358 	error = 0;
359 
360 	if (pci_enable_device(pcidev)) {
361 		printk("nicstar%d: can't enable PCI device\n", i);
362 		error = 2;
363 		ns_init_card_error(card, error);
364 		return error;
365 	}
366         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
367                 printk(KERN_WARNING
368 		       "nicstar%d: No suitable DMA available.\n", i);
369 		error = 2;
370 		ns_init_card_error(card, error);
371 		return error;
372         }
373 
374 	card = kmalloc(sizeof(*card), GFP_KERNEL);
375 	if (!card) {
376 		printk
377 		    ("nicstar%d: can't allocate memory for device structure.\n",
378 		     i);
379 		error = 2;
380 		ns_init_card_error(card, error);
381 		return error;
382 	}
383 	cards[i] = card;
384 	spin_lock_init(&card->int_lock);
385 	spin_lock_init(&card->res_lock);
386 
387 	pci_set_drvdata(pcidev, card);
388 
389 	card->index = i;
390 	card->atmdev = NULL;
391 	card->pcidev = pcidev;
392 	membase = pci_resource_start(pcidev, 1);
393 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
394 	if (!card->membase) {
395 		printk("nicstar%d: can't ioremap() membase.\n", i);
396 		error = 3;
397 		ns_init_card_error(card, error);
398 		return error;
399 	}
400 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
401 
402 	pci_set_master(pcidev);
403 
404 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
405 		printk("nicstar%d: can't read PCI latency timer.\n", i);
406 		error = 6;
407 		ns_init_card_error(card, error);
408 		return error;
409 	}
410 #ifdef NS_PCI_LATENCY
411 	if (pci_latency < NS_PCI_LATENCY) {
412 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
413 		       NS_PCI_LATENCY);
414 		for (j = 1; j < 4; j++) {
415 			if (pci_write_config_byte
416 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
417 				break;
418 		}
419 		if (j == 4) {
420 			printk
421 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
422 			     i, NS_PCI_LATENCY);
423 			error = 7;
424 			ns_init_card_error(card, error);
425 			return error;
426 		}
427 	}
428 #endif /* NS_PCI_LATENCY */
429 
430 	/* Clear timer overflow */
431 	data = readl(card->membase + STAT);
432 	if (data & NS_STAT_TMROF)
433 		writel(NS_STAT_TMROF, card->membase + STAT);
434 
435 	/* Software reset */
436 	writel(NS_CFG_SWRST, card->membase + CFG);
437 	NS_DELAY;
438 	writel(0x00000000, card->membase + CFG);
439 
440 	/* PHY reset */
441 	writel(0x00000008, card->membase + GP);
442 	NS_DELAY;
443 	writel(0x00000001, card->membase + GP);
444 	NS_DELAY;
445 	while (CMD_BUSY(card)) ;
446 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
447 	NS_DELAY;
448 
449 	/* Detect PHY type */
450 	while (CMD_BUSY(card)) ;
451 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
452 	while (CMD_BUSY(card)) ;
453 	data = readl(card->membase + DR0);
454 	switch (data) {
455 	case 0x00000009:
456 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
457 		card->max_pcr = ATM_25_PCR;
458 		while (CMD_BUSY(card)) ;
459 		writel(0x00000008, card->membase + DR0);
460 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
461 		/* Clear an eventual pending interrupt */
462 		writel(NS_STAT_SFBQF, card->membase + STAT);
463 #ifdef PHY_LOOPBACK
464 		while (CMD_BUSY(card)) ;
465 		writel(0x00000022, card->membase + DR0);
466 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
467 #endif /* PHY_LOOPBACK */
468 		break;
469 	case 0x00000030:
470 	case 0x00000031:
471 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
472 		card->max_pcr = ATM_OC3_PCR;
473 #ifdef PHY_LOOPBACK
474 		while (CMD_BUSY(card)) ;
475 		writel(0x00000002, card->membase + DR0);
476 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
477 #endif /* PHY_LOOPBACK */
478 		break;
479 	default:
480 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
481 		error = 8;
482 		ns_init_card_error(card, error);
483 		return error;
484 	}
485 	writel(0x00000000, card->membase + GP);
486 
487 	/* Determine SRAM size */
488 	data = 0x76543210;
489 	ns_write_sram(card, 0x1C003, &data, 1);
490 	data = 0x89ABCDEF;
491 	ns_write_sram(card, 0x14003, &data, 1);
492 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
493 	    ns_read_sram(card, 0x1C003) == 0x76543210)
494 		card->sram_size = 128;
495 	else
496 		card->sram_size = 32;
497 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
498 
499 	card->rct_size = NS_MAX_RCTSIZE;
500 
501 #if (NS_MAX_RCTSIZE == 4096)
502 	if (card->sram_size == 128)
503 		printk
504 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
505 		     i);
506 #elif (NS_MAX_RCTSIZE == 16384)
507 	if (card->sram_size == 32) {
508 		printk
509 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
510 		     i);
511 		card->rct_size = 4096;
512 	}
513 #else
514 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
515 #endif
516 
517 	card->vpibits = NS_VPIBITS;
518 	if (card->rct_size == 4096)
519 		card->vcibits = 12 - NS_VPIBITS;
520 	else			/* card->rct_size == 16384 */
521 		card->vcibits = 14 - NS_VPIBITS;
522 
523 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
524 	if (mac[i] == NULL)
525 		nicstar_init_eprom(card->membase);
526 
527 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
528 	writel(0x00000000, card->membase + VPM);
529 
530 	card->intcnt = 0;
531 	if (request_irq
532 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
533 		pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
534 		error = 9;
535 		ns_init_card_error(card, error);
536 		return error;
537 	}
538 
539 	/* Initialize TSQ */
540 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
541 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
542 					   &card->tsq.dma, GFP_KERNEL);
543 	if (card->tsq.org == NULL) {
544 		printk("nicstar%d: can't allocate TSQ.\n", i);
545 		error = 10;
546 		ns_init_card_error(card, error);
547 		return error;
548 	}
549 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
550 	card->tsq.next = card->tsq.base;
551 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
552 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
553 		ns_tsi_init(card->tsq.base + j);
554 	writel(0x00000000, card->membase + TSQH);
555 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
556 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
557 
558 	/* Initialize RSQ */
559 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
560 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
561 					   &card->rsq.dma, GFP_KERNEL);
562 	if (card->rsq.org == NULL) {
563 		printk("nicstar%d: can't allocate RSQ.\n", i);
564 		error = 11;
565 		ns_init_card_error(card, error);
566 		return error;
567 	}
568 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
569 	card->rsq.next = card->rsq.base;
570 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
571 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
572 		ns_rsqe_init(card->rsq.base + j);
573 	writel(0x00000000, card->membase + RSQH);
574 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
575 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
576 
577 	/* Initialize SCQ0, the only VBR SCQ used */
578 	card->scq1 = NULL;
579 	card->scq2 = NULL;
580 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
581 	if (card->scq0 == NULL) {
582 		printk("nicstar%d: can't get SCQ0.\n", i);
583 		error = 12;
584 		ns_init_card_error(card, error);
585 		return error;
586 	}
587 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
588 	u32d[1] = (u32) 0x00000000;
589 	u32d[2] = (u32) 0xffffffff;
590 	u32d[3] = (u32) 0x00000000;
591 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
592 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
593 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
594 	card->scq0->scd = NS_VRSCD0;
595 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
596 
597 	/* Initialize TSTs */
598 	card->tst_addr = NS_TST0;
599 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
600 	data = NS_TST_OPCODE_VARIABLE;
601 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
602 		ns_write_sram(card, NS_TST0 + j, &data, 1);
603 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
604 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
605 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
606 		ns_write_sram(card, NS_TST1 + j, &data, 1);
607 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
608 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
609 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
610 		card->tste2vc[j] = NULL;
611 	writel(NS_TST0 << 2, card->membase + TSTB);
612 
613 	/* Initialize RCT. AAL type is set on opening the VC. */
614 #ifdef RCQ_SUPPORT
615 	u32d[0] = NS_RCTE_RAWCELLINTEN;
616 #else
617 	u32d[0] = 0x00000000;
618 #endif /* RCQ_SUPPORT */
619 	u32d[1] = 0x00000000;
620 	u32d[2] = 0x00000000;
621 	u32d[3] = 0xFFFFFFFF;
622 	for (j = 0; j < card->rct_size; j++)
623 		ns_write_sram(card, j * 4, u32d, 4);
624 
625 	memset(card->vcmap, 0, sizeof(card->vcmap));
626 
627 	for (j = 0; j < NS_FRSCD_NUM; j++)
628 		card->scd2vc[j] = NULL;
629 
630 	/* Initialize buffer levels */
631 	card->sbnr.min = MIN_SB;
632 	card->sbnr.init = NUM_SB;
633 	card->sbnr.max = MAX_SB;
634 	card->lbnr.min = MIN_LB;
635 	card->lbnr.init = NUM_LB;
636 	card->lbnr.max = MAX_LB;
637 	card->iovnr.min = MIN_IOVB;
638 	card->iovnr.init = NUM_IOVB;
639 	card->iovnr.max = MAX_IOVB;
640 	card->hbnr.min = MIN_HB;
641 	card->hbnr.init = NUM_HB;
642 	card->hbnr.max = MAX_HB;
643 
644 	card->sm_handle = NULL;
645 	card->sm_addr = 0x00000000;
646 	card->lg_handle = NULL;
647 	card->lg_addr = 0x00000000;
648 
649 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
650 
651 	idr_init(&card->idr);
652 
653 	/* Pre-allocate some huge buffers */
654 	skb_queue_head_init(&card->hbpool.queue);
655 	card->hbpool.count = 0;
656 	for (j = 0; j < NUM_HB; j++) {
657 		struct sk_buff *hb;
658 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
659 		if (hb == NULL) {
660 			printk
661 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
662 			     i, j, NUM_HB);
663 			error = 13;
664 			ns_init_card_error(card, error);
665 			return error;
666 		}
667 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
668 		skb_queue_tail(&card->hbpool.queue, hb);
669 		card->hbpool.count++;
670 	}
671 
672 	/* Allocate large buffers */
673 	skb_queue_head_init(&card->lbpool.queue);
674 	card->lbpool.count = 0;	/* Not used */
675 	for (j = 0; j < NUM_LB; j++) {
676 		struct sk_buff *lb;
677 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
678 		if (lb == NULL) {
679 			printk
680 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
681 			     i, j, NUM_LB);
682 			error = 14;
683 			ns_init_card_error(card, error);
684 			return error;
685 		}
686 		NS_PRV_BUFTYPE(lb) = BUF_LG;
687 		skb_queue_tail(&card->lbpool.queue, lb);
688 		skb_reserve(lb, NS_SMBUFSIZE);
689 		push_rxbufs(card, lb);
690 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
691 		if (j == 1) {
692 			card->rcbuf = lb;
693 			card->rawcell = (struct ns_rcqe *) lb->data;
694 			card->rawch = NS_PRV_DMA(lb);
695 		}
696 	}
697 	/* Test for strange behaviour which leads to crashes */
698 	if ((bcount =
699 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
700 		printk
701 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
702 		     i, j, bcount);
703 		error = 14;
704 		ns_init_card_error(card, error);
705 		return error;
706 	}
707 
708 	/* Allocate small buffers */
709 	skb_queue_head_init(&card->sbpool.queue);
710 	card->sbpool.count = 0;	/* Not used */
711 	for (j = 0; j < NUM_SB; j++) {
712 		struct sk_buff *sb;
713 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
714 		if (sb == NULL) {
715 			printk
716 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
717 			     i, j, NUM_SB);
718 			error = 15;
719 			ns_init_card_error(card, error);
720 			return error;
721 		}
722 		NS_PRV_BUFTYPE(sb) = BUF_SM;
723 		skb_queue_tail(&card->sbpool.queue, sb);
724 		skb_reserve(sb, NS_AAL0_HEADER);
725 		push_rxbufs(card, sb);
726 	}
727 	/* Test for strange behaviour which leads to crashes */
728 	if ((bcount =
729 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
730 		printk
731 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
732 		     i, j, bcount);
733 		error = 15;
734 		ns_init_card_error(card, error);
735 		return error;
736 	}
737 
738 	/* Allocate iovec buffers */
739 	skb_queue_head_init(&card->iovpool.queue);
740 	card->iovpool.count = 0;
741 	for (j = 0; j < NUM_IOVB; j++) {
742 		struct sk_buff *iovb;
743 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
744 		if (iovb == NULL) {
745 			printk
746 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
747 			     i, j, NUM_IOVB);
748 			error = 16;
749 			ns_init_card_error(card, error);
750 			return error;
751 		}
752 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
753 		skb_queue_tail(&card->iovpool.queue, iovb);
754 		card->iovpool.count++;
755 	}
756 
757 	/* Configure NICStAR */
758 	if (card->rct_size == 4096)
759 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
760 	else			/* (card->rct_size == 16384) */
761 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
762 
763 	card->efbie = 1;
764 
765 	/* Register device */
766 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
767 					-1, NULL);
768 	if (card->atmdev == NULL) {
769 		printk("nicstar%d: can't register device.\n", i);
770 		error = 17;
771 		ns_init_card_error(card, error);
772 		return error;
773 	}
774 
775 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
776 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
777 				   card->atmdev->esi, 6);
778 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
779 			nicstar_read_eprom(card->membase,
780 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
781 					   card->atmdev->esi, 6);
782 		}
783 	}
784 
785 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
786 
787 	card->atmdev->dev_data = card;
788 	card->atmdev->ci_range.vpi_bits = card->vpibits;
789 	card->atmdev->ci_range.vci_bits = card->vcibits;
790 	card->atmdev->link_rate = card->max_pcr;
791 	card->atmdev->phy = NULL;
792 
793 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
794 	if (card->max_pcr == ATM_OC3_PCR)
795 		suni_init(card->atmdev);
796 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
797 
798 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
799 	if (card->max_pcr == ATM_25_PCR)
800 		idt77105_init(card->atmdev);
801 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
802 
803 	if (card->atmdev->phy && card->atmdev->phy->start)
804 		card->atmdev->phy->start(card->atmdev);
805 
806 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
807 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
808 	       NS_CFG_PHYIE, card->membase + CFG);
809 
810 	num_cards++;
811 
812 	return error;
813 }
814 
815 static void ns_init_card_error(ns_dev *card, int error)
816 {
817 	if (error >= 17) {
818 		writel(0x00000000, card->membase + CFG);
819 	}
820 	if (error >= 16) {
821 		struct sk_buff *iovb;
822 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
823 			dev_kfree_skb_any(iovb);
824 	}
825 	if (error >= 15) {
826 		struct sk_buff *sb;
827 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
828 			dev_kfree_skb_any(sb);
829 		free_scq(card, card->scq0, NULL);
830 	}
831 	if (error >= 14) {
832 		struct sk_buff *lb;
833 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
834 			dev_kfree_skb_any(lb);
835 	}
836 	if (error >= 13) {
837 		struct sk_buff *hb;
838 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
839 			dev_kfree_skb_any(hb);
840 	}
841 	if (error >= 12) {
842 		dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
843 				card->rsq.org, card->rsq.dma);
844 	}
845 	if (error >= 11) {
846 		dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
847 				card->tsq.org, card->tsq.dma);
848 	}
849 	if (error >= 10) {
850 		free_irq(card->pcidev->irq, card);
851 	}
852 	if (error >= 4) {
853 		iounmap(card->membase);
854 	}
855 	if (error >= 3) {
856 		pci_disable_device(card->pcidev);
857 		kfree(card);
858 	}
859 }
860 
861 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
862 {
863 	scq_info *scq;
864 
865 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
866 		return NULL;
867 
868 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
869 	if (!scq)
870 		return NULL;
871         scq->org = dma_alloc_coherent(&card->pcidev->dev,
872 				      2 * size,  &scq->dma, GFP_KERNEL);
873 	if (!scq->org) {
874 		kfree(scq);
875 		return NULL;
876 	}
877 	scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
878 			   GFP_KERNEL);
879 	if (!scq->skb) {
880 		dma_free_coherent(&card->pcidev->dev,
881 				  2 * size, scq->org, scq->dma);
882 		kfree(scq);
883 		return NULL;
884 	}
885 	scq->num_entries = size / NS_SCQE_SIZE;
886 	scq->base = PTR_ALIGN(scq->org, size);
887 	scq->next = scq->base;
888 	scq->last = scq->base + (scq->num_entries - 1);
889 	scq->tail = scq->last;
890 	scq->scd = scd;
891 	scq->tbd_count = 0;
892 	init_waitqueue_head(&scq->scqfull_waitq);
893 	scq->full = 0;
894 	spin_lock_init(&scq->lock);
895 
896 	return scq;
897 }
898 
899 /* For variable rate SCQ vcc must be NULL */
900 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
901 {
902 	int i;
903 
904 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
905 		for (i = 0; i < scq->num_entries; i++) {
906 			if (scq->skb[i] != NULL) {
907 				vcc = ATM_SKB(scq->skb[i])->vcc;
908 				if (vcc->pop != NULL)
909 					vcc->pop(vcc, scq->skb[i]);
910 				else
911 					dev_kfree_skb_any(scq->skb[i]);
912 			}
913 	} else {		/* vcc must be != NULL */
914 
915 		if (vcc == NULL) {
916 			printk
917 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
918 			for (i = 0; i < scq->num_entries; i++)
919 				dev_kfree_skb_any(scq->skb[i]);
920 		} else
921 			for (i = 0; i < scq->num_entries; i++) {
922 				if (scq->skb[i] != NULL) {
923 					if (vcc->pop != NULL)
924 						vcc->pop(vcc, scq->skb[i]);
925 					else
926 						dev_kfree_skb_any(scq->skb[i]);
927 				}
928 			}
929 	}
930 	kfree(scq->skb);
931 	dma_free_coherent(&card->pcidev->dev,
932 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
933 			       VBR_SCQSIZE : CBR_SCQSIZE),
934 			  scq->org, scq->dma);
935 	kfree(scq);
936 }
937 
938 /* The handles passed must be pointers to the sk_buff containing the small
939    or large buffer(s) cast to u32. */
940 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
941 {
942 	struct sk_buff *handle1, *handle2;
943 	int id1, id2;
944 	u32 addr1, addr2;
945 	u32 stat;
946 	unsigned long flags;
947 
948 	/* *BARF* */
949 	handle2 = NULL;
950 	addr2 = 0;
951 	handle1 = skb;
952 	addr1 = dma_map_single(&card->pcidev->dev,
953 			       skb->data,
954 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
955 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
956 			       DMA_TO_DEVICE);
957 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
958 
959 #ifdef GENERAL_DEBUG
960 	if (!addr1)
961 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
962 		       card->index);
963 #endif /* GENERAL_DEBUG */
964 
965 	stat = readl(card->membase + STAT);
966 	card->sbfqc = ns_stat_sfbqc_get(stat);
967 	card->lbfqc = ns_stat_lfbqc_get(stat);
968 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
969 		if (!addr2) {
970 			if (card->sm_addr) {
971 				addr2 = card->sm_addr;
972 				handle2 = card->sm_handle;
973 				card->sm_addr = 0x00000000;
974 				card->sm_handle = NULL;
975 			} else {	/* (!sm_addr) */
976 
977 				card->sm_addr = addr1;
978 				card->sm_handle = handle1;
979 			}
980 		}
981 	} else {		/* buf_type == BUF_LG */
982 
983 		if (!addr2) {
984 			if (card->lg_addr) {
985 				addr2 = card->lg_addr;
986 				handle2 = card->lg_handle;
987 				card->lg_addr = 0x00000000;
988 				card->lg_handle = NULL;
989 			} else {	/* (!lg_addr) */
990 
991 				card->lg_addr = addr1;
992 				card->lg_handle = handle1;
993 			}
994 		}
995 	}
996 
997 	if (addr2) {
998 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
999 			if (card->sbfqc >= card->sbnr.max) {
1000 				skb_unlink(handle1, &card->sbpool.queue);
1001 				dev_kfree_skb_any(handle1);
1002 				skb_unlink(handle2, &card->sbpool.queue);
1003 				dev_kfree_skb_any(handle2);
1004 				return;
1005 			} else
1006 				card->sbfqc += 2;
1007 		} else {	/* (buf_type == BUF_LG) */
1008 
1009 			if (card->lbfqc >= card->lbnr.max) {
1010 				skb_unlink(handle1, &card->lbpool.queue);
1011 				dev_kfree_skb_any(handle1);
1012 				skb_unlink(handle2, &card->lbpool.queue);
1013 				dev_kfree_skb_any(handle2);
1014 				return;
1015 			} else
1016 				card->lbfqc += 2;
1017 		}
1018 
1019 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1020 		if (id1 < 0)
1021 			goto out;
1022 
1023 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1024 		if (id2 < 0)
1025 			goto out;
1026 
1027 		spin_lock_irqsave(&card->res_lock, flags);
1028 		while (CMD_BUSY(card)) ;
1029 		writel(addr2, card->membase + DR3);
1030 		writel(id2, card->membase + DR2);
1031 		writel(addr1, card->membase + DR1);
1032 		writel(id1, card->membase + DR0);
1033 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1034 		       card->membase + CMD);
1035 		spin_unlock_irqrestore(&card->res_lock, flags);
1036 
1037 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1038 			card->index,
1039 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1040 			addr1, addr2);
1041 	}
1042 
1043 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1044 	    card->lbfqc >= card->lbnr.min) {
1045 		card->efbie = 1;
1046 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1047 		       card->membase + CFG);
1048 	}
1049 
1050 out:
1051 	return;
1052 }
1053 
1054 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1055 {
1056 	u32 stat_r;
1057 	ns_dev *card;
1058 	struct atm_dev *dev;
1059 	unsigned long flags;
1060 
1061 	card = (ns_dev *) dev_id;
1062 	dev = card->atmdev;
1063 	card->intcnt++;
1064 
1065 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1066 
1067 	spin_lock_irqsave(&card->int_lock, flags);
1068 
1069 	stat_r = readl(card->membase + STAT);
1070 
1071 	/* Transmit Status Indicator has been written to T. S. Queue */
1072 	if (stat_r & NS_STAT_TSIF) {
1073 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1074 		process_tsq(card);
1075 		writel(NS_STAT_TSIF, card->membase + STAT);
1076 	}
1077 
1078 	/* Incomplete CS-PDU has been transmitted */
1079 	if (stat_r & NS_STAT_TXICP) {
1080 		writel(NS_STAT_TXICP, card->membase + STAT);
1081 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1082 			 card->index);
1083 	}
1084 
1085 	/* Transmit Status Queue 7/8 full */
1086 	if (stat_r & NS_STAT_TSQF) {
1087 		writel(NS_STAT_TSQF, card->membase + STAT);
1088 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1089 		process_tsq(card);
1090 	}
1091 
1092 	/* Timer overflow */
1093 	if (stat_r & NS_STAT_TMROF) {
1094 		writel(NS_STAT_TMROF, card->membase + STAT);
1095 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1096 	}
1097 
1098 	/* PHY device interrupt signal active */
1099 	if (stat_r & NS_STAT_PHYI) {
1100 		writel(NS_STAT_PHYI, card->membase + STAT);
1101 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1102 		if (dev->phy && dev->phy->interrupt) {
1103 			dev->phy->interrupt(dev);
1104 		}
1105 	}
1106 
1107 	/* Small Buffer Queue is full */
1108 	if (stat_r & NS_STAT_SFBQF) {
1109 		writel(NS_STAT_SFBQF, card->membase + STAT);
1110 		printk("nicstar%d: Small free buffer queue is full.\n",
1111 		       card->index);
1112 	}
1113 
1114 	/* Large Buffer Queue is full */
1115 	if (stat_r & NS_STAT_LFBQF) {
1116 		writel(NS_STAT_LFBQF, card->membase + STAT);
1117 		printk("nicstar%d: Large free buffer queue is full.\n",
1118 		       card->index);
1119 	}
1120 
1121 	/* Receive Status Queue is full */
1122 	if (stat_r & NS_STAT_RSQF) {
1123 		writel(NS_STAT_RSQF, card->membase + STAT);
1124 		printk("nicstar%d: RSQ full.\n", card->index);
1125 		process_rsq(card);
1126 	}
1127 
1128 	/* Complete CS-PDU received */
1129 	if (stat_r & NS_STAT_EOPDU) {
1130 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1131 		process_rsq(card);
1132 		writel(NS_STAT_EOPDU, card->membase + STAT);
1133 	}
1134 
1135 	/* Raw cell received */
1136 	if (stat_r & NS_STAT_RAWCF) {
1137 		writel(NS_STAT_RAWCF, card->membase + STAT);
1138 #ifndef RCQ_SUPPORT
1139 		printk("nicstar%d: Raw cell received and no support yet...\n",
1140 		       card->index);
1141 #endif /* RCQ_SUPPORT */
1142 		/* NOTE: the following procedure may keep a raw cell pending until the
1143 		   next interrupt. As this preliminary support is only meant to
1144 		   avoid buffer leakage, this is not an issue. */
1145 		while (readl(card->membase + RAWCT) != card->rawch) {
1146 
1147 			if (ns_rcqe_islast(card->rawcell)) {
1148 				struct sk_buff *oldbuf;
1149 
1150 				oldbuf = card->rcbuf;
1151 				card->rcbuf = idr_find(&card->idr,
1152 						       ns_rcqe_nextbufhandle(card->rawcell));
1153 				card->rawch = NS_PRV_DMA(card->rcbuf);
1154 				card->rawcell = (struct ns_rcqe *)
1155 						card->rcbuf->data;
1156 				recycle_rx_buf(card, oldbuf);
1157 			} else {
1158 				card->rawch += NS_RCQE_SIZE;
1159 				card->rawcell++;
1160 			}
1161 		}
1162 	}
1163 
1164 	/* Small buffer queue is empty */
1165 	if (stat_r & NS_STAT_SFBQE) {
1166 		int i;
1167 		struct sk_buff *sb;
1168 
1169 		writel(NS_STAT_SFBQE, card->membase + STAT);
1170 		printk("nicstar%d: Small free buffer queue empty.\n",
1171 		       card->index);
1172 		for (i = 0; i < card->sbnr.min; i++) {
1173 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1174 			if (sb == NULL) {
1175 				writel(readl(card->membase + CFG) &
1176 				       ~NS_CFG_EFBIE, card->membase + CFG);
1177 				card->efbie = 0;
1178 				break;
1179 			}
1180 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1181 			skb_queue_tail(&card->sbpool.queue, sb);
1182 			skb_reserve(sb, NS_AAL0_HEADER);
1183 			push_rxbufs(card, sb);
1184 		}
1185 		card->sbfqc = i;
1186 		process_rsq(card);
1187 	}
1188 
1189 	/* Large buffer queue empty */
1190 	if (stat_r & NS_STAT_LFBQE) {
1191 		int i;
1192 		struct sk_buff *lb;
1193 
1194 		writel(NS_STAT_LFBQE, card->membase + STAT);
1195 		printk("nicstar%d: Large free buffer queue empty.\n",
1196 		       card->index);
1197 		for (i = 0; i < card->lbnr.min; i++) {
1198 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1199 			if (lb == NULL) {
1200 				writel(readl(card->membase + CFG) &
1201 				       ~NS_CFG_EFBIE, card->membase + CFG);
1202 				card->efbie = 0;
1203 				break;
1204 			}
1205 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1206 			skb_queue_tail(&card->lbpool.queue, lb);
1207 			skb_reserve(lb, NS_SMBUFSIZE);
1208 			push_rxbufs(card, lb);
1209 		}
1210 		card->lbfqc = i;
1211 		process_rsq(card);
1212 	}
1213 
1214 	/* Receive Status Queue is 7/8 full */
1215 	if (stat_r & NS_STAT_RSQAF) {
1216 		writel(NS_STAT_RSQAF, card->membase + STAT);
1217 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1218 		process_rsq(card);
1219 	}
1220 
1221 	spin_unlock_irqrestore(&card->int_lock, flags);
1222 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1223 	return IRQ_HANDLED;
1224 }
1225 
1226 static int ns_open(struct atm_vcc *vcc)
1227 {
1228 	ns_dev *card;
1229 	vc_map *vc;
1230 	unsigned long tmpl, modl;
1231 	int tcr, tcra;		/* target cell rate, and absolute value */
1232 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1233 				   the compiler warning. */
1234 	u32 u32d[4];
1235 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1236 				   warning. How I wish compilers were clever enough to
1237 				   tell which variables can truly be used
1238 				   uninitialized... */
1239 	int inuse;		/* tx or rx vc already in use by another vcc */
1240 	short vpi = vcc->vpi;
1241 	int vci = vcc->vci;
1242 
1243 	card = (ns_dev *) vcc->dev->dev_data;
1244 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1245 	       vci);
1246 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1247 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1248 		return -EINVAL;
1249 	}
1250 
1251 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1252 	vcc->dev_data = vc;
1253 
1254 	inuse = 0;
1255 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1256 		inuse = 1;
1257 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1258 		inuse += 2;
1259 	if (inuse) {
1260 		printk("nicstar%d: %s vci already in use.\n", card->index,
1261 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1262 		return -EINVAL;
1263 	}
1264 
1265 	set_bit(ATM_VF_ADDR, &vcc->flags);
1266 
1267 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1268 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1269 	   needed to do that. */
1270 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1271 		scq_info *scq;
1272 
1273 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1274 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1275 			/* Check requested cell rate and availability of SCD */
1276 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1277 			    && vcc->qos.txtp.min_pcr == 0) {
1278 				PRINTK
1279 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1280 				     card->index);
1281 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1282 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1283 				return -EINVAL;
1284 			}
1285 
1286 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1287 			tcra = tcr >= 0 ? tcr : -tcr;
1288 
1289 			PRINTK("nicstar%d: target cell rate = %d.\n",
1290 			       card->index, vcc->qos.txtp.max_pcr);
1291 
1292 			tmpl =
1293 			    (unsigned long)tcra *(unsigned long)
1294 			    NS_TST_NUM_ENTRIES;
1295 			modl = tmpl % card->max_pcr;
1296 
1297 			n = (int)(tmpl / card->max_pcr);
1298 			if (tcr > 0) {
1299 				if (modl > 0)
1300 					n++;
1301 			} else if (tcr == 0) {
1302 				if ((n =
1303 				     (card->tst_free_entries -
1304 				      NS_TST_RESERVED)) <= 0) {
1305 					PRINTK
1306 					    ("nicstar%d: no CBR bandwidth free.\n",
1307 					     card->index);
1308 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1309 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1310 					return -EINVAL;
1311 				}
1312 			}
1313 
1314 			if (n == 0) {
1315 				printk
1316 				    ("nicstar%d: selected bandwidth < granularity.\n",
1317 				     card->index);
1318 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1319 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1320 				return -EINVAL;
1321 			}
1322 
1323 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1324 				PRINTK
1325 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1326 				     card->index);
1327 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1328 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1329 				return -EINVAL;
1330 			} else
1331 				card->tst_free_entries -= n;
1332 
1333 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1334 				card->index, n);
1335 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1336 				if (card->scd2vc[frscdi] == NULL) {
1337 					card->scd2vc[frscdi] = vc;
1338 					break;
1339 				}
1340 			}
1341 			if (frscdi == NS_FRSCD_NUM) {
1342 				PRINTK
1343 				    ("nicstar%d: no SCD available for CBR channel.\n",
1344 				     card->index);
1345 				card->tst_free_entries += n;
1346 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1347 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1348 				return -EBUSY;
1349 			}
1350 
1351 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1352 
1353 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1354 			if (scq == NULL) {
1355 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1356 				       card->index);
1357 				card->scd2vc[frscdi] = NULL;
1358 				card->tst_free_entries += n;
1359 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1360 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1361 				return -ENOMEM;
1362 			}
1363 			vc->scq = scq;
1364 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1365 			u32d[1] = (u32) 0x00000000;
1366 			u32d[2] = (u32) 0xffffffff;
1367 			u32d[3] = (u32) 0x00000000;
1368 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1369 
1370 			fill_tst(card, n, vc);
1371 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1372 			vc->cbr_scd = 0x00000000;
1373 			vc->scq = card->scq0;
1374 		}
1375 
1376 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1377 			vc->tx = 1;
1378 			vc->tx_vcc = vcc;
1379 			vc->tbd_count = 0;
1380 		}
1381 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1382 			u32 status;
1383 
1384 			vc->rx = 1;
1385 			vc->rx_vcc = vcc;
1386 			vc->rx_iov = NULL;
1387 
1388 			/* Open the connection in hardware */
1389 			if (vcc->qos.aal == ATM_AAL5)
1390 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1391 			else	/* vcc->qos.aal == ATM_AAL0 */
1392 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1393 #ifdef RCQ_SUPPORT
1394 			status |= NS_RCTE_RAWCELLINTEN;
1395 #endif /* RCQ_SUPPORT */
1396 			ns_write_sram(card,
1397 				      NS_RCT +
1398 				      (vpi << card->vcibits | vci) *
1399 				      NS_RCT_ENTRY_SIZE, &status, 1);
1400 		}
1401 
1402 	}
1403 
1404 	set_bit(ATM_VF_READY, &vcc->flags);
1405 	return 0;
1406 }
1407 
1408 static void ns_close(struct atm_vcc *vcc)
1409 {
1410 	vc_map *vc;
1411 	ns_dev *card;
1412 	u32 data;
1413 	int i;
1414 
1415 	vc = vcc->dev_data;
1416 	card = vcc->dev->dev_data;
1417 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1418 	       (int)vcc->vpi, vcc->vci);
1419 
1420 	clear_bit(ATM_VF_READY, &vcc->flags);
1421 
1422 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1423 		u32 addr;
1424 		unsigned long flags;
1425 
1426 		addr =
1427 		    NS_RCT +
1428 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1429 		spin_lock_irqsave(&card->res_lock, flags);
1430 		while (CMD_BUSY(card)) ;
1431 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1432 		       card->membase + CMD);
1433 		spin_unlock_irqrestore(&card->res_lock, flags);
1434 
1435 		vc->rx = 0;
1436 		if (vc->rx_iov != NULL) {
1437 			struct sk_buff *iovb;
1438 			u32 stat;
1439 
1440 			stat = readl(card->membase + STAT);
1441 			card->sbfqc = ns_stat_sfbqc_get(stat);
1442 			card->lbfqc = ns_stat_lfbqc_get(stat);
1443 
1444 			PRINTK
1445 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1446 			     card->index);
1447 			iovb = vc->rx_iov;
1448 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1449 					      NS_PRV_IOVCNT(iovb));
1450 			NS_PRV_IOVCNT(iovb) = 0;
1451 			spin_lock_irqsave(&card->int_lock, flags);
1452 			recycle_iov_buf(card, iovb);
1453 			spin_unlock_irqrestore(&card->int_lock, flags);
1454 			vc->rx_iov = NULL;
1455 		}
1456 	}
1457 
1458 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1459 		vc->tx = 0;
1460 	}
1461 
1462 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1463 		unsigned long flags;
1464 		ns_scqe *scqep;
1465 		scq_info *scq;
1466 
1467 		scq = vc->scq;
1468 
1469 		for (;;) {
1470 			spin_lock_irqsave(&scq->lock, flags);
1471 			scqep = scq->next;
1472 			if (scqep == scq->base)
1473 				scqep = scq->last;
1474 			else
1475 				scqep--;
1476 			if (scqep == scq->tail) {
1477 				spin_unlock_irqrestore(&scq->lock, flags);
1478 				break;
1479 			}
1480 			/* If the last entry is not a TSR, place one in the SCQ in order to
1481 			   be able to completely drain it and then close. */
1482 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1483 				ns_scqe tsr;
1484 				u32 scdi, scqi;
1485 				u32 data;
1486 				int index;
1487 
1488 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1489 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1490 				scqi = scq->next - scq->base;
1491 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1492 				tsr.word_3 = 0x00000000;
1493 				tsr.word_4 = 0x00000000;
1494 				*scq->next = tsr;
1495 				index = (int)scqi;
1496 				scq->skb[index] = NULL;
1497 				if (scq->next == scq->last)
1498 					scq->next = scq->base;
1499 				else
1500 					scq->next++;
1501 				data = scq_virt_to_bus(scq, scq->next);
1502 				ns_write_sram(card, scq->scd, &data, 1);
1503 			}
1504 			spin_unlock_irqrestore(&scq->lock, flags);
1505 			schedule();
1506 		}
1507 
1508 		/* Free all TST entries */
1509 		data = NS_TST_OPCODE_VARIABLE;
1510 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1511 			if (card->tste2vc[i] == vc) {
1512 				ns_write_sram(card, card->tst_addr + i, &data,
1513 					      1);
1514 				card->tste2vc[i] = NULL;
1515 				card->tst_free_entries++;
1516 			}
1517 		}
1518 
1519 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1520 		free_scq(card, vc->scq, vcc);
1521 	}
1522 
1523 	/* remove all references to vcc before deleting it */
1524 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1525 		unsigned long flags;
1526 		scq_info *scq = card->scq0;
1527 
1528 		spin_lock_irqsave(&scq->lock, flags);
1529 
1530 		for (i = 0; i < scq->num_entries; i++) {
1531 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1532 				ATM_SKB(scq->skb[i])->vcc = NULL;
1533 				atm_return(vcc, scq->skb[i]->truesize);
1534 				PRINTK
1535 				    ("nicstar: deleted pending vcc mapping\n");
1536 			}
1537 		}
1538 
1539 		spin_unlock_irqrestore(&scq->lock, flags);
1540 	}
1541 
1542 	vcc->dev_data = NULL;
1543 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1544 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1545 
1546 #ifdef RX_DEBUG
1547 	{
1548 		u32 stat, cfg;
1549 		stat = readl(card->membase + STAT);
1550 		cfg = readl(card->membase + CFG);
1551 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1552 		printk
1553 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1554 		     card->tsq.base, card->tsq.next,
1555 		     card->tsq.last, readl(card->membase + TSQT));
1556 		printk
1557 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1558 		     card->rsq.base, card->rsq.next,
1559 		     card->rsq.last, readl(card->membase + RSQT));
1560 		printk("Empty free buffer queue interrupt %s \n",
1561 		       card->efbie ? "enabled" : "disabled");
1562 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1563 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1564 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1565 		printk("hbpool.count = %d  iovpool.count = %d \n",
1566 		       card->hbpool.count, card->iovpool.count);
1567 	}
1568 #endif /* RX_DEBUG */
1569 }
1570 
1571 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1572 {
1573 	u32 new_tst;
1574 	unsigned long cl;
1575 	int e, r;
1576 	u32 data;
1577 
1578 	/* It would be very complicated to keep the two TSTs synchronized while
1579 	   assuring that writes are only made to the inactive TST. So, for now I
1580 	   will use only one TST. If problems occur, I will change this again */
1581 
1582 	new_tst = card->tst_addr;
1583 
1584 	/* Fill procedure */
1585 
1586 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1587 		if (card->tste2vc[e] == NULL)
1588 			break;
1589 	}
1590 	if (e == NS_TST_NUM_ENTRIES) {
1591 		printk("nicstar%d: No free TST entries found. \n", card->index);
1592 		return;
1593 	}
1594 
1595 	r = n;
1596 	cl = NS_TST_NUM_ENTRIES;
1597 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1598 
1599 	while (r > 0) {
1600 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1601 			card->tste2vc[e] = vc;
1602 			ns_write_sram(card, new_tst + e, &data, 1);
1603 			cl -= NS_TST_NUM_ENTRIES;
1604 			r--;
1605 		}
1606 
1607 		if (++e == NS_TST_NUM_ENTRIES) {
1608 			e = 0;
1609 		}
1610 		cl += n;
1611 	}
1612 
1613 	/* End of fill procedure */
1614 
1615 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1616 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1617 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1618 	card->tst_addr = new_tst;
1619 }
1620 
1621 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1622 {
1623 	ns_dev *card;
1624 	vc_map *vc;
1625 	scq_info *scq;
1626 	unsigned long buflen;
1627 	ns_scqe scqe;
1628 	u32 flags;		/* TBD flags, not CPU flags */
1629 
1630 	card = vcc->dev->dev_data;
1631 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1632 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1633 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1634 		       card->index);
1635 		atomic_inc(&vcc->stats->tx_err);
1636 		dev_kfree_skb_any(skb);
1637 		return -EINVAL;
1638 	}
1639 
1640 	if (!vc->tx) {
1641 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1642 		       card->index);
1643 		atomic_inc(&vcc->stats->tx_err);
1644 		dev_kfree_skb_any(skb);
1645 		return -EINVAL;
1646 	}
1647 
1648 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1649 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1650 		       card->index);
1651 		atomic_inc(&vcc->stats->tx_err);
1652 		dev_kfree_skb_any(skb);
1653 		return -EINVAL;
1654 	}
1655 
1656 	if (skb_shinfo(skb)->nr_frags != 0) {
1657 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1658 		atomic_inc(&vcc->stats->tx_err);
1659 		dev_kfree_skb_any(skb);
1660 		return -EINVAL;
1661 	}
1662 
1663 	ATM_SKB(skb)->vcc = vcc;
1664 
1665 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1666 					 skb->len, DMA_TO_DEVICE);
1667 
1668 	if (vcc->qos.aal == ATM_AAL5) {
1669 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1670 		flags = NS_TBD_AAL5;
1671 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1672 		scqe.word_3 = cpu_to_le32(skb->len);
1673 		scqe.word_4 =
1674 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1675 				    ATM_SKB(skb)->
1676 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1677 		flags |= NS_TBD_EOPDU;
1678 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1679 
1680 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1681 		flags = NS_TBD_AAL0;
1682 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1683 		scqe.word_3 = cpu_to_le32(0x00000000);
1684 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1685 			flags |= NS_TBD_EOPDU;
1686 		scqe.word_4 =
1687 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1688 		/* Force the VPI/VCI to be the same as in VCC struct */
1689 		scqe.word_4 |=
1690 		    cpu_to_le32((((u32) vcc->
1691 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1692 							      vci) <<
1693 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1694 	}
1695 
1696 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1697 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1698 		scq = ((vc_map *) vcc->dev_data)->scq;
1699 	} else {
1700 		scqe.word_1 =
1701 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1702 		scq = card->scq0;
1703 	}
1704 
1705 	if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1706 		atomic_inc(&vcc->stats->tx_err);
1707 		dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1708 				 DMA_TO_DEVICE);
1709 		dev_kfree_skb_any(skb);
1710 		return -EIO;
1711 	}
1712 	atomic_inc(&vcc->stats->tx);
1713 
1714 	return 0;
1715 }
1716 
1717 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1718 {
1719 	return _ns_send(vcc, skb, true);
1720 }
1721 
1722 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1723 {
1724 	return _ns_send(vcc, skb, false);
1725 }
1726 
1727 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1728 		     struct sk_buff *skb, bool may_sleep)
1729 {
1730 	unsigned long flags;
1731 	ns_scqe tsr;
1732 	u32 scdi, scqi;
1733 	int scq_is_vbr;
1734 	u32 data;
1735 	int index;
1736 
1737 	spin_lock_irqsave(&scq->lock, flags);
1738 	while (scq->tail == scq->next) {
1739 		if (!may_sleep) {
1740 			spin_unlock_irqrestore(&scq->lock, flags);
1741 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1742 			return 1;
1743 		}
1744 
1745 		scq->full = 1;
1746 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1747 							  scq->tail != scq->next,
1748 							  scq->lock,
1749 							  SCQFULL_TIMEOUT);
1750 
1751 		if (scq->full) {
1752 			spin_unlock_irqrestore(&scq->lock, flags);
1753 			printk("nicstar%d: Timeout pushing TBD.\n",
1754 			       card->index);
1755 			return 1;
1756 		}
1757 	}
1758 	*scq->next = *tbd;
1759 	index = (int)(scq->next - scq->base);
1760 	scq->skb[index] = skb;
1761 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1762 		card->index, skb, index);
1763 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1764 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1765 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1766 		scq->next);
1767 	if (scq->next == scq->last)
1768 		scq->next = scq->base;
1769 	else
1770 		scq->next++;
1771 
1772 	vc->tbd_count++;
1773 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1774 		scq->tbd_count++;
1775 		scq_is_vbr = 1;
1776 	} else
1777 		scq_is_vbr = 0;
1778 
1779 	if (vc->tbd_count >= MAX_TBD_PER_VC
1780 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1781 		int has_run = 0;
1782 
1783 		while (scq->tail == scq->next) {
1784 			if (!may_sleep) {
1785 				data = scq_virt_to_bus(scq, scq->next);
1786 				ns_write_sram(card, scq->scd, &data, 1);
1787 				spin_unlock_irqrestore(&scq->lock, flags);
1788 				printk("nicstar%d: Error pushing TSR.\n",
1789 				       card->index);
1790 				return 0;
1791 			}
1792 
1793 			scq->full = 1;
1794 			if (has_run++)
1795 				break;
1796 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1797 								  scq->tail != scq->next,
1798 								  scq->lock,
1799 								  SCQFULL_TIMEOUT);
1800 		}
1801 
1802 		if (!scq->full) {
1803 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1804 			if (scq_is_vbr)
1805 				scdi = NS_TSR_SCDISVBR;
1806 			else
1807 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1808 			scqi = scq->next - scq->base;
1809 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1810 			tsr.word_3 = 0x00000000;
1811 			tsr.word_4 = 0x00000000;
1812 
1813 			*scq->next = tsr;
1814 			index = (int)scqi;
1815 			scq->skb[index] = NULL;
1816 			XPRINTK
1817 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1818 			     card->index, le32_to_cpu(tsr.word_1),
1819 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1820 			     le32_to_cpu(tsr.word_4), scq->next);
1821 			if (scq->next == scq->last)
1822 				scq->next = scq->base;
1823 			else
1824 				scq->next++;
1825 			vc->tbd_count = 0;
1826 			scq->tbd_count = 0;
1827 		} else
1828 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1829 			       card->index);
1830 	}
1831 	data = scq_virt_to_bus(scq, scq->next);
1832 	ns_write_sram(card, scq->scd, &data, 1);
1833 
1834 	spin_unlock_irqrestore(&scq->lock, flags);
1835 
1836 	return 0;
1837 }
1838 
1839 static void process_tsq(ns_dev * card)
1840 {
1841 	u32 scdi;
1842 	scq_info *scq;
1843 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1844 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1845 
1846 	serviced_entries = 0;
1847 
1848 	if (card->tsq.next == card->tsq.last)
1849 		one_ahead = card->tsq.base;
1850 	else
1851 		one_ahead = card->tsq.next + 1;
1852 
1853 	if (one_ahead == card->tsq.last)
1854 		two_ahead = card->tsq.base;
1855 	else
1856 		two_ahead = one_ahead + 1;
1857 
1858 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1859 	       !ns_tsi_isempty(two_ahead))
1860 		/* At most two empty, as stated in the 77201 errata */
1861 	{
1862 		serviced_entries = 1;
1863 
1864 		/* Skip the one or two possible empty entries */
1865 		while (ns_tsi_isempty(card->tsq.next)) {
1866 			if (card->tsq.next == card->tsq.last)
1867 				card->tsq.next = card->tsq.base;
1868 			else
1869 				card->tsq.next++;
1870 		}
1871 
1872 		if (!ns_tsi_tmrof(card->tsq.next)) {
1873 			scdi = ns_tsi_getscdindex(card->tsq.next);
1874 			if (scdi == NS_TSI_SCDISVBR)
1875 				scq = card->scq0;
1876 			else {
1877 				if (card->scd2vc[scdi] == NULL) {
1878 					printk
1879 					    ("nicstar%d: could not find VC from SCD index.\n",
1880 					     card->index);
1881 					ns_tsi_init(card->tsq.next);
1882 					return;
1883 				}
1884 				scq = card->scd2vc[scdi]->scq;
1885 			}
1886 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1887 			scq->full = 0;
1888 			wake_up_interruptible(&(scq->scqfull_waitq));
1889 		}
1890 
1891 		ns_tsi_init(card->tsq.next);
1892 		previous = card->tsq.next;
1893 		if (card->tsq.next == card->tsq.last)
1894 			card->tsq.next = card->tsq.base;
1895 		else
1896 			card->tsq.next++;
1897 
1898 		if (card->tsq.next == card->tsq.last)
1899 			one_ahead = card->tsq.base;
1900 		else
1901 			one_ahead = card->tsq.next + 1;
1902 
1903 		if (one_ahead == card->tsq.last)
1904 			two_ahead = card->tsq.base;
1905 		else
1906 			two_ahead = one_ahead + 1;
1907 	}
1908 
1909 	if (serviced_entries)
1910 		writel(PTR_DIFF(previous, card->tsq.base),
1911 		       card->membase + TSQH);
1912 }
1913 
1914 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1915 {
1916 	struct atm_vcc *vcc;
1917 	struct sk_buff *skb;
1918 	int i;
1919 	unsigned long flags;
1920 
1921 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1922 		card->index, scq, pos);
1923 	if (pos >= scq->num_entries) {
1924 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1925 		return;
1926 	}
1927 
1928 	spin_lock_irqsave(&scq->lock, flags);
1929 	i = (int)(scq->tail - scq->base);
1930 	if (++i == scq->num_entries)
1931 		i = 0;
1932 	while (i != pos) {
1933 		skb = scq->skb[i];
1934 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1935 			card->index, skb, i);
1936 		if (skb != NULL) {
1937 			dma_unmap_single(&card->pcidev->dev,
1938 					 NS_PRV_DMA(skb),
1939 					 skb->len,
1940 					 DMA_TO_DEVICE);
1941 			vcc = ATM_SKB(skb)->vcc;
1942 			if (vcc && vcc->pop != NULL) {
1943 				vcc->pop(vcc, skb);
1944 			} else {
1945 				dev_kfree_skb_irq(skb);
1946 			}
1947 			scq->skb[i] = NULL;
1948 		}
1949 		if (++i == scq->num_entries)
1950 			i = 0;
1951 	}
1952 	scq->tail = scq->base + pos;
1953 	spin_unlock_irqrestore(&scq->lock, flags);
1954 }
1955 
1956 static void process_rsq(ns_dev * card)
1957 {
1958 	ns_rsqe *previous;
1959 
1960 	if (!ns_rsqe_valid(card->rsq.next))
1961 		return;
1962 	do {
1963 		dequeue_rx(card, card->rsq.next);
1964 		ns_rsqe_init(card->rsq.next);
1965 		previous = card->rsq.next;
1966 		if (card->rsq.next == card->rsq.last)
1967 			card->rsq.next = card->rsq.base;
1968 		else
1969 			card->rsq.next++;
1970 	} while (ns_rsqe_valid(card->rsq.next));
1971 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1972 }
1973 
1974 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1975 {
1976 	u32 vpi, vci;
1977 	vc_map *vc;
1978 	struct sk_buff *iovb;
1979 	struct iovec *iov;
1980 	struct atm_vcc *vcc;
1981 	struct sk_buff *skb;
1982 	unsigned short aal5_len;
1983 	int len;
1984 	u32 stat;
1985 	u32 id;
1986 
1987 	stat = readl(card->membase + STAT);
1988 	card->sbfqc = ns_stat_sfbqc_get(stat);
1989 	card->lbfqc = ns_stat_lfbqc_get(stat);
1990 
1991 	id = le32_to_cpu(rsqe->buffer_handle);
1992 	skb = idr_remove(&card->idr, id);
1993 	if (!skb) {
1994 		RXPRINTK(KERN_ERR
1995 			 "nicstar%d: skb not found!\n", card->index);
1996 		return;
1997 	}
1998 	dma_sync_single_for_cpu(&card->pcidev->dev,
1999 				NS_PRV_DMA(skb),
2000 				(NS_PRV_BUFTYPE(skb) == BUF_SM
2001 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2002 				DMA_FROM_DEVICE);
2003 	dma_unmap_single(&card->pcidev->dev,
2004 			 NS_PRV_DMA(skb),
2005 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
2006 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2007 			 DMA_FROM_DEVICE);
2008 	vpi = ns_rsqe_vpi(rsqe);
2009 	vci = ns_rsqe_vci(rsqe);
2010 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2011 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2012 		       card->index, vpi, vci);
2013 		recycle_rx_buf(card, skb);
2014 		return;
2015 	}
2016 
2017 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2018 	if (!vc->rx) {
2019 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2020 			 card->index, vpi, vci);
2021 		recycle_rx_buf(card, skb);
2022 		return;
2023 	}
2024 
2025 	vcc = vc->rx_vcc;
2026 
2027 	if (vcc->qos.aal == ATM_AAL0) {
2028 		struct sk_buff *sb;
2029 		unsigned char *cell;
2030 		int i;
2031 
2032 		cell = skb->data;
2033 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2034 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2035 			if (!sb) {
2036 				printk
2037 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2038 				     card->index);
2039 				atomic_add(i, &vcc->stats->rx_drop);
2040 				break;
2041 			}
2042 			if (!atm_charge(vcc, sb->truesize)) {
2043 				RXPRINTK
2044 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2045 				     card->index);
2046 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2047 				dev_kfree_skb_any(sb);
2048 				break;
2049 			}
2050 			/* Rebuild the header */
2051 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2052 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2053 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2054 				*((u32 *) sb->data) |= 0x00000002;
2055 			skb_put(sb, NS_AAL0_HEADER);
2056 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2057 			skb_put(sb, ATM_CELL_PAYLOAD);
2058 			ATM_SKB(sb)->vcc = vcc;
2059 			__net_timestamp(sb);
2060 			vcc->push(vcc, sb);
2061 			atomic_inc(&vcc->stats->rx);
2062 			cell += ATM_CELL_PAYLOAD;
2063 		}
2064 
2065 		recycle_rx_buf(card, skb);
2066 		return;
2067 	}
2068 
2069 	/* To reach this point, the AAL layer can only be AAL5 */
2070 
2071 	if ((iovb = vc->rx_iov) == NULL) {
2072 		iovb = skb_dequeue(&(card->iovpool.queue));
2073 		if (iovb == NULL) {	/* No buffers in the queue */
2074 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2075 			if (iovb == NULL) {
2076 				printk("nicstar%d: Out of iovec buffers.\n",
2077 				       card->index);
2078 				atomic_inc(&vcc->stats->rx_drop);
2079 				recycle_rx_buf(card, skb);
2080 				return;
2081 			}
2082 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2083 		} else if (--card->iovpool.count < card->iovnr.min) {
2084 			struct sk_buff *new_iovb;
2085 			if ((new_iovb =
2086 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2087 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2088 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2089 				card->iovpool.count++;
2090 			}
2091 		}
2092 		vc->rx_iov = iovb;
2093 		NS_PRV_IOVCNT(iovb) = 0;
2094 		iovb->len = 0;
2095 		iovb->data = iovb->head;
2096 		skb_reset_tail_pointer(iovb);
2097 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2098 		   buffer is stored as iovec base, NOT a pointer to the
2099 		   small or large buffer itself. */
2100 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2101 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2102 		atomic_inc(&vcc->stats->rx_err);
2103 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2104 				      NS_MAX_IOVECS);
2105 		NS_PRV_IOVCNT(iovb) = 0;
2106 		iovb->len = 0;
2107 		iovb->data = iovb->head;
2108 		skb_reset_tail_pointer(iovb);
2109 	}
2110 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2111 	iov->iov_base = (void *)skb;
2112 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2113 	iovb->len += iov->iov_len;
2114 
2115 #ifdef EXTRA_DEBUG
2116 	if (NS_PRV_IOVCNT(iovb) == 1) {
2117 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2118 			printk
2119 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2120 			     card->index);
2121 			which_list(card, skb);
2122 			atomic_inc(&vcc->stats->rx_err);
2123 			recycle_rx_buf(card, skb);
2124 			vc->rx_iov = NULL;
2125 			recycle_iov_buf(card, iovb);
2126 			return;
2127 		}
2128 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2129 
2130 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2131 			printk
2132 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2133 			     card->index);
2134 			which_list(card, skb);
2135 			atomic_inc(&vcc->stats->rx_err);
2136 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2137 					      NS_PRV_IOVCNT(iovb));
2138 			vc->rx_iov = NULL;
2139 			recycle_iov_buf(card, iovb);
2140 			return;
2141 		}
2142 	}
2143 #endif /* EXTRA_DEBUG */
2144 
2145 	if (ns_rsqe_eopdu(rsqe)) {
2146 		/* This works correctly regardless of the endianness of the host */
2147 		unsigned char *L1L2 = (unsigned char *)
2148 						(skb->data + iov->iov_len - 6);
2149 		aal5_len = L1L2[0] << 8 | L1L2[1];
2150 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2151 		if (ns_rsqe_crcerr(rsqe) ||
2152 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2153 			printk("nicstar%d: AAL5 CRC error", card->index);
2154 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2155 				printk(" - PDU size mismatch.\n");
2156 			else
2157 				printk(".\n");
2158 			atomic_inc(&vcc->stats->rx_err);
2159 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2160 					      NS_PRV_IOVCNT(iovb));
2161 			vc->rx_iov = NULL;
2162 			recycle_iov_buf(card, iovb);
2163 			return;
2164 		}
2165 
2166 		/* By this point we (hopefully) have a complete SDU without errors. */
2167 
2168 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2169 			/* skb points to a small buffer */
2170 			if (!atm_charge(vcc, skb->truesize)) {
2171 				push_rxbufs(card, skb);
2172 				atomic_inc(&vcc->stats->rx_drop);
2173 			} else {
2174 				skb_put(skb, len);
2175 				dequeue_sm_buf(card, skb);
2176 				ATM_SKB(skb)->vcc = vcc;
2177 				__net_timestamp(skb);
2178 				vcc->push(vcc, skb);
2179 				atomic_inc(&vcc->stats->rx);
2180 			}
2181 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2182 			struct sk_buff *sb;
2183 
2184 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2185 			/* skb points to a large buffer */
2186 
2187 			if (len <= NS_SMBUFSIZE) {
2188 				if (!atm_charge(vcc, sb->truesize)) {
2189 					push_rxbufs(card, sb);
2190 					atomic_inc(&vcc->stats->rx_drop);
2191 				} else {
2192 					skb_put(sb, len);
2193 					dequeue_sm_buf(card, sb);
2194 					ATM_SKB(sb)->vcc = vcc;
2195 					__net_timestamp(sb);
2196 					vcc->push(vcc, sb);
2197 					atomic_inc(&vcc->stats->rx);
2198 				}
2199 
2200 				push_rxbufs(card, skb);
2201 
2202 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2203 
2204 				if (!atm_charge(vcc, skb->truesize)) {
2205 					push_rxbufs(card, skb);
2206 					atomic_inc(&vcc->stats->rx_drop);
2207 				} else {
2208 					dequeue_lg_buf(card, skb);
2209 					skb_push(skb, NS_SMBUFSIZE);
2210 					skb_copy_from_linear_data(sb, skb->data,
2211 								  NS_SMBUFSIZE);
2212 					skb_put(skb, len - NS_SMBUFSIZE);
2213 					ATM_SKB(skb)->vcc = vcc;
2214 					__net_timestamp(skb);
2215 					vcc->push(vcc, skb);
2216 					atomic_inc(&vcc->stats->rx);
2217 				}
2218 
2219 				push_rxbufs(card, sb);
2220 
2221 			}
2222 
2223 		} else {	/* Must push a huge buffer */
2224 
2225 			struct sk_buff *hb, *sb, *lb;
2226 			int remaining, tocopy;
2227 			int j;
2228 
2229 			hb = skb_dequeue(&(card->hbpool.queue));
2230 			if (hb == NULL) {	/* No buffers in the queue */
2231 
2232 				hb = dev_alloc_skb(NS_HBUFSIZE);
2233 				if (hb == NULL) {
2234 					printk
2235 					    ("nicstar%d: Out of huge buffers.\n",
2236 					     card->index);
2237 					atomic_inc(&vcc->stats->rx_drop);
2238 					recycle_iovec_rx_bufs(card,
2239 							      (struct iovec *)
2240 							      iovb->data,
2241 							      NS_PRV_IOVCNT(iovb));
2242 					vc->rx_iov = NULL;
2243 					recycle_iov_buf(card, iovb);
2244 					return;
2245 				} else if (card->hbpool.count < card->hbnr.min) {
2246 					struct sk_buff *new_hb;
2247 					if ((new_hb =
2248 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2249 					    NULL) {
2250 						skb_queue_tail(&card->hbpool.
2251 							       queue, new_hb);
2252 						card->hbpool.count++;
2253 					}
2254 				}
2255 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2256 			} else if (--card->hbpool.count < card->hbnr.min) {
2257 				struct sk_buff *new_hb;
2258 				if ((new_hb =
2259 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2260 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2261 					skb_queue_tail(&card->hbpool.queue,
2262 						       new_hb);
2263 					card->hbpool.count++;
2264 				}
2265 				if (card->hbpool.count < card->hbnr.min) {
2266 					if ((new_hb =
2267 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2268 					    NULL) {
2269 						NS_PRV_BUFTYPE(new_hb) =
2270 						    BUF_NONE;
2271 						skb_queue_tail(&card->hbpool.
2272 							       queue, new_hb);
2273 						card->hbpool.count++;
2274 					}
2275 				}
2276 			}
2277 
2278 			iov = (struct iovec *)iovb->data;
2279 
2280 			if (!atm_charge(vcc, hb->truesize)) {
2281 				recycle_iovec_rx_bufs(card, iov,
2282 						      NS_PRV_IOVCNT(iovb));
2283 				if (card->hbpool.count < card->hbnr.max) {
2284 					skb_queue_tail(&card->hbpool.queue, hb);
2285 					card->hbpool.count++;
2286 				} else
2287 					dev_kfree_skb_any(hb);
2288 				atomic_inc(&vcc->stats->rx_drop);
2289 			} else {
2290 				/* Copy the small buffer to the huge buffer */
2291 				sb = (struct sk_buff *)iov->iov_base;
2292 				skb_copy_from_linear_data(sb, hb->data,
2293 							  iov->iov_len);
2294 				skb_put(hb, iov->iov_len);
2295 				remaining = len - iov->iov_len;
2296 				iov++;
2297 				/* Free the small buffer */
2298 				push_rxbufs(card, sb);
2299 
2300 				/* Copy all large buffers to the huge buffer and free them */
2301 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2302 					lb = (struct sk_buff *)iov->iov_base;
2303 					tocopy =
2304 					    min_t(int, remaining, iov->iov_len);
2305 					skb_copy_from_linear_data(lb,
2306 								  skb_tail_pointer
2307 								  (hb), tocopy);
2308 					skb_put(hb, tocopy);
2309 					iov++;
2310 					remaining -= tocopy;
2311 					push_rxbufs(card, lb);
2312 				}
2313 #ifdef EXTRA_DEBUG
2314 				if (remaining != 0 || hb->len != len)
2315 					printk
2316 					    ("nicstar%d: Huge buffer len mismatch.\n",
2317 					     card->index);
2318 #endif /* EXTRA_DEBUG */
2319 				ATM_SKB(hb)->vcc = vcc;
2320 				__net_timestamp(hb);
2321 				vcc->push(vcc, hb);
2322 				atomic_inc(&vcc->stats->rx);
2323 			}
2324 		}
2325 
2326 		vc->rx_iov = NULL;
2327 		recycle_iov_buf(card, iovb);
2328 	}
2329 
2330 }
2331 
2332 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2333 {
2334 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2335 		printk("nicstar%d: What kind of rx buffer is this?\n",
2336 		       card->index);
2337 		dev_kfree_skb_any(skb);
2338 	} else
2339 		push_rxbufs(card, skb);
2340 }
2341 
2342 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2343 {
2344 	while (count-- > 0)
2345 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2346 }
2347 
2348 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2349 {
2350 	if (card->iovpool.count < card->iovnr.max) {
2351 		skb_queue_tail(&card->iovpool.queue, iovb);
2352 		card->iovpool.count++;
2353 	} else
2354 		dev_kfree_skb_any(iovb);
2355 }
2356 
2357 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2358 {
2359 	skb_unlink(sb, &card->sbpool.queue);
2360 	if (card->sbfqc < card->sbnr.init) {
2361 		struct sk_buff *new_sb;
2362 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2363 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2364 			skb_queue_tail(&card->sbpool.queue, new_sb);
2365 			skb_reserve(new_sb, NS_AAL0_HEADER);
2366 			push_rxbufs(card, new_sb);
2367 		}
2368 	}
2369 	if (card->sbfqc < card->sbnr.init)
2370 	{
2371 		struct sk_buff *new_sb;
2372 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2373 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2374 			skb_queue_tail(&card->sbpool.queue, new_sb);
2375 			skb_reserve(new_sb, NS_AAL0_HEADER);
2376 			push_rxbufs(card, new_sb);
2377 		}
2378 	}
2379 }
2380 
2381 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2382 {
2383 	skb_unlink(lb, &card->lbpool.queue);
2384 	if (card->lbfqc < card->lbnr.init) {
2385 		struct sk_buff *new_lb;
2386 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2387 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2388 			skb_queue_tail(&card->lbpool.queue, new_lb);
2389 			skb_reserve(new_lb, NS_SMBUFSIZE);
2390 			push_rxbufs(card, new_lb);
2391 		}
2392 	}
2393 	if (card->lbfqc < card->lbnr.init)
2394 	{
2395 		struct sk_buff *new_lb;
2396 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2397 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2398 			skb_queue_tail(&card->lbpool.queue, new_lb);
2399 			skb_reserve(new_lb, NS_SMBUFSIZE);
2400 			push_rxbufs(card, new_lb);
2401 		}
2402 	}
2403 }
2404 
2405 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2406 {
2407 	u32 stat;
2408 	ns_dev *card;
2409 	int left;
2410 
2411 	left = (int)*pos;
2412 	card = (ns_dev *) dev->dev_data;
2413 	stat = readl(card->membase + STAT);
2414 	if (!left--)
2415 		return sprintf(page, "Pool   count    min   init    max \n");
2416 	if (!left--)
2417 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2418 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2419 			       card->sbnr.init, card->sbnr.max);
2420 	if (!left--)
2421 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2422 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2423 			       card->lbnr.init, card->lbnr.max);
2424 	if (!left--)
2425 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2426 			       card->hbpool.count, card->hbnr.min,
2427 			       card->hbnr.init, card->hbnr.max);
2428 	if (!left--)
2429 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2430 			       card->iovpool.count, card->iovnr.min,
2431 			       card->iovnr.init, card->iovnr.max);
2432 	if (!left--) {
2433 		int retval;
2434 		retval =
2435 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2436 		card->intcnt = 0;
2437 		return retval;
2438 	}
2439 #if 0
2440 	/* Dump 25.6 Mbps PHY registers */
2441 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2442 	   here just in case it's needed for debugging. */
2443 	if (card->max_pcr == ATM_25_PCR && !left--) {
2444 		u32 phy_regs[4];
2445 		u32 i;
2446 
2447 		for (i = 0; i < 4; i++) {
2448 			while (CMD_BUSY(card)) ;
2449 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2450 			       card->membase + CMD);
2451 			while (CMD_BUSY(card)) ;
2452 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2453 		}
2454 
2455 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2456 			       phy_regs[0], phy_regs[1], phy_regs[2],
2457 			       phy_regs[3]);
2458 	}
2459 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2460 #if 0
2461 	/* Dump TST */
2462 	if (left-- < NS_TST_NUM_ENTRIES) {
2463 		if (card->tste2vc[left + 1] == NULL)
2464 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2465 		else
2466 			return sprintf(page, "%5d - %d %d \n", left + 1,
2467 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2468 				       card->tste2vc[left + 1]->tx_vcc->vci);
2469 	}
2470 #endif /* 0 */
2471 	return 0;
2472 }
2473 
2474 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2475 {
2476 	ns_dev *card;
2477 	pool_levels pl;
2478 	long btype;
2479 	unsigned long flags;
2480 
2481 	card = dev->dev_data;
2482 	switch (cmd) {
2483 	case NS_GETPSTAT:
2484 		if (get_user
2485 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2486 			return -EFAULT;
2487 		switch (pl.buftype) {
2488 		case NS_BUFTYPE_SMALL:
2489 			pl.count =
2490 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2491 			pl.level.min = card->sbnr.min;
2492 			pl.level.init = card->sbnr.init;
2493 			pl.level.max = card->sbnr.max;
2494 			break;
2495 
2496 		case NS_BUFTYPE_LARGE:
2497 			pl.count =
2498 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2499 			pl.level.min = card->lbnr.min;
2500 			pl.level.init = card->lbnr.init;
2501 			pl.level.max = card->lbnr.max;
2502 			break;
2503 
2504 		case NS_BUFTYPE_HUGE:
2505 			pl.count = card->hbpool.count;
2506 			pl.level.min = card->hbnr.min;
2507 			pl.level.init = card->hbnr.init;
2508 			pl.level.max = card->hbnr.max;
2509 			break;
2510 
2511 		case NS_BUFTYPE_IOVEC:
2512 			pl.count = card->iovpool.count;
2513 			pl.level.min = card->iovnr.min;
2514 			pl.level.init = card->iovnr.init;
2515 			pl.level.max = card->iovnr.max;
2516 			break;
2517 
2518 		default:
2519 			return -ENOIOCTLCMD;
2520 
2521 		}
2522 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2523 			return (sizeof(pl));
2524 		else
2525 			return -EFAULT;
2526 
2527 	case NS_SETBUFLEV:
2528 		if (!capable(CAP_NET_ADMIN))
2529 			return -EPERM;
2530 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2531 			return -EFAULT;
2532 		if (pl.level.min >= pl.level.init
2533 		    || pl.level.init >= pl.level.max)
2534 			return -EINVAL;
2535 		if (pl.level.min == 0)
2536 			return -EINVAL;
2537 		switch (pl.buftype) {
2538 		case NS_BUFTYPE_SMALL:
2539 			if (pl.level.max > TOP_SB)
2540 				return -EINVAL;
2541 			card->sbnr.min = pl.level.min;
2542 			card->sbnr.init = pl.level.init;
2543 			card->sbnr.max = pl.level.max;
2544 			break;
2545 
2546 		case NS_BUFTYPE_LARGE:
2547 			if (pl.level.max > TOP_LB)
2548 				return -EINVAL;
2549 			card->lbnr.min = pl.level.min;
2550 			card->lbnr.init = pl.level.init;
2551 			card->lbnr.max = pl.level.max;
2552 			break;
2553 
2554 		case NS_BUFTYPE_HUGE:
2555 			if (pl.level.max > TOP_HB)
2556 				return -EINVAL;
2557 			card->hbnr.min = pl.level.min;
2558 			card->hbnr.init = pl.level.init;
2559 			card->hbnr.max = pl.level.max;
2560 			break;
2561 
2562 		case NS_BUFTYPE_IOVEC:
2563 			if (pl.level.max > TOP_IOVB)
2564 				return -EINVAL;
2565 			card->iovnr.min = pl.level.min;
2566 			card->iovnr.init = pl.level.init;
2567 			card->iovnr.max = pl.level.max;
2568 			break;
2569 
2570 		default:
2571 			return -EINVAL;
2572 
2573 		}
2574 		return 0;
2575 
2576 	case NS_ADJBUFLEV:
2577 		if (!capable(CAP_NET_ADMIN))
2578 			return -EPERM;
2579 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2580 		switch (btype) {
2581 		case NS_BUFTYPE_SMALL:
2582 			while (card->sbfqc < card->sbnr.init) {
2583 				struct sk_buff *sb;
2584 
2585 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2586 				if (sb == NULL)
2587 					return -ENOMEM;
2588 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2589 				skb_queue_tail(&card->sbpool.queue, sb);
2590 				skb_reserve(sb, NS_AAL0_HEADER);
2591 				push_rxbufs(card, sb);
2592 			}
2593 			break;
2594 
2595 		case NS_BUFTYPE_LARGE:
2596 			while (card->lbfqc < card->lbnr.init) {
2597 				struct sk_buff *lb;
2598 
2599 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2600 				if (lb == NULL)
2601 					return -ENOMEM;
2602 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2603 				skb_queue_tail(&card->lbpool.queue, lb);
2604 				skb_reserve(lb, NS_SMBUFSIZE);
2605 				push_rxbufs(card, lb);
2606 			}
2607 			break;
2608 
2609 		case NS_BUFTYPE_HUGE:
2610 			while (card->hbpool.count > card->hbnr.init) {
2611 				struct sk_buff *hb;
2612 
2613 				spin_lock_irqsave(&card->int_lock, flags);
2614 				hb = skb_dequeue(&card->hbpool.queue);
2615 				card->hbpool.count--;
2616 				spin_unlock_irqrestore(&card->int_lock, flags);
2617 				if (hb == NULL)
2618 					printk
2619 					    ("nicstar%d: huge buffer count inconsistent.\n",
2620 					     card->index);
2621 				else
2622 					dev_kfree_skb_any(hb);
2623 
2624 			}
2625 			while (card->hbpool.count < card->hbnr.init) {
2626 				struct sk_buff *hb;
2627 
2628 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2629 				if (hb == NULL)
2630 					return -ENOMEM;
2631 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2632 				spin_lock_irqsave(&card->int_lock, flags);
2633 				skb_queue_tail(&card->hbpool.queue, hb);
2634 				card->hbpool.count++;
2635 				spin_unlock_irqrestore(&card->int_lock, flags);
2636 			}
2637 			break;
2638 
2639 		case NS_BUFTYPE_IOVEC:
2640 			while (card->iovpool.count > card->iovnr.init) {
2641 				struct sk_buff *iovb;
2642 
2643 				spin_lock_irqsave(&card->int_lock, flags);
2644 				iovb = skb_dequeue(&card->iovpool.queue);
2645 				card->iovpool.count--;
2646 				spin_unlock_irqrestore(&card->int_lock, flags);
2647 				if (iovb == NULL)
2648 					printk
2649 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2650 					     card->index);
2651 				else
2652 					dev_kfree_skb_any(iovb);
2653 
2654 			}
2655 			while (card->iovpool.count < card->iovnr.init) {
2656 				struct sk_buff *iovb;
2657 
2658 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2659 				if (iovb == NULL)
2660 					return -ENOMEM;
2661 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2662 				spin_lock_irqsave(&card->int_lock, flags);
2663 				skb_queue_tail(&card->iovpool.queue, iovb);
2664 				card->iovpool.count++;
2665 				spin_unlock_irqrestore(&card->int_lock, flags);
2666 			}
2667 			break;
2668 
2669 		default:
2670 			return -EINVAL;
2671 
2672 		}
2673 		return 0;
2674 
2675 	default:
2676 		if (dev->phy && dev->phy->ioctl) {
2677 			return dev->phy->ioctl(dev, cmd, arg);
2678 		} else {
2679 			printk("nicstar%d: %s == NULL \n", card->index,
2680 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2681 			return -ENOIOCTLCMD;
2682 		}
2683 	}
2684 }
2685 
2686 #ifdef EXTRA_DEBUG
2687 static void which_list(ns_dev * card, struct sk_buff *skb)
2688 {
2689 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2690 }
2691 #endif /* EXTRA_DEBUG */
2692 
2693 static void ns_poll(struct timer_list *unused)
2694 {
2695 	int i;
2696 	ns_dev *card;
2697 	unsigned long flags;
2698 	u32 stat_r, stat_w;
2699 
2700 	PRINTK("nicstar: Entering ns_poll().\n");
2701 	for (i = 0; i < num_cards; i++) {
2702 		card = cards[i];
2703 		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2704 			/* Probably it isn't worth spinning */
2705 			continue;
2706 		}
2707 
2708 		stat_w = 0;
2709 		stat_r = readl(card->membase + STAT);
2710 		if (stat_r & NS_STAT_TSIF)
2711 			stat_w |= NS_STAT_TSIF;
2712 		if (stat_r & NS_STAT_EOPDU)
2713 			stat_w |= NS_STAT_EOPDU;
2714 
2715 		process_tsq(card);
2716 		process_rsq(card);
2717 
2718 		writel(stat_w, card->membase + STAT);
2719 		spin_unlock_irqrestore(&card->int_lock, flags);
2720 	}
2721 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2722 	PRINTK("nicstar: Leaving ns_poll().\n");
2723 }
2724 
2725 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2726 		       unsigned long addr)
2727 {
2728 	ns_dev *card;
2729 	unsigned long flags;
2730 
2731 	card = dev->dev_data;
2732 	spin_lock_irqsave(&card->res_lock, flags);
2733 	while (CMD_BUSY(card)) ;
2734 	writel((u32) value, card->membase + DR0);
2735 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2736 	       card->membase + CMD);
2737 	spin_unlock_irqrestore(&card->res_lock, flags);
2738 }
2739 
2740 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2741 {
2742 	ns_dev *card;
2743 	unsigned long flags;
2744 	u32 data;
2745 
2746 	card = dev->dev_data;
2747 	spin_lock_irqsave(&card->res_lock, flags);
2748 	while (CMD_BUSY(card)) ;
2749 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2750 	       card->membase + CMD);
2751 	while (CMD_BUSY(card)) ;
2752 	data = readl(card->membase + DR0) & 0x000000FF;
2753 	spin_unlock_irqrestore(&card->res_lock, flags);
2754 	return (unsigned char)data;
2755 }
2756 
2757 module_init(nicstar_init);
2758 module_exit(nicstar_cleanup);
2759