xref: /openbmc/linux/drivers/atm/nicstar.c (revision 7ce05074)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * nicstar.c
4  *
5  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6  *
7  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8  *            It was taken from the frle-0.22 device driver.
9  *            As the file doesn't have a copyright notice, in the file
10  *            nicstarmac.copyright I put the copyright notice from the
11  *            frle-0.22 device driver.
12  *            Some code is based on the nicstar driver by M. Welsh.
13  *
14  * Author: Rui Prior (rprior@inescn.pt)
15  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
16  *
17  *
18  * (C) INESC 1999
19  */
20 
21 /*
22  * IMPORTANT INFORMATION
23  *
24  * There are currently three types of spinlocks:
25  *
26  * 1 - Per card interrupt spinlock (to protect structures and such)
27  * 2 - Per SCQ scq spinlock
28  * 3 - Per card resource spinlock (to access registers, etc.)
29  *
30  * These must NEVER be grabbed in reverse order.
31  *
32  */
33 
34 /* Header files */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 
65 /* Additional code */
66 
67 #include "nicstarmac.c"
68 
69 /* Configurable parameters */
70 
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
76 
77 /* Do not touch these */
78 
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
84 
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
90 
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...) do {} while (0)
95 #endif /* GENERAL_DEBUG */
96 
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
102 
103 /* Macros */
104 
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 
107 #define NS_DELAY mdelay(1)
108 
109 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
110 
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
114 
115 #define scq_virt_to_bus(scq, p) \
116 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 
118 /* Function declarations */
119 
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 			  int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
134 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
135 		     struct sk_buff *skb, bool may_sleep);
136 static void process_tsq(ns_dev * card);
137 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
138 static void process_rsq(ns_dev * card);
139 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
140 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
141 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
142 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
143 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
144 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
145 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
146 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
147 #ifdef EXTRA_DEBUG
148 static void which_list(ns_dev * card, struct sk_buff *skb);
149 #endif
150 static void ns_poll(struct timer_list *unused);
151 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
152 		       unsigned long addr);
153 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
154 
155 /* Global variables */
156 
157 static struct ns_dev *cards[NS_MAX_CARDS];
158 static unsigned num_cards;
159 static const struct atmdev_ops atm_ops = {
160 	.open = ns_open,
161 	.close = ns_close,
162 	.ioctl = ns_ioctl,
163 	.send = ns_send,
164 	.send_bh = ns_send_bh,
165 	.phy_put = ns_phy_put,
166 	.phy_get = ns_phy_get,
167 	.proc_read = ns_proc_read,
168 	.owner = THIS_MODULE,
169 };
170 
171 static struct timer_list ns_timer;
172 static char *mac[NS_MAX_CARDS];
173 module_param_array(mac, charp, NULL, 0);
174 MODULE_LICENSE("GPL");
175 
176 /* Functions */
177 
178 static int nicstar_init_one(struct pci_dev *pcidev,
179 			    const struct pci_device_id *ent)
180 {
181 	static int index = -1;
182 	unsigned int error;
183 
184 	index++;
185 	cards[index] = NULL;
186 
187 	error = ns_init_card(index, pcidev);
188 	if (error) {
189 		cards[index--] = NULL;	/* don't increment index */
190 		goto err_out;
191 	}
192 
193 	return 0;
194 err_out:
195 	return -ENODEV;
196 }
197 
198 static void nicstar_remove_one(struct pci_dev *pcidev)
199 {
200 	int i, j;
201 	ns_dev *card = pci_get_drvdata(pcidev);
202 	struct sk_buff *hb;
203 	struct sk_buff *iovb;
204 	struct sk_buff *lb;
205 	struct sk_buff *sb;
206 
207 	i = card->index;
208 
209 	if (cards[i] == NULL)
210 		return;
211 
212 	if (card->atmdev->phy && card->atmdev->phy->stop)
213 		card->atmdev->phy->stop(card->atmdev);
214 
215 	/* Stop everything */
216 	writel(0x00000000, card->membase + CFG);
217 
218 	/* De-register device */
219 	atm_dev_deregister(card->atmdev);
220 
221 	/* Disable PCI device */
222 	pci_disable_device(pcidev);
223 
224 	/* Free up resources */
225 	j = 0;
226 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
227 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
228 		dev_kfree_skb_any(hb);
229 		j++;
230 	}
231 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
232 	j = 0;
233 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
234 	       card->iovpool.count);
235 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
236 		dev_kfree_skb_any(iovb);
237 		j++;
238 	}
239 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
240 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
241 		dev_kfree_skb_any(lb);
242 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
243 		dev_kfree_skb_any(sb);
244 	free_scq(card, card->scq0, NULL);
245 	for (j = 0; j < NS_FRSCD_NUM; j++) {
246 		if (card->scd2vc[j] != NULL)
247 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
248 	}
249 	idr_destroy(&card->idr);
250 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
251 			  card->rsq.org, card->rsq.dma);
252 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
253 			  card->tsq.org, card->tsq.dma);
254 	free_irq(card->pcidev->irq, card);
255 	iounmap(card->membase);
256 	kfree(card);
257 }
258 
259 static const struct pci_device_id nicstar_pci_tbl[] = {
260 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
261 	{0,}			/* terminate list */
262 };
263 
264 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
265 
266 static struct pci_driver nicstar_driver = {
267 	.name = "nicstar",
268 	.id_table = nicstar_pci_tbl,
269 	.probe = nicstar_init_one,
270 	.remove = nicstar_remove_one,
271 };
272 
273 static int __init nicstar_init(void)
274 {
275 	unsigned error = 0;	/* Initialized to remove compile warning */
276 
277 	XPRINTK("nicstar: nicstar_init() called.\n");
278 
279 	error = pci_register_driver(&nicstar_driver);
280 
281 	TXPRINTK("nicstar: TX debug enabled.\n");
282 	RXPRINTK("nicstar: RX debug enabled.\n");
283 	PRINTK("nicstar: General debug enabled.\n");
284 #ifdef PHY_LOOPBACK
285 	printk("nicstar: using PHY loopback.\n");
286 #endif /* PHY_LOOPBACK */
287 	XPRINTK("nicstar: nicstar_init() returned.\n");
288 
289 	if (!error) {
290 		timer_setup(&ns_timer, ns_poll, 0);
291 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
292 		add_timer(&ns_timer);
293 	}
294 
295 	return error;
296 }
297 
298 static void __exit nicstar_cleanup(void)
299 {
300 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
301 
302 	del_timer_sync(&ns_timer);
303 
304 	pci_unregister_driver(&nicstar_driver);
305 
306 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
307 }
308 
309 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
310 {
311 	unsigned long flags;
312 	u32 data;
313 	sram_address <<= 2;
314 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
315 	sram_address |= 0x50000000;	/* SRAM read command */
316 	spin_lock_irqsave(&card->res_lock, flags);
317 	while (CMD_BUSY(card)) ;
318 	writel(sram_address, card->membase + CMD);
319 	while (CMD_BUSY(card)) ;
320 	data = readl(card->membase + DR0);
321 	spin_unlock_irqrestore(&card->res_lock, flags);
322 	return data;
323 }
324 
325 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
326 			  int count)
327 {
328 	unsigned long flags;
329 	int i, c;
330 	count--;		/* count range now is 0..3 instead of 1..4 */
331 	c = count;
332 	c <<= 2;		/* to use increments of 4 */
333 	spin_lock_irqsave(&card->res_lock, flags);
334 	while (CMD_BUSY(card)) ;
335 	for (i = 0; i <= c; i += 4)
336 		writel(*(value++), card->membase + i);
337 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
338 	   so card->membase + DR0 == card->membase */
339 	sram_address <<= 2;
340 	sram_address &= 0x0007FFFC;
341 	sram_address |= (0x40000000 | count);
342 	writel(sram_address, card->membase + CMD);
343 	spin_unlock_irqrestore(&card->res_lock, flags);
344 }
345 
346 static int ns_init_card(int i, struct pci_dev *pcidev)
347 {
348 	int j;
349 	struct ns_dev *card = NULL;
350 	unsigned char pci_latency;
351 	unsigned error;
352 	u32 data;
353 	u32 u32d[4];
354 	u32 ns_cfg_rctsize;
355 	int bcount;
356 	unsigned long membase;
357 
358 	error = 0;
359 
360 	if (pci_enable_device(pcidev)) {
361 		printk("nicstar%d: can't enable PCI device\n", i);
362 		error = 2;
363 		ns_init_card_error(card, error);
364 		return error;
365 	}
366         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
367                 printk(KERN_WARNING
368 		       "nicstar%d: No suitable DMA available.\n", i);
369 		error = 2;
370 		ns_init_card_error(card, error);
371 		return error;
372         }
373 
374 	card = kmalloc(sizeof(*card), GFP_KERNEL);
375 	if (!card) {
376 		printk
377 		    ("nicstar%d: can't allocate memory for device structure.\n",
378 		     i);
379 		error = 2;
380 		ns_init_card_error(card, error);
381 		return error;
382 	}
383 	cards[i] = card;
384 	spin_lock_init(&card->int_lock);
385 	spin_lock_init(&card->res_lock);
386 
387 	pci_set_drvdata(pcidev, card);
388 
389 	card->index = i;
390 	card->atmdev = NULL;
391 	card->pcidev = pcidev;
392 	membase = pci_resource_start(pcidev, 1);
393 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
394 	if (!card->membase) {
395 		printk("nicstar%d: can't ioremap() membase.\n", i);
396 		error = 3;
397 		ns_init_card_error(card, error);
398 		return error;
399 	}
400 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
401 
402 	pci_set_master(pcidev);
403 
404 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
405 		printk("nicstar%d: can't read PCI latency timer.\n", i);
406 		error = 6;
407 		ns_init_card_error(card, error);
408 		return error;
409 	}
410 #ifdef NS_PCI_LATENCY
411 	if (pci_latency < NS_PCI_LATENCY) {
412 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
413 		       NS_PCI_LATENCY);
414 		for (j = 1; j < 4; j++) {
415 			if (pci_write_config_byte
416 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
417 				break;
418 		}
419 		if (j == 4) {
420 			printk
421 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
422 			     i, NS_PCI_LATENCY);
423 			error = 7;
424 			ns_init_card_error(card, error);
425 			return error;
426 		}
427 	}
428 #endif /* NS_PCI_LATENCY */
429 
430 	/* Clear timer overflow */
431 	data = readl(card->membase + STAT);
432 	if (data & NS_STAT_TMROF)
433 		writel(NS_STAT_TMROF, card->membase + STAT);
434 
435 	/* Software reset */
436 	writel(NS_CFG_SWRST, card->membase + CFG);
437 	NS_DELAY;
438 	writel(0x00000000, card->membase + CFG);
439 
440 	/* PHY reset */
441 	writel(0x00000008, card->membase + GP);
442 	NS_DELAY;
443 	writel(0x00000001, card->membase + GP);
444 	NS_DELAY;
445 	while (CMD_BUSY(card)) ;
446 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
447 	NS_DELAY;
448 
449 	/* Detect PHY type */
450 	while (CMD_BUSY(card)) ;
451 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
452 	while (CMD_BUSY(card)) ;
453 	data = readl(card->membase + DR0);
454 	switch (data) {
455 	case 0x00000009:
456 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
457 		card->max_pcr = ATM_25_PCR;
458 		while (CMD_BUSY(card)) ;
459 		writel(0x00000008, card->membase + DR0);
460 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
461 		/* Clear an eventual pending interrupt */
462 		writel(NS_STAT_SFBQF, card->membase + STAT);
463 #ifdef PHY_LOOPBACK
464 		while (CMD_BUSY(card)) ;
465 		writel(0x00000022, card->membase + DR0);
466 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
467 #endif /* PHY_LOOPBACK */
468 		break;
469 	case 0x00000030:
470 	case 0x00000031:
471 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
472 		card->max_pcr = ATM_OC3_PCR;
473 #ifdef PHY_LOOPBACK
474 		while (CMD_BUSY(card)) ;
475 		writel(0x00000002, card->membase + DR0);
476 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
477 #endif /* PHY_LOOPBACK */
478 		break;
479 	default:
480 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
481 		error = 8;
482 		ns_init_card_error(card, error);
483 		return error;
484 	}
485 	writel(0x00000000, card->membase + GP);
486 
487 	/* Determine SRAM size */
488 	data = 0x76543210;
489 	ns_write_sram(card, 0x1C003, &data, 1);
490 	data = 0x89ABCDEF;
491 	ns_write_sram(card, 0x14003, &data, 1);
492 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
493 	    ns_read_sram(card, 0x1C003) == 0x76543210)
494 		card->sram_size = 128;
495 	else
496 		card->sram_size = 32;
497 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
498 
499 	card->rct_size = NS_MAX_RCTSIZE;
500 
501 #if (NS_MAX_RCTSIZE == 4096)
502 	if (card->sram_size == 128)
503 		printk
504 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
505 		     i);
506 #elif (NS_MAX_RCTSIZE == 16384)
507 	if (card->sram_size == 32) {
508 		printk
509 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
510 		     i);
511 		card->rct_size = 4096;
512 	}
513 #else
514 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
515 #endif
516 
517 	card->vpibits = NS_VPIBITS;
518 	if (card->rct_size == 4096)
519 		card->vcibits = 12 - NS_VPIBITS;
520 	else			/* card->rct_size == 16384 */
521 		card->vcibits = 14 - NS_VPIBITS;
522 
523 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
524 	if (mac[i] == NULL)
525 		nicstar_init_eprom(card->membase);
526 
527 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
528 	writel(0x00000000, card->membase + VPM);
529 
530 	card->intcnt = 0;
531 	if (request_irq
532 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
533 		pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
534 		error = 9;
535 		ns_init_card_error(card, error);
536 		return error;
537 	}
538 
539 	/* Initialize TSQ */
540 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
541 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
542 					   &card->tsq.dma, GFP_KERNEL);
543 	if (card->tsq.org == NULL) {
544 		printk("nicstar%d: can't allocate TSQ.\n", i);
545 		error = 10;
546 		ns_init_card_error(card, error);
547 		return error;
548 	}
549 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
550 	card->tsq.next = card->tsq.base;
551 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
552 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
553 		ns_tsi_init(card->tsq.base + j);
554 	writel(0x00000000, card->membase + TSQH);
555 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
556 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
557 
558 	/* Initialize RSQ */
559 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
560 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
561 					   &card->rsq.dma, GFP_KERNEL);
562 	if (card->rsq.org == NULL) {
563 		printk("nicstar%d: can't allocate RSQ.\n", i);
564 		error = 11;
565 		ns_init_card_error(card, error);
566 		return error;
567 	}
568 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
569 	card->rsq.next = card->rsq.base;
570 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
571 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
572 		ns_rsqe_init(card->rsq.base + j);
573 	writel(0x00000000, card->membase + RSQH);
574 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
575 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
576 
577 	/* Initialize SCQ0, the only VBR SCQ used */
578 	card->scq1 = NULL;
579 	card->scq2 = NULL;
580 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
581 	if (card->scq0 == NULL) {
582 		printk("nicstar%d: can't get SCQ0.\n", i);
583 		error = 12;
584 		ns_init_card_error(card, error);
585 		return error;
586 	}
587 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
588 	u32d[1] = (u32) 0x00000000;
589 	u32d[2] = (u32) 0xffffffff;
590 	u32d[3] = (u32) 0x00000000;
591 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
592 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
593 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
594 	card->scq0->scd = NS_VRSCD0;
595 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
596 
597 	/* Initialize TSTs */
598 	card->tst_addr = NS_TST0;
599 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
600 	data = NS_TST_OPCODE_VARIABLE;
601 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
602 		ns_write_sram(card, NS_TST0 + j, &data, 1);
603 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
604 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
605 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
606 		ns_write_sram(card, NS_TST1 + j, &data, 1);
607 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
608 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
609 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
610 		card->tste2vc[j] = NULL;
611 	writel(NS_TST0 << 2, card->membase + TSTB);
612 
613 	/* Initialize RCT. AAL type is set on opening the VC. */
614 #ifdef RCQ_SUPPORT
615 	u32d[0] = NS_RCTE_RAWCELLINTEN;
616 #else
617 	u32d[0] = 0x00000000;
618 #endif /* RCQ_SUPPORT */
619 	u32d[1] = 0x00000000;
620 	u32d[2] = 0x00000000;
621 	u32d[3] = 0xFFFFFFFF;
622 	for (j = 0; j < card->rct_size; j++)
623 		ns_write_sram(card, j * 4, u32d, 4);
624 
625 	memset(card->vcmap, 0, sizeof(card->vcmap));
626 
627 	for (j = 0; j < NS_FRSCD_NUM; j++)
628 		card->scd2vc[j] = NULL;
629 
630 	/* Initialize buffer levels */
631 	card->sbnr.min = MIN_SB;
632 	card->sbnr.init = NUM_SB;
633 	card->sbnr.max = MAX_SB;
634 	card->lbnr.min = MIN_LB;
635 	card->lbnr.init = NUM_LB;
636 	card->lbnr.max = MAX_LB;
637 	card->iovnr.min = MIN_IOVB;
638 	card->iovnr.init = NUM_IOVB;
639 	card->iovnr.max = MAX_IOVB;
640 	card->hbnr.min = MIN_HB;
641 	card->hbnr.init = NUM_HB;
642 	card->hbnr.max = MAX_HB;
643 
644 	card->sm_handle = NULL;
645 	card->sm_addr = 0x00000000;
646 	card->lg_handle = NULL;
647 	card->lg_addr = 0x00000000;
648 
649 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
650 
651 	idr_init(&card->idr);
652 
653 	/* Pre-allocate some huge buffers */
654 	skb_queue_head_init(&card->hbpool.queue);
655 	card->hbpool.count = 0;
656 	for (j = 0; j < NUM_HB; j++) {
657 		struct sk_buff *hb;
658 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
659 		if (hb == NULL) {
660 			printk
661 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
662 			     i, j, NUM_HB);
663 			error = 13;
664 			ns_init_card_error(card, error);
665 			return error;
666 		}
667 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
668 		skb_queue_tail(&card->hbpool.queue, hb);
669 		card->hbpool.count++;
670 	}
671 
672 	/* Allocate large buffers */
673 	skb_queue_head_init(&card->lbpool.queue);
674 	card->lbpool.count = 0;	/* Not used */
675 	for (j = 0; j < NUM_LB; j++) {
676 		struct sk_buff *lb;
677 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
678 		if (lb == NULL) {
679 			printk
680 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
681 			     i, j, NUM_LB);
682 			error = 14;
683 			ns_init_card_error(card, error);
684 			return error;
685 		}
686 		NS_PRV_BUFTYPE(lb) = BUF_LG;
687 		skb_queue_tail(&card->lbpool.queue, lb);
688 		skb_reserve(lb, NS_SMBUFSIZE);
689 		push_rxbufs(card, lb);
690 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
691 		if (j == 1) {
692 			card->rcbuf = lb;
693 			card->rawcell = (struct ns_rcqe *) lb->data;
694 			card->rawch = NS_PRV_DMA(lb);
695 		}
696 	}
697 	/* Test for strange behaviour which leads to crashes */
698 	if ((bcount =
699 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
700 		printk
701 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
702 		     i, j, bcount);
703 		error = 14;
704 		ns_init_card_error(card, error);
705 		return error;
706 	}
707 
708 	/* Allocate small buffers */
709 	skb_queue_head_init(&card->sbpool.queue);
710 	card->sbpool.count = 0;	/* Not used */
711 	for (j = 0; j < NUM_SB; j++) {
712 		struct sk_buff *sb;
713 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
714 		if (sb == NULL) {
715 			printk
716 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
717 			     i, j, NUM_SB);
718 			error = 15;
719 			ns_init_card_error(card, error);
720 			return error;
721 		}
722 		NS_PRV_BUFTYPE(sb) = BUF_SM;
723 		skb_queue_tail(&card->sbpool.queue, sb);
724 		skb_reserve(sb, NS_AAL0_HEADER);
725 		push_rxbufs(card, sb);
726 	}
727 	/* Test for strange behaviour which leads to crashes */
728 	if ((bcount =
729 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
730 		printk
731 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
732 		     i, j, bcount);
733 		error = 15;
734 		ns_init_card_error(card, error);
735 		return error;
736 	}
737 
738 	/* Allocate iovec buffers */
739 	skb_queue_head_init(&card->iovpool.queue);
740 	card->iovpool.count = 0;
741 	for (j = 0; j < NUM_IOVB; j++) {
742 		struct sk_buff *iovb;
743 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
744 		if (iovb == NULL) {
745 			printk
746 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
747 			     i, j, NUM_IOVB);
748 			error = 16;
749 			ns_init_card_error(card, error);
750 			return error;
751 		}
752 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
753 		skb_queue_tail(&card->iovpool.queue, iovb);
754 		card->iovpool.count++;
755 	}
756 
757 	/* Configure NICStAR */
758 	if (card->rct_size == 4096)
759 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
760 	else			/* (card->rct_size == 16384) */
761 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
762 
763 	card->efbie = 1;
764 
765 	/* Register device */
766 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
767 					-1, NULL);
768 	if (card->atmdev == NULL) {
769 		printk("nicstar%d: can't register device.\n", i);
770 		error = 17;
771 		ns_init_card_error(card, error);
772 		return error;
773 	}
774 
775 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
776 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
777 				   card->atmdev->esi, 6);
778 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
779 			nicstar_read_eprom(card->membase,
780 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
781 					   card->atmdev->esi, 6);
782 		}
783 	}
784 
785 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
786 
787 	card->atmdev->dev_data = card;
788 	card->atmdev->ci_range.vpi_bits = card->vpibits;
789 	card->atmdev->ci_range.vci_bits = card->vcibits;
790 	card->atmdev->link_rate = card->max_pcr;
791 	card->atmdev->phy = NULL;
792 
793 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
794 	if (card->max_pcr == ATM_OC3_PCR)
795 		suni_init(card->atmdev);
796 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
797 
798 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
799 	if (card->max_pcr == ATM_25_PCR)
800 		idt77105_init(card->atmdev);
801 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
802 
803 	if (card->atmdev->phy && card->atmdev->phy->start)
804 		card->atmdev->phy->start(card->atmdev);
805 
806 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
807 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
808 	       NS_CFG_PHYIE, card->membase + CFG);
809 
810 	num_cards++;
811 
812 	return error;
813 }
814 
815 static void ns_init_card_error(ns_dev *card, int error)
816 {
817 	if (error >= 17) {
818 		writel(0x00000000, card->membase + CFG);
819 	}
820 	if (error >= 16) {
821 		struct sk_buff *iovb;
822 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
823 			dev_kfree_skb_any(iovb);
824 	}
825 	if (error >= 15) {
826 		struct sk_buff *sb;
827 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
828 			dev_kfree_skb_any(sb);
829 		free_scq(card, card->scq0, NULL);
830 	}
831 	if (error >= 14) {
832 		struct sk_buff *lb;
833 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
834 			dev_kfree_skb_any(lb);
835 	}
836 	if (error >= 13) {
837 		struct sk_buff *hb;
838 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
839 			dev_kfree_skb_any(hb);
840 	}
841 	if (error >= 12) {
842 		dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
843 				card->rsq.org, card->rsq.dma);
844 	}
845 	if (error >= 11) {
846 		dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
847 				card->tsq.org, card->tsq.dma);
848 	}
849 	if (error >= 10) {
850 		free_irq(card->pcidev->irq, card);
851 	}
852 	if (error >= 4) {
853 		iounmap(card->membase);
854 	}
855 	if (error >= 3) {
856 		pci_disable_device(card->pcidev);
857 		kfree(card);
858 	}
859 }
860 
861 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
862 {
863 	scq_info *scq;
864 	int i;
865 
866 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
867 		return NULL;
868 
869 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
870 	if (!scq)
871 		return NULL;
872         scq->org = dma_alloc_coherent(&card->pcidev->dev,
873 				      2 * size,  &scq->dma, GFP_KERNEL);
874 	if (!scq->org) {
875 		kfree(scq);
876 		return NULL;
877 	}
878 	scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
879 				 sizeof(*scq->skb),
880 				 GFP_KERNEL);
881 	if (!scq->skb) {
882 		dma_free_coherent(&card->pcidev->dev,
883 				  2 * size, scq->org, scq->dma);
884 		kfree(scq);
885 		return NULL;
886 	}
887 	scq->num_entries = size / NS_SCQE_SIZE;
888 	scq->base = PTR_ALIGN(scq->org, size);
889 	scq->next = scq->base;
890 	scq->last = scq->base + (scq->num_entries - 1);
891 	scq->tail = scq->last;
892 	scq->scd = scd;
893 	scq->num_entries = size / NS_SCQE_SIZE;
894 	scq->tbd_count = 0;
895 	init_waitqueue_head(&scq->scqfull_waitq);
896 	scq->full = 0;
897 	spin_lock_init(&scq->lock);
898 
899 	for (i = 0; i < scq->num_entries; i++)
900 		scq->skb[i] = NULL;
901 
902 	return scq;
903 }
904 
905 /* For variable rate SCQ vcc must be NULL */
906 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
907 {
908 	int i;
909 
910 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
911 		for (i = 0; i < scq->num_entries; i++) {
912 			if (scq->skb[i] != NULL) {
913 				vcc = ATM_SKB(scq->skb[i])->vcc;
914 				if (vcc->pop != NULL)
915 					vcc->pop(vcc, scq->skb[i]);
916 				else
917 					dev_kfree_skb_any(scq->skb[i]);
918 			}
919 	} else {		/* vcc must be != NULL */
920 
921 		if (vcc == NULL) {
922 			printk
923 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
924 			for (i = 0; i < scq->num_entries; i++)
925 				dev_kfree_skb_any(scq->skb[i]);
926 		} else
927 			for (i = 0; i < scq->num_entries; i++) {
928 				if (scq->skb[i] != NULL) {
929 					if (vcc->pop != NULL)
930 						vcc->pop(vcc, scq->skb[i]);
931 					else
932 						dev_kfree_skb_any(scq->skb[i]);
933 				}
934 			}
935 	}
936 	kfree(scq->skb);
937 	dma_free_coherent(&card->pcidev->dev,
938 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
939 			       VBR_SCQSIZE : CBR_SCQSIZE),
940 			  scq->org, scq->dma);
941 	kfree(scq);
942 }
943 
944 /* The handles passed must be pointers to the sk_buff containing the small
945    or large buffer(s) cast to u32. */
946 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
947 {
948 	struct sk_buff *handle1, *handle2;
949 	int id1, id2;
950 	u32 addr1, addr2;
951 	u32 stat;
952 	unsigned long flags;
953 
954 	/* *BARF* */
955 	handle2 = NULL;
956 	addr2 = 0;
957 	handle1 = skb;
958 	addr1 = dma_map_single(&card->pcidev->dev,
959 			       skb->data,
960 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
961 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
962 			       DMA_TO_DEVICE);
963 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
964 
965 #ifdef GENERAL_DEBUG
966 	if (!addr1)
967 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
968 		       card->index);
969 #endif /* GENERAL_DEBUG */
970 
971 	stat = readl(card->membase + STAT);
972 	card->sbfqc = ns_stat_sfbqc_get(stat);
973 	card->lbfqc = ns_stat_lfbqc_get(stat);
974 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
975 		if (!addr2) {
976 			if (card->sm_addr) {
977 				addr2 = card->sm_addr;
978 				handle2 = card->sm_handle;
979 				card->sm_addr = 0x00000000;
980 				card->sm_handle = NULL;
981 			} else {	/* (!sm_addr) */
982 
983 				card->sm_addr = addr1;
984 				card->sm_handle = handle1;
985 			}
986 		}
987 	} else {		/* buf_type == BUF_LG */
988 
989 		if (!addr2) {
990 			if (card->lg_addr) {
991 				addr2 = card->lg_addr;
992 				handle2 = card->lg_handle;
993 				card->lg_addr = 0x00000000;
994 				card->lg_handle = NULL;
995 			} else {	/* (!lg_addr) */
996 
997 				card->lg_addr = addr1;
998 				card->lg_handle = handle1;
999 			}
1000 		}
1001 	}
1002 
1003 	if (addr2) {
1004 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1005 			if (card->sbfqc >= card->sbnr.max) {
1006 				skb_unlink(handle1, &card->sbpool.queue);
1007 				dev_kfree_skb_any(handle1);
1008 				skb_unlink(handle2, &card->sbpool.queue);
1009 				dev_kfree_skb_any(handle2);
1010 				return;
1011 			} else
1012 				card->sbfqc += 2;
1013 		} else {	/* (buf_type == BUF_LG) */
1014 
1015 			if (card->lbfqc >= card->lbnr.max) {
1016 				skb_unlink(handle1, &card->lbpool.queue);
1017 				dev_kfree_skb_any(handle1);
1018 				skb_unlink(handle2, &card->lbpool.queue);
1019 				dev_kfree_skb_any(handle2);
1020 				return;
1021 			} else
1022 				card->lbfqc += 2;
1023 		}
1024 
1025 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1026 		if (id1 < 0)
1027 			goto out;
1028 
1029 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1030 		if (id2 < 0)
1031 			goto out;
1032 
1033 		spin_lock_irqsave(&card->res_lock, flags);
1034 		while (CMD_BUSY(card)) ;
1035 		writel(addr2, card->membase + DR3);
1036 		writel(id2, card->membase + DR2);
1037 		writel(addr1, card->membase + DR1);
1038 		writel(id1, card->membase + DR0);
1039 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1040 		       card->membase + CMD);
1041 		spin_unlock_irqrestore(&card->res_lock, flags);
1042 
1043 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1044 			card->index,
1045 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1046 			addr1, addr2);
1047 	}
1048 
1049 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1050 	    card->lbfqc >= card->lbnr.min) {
1051 		card->efbie = 1;
1052 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1053 		       card->membase + CFG);
1054 	}
1055 
1056 out:
1057 	return;
1058 }
1059 
1060 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1061 {
1062 	u32 stat_r;
1063 	ns_dev *card;
1064 	struct atm_dev *dev;
1065 	unsigned long flags;
1066 
1067 	card = (ns_dev *) dev_id;
1068 	dev = card->atmdev;
1069 	card->intcnt++;
1070 
1071 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1072 
1073 	spin_lock_irqsave(&card->int_lock, flags);
1074 
1075 	stat_r = readl(card->membase + STAT);
1076 
1077 	/* Transmit Status Indicator has been written to T. S. Queue */
1078 	if (stat_r & NS_STAT_TSIF) {
1079 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1080 		process_tsq(card);
1081 		writel(NS_STAT_TSIF, card->membase + STAT);
1082 	}
1083 
1084 	/* Incomplete CS-PDU has been transmitted */
1085 	if (stat_r & NS_STAT_TXICP) {
1086 		writel(NS_STAT_TXICP, card->membase + STAT);
1087 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1088 			 card->index);
1089 	}
1090 
1091 	/* Transmit Status Queue 7/8 full */
1092 	if (stat_r & NS_STAT_TSQF) {
1093 		writel(NS_STAT_TSQF, card->membase + STAT);
1094 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1095 		process_tsq(card);
1096 	}
1097 
1098 	/* Timer overflow */
1099 	if (stat_r & NS_STAT_TMROF) {
1100 		writel(NS_STAT_TMROF, card->membase + STAT);
1101 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1102 	}
1103 
1104 	/* PHY device interrupt signal active */
1105 	if (stat_r & NS_STAT_PHYI) {
1106 		writel(NS_STAT_PHYI, card->membase + STAT);
1107 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1108 		if (dev->phy && dev->phy->interrupt) {
1109 			dev->phy->interrupt(dev);
1110 		}
1111 	}
1112 
1113 	/* Small Buffer Queue is full */
1114 	if (stat_r & NS_STAT_SFBQF) {
1115 		writel(NS_STAT_SFBQF, card->membase + STAT);
1116 		printk("nicstar%d: Small free buffer queue is full.\n",
1117 		       card->index);
1118 	}
1119 
1120 	/* Large Buffer Queue is full */
1121 	if (stat_r & NS_STAT_LFBQF) {
1122 		writel(NS_STAT_LFBQF, card->membase + STAT);
1123 		printk("nicstar%d: Large free buffer queue is full.\n",
1124 		       card->index);
1125 	}
1126 
1127 	/* Receive Status Queue is full */
1128 	if (stat_r & NS_STAT_RSQF) {
1129 		writel(NS_STAT_RSQF, card->membase + STAT);
1130 		printk("nicstar%d: RSQ full.\n", card->index);
1131 		process_rsq(card);
1132 	}
1133 
1134 	/* Complete CS-PDU received */
1135 	if (stat_r & NS_STAT_EOPDU) {
1136 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1137 		process_rsq(card);
1138 		writel(NS_STAT_EOPDU, card->membase + STAT);
1139 	}
1140 
1141 	/* Raw cell received */
1142 	if (stat_r & NS_STAT_RAWCF) {
1143 		writel(NS_STAT_RAWCF, card->membase + STAT);
1144 #ifndef RCQ_SUPPORT
1145 		printk("nicstar%d: Raw cell received and no support yet...\n",
1146 		       card->index);
1147 #endif /* RCQ_SUPPORT */
1148 		/* NOTE: the following procedure may keep a raw cell pending until the
1149 		   next interrupt. As this preliminary support is only meant to
1150 		   avoid buffer leakage, this is not an issue. */
1151 		while (readl(card->membase + RAWCT) != card->rawch) {
1152 
1153 			if (ns_rcqe_islast(card->rawcell)) {
1154 				struct sk_buff *oldbuf;
1155 
1156 				oldbuf = card->rcbuf;
1157 				card->rcbuf = idr_find(&card->idr,
1158 						       ns_rcqe_nextbufhandle(card->rawcell));
1159 				card->rawch = NS_PRV_DMA(card->rcbuf);
1160 				card->rawcell = (struct ns_rcqe *)
1161 						card->rcbuf->data;
1162 				recycle_rx_buf(card, oldbuf);
1163 			} else {
1164 				card->rawch += NS_RCQE_SIZE;
1165 				card->rawcell++;
1166 			}
1167 		}
1168 	}
1169 
1170 	/* Small buffer queue is empty */
1171 	if (stat_r & NS_STAT_SFBQE) {
1172 		int i;
1173 		struct sk_buff *sb;
1174 
1175 		writel(NS_STAT_SFBQE, card->membase + STAT);
1176 		printk("nicstar%d: Small free buffer queue empty.\n",
1177 		       card->index);
1178 		for (i = 0; i < card->sbnr.min; i++) {
1179 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1180 			if (sb == NULL) {
1181 				writel(readl(card->membase + CFG) &
1182 				       ~NS_CFG_EFBIE, card->membase + CFG);
1183 				card->efbie = 0;
1184 				break;
1185 			}
1186 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1187 			skb_queue_tail(&card->sbpool.queue, sb);
1188 			skb_reserve(sb, NS_AAL0_HEADER);
1189 			push_rxbufs(card, sb);
1190 		}
1191 		card->sbfqc = i;
1192 		process_rsq(card);
1193 	}
1194 
1195 	/* Large buffer queue empty */
1196 	if (stat_r & NS_STAT_LFBQE) {
1197 		int i;
1198 		struct sk_buff *lb;
1199 
1200 		writel(NS_STAT_LFBQE, card->membase + STAT);
1201 		printk("nicstar%d: Large free buffer queue empty.\n",
1202 		       card->index);
1203 		for (i = 0; i < card->lbnr.min; i++) {
1204 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1205 			if (lb == NULL) {
1206 				writel(readl(card->membase + CFG) &
1207 				       ~NS_CFG_EFBIE, card->membase + CFG);
1208 				card->efbie = 0;
1209 				break;
1210 			}
1211 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1212 			skb_queue_tail(&card->lbpool.queue, lb);
1213 			skb_reserve(lb, NS_SMBUFSIZE);
1214 			push_rxbufs(card, lb);
1215 		}
1216 		card->lbfqc = i;
1217 		process_rsq(card);
1218 	}
1219 
1220 	/* Receive Status Queue is 7/8 full */
1221 	if (stat_r & NS_STAT_RSQAF) {
1222 		writel(NS_STAT_RSQAF, card->membase + STAT);
1223 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1224 		process_rsq(card);
1225 	}
1226 
1227 	spin_unlock_irqrestore(&card->int_lock, flags);
1228 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1229 	return IRQ_HANDLED;
1230 }
1231 
1232 static int ns_open(struct atm_vcc *vcc)
1233 {
1234 	ns_dev *card;
1235 	vc_map *vc;
1236 	unsigned long tmpl, modl;
1237 	int tcr, tcra;		/* target cell rate, and absolute value */
1238 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1239 				   the compiler warning. */
1240 	u32 u32d[4];
1241 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1242 				   warning. How I wish compilers were clever enough to
1243 				   tell which variables can truly be used
1244 				   uninitialized... */
1245 	int inuse;		/* tx or rx vc already in use by another vcc */
1246 	short vpi = vcc->vpi;
1247 	int vci = vcc->vci;
1248 
1249 	card = (ns_dev *) vcc->dev->dev_data;
1250 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1251 	       vci);
1252 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1253 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1254 		return -EINVAL;
1255 	}
1256 
1257 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1258 	vcc->dev_data = vc;
1259 
1260 	inuse = 0;
1261 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1262 		inuse = 1;
1263 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1264 		inuse += 2;
1265 	if (inuse) {
1266 		printk("nicstar%d: %s vci already in use.\n", card->index,
1267 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1268 		return -EINVAL;
1269 	}
1270 
1271 	set_bit(ATM_VF_ADDR, &vcc->flags);
1272 
1273 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1274 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1275 	   needed to do that. */
1276 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1277 		scq_info *scq;
1278 
1279 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1280 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1281 			/* Check requested cell rate and availability of SCD */
1282 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1283 			    && vcc->qos.txtp.min_pcr == 0) {
1284 				PRINTK
1285 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1286 				     card->index);
1287 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1288 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1289 				return -EINVAL;
1290 			}
1291 
1292 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1293 			tcra = tcr >= 0 ? tcr : -tcr;
1294 
1295 			PRINTK("nicstar%d: target cell rate = %d.\n",
1296 			       card->index, vcc->qos.txtp.max_pcr);
1297 
1298 			tmpl =
1299 			    (unsigned long)tcra *(unsigned long)
1300 			    NS_TST_NUM_ENTRIES;
1301 			modl = tmpl % card->max_pcr;
1302 
1303 			n = (int)(tmpl / card->max_pcr);
1304 			if (tcr > 0) {
1305 				if (modl > 0)
1306 					n++;
1307 			} else if (tcr == 0) {
1308 				if ((n =
1309 				     (card->tst_free_entries -
1310 				      NS_TST_RESERVED)) <= 0) {
1311 					PRINTK
1312 					    ("nicstar%d: no CBR bandwidth free.\n",
1313 					     card->index);
1314 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1315 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1316 					return -EINVAL;
1317 				}
1318 			}
1319 
1320 			if (n == 0) {
1321 				printk
1322 				    ("nicstar%d: selected bandwidth < granularity.\n",
1323 				     card->index);
1324 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1325 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1326 				return -EINVAL;
1327 			}
1328 
1329 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1330 				PRINTK
1331 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1332 				     card->index);
1333 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1334 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1335 				return -EINVAL;
1336 			} else
1337 				card->tst_free_entries -= n;
1338 
1339 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1340 				card->index, n);
1341 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1342 				if (card->scd2vc[frscdi] == NULL) {
1343 					card->scd2vc[frscdi] = vc;
1344 					break;
1345 				}
1346 			}
1347 			if (frscdi == NS_FRSCD_NUM) {
1348 				PRINTK
1349 				    ("nicstar%d: no SCD available for CBR channel.\n",
1350 				     card->index);
1351 				card->tst_free_entries += n;
1352 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1353 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1354 				return -EBUSY;
1355 			}
1356 
1357 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1358 
1359 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1360 			if (scq == NULL) {
1361 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1362 				       card->index);
1363 				card->scd2vc[frscdi] = NULL;
1364 				card->tst_free_entries += n;
1365 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1366 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1367 				return -ENOMEM;
1368 			}
1369 			vc->scq = scq;
1370 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1371 			u32d[1] = (u32) 0x00000000;
1372 			u32d[2] = (u32) 0xffffffff;
1373 			u32d[3] = (u32) 0x00000000;
1374 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1375 
1376 			fill_tst(card, n, vc);
1377 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1378 			vc->cbr_scd = 0x00000000;
1379 			vc->scq = card->scq0;
1380 		}
1381 
1382 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1383 			vc->tx = 1;
1384 			vc->tx_vcc = vcc;
1385 			vc->tbd_count = 0;
1386 		}
1387 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1388 			u32 status;
1389 
1390 			vc->rx = 1;
1391 			vc->rx_vcc = vcc;
1392 			vc->rx_iov = NULL;
1393 
1394 			/* Open the connection in hardware */
1395 			if (vcc->qos.aal == ATM_AAL5)
1396 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1397 			else	/* vcc->qos.aal == ATM_AAL0 */
1398 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1399 #ifdef RCQ_SUPPORT
1400 			status |= NS_RCTE_RAWCELLINTEN;
1401 #endif /* RCQ_SUPPORT */
1402 			ns_write_sram(card,
1403 				      NS_RCT +
1404 				      (vpi << card->vcibits | vci) *
1405 				      NS_RCT_ENTRY_SIZE, &status, 1);
1406 		}
1407 
1408 	}
1409 
1410 	set_bit(ATM_VF_READY, &vcc->flags);
1411 	return 0;
1412 }
1413 
1414 static void ns_close(struct atm_vcc *vcc)
1415 {
1416 	vc_map *vc;
1417 	ns_dev *card;
1418 	u32 data;
1419 	int i;
1420 
1421 	vc = vcc->dev_data;
1422 	card = vcc->dev->dev_data;
1423 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1424 	       (int)vcc->vpi, vcc->vci);
1425 
1426 	clear_bit(ATM_VF_READY, &vcc->flags);
1427 
1428 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1429 		u32 addr;
1430 		unsigned long flags;
1431 
1432 		addr =
1433 		    NS_RCT +
1434 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1435 		spin_lock_irqsave(&card->res_lock, flags);
1436 		while (CMD_BUSY(card)) ;
1437 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1438 		       card->membase + CMD);
1439 		spin_unlock_irqrestore(&card->res_lock, flags);
1440 
1441 		vc->rx = 0;
1442 		if (vc->rx_iov != NULL) {
1443 			struct sk_buff *iovb;
1444 			u32 stat;
1445 
1446 			stat = readl(card->membase + STAT);
1447 			card->sbfqc = ns_stat_sfbqc_get(stat);
1448 			card->lbfqc = ns_stat_lfbqc_get(stat);
1449 
1450 			PRINTK
1451 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1452 			     card->index);
1453 			iovb = vc->rx_iov;
1454 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1455 					      NS_PRV_IOVCNT(iovb));
1456 			NS_PRV_IOVCNT(iovb) = 0;
1457 			spin_lock_irqsave(&card->int_lock, flags);
1458 			recycle_iov_buf(card, iovb);
1459 			spin_unlock_irqrestore(&card->int_lock, flags);
1460 			vc->rx_iov = NULL;
1461 		}
1462 	}
1463 
1464 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1465 		vc->tx = 0;
1466 	}
1467 
1468 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1469 		unsigned long flags;
1470 		ns_scqe *scqep;
1471 		scq_info *scq;
1472 
1473 		scq = vc->scq;
1474 
1475 		for (;;) {
1476 			spin_lock_irqsave(&scq->lock, flags);
1477 			scqep = scq->next;
1478 			if (scqep == scq->base)
1479 				scqep = scq->last;
1480 			else
1481 				scqep--;
1482 			if (scqep == scq->tail) {
1483 				spin_unlock_irqrestore(&scq->lock, flags);
1484 				break;
1485 			}
1486 			/* If the last entry is not a TSR, place one in the SCQ in order to
1487 			   be able to completely drain it and then close. */
1488 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1489 				ns_scqe tsr;
1490 				u32 scdi, scqi;
1491 				u32 data;
1492 				int index;
1493 
1494 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1495 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1496 				scqi = scq->next - scq->base;
1497 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1498 				tsr.word_3 = 0x00000000;
1499 				tsr.word_4 = 0x00000000;
1500 				*scq->next = tsr;
1501 				index = (int)scqi;
1502 				scq->skb[index] = NULL;
1503 				if (scq->next == scq->last)
1504 					scq->next = scq->base;
1505 				else
1506 					scq->next++;
1507 				data = scq_virt_to_bus(scq, scq->next);
1508 				ns_write_sram(card, scq->scd, &data, 1);
1509 			}
1510 			spin_unlock_irqrestore(&scq->lock, flags);
1511 			schedule();
1512 		}
1513 
1514 		/* Free all TST entries */
1515 		data = NS_TST_OPCODE_VARIABLE;
1516 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1517 			if (card->tste2vc[i] == vc) {
1518 				ns_write_sram(card, card->tst_addr + i, &data,
1519 					      1);
1520 				card->tste2vc[i] = NULL;
1521 				card->tst_free_entries++;
1522 			}
1523 		}
1524 
1525 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1526 		free_scq(card, vc->scq, vcc);
1527 	}
1528 
1529 	/* remove all references to vcc before deleting it */
1530 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1531 		unsigned long flags;
1532 		scq_info *scq = card->scq0;
1533 
1534 		spin_lock_irqsave(&scq->lock, flags);
1535 
1536 		for (i = 0; i < scq->num_entries; i++) {
1537 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1538 				ATM_SKB(scq->skb[i])->vcc = NULL;
1539 				atm_return(vcc, scq->skb[i]->truesize);
1540 				PRINTK
1541 				    ("nicstar: deleted pending vcc mapping\n");
1542 			}
1543 		}
1544 
1545 		spin_unlock_irqrestore(&scq->lock, flags);
1546 	}
1547 
1548 	vcc->dev_data = NULL;
1549 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1550 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1551 
1552 #ifdef RX_DEBUG
1553 	{
1554 		u32 stat, cfg;
1555 		stat = readl(card->membase + STAT);
1556 		cfg = readl(card->membase + CFG);
1557 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1558 		printk
1559 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1560 		     card->tsq.base, card->tsq.next,
1561 		     card->tsq.last, readl(card->membase + TSQT));
1562 		printk
1563 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1564 		     card->rsq.base, card->rsq.next,
1565 		     card->rsq.last, readl(card->membase + RSQT));
1566 		printk("Empty free buffer queue interrupt %s \n",
1567 		       card->efbie ? "enabled" : "disabled");
1568 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1569 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1570 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1571 		printk("hbpool.count = %d  iovpool.count = %d \n",
1572 		       card->hbpool.count, card->iovpool.count);
1573 	}
1574 #endif /* RX_DEBUG */
1575 }
1576 
1577 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1578 {
1579 	u32 new_tst;
1580 	unsigned long cl;
1581 	int e, r;
1582 	u32 data;
1583 
1584 	/* It would be very complicated to keep the two TSTs synchronized while
1585 	   assuring that writes are only made to the inactive TST. So, for now I
1586 	   will use only one TST. If problems occur, I will change this again */
1587 
1588 	new_tst = card->tst_addr;
1589 
1590 	/* Fill procedure */
1591 
1592 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1593 		if (card->tste2vc[e] == NULL)
1594 			break;
1595 	}
1596 	if (e == NS_TST_NUM_ENTRIES) {
1597 		printk("nicstar%d: No free TST entries found. \n", card->index);
1598 		return;
1599 	}
1600 
1601 	r = n;
1602 	cl = NS_TST_NUM_ENTRIES;
1603 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1604 
1605 	while (r > 0) {
1606 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1607 			card->tste2vc[e] = vc;
1608 			ns_write_sram(card, new_tst + e, &data, 1);
1609 			cl -= NS_TST_NUM_ENTRIES;
1610 			r--;
1611 		}
1612 
1613 		if (++e == NS_TST_NUM_ENTRIES) {
1614 			e = 0;
1615 		}
1616 		cl += n;
1617 	}
1618 
1619 	/* End of fill procedure */
1620 
1621 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1622 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1623 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1624 	card->tst_addr = new_tst;
1625 }
1626 
1627 static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
1628 {
1629 	ns_dev *card;
1630 	vc_map *vc;
1631 	scq_info *scq;
1632 	unsigned long buflen;
1633 	ns_scqe scqe;
1634 	u32 flags;		/* TBD flags, not CPU flags */
1635 
1636 	card = vcc->dev->dev_data;
1637 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1638 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1639 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1640 		       card->index);
1641 		atomic_inc(&vcc->stats->tx_err);
1642 		dev_kfree_skb_any(skb);
1643 		return -EINVAL;
1644 	}
1645 
1646 	if (!vc->tx) {
1647 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1648 		       card->index);
1649 		atomic_inc(&vcc->stats->tx_err);
1650 		dev_kfree_skb_any(skb);
1651 		return -EINVAL;
1652 	}
1653 
1654 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1655 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1656 		       card->index);
1657 		atomic_inc(&vcc->stats->tx_err);
1658 		dev_kfree_skb_any(skb);
1659 		return -EINVAL;
1660 	}
1661 
1662 	if (skb_shinfo(skb)->nr_frags != 0) {
1663 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1664 		atomic_inc(&vcc->stats->tx_err);
1665 		dev_kfree_skb_any(skb);
1666 		return -EINVAL;
1667 	}
1668 
1669 	ATM_SKB(skb)->vcc = vcc;
1670 
1671 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1672 					 skb->len, DMA_TO_DEVICE);
1673 
1674 	if (vcc->qos.aal == ATM_AAL5) {
1675 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1676 		flags = NS_TBD_AAL5;
1677 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1678 		scqe.word_3 = cpu_to_le32(skb->len);
1679 		scqe.word_4 =
1680 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1681 				    ATM_SKB(skb)->
1682 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1683 		flags |= NS_TBD_EOPDU;
1684 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1685 
1686 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1687 		flags = NS_TBD_AAL0;
1688 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1689 		scqe.word_3 = cpu_to_le32(0x00000000);
1690 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1691 			flags |= NS_TBD_EOPDU;
1692 		scqe.word_4 =
1693 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1694 		/* Force the VPI/VCI to be the same as in VCC struct */
1695 		scqe.word_4 |=
1696 		    cpu_to_le32((((u32) vcc->
1697 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1698 							      vci) <<
1699 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1700 	}
1701 
1702 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1703 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1704 		scq = ((vc_map *) vcc->dev_data)->scq;
1705 	} else {
1706 		scqe.word_1 =
1707 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1708 		scq = card->scq0;
1709 	}
1710 
1711 	if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
1712 		atomic_inc(&vcc->stats->tx_err);
1713 		dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
1714 				 DMA_TO_DEVICE);
1715 		dev_kfree_skb_any(skb);
1716 		return -EIO;
1717 	}
1718 	atomic_inc(&vcc->stats->tx);
1719 
1720 	return 0;
1721 }
1722 
1723 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1724 {
1725 	return _ns_send(vcc, skb, true);
1726 }
1727 
1728 static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
1729 {
1730 	return _ns_send(vcc, skb, false);
1731 }
1732 
1733 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1734 		     struct sk_buff *skb, bool may_sleep)
1735 {
1736 	unsigned long flags;
1737 	ns_scqe tsr;
1738 	u32 scdi, scqi;
1739 	int scq_is_vbr;
1740 	u32 data;
1741 	int index;
1742 
1743 	spin_lock_irqsave(&scq->lock, flags);
1744 	while (scq->tail == scq->next) {
1745 		if (!may_sleep) {
1746 			spin_unlock_irqrestore(&scq->lock, flags);
1747 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1748 			return 1;
1749 		}
1750 
1751 		scq->full = 1;
1752 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1753 							  scq->tail != scq->next,
1754 							  scq->lock,
1755 							  SCQFULL_TIMEOUT);
1756 
1757 		if (scq->full) {
1758 			spin_unlock_irqrestore(&scq->lock, flags);
1759 			printk("nicstar%d: Timeout pushing TBD.\n",
1760 			       card->index);
1761 			return 1;
1762 		}
1763 	}
1764 	*scq->next = *tbd;
1765 	index = (int)(scq->next - scq->base);
1766 	scq->skb[index] = skb;
1767 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1768 		card->index, skb, index);
1769 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1770 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1771 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1772 		scq->next);
1773 	if (scq->next == scq->last)
1774 		scq->next = scq->base;
1775 	else
1776 		scq->next++;
1777 
1778 	vc->tbd_count++;
1779 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1780 		scq->tbd_count++;
1781 		scq_is_vbr = 1;
1782 	} else
1783 		scq_is_vbr = 0;
1784 
1785 	if (vc->tbd_count >= MAX_TBD_PER_VC
1786 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1787 		int has_run = 0;
1788 
1789 		while (scq->tail == scq->next) {
1790 			if (!may_sleep) {
1791 				data = scq_virt_to_bus(scq, scq->next);
1792 				ns_write_sram(card, scq->scd, &data, 1);
1793 				spin_unlock_irqrestore(&scq->lock, flags);
1794 				printk("nicstar%d: Error pushing TSR.\n",
1795 				       card->index);
1796 				return 0;
1797 			}
1798 
1799 			scq->full = 1;
1800 			if (has_run++)
1801 				break;
1802 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1803 								  scq->tail != scq->next,
1804 								  scq->lock,
1805 								  SCQFULL_TIMEOUT);
1806 		}
1807 
1808 		if (!scq->full) {
1809 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1810 			if (scq_is_vbr)
1811 				scdi = NS_TSR_SCDISVBR;
1812 			else
1813 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1814 			scqi = scq->next - scq->base;
1815 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1816 			tsr.word_3 = 0x00000000;
1817 			tsr.word_4 = 0x00000000;
1818 
1819 			*scq->next = tsr;
1820 			index = (int)scqi;
1821 			scq->skb[index] = NULL;
1822 			XPRINTK
1823 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1824 			     card->index, le32_to_cpu(tsr.word_1),
1825 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1826 			     le32_to_cpu(tsr.word_4), scq->next);
1827 			if (scq->next == scq->last)
1828 				scq->next = scq->base;
1829 			else
1830 				scq->next++;
1831 			vc->tbd_count = 0;
1832 			scq->tbd_count = 0;
1833 		} else
1834 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1835 			       card->index);
1836 	}
1837 	data = scq_virt_to_bus(scq, scq->next);
1838 	ns_write_sram(card, scq->scd, &data, 1);
1839 
1840 	spin_unlock_irqrestore(&scq->lock, flags);
1841 
1842 	return 0;
1843 }
1844 
1845 static void process_tsq(ns_dev * card)
1846 {
1847 	u32 scdi;
1848 	scq_info *scq;
1849 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1850 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1851 
1852 	serviced_entries = 0;
1853 
1854 	if (card->tsq.next == card->tsq.last)
1855 		one_ahead = card->tsq.base;
1856 	else
1857 		one_ahead = card->tsq.next + 1;
1858 
1859 	if (one_ahead == card->tsq.last)
1860 		two_ahead = card->tsq.base;
1861 	else
1862 		two_ahead = one_ahead + 1;
1863 
1864 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1865 	       !ns_tsi_isempty(two_ahead))
1866 		/* At most two empty, as stated in the 77201 errata */
1867 	{
1868 		serviced_entries = 1;
1869 
1870 		/* Skip the one or two possible empty entries */
1871 		while (ns_tsi_isempty(card->tsq.next)) {
1872 			if (card->tsq.next == card->tsq.last)
1873 				card->tsq.next = card->tsq.base;
1874 			else
1875 				card->tsq.next++;
1876 		}
1877 
1878 		if (!ns_tsi_tmrof(card->tsq.next)) {
1879 			scdi = ns_tsi_getscdindex(card->tsq.next);
1880 			if (scdi == NS_TSI_SCDISVBR)
1881 				scq = card->scq0;
1882 			else {
1883 				if (card->scd2vc[scdi] == NULL) {
1884 					printk
1885 					    ("nicstar%d: could not find VC from SCD index.\n",
1886 					     card->index);
1887 					ns_tsi_init(card->tsq.next);
1888 					return;
1889 				}
1890 				scq = card->scd2vc[scdi]->scq;
1891 			}
1892 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1893 			scq->full = 0;
1894 			wake_up_interruptible(&(scq->scqfull_waitq));
1895 		}
1896 
1897 		ns_tsi_init(card->tsq.next);
1898 		previous = card->tsq.next;
1899 		if (card->tsq.next == card->tsq.last)
1900 			card->tsq.next = card->tsq.base;
1901 		else
1902 			card->tsq.next++;
1903 
1904 		if (card->tsq.next == card->tsq.last)
1905 			one_ahead = card->tsq.base;
1906 		else
1907 			one_ahead = card->tsq.next + 1;
1908 
1909 		if (one_ahead == card->tsq.last)
1910 			two_ahead = card->tsq.base;
1911 		else
1912 			two_ahead = one_ahead + 1;
1913 	}
1914 
1915 	if (serviced_entries)
1916 		writel(PTR_DIFF(previous, card->tsq.base),
1917 		       card->membase + TSQH);
1918 }
1919 
1920 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1921 {
1922 	struct atm_vcc *vcc;
1923 	struct sk_buff *skb;
1924 	int i;
1925 	unsigned long flags;
1926 
1927 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1928 		card->index, scq, pos);
1929 	if (pos >= scq->num_entries) {
1930 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1931 		return;
1932 	}
1933 
1934 	spin_lock_irqsave(&scq->lock, flags);
1935 	i = (int)(scq->tail - scq->base);
1936 	if (++i == scq->num_entries)
1937 		i = 0;
1938 	while (i != pos) {
1939 		skb = scq->skb[i];
1940 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1941 			card->index, skb, i);
1942 		if (skb != NULL) {
1943 			dma_unmap_single(&card->pcidev->dev,
1944 					 NS_PRV_DMA(skb),
1945 					 skb->len,
1946 					 DMA_TO_DEVICE);
1947 			vcc = ATM_SKB(skb)->vcc;
1948 			if (vcc && vcc->pop != NULL) {
1949 				vcc->pop(vcc, skb);
1950 			} else {
1951 				dev_kfree_skb_irq(skb);
1952 			}
1953 			scq->skb[i] = NULL;
1954 		}
1955 		if (++i == scq->num_entries)
1956 			i = 0;
1957 	}
1958 	scq->tail = scq->base + pos;
1959 	spin_unlock_irqrestore(&scq->lock, flags);
1960 }
1961 
1962 static void process_rsq(ns_dev * card)
1963 {
1964 	ns_rsqe *previous;
1965 
1966 	if (!ns_rsqe_valid(card->rsq.next))
1967 		return;
1968 	do {
1969 		dequeue_rx(card, card->rsq.next);
1970 		ns_rsqe_init(card->rsq.next);
1971 		previous = card->rsq.next;
1972 		if (card->rsq.next == card->rsq.last)
1973 			card->rsq.next = card->rsq.base;
1974 		else
1975 			card->rsq.next++;
1976 	} while (ns_rsqe_valid(card->rsq.next));
1977 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1978 }
1979 
1980 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1981 {
1982 	u32 vpi, vci;
1983 	vc_map *vc;
1984 	struct sk_buff *iovb;
1985 	struct iovec *iov;
1986 	struct atm_vcc *vcc;
1987 	struct sk_buff *skb;
1988 	unsigned short aal5_len;
1989 	int len;
1990 	u32 stat;
1991 	u32 id;
1992 
1993 	stat = readl(card->membase + STAT);
1994 	card->sbfqc = ns_stat_sfbqc_get(stat);
1995 	card->lbfqc = ns_stat_lfbqc_get(stat);
1996 
1997 	id = le32_to_cpu(rsqe->buffer_handle);
1998 	skb = idr_remove(&card->idr, id);
1999 	if (!skb) {
2000 		RXPRINTK(KERN_ERR
2001 			 "nicstar%d: skb not found!\n", card->index);
2002 		return;
2003 	}
2004 	dma_sync_single_for_cpu(&card->pcidev->dev,
2005 				NS_PRV_DMA(skb),
2006 				(NS_PRV_BUFTYPE(skb) == BUF_SM
2007 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2008 				DMA_FROM_DEVICE);
2009 	dma_unmap_single(&card->pcidev->dev,
2010 			 NS_PRV_DMA(skb),
2011 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
2012 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2013 			 DMA_FROM_DEVICE);
2014 	vpi = ns_rsqe_vpi(rsqe);
2015 	vci = ns_rsqe_vci(rsqe);
2016 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2017 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2018 		       card->index, vpi, vci);
2019 		recycle_rx_buf(card, skb);
2020 		return;
2021 	}
2022 
2023 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2024 	if (!vc->rx) {
2025 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2026 			 card->index, vpi, vci);
2027 		recycle_rx_buf(card, skb);
2028 		return;
2029 	}
2030 
2031 	vcc = vc->rx_vcc;
2032 
2033 	if (vcc->qos.aal == ATM_AAL0) {
2034 		struct sk_buff *sb;
2035 		unsigned char *cell;
2036 		int i;
2037 
2038 		cell = skb->data;
2039 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2040 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2041 			if (!sb) {
2042 				printk
2043 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2044 				     card->index);
2045 				atomic_add(i, &vcc->stats->rx_drop);
2046 				break;
2047 			}
2048 			if (!atm_charge(vcc, sb->truesize)) {
2049 				RXPRINTK
2050 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2051 				     card->index);
2052 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2053 				dev_kfree_skb_any(sb);
2054 				break;
2055 			}
2056 			/* Rebuild the header */
2057 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2058 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2059 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2060 				*((u32 *) sb->data) |= 0x00000002;
2061 			skb_put(sb, NS_AAL0_HEADER);
2062 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2063 			skb_put(sb, ATM_CELL_PAYLOAD);
2064 			ATM_SKB(sb)->vcc = vcc;
2065 			__net_timestamp(sb);
2066 			vcc->push(vcc, sb);
2067 			atomic_inc(&vcc->stats->rx);
2068 			cell += ATM_CELL_PAYLOAD;
2069 		}
2070 
2071 		recycle_rx_buf(card, skb);
2072 		return;
2073 	}
2074 
2075 	/* To reach this point, the AAL layer can only be AAL5 */
2076 
2077 	if ((iovb = vc->rx_iov) == NULL) {
2078 		iovb = skb_dequeue(&(card->iovpool.queue));
2079 		if (iovb == NULL) {	/* No buffers in the queue */
2080 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2081 			if (iovb == NULL) {
2082 				printk("nicstar%d: Out of iovec buffers.\n",
2083 				       card->index);
2084 				atomic_inc(&vcc->stats->rx_drop);
2085 				recycle_rx_buf(card, skb);
2086 				return;
2087 			}
2088 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2089 		} else if (--card->iovpool.count < card->iovnr.min) {
2090 			struct sk_buff *new_iovb;
2091 			if ((new_iovb =
2092 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2093 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2094 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2095 				card->iovpool.count++;
2096 			}
2097 		}
2098 		vc->rx_iov = iovb;
2099 		NS_PRV_IOVCNT(iovb) = 0;
2100 		iovb->len = 0;
2101 		iovb->data = iovb->head;
2102 		skb_reset_tail_pointer(iovb);
2103 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2104 		   buffer is stored as iovec base, NOT a pointer to the
2105 		   small or large buffer itself. */
2106 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2107 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2108 		atomic_inc(&vcc->stats->rx_err);
2109 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2110 				      NS_MAX_IOVECS);
2111 		NS_PRV_IOVCNT(iovb) = 0;
2112 		iovb->len = 0;
2113 		iovb->data = iovb->head;
2114 		skb_reset_tail_pointer(iovb);
2115 	}
2116 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2117 	iov->iov_base = (void *)skb;
2118 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2119 	iovb->len += iov->iov_len;
2120 
2121 #ifdef EXTRA_DEBUG
2122 	if (NS_PRV_IOVCNT(iovb) == 1) {
2123 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2124 			printk
2125 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2126 			     card->index);
2127 			which_list(card, skb);
2128 			atomic_inc(&vcc->stats->rx_err);
2129 			recycle_rx_buf(card, skb);
2130 			vc->rx_iov = NULL;
2131 			recycle_iov_buf(card, iovb);
2132 			return;
2133 		}
2134 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2135 
2136 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2137 			printk
2138 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2139 			     card->index);
2140 			which_list(card, skb);
2141 			atomic_inc(&vcc->stats->rx_err);
2142 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2143 					      NS_PRV_IOVCNT(iovb));
2144 			vc->rx_iov = NULL;
2145 			recycle_iov_buf(card, iovb);
2146 			return;
2147 		}
2148 	}
2149 #endif /* EXTRA_DEBUG */
2150 
2151 	if (ns_rsqe_eopdu(rsqe)) {
2152 		/* This works correctly regardless of the endianness of the host */
2153 		unsigned char *L1L2 = (unsigned char *)
2154 						(skb->data + iov->iov_len - 6);
2155 		aal5_len = L1L2[0] << 8 | L1L2[1];
2156 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2157 		if (ns_rsqe_crcerr(rsqe) ||
2158 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2159 			printk("nicstar%d: AAL5 CRC error", card->index);
2160 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2161 				printk(" - PDU size mismatch.\n");
2162 			else
2163 				printk(".\n");
2164 			atomic_inc(&vcc->stats->rx_err);
2165 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2166 					      NS_PRV_IOVCNT(iovb));
2167 			vc->rx_iov = NULL;
2168 			recycle_iov_buf(card, iovb);
2169 			return;
2170 		}
2171 
2172 		/* By this point we (hopefully) have a complete SDU without errors. */
2173 
2174 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2175 			/* skb points to a small buffer */
2176 			if (!atm_charge(vcc, skb->truesize)) {
2177 				push_rxbufs(card, skb);
2178 				atomic_inc(&vcc->stats->rx_drop);
2179 			} else {
2180 				skb_put(skb, len);
2181 				dequeue_sm_buf(card, skb);
2182 				ATM_SKB(skb)->vcc = vcc;
2183 				__net_timestamp(skb);
2184 				vcc->push(vcc, skb);
2185 				atomic_inc(&vcc->stats->rx);
2186 			}
2187 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2188 			struct sk_buff *sb;
2189 
2190 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2191 			/* skb points to a large buffer */
2192 
2193 			if (len <= NS_SMBUFSIZE) {
2194 				if (!atm_charge(vcc, sb->truesize)) {
2195 					push_rxbufs(card, sb);
2196 					atomic_inc(&vcc->stats->rx_drop);
2197 				} else {
2198 					skb_put(sb, len);
2199 					dequeue_sm_buf(card, sb);
2200 					ATM_SKB(sb)->vcc = vcc;
2201 					__net_timestamp(sb);
2202 					vcc->push(vcc, sb);
2203 					atomic_inc(&vcc->stats->rx);
2204 				}
2205 
2206 				push_rxbufs(card, skb);
2207 
2208 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2209 
2210 				if (!atm_charge(vcc, skb->truesize)) {
2211 					push_rxbufs(card, skb);
2212 					atomic_inc(&vcc->stats->rx_drop);
2213 				} else {
2214 					dequeue_lg_buf(card, skb);
2215 					skb_push(skb, NS_SMBUFSIZE);
2216 					skb_copy_from_linear_data(sb, skb->data,
2217 								  NS_SMBUFSIZE);
2218 					skb_put(skb, len - NS_SMBUFSIZE);
2219 					ATM_SKB(skb)->vcc = vcc;
2220 					__net_timestamp(skb);
2221 					vcc->push(vcc, skb);
2222 					atomic_inc(&vcc->stats->rx);
2223 				}
2224 
2225 				push_rxbufs(card, sb);
2226 
2227 			}
2228 
2229 		} else {	/* Must push a huge buffer */
2230 
2231 			struct sk_buff *hb, *sb, *lb;
2232 			int remaining, tocopy;
2233 			int j;
2234 
2235 			hb = skb_dequeue(&(card->hbpool.queue));
2236 			if (hb == NULL) {	/* No buffers in the queue */
2237 
2238 				hb = dev_alloc_skb(NS_HBUFSIZE);
2239 				if (hb == NULL) {
2240 					printk
2241 					    ("nicstar%d: Out of huge buffers.\n",
2242 					     card->index);
2243 					atomic_inc(&vcc->stats->rx_drop);
2244 					recycle_iovec_rx_bufs(card,
2245 							      (struct iovec *)
2246 							      iovb->data,
2247 							      NS_PRV_IOVCNT(iovb));
2248 					vc->rx_iov = NULL;
2249 					recycle_iov_buf(card, iovb);
2250 					return;
2251 				} else if (card->hbpool.count < card->hbnr.min) {
2252 					struct sk_buff *new_hb;
2253 					if ((new_hb =
2254 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2255 					    NULL) {
2256 						skb_queue_tail(&card->hbpool.
2257 							       queue, new_hb);
2258 						card->hbpool.count++;
2259 					}
2260 				}
2261 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2262 			} else if (--card->hbpool.count < card->hbnr.min) {
2263 				struct sk_buff *new_hb;
2264 				if ((new_hb =
2265 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2266 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2267 					skb_queue_tail(&card->hbpool.queue,
2268 						       new_hb);
2269 					card->hbpool.count++;
2270 				}
2271 				if (card->hbpool.count < card->hbnr.min) {
2272 					if ((new_hb =
2273 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2274 					    NULL) {
2275 						NS_PRV_BUFTYPE(new_hb) =
2276 						    BUF_NONE;
2277 						skb_queue_tail(&card->hbpool.
2278 							       queue, new_hb);
2279 						card->hbpool.count++;
2280 					}
2281 				}
2282 			}
2283 
2284 			iov = (struct iovec *)iovb->data;
2285 
2286 			if (!atm_charge(vcc, hb->truesize)) {
2287 				recycle_iovec_rx_bufs(card, iov,
2288 						      NS_PRV_IOVCNT(iovb));
2289 				if (card->hbpool.count < card->hbnr.max) {
2290 					skb_queue_tail(&card->hbpool.queue, hb);
2291 					card->hbpool.count++;
2292 				} else
2293 					dev_kfree_skb_any(hb);
2294 				atomic_inc(&vcc->stats->rx_drop);
2295 			} else {
2296 				/* Copy the small buffer to the huge buffer */
2297 				sb = (struct sk_buff *)iov->iov_base;
2298 				skb_copy_from_linear_data(sb, hb->data,
2299 							  iov->iov_len);
2300 				skb_put(hb, iov->iov_len);
2301 				remaining = len - iov->iov_len;
2302 				iov++;
2303 				/* Free the small buffer */
2304 				push_rxbufs(card, sb);
2305 
2306 				/* Copy all large buffers to the huge buffer and free them */
2307 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2308 					lb = (struct sk_buff *)iov->iov_base;
2309 					tocopy =
2310 					    min_t(int, remaining, iov->iov_len);
2311 					skb_copy_from_linear_data(lb,
2312 								  skb_tail_pointer
2313 								  (hb), tocopy);
2314 					skb_put(hb, tocopy);
2315 					iov++;
2316 					remaining -= tocopy;
2317 					push_rxbufs(card, lb);
2318 				}
2319 #ifdef EXTRA_DEBUG
2320 				if (remaining != 0 || hb->len != len)
2321 					printk
2322 					    ("nicstar%d: Huge buffer len mismatch.\n",
2323 					     card->index);
2324 #endif /* EXTRA_DEBUG */
2325 				ATM_SKB(hb)->vcc = vcc;
2326 				__net_timestamp(hb);
2327 				vcc->push(vcc, hb);
2328 				atomic_inc(&vcc->stats->rx);
2329 			}
2330 		}
2331 
2332 		vc->rx_iov = NULL;
2333 		recycle_iov_buf(card, iovb);
2334 	}
2335 
2336 }
2337 
2338 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2339 {
2340 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2341 		printk("nicstar%d: What kind of rx buffer is this?\n",
2342 		       card->index);
2343 		dev_kfree_skb_any(skb);
2344 	} else
2345 		push_rxbufs(card, skb);
2346 }
2347 
2348 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2349 {
2350 	while (count-- > 0)
2351 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2352 }
2353 
2354 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2355 {
2356 	if (card->iovpool.count < card->iovnr.max) {
2357 		skb_queue_tail(&card->iovpool.queue, iovb);
2358 		card->iovpool.count++;
2359 	} else
2360 		dev_kfree_skb_any(iovb);
2361 }
2362 
2363 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2364 {
2365 	skb_unlink(sb, &card->sbpool.queue);
2366 	if (card->sbfqc < card->sbnr.init) {
2367 		struct sk_buff *new_sb;
2368 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2369 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2370 			skb_queue_tail(&card->sbpool.queue, new_sb);
2371 			skb_reserve(new_sb, NS_AAL0_HEADER);
2372 			push_rxbufs(card, new_sb);
2373 		}
2374 	}
2375 	if (card->sbfqc < card->sbnr.init)
2376 	{
2377 		struct sk_buff *new_sb;
2378 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2379 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2380 			skb_queue_tail(&card->sbpool.queue, new_sb);
2381 			skb_reserve(new_sb, NS_AAL0_HEADER);
2382 			push_rxbufs(card, new_sb);
2383 		}
2384 	}
2385 }
2386 
2387 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2388 {
2389 	skb_unlink(lb, &card->lbpool.queue);
2390 	if (card->lbfqc < card->lbnr.init) {
2391 		struct sk_buff *new_lb;
2392 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2393 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2394 			skb_queue_tail(&card->lbpool.queue, new_lb);
2395 			skb_reserve(new_lb, NS_SMBUFSIZE);
2396 			push_rxbufs(card, new_lb);
2397 		}
2398 	}
2399 	if (card->lbfqc < card->lbnr.init)
2400 	{
2401 		struct sk_buff *new_lb;
2402 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2403 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2404 			skb_queue_tail(&card->lbpool.queue, new_lb);
2405 			skb_reserve(new_lb, NS_SMBUFSIZE);
2406 			push_rxbufs(card, new_lb);
2407 		}
2408 	}
2409 }
2410 
2411 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2412 {
2413 	u32 stat;
2414 	ns_dev *card;
2415 	int left;
2416 
2417 	left = (int)*pos;
2418 	card = (ns_dev *) dev->dev_data;
2419 	stat = readl(card->membase + STAT);
2420 	if (!left--)
2421 		return sprintf(page, "Pool   count    min   init    max \n");
2422 	if (!left--)
2423 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2424 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2425 			       card->sbnr.init, card->sbnr.max);
2426 	if (!left--)
2427 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2428 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2429 			       card->lbnr.init, card->lbnr.max);
2430 	if (!left--)
2431 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2432 			       card->hbpool.count, card->hbnr.min,
2433 			       card->hbnr.init, card->hbnr.max);
2434 	if (!left--)
2435 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2436 			       card->iovpool.count, card->iovnr.min,
2437 			       card->iovnr.init, card->iovnr.max);
2438 	if (!left--) {
2439 		int retval;
2440 		retval =
2441 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2442 		card->intcnt = 0;
2443 		return retval;
2444 	}
2445 #if 0
2446 	/* Dump 25.6 Mbps PHY registers */
2447 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2448 	   here just in case it's needed for debugging. */
2449 	if (card->max_pcr == ATM_25_PCR && !left--) {
2450 		u32 phy_regs[4];
2451 		u32 i;
2452 
2453 		for (i = 0; i < 4; i++) {
2454 			while (CMD_BUSY(card)) ;
2455 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2456 			       card->membase + CMD);
2457 			while (CMD_BUSY(card)) ;
2458 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2459 		}
2460 
2461 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2462 			       phy_regs[0], phy_regs[1], phy_regs[2],
2463 			       phy_regs[3]);
2464 	}
2465 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2466 #if 0
2467 	/* Dump TST */
2468 	if (left-- < NS_TST_NUM_ENTRIES) {
2469 		if (card->tste2vc[left + 1] == NULL)
2470 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2471 		else
2472 			return sprintf(page, "%5d - %d %d \n", left + 1,
2473 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2474 				       card->tste2vc[left + 1]->tx_vcc->vci);
2475 	}
2476 #endif /* 0 */
2477 	return 0;
2478 }
2479 
2480 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2481 {
2482 	ns_dev *card;
2483 	pool_levels pl;
2484 	long btype;
2485 	unsigned long flags;
2486 
2487 	card = dev->dev_data;
2488 	switch (cmd) {
2489 	case NS_GETPSTAT:
2490 		if (get_user
2491 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2492 			return -EFAULT;
2493 		switch (pl.buftype) {
2494 		case NS_BUFTYPE_SMALL:
2495 			pl.count =
2496 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2497 			pl.level.min = card->sbnr.min;
2498 			pl.level.init = card->sbnr.init;
2499 			pl.level.max = card->sbnr.max;
2500 			break;
2501 
2502 		case NS_BUFTYPE_LARGE:
2503 			pl.count =
2504 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2505 			pl.level.min = card->lbnr.min;
2506 			pl.level.init = card->lbnr.init;
2507 			pl.level.max = card->lbnr.max;
2508 			break;
2509 
2510 		case NS_BUFTYPE_HUGE:
2511 			pl.count = card->hbpool.count;
2512 			pl.level.min = card->hbnr.min;
2513 			pl.level.init = card->hbnr.init;
2514 			pl.level.max = card->hbnr.max;
2515 			break;
2516 
2517 		case NS_BUFTYPE_IOVEC:
2518 			pl.count = card->iovpool.count;
2519 			pl.level.min = card->iovnr.min;
2520 			pl.level.init = card->iovnr.init;
2521 			pl.level.max = card->iovnr.max;
2522 			break;
2523 
2524 		default:
2525 			return -ENOIOCTLCMD;
2526 
2527 		}
2528 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2529 			return (sizeof(pl));
2530 		else
2531 			return -EFAULT;
2532 
2533 	case NS_SETBUFLEV:
2534 		if (!capable(CAP_NET_ADMIN))
2535 			return -EPERM;
2536 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2537 			return -EFAULT;
2538 		if (pl.level.min >= pl.level.init
2539 		    || pl.level.init >= pl.level.max)
2540 			return -EINVAL;
2541 		if (pl.level.min == 0)
2542 			return -EINVAL;
2543 		switch (pl.buftype) {
2544 		case NS_BUFTYPE_SMALL:
2545 			if (pl.level.max > TOP_SB)
2546 				return -EINVAL;
2547 			card->sbnr.min = pl.level.min;
2548 			card->sbnr.init = pl.level.init;
2549 			card->sbnr.max = pl.level.max;
2550 			break;
2551 
2552 		case NS_BUFTYPE_LARGE:
2553 			if (pl.level.max > TOP_LB)
2554 				return -EINVAL;
2555 			card->lbnr.min = pl.level.min;
2556 			card->lbnr.init = pl.level.init;
2557 			card->lbnr.max = pl.level.max;
2558 			break;
2559 
2560 		case NS_BUFTYPE_HUGE:
2561 			if (pl.level.max > TOP_HB)
2562 				return -EINVAL;
2563 			card->hbnr.min = pl.level.min;
2564 			card->hbnr.init = pl.level.init;
2565 			card->hbnr.max = pl.level.max;
2566 			break;
2567 
2568 		case NS_BUFTYPE_IOVEC:
2569 			if (pl.level.max > TOP_IOVB)
2570 				return -EINVAL;
2571 			card->iovnr.min = pl.level.min;
2572 			card->iovnr.init = pl.level.init;
2573 			card->iovnr.max = pl.level.max;
2574 			break;
2575 
2576 		default:
2577 			return -EINVAL;
2578 
2579 		}
2580 		return 0;
2581 
2582 	case NS_ADJBUFLEV:
2583 		if (!capable(CAP_NET_ADMIN))
2584 			return -EPERM;
2585 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2586 		switch (btype) {
2587 		case NS_BUFTYPE_SMALL:
2588 			while (card->sbfqc < card->sbnr.init) {
2589 				struct sk_buff *sb;
2590 
2591 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2592 				if (sb == NULL)
2593 					return -ENOMEM;
2594 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2595 				skb_queue_tail(&card->sbpool.queue, sb);
2596 				skb_reserve(sb, NS_AAL0_HEADER);
2597 				push_rxbufs(card, sb);
2598 			}
2599 			break;
2600 
2601 		case NS_BUFTYPE_LARGE:
2602 			while (card->lbfqc < card->lbnr.init) {
2603 				struct sk_buff *lb;
2604 
2605 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2606 				if (lb == NULL)
2607 					return -ENOMEM;
2608 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2609 				skb_queue_tail(&card->lbpool.queue, lb);
2610 				skb_reserve(lb, NS_SMBUFSIZE);
2611 				push_rxbufs(card, lb);
2612 			}
2613 			break;
2614 
2615 		case NS_BUFTYPE_HUGE:
2616 			while (card->hbpool.count > card->hbnr.init) {
2617 				struct sk_buff *hb;
2618 
2619 				spin_lock_irqsave(&card->int_lock, flags);
2620 				hb = skb_dequeue(&card->hbpool.queue);
2621 				card->hbpool.count--;
2622 				spin_unlock_irqrestore(&card->int_lock, flags);
2623 				if (hb == NULL)
2624 					printk
2625 					    ("nicstar%d: huge buffer count inconsistent.\n",
2626 					     card->index);
2627 				else
2628 					dev_kfree_skb_any(hb);
2629 
2630 			}
2631 			while (card->hbpool.count < card->hbnr.init) {
2632 				struct sk_buff *hb;
2633 
2634 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2635 				if (hb == NULL)
2636 					return -ENOMEM;
2637 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2638 				spin_lock_irqsave(&card->int_lock, flags);
2639 				skb_queue_tail(&card->hbpool.queue, hb);
2640 				card->hbpool.count++;
2641 				spin_unlock_irqrestore(&card->int_lock, flags);
2642 			}
2643 			break;
2644 
2645 		case NS_BUFTYPE_IOVEC:
2646 			while (card->iovpool.count > card->iovnr.init) {
2647 				struct sk_buff *iovb;
2648 
2649 				spin_lock_irqsave(&card->int_lock, flags);
2650 				iovb = skb_dequeue(&card->iovpool.queue);
2651 				card->iovpool.count--;
2652 				spin_unlock_irqrestore(&card->int_lock, flags);
2653 				if (iovb == NULL)
2654 					printk
2655 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2656 					     card->index);
2657 				else
2658 					dev_kfree_skb_any(iovb);
2659 
2660 			}
2661 			while (card->iovpool.count < card->iovnr.init) {
2662 				struct sk_buff *iovb;
2663 
2664 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2665 				if (iovb == NULL)
2666 					return -ENOMEM;
2667 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2668 				spin_lock_irqsave(&card->int_lock, flags);
2669 				skb_queue_tail(&card->iovpool.queue, iovb);
2670 				card->iovpool.count++;
2671 				spin_unlock_irqrestore(&card->int_lock, flags);
2672 			}
2673 			break;
2674 
2675 		default:
2676 			return -EINVAL;
2677 
2678 		}
2679 		return 0;
2680 
2681 	default:
2682 		if (dev->phy && dev->phy->ioctl) {
2683 			return dev->phy->ioctl(dev, cmd, arg);
2684 		} else {
2685 			printk("nicstar%d: %s == NULL \n", card->index,
2686 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2687 			return -ENOIOCTLCMD;
2688 		}
2689 	}
2690 }
2691 
2692 #ifdef EXTRA_DEBUG
2693 static void which_list(ns_dev * card, struct sk_buff *skb)
2694 {
2695 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2696 }
2697 #endif /* EXTRA_DEBUG */
2698 
2699 static void ns_poll(struct timer_list *unused)
2700 {
2701 	int i;
2702 	ns_dev *card;
2703 	unsigned long flags;
2704 	u32 stat_r, stat_w;
2705 
2706 	PRINTK("nicstar: Entering ns_poll().\n");
2707 	for (i = 0; i < num_cards; i++) {
2708 		card = cards[i];
2709 		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2710 			/* Probably it isn't worth spinning */
2711 			continue;
2712 		}
2713 
2714 		stat_w = 0;
2715 		stat_r = readl(card->membase + STAT);
2716 		if (stat_r & NS_STAT_TSIF)
2717 			stat_w |= NS_STAT_TSIF;
2718 		if (stat_r & NS_STAT_EOPDU)
2719 			stat_w |= NS_STAT_EOPDU;
2720 
2721 		process_tsq(card);
2722 		process_rsq(card);
2723 
2724 		writel(stat_w, card->membase + STAT);
2725 		spin_unlock_irqrestore(&card->int_lock, flags);
2726 	}
2727 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2728 	PRINTK("nicstar: Leaving ns_poll().\n");
2729 }
2730 
2731 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2732 		       unsigned long addr)
2733 {
2734 	ns_dev *card;
2735 	unsigned long flags;
2736 
2737 	card = dev->dev_data;
2738 	spin_lock_irqsave(&card->res_lock, flags);
2739 	while (CMD_BUSY(card)) ;
2740 	writel((u32) value, card->membase + DR0);
2741 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2742 	       card->membase + CMD);
2743 	spin_unlock_irqrestore(&card->res_lock, flags);
2744 }
2745 
2746 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2747 {
2748 	ns_dev *card;
2749 	unsigned long flags;
2750 	u32 data;
2751 
2752 	card = dev->dev_data;
2753 	spin_lock_irqsave(&card->res_lock, flags);
2754 	while (CMD_BUSY(card)) ;
2755 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2756 	       card->membase + CMD);
2757 	while (CMD_BUSY(card)) ;
2758 	data = readl(card->membase + DR0) & 0x000000FF;
2759 	spin_unlock_irqrestore(&card->res_lock, flags);
2760 	return (unsigned char)data;
2761 }
2762 
2763 module_init(nicstar_init);
2764 module_exit(nicstar_cleanup);
2765