xref: /openbmc/linux/drivers/atm/nicstar.c (revision 7211ec63)
1 /*
2  * nicstar.c
3  *
4  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
5  *
6  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
7  *            It was taken from the frle-0.22 device driver.
8  *            As the file doesn't have a copyright notice, in the file
9  *            nicstarmac.copyright I put the copyright notice from the
10  *            frle-0.22 device driver.
11  *            Some code is based on the nicstar driver by M. Welsh.
12  *
13  * Author: Rui Prior (rprior@inescn.pt)
14  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
15  *
16  *
17  * (C) INESC 1999
18  */
19 
20 /*
21  * IMPORTANT INFORMATION
22  *
23  * There are currently three types of spinlocks:
24  *
25  * 1 - Per card interrupt spinlock (to protect structures and such)
26  * 2 - Per SCQ scq spinlock
27  * 3 - Per card resource spinlock (to access registers, etc.)
28  *
29  * These must NEVER be grabbed in reverse order.
30  *
31  */
32 
33 /* Header files */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/skbuff.h>
38 #include <linux/atmdev.h>
39 #include <linux/atm.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/types.h>
43 #include <linux/string.h>
44 #include <linux/delay.h>
45 #include <linux/init.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <linux/idr.h>
52 #include <asm/io.h>
53 #include <linux/uaccess.h>
54 #include <linux/atomic.h>
55 #include <linux/etherdevice.h>
56 #include "nicstar.h"
57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
58 #include "suni.h"
59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
61 #include "idt77105.h"
62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
63 
64 /* Additional code */
65 
66 #include "nicstarmac.c"
67 
68 /* Configurable parameters */
69 
70 #undef PHY_LOOPBACK
71 #undef TX_DEBUG
72 #undef RX_DEBUG
73 #undef GENERAL_DEBUG
74 #undef EXTRA_DEBUG
75 
76 /* Do not touch these */
77 
78 #ifdef TX_DEBUG
79 #define TXPRINTK(args...) printk(args)
80 #else
81 #define TXPRINTK(args...)
82 #endif /* TX_DEBUG */
83 
84 #ifdef RX_DEBUG
85 #define RXPRINTK(args...) printk(args)
86 #else
87 #define RXPRINTK(args...)
88 #endif /* RX_DEBUG */
89 
90 #ifdef GENERAL_DEBUG
91 #define PRINTK(args...) printk(args)
92 #else
93 #define PRINTK(args...)
94 #endif /* GENERAL_DEBUG */
95 
96 #ifdef EXTRA_DEBUG
97 #define XPRINTK(args...) printk(args)
98 #else
99 #define XPRINTK(args...)
100 #endif /* EXTRA_DEBUG */
101 
102 /* Macros */
103 
104 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
105 
106 #define NS_DELAY mdelay(1)
107 
108 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
109 
110 #ifndef ATM_SKB
111 #define ATM_SKB(s) (&(s)->atm)
112 #endif
113 
114 #define scq_virt_to_bus(scq, p) \
115 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
116 
117 /* Function declarations */
118 
119 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
120 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
121 			  int count);
122 static int ns_init_card(int i, struct pci_dev *pcidev);
123 static void ns_init_card_error(ns_dev * card, int error);
124 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
125 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
126 static void push_rxbufs(ns_dev *, struct sk_buff *);
127 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
128 static int ns_open(struct atm_vcc *vcc);
129 static void ns_close(struct atm_vcc *vcc);
130 static void fill_tst(ns_dev * card, int n, vc_map * vc);
131 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
132 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
133 		     struct sk_buff *skb);
134 static void process_tsq(ns_dev * card);
135 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
136 static void process_rsq(ns_dev * card);
137 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
138 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
139 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
140 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
141 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
142 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
143 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
144 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
145 #ifdef EXTRA_DEBUG
146 static void which_list(ns_dev * card, struct sk_buff *skb);
147 #endif
148 static void ns_poll(unsigned long arg);
149 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
150 		       unsigned long addr);
151 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
152 
153 /* Global variables */
154 
155 static struct ns_dev *cards[NS_MAX_CARDS];
156 static unsigned num_cards;
157 static const struct atmdev_ops atm_ops = {
158 	.open = ns_open,
159 	.close = ns_close,
160 	.ioctl = ns_ioctl,
161 	.send = ns_send,
162 	.phy_put = ns_phy_put,
163 	.phy_get = ns_phy_get,
164 	.proc_read = ns_proc_read,
165 	.owner = THIS_MODULE,
166 };
167 
168 static struct timer_list ns_timer;
169 static char *mac[NS_MAX_CARDS];
170 module_param_array(mac, charp, NULL, 0);
171 MODULE_LICENSE("GPL");
172 
173 /* Functions */
174 
175 static int nicstar_init_one(struct pci_dev *pcidev,
176 			    const struct pci_device_id *ent)
177 {
178 	static int index = -1;
179 	unsigned int error;
180 
181 	index++;
182 	cards[index] = NULL;
183 
184 	error = ns_init_card(index, pcidev);
185 	if (error) {
186 		cards[index--] = NULL;	/* don't increment index */
187 		goto err_out;
188 	}
189 
190 	return 0;
191 err_out:
192 	return -ENODEV;
193 }
194 
195 static void nicstar_remove_one(struct pci_dev *pcidev)
196 {
197 	int i, j;
198 	ns_dev *card = pci_get_drvdata(pcidev);
199 	struct sk_buff *hb;
200 	struct sk_buff *iovb;
201 	struct sk_buff *lb;
202 	struct sk_buff *sb;
203 
204 	i = card->index;
205 
206 	if (cards[i] == NULL)
207 		return;
208 
209 	if (card->atmdev->phy && card->atmdev->phy->stop)
210 		card->atmdev->phy->stop(card->atmdev);
211 
212 	/* Stop everything */
213 	writel(0x00000000, card->membase + CFG);
214 
215 	/* De-register device */
216 	atm_dev_deregister(card->atmdev);
217 
218 	/* Disable PCI device */
219 	pci_disable_device(pcidev);
220 
221 	/* Free up resources */
222 	j = 0;
223 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
224 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
225 		dev_kfree_skb_any(hb);
226 		j++;
227 	}
228 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
229 	j = 0;
230 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
231 	       card->iovpool.count);
232 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
233 		dev_kfree_skb_any(iovb);
234 		j++;
235 	}
236 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
237 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
238 		dev_kfree_skb_any(lb);
239 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
240 		dev_kfree_skb_any(sb);
241 	free_scq(card, card->scq0, NULL);
242 	for (j = 0; j < NS_FRSCD_NUM; j++) {
243 		if (card->scd2vc[j] != NULL)
244 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
245 	}
246 	idr_destroy(&card->idr);
247 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
248 			  card->rsq.org, card->rsq.dma);
249 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
250 			  card->tsq.org, card->tsq.dma);
251 	free_irq(card->pcidev->irq, card);
252 	iounmap(card->membase);
253 	kfree(card);
254 }
255 
256 static const struct pci_device_id nicstar_pci_tbl[] = {
257 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
258 	{0,}			/* terminate list */
259 };
260 
261 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
262 
263 static struct pci_driver nicstar_driver = {
264 	.name = "nicstar",
265 	.id_table = nicstar_pci_tbl,
266 	.probe = nicstar_init_one,
267 	.remove = nicstar_remove_one,
268 };
269 
270 static int __init nicstar_init(void)
271 {
272 	unsigned error = 0;	/* Initialized to remove compile warning */
273 
274 	XPRINTK("nicstar: nicstar_init() called.\n");
275 
276 	error = pci_register_driver(&nicstar_driver);
277 
278 	TXPRINTK("nicstar: TX debug enabled.\n");
279 	RXPRINTK("nicstar: RX debug enabled.\n");
280 	PRINTK("nicstar: General debug enabled.\n");
281 #ifdef PHY_LOOPBACK
282 	printk("nicstar: using PHY loopback.\n");
283 #endif /* PHY_LOOPBACK */
284 	XPRINTK("nicstar: nicstar_init() returned.\n");
285 
286 	if (!error) {
287 		init_timer(&ns_timer);
288 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
289 		ns_timer.data = 0UL;
290 		ns_timer.function = ns_poll;
291 		add_timer(&ns_timer);
292 	}
293 
294 	return error;
295 }
296 
297 static void __exit nicstar_cleanup(void)
298 {
299 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
300 
301 	del_timer(&ns_timer);
302 
303 	pci_unregister_driver(&nicstar_driver);
304 
305 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
306 }
307 
308 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
309 {
310 	unsigned long flags;
311 	u32 data;
312 	sram_address <<= 2;
313 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
314 	sram_address |= 0x50000000;	/* SRAM read command */
315 	spin_lock_irqsave(&card->res_lock, flags);
316 	while (CMD_BUSY(card)) ;
317 	writel(sram_address, card->membase + CMD);
318 	while (CMD_BUSY(card)) ;
319 	data = readl(card->membase + DR0);
320 	spin_unlock_irqrestore(&card->res_lock, flags);
321 	return data;
322 }
323 
324 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
325 			  int count)
326 {
327 	unsigned long flags;
328 	int i, c;
329 	count--;		/* count range now is 0..3 instead of 1..4 */
330 	c = count;
331 	c <<= 2;		/* to use increments of 4 */
332 	spin_lock_irqsave(&card->res_lock, flags);
333 	while (CMD_BUSY(card)) ;
334 	for (i = 0; i <= c; i += 4)
335 		writel(*(value++), card->membase + i);
336 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
337 	   so card->membase + DR0 == card->membase */
338 	sram_address <<= 2;
339 	sram_address &= 0x0007FFFC;
340 	sram_address |= (0x40000000 | count);
341 	writel(sram_address, card->membase + CMD);
342 	spin_unlock_irqrestore(&card->res_lock, flags);
343 }
344 
345 static int ns_init_card(int i, struct pci_dev *pcidev)
346 {
347 	int j;
348 	struct ns_dev *card = NULL;
349 	unsigned char pci_latency;
350 	unsigned error;
351 	u32 data;
352 	u32 u32d[4];
353 	u32 ns_cfg_rctsize;
354 	int bcount;
355 	unsigned long membase;
356 
357 	error = 0;
358 
359 	if (pci_enable_device(pcidev)) {
360 		printk("nicstar%d: can't enable PCI device\n", i);
361 		error = 2;
362 		ns_init_card_error(card, error);
363 		return error;
364 	}
365         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
366                 printk(KERN_WARNING
367 		       "nicstar%d: No suitable DMA available.\n", i);
368 		error = 2;
369 		ns_init_card_error(card, error);
370 		return error;
371         }
372 
373 	card = kmalloc(sizeof(*card), GFP_KERNEL);
374 	if (!card) {
375 		printk
376 		    ("nicstar%d: can't allocate memory for device structure.\n",
377 		     i);
378 		error = 2;
379 		ns_init_card_error(card, error);
380 		return error;
381 	}
382 	cards[i] = card;
383 	spin_lock_init(&card->int_lock);
384 	spin_lock_init(&card->res_lock);
385 
386 	pci_set_drvdata(pcidev, card);
387 
388 	card->index = i;
389 	card->atmdev = NULL;
390 	card->pcidev = pcidev;
391 	membase = pci_resource_start(pcidev, 1);
392 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
393 	if (!card->membase) {
394 		printk("nicstar%d: can't ioremap() membase.\n", i);
395 		error = 3;
396 		ns_init_card_error(card, error);
397 		return error;
398 	}
399 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
400 
401 	pci_set_master(pcidev);
402 
403 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
404 		printk("nicstar%d: can't read PCI latency timer.\n", i);
405 		error = 6;
406 		ns_init_card_error(card, error);
407 		return error;
408 	}
409 #ifdef NS_PCI_LATENCY
410 	if (pci_latency < NS_PCI_LATENCY) {
411 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
412 		       NS_PCI_LATENCY);
413 		for (j = 1; j < 4; j++) {
414 			if (pci_write_config_byte
415 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
416 				break;
417 		}
418 		if (j == 4) {
419 			printk
420 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
421 			     i, NS_PCI_LATENCY);
422 			error = 7;
423 			ns_init_card_error(card, error);
424 			return error;
425 		}
426 	}
427 #endif /* NS_PCI_LATENCY */
428 
429 	/* Clear timer overflow */
430 	data = readl(card->membase + STAT);
431 	if (data & NS_STAT_TMROF)
432 		writel(NS_STAT_TMROF, card->membase + STAT);
433 
434 	/* Software reset */
435 	writel(NS_CFG_SWRST, card->membase + CFG);
436 	NS_DELAY;
437 	writel(0x00000000, card->membase + CFG);
438 
439 	/* PHY reset */
440 	writel(0x00000008, card->membase + GP);
441 	NS_DELAY;
442 	writel(0x00000001, card->membase + GP);
443 	NS_DELAY;
444 	while (CMD_BUSY(card)) ;
445 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
446 	NS_DELAY;
447 
448 	/* Detect PHY type */
449 	while (CMD_BUSY(card)) ;
450 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
451 	while (CMD_BUSY(card)) ;
452 	data = readl(card->membase + DR0);
453 	switch (data) {
454 	case 0x00000009:
455 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
456 		card->max_pcr = ATM_25_PCR;
457 		while (CMD_BUSY(card)) ;
458 		writel(0x00000008, card->membase + DR0);
459 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
460 		/* Clear an eventual pending interrupt */
461 		writel(NS_STAT_SFBQF, card->membase + STAT);
462 #ifdef PHY_LOOPBACK
463 		while (CMD_BUSY(card)) ;
464 		writel(0x00000022, card->membase + DR0);
465 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
466 #endif /* PHY_LOOPBACK */
467 		break;
468 	case 0x00000030:
469 	case 0x00000031:
470 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
471 		card->max_pcr = ATM_OC3_PCR;
472 #ifdef PHY_LOOPBACK
473 		while (CMD_BUSY(card)) ;
474 		writel(0x00000002, card->membase + DR0);
475 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
476 #endif /* PHY_LOOPBACK */
477 		break;
478 	default:
479 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
480 		error = 8;
481 		ns_init_card_error(card, error);
482 		return error;
483 	}
484 	writel(0x00000000, card->membase + GP);
485 
486 	/* Determine SRAM size */
487 	data = 0x76543210;
488 	ns_write_sram(card, 0x1C003, &data, 1);
489 	data = 0x89ABCDEF;
490 	ns_write_sram(card, 0x14003, &data, 1);
491 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
492 	    ns_read_sram(card, 0x1C003) == 0x76543210)
493 		card->sram_size = 128;
494 	else
495 		card->sram_size = 32;
496 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
497 
498 	card->rct_size = NS_MAX_RCTSIZE;
499 
500 #if (NS_MAX_RCTSIZE == 4096)
501 	if (card->sram_size == 128)
502 		printk
503 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
504 		     i);
505 #elif (NS_MAX_RCTSIZE == 16384)
506 	if (card->sram_size == 32) {
507 		printk
508 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
509 		     i);
510 		card->rct_size = 4096;
511 	}
512 #else
513 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
514 #endif
515 
516 	card->vpibits = NS_VPIBITS;
517 	if (card->rct_size == 4096)
518 		card->vcibits = 12 - NS_VPIBITS;
519 	else			/* card->rct_size == 16384 */
520 		card->vcibits = 14 - NS_VPIBITS;
521 
522 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
523 	if (mac[i] == NULL)
524 		nicstar_init_eprom(card->membase);
525 
526 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
527 	writel(0x00000000, card->membase + VPM);
528 
529 	/* Initialize TSQ */
530 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
531 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
532 					   &card->tsq.dma, GFP_KERNEL);
533 	if (card->tsq.org == NULL) {
534 		printk("nicstar%d: can't allocate TSQ.\n", i);
535 		error = 10;
536 		ns_init_card_error(card, error);
537 		return error;
538 	}
539 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
540 	card->tsq.next = card->tsq.base;
541 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
542 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
543 		ns_tsi_init(card->tsq.base + j);
544 	writel(0x00000000, card->membase + TSQH);
545 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
546 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
547 
548 	/* Initialize RSQ */
549 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
550 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
551 					   &card->rsq.dma, GFP_KERNEL);
552 	if (card->rsq.org == NULL) {
553 		printk("nicstar%d: can't allocate RSQ.\n", i);
554 		error = 11;
555 		ns_init_card_error(card, error);
556 		return error;
557 	}
558 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
559 	card->rsq.next = card->rsq.base;
560 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
561 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
562 		ns_rsqe_init(card->rsq.base + j);
563 	writel(0x00000000, card->membase + RSQH);
564 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
565 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
566 
567 	/* Initialize SCQ0, the only VBR SCQ used */
568 	card->scq1 = NULL;
569 	card->scq2 = NULL;
570 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
571 	if (card->scq0 == NULL) {
572 		printk("nicstar%d: can't get SCQ0.\n", i);
573 		error = 12;
574 		ns_init_card_error(card, error);
575 		return error;
576 	}
577 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
578 	u32d[1] = (u32) 0x00000000;
579 	u32d[2] = (u32) 0xffffffff;
580 	u32d[3] = (u32) 0x00000000;
581 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
582 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
583 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
584 	card->scq0->scd = NS_VRSCD0;
585 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
586 
587 	/* Initialize TSTs */
588 	card->tst_addr = NS_TST0;
589 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
590 	data = NS_TST_OPCODE_VARIABLE;
591 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
592 		ns_write_sram(card, NS_TST0 + j, &data, 1);
593 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
594 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
595 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
596 		ns_write_sram(card, NS_TST1 + j, &data, 1);
597 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
598 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
599 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
600 		card->tste2vc[j] = NULL;
601 	writel(NS_TST0 << 2, card->membase + TSTB);
602 
603 	/* Initialize RCT. AAL type is set on opening the VC. */
604 #ifdef RCQ_SUPPORT
605 	u32d[0] = NS_RCTE_RAWCELLINTEN;
606 #else
607 	u32d[0] = 0x00000000;
608 #endif /* RCQ_SUPPORT */
609 	u32d[1] = 0x00000000;
610 	u32d[2] = 0x00000000;
611 	u32d[3] = 0xFFFFFFFF;
612 	for (j = 0; j < card->rct_size; j++)
613 		ns_write_sram(card, j * 4, u32d, 4);
614 
615 	memset(card->vcmap, 0, sizeof(card->vcmap));
616 
617 	for (j = 0; j < NS_FRSCD_NUM; j++)
618 		card->scd2vc[j] = NULL;
619 
620 	/* Initialize buffer levels */
621 	card->sbnr.min = MIN_SB;
622 	card->sbnr.init = NUM_SB;
623 	card->sbnr.max = MAX_SB;
624 	card->lbnr.min = MIN_LB;
625 	card->lbnr.init = NUM_LB;
626 	card->lbnr.max = MAX_LB;
627 	card->iovnr.min = MIN_IOVB;
628 	card->iovnr.init = NUM_IOVB;
629 	card->iovnr.max = MAX_IOVB;
630 	card->hbnr.min = MIN_HB;
631 	card->hbnr.init = NUM_HB;
632 	card->hbnr.max = MAX_HB;
633 
634 	card->sm_handle = NULL;
635 	card->sm_addr = 0x00000000;
636 	card->lg_handle = NULL;
637 	card->lg_addr = 0x00000000;
638 
639 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
640 
641 	idr_init(&card->idr);
642 
643 	/* Pre-allocate some huge buffers */
644 	skb_queue_head_init(&card->hbpool.queue);
645 	card->hbpool.count = 0;
646 	for (j = 0; j < NUM_HB; j++) {
647 		struct sk_buff *hb;
648 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
649 		if (hb == NULL) {
650 			printk
651 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
652 			     i, j, NUM_HB);
653 			error = 13;
654 			ns_init_card_error(card, error);
655 			return error;
656 		}
657 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
658 		skb_queue_tail(&card->hbpool.queue, hb);
659 		card->hbpool.count++;
660 	}
661 
662 	/* Allocate large buffers */
663 	skb_queue_head_init(&card->lbpool.queue);
664 	card->lbpool.count = 0;	/* Not used */
665 	for (j = 0; j < NUM_LB; j++) {
666 		struct sk_buff *lb;
667 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
668 		if (lb == NULL) {
669 			printk
670 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
671 			     i, j, NUM_LB);
672 			error = 14;
673 			ns_init_card_error(card, error);
674 			return error;
675 		}
676 		NS_PRV_BUFTYPE(lb) = BUF_LG;
677 		skb_queue_tail(&card->lbpool.queue, lb);
678 		skb_reserve(lb, NS_SMBUFSIZE);
679 		push_rxbufs(card, lb);
680 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
681 		if (j == 1) {
682 			card->rcbuf = lb;
683 			card->rawcell = (struct ns_rcqe *) lb->data;
684 			card->rawch = NS_PRV_DMA(lb);
685 		}
686 	}
687 	/* Test for strange behaviour which leads to crashes */
688 	if ((bcount =
689 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
690 		printk
691 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
692 		     i, j, bcount);
693 		error = 14;
694 		ns_init_card_error(card, error);
695 		return error;
696 	}
697 
698 	/* Allocate small buffers */
699 	skb_queue_head_init(&card->sbpool.queue);
700 	card->sbpool.count = 0;	/* Not used */
701 	for (j = 0; j < NUM_SB; j++) {
702 		struct sk_buff *sb;
703 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
704 		if (sb == NULL) {
705 			printk
706 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
707 			     i, j, NUM_SB);
708 			error = 15;
709 			ns_init_card_error(card, error);
710 			return error;
711 		}
712 		NS_PRV_BUFTYPE(sb) = BUF_SM;
713 		skb_queue_tail(&card->sbpool.queue, sb);
714 		skb_reserve(sb, NS_AAL0_HEADER);
715 		push_rxbufs(card, sb);
716 	}
717 	/* Test for strange behaviour which leads to crashes */
718 	if ((bcount =
719 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
720 		printk
721 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
722 		     i, j, bcount);
723 		error = 15;
724 		ns_init_card_error(card, error);
725 		return error;
726 	}
727 
728 	/* Allocate iovec buffers */
729 	skb_queue_head_init(&card->iovpool.queue);
730 	card->iovpool.count = 0;
731 	for (j = 0; j < NUM_IOVB; j++) {
732 		struct sk_buff *iovb;
733 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
734 		if (iovb == NULL) {
735 			printk
736 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
737 			     i, j, NUM_IOVB);
738 			error = 16;
739 			ns_init_card_error(card, error);
740 			return error;
741 		}
742 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
743 		skb_queue_tail(&card->iovpool.queue, iovb);
744 		card->iovpool.count++;
745 	}
746 
747 	/* Configure NICStAR */
748 	if (card->rct_size == 4096)
749 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
750 	else			/* (card->rct_size == 16384) */
751 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
752 
753 	card->efbie = 1;
754 
755 	card->intcnt = 0;
756 	if (request_irq
757 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
758 		printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
759 		error = 9;
760 		ns_init_card_error(card, error);
761 		return error;
762 	}
763 
764 	/* Register device */
765 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
766 					-1, NULL);
767 	if (card->atmdev == NULL) {
768 		printk("nicstar%d: can't register device.\n", i);
769 		error = 17;
770 		ns_init_card_error(card, error);
771 		return error;
772 	}
773 
774 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
775 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
776 				   card->atmdev->esi, 6);
777 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
778 			nicstar_read_eprom(card->membase,
779 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
780 					   card->atmdev->esi, 6);
781 		}
782 	}
783 
784 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
785 
786 	card->atmdev->dev_data = card;
787 	card->atmdev->ci_range.vpi_bits = card->vpibits;
788 	card->atmdev->ci_range.vci_bits = card->vcibits;
789 	card->atmdev->link_rate = card->max_pcr;
790 	card->atmdev->phy = NULL;
791 
792 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
793 	if (card->max_pcr == ATM_OC3_PCR)
794 		suni_init(card->atmdev);
795 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
796 
797 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
798 	if (card->max_pcr == ATM_25_PCR)
799 		idt77105_init(card->atmdev);
800 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
801 
802 	if (card->atmdev->phy && card->atmdev->phy->start)
803 		card->atmdev->phy->start(card->atmdev);
804 
805 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
806 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
807 	       NS_CFG_PHYIE, card->membase + CFG);
808 
809 	num_cards++;
810 
811 	return error;
812 }
813 
814 static void ns_init_card_error(ns_dev *card, int error)
815 {
816 	if (error >= 17) {
817 		writel(0x00000000, card->membase + CFG);
818 	}
819 	if (error >= 16) {
820 		struct sk_buff *iovb;
821 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
822 			dev_kfree_skb_any(iovb);
823 	}
824 	if (error >= 15) {
825 		struct sk_buff *sb;
826 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
827 			dev_kfree_skb_any(sb);
828 		free_scq(card, card->scq0, NULL);
829 	}
830 	if (error >= 14) {
831 		struct sk_buff *lb;
832 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
833 			dev_kfree_skb_any(lb);
834 	}
835 	if (error >= 13) {
836 		struct sk_buff *hb;
837 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
838 			dev_kfree_skb_any(hb);
839 	}
840 	if (error >= 12) {
841 		kfree(card->rsq.org);
842 	}
843 	if (error >= 11) {
844 		kfree(card->tsq.org);
845 	}
846 	if (error >= 10) {
847 		free_irq(card->pcidev->irq, card);
848 	}
849 	if (error >= 4) {
850 		iounmap(card->membase);
851 	}
852 	if (error >= 3) {
853 		pci_disable_device(card->pcidev);
854 		kfree(card);
855 	}
856 }
857 
858 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
859 {
860 	scq_info *scq;
861 	int i;
862 
863 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
864 		return NULL;
865 
866 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
867 	if (!scq)
868 		return NULL;
869         scq->org = dma_alloc_coherent(&card->pcidev->dev,
870 				      2 * size,  &scq->dma, GFP_KERNEL);
871 	if (!scq->org) {
872 		kfree(scq);
873 		return NULL;
874 	}
875 	scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
876 				 sizeof(*scq->skb),
877 				 GFP_KERNEL);
878 	if (!scq->skb) {
879 		dma_free_coherent(&card->pcidev->dev,
880 				  2 * size, scq->org, scq->dma);
881 		kfree(scq);
882 		return NULL;
883 	}
884 	scq->num_entries = size / NS_SCQE_SIZE;
885 	scq->base = PTR_ALIGN(scq->org, size);
886 	scq->next = scq->base;
887 	scq->last = scq->base + (scq->num_entries - 1);
888 	scq->tail = scq->last;
889 	scq->scd = scd;
890 	scq->num_entries = size / NS_SCQE_SIZE;
891 	scq->tbd_count = 0;
892 	init_waitqueue_head(&scq->scqfull_waitq);
893 	scq->full = 0;
894 	spin_lock_init(&scq->lock);
895 
896 	for (i = 0; i < scq->num_entries; i++)
897 		scq->skb[i] = NULL;
898 
899 	return scq;
900 }
901 
902 /* For variable rate SCQ vcc must be NULL */
903 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
904 {
905 	int i;
906 
907 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
908 		for (i = 0; i < scq->num_entries; i++) {
909 			if (scq->skb[i] != NULL) {
910 				vcc = ATM_SKB(scq->skb[i])->vcc;
911 				if (vcc->pop != NULL)
912 					vcc->pop(vcc, scq->skb[i]);
913 				else
914 					dev_kfree_skb_any(scq->skb[i]);
915 			}
916 	} else {		/* vcc must be != NULL */
917 
918 		if (vcc == NULL) {
919 			printk
920 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
921 			for (i = 0; i < scq->num_entries; i++)
922 				dev_kfree_skb_any(scq->skb[i]);
923 		} else
924 			for (i = 0; i < scq->num_entries; i++) {
925 				if (scq->skb[i] != NULL) {
926 					if (vcc->pop != NULL)
927 						vcc->pop(vcc, scq->skb[i]);
928 					else
929 						dev_kfree_skb_any(scq->skb[i]);
930 				}
931 			}
932 	}
933 	kfree(scq->skb);
934 	dma_free_coherent(&card->pcidev->dev,
935 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
936 			       VBR_SCQSIZE : CBR_SCQSIZE),
937 			  scq->org, scq->dma);
938 	kfree(scq);
939 }
940 
941 /* The handles passed must be pointers to the sk_buff containing the small
942    or large buffer(s) cast to u32. */
943 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
944 {
945 	struct sk_buff *handle1, *handle2;
946 	int id1, id2;
947 	u32 addr1, addr2;
948 	u32 stat;
949 	unsigned long flags;
950 
951 	/* *BARF* */
952 	handle2 = NULL;
953 	addr2 = 0;
954 	handle1 = skb;
955 	addr1 = dma_map_single(&card->pcidev->dev,
956 			       skb->data,
957 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
958 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
959 			       DMA_TO_DEVICE);
960 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
961 
962 #ifdef GENERAL_DEBUG
963 	if (!addr1)
964 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
965 		       card->index);
966 #endif /* GENERAL_DEBUG */
967 
968 	stat = readl(card->membase + STAT);
969 	card->sbfqc = ns_stat_sfbqc_get(stat);
970 	card->lbfqc = ns_stat_lfbqc_get(stat);
971 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
972 		if (!addr2) {
973 			if (card->sm_addr) {
974 				addr2 = card->sm_addr;
975 				handle2 = card->sm_handle;
976 				card->sm_addr = 0x00000000;
977 				card->sm_handle = NULL;
978 			} else {	/* (!sm_addr) */
979 
980 				card->sm_addr = addr1;
981 				card->sm_handle = handle1;
982 			}
983 		}
984 	} else {		/* buf_type == BUF_LG */
985 
986 		if (!addr2) {
987 			if (card->lg_addr) {
988 				addr2 = card->lg_addr;
989 				handle2 = card->lg_handle;
990 				card->lg_addr = 0x00000000;
991 				card->lg_handle = NULL;
992 			} else {	/* (!lg_addr) */
993 
994 				card->lg_addr = addr1;
995 				card->lg_handle = handle1;
996 			}
997 		}
998 	}
999 
1000 	if (addr2) {
1001 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1002 			if (card->sbfqc >= card->sbnr.max) {
1003 				skb_unlink(handle1, &card->sbpool.queue);
1004 				dev_kfree_skb_any(handle1);
1005 				skb_unlink(handle2, &card->sbpool.queue);
1006 				dev_kfree_skb_any(handle2);
1007 				return;
1008 			} else
1009 				card->sbfqc += 2;
1010 		} else {	/* (buf_type == BUF_LG) */
1011 
1012 			if (card->lbfqc >= card->lbnr.max) {
1013 				skb_unlink(handle1, &card->lbpool.queue);
1014 				dev_kfree_skb_any(handle1);
1015 				skb_unlink(handle2, &card->lbpool.queue);
1016 				dev_kfree_skb_any(handle2);
1017 				return;
1018 			} else
1019 				card->lbfqc += 2;
1020 		}
1021 
1022 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1023 		if (id1 < 0)
1024 			goto out;
1025 
1026 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1027 		if (id2 < 0)
1028 			goto out;
1029 
1030 		spin_lock_irqsave(&card->res_lock, flags);
1031 		while (CMD_BUSY(card)) ;
1032 		writel(addr2, card->membase + DR3);
1033 		writel(id2, card->membase + DR2);
1034 		writel(addr1, card->membase + DR1);
1035 		writel(id1, card->membase + DR0);
1036 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1037 		       card->membase + CMD);
1038 		spin_unlock_irqrestore(&card->res_lock, flags);
1039 
1040 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1041 			card->index,
1042 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1043 			addr1, addr2);
1044 	}
1045 
1046 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1047 	    card->lbfqc >= card->lbnr.min) {
1048 		card->efbie = 1;
1049 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1050 		       card->membase + CFG);
1051 	}
1052 
1053 out:
1054 	return;
1055 }
1056 
1057 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1058 {
1059 	u32 stat_r;
1060 	ns_dev *card;
1061 	struct atm_dev *dev;
1062 	unsigned long flags;
1063 
1064 	card = (ns_dev *) dev_id;
1065 	dev = card->atmdev;
1066 	card->intcnt++;
1067 
1068 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1069 
1070 	spin_lock_irqsave(&card->int_lock, flags);
1071 
1072 	stat_r = readl(card->membase + STAT);
1073 
1074 	/* Transmit Status Indicator has been written to T. S. Queue */
1075 	if (stat_r & NS_STAT_TSIF) {
1076 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1077 		process_tsq(card);
1078 		writel(NS_STAT_TSIF, card->membase + STAT);
1079 	}
1080 
1081 	/* Incomplete CS-PDU has been transmitted */
1082 	if (stat_r & NS_STAT_TXICP) {
1083 		writel(NS_STAT_TXICP, card->membase + STAT);
1084 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1085 			 card->index);
1086 	}
1087 
1088 	/* Transmit Status Queue 7/8 full */
1089 	if (stat_r & NS_STAT_TSQF) {
1090 		writel(NS_STAT_TSQF, card->membase + STAT);
1091 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1092 		process_tsq(card);
1093 	}
1094 
1095 	/* Timer overflow */
1096 	if (stat_r & NS_STAT_TMROF) {
1097 		writel(NS_STAT_TMROF, card->membase + STAT);
1098 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1099 	}
1100 
1101 	/* PHY device interrupt signal active */
1102 	if (stat_r & NS_STAT_PHYI) {
1103 		writel(NS_STAT_PHYI, card->membase + STAT);
1104 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1105 		if (dev->phy && dev->phy->interrupt) {
1106 			dev->phy->interrupt(dev);
1107 		}
1108 	}
1109 
1110 	/* Small Buffer Queue is full */
1111 	if (stat_r & NS_STAT_SFBQF) {
1112 		writel(NS_STAT_SFBQF, card->membase + STAT);
1113 		printk("nicstar%d: Small free buffer queue is full.\n",
1114 		       card->index);
1115 	}
1116 
1117 	/* Large Buffer Queue is full */
1118 	if (stat_r & NS_STAT_LFBQF) {
1119 		writel(NS_STAT_LFBQF, card->membase + STAT);
1120 		printk("nicstar%d: Large free buffer queue is full.\n",
1121 		       card->index);
1122 	}
1123 
1124 	/* Receive Status Queue is full */
1125 	if (stat_r & NS_STAT_RSQF) {
1126 		writel(NS_STAT_RSQF, card->membase + STAT);
1127 		printk("nicstar%d: RSQ full.\n", card->index);
1128 		process_rsq(card);
1129 	}
1130 
1131 	/* Complete CS-PDU received */
1132 	if (stat_r & NS_STAT_EOPDU) {
1133 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1134 		process_rsq(card);
1135 		writel(NS_STAT_EOPDU, card->membase + STAT);
1136 	}
1137 
1138 	/* Raw cell received */
1139 	if (stat_r & NS_STAT_RAWCF) {
1140 		writel(NS_STAT_RAWCF, card->membase + STAT);
1141 #ifndef RCQ_SUPPORT
1142 		printk("nicstar%d: Raw cell received and no support yet...\n",
1143 		       card->index);
1144 #endif /* RCQ_SUPPORT */
1145 		/* NOTE: the following procedure may keep a raw cell pending until the
1146 		   next interrupt. As this preliminary support is only meant to
1147 		   avoid buffer leakage, this is not an issue. */
1148 		while (readl(card->membase + RAWCT) != card->rawch) {
1149 
1150 			if (ns_rcqe_islast(card->rawcell)) {
1151 				struct sk_buff *oldbuf;
1152 
1153 				oldbuf = card->rcbuf;
1154 				card->rcbuf = idr_find(&card->idr,
1155 						       ns_rcqe_nextbufhandle(card->rawcell));
1156 				card->rawch = NS_PRV_DMA(card->rcbuf);
1157 				card->rawcell = (struct ns_rcqe *)
1158 						card->rcbuf->data;
1159 				recycle_rx_buf(card, oldbuf);
1160 			} else {
1161 				card->rawch += NS_RCQE_SIZE;
1162 				card->rawcell++;
1163 			}
1164 		}
1165 	}
1166 
1167 	/* Small buffer queue is empty */
1168 	if (stat_r & NS_STAT_SFBQE) {
1169 		int i;
1170 		struct sk_buff *sb;
1171 
1172 		writel(NS_STAT_SFBQE, card->membase + STAT);
1173 		printk("nicstar%d: Small free buffer queue empty.\n",
1174 		       card->index);
1175 		for (i = 0; i < card->sbnr.min; i++) {
1176 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1177 			if (sb == NULL) {
1178 				writel(readl(card->membase + CFG) &
1179 				       ~NS_CFG_EFBIE, card->membase + CFG);
1180 				card->efbie = 0;
1181 				break;
1182 			}
1183 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1184 			skb_queue_tail(&card->sbpool.queue, sb);
1185 			skb_reserve(sb, NS_AAL0_HEADER);
1186 			push_rxbufs(card, sb);
1187 		}
1188 		card->sbfqc = i;
1189 		process_rsq(card);
1190 	}
1191 
1192 	/* Large buffer queue empty */
1193 	if (stat_r & NS_STAT_LFBQE) {
1194 		int i;
1195 		struct sk_buff *lb;
1196 
1197 		writel(NS_STAT_LFBQE, card->membase + STAT);
1198 		printk("nicstar%d: Large free buffer queue empty.\n",
1199 		       card->index);
1200 		for (i = 0; i < card->lbnr.min; i++) {
1201 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1202 			if (lb == NULL) {
1203 				writel(readl(card->membase + CFG) &
1204 				       ~NS_CFG_EFBIE, card->membase + CFG);
1205 				card->efbie = 0;
1206 				break;
1207 			}
1208 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1209 			skb_queue_tail(&card->lbpool.queue, lb);
1210 			skb_reserve(lb, NS_SMBUFSIZE);
1211 			push_rxbufs(card, lb);
1212 		}
1213 		card->lbfqc = i;
1214 		process_rsq(card);
1215 	}
1216 
1217 	/* Receive Status Queue is 7/8 full */
1218 	if (stat_r & NS_STAT_RSQAF) {
1219 		writel(NS_STAT_RSQAF, card->membase + STAT);
1220 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1221 		process_rsq(card);
1222 	}
1223 
1224 	spin_unlock_irqrestore(&card->int_lock, flags);
1225 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1226 	return IRQ_HANDLED;
1227 }
1228 
1229 static int ns_open(struct atm_vcc *vcc)
1230 {
1231 	ns_dev *card;
1232 	vc_map *vc;
1233 	unsigned long tmpl, modl;
1234 	int tcr, tcra;		/* target cell rate, and absolute value */
1235 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1236 				   the compiler warning. */
1237 	u32 u32d[4];
1238 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1239 				   warning. How I wish compilers were clever enough to
1240 				   tell which variables can truly be used
1241 				   uninitialized... */
1242 	int inuse;		/* tx or rx vc already in use by another vcc */
1243 	short vpi = vcc->vpi;
1244 	int vci = vcc->vci;
1245 
1246 	card = (ns_dev *) vcc->dev->dev_data;
1247 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1248 	       vci);
1249 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1250 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1251 		return -EINVAL;
1252 	}
1253 
1254 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1255 	vcc->dev_data = vc;
1256 
1257 	inuse = 0;
1258 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1259 		inuse = 1;
1260 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1261 		inuse += 2;
1262 	if (inuse) {
1263 		printk("nicstar%d: %s vci already in use.\n", card->index,
1264 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1265 		return -EINVAL;
1266 	}
1267 
1268 	set_bit(ATM_VF_ADDR, &vcc->flags);
1269 
1270 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1271 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1272 	   needed to do that. */
1273 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1274 		scq_info *scq;
1275 
1276 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1277 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1278 			/* Check requested cell rate and availability of SCD */
1279 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1280 			    && vcc->qos.txtp.min_pcr == 0) {
1281 				PRINTK
1282 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1283 				     card->index);
1284 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1285 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1286 				return -EINVAL;
1287 			}
1288 
1289 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1290 			tcra = tcr >= 0 ? tcr : -tcr;
1291 
1292 			PRINTK("nicstar%d: target cell rate = %d.\n",
1293 			       card->index, vcc->qos.txtp.max_pcr);
1294 
1295 			tmpl =
1296 			    (unsigned long)tcra *(unsigned long)
1297 			    NS_TST_NUM_ENTRIES;
1298 			modl = tmpl % card->max_pcr;
1299 
1300 			n = (int)(tmpl / card->max_pcr);
1301 			if (tcr > 0) {
1302 				if (modl > 0)
1303 					n++;
1304 			} else if (tcr == 0) {
1305 				if ((n =
1306 				     (card->tst_free_entries -
1307 				      NS_TST_RESERVED)) <= 0) {
1308 					PRINTK
1309 					    ("nicstar%d: no CBR bandwidth free.\n",
1310 					     card->index);
1311 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1312 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1313 					return -EINVAL;
1314 				}
1315 			}
1316 
1317 			if (n == 0) {
1318 				printk
1319 				    ("nicstar%d: selected bandwidth < granularity.\n",
1320 				     card->index);
1321 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1322 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1323 				return -EINVAL;
1324 			}
1325 
1326 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1327 				PRINTK
1328 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1329 				     card->index);
1330 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1331 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1332 				return -EINVAL;
1333 			} else
1334 				card->tst_free_entries -= n;
1335 
1336 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1337 				card->index, n);
1338 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1339 				if (card->scd2vc[frscdi] == NULL) {
1340 					card->scd2vc[frscdi] = vc;
1341 					break;
1342 				}
1343 			}
1344 			if (frscdi == NS_FRSCD_NUM) {
1345 				PRINTK
1346 				    ("nicstar%d: no SCD available for CBR channel.\n",
1347 				     card->index);
1348 				card->tst_free_entries += n;
1349 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1350 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1351 				return -EBUSY;
1352 			}
1353 
1354 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1355 
1356 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1357 			if (scq == NULL) {
1358 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1359 				       card->index);
1360 				card->scd2vc[frscdi] = NULL;
1361 				card->tst_free_entries += n;
1362 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1363 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1364 				return -ENOMEM;
1365 			}
1366 			vc->scq = scq;
1367 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1368 			u32d[1] = (u32) 0x00000000;
1369 			u32d[2] = (u32) 0xffffffff;
1370 			u32d[3] = (u32) 0x00000000;
1371 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1372 
1373 			fill_tst(card, n, vc);
1374 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1375 			vc->cbr_scd = 0x00000000;
1376 			vc->scq = card->scq0;
1377 		}
1378 
1379 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1380 			vc->tx = 1;
1381 			vc->tx_vcc = vcc;
1382 			vc->tbd_count = 0;
1383 		}
1384 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1385 			u32 status;
1386 
1387 			vc->rx = 1;
1388 			vc->rx_vcc = vcc;
1389 			vc->rx_iov = NULL;
1390 
1391 			/* Open the connection in hardware */
1392 			if (vcc->qos.aal == ATM_AAL5)
1393 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1394 			else	/* vcc->qos.aal == ATM_AAL0 */
1395 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1396 #ifdef RCQ_SUPPORT
1397 			status |= NS_RCTE_RAWCELLINTEN;
1398 #endif /* RCQ_SUPPORT */
1399 			ns_write_sram(card,
1400 				      NS_RCT +
1401 				      (vpi << card->vcibits | vci) *
1402 				      NS_RCT_ENTRY_SIZE, &status, 1);
1403 		}
1404 
1405 	}
1406 
1407 	set_bit(ATM_VF_READY, &vcc->flags);
1408 	return 0;
1409 }
1410 
1411 static void ns_close(struct atm_vcc *vcc)
1412 {
1413 	vc_map *vc;
1414 	ns_dev *card;
1415 	u32 data;
1416 	int i;
1417 
1418 	vc = vcc->dev_data;
1419 	card = vcc->dev->dev_data;
1420 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1421 	       (int)vcc->vpi, vcc->vci);
1422 
1423 	clear_bit(ATM_VF_READY, &vcc->flags);
1424 
1425 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1426 		u32 addr;
1427 		unsigned long flags;
1428 
1429 		addr =
1430 		    NS_RCT +
1431 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1432 		spin_lock_irqsave(&card->res_lock, flags);
1433 		while (CMD_BUSY(card)) ;
1434 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1435 		       card->membase + CMD);
1436 		spin_unlock_irqrestore(&card->res_lock, flags);
1437 
1438 		vc->rx = 0;
1439 		if (vc->rx_iov != NULL) {
1440 			struct sk_buff *iovb;
1441 			u32 stat;
1442 
1443 			stat = readl(card->membase + STAT);
1444 			card->sbfqc = ns_stat_sfbqc_get(stat);
1445 			card->lbfqc = ns_stat_lfbqc_get(stat);
1446 
1447 			PRINTK
1448 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1449 			     card->index);
1450 			iovb = vc->rx_iov;
1451 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1452 					      NS_PRV_IOVCNT(iovb));
1453 			NS_PRV_IOVCNT(iovb) = 0;
1454 			spin_lock_irqsave(&card->int_lock, flags);
1455 			recycle_iov_buf(card, iovb);
1456 			spin_unlock_irqrestore(&card->int_lock, flags);
1457 			vc->rx_iov = NULL;
1458 		}
1459 	}
1460 
1461 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1462 		vc->tx = 0;
1463 	}
1464 
1465 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1466 		unsigned long flags;
1467 		ns_scqe *scqep;
1468 		scq_info *scq;
1469 
1470 		scq = vc->scq;
1471 
1472 		for (;;) {
1473 			spin_lock_irqsave(&scq->lock, flags);
1474 			scqep = scq->next;
1475 			if (scqep == scq->base)
1476 				scqep = scq->last;
1477 			else
1478 				scqep--;
1479 			if (scqep == scq->tail) {
1480 				spin_unlock_irqrestore(&scq->lock, flags);
1481 				break;
1482 			}
1483 			/* If the last entry is not a TSR, place one in the SCQ in order to
1484 			   be able to completely drain it and then close. */
1485 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1486 				ns_scqe tsr;
1487 				u32 scdi, scqi;
1488 				u32 data;
1489 				int index;
1490 
1491 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1492 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1493 				scqi = scq->next - scq->base;
1494 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1495 				tsr.word_3 = 0x00000000;
1496 				tsr.word_4 = 0x00000000;
1497 				*scq->next = tsr;
1498 				index = (int)scqi;
1499 				scq->skb[index] = NULL;
1500 				if (scq->next == scq->last)
1501 					scq->next = scq->base;
1502 				else
1503 					scq->next++;
1504 				data = scq_virt_to_bus(scq, scq->next);
1505 				ns_write_sram(card, scq->scd, &data, 1);
1506 			}
1507 			spin_unlock_irqrestore(&scq->lock, flags);
1508 			schedule();
1509 		}
1510 
1511 		/* Free all TST entries */
1512 		data = NS_TST_OPCODE_VARIABLE;
1513 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1514 			if (card->tste2vc[i] == vc) {
1515 				ns_write_sram(card, card->tst_addr + i, &data,
1516 					      1);
1517 				card->tste2vc[i] = NULL;
1518 				card->tst_free_entries++;
1519 			}
1520 		}
1521 
1522 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1523 		free_scq(card, vc->scq, vcc);
1524 	}
1525 
1526 	/* remove all references to vcc before deleting it */
1527 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1528 		unsigned long flags;
1529 		scq_info *scq = card->scq0;
1530 
1531 		spin_lock_irqsave(&scq->lock, flags);
1532 
1533 		for (i = 0; i < scq->num_entries; i++) {
1534 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1535 				ATM_SKB(scq->skb[i])->vcc = NULL;
1536 				atm_return(vcc, scq->skb[i]->truesize);
1537 				PRINTK
1538 				    ("nicstar: deleted pending vcc mapping\n");
1539 			}
1540 		}
1541 
1542 		spin_unlock_irqrestore(&scq->lock, flags);
1543 	}
1544 
1545 	vcc->dev_data = NULL;
1546 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1547 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1548 
1549 #ifdef RX_DEBUG
1550 	{
1551 		u32 stat, cfg;
1552 		stat = readl(card->membase + STAT);
1553 		cfg = readl(card->membase + CFG);
1554 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1555 		printk
1556 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1557 		     card->tsq.base, card->tsq.next,
1558 		     card->tsq.last, readl(card->membase + TSQT));
1559 		printk
1560 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1561 		     card->rsq.base, card->rsq.next,
1562 		     card->rsq.last, readl(card->membase + RSQT));
1563 		printk("Empty free buffer queue interrupt %s \n",
1564 		       card->efbie ? "enabled" : "disabled");
1565 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1566 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1567 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1568 		printk("hbpool.count = %d  iovpool.count = %d \n",
1569 		       card->hbpool.count, card->iovpool.count);
1570 	}
1571 #endif /* RX_DEBUG */
1572 }
1573 
1574 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1575 {
1576 	u32 new_tst;
1577 	unsigned long cl;
1578 	int e, r;
1579 	u32 data;
1580 
1581 	/* It would be very complicated to keep the two TSTs synchronized while
1582 	   assuring that writes are only made to the inactive TST. So, for now I
1583 	   will use only one TST. If problems occur, I will change this again */
1584 
1585 	new_tst = card->tst_addr;
1586 
1587 	/* Fill procedure */
1588 
1589 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1590 		if (card->tste2vc[e] == NULL)
1591 			break;
1592 	}
1593 	if (e == NS_TST_NUM_ENTRIES) {
1594 		printk("nicstar%d: No free TST entries found. \n", card->index);
1595 		return;
1596 	}
1597 
1598 	r = n;
1599 	cl = NS_TST_NUM_ENTRIES;
1600 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1601 
1602 	while (r > 0) {
1603 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1604 			card->tste2vc[e] = vc;
1605 			ns_write_sram(card, new_tst + e, &data, 1);
1606 			cl -= NS_TST_NUM_ENTRIES;
1607 			r--;
1608 		}
1609 
1610 		if (++e == NS_TST_NUM_ENTRIES) {
1611 			e = 0;
1612 		}
1613 		cl += n;
1614 	}
1615 
1616 	/* End of fill procedure */
1617 
1618 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1619 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1620 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1621 	card->tst_addr = new_tst;
1622 }
1623 
1624 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1625 {
1626 	ns_dev *card;
1627 	vc_map *vc;
1628 	scq_info *scq;
1629 	unsigned long buflen;
1630 	ns_scqe scqe;
1631 	u32 flags;		/* TBD flags, not CPU flags */
1632 
1633 	card = vcc->dev->dev_data;
1634 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1635 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1636 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1637 		       card->index);
1638 		atomic_inc(&vcc->stats->tx_err);
1639 		dev_kfree_skb_any(skb);
1640 		return -EINVAL;
1641 	}
1642 
1643 	if (!vc->tx) {
1644 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1645 		       card->index);
1646 		atomic_inc(&vcc->stats->tx_err);
1647 		dev_kfree_skb_any(skb);
1648 		return -EINVAL;
1649 	}
1650 
1651 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1652 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1653 		       card->index);
1654 		atomic_inc(&vcc->stats->tx_err);
1655 		dev_kfree_skb_any(skb);
1656 		return -EINVAL;
1657 	}
1658 
1659 	if (skb_shinfo(skb)->nr_frags != 0) {
1660 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1661 		atomic_inc(&vcc->stats->tx_err);
1662 		dev_kfree_skb_any(skb);
1663 		return -EINVAL;
1664 	}
1665 
1666 	ATM_SKB(skb)->vcc = vcc;
1667 
1668 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1669 					 skb->len, DMA_TO_DEVICE);
1670 
1671 	if (vcc->qos.aal == ATM_AAL5) {
1672 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1673 		flags = NS_TBD_AAL5;
1674 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1675 		scqe.word_3 = cpu_to_le32(skb->len);
1676 		scqe.word_4 =
1677 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1678 				    ATM_SKB(skb)->
1679 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1680 		flags |= NS_TBD_EOPDU;
1681 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1682 
1683 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1684 		flags = NS_TBD_AAL0;
1685 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1686 		scqe.word_3 = cpu_to_le32(0x00000000);
1687 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1688 			flags |= NS_TBD_EOPDU;
1689 		scqe.word_4 =
1690 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1691 		/* Force the VPI/VCI to be the same as in VCC struct */
1692 		scqe.word_4 |=
1693 		    cpu_to_le32((((u32) vcc->
1694 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1695 							      vci) <<
1696 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1697 	}
1698 
1699 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1700 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1701 		scq = ((vc_map *) vcc->dev_data)->scq;
1702 	} else {
1703 		scqe.word_1 =
1704 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1705 		scq = card->scq0;
1706 	}
1707 
1708 	if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
1709 		atomic_inc(&vcc->stats->tx_err);
1710 		dev_kfree_skb_any(skb);
1711 		return -EIO;
1712 	}
1713 	atomic_inc(&vcc->stats->tx);
1714 
1715 	return 0;
1716 }
1717 
1718 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1719 		     struct sk_buff *skb)
1720 {
1721 	unsigned long flags;
1722 	ns_scqe tsr;
1723 	u32 scdi, scqi;
1724 	int scq_is_vbr;
1725 	u32 data;
1726 	int index;
1727 
1728 	spin_lock_irqsave(&scq->lock, flags);
1729 	while (scq->tail == scq->next) {
1730 		if (in_interrupt()) {
1731 			spin_unlock_irqrestore(&scq->lock, flags);
1732 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1733 			return 1;
1734 		}
1735 
1736 		scq->full = 1;
1737 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1738 							  scq->tail != scq->next,
1739 							  scq->lock,
1740 							  SCQFULL_TIMEOUT);
1741 
1742 		if (scq->full) {
1743 			spin_unlock_irqrestore(&scq->lock, flags);
1744 			printk("nicstar%d: Timeout pushing TBD.\n",
1745 			       card->index);
1746 			return 1;
1747 		}
1748 	}
1749 	*scq->next = *tbd;
1750 	index = (int)(scq->next - scq->base);
1751 	scq->skb[index] = skb;
1752 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1753 		card->index, skb, index);
1754 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1755 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1756 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1757 		scq->next);
1758 	if (scq->next == scq->last)
1759 		scq->next = scq->base;
1760 	else
1761 		scq->next++;
1762 
1763 	vc->tbd_count++;
1764 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1765 		scq->tbd_count++;
1766 		scq_is_vbr = 1;
1767 	} else
1768 		scq_is_vbr = 0;
1769 
1770 	if (vc->tbd_count >= MAX_TBD_PER_VC
1771 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1772 		int has_run = 0;
1773 
1774 		while (scq->tail == scq->next) {
1775 			if (in_interrupt()) {
1776 				data = scq_virt_to_bus(scq, scq->next);
1777 				ns_write_sram(card, scq->scd, &data, 1);
1778 				spin_unlock_irqrestore(&scq->lock, flags);
1779 				printk("nicstar%d: Error pushing TSR.\n",
1780 				       card->index);
1781 				return 0;
1782 			}
1783 
1784 			scq->full = 1;
1785 			if (has_run++)
1786 				break;
1787 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1788 								  scq->tail != scq->next,
1789 								  scq->lock,
1790 								  SCQFULL_TIMEOUT);
1791 		}
1792 
1793 		if (!scq->full) {
1794 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1795 			if (scq_is_vbr)
1796 				scdi = NS_TSR_SCDISVBR;
1797 			else
1798 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1799 			scqi = scq->next - scq->base;
1800 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1801 			tsr.word_3 = 0x00000000;
1802 			tsr.word_4 = 0x00000000;
1803 
1804 			*scq->next = tsr;
1805 			index = (int)scqi;
1806 			scq->skb[index] = NULL;
1807 			XPRINTK
1808 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1809 			     card->index, le32_to_cpu(tsr.word_1),
1810 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1811 			     le32_to_cpu(tsr.word_4), scq->next);
1812 			if (scq->next == scq->last)
1813 				scq->next = scq->base;
1814 			else
1815 				scq->next++;
1816 			vc->tbd_count = 0;
1817 			scq->tbd_count = 0;
1818 		} else
1819 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1820 			       card->index);
1821 	}
1822 	data = scq_virt_to_bus(scq, scq->next);
1823 	ns_write_sram(card, scq->scd, &data, 1);
1824 
1825 	spin_unlock_irqrestore(&scq->lock, flags);
1826 
1827 	return 0;
1828 }
1829 
1830 static void process_tsq(ns_dev * card)
1831 {
1832 	u32 scdi;
1833 	scq_info *scq;
1834 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1835 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1836 
1837 	serviced_entries = 0;
1838 
1839 	if (card->tsq.next == card->tsq.last)
1840 		one_ahead = card->tsq.base;
1841 	else
1842 		one_ahead = card->tsq.next + 1;
1843 
1844 	if (one_ahead == card->tsq.last)
1845 		two_ahead = card->tsq.base;
1846 	else
1847 		two_ahead = one_ahead + 1;
1848 
1849 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1850 	       !ns_tsi_isempty(two_ahead))
1851 		/* At most two empty, as stated in the 77201 errata */
1852 	{
1853 		serviced_entries = 1;
1854 
1855 		/* Skip the one or two possible empty entries */
1856 		while (ns_tsi_isempty(card->tsq.next)) {
1857 			if (card->tsq.next == card->tsq.last)
1858 				card->tsq.next = card->tsq.base;
1859 			else
1860 				card->tsq.next++;
1861 		}
1862 
1863 		if (!ns_tsi_tmrof(card->tsq.next)) {
1864 			scdi = ns_tsi_getscdindex(card->tsq.next);
1865 			if (scdi == NS_TSI_SCDISVBR)
1866 				scq = card->scq0;
1867 			else {
1868 				if (card->scd2vc[scdi] == NULL) {
1869 					printk
1870 					    ("nicstar%d: could not find VC from SCD index.\n",
1871 					     card->index);
1872 					ns_tsi_init(card->tsq.next);
1873 					return;
1874 				}
1875 				scq = card->scd2vc[scdi]->scq;
1876 			}
1877 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1878 			scq->full = 0;
1879 			wake_up_interruptible(&(scq->scqfull_waitq));
1880 		}
1881 
1882 		ns_tsi_init(card->tsq.next);
1883 		previous = card->tsq.next;
1884 		if (card->tsq.next == card->tsq.last)
1885 			card->tsq.next = card->tsq.base;
1886 		else
1887 			card->tsq.next++;
1888 
1889 		if (card->tsq.next == card->tsq.last)
1890 			one_ahead = card->tsq.base;
1891 		else
1892 			one_ahead = card->tsq.next + 1;
1893 
1894 		if (one_ahead == card->tsq.last)
1895 			two_ahead = card->tsq.base;
1896 		else
1897 			two_ahead = one_ahead + 1;
1898 	}
1899 
1900 	if (serviced_entries)
1901 		writel(PTR_DIFF(previous, card->tsq.base),
1902 		       card->membase + TSQH);
1903 }
1904 
1905 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1906 {
1907 	struct atm_vcc *vcc;
1908 	struct sk_buff *skb;
1909 	int i;
1910 	unsigned long flags;
1911 
1912 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1913 		card->index, scq, pos);
1914 	if (pos >= scq->num_entries) {
1915 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1916 		return;
1917 	}
1918 
1919 	spin_lock_irqsave(&scq->lock, flags);
1920 	i = (int)(scq->tail - scq->base);
1921 	if (++i == scq->num_entries)
1922 		i = 0;
1923 	while (i != pos) {
1924 		skb = scq->skb[i];
1925 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1926 			card->index, skb, i);
1927 		if (skb != NULL) {
1928 			dma_unmap_single(&card->pcidev->dev,
1929 					 NS_PRV_DMA(skb),
1930 					 skb->len,
1931 					 DMA_TO_DEVICE);
1932 			vcc = ATM_SKB(skb)->vcc;
1933 			if (vcc && vcc->pop != NULL) {
1934 				vcc->pop(vcc, skb);
1935 			} else {
1936 				dev_kfree_skb_irq(skb);
1937 			}
1938 			scq->skb[i] = NULL;
1939 		}
1940 		if (++i == scq->num_entries)
1941 			i = 0;
1942 	}
1943 	scq->tail = scq->base + pos;
1944 	spin_unlock_irqrestore(&scq->lock, flags);
1945 }
1946 
1947 static void process_rsq(ns_dev * card)
1948 {
1949 	ns_rsqe *previous;
1950 
1951 	if (!ns_rsqe_valid(card->rsq.next))
1952 		return;
1953 	do {
1954 		dequeue_rx(card, card->rsq.next);
1955 		ns_rsqe_init(card->rsq.next);
1956 		previous = card->rsq.next;
1957 		if (card->rsq.next == card->rsq.last)
1958 			card->rsq.next = card->rsq.base;
1959 		else
1960 			card->rsq.next++;
1961 	} while (ns_rsqe_valid(card->rsq.next));
1962 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1963 }
1964 
1965 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1966 {
1967 	u32 vpi, vci;
1968 	vc_map *vc;
1969 	struct sk_buff *iovb;
1970 	struct iovec *iov;
1971 	struct atm_vcc *vcc;
1972 	struct sk_buff *skb;
1973 	unsigned short aal5_len;
1974 	int len;
1975 	u32 stat;
1976 	u32 id;
1977 
1978 	stat = readl(card->membase + STAT);
1979 	card->sbfqc = ns_stat_sfbqc_get(stat);
1980 	card->lbfqc = ns_stat_lfbqc_get(stat);
1981 
1982 	id = le32_to_cpu(rsqe->buffer_handle);
1983 	skb = idr_remove(&card->idr, id);
1984 	if (!skb) {
1985 		RXPRINTK(KERN_ERR
1986 			 "nicstar%d: skb not found!\n", card->index);
1987 		return;
1988 	}
1989 	dma_sync_single_for_cpu(&card->pcidev->dev,
1990 				NS_PRV_DMA(skb),
1991 				(NS_PRV_BUFTYPE(skb) == BUF_SM
1992 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1993 				DMA_FROM_DEVICE);
1994 	dma_unmap_single(&card->pcidev->dev,
1995 			 NS_PRV_DMA(skb),
1996 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
1997 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1998 			 DMA_FROM_DEVICE);
1999 	vpi = ns_rsqe_vpi(rsqe);
2000 	vci = ns_rsqe_vci(rsqe);
2001 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2002 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2003 		       card->index, vpi, vci);
2004 		recycle_rx_buf(card, skb);
2005 		return;
2006 	}
2007 
2008 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2009 	if (!vc->rx) {
2010 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2011 			 card->index, vpi, vci);
2012 		recycle_rx_buf(card, skb);
2013 		return;
2014 	}
2015 
2016 	vcc = vc->rx_vcc;
2017 
2018 	if (vcc->qos.aal == ATM_AAL0) {
2019 		struct sk_buff *sb;
2020 		unsigned char *cell;
2021 		int i;
2022 
2023 		cell = skb->data;
2024 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2025 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2026 			if (!sb) {
2027 				printk
2028 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2029 				     card->index);
2030 				atomic_add(i, &vcc->stats->rx_drop);
2031 				break;
2032 			}
2033 			if (!atm_charge(vcc, sb->truesize)) {
2034 				RXPRINTK
2035 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2036 				     card->index);
2037 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2038 				dev_kfree_skb_any(sb);
2039 				break;
2040 			}
2041 			/* Rebuild the header */
2042 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2043 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2044 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2045 				*((u32 *) sb->data) |= 0x00000002;
2046 			skb_put(sb, NS_AAL0_HEADER);
2047 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2048 			skb_put(sb, ATM_CELL_PAYLOAD);
2049 			ATM_SKB(sb)->vcc = vcc;
2050 			__net_timestamp(sb);
2051 			vcc->push(vcc, sb);
2052 			atomic_inc(&vcc->stats->rx);
2053 			cell += ATM_CELL_PAYLOAD;
2054 		}
2055 
2056 		recycle_rx_buf(card, skb);
2057 		return;
2058 	}
2059 
2060 	/* To reach this point, the AAL layer can only be AAL5 */
2061 
2062 	if ((iovb = vc->rx_iov) == NULL) {
2063 		iovb = skb_dequeue(&(card->iovpool.queue));
2064 		if (iovb == NULL) {	/* No buffers in the queue */
2065 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2066 			if (iovb == NULL) {
2067 				printk("nicstar%d: Out of iovec buffers.\n",
2068 				       card->index);
2069 				atomic_inc(&vcc->stats->rx_drop);
2070 				recycle_rx_buf(card, skb);
2071 				return;
2072 			}
2073 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2074 		} else if (--card->iovpool.count < card->iovnr.min) {
2075 			struct sk_buff *new_iovb;
2076 			if ((new_iovb =
2077 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2078 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2079 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2080 				card->iovpool.count++;
2081 			}
2082 		}
2083 		vc->rx_iov = iovb;
2084 		NS_PRV_IOVCNT(iovb) = 0;
2085 		iovb->len = 0;
2086 		iovb->data = iovb->head;
2087 		skb_reset_tail_pointer(iovb);
2088 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2089 		   buffer is stored as iovec base, NOT a pointer to the
2090 		   small or large buffer itself. */
2091 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2092 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2093 		atomic_inc(&vcc->stats->rx_err);
2094 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2095 				      NS_MAX_IOVECS);
2096 		NS_PRV_IOVCNT(iovb) = 0;
2097 		iovb->len = 0;
2098 		iovb->data = iovb->head;
2099 		skb_reset_tail_pointer(iovb);
2100 	}
2101 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2102 	iov->iov_base = (void *)skb;
2103 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2104 	iovb->len += iov->iov_len;
2105 
2106 #ifdef EXTRA_DEBUG
2107 	if (NS_PRV_IOVCNT(iovb) == 1) {
2108 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2109 			printk
2110 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2111 			     card->index);
2112 			which_list(card, skb);
2113 			atomic_inc(&vcc->stats->rx_err);
2114 			recycle_rx_buf(card, skb);
2115 			vc->rx_iov = NULL;
2116 			recycle_iov_buf(card, iovb);
2117 			return;
2118 		}
2119 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2120 
2121 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2122 			printk
2123 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2124 			     card->index);
2125 			which_list(card, skb);
2126 			atomic_inc(&vcc->stats->rx_err);
2127 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2128 					      NS_PRV_IOVCNT(iovb));
2129 			vc->rx_iov = NULL;
2130 			recycle_iov_buf(card, iovb);
2131 			return;
2132 		}
2133 	}
2134 #endif /* EXTRA_DEBUG */
2135 
2136 	if (ns_rsqe_eopdu(rsqe)) {
2137 		/* This works correctly regardless of the endianness of the host */
2138 		unsigned char *L1L2 = (unsigned char *)
2139 						(skb->data + iov->iov_len - 6);
2140 		aal5_len = L1L2[0] << 8 | L1L2[1];
2141 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2142 		if (ns_rsqe_crcerr(rsqe) ||
2143 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2144 			printk("nicstar%d: AAL5 CRC error", card->index);
2145 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2146 				printk(" - PDU size mismatch.\n");
2147 			else
2148 				printk(".\n");
2149 			atomic_inc(&vcc->stats->rx_err);
2150 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2151 					      NS_PRV_IOVCNT(iovb));
2152 			vc->rx_iov = NULL;
2153 			recycle_iov_buf(card, iovb);
2154 			return;
2155 		}
2156 
2157 		/* By this point we (hopefully) have a complete SDU without errors. */
2158 
2159 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2160 			/* skb points to a small buffer */
2161 			if (!atm_charge(vcc, skb->truesize)) {
2162 				push_rxbufs(card, skb);
2163 				atomic_inc(&vcc->stats->rx_drop);
2164 			} else {
2165 				skb_put(skb, len);
2166 				dequeue_sm_buf(card, skb);
2167 				ATM_SKB(skb)->vcc = vcc;
2168 				__net_timestamp(skb);
2169 				vcc->push(vcc, skb);
2170 				atomic_inc(&vcc->stats->rx);
2171 			}
2172 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2173 			struct sk_buff *sb;
2174 
2175 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2176 			/* skb points to a large buffer */
2177 
2178 			if (len <= NS_SMBUFSIZE) {
2179 				if (!atm_charge(vcc, sb->truesize)) {
2180 					push_rxbufs(card, sb);
2181 					atomic_inc(&vcc->stats->rx_drop);
2182 				} else {
2183 					skb_put(sb, len);
2184 					dequeue_sm_buf(card, sb);
2185 					ATM_SKB(sb)->vcc = vcc;
2186 					__net_timestamp(sb);
2187 					vcc->push(vcc, sb);
2188 					atomic_inc(&vcc->stats->rx);
2189 				}
2190 
2191 				push_rxbufs(card, skb);
2192 
2193 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2194 
2195 				if (!atm_charge(vcc, skb->truesize)) {
2196 					push_rxbufs(card, skb);
2197 					atomic_inc(&vcc->stats->rx_drop);
2198 				} else {
2199 					dequeue_lg_buf(card, skb);
2200 					skb_push(skb, NS_SMBUFSIZE);
2201 					skb_copy_from_linear_data(sb, skb->data,
2202 								  NS_SMBUFSIZE);
2203 					skb_put(skb, len - NS_SMBUFSIZE);
2204 					ATM_SKB(skb)->vcc = vcc;
2205 					__net_timestamp(skb);
2206 					vcc->push(vcc, skb);
2207 					atomic_inc(&vcc->stats->rx);
2208 				}
2209 
2210 				push_rxbufs(card, sb);
2211 
2212 			}
2213 
2214 		} else {	/* Must push a huge buffer */
2215 
2216 			struct sk_buff *hb, *sb, *lb;
2217 			int remaining, tocopy;
2218 			int j;
2219 
2220 			hb = skb_dequeue(&(card->hbpool.queue));
2221 			if (hb == NULL) {	/* No buffers in the queue */
2222 
2223 				hb = dev_alloc_skb(NS_HBUFSIZE);
2224 				if (hb == NULL) {
2225 					printk
2226 					    ("nicstar%d: Out of huge buffers.\n",
2227 					     card->index);
2228 					atomic_inc(&vcc->stats->rx_drop);
2229 					recycle_iovec_rx_bufs(card,
2230 							      (struct iovec *)
2231 							      iovb->data,
2232 							      NS_PRV_IOVCNT(iovb));
2233 					vc->rx_iov = NULL;
2234 					recycle_iov_buf(card, iovb);
2235 					return;
2236 				} else if (card->hbpool.count < card->hbnr.min) {
2237 					struct sk_buff *new_hb;
2238 					if ((new_hb =
2239 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2240 					    NULL) {
2241 						skb_queue_tail(&card->hbpool.
2242 							       queue, new_hb);
2243 						card->hbpool.count++;
2244 					}
2245 				}
2246 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2247 			} else if (--card->hbpool.count < card->hbnr.min) {
2248 				struct sk_buff *new_hb;
2249 				if ((new_hb =
2250 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2251 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2252 					skb_queue_tail(&card->hbpool.queue,
2253 						       new_hb);
2254 					card->hbpool.count++;
2255 				}
2256 				if (card->hbpool.count < card->hbnr.min) {
2257 					if ((new_hb =
2258 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2259 					    NULL) {
2260 						NS_PRV_BUFTYPE(new_hb) =
2261 						    BUF_NONE;
2262 						skb_queue_tail(&card->hbpool.
2263 							       queue, new_hb);
2264 						card->hbpool.count++;
2265 					}
2266 				}
2267 			}
2268 
2269 			iov = (struct iovec *)iovb->data;
2270 
2271 			if (!atm_charge(vcc, hb->truesize)) {
2272 				recycle_iovec_rx_bufs(card, iov,
2273 						      NS_PRV_IOVCNT(iovb));
2274 				if (card->hbpool.count < card->hbnr.max) {
2275 					skb_queue_tail(&card->hbpool.queue, hb);
2276 					card->hbpool.count++;
2277 				} else
2278 					dev_kfree_skb_any(hb);
2279 				atomic_inc(&vcc->stats->rx_drop);
2280 			} else {
2281 				/* Copy the small buffer to the huge buffer */
2282 				sb = (struct sk_buff *)iov->iov_base;
2283 				skb_copy_from_linear_data(sb, hb->data,
2284 							  iov->iov_len);
2285 				skb_put(hb, iov->iov_len);
2286 				remaining = len - iov->iov_len;
2287 				iov++;
2288 				/* Free the small buffer */
2289 				push_rxbufs(card, sb);
2290 
2291 				/* Copy all large buffers to the huge buffer and free them */
2292 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2293 					lb = (struct sk_buff *)iov->iov_base;
2294 					tocopy =
2295 					    min_t(int, remaining, iov->iov_len);
2296 					skb_copy_from_linear_data(lb,
2297 								  skb_tail_pointer
2298 								  (hb), tocopy);
2299 					skb_put(hb, tocopy);
2300 					iov++;
2301 					remaining -= tocopy;
2302 					push_rxbufs(card, lb);
2303 				}
2304 #ifdef EXTRA_DEBUG
2305 				if (remaining != 0 || hb->len != len)
2306 					printk
2307 					    ("nicstar%d: Huge buffer len mismatch.\n",
2308 					     card->index);
2309 #endif /* EXTRA_DEBUG */
2310 				ATM_SKB(hb)->vcc = vcc;
2311 				__net_timestamp(hb);
2312 				vcc->push(vcc, hb);
2313 				atomic_inc(&vcc->stats->rx);
2314 			}
2315 		}
2316 
2317 		vc->rx_iov = NULL;
2318 		recycle_iov_buf(card, iovb);
2319 	}
2320 
2321 }
2322 
2323 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2324 {
2325 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2326 		printk("nicstar%d: What kind of rx buffer is this?\n",
2327 		       card->index);
2328 		dev_kfree_skb_any(skb);
2329 	} else
2330 		push_rxbufs(card, skb);
2331 }
2332 
2333 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2334 {
2335 	while (count-- > 0)
2336 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2337 }
2338 
2339 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2340 {
2341 	if (card->iovpool.count < card->iovnr.max) {
2342 		skb_queue_tail(&card->iovpool.queue, iovb);
2343 		card->iovpool.count++;
2344 	} else
2345 		dev_kfree_skb_any(iovb);
2346 }
2347 
2348 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2349 {
2350 	skb_unlink(sb, &card->sbpool.queue);
2351 	if (card->sbfqc < card->sbnr.init) {
2352 		struct sk_buff *new_sb;
2353 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2354 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2355 			skb_queue_tail(&card->sbpool.queue, new_sb);
2356 			skb_reserve(new_sb, NS_AAL0_HEADER);
2357 			push_rxbufs(card, new_sb);
2358 		}
2359 	}
2360 	if (card->sbfqc < card->sbnr.init)
2361 	{
2362 		struct sk_buff *new_sb;
2363 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2364 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2365 			skb_queue_tail(&card->sbpool.queue, new_sb);
2366 			skb_reserve(new_sb, NS_AAL0_HEADER);
2367 			push_rxbufs(card, new_sb);
2368 		}
2369 	}
2370 }
2371 
2372 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2373 {
2374 	skb_unlink(lb, &card->lbpool.queue);
2375 	if (card->lbfqc < card->lbnr.init) {
2376 		struct sk_buff *new_lb;
2377 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2378 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2379 			skb_queue_tail(&card->lbpool.queue, new_lb);
2380 			skb_reserve(new_lb, NS_SMBUFSIZE);
2381 			push_rxbufs(card, new_lb);
2382 		}
2383 	}
2384 	if (card->lbfqc < card->lbnr.init)
2385 	{
2386 		struct sk_buff *new_lb;
2387 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2388 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2389 			skb_queue_tail(&card->lbpool.queue, new_lb);
2390 			skb_reserve(new_lb, NS_SMBUFSIZE);
2391 			push_rxbufs(card, new_lb);
2392 		}
2393 	}
2394 }
2395 
2396 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2397 {
2398 	u32 stat;
2399 	ns_dev *card;
2400 	int left;
2401 
2402 	left = (int)*pos;
2403 	card = (ns_dev *) dev->dev_data;
2404 	stat = readl(card->membase + STAT);
2405 	if (!left--)
2406 		return sprintf(page, "Pool   count    min   init    max \n");
2407 	if (!left--)
2408 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2409 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2410 			       card->sbnr.init, card->sbnr.max);
2411 	if (!left--)
2412 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2413 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2414 			       card->lbnr.init, card->lbnr.max);
2415 	if (!left--)
2416 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2417 			       card->hbpool.count, card->hbnr.min,
2418 			       card->hbnr.init, card->hbnr.max);
2419 	if (!left--)
2420 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2421 			       card->iovpool.count, card->iovnr.min,
2422 			       card->iovnr.init, card->iovnr.max);
2423 	if (!left--) {
2424 		int retval;
2425 		retval =
2426 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2427 		card->intcnt = 0;
2428 		return retval;
2429 	}
2430 #if 0
2431 	/* Dump 25.6 Mbps PHY registers */
2432 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2433 	   here just in case it's needed for debugging. */
2434 	if (card->max_pcr == ATM_25_PCR && !left--) {
2435 		u32 phy_regs[4];
2436 		u32 i;
2437 
2438 		for (i = 0; i < 4; i++) {
2439 			while (CMD_BUSY(card)) ;
2440 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2441 			       card->membase + CMD);
2442 			while (CMD_BUSY(card)) ;
2443 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2444 		}
2445 
2446 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2447 			       phy_regs[0], phy_regs[1], phy_regs[2],
2448 			       phy_regs[3]);
2449 	}
2450 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2451 #if 0
2452 	/* Dump TST */
2453 	if (left-- < NS_TST_NUM_ENTRIES) {
2454 		if (card->tste2vc[left + 1] == NULL)
2455 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2456 		else
2457 			return sprintf(page, "%5d - %d %d \n", left + 1,
2458 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2459 				       card->tste2vc[left + 1]->tx_vcc->vci);
2460 	}
2461 #endif /* 0 */
2462 	return 0;
2463 }
2464 
2465 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2466 {
2467 	ns_dev *card;
2468 	pool_levels pl;
2469 	long btype;
2470 	unsigned long flags;
2471 
2472 	card = dev->dev_data;
2473 	switch (cmd) {
2474 	case NS_GETPSTAT:
2475 		if (get_user
2476 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2477 			return -EFAULT;
2478 		switch (pl.buftype) {
2479 		case NS_BUFTYPE_SMALL:
2480 			pl.count =
2481 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2482 			pl.level.min = card->sbnr.min;
2483 			pl.level.init = card->sbnr.init;
2484 			pl.level.max = card->sbnr.max;
2485 			break;
2486 
2487 		case NS_BUFTYPE_LARGE:
2488 			pl.count =
2489 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2490 			pl.level.min = card->lbnr.min;
2491 			pl.level.init = card->lbnr.init;
2492 			pl.level.max = card->lbnr.max;
2493 			break;
2494 
2495 		case NS_BUFTYPE_HUGE:
2496 			pl.count = card->hbpool.count;
2497 			pl.level.min = card->hbnr.min;
2498 			pl.level.init = card->hbnr.init;
2499 			pl.level.max = card->hbnr.max;
2500 			break;
2501 
2502 		case NS_BUFTYPE_IOVEC:
2503 			pl.count = card->iovpool.count;
2504 			pl.level.min = card->iovnr.min;
2505 			pl.level.init = card->iovnr.init;
2506 			pl.level.max = card->iovnr.max;
2507 			break;
2508 
2509 		default:
2510 			return -ENOIOCTLCMD;
2511 
2512 		}
2513 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2514 			return (sizeof(pl));
2515 		else
2516 			return -EFAULT;
2517 
2518 	case NS_SETBUFLEV:
2519 		if (!capable(CAP_NET_ADMIN))
2520 			return -EPERM;
2521 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2522 			return -EFAULT;
2523 		if (pl.level.min >= pl.level.init
2524 		    || pl.level.init >= pl.level.max)
2525 			return -EINVAL;
2526 		if (pl.level.min == 0)
2527 			return -EINVAL;
2528 		switch (pl.buftype) {
2529 		case NS_BUFTYPE_SMALL:
2530 			if (pl.level.max > TOP_SB)
2531 				return -EINVAL;
2532 			card->sbnr.min = pl.level.min;
2533 			card->sbnr.init = pl.level.init;
2534 			card->sbnr.max = pl.level.max;
2535 			break;
2536 
2537 		case NS_BUFTYPE_LARGE:
2538 			if (pl.level.max > TOP_LB)
2539 				return -EINVAL;
2540 			card->lbnr.min = pl.level.min;
2541 			card->lbnr.init = pl.level.init;
2542 			card->lbnr.max = pl.level.max;
2543 			break;
2544 
2545 		case NS_BUFTYPE_HUGE:
2546 			if (pl.level.max > TOP_HB)
2547 				return -EINVAL;
2548 			card->hbnr.min = pl.level.min;
2549 			card->hbnr.init = pl.level.init;
2550 			card->hbnr.max = pl.level.max;
2551 			break;
2552 
2553 		case NS_BUFTYPE_IOVEC:
2554 			if (pl.level.max > TOP_IOVB)
2555 				return -EINVAL;
2556 			card->iovnr.min = pl.level.min;
2557 			card->iovnr.init = pl.level.init;
2558 			card->iovnr.max = pl.level.max;
2559 			break;
2560 
2561 		default:
2562 			return -EINVAL;
2563 
2564 		}
2565 		return 0;
2566 
2567 	case NS_ADJBUFLEV:
2568 		if (!capable(CAP_NET_ADMIN))
2569 			return -EPERM;
2570 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2571 		switch (btype) {
2572 		case NS_BUFTYPE_SMALL:
2573 			while (card->sbfqc < card->sbnr.init) {
2574 				struct sk_buff *sb;
2575 
2576 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2577 				if (sb == NULL)
2578 					return -ENOMEM;
2579 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2580 				skb_queue_tail(&card->sbpool.queue, sb);
2581 				skb_reserve(sb, NS_AAL0_HEADER);
2582 				push_rxbufs(card, sb);
2583 			}
2584 			break;
2585 
2586 		case NS_BUFTYPE_LARGE:
2587 			while (card->lbfqc < card->lbnr.init) {
2588 				struct sk_buff *lb;
2589 
2590 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2591 				if (lb == NULL)
2592 					return -ENOMEM;
2593 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2594 				skb_queue_tail(&card->lbpool.queue, lb);
2595 				skb_reserve(lb, NS_SMBUFSIZE);
2596 				push_rxbufs(card, lb);
2597 			}
2598 			break;
2599 
2600 		case NS_BUFTYPE_HUGE:
2601 			while (card->hbpool.count > card->hbnr.init) {
2602 				struct sk_buff *hb;
2603 
2604 				spin_lock_irqsave(&card->int_lock, flags);
2605 				hb = skb_dequeue(&card->hbpool.queue);
2606 				card->hbpool.count--;
2607 				spin_unlock_irqrestore(&card->int_lock, flags);
2608 				if (hb == NULL)
2609 					printk
2610 					    ("nicstar%d: huge buffer count inconsistent.\n",
2611 					     card->index);
2612 				else
2613 					dev_kfree_skb_any(hb);
2614 
2615 			}
2616 			while (card->hbpool.count < card->hbnr.init) {
2617 				struct sk_buff *hb;
2618 
2619 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2620 				if (hb == NULL)
2621 					return -ENOMEM;
2622 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2623 				spin_lock_irqsave(&card->int_lock, flags);
2624 				skb_queue_tail(&card->hbpool.queue, hb);
2625 				card->hbpool.count++;
2626 				spin_unlock_irqrestore(&card->int_lock, flags);
2627 			}
2628 			break;
2629 
2630 		case NS_BUFTYPE_IOVEC:
2631 			while (card->iovpool.count > card->iovnr.init) {
2632 				struct sk_buff *iovb;
2633 
2634 				spin_lock_irqsave(&card->int_lock, flags);
2635 				iovb = skb_dequeue(&card->iovpool.queue);
2636 				card->iovpool.count--;
2637 				spin_unlock_irqrestore(&card->int_lock, flags);
2638 				if (iovb == NULL)
2639 					printk
2640 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2641 					     card->index);
2642 				else
2643 					dev_kfree_skb_any(iovb);
2644 
2645 			}
2646 			while (card->iovpool.count < card->iovnr.init) {
2647 				struct sk_buff *iovb;
2648 
2649 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2650 				if (iovb == NULL)
2651 					return -ENOMEM;
2652 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2653 				spin_lock_irqsave(&card->int_lock, flags);
2654 				skb_queue_tail(&card->iovpool.queue, iovb);
2655 				card->iovpool.count++;
2656 				spin_unlock_irqrestore(&card->int_lock, flags);
2657 			}
2658 			break;
2659 
2660 		default:
2661 			return -EINVAL;
2662 
2663 		}
2664 		return 0;
2665 
2666 	default:
2667 		if (dev->phy && dev->phy->ioctl) {
2668 			return dev->phy->ioctl(dev, cmd, arg);
2669 		} else {
2670 			printk("nicstar%d: %s == NULL \n", card->index,
2671 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2672 			return -ENOIOCTLCMD;
2673 		}
2674 	}
2675 }
2676 
2677 #ifdef EXTRA_DEBUG
2678 static void which_list(ns_dev * card, struct sk_buff *skb)
2679 {
2680 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2681 }
2682 #endif /* EXTRA_DEBUG */
2683 
2684 static void ns_poll(unsigned long arg)
2685 {
2686 	int i;
2687 	ns_dev *card;
2688 	unsigned long flags;
2689 	u32 stat_r, stat_w;
2690 
2691 	PRINTK("nicstar: Entering ns_poll().\n");
2692 	for (i = 0; i < num_cards; i++) {
2693 		card = cards[i];
2694 		if (spin_is_locked(&card->int_lock)) {
2695 			/* Probably it isn't worth spinning */
2696 			continue;
2697 		}
2698 		spin_lock_irqsave(&card->int_lock, flags);
2699 
2700 		stat_w = 0;
2701 		stat_r = readl(card->membase + STAT);
2702 		if (stat_r & NS_STAT_TSIF)
2703 			stat_w |= NS_STAT_TSIF;
2704 		if (stat_r & NS_STAT_EOPDU)
2705 			stat_w |= NS_STAT_EOPDU;
2706 
2707 		process_tsq(card);
2708 		process_rsq(card);
2709 
2710 		writel(stat_w, card->membase + STAT);
2711 		spin_unlock_irqrestore(&card->int_lock, flags);
2712 	}
2713 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2714 	PRINTK("nicstar: Leaving ns_poll().\n");
2715 }
2716 
2717 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2718 		       unsigned long addr)
2719 {
2720 	ns_dev *card;
2721 	unsigned long flags;
2722 
2723 	card = dev->dev_data;
2724 	spin_lock_irqsave(&card->res_lock, flags);
2725 	while (CMD_BUSY(card)) ;
2726 	writel((u32) value, card->membase + DR0);
2727 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2728 	       card->membase + CMD);
2729 	spin_unlock_irqrestore(&card->res_lock, flags);
2730 }
2731 
2732 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2733 {
2734 	ns_dev *card;
2735 	unsigned long flags;
2736 	u32 data;
2737 
2738 	card = dev->dev_data;
2739 	spin_lock_irqsave(&card->res_lock, flags);
2740 	while (CMD_BUSY(card)) ;
2741 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2742 	       card->membase + CMD);
2743 	while (CMD_BUSY(card)) ;
2744 	data = readl(card->membase + DR0) & 0x000000FF;
2745 	spin_unlock_irqrestore(&card->res_lock, flags);
2746 	return (unsigned char)data;
2747 }
2748 
2749 module_init(nicstar_init);
2750 module_exit(nicstar_cleanup);
2751