1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * nicstar.c 4 * 5 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. 6 * 7 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. 8 * It was taken from the frle-0.22 device driver. 9 * As the file doesn't have a copyright notice, in the file 10 * nicstarmac.copyright I put the copyright notice from the 11 * frle-0.22 device driver. 12 * Some code is based on the nicstar driver by M. Welsh. 13 * 14 * Author: Rui Prior (rprior@inescn.pt) 15 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 16 * 17 * 18 * (C) INESC 1999 19 */ 20 21 /* 22 * IMPORTANT INFORMATION 23 * 24 * There are currently three types of spinlocks: 25 * 26 * 1 - Per card interrupt spinlock (to protect structures and such) 27 * 2 - Per SCQ scq spinlock 28 * 3 - Per card resource spinlock (to access registers, etc.) 29 * 30 * These must NEVER be grabbed in reverse order. 31 * 32 */ 33 34 /* Header files */ 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/skbuff.h> 39 #include <linux/atmdev.h> 40 #include <linux/atm.h> 41 #include <linux/pci.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/types.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/init.h> 47 #include <linux/sched.h> 48 #include <linux/timer.h> 49 #include <linux/interrupt.h> 50 #include <linux/bitops.h> 51 #include <linux/slab.h> 52 #include <linux/idr.h> 53 #include <asm/io.h> 54 #include <linux/uaccess.h> 55 #include <linux/atomic.h> 56 #include <linux/etherdevice.h> 57 #include "nicstar.h" 58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 59 #include "suni.h" 60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 62 #include "idt77105.h" 63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 64 65 /* Additional code */ 66 67 #include "nicstarmac.c" 68 69 /* Configurable parameters */ 70 71 #undef PHY_LOOPBACK 72 #undef TX_DEBUG 73 #undef RX_DEBUG 74 #undef GENERAL_DEBUG 75 #undef EXTRA_DEBUG 76 77 /* Do not touch these */ 78 79 #ifdef TX_DEBUG 80 #define TXPRINTK(args...) printk(args) 81 #else 82 #define TXPRINTK(args...) 83 #endif /* TX_DEBUG */ 84 85 #ifdef RX_DEBUG 86 #define RXPRINTK(args...) printk(args) 87 #else 88 #define RXPRINTK(args...) 89 #endif /* RX_DEBUG */ 90 91 #ifdef GENERAL_DEBUG 92 #define PRINTK(args...) printk(args) 93 #else 94 #define PRINTK(args...) do {} while (0) 95 #endif /* GENERAL_DEBUG */ 96 97 #ifdef EXTRA_DEBUG 98 #define XPRINTK(args...) printk(args) 99 #else 100 #define XPRINTK(args...) 101 #endif /* EXTRA_DEBUG */ 102 103 /* Macros */ 104 105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) 106 107 #define NS_DELAY mdelay(1) 108 109 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) 110 111 #ifndef ATM_SKB 112 #define ATM_SKB(s) (&(s)->atm) 113 #endif 114 115 #define scq_virt_to_bus(scq, p) \ 116 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) 117 118 /* Function declarations */ 119 120 static u32 ns_read_sram(ns_dev * card, u32 sram_address); 121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 122 int count); 123 static int ns_init_card(int i, struct pci_dev *pcidev); 124 static void ns_init_card_error(ns_dev * card, int error); 125 static scq_info *get_scq(ns_dev *card, int size, u32 scd); 126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); 127 static void push_rxbufs(ns_dev *, struct sk_buff *); 128 static irqreturn_t ns_irq_handler(int irq, void *dev_id); 129 static int ns_open(struct atm_vcc *vcc); 130 static void ns_close(struct atm_vcc *vcc); 131 static void fill_tst(ns_dev * card, int n, vc_map * vc); 132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); 133 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 134 struct sk_buff *skb); 135 static void process_tsq(ns_dev * card); 136 static void drain_scq(ns_dev * card, scq_info * scq, int pos); 137 static void process_rsq(ns_dev * card); 138 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); 139 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); 140 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); 141 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); 142 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); 143 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); 144 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); 145 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); 146 #ifdef EXTRA_DEBUG 147 static void which_list(ns_dev * card, struct sk_buff *skb); 148 #endif 149 static void ns_poll(struct timer_list *unused); 150 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 151 unsigned long addr); 152 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); 153 154 /* Global variables */ 155 156 static struct ns_dev *cards[NS_MAX_CARDS]; 157 static unsigned num_cards; 158 static const struct atmdev_ops atm_ops = { 159 .open = ns_open, 160 .close = ns_close, 161 .ioctl = ns_ioctl, 162 .send = ns_send, 163 .phy_put = ns_phy_put, 164 .phy_get = ns_phy_get, 165 .proc_read = ns_proc_read, 166 .owner = THIS_MODULE, 167 }; 168 169 static struct timer_list ns_timer; 170 static char *mac[NS_MAX_CARDS]; 171 module_param_array(mac, charp, NULL, 0); 172 MODULE_LICENSE("GPL"); 173 174 /* Functions */ 175 176 static int nicstar_init_one(struct pci_dev *pcidev, 177 const struct pci_device_id *ent) 178 { 179 static int index = -1; 180 unsigned int error; 181 182 index++; 183 cards[index] = NULL; 184 185 error = ns_init_card(index, pcidev); 186 if (error) { 187 cards[index--] = NULL; /* don't increment index */ 188 goto err_out; 189 } 190 191 return 0; 192 err_out: 193 return -ENODEV; 194 } 195 196 static void nicstar_remove_one(struct pci_dev *pcidev) 197 { 198 int i, j; 199 ns_dev *card = pci_get_drvdata(pcidev); 200 struct sk_buff *hb; 201 struct sk_buff *iovb; 202 struct sk_buff *lb; 203 struct sk_buff *sb; 204 205 i = card->index; 206 207 if (cards[i] == NULL) 208 return; 209 210 if (card->atmdev->phy && card->atmdev->phy->stop) 211 card->atmdev->phy->stop(card->atmdev); 212 213 /* Stop everything */ 214 writel(0x00000000, card->membase + CFG); 215 216 /* De-register device */ 217 atm_dev_deregister(card->atmdev); 218 219 /* Disable PCI device */ 220 pci_disable_device(pcidev); 221 222 /* Free up resources */ 223 j = 0; 224 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); 225 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { 226 dev_kfree_skb_any(hb); 227 j++; 228 } 229 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); 230 j = 0; 231 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, 232 card->iovpool.count); 233 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { 234 dev_kfree_skb_any(iovb); 235 j++; 236 } 237 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); 238 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 239 dev_kfree_skb_any(lb); 240 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 241 dev_kfree_skb_any(sb); 242 free_scq(card, card->scq0, NULL); 243 for (j = 0; j < NS_FRSCD_NUM; j++) { 244 if (card->scd2vc[j] != NULL) 245 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); 246 } 247 idr_destroy(&card->idr); 248 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 249 card->rsq.org, card->rsq.dma); 250 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 251 card->tsq.org, card->tsq.dma); 252 free_irq(card->pcidev->irq, card); 253 iounmap(card->membase); 254 kfree(card); 255 } 256 257 static const struct pci_device_id nicstar_pci_tbl[] = { 258 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, 259 {0,} /* terminate list */ 260 }; 261 262 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); 263 264 static struct pci_driver nicstar_driver = { 265 .name = "nicstar", 266 .id_table = nicstar_pci_tbl, 267 .probe = nicstar_init_one, 268 .remove = nicstar_remove_one, 269 }; 270 271 static int __init nicstar_init(void) 272 { 273 unsigned error = 0; /* Initialized to remove compile warning */ 274 275 XPRINTK("nicstar: nicstar_init() called.\n"); 276 277 error = pci_register_driver(&nicstar_driver); 278 279 TXPRINTK("nicstar: TX debug enabled.\n"); 280 RXPRINTK("nicstar: RX debug enabled.\n"); 281 PRINTK("nicstar: General debug enabled.\n"); 282 #ifdef PHY_LOOPBACK 283 printk("nicstar: using PHY loopback.\n"); 284 #endif /* PHY_LOOPBACK */ 285 XPRINTK("nicstar: nicstar_init() returned.\n"); 286 287 if (!error) { 288 timer_setup(&ns_timer, ns_poll, 0); 289 ns_timer.expires = jiffies + NS_POLL_PERIOD; 290 add_timer(&ns_timer); 291 } 292 293 return error; 294 } 295 296 static void __exit nicstar_cleanup(void) 297 { 298 XPRINTK("nicstar: nicstar_cleanup() called.\n"); 299 300 del_timer(&ns_timer); 301 302 pci_unregister_driver(&nicstar_driver); 303 304 XPRINTK("nicstar: nicstar_cleanup() returned.\n"); 305 } 306 307 static u32 ns_read_sram(ns_dev * card, u32 sram_address) 308 { 309 unsigned long flags; 310 u32 data; 311 sram_address <<= 2; 312 sram_address &= 0x0007FFFC; /* address must be dword aligned */ 313 sram_address |= 0x50000000; /* SRAM read command */ 314 spin_lock_irqsave(&card->res_lock, flags); 315 while (CMD_BUSY(card)) ; 316 writel(sram_address, card->membase + CMD); 317 while (CMD_BUSY(card)) ; 318 data = readl(card->membase + DR0); 319 spin_unlock_irqrestore(&card->res_lock, flags); 320 return data; 321 } 322 323 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 324 int count) 325 { 326 unsigned long flags; 327 int i, c; 328 count--; /* count range now is 0..3 instead of 1..4 */ 329 c = count; 330 c <<= 2; /* to use increments of 4 */ 331 spin_lock_irqsave(&card->res_lock, flags); 332 while (CMD_BUSY(card)) ; 333 for (i = 0; i <= c; i += 4) 334 writel(*(value++), card->membase + i); 335 /* Note: DR# registers are the first 4 dwords in nicstar's memspace, 336 so card->membase + DR0 == card->membase */ 337 sram_address <<= 2; 338 sram_address &= 0x0007FFFC; 339 sram_address |= (0x40000000 | count); 340 writel(sram_address, card->membase + CMD); 341 spin_unlock_irqrestore(&card->res_lock, flags); 342 } 343 344 static int ns_init_card(int i, struct pci_dev *pcidev) 345 { 346 int j; 347 struct ns_dev *card = NULL; 348 unsigned char pci_latency; 349 unsigned error; 350 u32 data; 351 u32 u32d[4]; 352 u32 ns_cfg_rctsize; 353 int bcount; 354 unsigned long membase; 355 356 error = 0; 357 358 if (pci_enable_device(pcidev)) { 359 printk("nicstar%d: can't enable PCI device\n", i); 360 error = 2; 361 ns_init_card_error(card, error); 362 return error; 363 } 364 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { 365 printk(KERN_WARNING 366 "nicstar%d: No suitable DMA available.\n", i); 367 error = 2; 368 ns_init_card_error(card, error); 369 return error; 370 } 371 372 card = kmalloc(sizeof(*card), GFP_KERNEL); 373 if (!card) { 374 printk 375 ("nicstar%d: can't allocate memory for device structure.\n", 376 i); 377 error = 2; 378 ns_init_card_error(card, error); 379 return error; 380 } 381 cards[i] = card; 382 spin_lock_init(&card->int_lock); 383 spin_lock_init(&card->res_lock); 384 385 pci_set_drvdata(pcidev, card); 386 387 card->index = i; 388 card->atmdev = NULL; 389 card->pcidev = pcidev; 390 membase = pci_resource_start(pcidev, 1); 391 card->membase = ioremap(membase, NS_IOREMAP_SIZE); 392 if (!card->membase) { 393 printk("nicstar%d: can't ioremap() membase.\n", i); 394 error = 3; 395 ns_init_card_error(card, error); 396 return error; 397 } 398 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); 399 400 pci_set_master(pcidev); 401 402 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { 403 printk("nicstar%d: can't read PCI latency timer.\n", i); 404 error = 6; 405 ns_init_card_error(card, error); 406 return error; 407 } 408 #ifdef NS_PCI_LATENCY 409 if (pci_latency < NS_PCI_LATENCY) { 410 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, 411 NS_PCI_LATENCY); 412 for (j = 1; j < 4; j++) { 413 if (pci_write_config_byte 414 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) 415 break; 416 } 417 if (j == 4) { 418 printk 419 ("nicstar%d: can't set PCI latency timer to %d.\n", 420 i, NS_PCI_LATENCY); 421 error = 7; 422 ns_init_card_error(card, error); 423 return error; 424 } 425 } 426 #endif /* NS_PCI_LATENCY */ 427 428 /* Clear timer overflow */ 429 data = readl(card->membase + STAT); 430 if (data & NS_STAT_TMROF) 431 writel(NS_STAT_TMROF, card->membase + STAT); 432 433 /* Software reset */ 434 writel(NS_CFG_SWRST, card->membase + CFG); 435 NS_DELAY; 436 writel(0x00000000, card->membase + CFG); 437 438 /* PHY reset */ 439 writel(0x00000008, card->membase + GP); 440 NS_DELAY; 441 writel(0x00000001, card->membase + GP); 442 NS_DELAY; 443 while (CMD_BUSY(card)) ; 444 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ 445 NS_DELAY; 446 447 /* Detect PHY type */ 448 while (CMD_BUSY(card)) ; 449 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); 450 while (CMD_BUSY(card)) ; 451 data = readl(card->membase + DR0); 452 switch (data) { 453 case 0x00000009: 454 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); 455 card->max_pcr = ATM_25_PCR; 456 while (CMD_BUSY(card)) ; 457 writel(0x00000008, card->membase + DR0); 458 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); 459 /* Clear an eventual pending interrupt */ 460 writel(NS_STAT_SFBQF, card->membase + STAT); 461 #ifdef PHY_LOOPBACK 462 while (CMD_BUSY(card)) ; 463 writel(0x00000022, card->membase + DR0); 464 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); 465 #endif /* PHY_LOOPBACK */ 466 break; 467 case 0x00000030: 468 case 0x00000031: 469 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); 470 card->max_pcr = ATM_OC3_PCR; 471 #ifdef PHY_LOOPBACK 472 while (CMD_BUSY(card)) ; 473 writel(0x00000002, card->membase + DR0); 474 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); 475 #endif /* PHY_LOOPBACK */ 476 break; 477 default: 478 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); 479 error = 8; 480 ns_init_card_error(card, error); 481 return error; 482 } 483 writel(0x00000000, card->membase + GP); 484 485 /* Determine SRAM size */ 486 data = 0x76543210; 487 ns_write_sram(card, 0x1C003, &data, 1); 488 data = 0x89ABCDEF; 489 ns_write_sram(card, 0x14003, &data, 1); 490 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && 491 ns_read_sram(card, 0x1C003) == 0x76543210) 492 card->sram_size = 128; 493 else 494 card->sram_size = 32; 495 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); 496 497 card->rct_size = NS_MAX_RCTSIZE; 498 499 #if (NS_MAX_RCTSIZE == 4096) 500 if (card->sram_size == 128) 501 printk 502 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", 503 i); 504 #elif (NS_MAX_RCTSIZE == 16384) 505 if (card->sram_size == 32) { 506 printk 507 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", 508 i); 509 card->rct_size = 4096; 510 } 511 #else 512 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c 513 #endif 514 515 card->vpibits = NS_VPIBITS; 516 if (card->rct_size == 4096) 517 card->vcibits = 12 - NS_VPIBITS; 518 else /* card->rct_size == 16384 */ 519 card->vcibits = 14 - NS_VPIBITS; 520 521 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ 522 if (mac[i] == NULL) 523 nicstar_init_eprom(card->membase); 524 525 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ 526 writel(0x00000000, card->membase + VPM); 527 528 /* Initialize TSQ */ 529 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, 530 NS_TSQSIZE + NS_TSQ_ALIGNMENT, 531 &card->tsq.dma, GFP_KERNEL); 532 if (card->tsq.org == NULL) { 533 printk("nicstar%d: can't allocate TSQ.\n", i); 534 error = 10; 535 ns_init_card_error(card, error); 536 return error; 537 } 538 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); 539 card->tsq.next = card->tsq.base; 540 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); 541 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) 542 ns_tsi_init(card->tsq.base + j); 543 writel(0x00000000, card->membase + TSQH); 544 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); 545 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); 546 547 /* Initialize RSQ */ 548 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, 549 NS_RSQSIZE + NS_RSQ_ALIGNMENT, 550 &card->rsq.dma, GFP_KERNEL); 551 if (card->rsq.org == NULL) { 552 printk("nicstar%d: can't allocate RSQ.\n", i); 553 error = 11; 554 ns_init_card_error(card, error); 555 return error; 556 } 557 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); 558 card->rsq.next = card->rsq.base; 559 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); 560 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) 561 ns_rsqe_init(card->rsq.base + j); 562 writel(0x00000000, card->membase + RSQH); 563 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); 564 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); 565 566 /* Initialize SCQ0, the only VBR SCQ used */ 567 card->scq1 = NULL; 568 card->scq2 = NULL; 569 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); 570 if (card->scq0 == NULL) { 571 printk("nicstar%d: can't get SCQ0.\n", i); 572 error = 12; 573 ns_init_card_error(card, error); 574 return error; 575 } 576 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); 577 u32d[1] = (u32) 0x00000000; 578 u32d[2] = (u32) 0xffffffff; 579 u32d[3] = (u32) 0x00000000; 580 ns_write_sram(card, NS_VRSCD0, u32d, 4); 581 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ 582 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ 583 card->scq0->scd = NS_VRSCD0; 584 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); 585 586 /* Initialize TSTs */ 587 card->tst_addr = NS_TST0; 588 card->tst_free_entries = NS_TST_NUM_ENTRIES; 589 data = NS_TST_OPCODE_VARIABLE; 590 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 591 ns_write_sram(card, NS_TST0 + j, &data, 1); 592 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); 593 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); 594 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 595 ns_write_sram(card, NS_TST1 + j, &data, 1); 596 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); 597 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); 598 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 599 card->tste2vc[j] = NULL; 600 writel(NS_TST0 << 2, card->membase + TSTB); 601 602 /* Initialize RCT. AAL type is set on opening the VC. */ 603 #ifdef RCQ_SUPPORT 604 u32d[0] = NS_RCTE_RAWCELLINTEN; 605 #else 606 u32d[0] = 0x00000000; 607 #endif /* RCQ_SUPPORT */ 608 u32d[1] = 0x00000000; 609 u32d[2] = 0x00000000; 610 u32d[3] = 0xFFFFFFFF; 611 for (j = 0; j < card->rct_size; j++) 612 ns_write_sram(card, j * 4, u32d, 4); 613 614 memset(card->vcmap, 0, sizeof(card->vcmap)); 615 616 for (j = 0; j < NS_FRSCD_NUM; j++) 617 card->scd2vc[j] = NULL; 618 619 /* Initialize buffer levels */ 620 card->sbnr.min = MIN_SB; 621 card->sbnr.init = NUM_SB; 622 card->sbnr.max = MAX_SB; 623 card->lbnr.min = MIN_LB; 624 card->lbnr.init = NUM_LB; 625 card->lbnr.max = MAX_LB; 626 card->iovnr.min = MIN_IOVB; 627 card->iovnr.init = NUM_IOVB; 628 card->iovnr.max = MAX_IOVB; 629 card->hbnr.min = MIN_HB; 630 card->hbnr.init = NUM_HB; 631 card->hbnr.max = MAX_HB; 632 633 card->sm_handle = NULL; 634 card->sm_addr = 0x00000000; 635 card->lg_handle = NULL; 636 card->lg_addr = 0x00000000; 637 638 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ 639 640 idr_init(&card->idr); 641 642 /* Pre-allocate some huge buffers */ 643 skb_queue_head_init(&card->hbpool.queue); 644 card->hbpool.count = 0; 645 for (j = 0; j < NUM_HB; j++) { 646 struct sk_buff *hb; 647 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 648 if (hb == NULL) { 649 printk 650 ("nicstar%d: can't allocate %dth of %d huge buffers.\n", 651 i, j, NUM_HB); 652 error = 13; 653 ns_init_card_error(card, error); 654 return error; 655 } 656 NS_PRV_BUFTYPE(hb) = BUF_NONE; 657 skb_queue_tail(&card->hbpool.queue, hb); 658 card->hbpool.count++; 659 } 660 661 /* Allocate large buffers */ 662 skb_queue_head_init(&card->lbpool.queue); 663 card->lbpool.count = 0; /* Not used */ 664 for (j = 0; j < NUM_LB; j++) { 665 struct sk_buff *lb; 666 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 667 if (lb == NULL) { 668 printk 669 ("nicstar%d: can't allocate %dth of %d large buffers.\n", 670 i, j, NUM_LB); 671 error = 14; 672 ns_init_card_error(card, error); 673 return error; 674 } 675 NS_PRV_BUFTYPE(lb) = BUF_LG; 676 skb_queue_tail(&card->lbpool.queue, lb); 677 skb_reserve(lb, NS_SMBUFSIZE); 678 push_rxbufs(card, lb); 679 /* Due to the implementation of push_rxbufs() this is 1, not 0 */ 680 if (j == 1) { 681 card->rcbuf = lb; 682 card->rawcell = (struct ns_rcqe *) lb->data; 683 card->rawch = NS_PRV_DMA(lb); 684 } 685 } 686 /* Test for strange behaviour which leads to crashes */ 687 if ((bcount = 688 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { 689 printk 690 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", 691 i, j, bcount); 692 error = 14; 693 ns_init_card_error(card, error); 694 return error; 695 } 696 697 /* Allocate small buffers */ 698 skb_queue_head_init(&card->sbpool.queue); 699 card->sbpool.count = 0; /* Not used */ 700 for (j = 0; j < NUM_SB; j++) { 701 struct sk_buff *sb; 702 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 703 if (sb == NULL) { 704 printk 705 ("nicstar%d: can't allocate %dth of %d small buffers.\n", 706 i, j, NUM_SB); 707 error = 15; 708 ns_init_card_error(card, error); 709 return error; 710 } 711 NS_PRV_BUFTYPE(sb) = BUF_SM; 712 skb_queue_tail(&card->sbpool.queue, sb); 713 skb_reserve(sb, NS_AAL0_HEADER); 714 push_rxbufs(card, sb); 715 } 716 /* Test for strange behaviour which leads to crashes */ 717 if ((bcount = 718 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { 719 printk 720 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", 721 i, j, bcount); 722 error = 15; 723 ns_init_card_error(card, error); 724 return error; 725 } 726 727 /* Allocate iovec buffers */ 728 skb_queue_head_init(&card->iovpool.queue); 729 card->iovpool.count = 0; 730 for (j = 0; j < NUM_IOVB; j++) { 731 struct sk_buff *iovb; 732 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 733 if (iovb == NULL) { 734 printk 735 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", 736 i, j, NUM_IOVB); 737 error = 16; 738 ns_init_card_error(card, error); 739 return error; 740 } 741 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 742 skb_queue_tail(&card->iovpool.queue, iovb); 743 card->iovpool.count++; 744 } 745 746 /* Configure NICStAR */ 747 if (card->rct_size == 4096) 748 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; 749 else /* (card->rct_size == 16384) */ 750 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; 751 752 card->efbie = 1; 753 754 card->intcnt = 0; 755 if (request_irq 756 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { 757 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); 758 error = 9; 759 ns_init_card_error(card, error); 760 return error; 761 } 762 763 /* Register device */ 764 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, 765 -1, NULL); 766 if (card->atmdev == NULL) { 767 printk("nicstar%d: can't register device.\n", i); 768 error = 17; 769 ns_init_card_error(card, error); 770 return error; 771 } 772 773 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { 774 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, 775 card->atmdev->esi, 6); 776 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { 777 nicstar_read_eprom(card->membase, 778 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, 779 card->atmdev->esi, 6); 780 } 781 } 782 783 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); 784 785 card->atmdev->dev_data = card; 786 card->atmdev->ci_range.vpi_bits = card->vpibits; 787 card->atmdev->ci_range.vci_bits = card->vcibits; 788 card->atmdev->link_rate = card->max_pcr; 789 card->atmdev->phy = NULL; 790 791 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 792 if (card->max_pcr == ATM_OC3_PCR) 793 suni_init(card->atmdev); 794 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 795 796 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 797 if (card->max_pcr == ATM_25_PCR) 798 idt77105_init(card->atmdev); 799 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 800 801 if (card->atmdev->phy && card->atmdev->phy->start) 802 card->atmdev->phy->start(card->atmdev); 803 804 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ 805 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ 806 NS_CFG_PHYIE, card->membase + CFG); 807 808 num_cards++; 809 810 return error; 811 } 812 813 static void ns_init_card_error(ns_dev *card, int error) 814 { 815 if (error >= 17) { 816 writel(0x00000000, card->membase + CFG); 817 } 818 if (error >= 16) { 819 struct sk_buff *iovb; 820 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) 821 dev_kfree_skb_any(iovb); 822 } 823 if (error >= 15) { 824 struct sk_buff *sb; 825 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 826 dev_kfree_skb_any(sb); 827 free_scq(card, card->scq0, NULL); 828 } 829 if (error >= 14) { 830 struct sk_buff *lb; 831 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 832 dev_kfree_skb_any(lb); 833 } 834 if (error >= 13) { 835 struct sk_buff *hb; 836 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) 837 dev_kfree_skb_any(hb); 838 } 839 if (error >= 12) { 840 kfree(card->rsq.org); 841 } 842 if (error >= 11) { 843 kfree(card->tsq.org); 844 } 845 if (error >= 10) { 846 free_irq(card->pcidev->irq, card); 847 } 848 if (error >= 4) { 849 iounmap(card->membase); 850 } 851 if (error >= 3) { 852 pci_disable_device(card->pcidev); 853 kfree(card); 854 } 855 } 856 857 static scq_info *get_scq(ns_dev *card, int size, u32 scd) 858 { 859 scq_info *scq; 860 int i; 861 862 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) 863 return NULL; 864 865 scq = kmalloc(sizeof(*scq), GFP_KERNEL); 866 if (!scq) 867 return NULL; 868 scq->org = dma_alloc_coherent(&card->pcidev->dev, 869 2 * size, &scq->dma, GFP_KERNEL); 870 if (!scq->org) { 871 kfree(scq); 872 return NULL; 873 } 874 scq->skb = kmalloc_array(size / NS_SCQE_SIZE, 875 sizeof(*scq->skb), 876 GFP_KERNEL); 877 if (!scq->skb) { 878 dma_free_coherent(&card->pcidev->dev, 879 2 * size, scq->org, scq->dma); 880 kfree(scq); 881 return NULL; 882 } 883 scq->num_entries = size / NS_SCQE_SIZE; 884 scq->base = PTR_ALIGN(scq->org, size); 885 scq->next = scq->base; 886 scq->last = scq->base + (scq->num_entries - 1); 887 scq->tail = scq->last; 888 scq->scd = scd; 889 scq->num_entries = size / NS_SCQE_SIZE; 890 scq->tbd_count = 0; 891 init_waitqueue_head(&scq->scqfull_waitq); 892 scq->full = 0; 893 spin_lock_init(&scq->lock); 894 895 for (i = 0; i < scq->num_entries; i++) 896 scq->skb[i] = NULL; 897 898 return scq; 899 } 900 901 /* For variable rate SCQ vcc must be NULL */ 902 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) 903 { 904 int i; 905 906 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) 907 for (i = 0; i < scq->num_entries; i++) { 908 if (scq->skb[i] != NULL) { 909 vcc = ATM_SKB(scq->skb[i])->vcc; 910 if (vcc->pop != NULL) 911 vcc->pop(vcc, scq->skb[i]); 912 else 913 dev_kfree_skb_any(scq->skb[i]); 914 } 915 } else { /* vcc must be != NULL */ 916 917 if (vcc == NULL) { 918 printk 919 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); 920 for (i = 0; i < scq->num_entries; i++) 921 dev_kfree_skb_any(scq->skb[i]); 922 } else 923 for (i = 0; i < scq->num_entries; i++) { 924 if (scq->skb[i] != NULL) { 925 if (vcc->pop != NULL) 926 vcc->pop(vcc, scq->skb[i]); 927 else 928 dev_kfree_skb_any(scq->skb[i]); 929 } 930 } 931 } 932 kfree(scq->skb); 933 dma_free_coherent(&card->pcidev->dev, 934 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? 935 VBR_SCQSIZE : CBR_SCQSIZE), 936 scq->org, scq->dma); 937 kfree(scq); 938 } 939 940 /* The handles passed must be pointers to the sk_buff containing the small 941 or large buffer(s) cast to u32. */ 942 static void push_rxbufs(ns_dev * card, struct sk_buff *skb) 943 { 944 struct sk_buff *handle1, *handle2; 945 int id1, id2; 946 u32 addr1, addr2; 947 u32 stat; 948 unsigned long flags; 949 950 /* *BARF* */ 951 handle2 = NULL; 952 addr2 = 0; 953 handle1 = skb; 954 addr1 = dma_map_single(&card->pcidev->dev, 955 skb->data, 956 (NS_PRV_BUFTYPE(skb) == BUF_SM 957 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 958 DMA_TO_DEVICE); 959 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ 960 961 #ifdef GENERAL_DEBUG 962 if (!addr1) 963 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", 964 card->index); 965 #endif /* GENERAL_DEBUG */ 966 967 stat = readl(card->membase + STAT); 968 card->sbfqc = ns_stat_sfbqc_get(stat); 969 card->lbfqc = ns_stat_lfbqc_get(stat); 970 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 971 if (!addr2) { 972 if (card->sm_addr) { 973 addr2 = card->sm_addr; 974 handle2 = card->sm_handle; 975 card->sm_addr = 0x00000000; 976 card->sm_handle = NULL; 977 } else { /* (!sm_addr) */ 978 979 card->sm_addr = addr1; 980 card->sm_handle = handle1; 981 } 982 } 983 } else { /* buf_type == BUF_LG */ 984 985 if (!addr2) { 986 if (card->lg_addr) { 987 addr2 = card->lg_addr; 988 handle2 = card->lg_handle; 989 card->lg_addr = 0x00000000; 990 card->lg_handle = NULL; 991 } else { /* (!lg_addr) */ 992 993 card->lg_addr = addr1; 994 card->lg_handle = handle1; 995 } 996 } 997 } 998 999 if (addr2) { 1000 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 1001 if (card->sbfqc >= card->sbnr.max) { 1002 skb_unlink(handle1, &card->sbpool.queue); 1003 dev_kfree_skb_any(handle1); 1004 skb_unlink(handle2, &card->sbpool.queue); 1005 dev_kfree_skb_any(handle2); 1006 return; 1007 } else 1008 card->sbfqc += 2; 1009 } else { /* (buf_type == BUF_LG) */ 1010 1011 if (card->lbfqc >= card->lbnr.max) { 1012 skb_unlink(handle1, &card->lbpool.queue); 1013 dev_kfree_skb_any(handle1); 1014 skb_unlink(handle2, &card->lbpool.queue); 1015 dev_kfree_skb_any(handle2); 1016 return; 1017 } else 1018 card->lbfqc += 2; 1019 } 1020 1021 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); 1022 if (id1 < 0) 1023 goto out; 1024 1025 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); 1026 if (id2 < 0) 1027 goto out; 1028 1029 spin_lock_irqsave(&card->res_lock, flags); 1030 while (CMD_BUSY(card)) ; 1031 writel(addr2, card->membase + DR3); 1032 writel(id2, card->membase + DR2); 1033 writel(addr1, card->membase + DR1); 1034 writel(id1, card->membase + DR0); 1035 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), 1036 card->membase + CMD); 1037 spin_unlock_irqrestore(&card->res_lock, flags); 1038 1039 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", 1040 card->index, 1041 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), 1042 addr1, addr2); 1043 } 1044 1045 if (!card->efbie && card->sbfqc >= card->sbnr.min && 1046 card->lbfqc >= card->lbnr.min) { 1047 card->efbie = 1; 1048 writel((readl(card->membase + CFG) | NS_CFG_EFBIE), 1049 card->membase + CFG); 1050 } 1051 1052 out: 1053 return; 1054 } 1055 1056 static irqreturn_t ns_irq_handler(int irq, void *dev_id) 1057 { 1058 u32 stat_r; 1059 ns_dev *card; 1060 struct atm_dev *dev; 1061 unsigned long flags; 1062 1063 card = (ns_dev *) dev_id; 1064 dev = card->atmdev; 1065 card->intcnt++; 1066 1067 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); 1068 1069 spin_lock_irqsave(&card->int_lock, flags); 1070 1071 stat_r = readl(card->membase + STAT); 1072 1073 /* Transmit Status Indicator has been written to T. S. Queue */ 1074 if (stat_r & NS_STAT_TSIF) { 1075 TXPRINTK("nicstar%d: TSI interrupt\n", card->index); 1076 process_tsq(card); 1077 writel(NS_STAT_TSIF, card->membase + STAT); 1078 } 1079 1080 /* Incomplete CS-PDU has been transmitted */ 1081 if (stat_r & NS_STAT_TXICP) { 1082 writel(NS_STAT_TXICP, card->membase + STAT); 1083 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", 1084 card->index); 1085 } 1086 1087 /* Transmit Status Queue 7/8 full */ 1088 if (stat_r & NS_STAT_TSQF) { 1089 writel(NS_STAT_TSQF, card->membase + STAT); 1090 PRINTK("nicstar%d: TSQ full.\n", card->index); 1091 process_tsq(card); 1092 } 1093 1094 /* Timer overflow */ 1095 if (stat_r & NS_STAT_TMROF) { 1096 writel(NS_STAT_TMROF, card->membase + STAT); 1097 PRINTK("nicstar%d: Timer overflow.\n", card->index); 1098 } 1099 1100 /* PHY device interrupt signal active */ 1101 if (stat_r & NS_STAT_PHYI) { 1102 writel(NS_STAT_PHYI, card->membase + STAT); 1103 PRINTK("nicstar%d: PHY interrupt.\n", card->index); 1104 if (dev->phy && dev->phy->interrupt) { 1105 dev->phy->interrupt(dev); 1106 } 1107 } 1108 1109 /* Small Buffer Queue is full */ 1110 if (stat_r & NS_STAT_SFBQF) { 1111 writel(NS_STAT_SFBQF, card->membase + STAT); 1112 printk("nicstar%d: Small free buffer queue is full.\n", 1113 card->index); 1114 } 1115 1116 /* Large Buffer Queue is full */ 1117 if (stat_r & NS_STAT_LFBQF) { 1118 writel(NS_STAT_LFBQF, card->membase + STAT); 1119 printk("nicstar%d: Large free buffer queue is full.\n", 1120 card->index); 1121 } 1122 1123 /* Receive Status Queue is full */ 1124 if (stat_r & NS_STAT_RSQF) { 1125 writel(NS_STAT_RSQF, card->membase + STAT); 1126 printk("nicstar%d: RSQ full.\n", card->index); 1127 process_rsq(card); 1128 } 1129 1130 /* Complete CS-PDU received */ 1131 if (stat_r & NS_STAT_EOPDU) { 1132 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); 1133 process_rsq(card); 1134 writel(NS_STAT_EOPDU, card->membase + STAT); 1135 } 1136 1137 /* Raw cell received */ 1138 if (stat_r & NS_STAT_RAWCF) { 1139 writel(NS_STAT_RAWCF, card->membase + STAT); 1140 #ifndef RCQ_SUPPORT 1141 printk("nicstar%d: Raw cell received and no support yet...\n", 1142 card->index); 1143 #endif /* RCQ_SUPPORT */ 1144 /* NOTE: the following procedure may keep a raw cell pending until the 1145 next interrupt. As this preliminary support is only meant to 1146 avoid buffer leakage, this is not an issue. */ 1147 while (readl(card->membase + RAWCT) != card->rawch) { 1148 1149 if (ns_rcqe_islast(card->rawcell)) { 1150 struct sk_buff *oldbuf; 1151 1152 oldbuf = card->rcbuf; 1153 card->rcbuf = idr_find(&card->idr, 1154 ns_rcqe_nextbufhandle(card->rawcell)); 1155 card->rawch = NS_PRV_DMA(card->rcbuf); 1156 card->rawcell = (struct ns_rcqe *) 1157 card->rcbuf->data; 1158 recycle_rx_buf(card, oldbuf); 1159 } else { 1160 card->rawch += NS_RCQE_SIZE; 1161 card->rawcell++; 1162 } 1163 } 1164 } 1165 1166 /* Small buffer queue is empty */ 1167 if (stat_r & NS_STAT_SFBQE) { 1168 int i; 1169 struct sk_buff *sb; 1170 1171 writel(NS_STAT_SFBQE, card->membase + STAT); 1172 printk("nicstar%d: Small free buffer queue empty.\n", 1173 card->index); 1174 for (i = 0; i < card->sbnr.min; i++) { 1175 sb = dev_alloc_skb(NS_SMSKBSIZE); 1176 if (sb == NULL) { 1177 writel(readl(card->membase + CFG) & 1178 ~NS_CFG_EFBIE, card->membase + CFG); 1179 card->efbie = 0; 1180 break; 1181 } 1182 NS_PRV_BUFTYPE(sb) = BUF_SM; 1183 skb_queue_tail(&card->sbpool.queue, sb); 1184 skb_reserve(sb, NS_AAL0_HEADER); 1185 push_rxbufs(card, sb); 1186 } 1187 card->sbfqc = i; 1188 process_rsq(card); 1189 } 1190 1191 /* Large buffer queue empty */ 1192 if (stat_r & NS_STAT_LFBQE) { 1193 int i; 1194 struct sk_buff *lb; 1195 1196 writel(NS_STAT_LFBQE, card->membase + STAT); 1197 printk("nicstar%d: Large free buffer queue empty.\n", 1198 card->index); 1199 for (i = 0; i < card->lbnr.min; i++) { 1200 lb = dev_alloc_skb(NS_LGSKBSIZE); 1201 if (lb == NULL) { 1202 writel(readl(card->membase + CFG) & 1203 ~NS_CFG_EFBIE, card->membase + CFG); 1204 card->efbie = 0; 1205 break; 1206 } 1207 NS_PRV_BUFTYPE(lb) = BUF_LG; 1208 skb_queue_tail(&card->lbpool.queue, lb); 1209 skb_reserve(lb, NS_SMBUFSIZE); 1210 push_rxbufs(card, lb); 1211 } 1212 card->lbfqc = i; 1213 process_rsq(card); 1214 } 1215 1216 /* Receive Status Queue is 7/8 full */ 1217 if (stat_r & NS_STAT_RSQAF) { 1218 writel(NS_STAT_RSQAF, card->membase + STAT); 1219 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); 1220 process_rsq(card); 1221 } 1222 1223 spin_unlock_irqrestore(&card->int_lock, flags); 1224 PRINTK("nicstar%d: end of interrupt service\n", card->index); 1225 return IRQ_HANDLED; 1226 } 1227 1228 static int ns_open(struct atm_vcc *vcc) 1229 { 1230 ns_dev *card; 1231 vc_map *vc; 1232 unsigned long tmpl, modl; 1233 int tcr, tcra; /* target cell rate, and absolute value */ 1234 int n = 0; /* Number of entries in the TST. Initialized to remove 1235 the compiler warning. */ 1236 u32 u32d[4]; 1237 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler 1238 warning. How I wish compilers were clever enough to 1239 tell which variables can truly be used 1240 uninitialized... */ 1241 int inuse; /* tx or rx vc already in use by another vcc */ 1242 short vpi = vcc->vpi; 1243 int vci = vcc->vci; 1244 1245 card = (ns_dev *) vcc->dev->dev_data; 1246 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, 1247 vci); 1248 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1249 PRINTK("nicstar%d: unsupported AAL.\n", card->index); 1250 return -EINVAL; 1251 } 1252 1253 vc = &(card->vcmap[vpi << card->vcibits | vci]); 1254 vcc->dev_data = vc; 1255 1256 inuse = 0; 1257 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) 1258 inuse = 1; 1259 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) 1260 inuse += 2; 1261 if (inuse) { 1262 printk("nicstar%d: %s vci already in use.\n", card->index, 1263 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); 1264 return -EINVAL; 1265 } 1266 1267 set_bit(ATM_VF_ADDR, &vcc->flags); 1268 1269 /* NOTE: You are not allowed to modify an open connection's QOS. To change 1270 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes 1271 needed to do that. */ 1272 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { 1273 scq_info *scq; 1274 1275 set_bit(ATM_VF_PARTIAL, &vcc->flags); 1276 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1277 /* Check requested cell rate and availability of SCD */ 1278 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 1279 && vcc->qos.txtp.min_pcr == 0) { 1280 PRINTK 1281 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", 1282 card->index); 1283 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1284 clear_bit(ATM_VF_ADDR, &vcc->flags); 1285 return -EINVAL; 1286 } 1287 1288 tcr = atm_pcr_goal(&(vcc->qos.txtp)); 1289 tcra = tcr >= 0 ? tcr : -tcr; 1290 1291 PRINTK("nicstar%d: target cell rate = %d.\n", 1292 card->index, vcc->qos.txtp.max_pcr); 1293 1294 tmpl = 1295 (unsigned long)tcra *(unsigned long) 1296 NS_TST_NUM_ENTRIES; 1297 modl = tmpl % card->max_pcr; 1298 1299 n = (int)(tmpl / card->max_pcr); 1300 if (tcr > 0) { 1301 if (modl > 0) 1302 n++; 1303 } else if (tcr == 0) { 1304 if ((n = 1305 (card->tst_free_entries - 1306 NS_TST_RESERVED)) <= 0) { 1307 PRINTK 1308 ("nicstar%d: no CBR bandwidth free.\n", 1309 card->index); 1310 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1311 clear_bit(ATM_VF_ADDR, &vcc->flags); 1312 return -EINVAL; 1313 } 1314 } 1315 1316 if (n == 0) { 1317 printk 1318 ("nicstar%d: selected bandwidth < granularity.\n", 1319 card->index); 1320 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1321 clear_bit(ATM_VF_ADDR, &vcc->flags); 1322 return -EINVAL; 1323 } 1324 1325 if (n > (card->tst_free_entries - NS_TST_RESERVED)) { 1326 PRINTK 1327 ("nicstar%d: not enough free CBR bandwidth.\n", 1328 card->index); 1329 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1330 clear_bit(ATM_VF_ADDR, &vcc->flags); 1331 return -EINVAL; 1332 } else 1333 card->tst_free_entries -= n; 1334 1335 XPRINTK("nicstar%d: writing %d tst entries.\n", 1336 card->index, n); 1337 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { 1338 if (card->scd2vc[frscdi] == NULL) { 1339 card->scd2vc[frscdi] = vc; 1340 break; 1341 } 1342 } 1343 if (frscdi == NS_FRSCD_NUM) { 1344 PRINTK 1345 ("nicstar%d: no SCD available for CBR channel.\n", 1346 card->index); 1347 card->tst_free_entries += n; 1348 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1349 clear_bit(ATM_VF_ADDR, &vcc->flags); 1350 return -EBUSY; 1351 } 1352 1353 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; 1354 1355 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); 1356 if (scq == NULL) { 1357 PRINTK("nicstar%d: can't get fixed rate SCQ.\n", 1358 card->index); 1359 card->scd2vc[frscdi] = NULL; 1360 card->tst_free_entries += n; 1361 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1362 clear_bit(ATM_VF_ADDR, &vcc->flags); 1363 return -ENOMEM; 1364 } 1365 vc->scq = scq; 1366 u32d[0] = scq_virt_to_bus(scq, scq->base); 1367 u32d[1] = (u32) 0x00000000; 1368 u32d[2] = (u32) 0xffffffff; 1369 u32d[3] = (u32) 0x00000000; 1370 ns_write_sram(card, vc->cbr_scd, u32d, 4); 1371 1372 fill_tst(card, n, vc); 1373 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { 1374 vc->cbr_scd = 0x00000000; 1375 vc->scq = card->scq0; 1376 } 1377 1378 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1379 vc->tx = 1; 1380 vc->tx_vcc = vcc; 1381 vc->tbd_count = 0; 1382 } 1383 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1384 u32 status; 1385 1386 vc->rx = 1; 1387 vc->rx_vcc = vcc; 1388 vc->rx_iov = NULL; 1389 1390 /* Open the connection in hardware */ 1391 if (vcc->qos.aal == ATM_AAL5) 1392 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; 1393 else /* vcc->qos.aal == ATM_AAL0 */ 1394 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; 1395 #ifdef RCQ_SUPPORT 1396 status |= NS_RCTE_RAWCELLINTEN; 1397 #endif /* RCQ_SUPPORT */ 1398 ns_write_sram(card, 1399 NS_RCT + 1400 (vpi << card->vcibits | vci) * 1401 NS_RCT_ENTRY_SIZE, &status, 1); 1402 } 1403 1404 } 1405 1406 set_bit(ATM_VF_READY, &vcc->flags); 1407 return 0; 1408 } 1409 1410 static void ns_close(struct atm_vcc *vcc) 1411 { 1412 vc_map *vc; 1413 ns_dev *card; 1414 u32 data; 1415 int i; 1416 1417 vc = vcc->dev_data; 1418 card = vcc->dev->dev_data; 1419 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, 1420 (int)vcc->vpi, vcc->vci); 1421 1422 clear_bit(ATM_VF_READY, &vcc->flags); 1423 1424 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1425 u32 addr; 1426 unsigned long flags; 1427 1428 addr = 1429 NS_RCT + 1430 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; 1431 spin_lock_irqsave(&card->res_lock, flags); 1432 while (CMD_BUSY(card)) ; 1433 writel(NS_CMD_CLOSE_CONNECTION | addr << 2, 1434 card->membase + CMD); 1435 spin_unlock_irqrestore(&card->res_lock, flags); 1436 1437 vc->rx = 0; 1438 if (vc->rx_iov != NULL) { 1439 struct sk_buff *iovb; 1440 u32 stat; 1441 1442 stat = readl(card->membase + STAT); 1443 card->sbfqc = ns_stat_sfbqc_get(stat); 1444 card->lbfqc = ns_stat_lfbqc_get(stat); 1445 1446 PRINTK 1447 ("nicstar%d: closing a VC with pending rx buffers.\n", 1448 card->index); 1449 iovb = vc->rx_iov; 1450 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 1451 NS_PRV_IOVCNT(iovb)); 1452 NS_PRV_IOVCNT(iovb) = 0; 1453 spin_lock_irqsave(&card->int_lock, flags); 1454 recycle_iov_buf(card, iovb); 1455 spin_unlock_irqrestore(&card->int_lock, flags); 1456 vc->rx_iov = NULL; 1457 } 1458 } 1459 1460 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1461 vc->tx = 0; 1462 } 1463 1464 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1465 unsigned long flags; 1466 ns_scqe *scqep; 1467 scq_info *scq; 1468 1469 scq = vc->scq; 1470 1471 for (;;) { 1472 spin_lock_irqsave(&scq->lock, flags); 1473 scqep = scq->next; 1474 if (scqep == scq->base) 1475 scqep = scq->last; 1476 else 1477 scqep--; 1478 if (scqep == scq->tail) { 1479 spin_unlock_irqrestore(&scq->lock, flags); 1480 break; 1481 } 1482 /* If the last entry is not a TSR, place one in the SCQ in order to 1483 be able to completely drain it and then close. */ 1484 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { 1485 ns_scqe tsr; 1486 u32 scdi, scqi; 1487 u32 data; 1488 int index; 1489 1490 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1491 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1492 scqi = scq->next - scq->base; 1493 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1494 tsr.word_3 = 0x00000000; 1495 tsr.word_4 = 0x00000000; 1496 *scq->next = tsr; 1497 index = (int)scqi; 1498 scq->skb[index] = NULL; 1499 if (scq->next == scq->last) 1500 scq->next = scq->base; 1501 else 1502 scq->next++; 1503 data = scq_virt_to_bus(scq, scq->next); 1504 ns_write_sram(card, scq->scd, &data, 1); 1505 } 1506 spin_unlock_irqrestore(&scq->lock, flags); 1507 schedule(); 1508 } 1509 1510 /* Free all TST entries */ 1511 data = NS_TST_OPCODE_VARIABLE; 1512 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { 1513 if (card->tste2vc[i] == vc) { 1514 ns_write_sram(card, card->tst_addr + i, &data, 1515 1); 1516 card->tste2vc[i] = NULL; 1517 card->tst_free_entries++; 1518 } 1519 } 1520 1521 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; 1522 free_scq(card, vc->scq, vcc); 1523 } 1524 1525 /* remove all references to vcc before deleting it */ 1526 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1527 unsigned long flags; 1528 scq_info *scq = card->scq0; 1529 1530 spin_lock_irqsave(&scq->lock, flags); 1531 1532 for (i = 0; i < scq->num_entries; i++) { 1533 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { 1534 ATM_SKB(scq->skb[i])->vcc = NULL; 1535 atm_return(vcc, scq->skb[i]->truesize); 1536 PRINTK 1537 ("nicstar: deleted pending vcc mapping\n"); 1538 } 1539 } 1540 1541 spin_unlock_irqrestore(&scq->lock, flags); 1542 } 1543 1544 vcc->dev_data = NULL; 1545 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1546 clear_bit(ATM_VF_ADDR, &vcc->flags); 1547 1548 #ifdef RX_DEBUG 1549 { 1550 u32 stat, cfg; 1551 stat = readl(card->membase + STAT); 1552 cfg = readl(card->membase + CFG); 1553 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); 1554 printk 1555 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", 1556 card->tsq.base, card->tsq.next, 1557 card->tsq.last, readl(card->membase + TSQT)); 1558 printk 1559 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", 1560 card->rsq.base, card->rsq.next, 1561 card->rsq.last, readl(card->membase + RSQT)); 1562 printk("Empty free buffer queue interrupt %s \n", 1563 card->efbie ? "enabled" : "disabled"); 1564 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", 1565 ns_stat_sfbqc_get(stat), card->sbpool.count, 1566 ns_stat_lfbqc_get(stat), card->lbpool.count); 1567 printk("hbpool.count = %d iovpool.count = %d \n", 1568 card->hbpool.count, card->iovpool.count); 1569 } 1570 #endif /* RX_DEBUG */ 1571 } 1572 1573 static void fill_tst(ns_dev * card, int n, vc_map * vc) 1574 { 1575 u32 new_tst; 1576 unsigned long cl; 1577 int e, r; 1578 u32 data; 1579 1580 /* It would be very complicated to keep the two TSTs synchronized while 1581 assuring that writes are only made to the inactive TST. So, for now I 1582 will use only one TST. If problems occur, I will change this again */ 1583 1584 new_tst = card->tst_addr; 1585 1586 /* Fill procedure */ 1587 1588 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { 1589 if (card->tste2vc[e] == NULL) 1590 break; 1591 } 1592 if (e == NS_TST_NUM_ENTRIES) { 1593 printk("nicstar%d: No free TST entries found. \n", card->index); 1594 return; 1595 } 1596 1597 r = n; 1598 cl = NS_TST_NUM_ENTRIES; 1599 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); 1600 1601 while (r > 0) { 1602 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { 1603 card->tste2vc[e] = vc; 1604 ns_write_sram(card, new_tst + e, &data, 1); 1605 cl -= NS_TST_NUM_ENTRIES; 1606 r--; 1607 } 1608 1609 if (++e == NS_TST_NUM_ENTRIES) { 1610 e = 0; 1611 } 1612 cl += n; 1613 } 1614 1615 /* End of fill procedure */ 1616 1617 data = ns_tste_make(NS_TST_OPCODE_END, new_tst); 1618 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); 1619 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); 1620 card->tst_addr = new_tst; 1621 } 1622 1623 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) 1624 { 1625 ns_dev *card; 1626 vc_map *vc; 1627 scq_info *scq; 1628 unsigned long buflen; 1629 ns_scqe scqe; 1630 u32 flags; /* TBD flags, not CPU flags */ 1631 1632 card = vcc->dev->dev_data; 1633 TXPRINTK("nicstar%d: ns_send() called.\n", card->index); 1634 if ((vc = (vc_map *) vcc->dev_data) == NULL) { 1635 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", 1636 card->index); 1637 atomic_inc(&vcc->stats->tx_err); 1638 dev_kfree_skb_any(skb); 1639 return -EINVAL; 1640 } 1641 1642 if (!vc->tx) { 1643 printk("nicstar%d: Trying to transmit on a non-tx VC.\n", 1644 card->index); 1645 atomic_inc(&vcc->stats->tx_err); 1646 dev_kfree_skb_any(skb); 1647 return -EINVAL; 1648 } 1649 1650 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1651 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", 1652 card->index); 1653 atomic_inc(&vcc->stats->tx_err); 1654 dev_kfree_skb_any(skb); 1655 return -EINVAL; 1656 } 1657 1658 if (skb_shinfo(skb)->nr_frags != 0) { 1659 printk("nicstar%d: No scatter-gather yet.\n", card->index); 1660 atomic_inc(&vcc->stats->tx_err); 1661 dev_kfree_skb_any(skb); 1662 return -EINVAL; 1663 } 1664 1665 ATM_SKB(skb)->vcc = vcc; 1666 1667 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, 1668 skb->len, DMA_TO_DEVICE); 1669 1670 if (vcc->qos.aal == ATM_AAL5) { 1671 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ 1672 flags = NS_TBD_AAL5; 1673 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); 1674 scqe.word_3 = cpu_to_le32(skb->len); 1675 scqe.word_4 = 1676 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, 1677 ATM_SKB(skb)-> 1678 atm_options & ATM_ATMOPT_CLP ? 1 : 0); 1679 flags |= NS_TBD_EOPDU; 1680 } else { /* (vcc->qos.aal == ATM_AAL0) */ 1681 1682 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ 1683 flags = NS_TBD_AAL0; 1684 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); 1685 scqe.word_3 = cpu_to_le32(0x00000000); 1686 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ 1687 flags |= NS_TBD_EOPDU; 1688 scqe.word_4 = 1689 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); 1690 /* Force the VPI/VCI to be the same as in VCC struct */ 1691 scqe.word_4 |= 1692 cpu_to_le32((((u32) vcc-> 1693 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> 1694 vci) << 1695 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); 1696 } 1697 1698 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1699 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); 1700 scq = ((vc_map *) vcc->dev_data)->scq; 1701 } else { 1702 scqe.word_1 = 1703 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); 1704 scq = card->scq0; 1705 } 1706 1707 if (push_scqe(card, vc, scq, &scqe, skb) != 0) { 1708 atomic_inc(&vcc->stats->tx_err); 1709 dev_kfree_skb_any(skb); 1710 return -EIO; 1711 } 1712 atomic_inc(&vcc->stats->tx); 1713 1714 return 0; 1715 } 1716 1717 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 1718 struct sk_buff *skb) 1719 { 1720 unsigned long flags; 1721 ns_scqe tsr; 1722 u32 scdi, scqi; 1723 int scq_is_vbr; 1724 u32 data; 1725 int index; 1726 1727 spin_lock_irqsave(&scq->lock, flags); 1728 while (scq->tail == scq->next) { 1729 if (in_interrupt()) { 1730 spin_unlock_irqrestore(&scq->lock, flags); 1731 printk("nicstar%d: Error pushing TBD.\n", card->index); 1732 return 1; 1733 } 1734 1735 scq->full = 1; 1736 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1737 scq->tail != scq->next, 1738 scq->lock, 1739 SCQFULL_TIMEOUT); 1740 1741 if (scq->full) { 1742 spin_unlock_irqrestore(&scq->lock, flags); 1743 printk("nicstar%d: Timeout pushing TBD.\n", 1744 card->index); 1745 return 1; 1746 } 1747 } 1748 *scq->next = *tbd; 1749 index = (int)(scq->next - scq->base); 1750 scq->skb[index] = skb; 1751 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", 1752 card->index, skb, index); 1753 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1754 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), 1755 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), 1756 scq->next); 1757 if (scq->next == scq->last) 1758 scq->next = scq->base; 1759 else 1760 scq->next++; 1761 1762 vc->tbd_count++; 1763 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { 1764 scq->tbd_count++; 1765 scq_is_vbr = 1; 1766 } else 1767 scq_is_vbr = 0; 1768 1769 if (vc->tbd_count >= MAX_TBD_PER_VC 1770 || scq->tbd_count >= MAX_TBD_PER_SCQ) { 1771 int has_run = 0; 1772 1773 while (scq->tail == scq->next) { 1774 if (in_interrupt()) { 1775 data = scq_virt_to_bus(scq, scq->next); 1776 ns_write_sram(card, scq->scd, &data, 1); 1777 spin_unlock_irqrestore(&scq->lock, flags); 1778 printk("nicstar%d: Error pushing TSR.\n", 1779 card->index); 1780 return 0; 1781 } 1782 1783 scq->full = 1; 1784 if (has_run++) 1785 break; 1786 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1787 scq->tail != scq->next, 1788 scq->lock, 1789 SCQFULL_TIMEOUT); 1790 } 1791 1792 if (!scq->full) { 1793 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1794 if (scq_is_vbr) 1795 scdi = NS_TSR_SCDISVBR; 1796 else 1797 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1798 scqi = scq->next - scq->base; 1799 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1800 tsr.word_3 = 0x00000000; 1801 tsr.word_4 = 0x00000000; 1802 1803 *scq->next = tsr; 1804 index = (int)scqi; 1805 scq->skb[index] = NULL; 1806 XPRINTK 1807 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1808 card->index, le32_to_cpu(tsr.word_1), 1809 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), 1810 le32_to_cpu(tsr.word_4), scq->next); 1811 if (scq->next == scq->last) 1812 scq->next = scq->base; 1813 else 1814 scq->next++; 1815 vc->tbd_count = 0; 1816 scq->tbd_count = 0; 1817 } else 1818 PRINTK("nicstar%d: Timeout pushing TSR.\n", 1819 card->index); 1820 } 1821 data = scq_virt_to_bus(scq, scq->next); 1822 ns_write_sram(card, scq->scd, &data, 1); 1823 1824 spin_unlock_irqrestore(&scq->lock, flags); 1825 1826 return 0; 1827 } 1828 1829 static void process_tsq(ns_dev * card) 1830 { 1831 u32 scdi; 1832 scq_info *scq; 1833 ns_tsi *previous = NULL, *one_ahead, *two_ahead; 1834 int serviced_entries; /* flag indicating at least on entry was serviced */ 1835 1836 serviced_entries = 0; 1837 1838 if (card->tsq.next == card->tsq.last) 1839 one_ahead = card->tsq.base; 1840 else 1841 one_ahead = card->tsq.next + 1; 1842 1843 if (one_ahead == card->tsq.last) 1844 two_ahead = card->tsq.base; 1845 else 1846 two_ahead = one_ahead + 1; 1847 1848 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || 1849 !ns_tsi_isempty(two_ahead)) 1850 /* At most two empty, as stated in the 77201 errata */ 1851 { 1852 serviced_entries = 1; 1853 1854 /* Skip the one or two possible empty entries */ 1855 while (ns_tsi_isempty(card->tsq.next)) { 1856 if (card->tsq.next == card->tsq.last) 1857 card->tsq.next = card->tsq.base; 1858 else 1859 card->tsq.next++; 1860 } 1861 1862 if (!ns_tsi_tmrof(card->tsq.next)) { 1863 scdi = ns_tsi_getscdindex(card->tsq.next); 1864 if (scdi == NS_TSI_SCDISVBR) 1865 scq = card->scq0; 1866 else { 1867 if (card->scd2vc[scdi] == NULL) { 1868 printk 1869 ("nicstar%d: could not find VC from SCD index.\n", 1870 card->index); 1871 ns_tsi_init(card->tsq.next); 1872 return; 1873 } 1874 scq = card->scd2vc[scdi]->scq; 1875 } 1876 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); 1877 scq->full = 0; 1878 wake_up_interruptible(&(scq->scqfull_waitq)); 1879 } 1880 1881 ns_tsi_init(card->tsq.next); 1882 previous = card->tsq.next; 1883 if (card->tsq.next == card->tsq.last) 1884 card->tsq.next = card->tsq.base; 1885 else 1886 card->tsq.next++; 1887 1888 if (card->tsq.next == card->tsq.last) 1889 one_ahead = card->tsq.base; 1890 else 1891 one_ahead = card->tsq.next + 1; 1892 1893 if (one_ahead == card->tsq.last) 1894 two_ahead = card->tsq.base; 1895 else 1896 two_ahead = one_ahead + 1; 1897 } 1898 1899 if (serviced_entries) 1900 writel(PTR_DIFF(previous, card->tsq.base), 1901 card->membase + TSQH); 1902 } 1903 1904 static void drain_scq(ns_dev * card, scq_info * scq, int pos) 1905 { 1906 struct atm_vcc *vcc; 1907 struct sk_buff *skb; 1908 int i; 1909 unsigned long flags; 1910 1911 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", 1912 card->index, scq, pos); 1913 if (pos >= scq->num_entries) { 1914 printk("nicstar%d: Bad index on drain_scq().\n", card->index); 1915 return; 1916 } 1917 1918 spin_lock_irqsave(&scq->lock, flags); 1919 i = (int)(scq->tail - scq->base); 1920 if (++i == scq->num_entries) 1921 i = 0; 1922 while (i != pos) { 1923 skb = scq->skb[i]; 1924 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", 1925 card->index, skb, i); 1926 if (skb != NULL) { 1927 dma_unmap_single(&card->pcidev->dev, 1928 NS_PRV_DMA(skb), 1929 skb->len, 1930 DMA_TO_DEVICE); 1931 vcc = ATM_SKB(skb)->vcc; 1932 if (vcc && vcc->pop != NULL) { 1933 vcc->pop(vcc, skb); 1934 } else { 1935 dev_kfree_skb_irq(skb); 1936 } 1937 scq->skb[i] = NULL; 1938 } 1939 if (++i == scq->num_entries) 1940 i = 0; 1941 } 1942 scq->tail = scq->base + pos; 1943 spin_unlock_irqrestore(&scq->lock, flags); 1944 } 1945 1946 static void process_rsq(ns_dev * card) 1947 { 1948 ns_rsqe *previous; 1949 1950 if (!ns_rsqe_valid(card->rsq.next)) 1951 return; 1952 do { 1953 dequeue_rx(card, card->rsq.next); 1954 ns_rsqe_init(card->rsq.next); 1955 previous = card->rsq.next; 1956 if (card->rsq.next == card->rsq.last) 1957 card->rsq.next = card->rsq.base; 1958 else 1959 card->rsq.next++; 1960 } while (ns_rsqe_valid(card->rsq.next)); 1961 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); 1962 } 1963 1964 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) 1965 { 1966 u32 vpi, vci; 1967 vc_map *vc; 1968 struct sk_buff *iovb; 1969 struct iovec *iov; 1970 struct atm_vcc *vcc; 1971 struct sk_buff *skb; 1972 unsigned short aal5_len; 1973 int len; 1974 u32 stat; 1975 u32 id; 1976 1977 stat = readl(card->membase + STAT); 1978 card->sbfqc = ns_stat_sfbqc_get(stat); 1979 card->lbfqc = ns_stat_lfbqc_get(stat); 1980 1981 id = le32_to_cpu(rsqe->buffer_handle); 1982 skb = idr_remove(&card->idr, id); 1983 if (!skb) { 1984 RXPRINTK(KERN_ERR 1985 "nicstar%d: skb not found!\n", card->index); 1986 return; 1987 } 1988 dma_sync_single_for_cpu(&card->pcidev->dev, 1989 NS_PRV_DMA(skb), 1990 (NS_PRV_BUFTYPE(skb) == BUF_SM 1991 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1992 DMA_FROM_DEVICE); 1993 dma_unmap_single(&card->pcidev->dev, 1994 NS_PRV_DMA(skb), 1995 (NS_PRV_BUFTYPE(skb) == BUF_SM 1996 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1997 DMA_FROM_DEVICE); 1998 vpi = ns_rsqe_vpi(rsqe); 1999 vci = ns_rsqe_vci(rsqe); 2000 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { 2001 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", 2002 card->index, vpi, vci); 2003 recycle_rx_buf(card, skb); 2004 return; 2005 } 2006 2007 vc = &(card->vcmap[vpi << card->vcibits | vci]); 2008 if (!vc->rx) { 2009 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", 2010 card->index, vpi, vci); 2011 recycle_rx_buf(card, skb); 2012 return; 2013 } 2014 2015 vcc = vc->rx_vcc; 2016 2017 if (vcc->qos.aal == ATM_AAL0) { 2018 struct sk_buff *sb; 2019 unsigned char *cell; 2020 int i; 2021 2022 cell = skb->data; 2023 for (i = ns_rsqe_cellcount(rsqe); i; i--) { 2024 sb = dev_alloc_skb(NS_SMSKBSIZE); 2025 if (!sb) { 2026 printk 2027 ("nicstar%d: Can't allocate buffers for aal0.\n", 2028 card->index); 2029 atomic_add(i, &vcc->stats->rx_drop); 2030 break; 2031 } 2032 if (!atm_charge(vcc, sb->truesize)) { 2033 RXPRINTK 2034 ("nicstar%d: atm_charge() dropped aal0 packets.\n", 2035 card->index); 2036 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ 2037 dev_kfree_skb_any(sb); 2038 break; 2039 } 2040 /* Rebuild the header */ 2041 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | 2042 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); 2043 if (i == 1 && ns_rsqe_eopdu(rsqe)) 2044 *((u32 *) sb->data) |= 0x00000002; 2045 skb_put(sb, NS_AAL0_HEADER); 2046 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); 2047 skb_put(sb, ATM_CELL_PAYLOAD); 2048 ATM_SKB(sb)->vcc = vcc; 2049 __net_timestamp(sb); 2050 vcc->push(vcc, sb); 2051 atomic_inc(&vcc->stats->rx); 2052 cell += ATM_CELL_PAYLOAD; 2053 } 2054 2055 recycle_rx_buf(card, skb); 2056 return; 2057 } 2058 2059 /* To reach this point, the AAL layer can only be AAL5 */ 2060 2061 if ((iovb = vc->rx_iov) == NULL) { 2062 iovb = skb_dequeue(&(card->iovpool.queue)); 2063 if (iovb == NULL) { /* No buffers in the queue */ 2064 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); 2065 if (iovb == NULL) { 2066 printk("nicstar%d: Out of iovec buffers.\n", 2067 card->index); 2068 atomic_inc(&vcc->stats->rx_drop); 2069 recycle_rx_buf(card, skb); 2070 return; 2071 } 2072 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2073 } else if (--card->iovpool.count < card->iovnr.min) { 2074 struct sk_buff *new_iovb; 2075 if ((new_iovb = 2076 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { 2077 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2078 skb_queue_tail(&card->iovpool.queue, new_iovb); 2079 card->iovpool.count++; 2080 } 2081 } 2082 vc->rx_iov = iovb; 2083 NS_PRV_IOVCNT(iovb) = 0; 2084 iovb->len = 0; 2085 iovb->data = iovb->head; 2086 skb_reset_tail_pointer(iovb); 2087 /* IMPORTANT: a pointer to the sk_buff containing the small or large 2088 buffer is stored as iovec base, NOT a pointer to the 2089 small or large buffer itself. */ 2090 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { 2091 printk("nicstar%d: received too big AAL5 SDU.\n", card->index); 2092 atomic_inc(&vcc->stats->rx_err); 2093 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2094 NS_MAX_IOVECS); 2095 NS_PRV_IOVCNT(iovb) = 0; 2096 iovb->len = 0; 2097 iovb->data = iovb->head; 2098 skb_reset_tail_pointer(iovb); 2099 } 2100 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; 2101 iov->iov_base = (void *)skb; 2102 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; 2103 iovb->len += iov->iov_len; 2104 2105 #ifdef EXTRA_DEBUG 2106 if (NS_PRV_IOVCNT(iovb) == 1) { 2107 if (NS_PRV_BUFTYPE(skb) != BUF_SM) { 2108 printk 2109 ("nicstar%d: Expected a small buffer, and this is not one.\n", 2110 card->index); 2111 which_list(card, skb); 2112 atomic_inc(&vcc->stats->rx_err); 2113 recycle_rx_buf(card, skb); 2114 vc->rx_iov = NULL; 2115 recycle_iov_buf(card, iovb); 2116 return; 2117 } 2118 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ 2119 2120 if (NS_PRV_BUFTYPE(skb) != BUF_LG) { 2121 printk 2122 ("nicstar%d: Expected a large buffer, and this is not one.\n", 2123 card->index); 2124 which_list(card, skb); 2125 atomic_inc(&vcc->stats->rx_err); 2126 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2127 NS_PRV_IOVCNT(iovb)); 2128 vc->rx_iov = NULL; 2129 recycle_iov_buf(card, iovb); 2130 return; 2131 } 2132 } 2133 #endif /* EXTRA_DEBUG */ 2134 2135 if (ns_rsqe_eopdu(rsqe)) { 2136 /* This works correctly regardless of the endianness of the host */ 2137 unsigned char *L1L2 = (unsigned char *) 2138 (skb->data + iov->iov_len - 6); 2139 aal5_len = L1L2[0] << 8 | L1L2[1]; 2140 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; 2141 if (ns_rsqe_crcerr(rsqe) || 2142 len + 8 > iovb->len || len + (47 + 8) < iovb->len) { 2143 printk("nicstar%d: AAL5 CRC error", card->index); 2144 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) 2145 printk(" - PDU size mismatch.\n"); 2146 else 2147 printk(".\n"); 2148 atomic_inc(&vcc->stats->rx_err); 2149 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2150 NS_PRV_IOVCNT(iovb)); 2151 vc->rx_iov = NULL; 2152 recycle_iov_buf(card, iovb); 2153 return; 2154 } 2155 2156 /* By this point we (hopefully) have a complete SDU without errors. */ 2157 2158 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ 2159 /* skb points to a small buffer */ 2160 if (!atm_charge(vcc, skb->truesize)) { 2161 push_rxbufs(card, skb); 2162 atomic_inc(&vcc->stats->rx_drop); 2163 } else { 2164 skb_put(skb, len); 2165 dequeue_sm_buf(card, skb); 2166 ATM_SKB(skb)->vcc = vcc; 2167 __net_timestamp(skb); 2168 vcc->push(vcc, skb); 2169 atomic_inc(&vcc->stats->rx); 2170 } 2171 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ 2172 struct sk_buff *sb; 2173 2174 sb = (struct sk_buff *)(iov - 1)->iov_base; 2175 /* skb points to a large buffer */ 2176 2177 if (len <= NS_SMBUFSIZE) { 2178 if (!atm_charge(vcc, sb->truesize)) { 2179 push_rxbufs(card, sb); 2180 atomic_inc(&vcc->stats->rx_drop); 2181 } else { 2182 skb_put(sb, len); 2183 dequeue_sm_buf(card, sb); 2184 ATM_SKB(sb)->vcc = vcc; 2185 __net_timestamp(sb); 2186 vcc->push(vcc, sb); 2187 atomic_inc(&vcc->stats->rx); 2188 } 2189 2190 push_rxbufs(card, skb); 2191 2192 } else { /* len > NS_SMBUFSIZE, the usual case */ 2193 2194 if (!atm_charge(vcc, skb->truesize)) { 2195 push_rxbufs(card, skb); 2196 atomic_inc(&vcc->stats->rx_drop); 2197 } else { 2198 dequeue_lg_buf(card, skb); 2199 skb_push(skb, NS_SMBUFSIZE); 2200 skb_copy_from_linear_data(sb, skb->data, 2201 NS_SMBUFSIZE); 2202 skb_put(skb, len - NS_SMBUFSIZE); 2203 ATM_SKB(skb)->vcc = vcc; 2204 __net_timestamp(skb); 2205 vcc->push(vcc, skb); 2206 atomic_inc(&vcc->stats->rx); 2207 } 2208 2209 push_rxbufs(card, sb); 2210 2211 } 2212 2213 } else { /* Must push a huge buffer */ 2214 2215 struct sk_buff *hb, *sb, *lb; 2216 int remaining, tocopy; 2217 int j; 2218 2219 hb = skb_dequeue(&(card->hbpool.queue)); 2220 if (hb == NULL) { /* No buffers in the queue */ 2221 2222 hb = dev_alloc_skb(NS_HBUFSIZE); 2223 if (hb == NULL) { 2224 printk 2225 ("nicstar%d: Out of huge buffers.\n", 2226 card->index); 2227 atomic_inc(&vcc->stats->rx_drop); 2228 recycle_iovec_rx_bufs(card, 2229 (struct iovec *) 2230 iovb->data, 2231 NS_PRV_IOVCNT(iovb)); 2232 vc->rx_iov = NULL; 2233 recycle_iov_buf(card, iovb); 2234 return; 2235 } else if (card->hbpool.count < card->hbnr.min) { 2236 struct sk_buff *new_hb; 2237 if ((new_hb = 2238 dev_alloc_skb(NS_HBUFSIZE)) != 2239 NULL) { 2240 skb_queue_tail(&card->hbpool. 2241 queue, new_hb); 2242 card->hbpool.count++; 2243 } 2244 } 2245 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2246 } else if (--card->hbpool.count < card->hbnr.min) { 2247 struct sk_buff *new_hb; 2248 if ((new_hb = 2249 dev_alloc_skb(NS_HBUFSIZE)) != NULL) { 2250 NS_PRV_BUFTYPE(new_hb) = BUF_NONE; 2251 skb_queue_tail(&card->hbpool.queue, 2252 new_hb); 2253 card->hbpool.count++; 2254 } 2255 if (card->hbpool.count < card->hbnr.min) { 2256 if ((new_hb = 2257 dev_alloc_skb(NS_HBUFSIZE)) != 2258 NULL) { 2259 NS_PRV_BUFTYPE(new_hb) = 2260 BUF_NONE; 2261 skb_queue_tail(&card->hbpool. 2262 queue, new_hb); 2263 card->hbpool.count++; 2264 } 2265 } 2266 } 2267 2268 iov = (struct iovec *)iovb->data; 2269 2270 if (!atm_charge(vcc, hb->truesize)) { 2271 recycle_iovec_rx_bufs(card, iov, 2272 NS_PRV_IOVCNT(iovb)); 2273 if (card->hbpool.count < card->hbnr.max) { 2274 skb_queue_tail(&card->hbpool.queue, hb); 2275 card->hbpool.count++; 2276 } else 2277 dev_kfree_skb_any(hb); 2278 atomic_inc(&vcc->stats->rx_drop); 2279 } else { 2280 /* Copy the small buffer to the huge buffer */ 2281 sb = (struct sk_buff *)iov->iov_base; 2282 skb_copy_from_linear_data(sb, hb->data, 2283 iov->iov_len); 2284 skb_put(hb, iov->iov_len); 2285 remaining = len - iov->iov_len; 2286 iov++; 2287 /* Free the small buffer */ 2288 push_rxbufs(card, sb); 2289 2290 /* Copy all large buffers to the huge buffer and free them */ 2291 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { 2292 lb = (struct sk_buff *)iov->iov_base; 2293 tocopy = 2294 min_t(int, remaining, iov->iov_len); 2295 skb_copy_from_linear_data(lb, 2296 skb_tail_pointer 2297 (hb), tocopy); 2298 skb_put(hb, tocopy); 2299 iov++; 2300 remaining -= tocopy; 2301 push_rxbufs(card, lb); 2302 } 2303 #ifdef EXTRA_DEBUG 2304 if (remaining != 0 || hb->len != len) 2305 printk 2306 ("nicstar%d: Huge buffer len mismatch.\n", 2307 card->index); 2308 #endif /* EXTRA_DEBUG */ 2309 ATM_SKB(hb)->vcc = vcc; 2310 __net_timestamp(hb); 2311 vcc->push(vcc, hb); 2312 atomic_inc(&vcc->stats->rx); 2313 } 2314 } 2315 2316 vc->rx_iov = NULL; 2317 recycle_iov_buf(card, iovb); 2318 } 2319 2320 } 2321 2322 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) 2323 { 2324 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { 2325 printk("nicstar%d: What kind of rx buffer is this?\n", 2326 card->index); 2327 dev_kfree_skb_any(skb); 2328 } else 2329 push_rxbufs(card, skb); 2330 } 2331 2332 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) 2333 { 2334 while (count-- > 0) 2335 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); 2336 } 2337 2338 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) 2339 { 2340 if (card->iovpool.count < card->iovnr.max) { 2341 skb_queue_tail(&card->iovpool.queue, iovb); 2342 card->iovpool.count++; 2343 } else 2344 dev_kfree_skb_any(iovb); 2345 } 2346 2347 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) 2348 { 2349 skb_unlink(sb, &card->sbpool.queue); 2350 if (card->sbfqc < card->sbnr.init) { 2351 struct sk_buff *new_sb; 2352 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2353 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2354 skb_queue_tail(&card->sbpool.queue, new_sb); 2355 skb_reserve(new_sb, NS_AAL0_HEADER); 2356 push_rxbufs(card, new_sb); 2357 } 2358 } 2359 if (card->sbfqc < card->sbnr.init) 2360 { 2361 struct sk_buff *new_sb; 2362 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2363 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2364 skb_queue_tail(&card->sbpool.queue, new_sb); 2365 skb_reserve(new_sb, NS_AAL0_HEADER); 2366 push_rxbufs(card, new_sb); 2367 } 2368 } 2369 } 2370 2371 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) 2372 { 2373 skb_unlink(lb, &card->lbpool.queue); 2374 if (card->lbfqc < card->lbnr.init) { 2375 struct sk_buff *new_lb; 2376 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2377 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2378 skb_queue_tail(&card->lbpool.queue, new_lb); 2379 skb_reserve(new_lb, NS_SMBUFSIZE); 2380 push_rxbufs(card, new_lb); 2381 } 2382 } 2383 if (card->lbfqc < card->lbnr.init) 2384 { 2385 struct sk_buff *new_lb; 2386 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2387 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2388 skb_queue_tail(&card->lbpool.queue, new_lb); 2389 skb_reserve(new_lb, NS_SMBUFSIZE); 2390 push_rxbufs(card, new_lb); 2391 } 2392 } 2393 } 2394 2395 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) 2396 { 2397 u32 stat; 2398 ns_dev *card; 2399 int left; 2400 2401 left = (int)*pos; 2402 card = (ns_dev *) dev->dev_data; 2403 stat = readl(card->membase + STAT); 2404 if (!left--) 2405 return sprintf(page, "Pool count min init max \n"); 2406 if (!left--) 2407 return sprintf(page, "Small %5d %5d %5d %5d \n", 2408 ns_stat_sfbqc_get(stat), card->sbnr.min, 2409 card->sbnr.init, card->sbnr.max); 2410 if (!left--) 2411 return sprintf(page, "Large %5d %5d %5d %5d \n", 2412 ns_stat_lfbqc_get(stat), card->lbnr.min, 2413 card->lbnr.init, card->lbnr.max); 2414 if (!left--) 2415 return sprintf(page, "Huge %5d %5d %5d %5d \n", 2416 card->hbpool.count, card->hbnr.min, 2417 card->hbnr.init, card->hbnr.max); 2418 if (!left--) 2419 return sprintf(page, "Iovec %5d %5d %5d %5d \n", 2420 card->iovpool.count, card->iovnr.min, 2421 card->iovnr.init, card->iovnr.max); 2422 if (!left--) { 2423 int retval; 2424 retval = 2425 sprintf(page, "Interrupt counter: %u \n", card->intcnt); 2426 card->intcnt = 0; 2427 return retval; 2428 } 2429 #if 0 2430 /* Dump 25.6 Mbps PHY registers */ 2431 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it 2432 here just in case it's needed for debugging. */ 2433 if (card->max_pcr == ATM_25_PCR && !left--) { 2434 u32 phy_regs[4]; 2435 u32 i; 2436 2437 for (i = 0; i < 4; i++) { 2438 while (CMD_BUSY(card)) ; 2439 writel(NS_CMD_READ_UTILITY | 0x00000200 | i, 2440 card->membase + CMD); 2441 while (CMD_BUSY(card)) ; 2442 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; 2443 } 2444 2445 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", 2446 phy_regs[0], phy_regs[1], phy_regs[2], 2447 phy_regs[3]); 2448 } 2449 #endif /* 0 - Dump 25.6 Mbps PHY registers */ 2450 #if 0 2451 /* Dump TST */ 2452 if (left-- < NS_TST_NUM_ENTRIES) { 2453 if (card->tste2vc[left + 1] == NULL) 2454 return sprintf(page, "%5d - VBR/UBR \n", left + 1); 2455 else 2456 return sprintf(page, "%5d - %d %d \n", left + 1, 2457 card->tste2vc[left + 1]->tx_vcc->vpi, 2458 card->tste2vc[left + 1]->tx_vcc->vci); 2459 } 2460 #endif /* 0 */ 2461 return 0; 2462 } 2463 2464 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) 2465 { 2466 ns_dev *card; 2467 pool_levels pl; 2468 long btype; 2469 unsigned long flags; 2470 2471 card = dev->dev_data; 2472 switch (cmd) { 2473 case NS_GETPSTAT: 2474 if (get_user 2475 (pl.buftype, &((pool_levels __user *) arg)->buftype)) 2476 return -EFAULT; 2477 switch (pl.buftype) { 2478 case NS_BUFTYPE_SMALL: 2479 pl.count = 2480 ns_stat_sfbqc_get(readl(card->membase + STAT)); 2481 pl.level.min = card->sbnr.min; 2482 pl.level.init = card->sbnr.init; 2483 pl.level.max = card->sbnr.max; 2484 break; 2485 2486 case NS_BUFTYPE_LARGE: 2487 pl.count = 2488 ns_stat_lfbqc_get(readl(card->membase + STAT)); 2489 pl.level.min = card->lbnr.min; 2490 pl.level.init = card->lbnr.init; 2491 pl.level.max = card->lbnr.max; 2492 break; 2493 2494 case NS_BUFTYPE_HUGE: 2495 pl.count = card->hbpool.count; 2496 pl.level.min = card->hbnr.min; 2497 pl.level.init = card->hbnr.init; 2498 pl.level.max = card->hbnr.max; 2499 break; 2500 2501 case NS_BUFTYPE_IOVEC: 2502 pl.count = card->iovpool.count; 2503 pl.level.min = card->iovnr.min; 2504 pl.level.init = card->iovnr.init; 2505 pl.level.max = card->iovnr.max; 2506 break; 2507 2508 default: 2509 return -ENOIOCTLCMD; 2510 2511 } 2512 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) 2513 return (sizeof(pl)); 2514 else 2515 return -EFAULT; 2516 2517 case NS_SETBUFLEV: 2518 if (!capable(CAP_NET_ADMIN)) 2519 return -EPERM; 2520 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) 2521 return -EFAULT; 2522 if (pl.level.min >= pl.level.init 2523 || pl.level.init >= pl.level.max) 2524 return -EINVAL; 2525 if (pl.level.min == 0) 2526 return -EINVAL; 2527 switch (pl.buftype) { 2528 case NS_BUFTYPE_SMALL: 2529 if (pl.level.max > TOP_SB) 2530 return -EINVAL; 2531 card->sbnr.min = pl.level.min; 2532 card->sbnr.init = pl.level.init; 2533 card->sbnr.max = pl.level.max; 2534 break; 2535 2536 case NS_BUFTYPE_LARGE: 2537 if (pl.level.max > TOP_LB) 2538 return -EINVAL; 2539 card->lbnr.min = pl.level.min; 2540 card->lbnr.init = pl.level.init; 2541 card->lbnr.max = pl.level.max; 2542 break; 2543 2544 case NS_BUFTYPE_HUGE: 2545 if (pl.level.max > TOP_HB) 2546 return -EINVAL; 2547 card->hbnr.min = pl.level.min; 2548 card->hbnr.init = pl.level.init; 2549 card->hbnr.max = pl.level.max; 2550 break; 2551 2552 case NS_BUFTYPE_IOVEC: 2553 if (pl.level.max > TOP_IOVB) 2554 return -EINVAL; 2555 card->iovnr.min = pl.level.min; 2556 card->iovnr.init = pl.level.init; 2557 card->iovnr.max = pl.level.max; 2558 break; 2559 2560 default: 2561 return -EINVAL; 2562 2563 } 2564 return 0; 2565 2566 case NS_ADJBUFLEV: 2567 if (!capable(CAP_NET_ADMIN)) 2568 return -EPERM; 2569 btype = (long)arg; /* a long is the same size as a pointer or bigger */ 2570 switch (btype) { 2571 case NS_BUFTYPE_SMALL: 2572 while (card->sbfqc < card->sbnr.init) { 2573 struct sk_buff *sb; 2574 2575 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2576 if (sb == NULL) 2577 return -ENOMEM; 2578 NS_PRV_BUFTYPE(sb) = BUF_SM; 2579 skb_queue_tail(&card->sbpool.queue, sb); 2580 skb_reserve(sb, NS_AAL0_HEADER); 2581 push_rxbufs(card, sb); 2582 } 2583 break; 2584 2585 case NS_BUFTYPE_LARGE: 2586 while (card->lbfqc < card->lbnr.init) { 2587 struct sk_buff *lb; 2588 2589 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2590 if (lb == NULL) 2591 return -ENOMEM; 2592 NS_PRV_BUFTYPE(lb) = BUF_LG; 2593 skb_queue_tail(&card->lbpool.queue, lb); 2594 skb_reserve(lb, NS_SMBUFSIZE); 2595 push_rxbufs(card, lb); 2596 } 2597 break; 2598 2599 case NS_BUFTYPE_HUGE: 2600 while (card->hbpool.count > card->hbnr.init) { 2601 struct sk_buff *hb; 2602 2603 spin_lock_irqsave(&card->int_lock, flags); 2604 hb = skb_dequeue(&card->hbpool.queue); 2605 card->hbpool.count--; 2606 spin_unlock_irqrestore(&card->int_lock, flags); 2607 if (hb == NULL) 2608 printk 2609 ("nicstar%d: huge buffer count inconsistent.\n", 2610 card->index); 2611 else 2612 dev_kfree_skb_any(hb); 2613 2614 } 2615 while (card->hbpool.count < card->hbnr.init) { 2616 struct sk_buff *hb; 2617 2618 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2619 if (hb == NULL) 2620 return -ENOMEM; 2621 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2622 spin_lock_irqsave(&card->int_lock, flags); 2623 skb_queue_tail(&card->hbpool.queue, hb); 2624 card->hbpool.count++; 2625 spin_unlock_irqrestore(&card->int_lock, flags); 2626 } 2627 break; 2628 2629 case NS_BUFTYPE_IOVEC: 2630 while (card->iovpool.count > card->iovnr.init) { 2631 struct sk_buff *iovb; 2632 2633 spin_lock_irqsave(&card->int_lock, flags); 2634 iovb = skb_dequeue(&card->iovpool.queue); 2635 card->iovpool.count--; 2636 spin_unlock_irqrestore(&card->int_lock, flags); 2637 if (iovb == NULL) 2638 printk 2639 ("nicstar%d: iovec buffer count inconsistent.\n", 2640 card->index); 2641 else 2642 dev_kfree_skb_any(iovb); 2643 2644 } 2645 while (card->iovpool.count < card->iovnr.init) { 2646 struct sk_buff *iovb; 2647 2648 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 2649 if (iovb == NULL) 2650 return -ENOMEM; 2651 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2652 spin_lock_irqsave(&card->int_lock, flags); 2653 skb_queue_tail(&card->iovpool.queue, iovb); 2654 card->iovpool.count++; 2655 spin_unlock_irqrestore(&card->int_lock, flags); 2656 } 2657 break; 2658 2659 default: 2660 return -EINVAL; 2661 2662 } 2663 return 0; 2664 2665 default: 2666 if (dev->phy && dev->phy->ioctl) { 2667 return dev->phy->ioctl(dev, cmd, arg); 2668 } else { 2669 printk("nicstar%d: %s == NULL \n", card->index, 2670 dev->phy ? "dev->phy->ioctl" : "dev->phy"); 2671 return -ENOIOCTLCMD; 2672 } 2673 } 2674 } 2675 2676 #ifdef EXTRA_DEBUG 2677 static void which_list(ns_dev * card, struct sk_buff *skb) 2678 { 2679 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); 2680 } 2681 #endif /* EXTRA_DEBUG */ 2682 2683 static void ns_poll(struct timer_list *unused) 2684 { 2685 int i; 2686 ns_dev *card; 2687 unsigned long flags; 2688 u32 stat_r, stat_w; 2689 2690 PRINTK("nicstar: Entering ns_poll().\n"); 2691 for (i = 0; i < num_cards; i++) { 2692 card = cards[i]; 2693 if (!spin_trylock_irqsave(&card->int_lock, flags)) { 2694 /* Probably it isn't worth spinning */ 2695 continue; 2696 } 2697 2698 stat_w = 0; 2699 stat_r = readl(card->membase + STAT); 2700 if (stat_r & NS_STAT_TSIF) 2701 stat_w |= NS_STAT_TSIF; 2702 if (stat_r & NS_STAT_EOPDU) 2703 stat_w |= NS_STAT_EOPDU; 2704 2705 process_tsq(card); 2706 process_rsq(card); 2707 2708 writel(stat_w, card->membase + STAT); 2709 spin_unlock_irqrestore(&card->int_lock, flags); 2710 } 2711 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); 2712 PRINTK("nicstar: Leaving ns_poll().\n"); 2713 } 2714 2715 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 2716 unsigned long addr) 2717 { 2718 ns_dev *card; 2719 unsigned long flags; 2720 2721 card = dev->dev_data; 2722 spin_lock_irqsave(&card->res_lock, flags); 2723 while (CMD_BUSY(card)) ; 2724 writel((u32) value, card->membase + DR0); 2725 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), 2726 card->membase + CMD); 2727 spin_unlock_irqrestore(&card->res_lock, flags); 2728 } 2729 2730 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) 2731 { 2732 ns_dev *card; 2733 unsigned long flags; 2734 u32 data; 2735 2736 card = dev->dev_data; 2737 spin_lock_irqsave(&card->res_lock, flags); 2738 while (CMD_BUSY(card)) ; 2739 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), 2740 card->membase + CMD); 2741 while (CMD_BUSY(card)) ; 2742 data = readl(card->membase + DR0) & 0x000000FF; 2743 spin_unlock_irqrestore(&card->res_lock, flags); 2744 return (unsigned char)data; 2745 } 2746 2747 module_init(nicstar_init); 2748 module_exit(nicstar_cleanup); 2749