xref: /openbmc/linux/drivers/atm/nicstar.c (revision 293d5b43)
1 /*
2  * nicstar.c
3  *
4  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
5  *
6  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
7  *            It was taken from the frle-0.22 device driver.
8  *            As the file doesn't have a copyright notice, in the file
9  *            nicstarmac.copyright I put the copyright notice from the
10  *            frle-0.22 device driver.
11  *            Some code is based on the nicstar driver by M. Welsh.
12  *
13  * Author: Rui Prior (rprior@inescn.pt)
14  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
15  *
16  *
17  * (C) INESC 1999
18  */
19 
20 /*
21  * IMPORTANT INFORMATION
22  *
23  * There are currently three types of spinlocks:
24  *
25  * 1 - Per card interrupt spinlock (to protect structures and such)
26  * 2 - Per SCQ scq spinlock
27  * 3 - Per card resource spinlock (to access registers, etc.)
28  *
29  * These must NEVER be grabbed in reverse order.
30  *
31  */
32 
33 /* Header files */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/skbuff.h>
38 #include <linux/atmdev.h>
39 #include <linux/atm.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/types.h>
43 #include <linux/string.h>
44 #include <linux/delay.h>
45 #include <linux/init.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <linux/idr.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <linux/atomic.h>
55 #include <linux/etherdevice.h>
56 #include "nicstar.h"
57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
58 #include "suni.h"
59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
61 #include "idt77105.h"
62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
63 
64 /* Additional code */
65 
66 #include "nicstarmac.c"
67 
68 /* Configurable parameters */
69 
70 #undef PHY_LOOPBACK
71 #undef TX_DEBUG
72 #undef RX_DEBUG
73 #undef GENERAL_DEBUG
74 #undef EXTRA_DEBUG
75 
76 /* Do not touch these */
77 
78 #ifdef TX_DEBUG
79 #define TXPRINTK(args...) printk(args)
80 #else
81 #define TXPRINTK(args...)
82 #endif /* TX_DEBUG */
83 
84 #ifdef RX_DEBUG
85 #define RXPRINTK(args...) printk(args)
86 #else
87 #define RXPRINTK(args...)
88 #endif /* RX_DEBUG */
89 
90 #ifdef GENERAL_DEBUG
91 #define PRINTK(args...) printk(args)
92 #else
93 #define PRINTK(args...)
94 #endif /* GENERAL_DEBUG */
95 
96 #ifdef EXTRA_DEBUG
97 #define XPRINTK(args...) printk(args)
98 #else
99 #define XPRINTK(args...)
100 #endif /* EXTRA_DEBUG */
101 
102 /* Macros */
103 
104 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
105 
106 #define NS_DELAY mdelay(1)
107 
108 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
109 
110 #ifndef ATM_SKB
111 #define ATM_SKB(s) (&(s)->atm)
112 #endif
113 
114 #define scq_virt_to_bus(scq, p) \
115 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
116 
117 /* Function declarations */
118 
119 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
120 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
121 			  int count);
122 static int ns_init_card(int i, struct pci_dev *pcidev);
123 static void ns_init_card_error(ns_dev * card, int error);
124 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
125 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
126 static void push_rxbufs(ns_dev *, struct sk_buff *);
127 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
128 static int ns_open(struct atm_vcc *vcc);
129 static void ns_close(struct atm_vcc *vcc);
130 static void fill_tst(ns_dev * card, int n, vc_map * vc);
131 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
132 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
133 		     struct sk_buff *skb);
134 static void process_tsq(ns_dev * card);
135 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
136 static void process_rsq(ns_dev * card);
137 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
138 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
139 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
140 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
141 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
142 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
143 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
144 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
145 #ifdef EXTRA_DEBUG
146 static void which_list(ns_dev * card, struct sk_buff *skb);
147 #endif
148 static void ns_poll(unsigned long arg);
149 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
150 		       unsigned long addr);
151 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
152 
153 /* Global variables */
154 
155 static struct ns_dev *cards[NS_MAX_CARDS];
156 static unsigned num_cards;
157 static struct atmdev_ops atm_ops = {
158 	.open = ns_open,
159 	.close = ns_close,
160 	.ioctl = ns_ioctl,
161 	.send = ns_send,
162 	.phy_put = ns_phy_put,
163 	.phy_get = ns_phy_get,
164 	.proc_read = ns_proc_read,
165 	.owner = THIS_MODULE,
166 };
167 
168 static struct timer_list ns_timer;
169 static char *mac[NS_MAX_CARDS];
170 module_param_array(mac, charp, NULL, 0);
171 MODULE_LICENSE("GPL");
172 
173 /* Functions */
174 
175 static int nicstar_init_one(struct pci_dev *pcidev,
176 			    const struct pci_device_id *ent)
177 {
178 	static int index = -1;
179 	unsigned int error;
180 
181 	index++;
182 	cards[index] = NULL;
183 
184 	error = ns_init_card(index, pcidev);
185 	if (error) {
186 		cards[index--] = NULL;	/* don't increment index */
187 		goto err_out;
188 	}
189 
190 	return 0;
191 err_out:
192 	return -ENODEV;
193 }
194 
195 static void nicstar_remove_one(struct pci_dev *pcidev)
196 {
197 	int i, j;
198 	ns_dev *card = pci_get_drvdata(pcidev);
199 	struct sk_buff *hb;
200 	struct sk_buff *iovb;
201 	struct sk_buff *lb;
202 	struct sk_buff *sb;
203 
204 	i = card->index;
205 
206 	if (cards[i] == NULL)
207 		return;
208 
209 	if (card->atmdev->phy && card->atmdev->phy->stop)
210 		card->atmdev->phy->stop(card->atmdev);
211 
212 	/* Stop everything */
213 	writel(0x00000000, card->membase + CFG);
214 
215 	/* De-register device */
216 	atm_dev_deregister(card->atmdev);
217 
218 	/* Disable PCI device */
219 	pci_disable_device(pcidev);
220 
221 	/* Free up resources */
222 	j = 0;
223 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
224 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
225 		dev_kfree_skb_any(hb);
226 		j++;
227 	}
228 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
229 	j = 0;
230 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
231 	       card->iovpool.count);
232 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
233 		dev_kfree_skb_any(iovb);
234 		j++;
235 	}
236 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
237 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
238 		dev_kfree_skb_any(lb);
239 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
240 		dev_kfree_skb_any(sb);
241 	free_scq(card, card->scq0, NULL);
242 	for (j = 0; j < NS_FRSCD_NUM; j++) {
243 		if (card->scd2vc[j] != NULL)
244 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
245 	}
246 	idr_destroy(&card->idr);
247 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
248 			  card->rsq.org, card->rsq.dma);
249 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
250 			  card->tsq.org, card->tsq.dma);
251 	free_irq(card->pcidev->irq, card);
252 	iounmap(card->membase);
253 	kfree(card);
254 }
255 
256 static struct pci_device_id nicstar_pci_tbl[] = {
257 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
258 	{0,}			/* terminate list */
259 };
260 
261 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
262 
263 static struct pci_driver nicstar_driver = {
264 	.name = "nicstar",
265 	.id_table = nicstar_pci_tbl,
266 	.probe = nicstar_init_one,
267 	.remove = nicstar_remove_one,
268 };
269 
270 static int __init nicstar_init(void)
271 {
272 	unsigned error = 0;	/* Initialized to remove compile warning */
273 
274 	XPRINTK("nicstar: nicstar_init() called.\n");
275 
276 	error = pci_register_driver(&nicstar_driver);
277 
278 	TXPRINTK("nicstar: TX debug enabled.\n");
279 	RXPRINTK("nicstar: RX debug enabled.\n");
280 	PRINTK("nicstar: General debug enabled.\n");
281 #ifdef PHY_LOOPBACK
282 	printk("nicstar: using PHY loopback.\n");
283 #endif /* PHY_LOOPBACK */
284 	XPRINTK("nicstar: nicstar_init() returned.\n");
285 
286 	if (!error) {
287 		init_timer(&ns_timer);
288 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
289 		ns_timer.data = 0UL;
290 		ns_timer.function = ns_poll;
291 		add_timer(&ns_timer);
292 	}
293 
294 	return error;
295 }
296 
297 static void __exit nicstar_cleanup(void)
298 {
299 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
300 
301 	del_timer(&ns_timer);
302 
303 	pci_unregister_driver(&nicstar_driver);
304 
305 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
306 }
307 
308 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
309 {
310 	unsigned long flags;
311 	u32 data;
312 	sram_address <<= 2;
313 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
314 	sram_address |= 0x50000000;	/* SRAM read command */
315 	spin_lock_irqsave(&card->res_lock, flags);
316 	while (CMD_BUSY(card)) ;
317 	writel(sram_address, card->membase + CMD);
318 	while (CMD_BUSY(card)) ;
319 	data = readl(card->membase + DR0);
320 	spin_unlock_irqrestore(&card->res_lock, flags);
321 	return data;
322 }
323 
324 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
325 			  int count)
326 {
327 	unsigned long flags;
328 	int i, c;
329 	count--;		/* count range now is 0..3 instead of 1..4 */
330 	c = count;
331 	c <<= 2;		/* to use increments of 4 */
332 	spin_lock_irqsave(&card->res_lock, flags);
333 	while (CMD_BUSY(card)) ;
334 	for (i = 0; i <= c; i += 4)
335 		writel(*(value++), card->membase + i);
336 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
337 	   so card->membase + DR0 == card->membase */
338 	sram_address <<= 2;
339 	sram_address &= 0x0007FFFC;
340 	sram_address |= (0x40000000 | count);
341 	writel(sram_address, card->membase + CMD);
342 	spin_unlock_irqrestore(&card->res_lock, flags);
343 }
344 
345 static int ns_init_card(int i, struct pci_dev *pcidev)
346 {
347 	int j;
348 	struct ns_dev *card = NULL;
349 	unsigned char pci_latency;
350 	unsigned error;
351 	u32 data;
352 	u32 u32d[4];
353 	u32 ns_cfg_rctsize;
354 	int bcount;
355 	unsigned long membase;
356 
357 	error = 0;
358 
359 	if (pci_enable_device(pcidev)) {
360 		printk("nicstar%d: can't enable PCI device\n", i);
361 		error = 2;
362 		ns_init_card_error(card, error);
363 		return error;
364 	}
365         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
366                 printk(KERN_WARNING
367 		       "nicstar%d: No suitable DMA available.\n", i);
368 		error = 2;
369 		ns_init_card_error(card, error);
370 		return error;
371         }
372 
373 	if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) {
374 		printk
375 		    ("nicstar%d: can't allocate memory for device structure.\n",
376 		     i);
377 		error = 2;
378 		ns_init_card_error(card, error);
379 		return error;
380 	}
381 	cards[i] = card;
382 	spin_lock_init(&card->int_lock);
383 	spin_lock_init(&card->res_lock);
384 
385 	pci_set_drvdata(pcidev, card);
386 
387 	card->index = i;
388 	card->atmdev = NULL;
389 	card->pcidev = pcidev;
390 	membase = pci_resource_start(pcidev, 1);
391 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
392 	if (!card->membase) {
393 		printk("nicstar%d: can't ioremap() membase.\n", i);
394 		error = 3;
395 		ns_init_card_error(card, error);
396 		return error;
397 	}
398 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
399 
400 	pci_set_master(pcidev);
401 
402 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
403 		printk("nicstar%d: can't read PCI latency timer.\n", i);
404 		error = 6;
405 		ns_init_card_error(card, error);
406 		return error;
407 	}
408 #ifdef NS_PCI_LATENCY
409 	if (pci_latency < NS_PCI_LATENCY) {
410 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
411 		       NS_PCI_LATENCY);
412 		for (j = 1; j < 4; j++) {
413 			if (pci_write_config_byte
414 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
415 				break;
416 		}
417 		if (j == 4) {
418 			printk
419 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
420 			     i, NS_PCI_LATENCY);
421 			error = 7;
422 			ns_init_card_error(card, error);
423 			return error;
424 		}
425 	}
426 #endif /* NS_PCI_LATENCY */
427 
428 	/* Clear timer overflow */
429 	data = readl(card->membase + STAT);
430 	if (data & NS_STAT_TMROF)
431 		writel(NS_STAT_TMROF, card->membase + STAT);
432 
433 	/* Software reset */
434 	writel(NS_CFG_SWRST, card->membase + CFG);
435 	NS_DELAY;
436 	writel(0x00000000, card->membase + CFG);
437 
438 	/* PHY reset */
439 	writel(0x00000008, card->membase + GP);
440 	NS_DELAY;
441 	writel(0x00000001, card->membase + GP);
442 	NS_DELAY;
443 	while (CMD_BUSY(card)) ;
444 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
445 	NS_DELAY;
446 
447 	/* Detect PHY type */
448 	while (CMD_BUSY(card)) ;
449 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
450 	while (CMD_BUSY(card)) ;
451 	data = readl(card->membase + DR0);
452 	switch (data) {
453 	case 0x00000009:
454 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
455 		card->max_pcr = ATM_25_PCR;
456 		while (CMD_BUSY(card)) ;
457 		writel(0x00000008, card->membase + DR0);
458 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
459 		/* Clear an eventual pending interrupt */
460 		writel(NS_STAT_SFBQF, card->membase + STAT);
461 #ifdef PHY_LOOPBACK
462 		while (CMD_BUSY(card)) ;
463 		writel(0x00000022, card->membase + DR0);
464 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
465 #endif /* PHY_LOOPBACK */
466 		break;
467 	case 0x00000030:
468 	case 0x00000031:
469 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
470 		card->max_pcr = ATM_OC3_PCR;
471 #ifdef PHY_LOOPBACK
472 		while (CMD_BUSY(card)) ;
473 		writel(0x00000002, card->membase + DR0);
474 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
475 #endif /* PHY_LOOPBACK */
476 		break;
477 	default:
478 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
479 		error = 8;
480 		ns_init_card_error(card, error);
481 		return error;
482 	}
483 	writel(0x00000000, card->membase + GP);
484 
485 	/* Determine SRAM size */
486 	data = 0x76543210;
487 	ns_write_sram(card, 0x1C003, &data, 1);
488 	data = 0x89ABCDEF;
489 	ns_write_sram(card, 0x14003, &data, 1);
490 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
491 	    ns_read_sram(card, 0x1C003) == 0x76543210)
492 		card->sram_size = 128;
493 	else
494 		card->sram_size = 32;
495 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
496 
497 	card->rct_size = NS_MAX_RCTSIZE;
498 
499 #if (NS_MAX_RCTSIZE == 4096)
500 	if (card->sram_size == 128)
501 		printk
502 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
503 		     i);
504 #elif (NS_MAX_RCTSIZE == 16384)
505 	if (card->sram_size == 32) {
506 		printk
507 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
508 		     i);
509 		card->rct_size = 4096;
510 	}
511 #else
512 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
513 #endif
514 
515 	card->vpibits = NS_VPIBITS;
516 	if (card->rct_size == 4096)
517 		card->vcibits = 12 - NS_VPIBITS;
518 	else			/* card->rct_size == 16384 */
519 		card->vcibits = 14 - NS_VPIBITS;
520 
521 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
522 	if (mac[i] == NULL)
523 		nicstar_init_eprom(card->membase);
524 
525 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
526 	writel(0x00000000, card->membase + VPM);
527 
528 	/* Initialize TSQ */
529 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
530 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
531 					   &card->tsq.dma, GFP_KERNEL);
532 	if (card->tsq.org == NULL) {
533 		printk("nicstar%d: can't allocate TSQ.\n", i);
534 		error = 10;
535 		ns_init_card_error(card, error);
536 		return error;
537 	}
538 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
539 	card->tsq.next = card->tsq.base;
540 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
541 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
542 		ns_tsi_init(card->tsq.base + j);
543 	writel(0x00000000, card->membase + TSQH);
544 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
545 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
546 
547 	/* Initialize RSQ */
548 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
549 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
550 					   &card->rsq.dma, GFP_KERNEL);
551 	if (card->rsq.org == NULL) {
552 		printk("nicstar%d: can't allocate RSQ.\n", i);
553 		error = 11;
554 		ns_init_card_error(card, error);
555 		return error;
556 	}
557 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
558 	card->rsq.next = card->rsq.base;
559 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
560 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
561 		ns_rsqe_init(card->rsq.base + j);
562 	writel(0x00000000, card->membase + RSQH);
563 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
564 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
565 
566 	/* Initialize SCQ0, the only VBR SCQ used */
567 	card->scq1 = NULL;
568 	card->scq2 = NULL;
569 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
570 	if (card->scq0 == NULL) {
571 		printk("nicstar%d: can't get SCQ0.\n", i);
572 		error = 12;
573 		ns_init_card_error(card, error);
574 		return error;
575 	}
576 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
577 	u32d[1] = (u32) 0x00000000;
578 	u32d[2] = (u32) 0xffffffff;
579 	u32d[3] = (u32) 0x00000000;
580 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
581 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
582 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
583 	card->scq0->scd = NS_VRSCD0;
584 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
585 
586 	/* Initialize TSTs */
587 	card->tst_addr = NS_TST0;
588 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
589 	data = NS_TST_OPCODE_VARIABLE;
590 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
591 		ns_write_sram(card, NS_TST0 + j, &data, 1);
592 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
593 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
594 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
595 		ns_write_sram(card, NS_TST1 + j, &data, 1);
596 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
597 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
598 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
599 		card->tste2vc[j] = NULL;
600 	writel(NS_TST0 << 2, card->membase + TSTB);
601 
602 	/* Initialize RCT. AAL type is set on opening the VC. */
603 #ifdef RCQ_SUPPORT
604 	u32d[0] = NS_RCTE_RAWCELLINTEN;
605 #else
606 	u32d[0] = 0x00000000;
607 #endif /* RCQ_SUPPORT */
608 	u32d[1] = 0x00000000;
609 	u32d[2] = 0x00000000;
610 	u32d[3] = 0xFFFFFFFF;
611 	for (j = 0; j < card->rct_size; j++)
612 		ns_write_sram(card, j * 4, u32d, 4);
613 
614 	memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
615 
616 	for (j = 0; j < NS_FRSCD_NUM; j++)
617 		card->scd2vc[j] = NULL;
618 
619 	/* Initialize buffer levels */
620 	card->sbnr.min = MIN_SB;
621 	card->sbnr.init = NUM_SB;
622 	card->sbnr.max = MAX_SB;
623 	card->lbnr.min = MIN_LB;
624 	card->lbnr.init = NUM_LB;
625 	card->lbnr.max = MAX_LB;
626 	card->iovnr.min = MIN_IOVB;
627 	card->iovnr.init = NUM_IOVB;
628 	card->iovnr.max = MAX_IOVB;
629 	card->hbnr.min = MIN_HB;
630 	card->hbnr.init = NUM_HB;
631 	card->hbnr.max = MAX_HB;
632 
633 	card->sm_handle = NULL;
634 	card->sm_addr = 0x00000000;
635 	card->lg_handle = NULL;
636 	card->lg_addr = 0x00000000;
637 
638 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
639 
640 	idr_init(&card->idr);
641 
642 	/* Pre-allocate some huge buffers */
643 	skb_queue_head_init(&card->hbpool.queue);
644 	card->hbpool.count = 0;
645 	for (j = 0; j < NUM_HB; j++) {
646 		struct sk_buff *hb;
647 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
648 		if (hb == NULL) {
649 			printk
650 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
651 			     i, j, NUM_HB);
652 			error = 13;
653 			ns_init_card_error(card, error);
654 			return error;
655 		}
656 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
657 		skb_queue_tail(&card->hbpool.queue, hb);
658 		card->hbpool.count++;
659 	}
660 
661 	/* Allocate large buffers */
662 	skb_queue_head_init(&card->lbpool.queue);
663 	card->lbpool.count = 0;	/* Not used */
664 	for (j = 0; j < NUM_LB; j++) {
665 		struct sk_buff *lb;
666 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
667 		if (lb == NULL) {
668 			printk
669 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
670 			     i, j, NUM_LB);
671 			error = 14;
672 			ns_init_card_error(card, error);
673 			return error;
674 		}
675 		NS_PRV_BUFTYPE(lb) = BUF_LG;
676 		skb_queue_tail(&card->lbpool.queue, lb);
677 		skb_reserve(lb, NS_SMBUFSIZE);
678 		push_rxbufs(card, lb);
679 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
680 		if (j == 1) {
681 			card->rcbuf = lb;
682 			card->rawcell = (struct ns_rcqe *) lb->data;
683 			card->rawch = NS_PRV_DMA(lb);
684 		}
685 	}
686 	/* Test for strange behaviour which leads to crashes */
687 	if ((bcount =
688 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
689 		printk
690 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
691 		     i, j, bcount);
692 		error = 14;
693 		ns_init_card_error(card, error);
694 		return error;
695 	}
696 
697 	/* Allocate small buffers */
698 	skb_queue_head_init(&card->sbpool.queue);
699 	card->sbpool.count = 0;	/* Not used */
700 	for (j = 0; j < NUM_SB; j++) {
701 		struct sk_buff *sb;
702 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
703 		if (sb == NULL) {
704 			printk
705 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
706 			     i, j, NUM_SB);
707 			error = 15;
708 			ns_init_card_error(card, error);
709 			return error;
710 		}
711 		NS_PRV_BUFTYPE(sb) = BUF_SM;
712 		skb_queue_tail(&card->sbpool.queue, sb);
713 		skb_reserve(sb, NS_AAL0_HEADER);
714 		push_rxbufs(card, sb);
715 	}
716 	/* Test for strange behaviour which leads to crashes */
717 	if ((bcount =
718 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
719 		printk
720 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
721 		     i, j, bcount);
722 		error = 15;
723 		ns_init_card_error(card, error);
724 		return error;
725 	}
726 
727 	/* Allocate iovec buffers */
728 	skb_queue_head_init(&card->iovpool.queue);
729 	card->iovpool.count = 0;
730 	for (j = 0; j < NUM_IOVB; j++) {
731 		struct sk_buff *iovb;
732 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
733 		if (iovb == NULL) {
734 			printk
735 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
736 			     i, j, NUM_IOVB);
737 			error = 16;
738 			ns_init_card_error(card, error);
739 			return error;
740 		}
741 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
742 		skb_queue_tail(&card->iovpool.queue, iovb);
743 		card->iovpool.count++;
744 	}
745 
746 	/* Configure NICStAR */
747 	if (card->rct_size == 4096)
748 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
749 	else			/* (card->rct_size == 16384) */
750 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
751 
752 	card->efbie = 1;
753 
754 	card->intcnt = 0;
755 	if (request_irq
756 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
757 		printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
758 		error = 9;
759 		ns_init_card_error(card, error);
760 		return error;
761 	}
762 
763 	/* Register device */
764 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
765 					-1, NULL);
766 	if (card->atmdev == NULL) {
767 		printk("nicstar%d: can't register device.\n", i);
768 		error = 17;
769 		ns_init_card_error(card, error);
770 		return error;
771 	}
772 
773 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
774 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
775 				   card->atmdev->esi, 6);
776 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
777 			nicstar_read_eprom(card->membase,
778 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
779 					   card->atmdev->esi, 6);
780 		}
781 	}
782 
783 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
784 
785 	card->atmdev->dev_data = card;
786 	card->atmdev->ci_range.vpi_bits = card->vpibits;
787 	card->atmdev->ci_range.vci_bits = card->vcibits;
788 	card->atmdev->link_rate = card->max_pcr;
789 	card->atmdev->phy = NULL;
790 
791 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
792 	if (card->max_pcr == ATM_OC3_PCR)
793 		suni_init(card->atmdev);
794 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
795 
796 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
797 	if (card->max_pcr == ATM_25_PCR)
798 		idt77105_init(card->atmdev);
799 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
800 
801 	if (card->atmdev->phy && card->atmdev->phy->start)
802 		card->atmdev->phy->start(card->atmdev);
803 
804 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
805 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
806 	       NS_CFG_PHYIE, card->membase + CFG);
807 
808 	num_cards++;
809 
810 	return error;
811 }
812 
813 static void ns_init_card_error(ns_dev *card, int error)
814 {
815 	if (error >= 17) {
816 		writel(0x00000000, card->membase + CFG);
817 	}
818 	if (error >= 16) {
819 		struct sk_buff *iovb;
820 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
821 			dev_kfree_skb_any(iovb);
822 	}
823 	if (error >= 15) {
824 		struct sk_buff *sb;
825 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
826 			dev_kfree_skb_any(sb);
827 		free_scq(card, card->scq0, NULL);
828 	}
829 	if (error >= 14) {
830 		struct sk_buff *lb;
831 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
832 			dev_kfree_skb_any(lb);
833 	}
834 	if (error >= 13) {
835 		struct sk_buff *hb;
836 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
837 			dev_kfree_skb_any(hb);
838 	}
839 	if (error >= 12) {
840 		kfree(card->rsq.org);
841 	}
842 	if (error >= 11) {
843 		kfree(card->tsq.org);
844 	}
845 	if (error >= 10) {
846 		free_irq(card->pcidev->irq, card);
847 	}
848 	if (error >= 4) {
849 		iounmap(card->membase);
850 	}
851 	if (error >= 3) {
852 		pci_disable_device(card->pcidev);
853 		kfree(card);
854 	}
855 }
856 
857 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
858 {
859 	scq_info *scq;
860 	int i;
861 
862 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
863 		return NULL;
864 
865 	scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
866 	if (!scq)
867 		return NULL;
868         scq->org = dma_alloc_coherent(&card->pcidev->dev,
869 				      2 * size,  &scq->dma, GFP_KERNEL);
870 	if (!scq->org) {
871 		kfree(scq);
872 		return NULL;
873 	}
874 	scq->skb = kmalloc(sizeof(struct sk_buff *) *
875 			   (size / NS_SCQE_SIZE), GFP_KERNEL);
876 	if (!scq->skb) {
877 		dma_free_coherent(&card->pcidev->dev,
878 				  2 * size, scq->org, scq->dma);
879 		kfree(scq);
880 		return NULL;
881 	}
882 	scq->num_entries = size / NS_SCQE_SIZE;
883 	scq->base = PTR_ALIGN(scq->org, size);
884 	scq->next = scq->base;
885 	scq->last = scq->base + (scq->num_entries - 1);
886 	scq->tail = scq->last;
887 	scq->scd = scd;
888 	scq->num_entries = size / NS_SCQE_SIZE;
889 	scq->tbd_count = 0;
890 	init_waitqueue_head(&scq->scqfull_waitq);
891 	scq->full = 0;
892 	spin_lock_init(&scq->lock);
893 
894 	for (i = 0; i < scq->num_entries; i++)
895 		scq->skb[i] = NULL;
896 
897 	return scq;
898 }
899 
900 /* For variable rate SCQ vcc must be NULL */
901 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
902 {
903 	int i;
904 
905 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
906 		for (i = 0; i < scq->num_entries; i++) {
907 			if (scq->skb[i] != NULL) {
908 				vcc = ATM_SKB(scq->skb[i])->vcc;
909 				if (vcc->pop != NULL)
910 					vcc->pop(vcc, scq->skb[i]);
911 				else
912 					dev_kfree_skb_any(scq->skb[i]);
913 			}
914 	} else {		/* vcc must be != NULL */
915 
916 		if (vcc == NULL) {
917 			printk
918 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
919 			for (i = 0; i < scq->num_entries; i++)
920 				dev_kfree_skb_any(scq->skb[i]);
921 		} else
922 			for (i = 0; i < scq->num_entries; i++) {
923 				if (scq->skb[i] != NULL) {
924 					if (vcc->pop != NULL)
925 						vcc->pop(vcc, scq->skb[i]);
926 					else
927 						dev_kfree_skb_any(scq->skb[i]);
928 				}
929 			}
930 	}
931 	kfree(scq->skb);
932 	dma_free_coherent(&card->pcidev->dev,
933 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
934 			       VBR_SCQSIZE : CBR_SCQSIZE),
935 			  scq->org, scq->dma);
936 	kfree(scq);
937 }
938 
939 /* The handles passed must be pointers to the sk_buff containing the small
940    or large buffer(s) cast to u32. */
941 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
942 {
943 	struct sk_buff *handle1, *handle2;
944 	int id1, id2;
945 	u32 addr1, addr2;
946 	u32 stat;
947 	unsigned long flags;
948 
949 	/* *BARF* */
950 	handle2 = NULL;
951 	addr2 = 0;
952 	handle1 = skb;
953 	addr1 = dma_map_single(&card->pcidev->dev,
954 			       skb->data,
955 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
956 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
957 			       DMA_TO_DEVICE);
958 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
959 
960 #ifdef GENERAL_DEBUG
961 	if (!addr1)
962 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
963 		       card->index);
964 #endif /* GENERAL_DEBUG */
965 
966 	stat = readl(card->membase + STAT);
967 	card->sbfqc = ns_stat_sfbqc_get(stat);
968 	card->lbfqc = ns_stat_lfbqc_get(stat);
969 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
970 		if (!addr2) {
971 			if (card->sm_addr) {
972 				addr2 = card->sm_addr;
973 				handle2 = card->sm_handle;
974 				card->sm_addr = 0x00000000;
975 				card->sm_handle = NULL;
976 			} else {	/* (!sm_addr) */
977 
978 				card->sm_addr = addr1;
979 				card->sm_handle = handle1;
980 			}
981 		}
982 	} else {		/* buf_type == BUF_LG */
983 
984 		if (!addr2) {
985 			if (card->lg_addr) {
986 				addr2 = card->lg_addr;
987 				handle2 = card->lg_handle;
988 				card->lg_addr = 0x00000000;
989 				card->lg_handle = NULL;
990 			} else {	/* (!lg_addr) */
991 
992 				card->lg_addr = addr1;
993 				card->lg_handle = handle1;
994 			}
995 		}
996 	}
997 
998 	if (addr2) {
999 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1000 			if (card->sbfqc >= card->sbnr.max) {
1001 				skb_unlink(handle1, &card->sbpool.queue);
1002 				dev_kfree_skb_any(handle1);
1003 				skb_unlink(handle2, &card->sbpool.queue);
1004 				dev_kfree_skb_any(handle2);
1005 				return;
1006 			} else
1007 				card->sbfqc += 2;
1008 		} else {	/* (buf_type == BUF_LG) */
1009 
1010 			if (card->lbfqc >= card->lbnr.max) {
1011 				skb_unlink(handle1, &card->lbpool.queue);
1012 				dev_kfree_skb_any(handle1);
1013 				skb_unlink(handle2, &card->lbpool.queue);
1014 				dev_kfree_skb_any(handle2);
1015 				return;
1016 			} else
1017 				card->lbfqc += 2;
1018 		}
1019 
1020 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1021 		if (id1 < 0)
1022 			goto out;
1023 
1024 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1025 		if (id2 < 0)
1026 			goto out;
1027 
1028 		spin_lock_irqsave(&card->res_lock, flags);
1029 		while (CMD_BUSY(card)) ;
1030 		writel(addr2, card->membase + DR3);
1031 		writel(id2, card->membase + DR2);
1032 		writel(addr1, card->membase + DR1);
1033 		writel(id1, card->membase + DR0);
1034 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1035 		       card->membase + CMD);
1036 		spin_unlock_irqrestore(&card->res_lock, flags);
1037 
1038 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1039 			card->index,
1040 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1041 			addr1, addr2);
1042 	}
1043 
1044 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1045 	    card->lbfqc >= card->lbnr.min) {
1046 		card->efbie = 1;
1047 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1048 		       card->membase + CFG);
1049 	}
1050 
1051 out:
1052 	return;
1053 }
1054 
1055 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1056 {
1057 	u32 stat_r;
1058 	ns_dev *card;
1059 	struct atm_dev *dev;
1060 	unsigned long flags;
1061 
1062 	card = (ns_dev *) dev_id;
1063 	dev = card->atmdev;
1064 	card->intcnt++;
1065 
1066 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1067 
1068 	spin_lock_irqsave(&card->int_lock, flags);
1069 
1070 	stat_r = readl(card->membase + STAT);
1071 
1072 	/* Transmit Status Indicator has been written to T. S. Queue */
1073 	if (stat_r & NS_STAT_TSIF) {
1074 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1075 		process_tsq(card);
1076 		writel(NS_STAT_TSIF, card->membase + STAT);
1077 	}
1078 
1079 	/* Incomplete CS-PDU has been transmitted */
1080 	if (stat_r & NS_STAT_TXICP) {
1081 		writel(NS_STAT_TXICP, card->membase + STAT);
1082 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1083 			 card->index);
1084 	}
1085 
1086 	/* Transmit Status Queue 7/8 full */
1087 	if (stat_r & NS_STAT_TSQF) {
1088 		writel(NS_STAT_TSQF, card->membase + STAT);
1089 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1090 		process_tsq(card);
1091 	}
1092 
1093 	/* Timer overflow */
1094 	if (stat_r & NS_STAT_TMROF) {
1095 		writel(NS_STAT_TMROF, card->membase + STAT);
1096 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1097 	}
1098 
1099 	/* PHY device interrupt signal active */
1100 	if (stat_r & NS_STAT_PHYI) {
1101 		writel(NS_STAT_PHYI, card->membase + STAT);
1102 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1103 		if (dev->phy && dev->phy->interrupt) {
1104 			dev->phy->interrupt(dev);
1105 		}
1106 	}
1107 
1108 	/* Small Buffer Queue is full */
1109 	if (stat_r & NS_STAT_SFBQF) {
1110 		writel(NS_STAT_SFBQF, card->membase + STAT);
1111 		printk("nicstar%d: Small free buffer queue is full.\n",
1112 		       card->index);
1113 	}
1114 
1115 	/* Large Buffer Queue is full */
1116 	if (stat_r & NS_STAT_LFBQF) {
1117 		writel(NS_STAT_LFBQF, card->membase + STAT);
1118 		printk("nicstar%d: Large free buffer queue is full.\n",
1119 		       card->index);
1120 	}
1121 
1122 	/* Receive Status Queue is full */
1123 	if (stat_r & NS_STAT_RSQF) {
1124 		writel(NS_STAT_RSQF, card->membase + STAT);
1125 		printk("nicstar%d: RSQ full.\n", card->index);
1126 		process_rsq(card);
1127 	}
1128 
1129 	/* Complete CS-PDU received */
1130 	if (stat_r & NS_STAT_EOPDU) {
1131 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1132 		process_rsq(card);
1133 		writel(NS_STAT_EOPDU, card->membase + STAT);
1134 	}
1135 
1136 	/* Raw cell received */
1137 	if (stat_r & NS_STAT_RAWCF) {
1138 		writel(NS_STAT_RAWCF, card->membase + STAT);
1139 #ifndef RCQ_SUPPORT
1140 		printk("nicstar%d: Raw cell received and no support yet...\n",
1141 		       card->index);
1142 #endif /* RCQ_SUPPORT */
1143 		/* NOTE: the following procedure may keep a raw cell pending until the
1144 		   next interrupt. As this preliminary support is only meant to
1145 		   avoid buffer leakage, this is not an issue. */
1146 		while (readl(card->membase + RAWCT) != card->rawch) {
1147 
1148 			if (ns_rcqe_islast(card->rawcell)) {
1149 				struct sk_buff *oldbuf;
1150 
1151 				oldbuf = card->rcbuf;
1152 				card->rcbuf = idr_find(&card->idr,
1153 						       ns_rcqe_nextbufhandle(card->rawcell));
1154 				card->rawch = NS_PRV_DMA(card->rcbuf);
1155 				card->rawcell = (struct ns_rcqe *)
1156 						card->rcbuf->data;
1157 				recycle_rx_buf(card, oldbuf);
1158 			} else {
1159 				card->rawch += NS_RCQE_SIZE;
1160 				card->rawcell++;
1161 			}
1162 		}
1163 	}
1164 
1165 	/* Small buffer queue is empty */
1166 	if (stat_r & NS_STAT_SFBQE) {
1167 		int i;
1168 		struct sk_buff *sb;
1169 
1170 		writel(NS_STAT_SFBQE, card->membase + STAT);
1171 		printk("nicstar%d: Small free buffer queue empty.\n",
1172 		       card->index);
1173 		for (i = 0; i < card->sbnr.min; i++) {
1174 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1175 			if (sb == NULL) {
1176 				writel(readl(card->membase + CFG) &
1177 				       ~NS_CFG_EFBIE, card->membase + CFG);
1178 				card->efbie = 0;
1179 				break;
1180 			}
1181 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1182 			skb_queue_tail(&card->sbpool.queue, sb);
1183 			skb_reserve(sb, NS_AAL0_HEADER);
1184 			push_rxbufs(card, sb);
1185 		}
1186 		card->sbfqc = i;
1187 		process_rsq(card);
1188 	}
1189 
1190 	/* Large buffer queue empty */
1191 	if (stat_r & NS_STAT_LFBQE) {
1192 		int i;
1193 		struct sk_buff *lb;
1194 
1195 		writel(NS_STAT_LFBQE, card->membase + STAT);
1196 		printk("nicstar%d: Large free buffer queue empty.\n",
1197 		       card->index);
1198 		for (i = 0; i < card->lbnr.min; i++) {
1199 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1200 			if (lb == NULL) {
1201 				writel(readl(card->membase + CFG) &
1202 				       ~NS_CFG_EFBIE, card->membase + CFG);
1203 				card->efbie = 0;
1204 				break;
1205 			}
1206 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1207 			skb_queue_tail(&card->lbpool.queue, lb);
1208 			skb_reserve(lb, NS_SMBUFSIZE);
1209 			push_rxbufs(card, lb);
1210 		}
1211 		card->lbfqc = i;
1212 		process_rsq(card);
1213 	}
1214 
1215 	/* Receive Status Queue is 7/8 full */
1216 	if (stat_r & NS_STAT_RSQAF) {
1217 		writel(NS_STAT_RSQAF, card->membase + STAT);
1218 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1219 		process_rsq(card);
1220 	}
1221 
1222 	spin_unlock_irqrestore(&card->int_lock, flags);
1223 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1224 	return IRQ_HANDLED;
1225 }
1226 
1227 static int ns_open(struct atm_vcc *vcc)
1228 {
1229 	ns_dev *card;
1230 	vc_map *vc;
1231 	unsigned long tmpl, modl;
1232 	int tcr, tcra;		/* target cell rate, and absolute value */
1233 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1234 				   the compiler warning. */
1235 	u32 u32d[4];
1236 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1237 				   warning. How I wish compilers were clever enough to
1238 				   tell which variables can truly be used
1239 				   uninitialized... */
1240 	int inuse;		/* tx or rx vc already in use by another vcc */
1241 	short vpi = vcc->vpi;
1242 	int vci = vcc->vci;
1243 
1244 	card = (ns_dev *) vcc->dev->dev_data;
1245 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1246 	       vci);
1247 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1248 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1249 		return -EINVAL;
1250 	}
1251 
1252 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1253 	vcc->dev_data = vc;
1254 
1255 	inuse = 0;
1256 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1257 		inuse = 1;
1258 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1259 		inuse += 2;
1260 	if (inuse) {
1261 		printk("nicstar%d: %s vci already in use.\n", card->index,
1262 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1263 		return -EINVAL;
1264 	}
1265 
1266 	set_bit(ATM_VF_ADDR, &vcc->flags);
1267 
1268 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1269 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1270 	   needed to do that. */
1271 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1272 		scq_info *scq;
1273 
1274 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1275 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1276 			/* Check requested cell rate and availability of SCD */
1277 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1278 			    && vcc->qos.txtp.min_pcr == 0) {
1279 				PRINTK
1280 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1281 				     card->index);
1282 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1283 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1284 				return -EINVAL;
1285 			}
1286 
1287 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1288 			tcra = tcr >= 0 ? tcr : -tcr;
1289 
1290 			PRINTK("nicstar%d: target cell rate = %d.\n",
1291 			       card->index, vcc->qos.txtp.max_pcr);
1292 
1293 			tmpl =
1294 			    (unsigned long)tcra *(unsigned long)
1295 			    NS_TST_NUM_ENTRIES;
1296 			modl = tmpl % card->max_pcr;
1297 
1298 			n = (int)(tmpl / card->max_pcr);
1299 			if (tcr > 0) {
1300 				if (modl > 0)
1301 					n++;
1302 			} else if (tcr == 0) {
1303 				if ((n =
1304 				     (card->tst_free_entries -
1305 				      NS_TST_RESERVED)) <= 0) {
1306 					PRINTK
1307 					    ("nicstar%d: no CBR bandwidth free.\n",
1308 					     card->index);
1309 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1310 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1311 					return -EINVAL;
1312 				}
1313 			}
1314 
1315 			if (n == 0) {
1316 				printk
1317 				    ("nicstar%d: selected bandwidth < granularity.\n",
1318 				     card->index);
1319 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1320 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1321 				return -EINVAL;
1322 			}
1323 
1324 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1325 				PRINTK
1326 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1327 				     card->index);
1328 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1329 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1330 				return -EINVAL;
1331 			} else
1332 				card->tst_free_entries -= n;
1333 
1334 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1335 				card->index, n);
1336 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1337 				if (card->scd2vc[frscdi] == NULL) {
1338 					card->scd2vc[frscdi] = vc;
1339 					break;
1340 				}
1341 			}
1342 			if (frscdi == NS_FRSCD_NUM) {
1343 				PRINTK
1344 				    ("nicstar%d: no SCD available for CBR channel.\n",
1345 				     card->index);
1346 				card->tst_free_entries += n;
1347 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1348 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1349 				return -EBUSY;
1350 			}
1351 
1352 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1353 
1354 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1355 			if (scq == NULL) {
1356 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1357 				       card->index);
1358 				card->scd2vc[frscdi] = NULL;
1359 				card->tst_free_entries += n;
1360 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1361 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1362 				return -ENOMEM;
1363 			}
1364 			vc->scq = scq;
1365 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1366 			u32d[1] = (u32) 0x00000000;
1367 			u32d[2] = (u32) 0xffffffff;
1368 			u32d[3] = (u32) 0x00000000;
1369 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1370 
1371 			fill_tst(card, n, vc);
1372 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1373 			vc->cbr_scd = 0x00000000;
1374 			vc->scq = card->scq0;
1375 		}
1376 
1377 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1378 			vc->tx = 1;
1379 			vc->tx_vcc = vcc;
1380 			vc->tbd_count = 0;
1381 		}
1382 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1383 			u32 status;
1384 
1385 			vc->rx = 1;
1386 			vc->rx_vcc = vcc;
1387 			vc->rx_iov = NULL;
1388 
1389 			/* Open the connection in hardware */
1390 			if (vcc->qos.aal == ATM_AAL5)
1391 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1392 			else	/* vcc->qos.aal == ATM_AAL0 */
1393 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1394 #ifdef RCQ_SUPPORT
1395 			status |= NS_RCTE_RAWCELLINTEN;
1396 #endif /* RCQ_SUPPORT */
1397 			ns_write_sram(card,
1398 				      NS_RCT +
1399 				      (vpi << card->vcibits | vci) *
1400 				      NS_RCT_ENTRY_SIZE, &status, 1);
1401 		}
1402 
1403 	}
1404 
1405 	set_bit(ATM_VF_READY, &vcc->flags);
1406 	return 0;
1407 }
1408 
1409 static void ns_close(struct atm_vcc *vcc)
1410 {
1411 	vc_map *vc;
1412 	ns_dev *card;
1413 	u32 data;
1414 	int i;
1415 
1416 	vc = vcc->dev_data;
1417 	card = vcc->dev->dev_data;
1418 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1419 	       (int)vcc->vpi, vcc->vci);
1420 
1421 	clear_bit(ATM_VF_READY, &vcc->flags);
1422 
1423 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1424 		u32 addr;
1425 		unsigned long flags;
1426 
1427 		addr =
1428 		    NS_RCT +
1429 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1430 		spin_lock_irqsave(&card->res_lock, flags);
1431 		while (CMD_BUSY(card)) ;
1432 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1433 		       card->membase + CMD);
1434 		spin_unlock_irqrestore(&card->res_lock, flags);
1435 
1436 		vc->rx = 0;
1437 		if (vc->rx_iov != NULL) {
1438 			struct sk_buff *iovb;
1439 			u32 stat;
1440 
1441 			stat = readl(card->membase + STAT);
1442 			card->sbfqc = ns_stat_sfbqc_get(stat);
1443 			card->lbfqc = ns_stat_lfbqc_get(stat);
1444 
1445 			PRINTK
1446 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1447 			     card->index);
1448 			iovb = vc->rx_iov;
1449 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1450 					      NS_PRV_IOVCNT(iovb));
1451 			NS_PRV_IOVCNT(iovb) = 0;
1452 			spin_lock_irqsave(&card->int_lock, flags);
1453 			recycle_iov_buf(card, iovb);
1454 			spin_unlock_irqrestore(&card->int_lock, flags);
1455 			vc->rx_iov = NULL;
1456 		}
1457 	}
1458 
1459 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1460 		vc->tx = 0;
1461 	}
1462 
1463 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1464 		unsigned long flags;
1465 		ns_scqe *scqep;
1466 		scq_info *scq;
1467 
1468 		scq = vc->scq;
1469 
1470 		for (;;) {
1471 			spin_lock_irqsave(&scq->lock, flags);
1472 			scqep = scq->next;
1473 			if (scqep == scq->base)
1474 				scqep = scq->last;
1475 			else
1476 				scqep--;
1477 			if (scqep == scq->tail) {
1478 				spin_unlock_irqrestore(&scq->lock, flags);
1479 				break;
1480 			}
1481 			/* If the last entry is not a TSR, place one in the SCQ in order to
1482 			   be able to completely drain it and then close. */
1483 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1484 				ns_scqe tsr;
1485 				u32 scdi, scqi;
1486 				u32 data;
1487 				int index;
1488 
1489 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1490 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1491 				scqi = scq->next - scq->base;
1492 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1493 				tsr.word_3 = 0x00000000;
1494 				tsr.word_4 = 0x00000000;
1495 				*scq->next = tsr;
1496 				index = (int)scqi;
1497 				scq->skb[index] = NULL;
1498 				if (scq->next == scq->last)
1499 					scq->next = scq->base;
1500 				else
1501 					scq->next++;
1502 				data = scq_virt_to_bus(scq, scq->next);
1503 				ns_write_sram(card, scq->scd, &data, 1);
1504 			}
1505 			spin_unlock_irqrestore(&scq->lock, flags);
1506 			schedule();
1507 		}
1508 
1509 		/* Free all TST entries */
1510 		data = NS_TST_OPCODE_VARIABLE;
1511 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1512 			if (card->tste2vc[i] == vc) {
1513 				ns_write_sram(card, card->tst_addr + i, &data,
1514 					      1);
1515 				card->tste2vc[i] = NULL;
1516 				card->tst_free_entries++;
1517 			}
1518 		}
1519 
1520 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1521 		free_scq(card, vc->scq, vcc);
1522 	}
1523 
1524 	/* remove all references to vcc before deleting it */
1525 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1526 		unsigned long flags;
1527 		scq_info *scq = card->scq0;
1528 
1529 		spin_lock_irqsave(&scq->lock, flags);
1530 
1531 		for (i = 0; i < scq->num_entries; i++) {
1532 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1533 				ATM_SKB(scq->skb[i])->vcc = NULL;
1534 				atm_return(vcc, scq->skb[i]->truesize);
1535 				PRINTK
1536 				    ("nicstar: deleted pending vcc mapping\n");
1537 			}
1538 		}
1539 
1540 		spin_unlock_irqrestore(&scq->lock, flags);
1541 	}
1542 
1543 	vcc->dev_data = NULL;
1544 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1545 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1546 
1547 #ifdef RX_DEBUG
1548 	{
1549 		u32 stat, cfg;
1550 		stat = readl(card->membase + STAT);
1551 		cfg = readl(card->membase + CFG);
1552 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1553 		printk
1554 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1555 		     card->tsq.base, card->tsq.next,
1556 		     card->tsq.last, readl(card->membase + TSQT));
1557 		printk
1558 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1559 		     card->rsq.base, card->rsq.next,
1560 		     card->rsq.last, readl(card->membase + RSQT));
1561 		printk("Empty free buffer queue interrupt %s \n",
1562 		       card->efbie ? "enabled" : "disabled");
1563 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1564 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1565 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1566 		printk("hbpool.count = %d  iovpool.count = %d \n",
1567 		       card->hbpool.count, card->iovpool.count);
1568 	}
1569 #endif /* RX_DEBUG */
1570 }
1571 
1572 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1573 {
1574 	u32 new_tst;
1575 	unsigned long cl;
1576 	int e, r;
1577 	u32 data;
1578 
1579 	/* It would be very complicated to keep the two TSTs synchronized while
1580 	   assuring that writes are only made to the inactive TST. So, for now I
1581 	   will use only one TST. If problems occur, I will change this again */
1582 
1583 	new_tst = card->tst_addr;
1584 
1585 	/* Fill procedure */
1586 
1587 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1588 		if (card->tste2vc[e] == NULL)
1589 			break;
1590 	}
1591 	if (e == NS_TST_NUM_ENTRIES) {
1592 		printk("nicstar%d: No free TST entries found. \n", card->index);
1593 		return;
1594 	}
1595 
1596 	r = n;
1597 	cl = NS_TST_NUM_ENTRIES;
1598 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1599 
1600 	while (r > 0) {
1601 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1602 			card->tste2vc[e] = vc;
1603 			ns_write_sram(card, new_tst + e, &data, 1);
1604 			cl -= NS_TST_NUM_ENTRIES;
1605 			r--;
1606 		}
1607 
1608 		if (++e == NS_TST_NUM_ENTRIES) {
1609 			e = 0;
1610 		}
1611 		cl += n;
1612 	}
1613 
1614 	/* End of fill procedure */
1615 
1616 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1617 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1618 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1619 	card->tst_addr = new_tst;
1620 }
1621 
1622 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1623 {
1624 	ns_dev *card;
1625 	vc_map *vc;
1626 	scq_info *scq;
1627 	unsigned long buflen;
1628 	ns_scqe scqe;
1629 	u32 flags;		/* TBD flags, not CPU flags */
1630 
1631 	card = vcc->dev->dev_data;
1632 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1633 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1634 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1635 		       card->index);
1636 		atomic_inc(&vcc->stats->tx_err);
1637 		dev_kfree_skb_any(skb);
1638 		return -EINVAL;
1639 	}
1640 
1641 	if (!vc->tx) {
1642 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1643 		       card->index);
1644 		atomic_inc(&vcc->stats->tx_err);
1645 		dev_kfree_skb_any(skb);
1646 		return -EINVAL;
1647 	}
1648 
1649 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1650 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1651 		       card->index);
1652 		atomic_inc(&vcc->stats->tx_err);
1653 		dev_kfree_skb_any(skb);
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (skb_shinfo(skb)->nr_frags != 0) {
1658 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1659 		atomic_inc(&vcc->stats->tx_err);
1660 		dev_kfree_skb_any(skb);
1661 		return -EINVAL;
1662 	}
1663 
1664 	ATM_SKB(skb)->vcc = vcc;
1665 
1666 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1667 					 skb->len, DMA_TO_DEVICE);
1668 
1669 	if (vcc->qos.aal == ATM_AAL5) {
1670 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1671 		flags = NS_TBD_AAL5;
1672 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1673 		scqe.word_3 = cpu_to_le32(skb->len);
1674 		scqe.word_4 =
1675 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1676 				    ATM_SKB(skb)->
1677 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1678 		flags |= NS_TBD_EOPDU;
1679 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1680 
1681 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1682 		flags = NS_TBD_AAL0;
1683 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1684 		scqe.word_3 = cpu_to_le32(0x00000000);
1685 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1686 			flags |= NS_TBD_EOPDU;
1687 		scqe.word_4 =
1688 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1689 		/* Force the VPI/VCI to be the same as in VCC struct */
1690 		scqe.word_4 |=
1691 		    cpu_to_le32((((u32) vcc->
1692 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1693 							      vci) <<
1694 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1695 	}
1696 
1697 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1698 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1699 		scq = ((vc_map *) vcc->dev_data)->scq;
1700 	} else {
1701 		scqe.word_1 =
1702 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1703 		scq = card->scq0;
1704 	}
1705 
1706 	if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
1707 		atomic_inc(&vcc->stats->tx_err);
1708 		dev_kfree_skb_any(skb);
1709 		return -EIO;
1710 	}
1711 	atomic_inc(&vcc->stats->tx);
1712 
1713 	return 0;
1714 }
1715 
1716 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1717 		     struct sk_buff *skb)
1718 {
1719 	unsigned long flags;
1720 	ns_scqe tsr;
1721 	u32 scdi, scqi;
1722 	int scq_is_vbr;
1723 	u32 data;
1724 	int index;
1725 
1726 	spin_lock_irqsave(&scq->lock, flags);
1727 	while (scq->tail == scq->next) {
1728 		if (in_interrupt()) {
1729 			spin_unlock_irqrestore(&scq->lock, flags);
1730 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1731 			return 1;
1732 		}
1733 
1734 		scq->full = 1;
1735 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1736 							  scq->tail != scq->next,
1737 							  scq->lock,
1738 							  SCQFULL_TIMEOUT);
1739 
1740 		if (scq->full) {
1741 			spin_unlock_irqrestore(&scq->lock, flags);
1742 			printk("nicstar%d: Timeout pushing TBD.\n",
1743 			       card->index);
1744 			return 1;
1745 		}
1746 	}
1747 	*scq->next = *tbd;
1748 	index = (int)(scq->next - scq->base);
1749 	scq->skb[index] = skb;
1750 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1751 		card->index, skb, index);
1752 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1753 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1754 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1755 		scq->next);
1756 	if (scq->next == scq->last)
1757 		scq->next = scq->base;
1758 	else
1759 		scq->next++;
1760 
1761 	vc->tbd_count++;
1762 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1763 		scq->tbd_count++;
1764 		scq_is_vbr = 1;
1765 	} else
1766 		scq_is_vbr = 0;
1767 
1768 	if (vc->tbd_count >= MAX_TBD_PER_VC
1769 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1770 		int has_run = 0;
1771 
1772 		while (scq->tail == scq->next) {
1773 			if (in_interrupt()) {
1774 				data = scq_virt_to_bus(scq, scq->next);
1775 				ns_write_sram(card, scq->scd, &data, 1);
1776 				spin_unlock_irqrestore(&scq->lock, flags);
1777 				printk("nicstar%d: Error pushing TSR.\n",
1778 				       card->index);
1779 				return 0;
1780 			}
1781 
1782 			scq->full = 1;
1783 			if (has_run++)
1784 				break;
1785 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1786 								  scq->tail != scq->next,
1787 								  scq->lock,
1788 								  SCQFULL_TIMEOUT);
1789 		}
1790 
1791 		if (!scq->full) {
1792 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1793 			if (scq_is_vbr)
1794 				scdi = NS_TSR_SCDISVBR;
1795 			else
1796 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1797 			scqi = scq->next - scq->base;
1798 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1799 			tsr.word_3 = 0x00000000;
1800 			tsr.word_4 = 0x00000000;
1801 
1802 			*scq->next = tsr;
1803 			index = (int)scqi;
1804 			scq->skb[index] = NULL;
1805 			XPRINTK
1806 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1807 			     card->index, le32_to_cpu(tsr.word_1),
1808 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1809 			     le32_to_cpu(tsr.word_4), scq->next);
1810 			if (scq->next == scq->last)
1811 				scq->next = scq->base;
1812 			else
1813 				scq->next++;
1814 			vc->tbd_count = 0;
1815 			scq->tbd_count = 0;
1816 		} else
1817 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1818 			       card->index);
1819 	}
1820 	data = scq_virt_to_bus(scq, scq->next);
1821 	ns_write_sram(card, scq->scd, &data, 1);
1822 
1823 	spin_unlock_irqrestore(&scq->lock, flags);
1824 
1825 	return 0;
1826 }
1827 
1828 static void process_tsq(ns_dev * card)
1829 {
1830 	u32 scdi;
1831 	scq_info *scq;
1832 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1833 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1834 
1835 	serviced_entries = 0;
1836 
1837 	if (card->tsq.next == card->tsq.last)
1838 		one_ahead = card->tsq.base;
1839 	else
1840 		one_ahead = card->tsq.next + 1;
1841 
1842 	if (one_ahead == card->tsq.last)
1843 		two_ahead = card->tsq.base;
1844 	else
1845 		two_ahead = one_ahead + 1;
1846 
1847 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1848 	       !ns_tsi_isempty(two_ahead))
1849 		/* At most two empty, as stated in the 77201 errata */
1850 	{
1851 		serviced_entries = 1;
1852 
1853 		/* Skip the one or two possible empty entries */
1854 		while (ns_tsi_isempty(card->tsq.next)) {
1855 			if (card->tsq.next == card->tsq.last)
1856 				card->tsq.next = card->tsq.base;
1857 			else
1858 				card->tsq.next++;
1859 		}
1860 
1861 		if (!ns_tsi_tmrof(card->tsq.next)) {
1862 			scdi = ns_tsi_getscdindex(card->tsq.next);
1863 			if (scdi == NS_TSI_SCDISVBR)
1864 				scq = card->scq0;
1865 			else {
1866 				if (card->scd2vc[scdi] == NULL) {
1867 					printk
1868 					    ("nicstar%d: could not find VC from SCD index.\n",
1869 					     card->index);
1870 					ns_tsi_init(card->tsq.next);
1871 					return;
1872 				}
1873 				scq = card->scd2vc[scdi]->scq;
1874 			}
1875 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1876 			scq->full = 0;
1877 			wake_up_interruptible(&(scq->scqfull_waitq));
1878 		}
1879 
1880 		ns_tsi_init(card->tsq.next);
1881 		previous = card->tsq.next;
1882 		if (card->tsq.next == card->tsq.last)
1883 			card->tsq.next = card->tsq.base;
1884 		else
1885 			card->tsq.next++;
1886 
1887 		if (card->tsq.next == card->tsq.last)
1888 			one_ahead = card->tsq.base;
1889 		else
1890 			one_ahead = card->tsq.next + 1;
1891 
1892 		if (one_ahead == card->tsq.last)
1893 			two_ahead = card->tsq.base;
1894 		else
1895 			two_ahead = one_ahead + 1;
1896 	}
1897 
1898 	if (serviced_entries)
1899 		writel(PTR_DIFF(previous, card->tsq.base),
1900 		       card->membase + TSQH);
1901 }
1902 
1903 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1904 {
1905 	struct atm_vcc *vcc;
1906 	struct sk_buff *skb;
1907 	int i;
1908 	unsigned long flags;
1909 
1910 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1911 		card->index, scq, pos);
1912 	if (pos >= scq->num_entries) {
1913 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1914 		return;
1915 	}
1916 
1917 	spin_lock_irqsave(&scq->lock, flags);
1918 	i = (int)(scq->tail - scq->base);
1919 	if (++i == scq->num_entries)
1920 		i = 0;
1921 	while (i != pos) {
1922 		skb = scq->skb[i];
1923 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1924 			card->index, skb, i);
1925 		if (skb != NULL) {
1926 			dma_unmap_single(&card->pcidev->dev,
1927 					 NS_PRV_DMA(skb),
1928 					 skb->len,
1929 					 DMA_TO_DEVICE);
1930 			vcc = ATM_SKB(skb)->vcc;
1931 			if (vcc && vcc->pop != NULL) {
1932 				vcc->pop(vcc, skb);
1933 			} else {
1934 				dev_kfree_skb_irq(skb);
1935 			}
1936 			scq->skb[i] = NULL;
1937 		}
1938 		if (++i == scq->num_entries)
1939 			i = 0;
1940 	}
1941 	scq->tail = scq->base + pos;
1942 	spin_unlock_irqrestore(&scq->lock, flags);
1943 }
1944 
1945 static void process_rsq(ns_dev * card)
1946 {
1947 	ns_rsqe *previous;
1948 
1949 	if (!ns_rsqe_valid(card->rsq.next))
1950 		return;
1951 	do {
1952 		dequeue_rx(card, card->rsq.next);
1953 		ns_rsqe_init(card->rsq.next);
1954 		previous = card->rsq.next;
1955 		if (card->rsq.next == card->rsq.last)
1956 			card->rsq.next = card->rsq.base;
1957 		else
1958 			card->rsq.next++;
1959 	} while (ns_rsqe_valid(card->rsq.next));
1960 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1961 }
1962 
1963 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1964 {
1965 	u32 vpi, vci;
1966 	vc_map *vc;
1967 	struct sk_buff *iovb;
1968 	struct iovec *iov;
1969 	struct atm_vcc *vcc;
1970 	struct sk_buff *skb;
1971 	unsigned short aal5_len;
1972 	int len;
1973 	u32 stat;
1974 	u32 id;
1975 
1976 	stat = readl(card->membase + STAT);
1977 	card->sbfqc = ns_stat_sfbqc_get(stat);
1978 	card->lbfqc = ns_stat_lfbqc_get(stat);
1979 
1980 	id = le32_to_cpu(rsqe->buffer_handle);
1981 	skb = idr_find(&card->idr, id);
1982 	if (!skb) {
1983 		RXPRINTK(KERN_ERR
1984 			 "nicstar%d: idr_find() failed!\n", card->index);
1985 		return;
1986 	}
1987 	idr_remove(&card->idr, id);
1988 	dma_sync_single_for_cpu(&card->pcidev->dev,
1989 				NS_PRV_DMA(skb),
1990 				(NS_PRV_BUFTYPE(skb) == BUF_SM
1991 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1992 				DMA_FROM_DEVICE);
1993 	dma_unmap_single(&card->pcidev->dev,
1994 			 NS_PRV_DMA(skb),
1995 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
1996 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1997 			 DMA_FROM_DEVICE);
1998 	vpi = ns_rsqe_vpi(rsqe);
1999 	vci = ns_rsqe_vci(rsqe);
2000 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2001 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2002 		       card->index, vpi, vci);
2003 		recycle_rx_buf(card, skb);
2004 		return;
2005 	}
2006 
2007 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2008 	if (!vc->rx) {
2009 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2010 			 card->index, vpi, vci);
2011 		recycle_rx_buf(card, skb);
2012 		return;
2013 	}
2014 
2015 	vcc = vc->rx_vcc;
2016 
2017 	if (vcc->qos.aal == ATM_AAL0) {
2018 		struct sk_buff *sb;
2019 		unsigned char *cell;
2020 		int i;
2021 
2022 		cell = skb->data;
2023 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2024 			if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) {
2025 				printk
2026 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2027 				     card->index);
2028 				atomic_add(i, &vcc->stats->rx_drop);
2029 				break;
2030 			}
2031 			if (!atm_charge(vcc, sb->truesize)) {
2032 				RXPRINTK
2033 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2034 				     card->index);
2035 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2036 				dev_kfree_skb_any(sb);
2037 				break;
2038 			}
2039 			/* Rebuild the header */
2040 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2041 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2042 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2043 				*((u32 *) sb->data) |= 0x00000002;
2044 			skb_put(sb, NS_AAL0_HEADER);
2045 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2046 			skb_put(sb, ATM_CELL_PAYLOAD);
2047 			ATM_SKB(sb)->vcc = vcc;
2048 			__net_timestamp(sb);
2049 			vcc->push(vcc, sb);
2050 			atomic_inc(&vcc->stats->rx);
2051 			cell += ATM_CELL_PAYLOAD;
2052 		}
2053 
2054 		recycle_rx_buf(card, skb);
2055 		return;
2056 	}
2057 
2058 	/* To reach this point, the AAL layer can only be AAL5 */
2059 
2060 	if ((iovb = vc->rx_iov) == NULL) {
2061 		iovb = skb_dequeue(&(card->iovpool.queue));
2062 		if (iovb == NULL) {	/* No buffers in the queue */
2063 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2064 			if (iovb == NULL) {
2065 				printk("nicstar%d: Out of iovec buffers.\n",
2066 				       card->index);
2067 				atomic_inc(&vcc->stats->rx_drop);
2068 				recycle_rx_buf(card, skb);
2069 				return;
2070 			}
2071 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2072 		} else if (--card->iovpool.count < card->iovnr.min) {
2073 			struct sk_buff *new_iovb;
2074 			if ((new_iovb =
2075 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2076 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2077 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2078 				card->iovpool.count++;
2079 			}
2080 		}
2081 		vc->rx_iov = iovb;
2082 		NS_PRV_IOVCNT(iovb) = 0;
2083 		iovb->len = 0;
2084 		iovb->data = iovb->head;
2085 		skb_reset_tail_pointer(iovb);
2086 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2087 		   buffer is stored as iovec base, NOT a pointer to the
2088 		   small or large buffer itself. */
2089 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2090 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2091 		atomic_inc(&vcc->stats->rx_err);
2092 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2093 				      NS_MAX_IOVECS);
2094 		NS_PRV_IOVCNT(iovb) = 0;
2095 		iovb->len = 0;
2096 		iovb->data = iovb->head;
2097 		skb_reset_tail_pointer(iovb);
2098 	}
2099 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2100 	iov->iov_base = (void *)skb;
2101 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2102 	iovb->len += iov->iov_len;
2103 
2104 #ifdef EXTRA_DEBUG
2105 	if (NS_PRV_IOVCNT(iovb) == 1) {
2106 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2107 			printk
2108 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2109 			     card->index);
2110 			which_list(card, skb);
2111 			atomic_inc(&vcc->stats->rx_err);
2112 			recycle_rx_buf(card, skb);
2113 			vc->rx_iov = NULL;
2114 			recycle_iov_buf(card, iovb);
2115 			return;
2116 		}
2117 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2118 
2119 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2120 			printk
2121 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2122 			     card->index);
2123 			which_list(card, skb);
2124 			atomic_inc(&vcc->stats->rx_err);
2125 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2126 					      NS_PRV_IOVCNT(iovb));
2127 			vc->rx_iov = NULL;
2128 			recycle_iov_buf(card, iovb);
2129 			return;
2130 		}
2131 	}
2132 #endif /* EXTRA_DEBUG */
2133 
2134 	if (ns_rsqe_eopdu(rsqe)) {
2135 		/* This works correctly regardless of the endianness of the host */
2136 		unsigned char *L1L2 = (unsigned char *)
2137 						(skb->data + iov->iov_len - 6);
2138 		aal5_len = L1L2[0] << 8 | L1L2[1];
2139 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2140 		if (ns_rsqe_crcerr(rsqe) ||
2141 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2142 			printk("nicstar%d: AAL5 CRC error", card->index);
2143 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2144 				printk(" - PDU size mismatch.\n");
2145 			else
2146 				printk(".\n");
2147 			atomic_inc(&vcc->stats->rx_err);
2148 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2149 					      NS_PRV_IOVCNT(iovb));
2150 			vc->rx_iov = NULL;
2151 			recycle_iov_buf(card, iovb);
2152 			return;
2153 		}
2154 
2155 		/* By this point we (hopefully) have a complete SDU without errors. */
2156 
2157 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2158 			/* skb points to a small buffer */
2159 			if (!atm_charge(vcc, skb->truesize)) {
2160 				push_rxbufs(card, skb);
2161 				atomic_inc(&vcc->stats->rx_drop);
2162 			} else {
2163 				skb_put(skb, len);
2164 				dequeue_sm_buf(card, skb);
2165 				ATM_SKB(skb)->vcc = vcc;
2166 				__net_timestamp(skb);
2167 				vcc->push(vcc, skb);
2168 				atomic_inc(&vcc->stats->rx);
2169 			}
2170 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2171 			struct sk_buff *sb;
2172 
2173 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2174 			/* skb points to a large buffer */
2175 
2176 			if (len <= NS_SMBUFSIZE) {
2177 				if (!atm_charge(vcc, sb->truesize)) {
2178 					push_rxbufs(card, sb);
2179 					atomic_inc(&vcc->stats->rx_drop);
2180 				} else {
2181 					skb_put(sb, len);
2182 					dequeue_sm_buf(card, sb);
2183 					ATM_SKB(sb)->vcc = vcc;
2184 					__net_timestamp(sb);
2185 					vcc->push(vcc, sb);
2186 					atomic_inc(&vcc->stats->rx);
2187 				}
2188 
2189 				push_rxbufs(card, skb);
2190 
2191 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2192 
2193 				if (!atm_charge(vcc, skb->truesize)) {
2194 					push_rxbufs(card, skb);
2195 					atomic_inc(&vcc->stats->rx_drop);
2196 				} else {
2197 					dequeue_lg_buf(card, skb);
2198 					skb_push(skb, NS_SMBUFSIZE);
2199 					skb_copy_from_linear_data(sb, skb->data,
2200 								  NS_SMBUFSIZE);
2201 					skb_put(skb, len - NS_SMBUFSIZE);
2202 					ATM_SKB(skb)->vcc = vcc;
2203 					__net_timestamp(skb);
2204 					vcc->push(vcc, skb);
2205 					atomic_inc(&vcc->stats->rx);
2206 				}
2207 
2208 				push_rxbufs(card, sb);
2209 
2210 			}
2211 
2212 		} else {	/* Must push a huge buffer */
2213 
2214 			struct sk_buff *hb, *sb, *lb;
2215 			int remaining, tocopy;
2216 			int j;
2217 
2218 			hb = skb_dequeue(&(card->hbpool.queue));
2219 			if (hb == NULL) {	/* No buffers in the queue */
2220 
2221 				hb = dev_alloc_skb(NS_HBUFSIZE);
2222 				if (hb == NULL) {
2223 					printk
2224 					    ("nicstar%d: Out of huge buffers.\n",
2225 					     card->index);
2226 					atomic_inc(&vcc->stats->rx_drop);
2227 					recycle_iovec_rx_bufs(card,
2228 							      (struct iovec *)
2229 							      iovb->data,
2230 							      NS_PRV_IOVCNT(iovb));
2231 					vc->rx_iov = NULL;
2232 					recycle_iov_buf(card, iovb);
2233 					return;
2234 				} else if (card->hbpool.count < card->hbnr.min) {
2235 					struct sk_buff *new_hb;
2236 					if ((new_hb =
2237 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2238 					    NULL) {
2239 						skb_queue_tail(&card->hbpool.
2240 							       queue, new_hb);
2241 						card->hbpool.count++;
2242 					}
2243 				}
2244 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2245 			} else if (--card->hbpool.count < card->hbnr.min) {
2246 				struct sk_buff *new_hb;
2247 				if ((new_hb =
2248 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2249 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2250 					skb_queue_tail(&card->hbpool.queue,
2251 						       new_hb);
2252 					card->hbpool.count++;
2253 				}
2254 				if (card->hbpool.count < card->hbnr.min) {
2255 					if ((new_hb =
2256 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2257 					    NULL) {
2258 						NS_PRV_BUFTYPE(new_hb) =
2259 						    BUF_NONE;
2260 						skb_queue_tail(&card->hbpool.
2261 							       queue, new_hb);
2262 						card->hbpool.count++;
2263 					}
2264 				}
2265 			}
2266 
2267 			iov = (struct iovec *)iovb->data;
2268 
2269 			if (!atm_charge(vcc, hb->truesize)) {
2270 				recycle_iovec_rx_bufs(card, iov,
2271 						      NS_PRV_IOVCNT(iovb));
2272 				if (card->hbpool.count < card->hbnr.max) {
2273 					skb_queue_tail(&card->hbpool.queue, hb);
2274 					card->hbpool.count++;
2275 				} else
2276 					dev_kfree_skb_any(hb);
2277 				atomic_inc(&vcc->stats->rx_drop);
2278 			} else {
2279 				/* Copy the small buffer to the huge buffer */
2280 				sb = (struct sk_buff *)iov->iov_base;
2281 				skb_copy_from_linear_data(sb, hb->data,
2282 							  iov->iov_len);
2283 				skb_put(hb, iov->iov_len);
2284 				remaining = len - iov->iov_len;
2285 				iov++;
2286 				/* Free the small buffer */
2287 				push_rxbufs(card, sb);
2288 
2289 				/* Copy all large buffers to the huge buffer and free them */
2290 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2291 					lb = (struct sk_buff *)iov->iov_base;
2292 					tocopy =
2293 					    min_t(int, remaining, iov->iov_len);
2294 					skb_copy_from_linear_data(lb,
2295 								  skb_tail_pointer
2296 								  (hb), tocopy);
2297 					skb_put(hb, tocopy);
2298 					iov++;
2299 					remaining -= tocopy;
2300 					push_rxbufs(card, lb);
2301 				}
2302 #ifdef EXTRA_DEBUG
2303 				if (remaining != 0 || hb->len != len)
2304 					printk
2305 					    ("nicstar%d: Huge buffer len mismatch.\n",
2306 					     card->index);
2307 #endif /* EXTRA_DEBUG */
2308 				ATM_SKB(hb)->vcc = vcc;
2309 				__net_timestamp(hb);
2310 				vcc->push(vcc, hb);
2311 				atomic_inc(&vcc->stats->rx);
2312 			}
2313 		}
2314 
2315 		vc->rx_iov = NULL;
2316 		recycle_iov_buf(card, iovb);
2317 	}
2318 
2319 }
2320 
2321 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2322 {
2323 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2324 		printk("nicstar%d: What kind of rx buffer is this?\n",
2325 		       card->index);
2326 		dev_kfree_skb_any(skb);
2327 	} else
2328 		push_rxbufs(card, skb);
2329 }
2330 
2331 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2332 {
2333 	while (count-- > 0)
2334 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2335 }
2336 
2337 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2338 {
2339 	if (card->iovpool.count < card->iovnr.max) {
2340 		skb_queue_tail(&card->iovpool.queue, iovb);
2341 		card->iovpool.count++;
2342 	} else
2343 		dev_kfree_skb_any(iovb);
2344 }
2345 
2346 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2347 {
2348 	skb_unlink(sb, &card->sbpool.queue);
2349 	if (card->sbfqc < card->sbnr.init) {
2350 		struct sk_buff *new_sb;
2351 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2352 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2353 			skb_queue_tail(&card->sbpool.queue, new_sb);
2354 			skb_reserve(new_sb, NS_AAL0_HEADER);
2355 			push_rxbufs(card, new_sb);
2356 		}
2357 	}
2358 	if (card->sbfqc < card->sbnr.init)
2359 	{
2360 		struct sk_buff *new_sb;
2361 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2362 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2363 			skb_queue_tail(&card->sbpool.queue, new_sb);
2364 			skb_reserve(new_sb, NS_AAL0_HEADER);
2365 			push_rxbufs(card, new_sb);
2366 		}
2367 	}
2368 }
2369 
2370 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2371 {
2372 	skb_unlink(lb, &card->lbpool.queue);
2373 	if (card->lbfqc < card->lbnr.init) {
2374 		struct sk_buff *new_lb;
2375 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2376 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2377 			skb_queue_tail(&card->lbpool.queue, new_lb);
2378 			skb_reserve(new_lb, NS_SMBUFSIZE);
2379 			push_rxbufs(card, new_lb);
2380 		}
2381 	}
2382 	if (card->lbfqc < card->lbnr.init)
2383 	{
2384 		struct sk_buff *new_lb;
2385 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2386 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2387 			skb_queue_tail(&card->lbpool.queue, new_lb);
2388 			skb_reserve(new_lb, NS_SMBUFSIZE);
2389 			push_rxbufs(card, new_lb);
2390 		}
2391 	}
2392 }
2393 
2394 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2395 {
2396 	u32 stat;
2397 	ns_dev *card;
2398 	int left;
2399 
2400 	left = (int)*pos;
2401 	card = (ns_dev *) dev->dev_data;
2402 	stat = readl(card->membase + STAT);
2403 	if (!left--)
2404 		return sprintf(page, "Pool   count    min   init    max \n");
2405 	if (!left--)
2406 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2407 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2408 			       card->sbnr.init, card->sbnr.max);
2409 	if (!left--)
2410 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2411 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2412 			       card->lbnr.init, card->lbnr.max);
2413 	if (!left--)
2414 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2415 			       card->hbpool.count, card->hbnr.min,
2416 			       card->hbnr.init, card->hbnr.max);
2417 	if (!left--)
2418 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2419 			       card->iovpool.count, card->iovnr.min,
2420 			       card->iovnr.init, card->iovnr.max);
2421 	if (!left--) {
2422 		int retval;
2423 		retval =
2424 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2425 		card->intcnt = 0;
2426 		return retval;
2427 	}
2428 #if 0
2429 	/* Dump 25.6 Mbps PHY registers */
2430 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2431 	   here just in case it's needed for debugging. */
2432 	if (card->max_pcr == ATM_25_PCR && !left--) {
2433 		u32 phy_regs[4];
2434 		u32 i;
2435 
2436 		for (i = 0; i < 4; i++) {
2437 			while (CMD_BUSY(card)) ;
2438 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2439 			       card->membase + CMD);
2440 			while (CMD_BUSY(card)) ;
2441 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2442 		}
2443 
2444 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2445 			       phy_regs[0], phy_regs[1], phy_regs[2],
2446 			       phy_regs[3]);
2447 	}
2448 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2449 #if 0
2450 	/* Dump TST */
2451 	if (left-- < NS_TST_NUM_ENTRIES) {
2452 		if (card->tste2vc[left + 1] == NULL)
2453 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2454 		else
2455 			return sprintf(page, "%5d - %d %d \n", left + 1,
2456 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2457 				       card->tste2vc[left + 1]->tx_vcc->vci);
2458 	}
2459 #endif /* 0 */
2460 	return 0;
2461 }
2462 
2463 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2464 {
2465 	ns_dev *card;
2466 	pool_levels pl;
2467 	long btype;
2468 	unsigned long flags;
2469 
2470 	card = dev->dev_data;
2471 	switch (cmd) {
2472 	case NS_GETPSTAT:
2473 		if (get_user
2474 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2475 			return -EFAULT;
2476 		switch (pl.buftype) {
2477 		case NS_BUFTYPE_SMALL:
2478 			pl.count =
2479 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2480 			pl.level.min = card->sbnr.min;
2481 			pl.level.init = card->sbnr.init;
2482 			pl.level.max = card->sbnr.max;
2483 			break;
2484 
2485 		case NS_BUFTYPE_LARGE:
2486 			pl.count =
2487 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2488 			pl.level.min = card->lbnr.min;
2489 			pl.level.init = card->lbnr.init;
2490 			pl.level.max = card->lbnr.max;
2491 			break;
2492 
2493 		case NS_BUFTYPE_HUGE:
2494 			pl.count = card->hbpool.count;
2495 			pl.level.min = card->hbnr.min;
2496 			pl.level.init = card->hbnr.init;
2497 			pl.level.max = card->hbnr.max;
2498 			break;
2499 
2500 		case NS_BUFTYPE_IOVEC:
2501 			pl.count = card->iovpool.count;
2502 			pl.level.min = card->iovnr.min;
2503 			pl.level.init = card->iovnr.init;
2504 			pl.level.max = card->iovnr.max;
2505 			break;
2506 
2507 		default:
2508 			return -ENOIOCTLCMD;
2509 
2510 		}
2511 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2512 			return (sizeof(pl));
2513 		else
2514 			return -EFAULT;
2515 
2516 	case NS_SETBUFLEV:
2517 		if (!capable(CAP_NET_ADMIN))
2518 			return -EPERM;
2519 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2520 			return -EFAULT;
2521 		if (pl.level.min >= pl.level.init
2522 		    || pl.level.init >= pl.level.max)
2523 			return -EINVAL;
2524 		if (pl.level.min == 0)
2525 			return -EINVAL;
2526 		switch (pl.buftype) {
2527 		case NS_BUFTYPE_SMALL:
2528 			if (pl.level.max > TOP_SB)
2529 				return -EINVAL;
2530 			card->sbnr.min = pl.level.min;
2531 			card->sbnr.init = pl.level.init;
2532 			card->sbnr.max = pl.level.max;
2533 			break;
2534 
2535 		case NS_BUFTYPE_LARGE:
2536 			if (pl.level.max > TOP_LB)
2537 				return -EINVAL;
2538 			card->lbnr.min = pl.level.min;
2539 			card->lbnr.init = pl.level.init;
2540 			card->lbnr.max = pl.level.max;
2541 			break;
2542 
2543 		case NS_BUFTYPE_HUGE:
2544 			if (pl.level.max > TOP_HB)
2545 				return -EINVAL;
2546 			card->hbnr.min = pl.level.min;
2547 			card->hbnr.init = pl.level.init;
2548 			card->hbnr.max = pl.level.max;
2549 			break;
2550 
2551 		case NS_BUFTYPE_IOVEC:
2552 			if (pl.level.max > TOP_IOVB)
2553 				return -EINVAL;
2554 			card->iovnr.min = pl.level.min;
2555 			card->iovnr.init = pl.level.init;
2556 			card->iovnr.max = pl.level.max;
2557 			break;
2558 
2559 		default:
2560 			return -EINVAL;
2561 
2562 		}
2563 		return 0;
2564 
2565 	case NS_ADJBUFLEV:
2566 		if (!capable(CAP_NET_ADMIN))
2567 			return -EPERM;
2568 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2569 		switch (btype) {
2570 		case NS_BUFTYPE_SMALL:
2571 			while (card->sbfqc < card->sbnr.init) {
2572 				struct sk_buff *sb;
2573 
2574 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2575 				if (sb == NULL)
2576 					return -ENOMEM;
2577 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2578 				skb_queue_tail(&card->sbpool.queue, sb);
2579 				skb_reserve(sb, NS_AAL0_HEADER);
2580 				push_rxbufs(card, sb);
2581 			}
2582 			break;
2583 
2584 		case NS_BUFTYPE_LARGE:
2585 			while (card->lbfqc < card->lbnr.init) {
2586 				struct sk_buff *lb;
2587 
2588 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2589 				if (lb == NULL)
2590 					return -ENOMEM;
2591 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2592 				skb_queue_tail(&card->lbpool.queue, lb);
2593 				skb_reserve(lb, NS_SMBUFSIZE);
2594 				push_rxbufs(card, lb);
2595 			}
2596 			break;
2597 
2598 		case NS_BUFTYPE_HUGE:
2599 			while (card->hbpool.count > card->hbnr.init) {
2600 				struct sk_buff *hb;
2601 
2602 				spin_lock_irqsave(&card->int_lock, flags);
2603 				hb = skb_dequeue(&card->hbpool.queue);
2604 				card->hbpool.count--;
2605 				spin_unlock_irqrestore(&card->int_lock, flags);
2606 				if (hb == NULL)
2607 					printk
2608 					    ("nicstar%d: huge buffer count inconsistent.\n",
2609 					     card->index);
2610 				else
2611 					dev_kfree_skb_any(hb);
2612 
2613 			}
2614 			while (card->hbpool.count < card->hbnr.init) {
2615 				struct sk_buff *hb;
2616 
2617 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2618 				if (hb == NULL)
2619 					return -ENOMEM;
2620 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2621 				spin_lock_irqsave(&card->int_lock, flags);
2622 				skb_queue_tail(&card->hbpool.queue, hb);
2623 				card->hbpool.count++;
2624 				spin_unlock_irqrestore(&card->int_lock, flags);
2625 			}
2626 			break;
2627 
2628 		case NS_BUFTYPE_IOVEC:
2629 			while (card->iovpool.count > card->iovnr.init) {
2630 				struct sk_buff *iovb;
2631 
2632 				spin_lock_irqsave(&card->int_lock, flags);
2633 				iovb = skb_dequeue(&card->iovpool.queue);
2634 				card->iovpool.count--;
2635 				spin_unlock_irqrestore(&card->int_lock, flags);
2636 				if (iovb == NULL)
2637 					printk
2638 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2639 					     card->index);
2640 				else
2641 					dev_kfree_skb_any(iovb);
2642 
2643 			}
2644 			while (card->iovpool.count < card->iovnr.init) {
2645 				struct sk_buff *iovb;
2646 
2647 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2648 				if (iovb == NULL)
2649 					return -ENOMEM;
2650 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2651 				spin_lock_irqsave(&card->int_lock, flags);
2652 				skb_queue_tail(&card->iovpool.queue, iovb);
2653 				card->iovpool.count++;
2654 				spin_unlock_irqrestore(&card->int_lock, flags);
2655 			}
2656 			break;
2657 
2658 		default:
2659 			return -EINVAL;
2660 
2661 		}
2662 		return 0;
2663 
2664 	default:
2665 		if (dev->phy && dev->phy->ioctl) {
2666 			return dev->phy->ioctl(dev, cmd, arg);
2667 		} else {
2668 			printk("nicstar%d: %s == NULL \n", card->index,
2669 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2670 			return -ENOIOCTLCMD;
2671 		}
2672 	}
2673 }
2674 
2675 #ifdef EXTRA_DEBUG
2676 static void which_list(ns_dev * card, struct sk_buff *skb)
2677 {
2678 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2679 }
2680 #endif /* EXTRA_DEBUG */
2681 
2682 static void ns_poll(unsigned long arg)
2683 {
2684 	int i;
2685 	ns_dev *card;
2686 	unsigned long flags;
2687 	u32 stat_r, stat_w;
2688 
2689 	PRINTK("nicstar: Entering ns_poll().\n");
2690 	for (i = 0; i < num_cards; i++) {
2691 		card = cards[i];
2692 		if (spin_is_locked(&card->int_lock)) {
2693 			/* Probably it isn't worth spinning */
2694 			continue;
2695 		}
2696 		spin_lock_irqsave(&card->int_lock, flags);
2697 
2698 		stat_w = 0;
2699 		stat_r = readl(card->membase + STAT);
2700 		if (stat_r & NS_STAT_TSIF)
2701 			stat_w |= NS_STAT_TSIF;
2702 		if (stat_r & NS_STAT_EOPDU)
2703 			stat_w |= NS_STAT_EOPDU;
2704 
2705 		process_tsq(card);
2706 		process_rsq(card);
2707 
2708 		writel(stat_w, card->membase + STAT);
2709 		spin_unlock_irqrestore(&card->int_lock, flags);
2710 	}
2711 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2712 	PRINTK("nicstar: Leaving ns_poll().\n");
2713 }
2714 
2715 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2716 		       unsigned long addr)
2717 {
2718 	ns_dev *card;
2719 	unsigned long flags;
2720 
2721 	card = dev->dev_data;
2722 	spin_lock_irqsave(&card->res_lock, flags);
2723 	while (CMD_BUSY(card)) ;
2724 	writel((u32) value, card->membase + DR0);
2725 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2726 	       card->membase + CMD);
2727 	spin_unlock_irqrestore(&card->res_lock, flags);
2728 }
2729 
2730 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2731 {
2732 	ns_dev *card;
2733 	unsigned long flags;
2734 	u32 data;
2735 
2736 	card = dev->dev_data;
2737 	spin_lock_irqsave(&card->res_lock, flags);
2738 	while (CMD_BUSY(card)) ;
2739 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2740 	       card->membase + CMD);
2741 	while (CMD_BUSY(card)) ;
2742 	data = readl(card->membase + DR0) & 0x000000FF;
2743 	spin_unlock_irqrestore(&card->res_lock, flags);
2744 	return (unsigned char)data;
2745 }
2746 
2747 module_init(nicstar_init);
2748 module_exit(nicstar_cleanup);
2749