1 /* 2 * nicstar.c 3 * 4 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. 5 * 6 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. 7 * It was taken from the frle-0.22 device driver. 8 * As the file doesn't have a copyright notice, in the file 9 * nicstarmac.copyright I put the copyright notice from the 10 * frle-0.22 device driver. 11 * Some code is based on the nicstar driver by M. Welsh. 12 * 13 * Author: Rui Prior (rprior@inescn.pt) 14 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 15 * 16 * 17 * (C) INESC 1999 18 */ 19 20 /* 21 * IMPORTANT INFORMATION 22 * 23 * There are currently three types of spinlocks: 24 * 25 * 1 - Per card interrupt spinlock (to protect structures and such) 26 * 2 - Per SCQ scq spinlock 27 * 3 - Per card resource spinlock (to access registers, etc.) 28 * 29 * These must NEVER be grabbed in reverse order. 30 * 31 */ 32 33 /* Header files */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/skbuff.h> 38 #include <linux/atmdev.h> 39 #include <linux/atm.h> 40 #include <linux/pci.h> 41 #include <linux/dma-mapping.h> 42 #include <linux/types.h> 43 #include <linux/string.h> 44 #include <linux/delay.h> 45 #include <linux/init.h> 46 #include <linux/sched.h> 47 #include <linux/timer.h> 48 #include <linux/interrupt.h> 49 #include <linux/bitops.h> 50 #include <linux/slab.h> 51 #include <linux/idr.h> 52 #include <asm/io.h> 53 #include <asm/uaccess.h> 54 #include <linux/atomic.h> 55 #include <linux/etherdevice.h> 56 #include "nicstar.h" 57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 58 #include "suni.h" 59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 61 #include "idt77105.h" 62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 63 64 /* Additional code */ 65 66 #include "nicstarmac.c" 67 68 /* Configurable parameters */ 69 70 #undef PHY_LOOPBACK 71 #undef TX_DEBUG 72 #undef RX_DEBUG 73 #undef GENERAL_DEBUG 74 #undef EXTRA_DEBUG 75 76 /* Do not touch these */ 77 78 #ifdef TX_DEBUG 79 #define TXPRINTK(args...) printk(args) 80 #else 81 #define TXPRINTK(args...) 82 #endif /* TX_DEBUG */ 83 84 #ifdef RX_DEBUG 85 #define RXPRINTK(args...) printk(args) 86 #else 87 #define RXPRINTK(args...) 88 #endif /* RX_DEBUG */ 89 90 #ifdef GENERAL_DEBUG 91 #define PRINTK(args...) printk(args) 92 #else 93 #define PRINTK(args...) 94 #endif /* GENERAL_DEBUG */ 95 96 #ifdef EXTRA_DEBUG 97 #define XPRINTK(args...) printk(args) 98 #else 99 #define XPRINTK(args...) 100 #endif /* EXTRA_DEBUG */ 101 102 /* Macros */ 103 104 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) 105 106 #define NS_DELAY mdelay(1) 107 108 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) 109 110 #ifndef ATM_SKB 111 #define ATM_SKB(s) (&(s)->atm) 112 #endif 113 114 #define scq_virt_to_bus(scq, p) \ 115 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) 116 117 /* Function declarations */ 118 119 static u32 ns_read_sram(ns_dev * card, u32 sram_address); 120 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 121 int count); 122 static int ns_init_card(int i, struct pci_dev *pcidev); 123 static void ns_init_card_error(ns_dev * card, int error); 124 static scq_info *get_scq(ns_dev *card, int size, u32 scd); 125 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); 126 static void push_rxbufs(ns_dev *, struct sk_buff *); 127 static irqreturn_t ns_irq_handler(int irq, void *dev_id); 128 static int ns_open(struct atm_vcc *vcc); 129 static void ns_close(struct atm_vcc *vcc); 130 static void fill_tst(ns_dev * card, int n, vc_map * vc); 131 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); 132 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 133 struct sk_buff *skb); 134 static void process_tsq(ns_dev * card); 135 static void drain_scq(ns_dev * card, scq_info * scq, int pos); 136 static void process_rsq(ns_dev * card); 137 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); 138 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); 139 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); 140 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); 141 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); 142 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); 143 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); 144 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); 145 #ifdef EXTRA_DEBUG 146 static void which_list(ns_dev * card, struct sk_buff *skb); 147 #endif 148 static void ns_poll(unsigned long arg); 149 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 150 unsigned long addr); 151 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); 152 153 /* Global variables */ 154 155 static struct ns_dev *cards[NS_MAX_CARDS]; 156 static unsigned num_cards; 157 static struct atmdev_ops atm_ops = { 158 .open = ns_open, 159 .close = ns_close, 160 .ioctl = ns_ioctl, 161 .send = ns_send, 162 .phy_put = ns_phy_put, 163 .phy_get = ns_phy_get, 164 .proc_read = ns_proc_read, 165 .owner = THIS_MODULE, 166 }; 167 168 static struct timer_list ns_timer; 169 static char *mac[NS_MAX_CARDS]; 170 module_param_array(mac, charp, NULL, 0); 171 MODULE_LICENSE("GPL"); 172 173 /* Functions */ 174 175 static int nicstar_init_one(struct pci_dev *pcidev, 176 const struct pci_device_id *ent) 177 { 178 static int index = -1; 179 unsigned int error; 180 181 index++; 182 cards[index] = NULL; 183 184 error = ns_init_card(index, pcidev); 185 if (error) { 186 cards[index--] = NULL; /* don't increment index */ 187 goto err_out; 188 } 189 190 return 0; 191 err_out: 192 return -ENODEV; 193 } 194 195 static void nicstar_remove_one(struct pci_dev *pcidev) 196 { 197 int i, j; 198 ns_dev *card = pci_get_drvdata(pcidev); 199 struct sk_buff *hb; 200 struct sk_buff *iovb; 201 struct sk_buff *lb; 202 struct sk_buff *sb; 203 204 i = card->index; 205 206 if (cards[i] == NULL) 207 return; 208 209 if (card->atmdev->phy && card->atmdev->phy->stop) 210 card->atmdev->phy->stop(card->atmdev); 211 212 /* Stop everything */ 213 writel(0x00000000, card->membase + CFG); 214 215 /* De-register device */ 216 atm_dev_deregister(card->atmdev); 217 218 /* Disable PCI device */ 219 pci_disable_device(pcidev); 220 221 /* Free up resources */ 222 j = 0; 223 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); 224 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { 225 dev_kfree_skb_any(hb); 226 j++; 227 } 228 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); 229 j = 0; 230 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, 231 card->iovpool.count); 232 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { 233 dev_kfree_skb_any(iovb); 234 j++; 235 } 236 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); 237 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 238 dev_kfree_skb_any(lb); 239 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 240 dev_kfree_skb_any(sb); 241 free_scq(card, card->scq0, NULL); 242 for (j = 0; j < NS_FRSCD_NUM; j++) { 243 if (card->scd2vc[j] != NULL) 244 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); 245 } 246 idr_destroy(&card->idr); 247 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, 248 card->rsq.org, card->rsq.dma); 249 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, 250 card->tsq.org, card->tsq.dma); 251 free_irq(card->pcidev->irq, card); 252 iounmap(card->membase); 253 kfree(card); 254 } 255 256 static struct pci_device_id nicstar_pci_tbl[] = { 257 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, 258 {0,} /* terminate list */ 259 }; 260 261 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); 262 263 static struct pci_driver nicstar_driver = { 264 .name = "nicstar", 265 .id_table = nicstar_pci_tbl, 266 .probe = nicstar_init_one, 267 .remove = nicstar_remove_one, 268 }; 269 270 static int __init nicstar_init(void) 271 { 272 unsigned error = 0; /* Initialized to remove compile warning */ 273 274 XPRINTK("nicstar: nicstar_init() called.\n"); 275 276 error = pci_register_driver(&nicstar_driver); 277 278 TXPRINTK("nicstar: TX debug enabled.\n"); 279 RXPRINTK("nicstar: RX debug enabled.\n"); 280 PRINTK("nicstar: General debug enabled.\n"); 281 #ifdef PHY_LOOPBACK 282 printk("nicstar: using PHY loopback.\n"); 283 #endif /* PHY_LOOPBACK */ 284 XPRINTK("nicstar: nicstar_init() returned.\n"); 285 286 if (!error) { 287 init_timer(&ns_timer); 288 ns_timer.expires = jiffies + NS_POLL_PERIOD; 289 ns_timer.data = 0UL; 290 ns_timer.function = ns_poll; 291 add_timer(&ns_timer); 292 } 293 294 return error; 295 } 296 297 static void __exit nicstar_cleanup(void) 298 { 299 XPRINTK("nicstar: nicstar_cleanup() called.\n"); 300 301 del_timer(&ns_timer); 302 303 pci_unregister_driver(&nicstar_driver); 304 305 XPRINTK("nicstar: nicstar_cleanup() returned.\n"); 306 } 307 308 static u32 ns_read_sram(ns_dev * card, u32 sram_address) 309 { 310 unsigned long flags; 311 u32 data; 312 sram_address <<= 2; 313 sram_address &= 0x0007FFFC; /* address must be dword aligned */ 314 sram_address |= 0x50000000; /* SRAM read command */ 315 spin_lock_irqsave(&card->res_lock, flags); 316 while (CMD_BUSY(card)) ; 317 writel(sram_address, card->membase + CMD); 318 while (CMD_BUSY(card)) ; 319 data = readl(card->membase + DR0); 320 spin_unlock_irqrestore(&card->res_lock, flags); 321 return data; 322 } 323 324 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, 325 int count) 326 { 327 unsigned long flags; 328 int i, c; 329 count--; /* count range now is 0..3 instead of 1..4 */ 330 c = count; 331 c <<= 2; /* to use increments of 4 */ 332 spin_lock_irqsave(&card->res_lock, flags); 333 while (CMD_BUSY(card)) ; 334 for (i = 0; i <= c; i += 4) 335 writel(*(value++), card->membase + i); 336 /* Note: DR# registers are the first 4 dwords in nicstar's memspace, 337 so card->membase + DR0 == card->membase */ 338 sram_address <<= 2; 339 sram_address &= 0x0007FFFC; 340 sram_address |= (0x40000000 | count); 341 writel(sram_address, card->membase + CMD); 342 spin_unlock_irqrestore(&card->res_lock, flags); 343 } 344 345 static int ns_init_card(int i, struct pci_dev *pcidev) 346 { 347 int j; 348 struct ns_dev *card = NULL; 349 unsigned char pci_latency; 350 unsigned error; 351 u32 data; 352 u32 u32d[4]; 353 u32 ns_cfg_rctsize; 354 int bcount; 355 unsigned long membase; 356 357 error = 0; 358 359 if (pci_enable_device(pcidev)) { 360 printk("nicstar%d: can't enable PCI device\n", i); 361 error = 2; 362 ns_init_card_error(card, error); 363 return error; 364 } 365 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { 366 printk(KERN_WARNING 367 "nicstar%d: No suitable DMA available.\n", i); 368 error = 2; 369 ns_init_card_error(card, error); 370 return error; 371 } 372 373 if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) { 374 printk 375 ("nicstar%d: can't allocate memory for device structure.\n", 376 i); 377 error = 2; 378 ns_init_card_error(card, error); 379 return error; 380 } 381 cards[i] = card; 382 spin_lock_init(&card->int_lock); 383 spin_lock_init(&card->res_lock); 384 385 pci_set_drvdata(pcidev, card); 386 387 card->index = i; 388 card->atmdev = NULL; 389 card->pcidev = pcidev; 390 membase = pci_resource_start(pcidev, 1); 391 card->membase = ioremap(membase, NS_IOREMAP_SIZE); 392 if (!card->membase) { 393 printk("nicstar%d: can't ioremap() membase.\n", i); 394 error = 3; 395 ns_init_card_error(card, error); 396 return error; 397 } 398 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); 399 400 pci_set_master(pcidev); 401 402 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { 403 printk("nicstar%d: can't read PCI latency timer.\n", i); 404 error = 6; 405 ns_init_card_error(card, error); 406 return error; 407 } 408 #ifdef NS_PCI_LATENCY 409 if (pci_latency < NS_PCI_LATENCY) { 410 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, 411 NS_PCI_LATENCY); 412 for (j = 1; j < 4; j++) { 413 if (pci_write_config_byte 414 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) 415 break; 416 } 417 if (j == 4) { 418 printk 419 ("nicstar%d: can't set PCI latency timer to %d.\n", 420 i, NS_PCI_LATENCY); 421 error = 7; 422 ns_init_card_error(card, error); 423 return error; 424 } 425 } 426 #endif /* NS_PCI_LATENCY */ 427 428 /* Clear timer overflow */ 429 data = readl(card->membase + STAT); 430 if (data & NS_STAT_TMROF) 431 writel(NS_STAT_TMROF, card->membase + STAT); 432 433 /* Software reset */ 434 writel(NS_CFG_SWRST, card->membase + CFG); 435 NS_DELAY; 436 writel(0x00000000, card->membase + CFG); 437 438 /* PHY reset */ 439 writel(0x00000008, card->membase + GP); 440 NS_DELAY; 441 writel(0x00000001, card->membase + GP); 442 NS_DELAY; 443 while (CMD_BUSY(card)) ; 444 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ 445 NS_DELAY; 446 447 /* Detect PHY type */ 448 while (CMD_BUSY(card)) ; 449 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); 450 while (CMD_BUSY(card)) ; 451 data = readl(card->membase + DR0); 452 switch (data) { 453 case 0x00000009: 454 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); 455 card->max_pcr = ATM_25_PCR; 456 while (CMD_BUSY(card)) ; 457 writel(0x00000008, card->membase + DR0); 458 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); 459 /* Clear an eventual pending interrupt */ 460 writel(NS_STAT_SFBQF, card->membase + STAT); 461 #ifdef PHY_LOOPBACK 462 while (CMD_BUSY(card)) ; 463 writel(0x00000022, card->membase + DR0); 464 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); 465 #endif /* PHY_LOOPBACK */ 466 break; 467 case 0x00000030: 468 case 0x00000031: 469 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); 470 card->max_pcr = ATM_OC3_PCR; 471 #ifdef PHY_LOOPBACK 472 while (CMD_BUSY(card)) ; 473 writel(0x00000002, card->membase + DR0); 474 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); 475 #endif /* PHY_LOOPBACK */ 476 break; 477 default: 478 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); 479 error = 8; 480 ns_init_card_error(card, error); 481 return error; 482 } 483 writel(0x00000000, card->membase + GP); 484 485 /* Determine SRAM size */ 486 data = 0x76543210; 487 ns_write_sram(card, 0x1C003, &data, 1); 488 data = 0x89ABCDEF; 489 ns_write_sram(card, 0x14003, &data, 1); 490 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && 491 ns_read_sram(card, 0x1C003) == 0x76543210) 492 card->sram_size = 128; 493 else 494 card->sram_size = 32; 495 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); 496 497 card->rct_size = NS_MAX_RCTSIZE; 498 499 #if (NS_MAX_RCTSIZE == 4096) 500 if (card->sram_size == 128) 501 printk 502 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", 503 i); 504 #elif (NS_MAX_RCTSIZE == 16384) 505 if (card->sram_size == 32) { 506 printk 507 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", 508 i); 509 card->rct_size = 4096; 510 } 511 #else 512 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c 513 #endif 514 515 card->vpibits = NS_VPIBITS; 516 if (card->rct_size == 4096) 517 card->vcibits = 12 - NS_VPIBITS; 518 else /* card->rct_size == 16384 */ 519 card->vcibits = 14 - NS_VPIBITS; 520 521 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ 522 if (mac[i] == NULL) 523 nicstar_init_eprom(card->membase); 524 525 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ 526 writel(0x00000000, card->membase + VPM); 527 528 /* Initialize TSQ */ 529 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, 530 NS_TSQSIZE + NS_TSQ_ALIGNMENT, 531 &card->tsq.dma, GFP_KERNEL); 532 if (card->tsq.org == NULL) { 533 printk("nicstar%d: can't allocate TSQ.\n", i); 534 error = 10; 535 ns_init_card_error(card, error); 536 return error; 537 } 538 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); 539 card->tsq.next = card->tsq.base; 540 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); 541 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) 542 ns_tsi_init(card->tsq.base + j); 543 writel(0x00000000, card->membase + TSQH); 544 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); 545 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); 546 547 /* Initialize RSQ */ 548 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, 549 NS_RSQSIZE + NS_RSQ_ALIGNMENT, 550 &card->rsq.dma, GFP_KERNEL); 551 if (card->rsq.org == NULL) { 552 printk("nicstar%d: can't allocate RSQ.\n", i); 553 error = 11; 554 ns_init_card_error(card, error); 555 return error; 556 } 557 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); 558 card->rsq.next = card->rsq.base; 559 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); 560 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) 561 ns_rsqe_init(card->rsq.base + j); 562 writel(0x00000000, card->membase + RSQH); 563 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); 564 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); 565 566 /* Initialize SCQ0, the only VBR SCQ used */ 567 card->scq1 = NULL; 568 card->scq2 = NULL; 569 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); 570 if (card->scq0 == NULL) { 571 printk("nicstar%d: can't get SCQ0.\n", i); 572 error = 12; 573 ns_init_card_error(card, error); 574 return error; 575 } 576 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); 577 u32d[1] = (u32) 0x00000000; 578 u32d[2] = (u32) 0xffffffff; 579 u32d[3] = (u32) 0x00000000; 580 ns_write_sram(card, NS_VRSCD0, u32d, 4); 581 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ 582 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ 583 card->scq0->scd = NS_VRSCD0; 584 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); 585 586 /* Initialize TSTs */ 587 card->tst_addr = NS_TST0; 588 card->tst_free_entries = NS_TST_NUM_ENTRIES; 589 data = NS_TST_OPCODE_VARIABLE; 590 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 591 ns_write_sram(card, NS_TST0 + j, &data, 1); 592 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); 593 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); 594 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 595 ns_write_sram(card, NS_TST1 + j, &data, 1); 596 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); 597 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); 598 for (j = 0; j < NS_TST_NUM_ENTRIES; j++) 599 card->tste2vc[j] = NULL; 600 writel(NS_TST0 << 2, card->membase + TSTB); 601 602 /* Initialize RCT. AAL type is set on opening the VC. */ 603 #ifdef RCQ_SUPPORT 604 u32d[0] = NS_RCTE_RAWCELLINTEN; 605 #else 606 u32d[0] = 0x00000000; 607 #endif /* RCQ_SUPPORT */ 608 u32d[1] = 0x00000000; 609 u32d[2] = 0x00000000; 610 u32d[3] = 0xFFFFFFFF; 611 for (j = 0; j < card->rct_size; j++) 612 ns_write_sram(card, j * 4, u32d, 4); 613 614 memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map)); 615 616 for (j = 0; j < NS_FRSCD_NUM; j++) 617 card->scd2vc[j] = NULL; 618 619 /* Initialize buffer levels */ 620 card->sbnr.min = MIN_SB; 621 card->sbnr.init = NUM_SB; 622 card->sbnr.max = MAX_SB; 623 card->lbnr.min = MIN_LB; 624 card->lbnr.init = NUM_LB; 625 card->lbnr.max = MAX_LB; 626 card->iovnr.min = MIN_IOVB; 627 card->iovnr.init = NUM_IOVB; 628 card->iovnr.max = MAX_IOVB; 629 card->hbnr.min = MIN_HB; 630 card->hbnr.init = NUM_HB; 631 card->hbnr.max = MAX_HB; 632 633 card->sm_handle = NULL; 634 card->sm_addr = 0x00000000; 635 card->lg_handle = NULL; 636 card->lg_addr = 0x00000000; 637 638 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ 639 640 idr_init(&card->idr); 641 642 /* Pre-allocate some huge buffers */ 643 skb_queue_head_init(&card->hbpool.queue); 644 card->hbpool.count = 0; 645 for (j = 0; j < NUM_HB; j++) { 646 struct sk_buff *hb; 647 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 648 if (hb == NULL) { 649 printk 650 ("nicstar%d: can't allocate %dth of %d huge buffers.\n", 651 i, j, NUM_HB); 652 error = 13; 653 ns_init_card_error(card, error); 654 return error; 655 } 656 NS_PRV_BUFTYPE(hb) = BUF_NONE; 657 skb_queue_tail(&card->hbpool.queue, hb); 658 card->hbpool.count++; 659 } 660 661 /* Allocate large buffers */ 662 skb_queue_head_init(&card->lbpool.queue); 663 card->lbpool.count = 0; /* Not used */ 664 for (j = 0; j < NUM_LB; j++) { 665 struct sk_buff *lb; 666 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 667 if (lb == NULL) { 668 printk 669 ("nicstar%d: can't allocate %dth of %d large buffers.\n", 670 i, j, NUM_LB); 671 error = 14; 672 ns_init_card_error(card, error); 673 return error; 674 } 675 NS_PRV_BUFTYPE(lb) = BUF_LG; 676 skb_queue_tail(&card->lbpool.queue, lb); 677 skb_reserve(lb, NS_SMBUFSIZE); 678 push_rxbufs(card, lb); 679 /* Due to the implementation of push_rxbufs() this is 1, not 0 */ 680 if (j == 1) { 681 card->rcbuf = lb; 682 card->rawcell = (struct ns_rcqe *) lb->data; 683 card->rawch = NS_PRV_DMA(lb); 684 } 685 } 686 /* Test for strange behaviour which leads to crashes */ 687 if ((bcount = 688 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { 689 printk 690 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", 691 i, j, bcount); 692 error = 14; 693 ns_init_card_error(card, error); 694 return error; 695 } 696 697 /* Allocate small buffers */ 698 skb_queue_head_init(&card->sbpool.queue); 699 card->sbpool.count = 0; /* Not used */ 700 for (j = 0; j < NUM_SB; j++) { 701 struct sk_buff *sb; 702 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 703 if (sb == NULL) { 704 printk 705 ("nicstar%d: can't allocate %dth of %d small buffers.\n", 706 i, j, NUM_SB); 707 error = 15; 708 ns_init_card_error(card, error); 709 return error; 710 } 711 NS_PRV_BUFTYPE(sb) = BUF_SM; 712 skb_queue_tail(&card->sbpool.queue, sb); 713 skb_reserve(sb, NS_AAL0_HEADER); 714 push_rxbufs(card, sb); 715 } 716 /* Test for strange behaviour which leads to crashes */ 717 if ((bcount = 718 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { 719 printk 720 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", 721 i, j, bcount); 722 error = 15; 723 ns_init_card_error(card, error); 724 return error; 725 } 726 727 /* Allocate iovec buffers */ 728 skb_queue_head_init(&card->iovpool.queue); 729 card->iovpool.count = 0; 730 for (j = 0; j < NUM_IOVB; j++) { 731 struct sk_buff *iovb; 732 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 733 if (iovb == NULL) { 734 printk 735 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", 736 i, j, NUM_IOVB); 737 error = 16; 738 ns_init_card_error(card, error); 739 return error; 740 } 741 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 742 skb_queue_tail(&card->iovpool.queue, iovb); 743 card->iovpool.count++; 744 } 745 746 /* Configure NICStAR */ 747 if (card->rct_size == 4096) 748 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; 749 else /* (card->rct_size == 16384) */ 750 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; 751 752 card->efbie = 1; 753 754 card->intcnt = 0; 755 if (request_irq 756 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { 757 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); 758 error = 9; 759 ns_init_card_error(card, error); 760 return error; 761 } 762 763 /* Register device */ 764 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, 765 -1, NULL); 766 if (card->atmdev == NULL) { 767 printk("nicstar%d: can't register device.\n", i); 768 error = 17; 769 ns_init_card_error(card, error); 770 return error; 771 } 772 773 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { 774 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, 775 card->atmdev->esi, 6); 776 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { 777 nicstar_read_eprom(card->membase, 778 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, 779 card->atmdev->esi, 6); 780 } 781 } 782 783 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); 784 785 card->atmdev->dev_data = card; 786 card->atmdev->ci_range.vpi_bits = card->vpibits; 787 card->atmdev->ci_range.vci_bits = card->vcibits; 788 card->atmdev->link_rate = card->max_pcr; 789 card->atmdev->phy = NULL; 790 791 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI 792 if (card->max_pcr == ATM_OC3_PCR) 793 suni_init(card->atmdev); 794 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ 795 796 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 797 if (card->max_pcr == ATM_25_PCR) 798 idt77105_init(card->atmdev); 799 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ 800 801 if (card->atmdev->phy && card->atmdev->phy->start) 802 card->atmdev->phy->start(card->atmdev); 803 804 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ 805 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ 806 NS_CFG_PHYIE, card->membase + CFG); 807 808 num_cards++; 809 810 return error; 811 } 812 813 static void ns_init_card_error(ns_dev *card, int error) 814 { 815 if (error >= 17) { 816 writel(0x00000000, card->membase + CFG); 817 } 818 if (error >= 16) { 819 struct sk_buff *iovb; 820 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) 821 dev_kfree_skb_any(iovb); 822 } 823 if (error >= 15) { 824 struct sk_buff *sb; 825 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) 826 dev_kfree_skb_any(sb); 827 free_scq(card, card->scq0, NULL); 828 } 829 if (error >= 14) { 830 struct sk_buff *lb; 831 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) 832 dev_kfree_skb_any(lb); 833 } 834 if (error >= 13) { 835 struct sk_buff *hb; 836 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) 837 dev_kfree_skb_any(hb); 838 } 839 if (error >= 12) { 840 kfree(card->rsq.org); 841 } 842 if (error >= 11) { 843 kfree(card->tsq.org); 844 } 845 if (error >= 10) { 846 free_irq(card->pcidev->irq, card); 847 } 848 if (error >= 4) { 849 iounmap(card->membase); 850 } 851 if (error >= 3) { 852 pci_disable_device(card->pcidev); 853 kfree(card); 854 } 855 } 856 857 static scq_info *get_scq(ns_dev *card, int size, u32 scd) 858 { 859 scq_info *scq; 860 int i; 861 862 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) 863 return NULL; 864 865 scq = kmalloc(sizeof(scq_info), GFP_KERNEL); 866 if (!scq) 867 return NULL; 868 scq->org = dma_alloc_coherent(&card->pcidev->dev, 869 2 * size, &scq->dma, GFP_KERNEL); 870 if (!scq->org) { 871 kfree(scq); 872 return NULL; 873 } 874 scq->skb = kmalloc(sizeof(struct sk_buff *) * 875 (size / NS_SCQE_SIZE), GFP_KERNEL); 876 if (!scq->skb) { 877 dma_free_coherent(&card->pcidev->dev, 878 2 * size, scq->org, scq->dma); 879 kfree(scq); 880 return NULL; 881 } 882 scq->num_entries = size / NS_SCQE_SIZE; 883 scq->base = PTR_ALIGN(scq->org, size); 884 scq->next = scq->base; 885 scq->last = scq->base + (scq->num_entries - 1); 886 scq->tail = scq->last; 887 scq->scd = scd; 888 scq->num_entries = size / NS_SCQE_SIZE; 889 scq->tbd_count = 0; 890 init_waitqueue_head(&scq->scqfull_waitq); 891 scq->full = 0; 892 spin_lock_init(&scq->lock); 893 894 for (i = 0; i < scq->num_entries; i++) 895 scq->skb[i] = NULL; 896 897 return scq; 898 } 899 900 /* For variable rate SCQ vcc must be NULL */ 901 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) 902 { 903 int i; 904 905 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) 906 for (i = 0; i < scq->num_entries; i++) { 907 if (scq->skb[i] != NULL) { 908 vcc = ATM_SKB(scq->skb[i])->vcc; 909 if (vcc->pop != NULL) 910 vcc->pop(vcc, scq->skb[i]); 911 else 912 dev_kfree_skb_any(scq->skb[i]); 913 } 914 } else { /* vcc must be != NULL */ 915 916 if (vcc == NULL) { 917 printk 918 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); 919 for (i = 0; i < scq->num_entries; i++) 920 dev_kfree_skb_any(scq->skb[i]); 921 } else 922 for (i = 0; i < scq->num_entries; i++) { 923 if (scq->skb[i] != NULL) { 924 if (vcc->pop != NULL) 925 vcc->pop(vcc, scq->skb[i]); 926 else 927 dev_kfree_skb_any(scq->skb[i]); 928 } 929 } 930 } 931 kfree(scq->skb); 932 dma_free_coherent(&card->pcidev->dev, 933 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? 934 VBR_SCQSIZE : CBR_SCQSIZE), 935 scq->org, scq->dma); 936 kfree(scq); 937 } 938 939 /* The handles passed must be pointers to the sk_buff containing the small 940 or large buffer(s) cast to u32. */ 941 static void push_rxbufs(ns_dev * card, struct sk_buff *skb) 942 { 943 struct sk_buff *handle1, *handle2; 944 int id1, id2; 945 u32 addr1, addr2; 946 u32 stat; 947 unsigned long flags; 948 949 /* *BARF* */ 950 handle2 = NULL; 951 addr2 = 0; 952 handle1 = skb; 953 addr1 = dma_map_single(&card->pcidev->dev, 954 skb->data, 955 (NS_PRV_BUFTYPE(skb) == BUF_SM 956 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 957 DMA_TO_DEVICE); 958 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ 959 960 #ifdef GENERAL_DEBUG 961 if (!addr1) 962 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", 963 card->index); 964 #endif /* GENERAL_DEBUG */ 965 966 stat = readl(card->membase + STAT); 967 card->sbfqc = ns_stat_sfbqc_get(stat); 968 card->lbfqc = ns_stat_lfbqc_get(stat); 969 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 970 if (!addr2) { 971 if (card->sm_addr) { 972 addr2 = card->sm_addr; 973 handle2 = card->sm_handle; 974 card->sm_addr = 0x00000000; 975 card->sm_handle = NULL; 976 } else { /* (!sm_addr) */ 977 978 card->sm_addr = addr1; 979 card->sm_handle = handle1; 980 } 981 } 982 } else { /* buf_type == BUF_LG */ 983 984 if (!addr2) { 985 if (card->lg_addr) { 986 addr2 = card->lg_addr; 987 handle2 = card->lg_handle; 988 card->lg_addr = 0x00000000; 989 card->lg_handle = NULL; 990 } else { /* (!lg_addr) */ 991 992 card->lg_addr = addr1; 993 card->lg_handle = handle1; 994 } 995 } 996 } 997 998 if (addr2) { 999 if (NS_PRV_BUFTYPE(skb) == BUF_SM) { 1000 if (card->sbfqc >= card->sbnr.max) { 1001 skb_unlink(handle1, &card->sbpool.queue); 1002 dev_kfree_skb_any(handle1); 1003 skb_unlink(handle2, &card->sbpool.queue); 1004 dev_kfree_skb_any(handle2); 1005 return; 1006 } else 1007 card->sbfqc += 2; 1008 } else { /* (buf_type == BUF_LG) */ 1009 1010 if (card->lbfqc >= card->lbnr.max) { 1011 skb_unlink(handle1, &card->lbpool.queue); 1012 dev_kfree_skb_any(handle1); 1013 skb_unlink(handle2, &card->lbpool.queue); 1014 dev_kfree_skb_any(handle2); 1015 return; 1016 } else 1017 card->lbfqc += 2; 1018 } 1019 1020 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); 1021 if (id1 < 0) 1022 goto out; 1023 1024 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); 1025 if (id2 < 0) 1026 goto out; 1027 1028 spin_lock_irqsave(&card->res_lock, flags); 1029 while (CMD_BUSY(card)) ; 1030 writel(addr2, card->membase + DR3); 1031 writel(id2, card->membase + DR2); 1032 writel(addr1, card->membase + DR1); 1033 writel(id1, card->membase + DR0); 1034 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), 1035 card->membase + CMD); 1036 spin_unlock_irqrestore(&card->res_lock, flags); 1037 1038 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", 1039 card->index, 1040 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), 1041 addr1, addr2); 1042 } 1043 1044 if (!card->efbie && card->sbfqc >= card->sbnr.min && 1045 card->lbfqc >= card->lbnr.min) { 1046 card->efbie = 1; 1047 writel((readl(card->membase + CFG) | NS_CFG_EFBIE), 1048 card->membase + CFG); 1049 } 1050 1051 out: 1052 return; 1053 } 1054 1055 static irqreturn_t ns_irq_handler(int irq, void *dev_id) 1056 { 1057 u32 stat_r; 1058 ns_dev *card; 1059 struct atm_dev *dev; 1060 unsigned long flags; 1061 1062 card = (ns_dev *) dev_id; 1063 dev = card->atmdev; 1064 card->intcnt++; 1065 1066 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); 1067 1068 spin_lock_irqsave(&card->int_lock, flags); 1069 1070 stat_r = readl(card->membase + STAT); 1071 1072 /* Transmit Status Indicator has been written to T. S. Queue */ 1073 if (stat_r & NS_STAT_TSIF) { 1074 TXPRINTK("nicstar%d: TSI interrupt\n", card->index); 1075 process_tsq(card); 1076 writel(NS_STAT_TSIF, card->membase + STAT); 1077 } 1078 1079 /* Incomplete CS-PDU has been transmitted */ 1080 if (stat_r & NS_STAT_TXICP) { 1081 writel(NS_STAT_TXICP, card->membase + STAT); 1082 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", 1083 card->index); 1084 } 1085 1086 /* Transmit Status Queue 7/8 full */ 1087 if (stat_r & NS_STAT_TSQF) { 1088 writel(NS_STAT_TSQF, card->membase + STAT); 1089 PRINTK("nicstar%d: TSQ full.\n", card->index); 1090 process_tsq(card); 1091 } 1092 1093 /* Timer overflow */ 1094 if (stat_r & NS_STAT_TMROF) { 1095 writel(NS_STAT_TMROF, card->membase + STAT); 1096 PRINTK("nicstar%d: Timer overflow.\n", card->index); 1097 } 1098 1099 /* PHY device interrupt signal active */ 1100 if (stat_r & NS_STAT_PHYI) { 1101 writel(NS_STAT_PHYI, card->membase + STAT); 1102 PRINTK("nicstar%d: PHY interrupt.\n", card->index); 1103 if (dev->phy && dev->phy->interrupt) { 1104 dev->phy->interrupt(dev); 1105 } 1106 } 1107 1108 /* Small Buffer Queue is full */ 1109 if (stat_r & NS_STAT_SFBQF) { 1110 writel(NS_STAT_SFBQF, card->membase + STAT); 1111 printk("nicstar%d: Small free buffer queue is full.\n", 1112 card->index); 1113 } 1114 1115 /* Large Buffer Queue is full */ 1116 if (stat_r & NS_STAT_LFBQF) { 1117 writel(NS_STAT_LFBQF, card->membase + STAT); 1118 printk("nicstar%d: Large free buffer queue is full.\n", 1119 card->index); 1120 } 1121 1122 /* Receive Status Queue is full */ 1123 if (stat_r & NS_STAT_RSQF) { 1124 writel(NS_STAT_RSQF, card->membase + STAT); 1125 printk("nicstar%d: RSQ full.\n", card->index); 1126 process_rsq(card); 1127 } 1128 1129 /* Complete CS-PDU received */ 1130 if (stat_r & NS_STAT_EOPDU) { 1131 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); 1132 process_rsq(card); 1133 writel(NS_STAT_EOPDU, card->membase + STAT); 1134 } 1135 1136 /* Raw cell received */ 1137 if (stat_r & NS_STAT_RAWCF) { 1138 writel(NS_STAT_RAWCF, card->membase + STAT); 1139 #ifndef RCQ_SUPPORT 1140 printk("nicstar%d: Raw cell received and no support yet...\n", 1141 card->index); 1142 #endif /* RCQ_SUPPORT */ 1143 /* NOTE: the following procedure may keep a raw cell pending until the 1144 next interrupt. As this preliminary support is only meant to 1145 avoid buffer leakage, this is not an issue. */ 1146 while (readl(card->membase + RAWCT) != card->rawch) { 1147 1148 if (ns_rcqe_islast(card->rawcell)) { 1149 struct sk_buff *oldbuf; 1150 1151 oldbuf = card->rcbuf; 1152 card->rcbuf = idr_find(&card->idr, 1153 ns_rcqe_nextbufhandle(card->rawcell)); 1154 card->rawch = NS_PRV_DMA(card->rcbuf); 1155 card->rawcell = (struct ns_rcqe *) 1156 card->rcbuf->data; 1157 recycle_rx_buf(card, oldbuf); 1158 } else { 1159 card->rawch += NS_RCQE_SIZE; 1160 card->rawcell++; 1161 } 1162 } 1163 } 1164 1165 /* Small buffer queue is empty */ 1166 if (stat_r & NS_STAT_SFBQE) { 1167 int i; 1168 struct sk_buff *sb; 1169 1170 writel(NS_STAT_SFBQE, card->membase + STAT); 1171 printk("nicstar%d: Small free buffer queue empty.\n", 1172 card->index); 1173 for (i = 0; i < card->sbnr.min; i++) { 1174 sb = dev_alloc_skb(NS_SMSKBSIZE); 1175 if (sb == NULL) { 1176 writel(readl(card->membase + CFG) & 1177 ~NS_CFG_EFBIE, card->membase + CFG); 1178 card->efbie = 0; 1179 break; 1180 } 1181 NS_PRV_BUFTYPE(sb) = BUF_SM; 1182 skb_queue_tail(&card->sbpool.queue, sb); 1183 skb_reserve(sb, NS_AAL0_HEADER); 1184 push_rxbufs(card, sb); 1185 } 1186 card->sbfqc = i; 1187 process_rsq(card); 1188 } 1189 1190 /* Large buffer queue empty */ 1191 if (stat_r & NS_STAT_LFBQE) { 1192 int i; 1193 struct sk_buff *lb; 1194 1195 writel(NS_STAT_LFBQE, card->membase + STAT); 1196 printk("nicstar%d: Large free buffer queue empty.\n", 1197 card->index); 1198 for (i = 0; i < card->lbnr.min; i++) { 1199 lb = dev_alloc_skb(NS_LGSKBSIZE); 1200 if (lb == NULL) { 1201 writel(readl(card->membase + CFG) & 1202 ~NS_CFG_EFBIE, card->membase + CFG); 1203 card->efbie = 0; 1204 break; 1205 } 1206 NS_PRV_BUFTYPE(lb) = BUF_LG; 1207 skb_queue_tail(&card->lbpool.queue, lb); 1208 skb_reserve(lb, NS_SMBUFSIZE); 1209 push_rxbufs(card, lb); 1210 } 1211 card->lbfqc = i; 1212 process_rsq(card); 1213 } 1214 1215 /* Receive Status Queue is 7/8 full */ 1216 if (stat_r & NS_STAT_RSQAF) { 1217 writel(NS_STAT_RSQAF, card->membase + STAT); 1218 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); 1219 process_rsq(card); 1220 } 1221 1222 spin_unlock_irqrestore(&card->int_lock, flags); 1223 PRINTK("nicstar%d: end of interrupt service\n", card->index); 1224 return IRQ_HANDLED; 1225 } 1226 1227 static int ns_open(struct atm_vcc *vcc) 1228 { 1229 ns_dev *card; 1230 vc_map *vc; 1231 unsigned long tmpl, modl; 1232 int tcr, tcra; /* target cell rate, and absolute value */ 1233 int n = 0; /* Number of entries in the TST. Initialized to remove 1234 the compiler warning. */ 1235 u32 u32d[4]; 1236 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler 1237 warning. How I wish compilers were clever enough to 1238 tell which variables can truly be used 1239 uninitialized... */ 1240 int inuse; /* tx or rx vc already in use by another vcc */ 1241 short vpi = vcc->vpi; 1242 int vci = vcc->vci; 1243 1244 card = (ns_dev *) vcc->dev->dev_data; 1245 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, 1246 vci); 1247 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1248 PRINTK("nicstar%d: unsupported AAL.\n", card->index); 1249 return -EINVAL; 1250 } 1251 1252 vc = &(card->vcmap[vpi << card->vcibits | vci]); 1253 vcc->dev_data = vc; 1254 1255 inuse = 0; 1256 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) 1257 inuse = 1; 1258 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) 1259 inuse += 2; 1260 if (inuse) { 1261 printk("nicstar%d: %s vci already in use.\n", card->index, 1262 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); 1263 return -EINVAL; 1264 } 1265 1266 set_bit(ATM_VF_ADDR, &vcc->flags); 1267 1268 /* NOTE: You are not allowed to modify an open connection's QOS. To change 1269 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes 1270 needed to do that. */ 1271 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { 1272 scq_info *scq; 1273 1274 set_bit(ATM_VF_PARTIAL, &vcc->flags); 1275 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1276 /* Check requested cell rate and availability of SCD */ 1277 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 1278 && vcc->qos.txtp.min_pcr == 0) { 1279 PRINTK 1280 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", 1281 card->index); 1282 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1283 clear_bit(ATM_VF_ADDR, &vcc->flags); 1284 return -EINVAL; 1285 } 1286 1287 tcr = atm_pcr_goal(&(vcc->qos.txtp)); 1288 tcra = tcr >= 0 ? tcr : -tcr; 1289 1290 PRINTK("nicstar%d: target cell rate = %d.\n", 1291 card->index, vcc->qos.txtp.max_pcr); 1292 1293 tmpl = 1294 (unsigned long)tcra *(unsigned long) 1295 NS_TST_NUM_ENTRIES; 1296 modl = tmpl % card->max_pcr; 1297 1298 n = (int)(tmpl / card->max_pcr); 1299 if (tcr > 0) { 1300 if (modl > 0) 1301 n++; 1302 } else if (tcr == 0) { 1303 if ((n = 1304 (card->tst_free_entries - 1305 NS_TST_RESERVED)) <= 0) { 1306 PRINTK 1307 ("nicstar%d: no CBR bandwidth free.\n", 1308 card->index); 1309 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1310 clear_bit(ATM_VF_ADDR, &vcc->flags); 1311 return -EINVAL; 1312 } 1313 } 1314 1315 if (n == 0) { 1316 printk 1317 ("nicstar%d: selected bandwidth < granularity.\n", 1318 card->index); 1319 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1320 clear_bit(ATM_VF_ADDR, &vcc->flags); 1321 return -EINVAL; 1322 } 1323 1324 if (n > (card->tst_free_entries - NS_TST_RESERVED)) { 1325 PRINTK 1326 ("nicstar%d: not enough free CBR bandwidth.\n", 1327 card->index); 1328 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1329 clear_bit(ATM_VF_ADDR, &vcc->flags); 1330 return -EINVAL; 1331 } else 1332 card->tst_free_entries -= n; 1333 1334 XPRINTK("nicstar%d: writing %d tst entries.\n", 1335 card->index, n); 1336 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { 1337 if (card->scd2vc[frscdi] == NULL) { 1338 card->scd2vc[frscdi] = vc; 1339 break; 1340 } 1341 } 1342 if (frscdi == NS_FRSCD_NUM) { 1343 PRINTK 1344 ("nicstar%d: no SCD available for CBR channel.\n", 1345 card->index); 1346 card->tst_free_entries += n; 1347 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1348 clear_bit(ATM_VF_ADDR, &vcc->flags); 1349 return -EBUSY; 1350 } 1351 1352 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; 1353 1354 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); 1355 if (scq == NULL) { 1356 PRINTK("nicstar%d: can't get fixed rate SCQ.\n", 1357 card->index); 1358 card->scd2vc[frscdi] = NULL; 1359 card->tst_free_entries += n; 1360 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1361 clear_bit(ATM_VF_ADDR, &vcc->flags); 1362 return -ENOMEM; 1363 } 1364 vc->scq = scq; 1365 u32d[0] = scq_virt_to_bus(scq, scq->base); 1366 u32d[1] = (u32) 0x00000000; 1367 u32d[2] = (u32) 0xffffffff; 1368 u32d[3] = (u32) 0x00000000; 1369 ns_write_sram(card, vc->cbr_scd, u32d, 4); 1370 1371 fill_tst(card, n, vc); 1372 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { 1373 vc->cbr_scd = 0x00000000; 1374 vc->scq = card->scq0; 1375 } 1376 1377 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1378 vc->tx = 1; 1379 vc->tx_vcc = vcc; 1380 vc->tbd_count = 0; 1381 } 1382 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1383 u32 status; 1384 1385 vc->rx = 1; 1386 vc->rx_vcc = vcc; 1387 vc->rx_iov = NULL; 1388 1389 /* Open the connection in hardware */ 1390 if (vcc->qos.aal == ATM_AAL5) 1391 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; 1392 else /* vcc->qos.aal == ATM_AAL0 */ 1393 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; 1394 #ifdef RCQ_SUPPORT 1395 status |= NS_RCTE_RAWCELLINTEN; 1396 #endif /* RCQ_SUPPORT */ 1397 ns_write_sram(card, 1398 NS_RCT + 1399 (vpi << card->vcibits | vci) * 1400 NS_RCT_ENTRY_SIZE, &status, 1); 1401 } 1402 1403 } 1404 1405 set_bit(ATM_VF_READY, &vcc->flags); 1406 return 0; 1407 } 1408 1409 static void ns_close(struct atm_vcc *vcc) 1410 { 1411 vc_map *vc; 1412 ns_dev *card; 1413 u32 data; 1414 int i; 1415 1416 vc = vcc->dev_data; 1417 card = vcc->dev->dev_data; 1418 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, 1419 (int)vcc->vpi, vcc->vci); 1420 1421 clear_bit(ATM_VF_READY, &vcc->flags); 1422 1423 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 1424 u32 addr; 1425 unsigned long flags; 1426 1427 addr = 1428 NS_RCT + 1429 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; 1430 spin_lock_irqsave(&card->res_lock, flags); 1431 while (CMD_BUSY(card)) ; 1432 writel(NS_CMD_CLOSE_CONNECTION | addr << 2, 1433 card->membase + CMD); 1434 spin_unlock_irqrestore(&card->res_lock, flags); 1435 1436 vc->rx = 0; 1437 if (vc->rx_iov != NULL) { 1438 struct sk_buff *iovb; 1439 u32 stat; 1440 1441 stat = readl(card->membase + STAT); 1442 card->sbfqc = ns_stat_sfbqc_get(stat); 1443 card->lbfqc = ns_stat_lfbqc_get(stat); 1444 1445 PRINTK 1446 ("nicstar%d: closing a VC with pending rx buffers.\n", 1447 card->index); 1448 iovb = vc->rx_iov; 1449 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 1450 NS_PRV_IOVCNT(iovb)); 1451 NS_PRV_IOVCNT(iovb) = 0; 1452 spin_lock_irqsave(&card->int_lock, flags); 1453 recycle_iov_buf(card, iovb); 1454 spin_unlock_irqrestore(&card->int_lock, flags); 1455 vc->rx_iov = NULL; 1456 } 1457 } 1458 1459 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1460 vc->tx = 0; 1461 } 1462 1463 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1464 unsigned long flags; 1465 ns_scqe *scqep; 1466 scq_info *scq; 1467 1468 scq = vc->scq; 1469 1470 for (;;) { 1471 spin_lock_irqsave(&scq->lock, flags); 1472 scqep = scq->next; 1473 if (scqep == scq->base) 1474 scqep = scq->last; 1475 else 1476 scqep--; 1477 if (scqep == scq->tail) { 1478 spin_unlock_irqrestore(&scq->lock, flags); 1479 break; 1480 } 1481 /* If the last entry is not a TSR, place one in the SCQ in order to 1482 be able to completely drain it and then close. */ 1483 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { 1484 ns_scqe tsr; 1485 u32 scdi, scqi; 1486 u32 data; 1487 int index; 1488 1489 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1490 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1491 scqi = scq->next - scq->base; 1492 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1493 tsr.word_3 = 0x00000000; 1494 tsr.word_4 = 0x00000000; 1495 *scq->next = tsr; 1496 index = (int)scqi; 1497 scq->skb[index] = NULL; 1498 if (scq->next == scq->last) 1499 scq->next = scq->base; 1500 else 1501 scq->next++; 1502 data = scq_virt_to_bus(scq, scq->next); 1503 ns_write_sram(card, scq->scd, &data, 1); 1504 } 1505 spin_unlock_irqrestore(&scq->lock, flags); 1506 schedule(); 1507 } 1508 1509 /* Free all TST entries */ 1510 data = NS_TST_OPCODE_VARIABLE; 1511 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { 1512 if (card->tste2vc[i] == vc) { 1513 ns_write_sram(card, card->tst_addr + i, &data, 1514 1); 1515 card->tste2vc[i] = NULL; 1516 card->tst_free_entries++; 1517 } 1518 } 1519 1520 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; 1521 free_scq(card, vc->scq, vcc); 1522 } 1523 1524 /* remove all references to vcc before deleting it */ 1525 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 1526 unsigned long flags; 1527 scq_info *scq = card->scq0; 1528 1529 spin_lock_irqsave(&scq->lock, flags); 1530 1531 for (i = 0; i < scq->num_entries; i++) { 1532 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { 1533 ATM_SKB(scq->skb[i])->vcc = NULL; 1534 atm_return(vcc, scq->skb[i]->truesize); 1535 PRINTK 1536 ("nicstar: deleted pending vcc mapping\n"); 1537 } 1538 } 1539 1540 spin_unlock_irqrestore(&scq->lock, flags); 1541 } 1542 1543 vcc->dev_data = NULL; 1544 clear_bit(ATM_VF_PARTIAL, &vcc->flags); 1545 clear_bit(ATM_VF_ADDR, &vcc->flags); 1546 1547 #ifdef RX_DEBUG 1548 { 1549 u32 stat, cfg; 1550 stat = readl(card->membase + STAT); 1551 cfg = readl(card->membase + CFG); 1552 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); 1553 printk 1554 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", 1555 card->tsq.base, card->tsq.next, 1556 card->tsq.last, readl(card->membase + TSQT)); 1557 printk 1558 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", 1559 card->rsq.base, card->rsq.next, 1560 card->rsq.last, readl(card->membase + RSQT)); 1561 printk("Empty free buffer queue interrupt %s \n", 1562 card->efbie ? "enabled" : "disabled"); 1563 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", 1564 ns_stat_sfbqc_get(stat), card->sbpool.count, 1565 ns_stat_lfbqc_get(stat), card->lbpool.count); 1566 printk("hbpool.count = %d iovpool.count = %d \n", 1567 card->hbpool.count, card->iovpool.count); 1568 } 1569 #endif /* RX_DEBUG */ 1570 } 1571 1572 static void fill_tst(ns_dev * card, int n, vc_map * vc) 1573 { 1574 u32 new_tst; 1575 unsigned long cl; 1576 int e, r; 1577 u32 data; 1578 1579 /* It would be very complicated to keep the two TSTs synchronized while 1580 assuring that writes are only made to the inactive TST. So, for now I 1581 will use only one TST. If problems occur, I will change this again */ 1582 1583 new_tst = card->tst_addr; 1584 1585 /* Fill procedure */ 1586 1587 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { 1588 if (card->tste2vc[e] == NULL) 1589 break; 1590 } 1591 if (e == NS_TST_NUM_ENTRIES) { 1592 printk("nicstar%d: No free TST entries found. \n", card->index); 1593 return; 1594 } 1595 1596 r = n; 1597 cl = NS_TST_NUM_ENTRIES; 1598 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); 1599 1600 while (r > 0) { 1601 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { 1602 card->tste2vc[e] = vc; 1603 ns_write_sram(card, new_tst + e, &data, 1); 1604 cl -= NS_TST_NUM_ENTRIES; 1605 r--; 1606 } 1607 1608 if (++e == NS_TST_NUM_ENTRIES) { 1609 e = 0; 1610 } 1611 cl += n; 1612 } 1613 1614 /* End of fill procedure */ 1615 1616 data = ns_tste_make(NS_TST_OPCODE_END, new_tst); 1617 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); 1618 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); 1619 card->tst_addr = new_tst; 1620 } 1621 1622 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) 1623 { 1624 ns_dev *card; 1625 vc_map *vc; 1626 scq_info *scq; 1627 unsigned long buflen; 1628 ns_scqe scqe; 1629 u32 flags; /* TBD flags, not CPU flags */ 1630 1631 card = vcc->dev->dev_data; 1632 TXPRINTK("nicstar%d: ns_send() called.\n", card->index); 1633 if ((vc = (vc_map *) vcc->dev_data) == NULL) { 1634 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", 1635 card->index); 1636 atomic_inc(&vcc->stats->tx_err); 1637 dev_kfree_skb_any(skb); 1638 return -EINVAL; 1639 } 1640 1641 if (!vc->tx) { 1642 printk("nicstar%d: Trying to transmit on a non-tx VC.\n", 1643 card->index); 1644 atomic_inc(&vcc->stats->tx_err); 1645 dev_kfree_skb_any(skb); 1646 return -EINVAL; 1647 } 1648 1649 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { 1650 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", 1651 card->index); 1652 atomic_inc(&vcc->stats->tx_err); 1653 dev_kfree_skb_any(skb); 1654 return -EINVAL; 1655 } 1656 1657 if (skb_shinfo(skb)->nr_frags != 0) { 1658 printk("nicstar%d: No scatter-gather yet.\n", card->index); 1659 atomic_inc(&vcc->stats->tx_err); 1660 dev_kfree_skb_any(skb); 1661 return -EINVAL; 1662 } 1663 1664 ATM_SKB(skb)->vcc = vcc; 1665 1666 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, 1667 skb->len, DMA_TO_DEVICE); 1668 1669 if (vcc->qos.aal == ATM_AAL5) { 1670 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ 1671 flags = NS_TBD_AAL5; 1672 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); 1673 scqe.word_3 = cpu_to_le32(skb->len); 1674 scqe.word_4 = 1675 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, 1676 ATM_SKB(skb)-> 1677 atm_options & ATM_ATMOPT_CLP ? 1 : 0); 1678 flags |= NS_TBD_EOPDU; 1679 } else { /* (vcc->qos.aal == ATM_AAL0) */ 1680 1681 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ 1682 flags = NS_TBD_AAL0; 1683 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); 1684 scqe.word_3 = cpu_to_le32(0x00000000); 1685 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ 1686 flags |= NS_TBD_EOPDU; 1687 scqe.word_4 = 1688 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); 1689 /* Force the VPI/VCI to be the same as in VCC struct */ 1690 scqe.word_4 |= 1691 cpu_to_le32((((u32) vcc-> 1692 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> 1693 vci) << 1694 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); 1695 } 1696 1697 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1698 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); 1699 scq = ((vc_map *) vcc->dev_data)->scq; 1700 } else { 1701 scqe.word_1 = 1702 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); 1703 scq = card->scq0; 1704 } 1705 1706 if (push_scqe(card, vc, scq, &scqe, skb) != 0) { 1707 atomic_inc(&vcc->stats->tx_err); 1708 dev_kfree_skb_any(skb); 1709 return -EIO; 1710 } 1711 atomic_inc(&vcc->stats->tx); 1712 1713 return 0; 1714 } 1715 1716 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, 1717 struct sk_buff *skb) 1718 { 1719 unsigned long flags; 1720 ns_scqe tsr; 1721 u32 scdi, scqi; 1722 int scq_is_vbr; 1723 u32 data; 1724 int index; 1725 1726 spin_lock_irqsave(&scq->lock, flags); 1727 while (scq->tail == scq->next) { 1728 if (in_interrupt()) { 1729 spin_unlock_irqrestore(&scq->lock, flags); 1730 printk("nicstar%d: Error pushing TBD.\n", card->index); 1731 return 1; 1732 } 1733 1734 scq->full = 1; 1735 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1736 scq->tail != scq->next, 1737 scq->lock, 1738 SCQFULL_TIMEOUT); 1739 1740 if (scq->full) { 1741 spin_unlock_irqrestore(&scq->lock, flags); 1742 printk("nicstar%d: Timeout pushing TBD.\n", 1743 card->index); 1744 return 1; 1745 } 1746 } 1747 *scq->next = *tbd; 1748 index = (int)(scq->next - scq->base); 1749 scq->skb[index] = skb; 1750 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", 1751 card->index, skb, index); 1752 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1753 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), 1754 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), 1755 scq->next); 1756 if (scq->next == scq->last) 1757 scq->next = scq->base; 1758 else 1759 scq->next++; 1760 1761 vc->tbd_count++; 1762 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { 1763 scq->tbd_count++; 1764 scq_is_vbr = 1; 1765 } else 1766 scq_is_vbr = 0; 1767 1768 if (vc->tbd_count >= MAX_TBD_PER_VC 1769 || scq->tbd_count >= MAX_TBD_PER_SCQ) { 1770 int has_run = 0; 1771 1772 while (scq->tail == scq->next) { 1773 if (in_interrupt()) { 1774 data = scq_virt_to_bus(scq, scq->next); 1775 ns_write_sram(card, scq->scd, &data, 1); 1776 spin_unlock_irqrestore(&scq->lock, flags); 1777 printk("nicstar%d: Error pushing TSR.\n", 1778 card->index); 1779 return 0; 1780 } 1781 1782 scq->full = 1; 1783 if (has_run++) 1784 break; 1785 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, 1786 scq->tail != scq->next, 1787 scq->lock, 1788 SCQFULL_TIMEOUT); 1789 } 1790 1791 if (!scq->full) { 1792 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); 1793 if (scq_is_vbr) 1794 scdi = NS_TSR_SCDISVBR; 1795 else 1796 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; 1797 scqi = scq->next - scq->base; 1798 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); 1799 tsr.word_3 = 0x00000000; 1800 tsr.word_4 = 0x00000000; 1801 1802 *scq->next = tsr; 1803 index = (int)scqi; 1804 scq->skb[index] = NULL; 1805 XPRINTK 1806 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", 1807 card->index, le32_to_cpu(tsr.word_1), 1808 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), 1809 le32_to_cpu(tsr.word_4), scq->next); 1810 if (scq->next == scq->last) 1811 scq->next = scq->base; 1812 else 1813 scq->next++; 1814 vc->tbd_count = 0; 1815 scq->tbd_count = 0; 1816 } else 1817 PRINTK("nicstar%d: Timeout pushing TSR.\n", 1818 card->index); 1819 } 1820 data = scq_virt_to_bus(scq, scq->next); 1821 ns_write_sram(card, scq->scd, &data, 1); 1822 1823 spin_unlock_irqrestore(&scq->lock, flags); 1824 1825 return 0; 1826 } 1827 1828 static void process_tsq(ns_dev * card) 1829 { 1830 u32 scdi; 1831 scq_info *scq; 1832 ns_tsi *previous = NULL, *one_ahead, *two_ahead; 1833 int serviced_entries; /* flag indicating at least on entry was serviced */ 1834 1835 serviced_entries = 0; 1836 1837 if (card->tsq.next == card->tsq.last) 1838 one_ahead = card->tsq.base; 1839 else 1840 one_ahead = card->tsq.next + 1; 1841 1842 if (one_ahead == card->tsq.last) 1843 two_ahead = card->tsq.base; 1844 else 1845 two_ahead = one_ahead + 1; 1846 1847 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || 1848 !ns_tsi_isempty(two_ahead)) 1849 /* At most two empty, as stated in the 77201 errata */ 1850 { 1851 serviced_entries = 1; 1852 1853 /* Skip the one or two possible empty entries */ 1854 while (ns_tsi_isempty(card->tsq.next)) { 1855 if (card->tsq.next == card->tsq.last) 1856 card->tsq.next = card->tsq.base; 1857 else 1858 card->tsq.next++; 1859 } 1860 1861 if (!ns_tsi_tmrof(card->tsq.next)) { 1862 scdi = ns_tsi_getscdindex(card->tsq.next); 1863 if (scdi == NS_TSI_SCDISVBR) 1864 scq = card->scq0; 1865 else { 1866 if (card->scd2vc[scdi] == NULL) { 1867 printk 1868 ("nicstar%d: could not find VC from SCD index.\n", 1869 card->index); 1870 ns_tsi_init(card->tsq.next); 1871 return; 1872 } 1873 scq = card->scd2vc[scdi]->scq; 1874 } 1875 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); 1876 scq->full = 0; 1877 wake_up_interruptible(&(scq->scqfull_waitq)); 1878 } 1879 1880 ns_tsi_init(card->tsq.next); 1881 previous = card->tsq.next; 1882 if (card->tsq.next == card->tsq.last) 1883 card->tsq.next = card->tsq.base; 1884 else 1885 card->tsq.next++; 1886 1887 if (card->tsq.next == card->tsq.last) 1888 one_ahead = card->tsq.base; 1889 else 1890 one_ahead = card->tsq.next + 1; 1891 1892 if (one_ahead == card->tsq.last) 1893 two_ahead = card->tsq.base; 1894 else 1895 two_ahead = one_ahead + 1; 1896 } 1897 1898 if (serviced_entries) 1899 writel(PTR_DIFF(previous, card->tsq.base), 1900 card->membase + TSQH); 1901 } 1902 1903 static void drain_scq(ns_dev * card, scq_info * scq, int pos) 1904 { 1905 struct atm_vcc *vcc; 1906 struct sk_buff *skb; 1907 int i; 1908 unsigned long flags; 1909 1910 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", 1911 card->index, scq, pos); 1912 if (pos >= scq->num_entries) { 1913 printk("nicstar%d: Bad index on drain_scq().\n", card->index); 1914 return; 1915 } 1916 1917 spin_lock_irqsave(&scq->lock, flags); 1918 i = (int)(scq->tail - scq->base); 1919 if (++i == scq->num_entries) 1920 i = 0; 1921 while (i != pos) { 1922 skb = scq->skb[i]; 1923 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", 1924 card->index, skb, i); 1925 if (skb != NULL) { 1926 dma_unmap_single(&card->pcidev->dev, 1927 NS_PRV_DMA(skb), 1928 skb->len, 1929 DMA_TO_DEVICE); 1930 vcc = ATM_SKB(skb)->vcc; 1931 if (vcc && vcc->pop != NULL) { 1932 vcc->pop(vcc, skb); 1933 } else { 1934 dev_kfree_skb_irq(skb); 1935 } 1936 scq->skb[i] = NULL; 1937 } 1938 if (++i == scq->num_entries) 1939 i = 0; 1940 } 1941 scq->tail = scq->base + pos; 1942 spin_unlock_irqrestore(&scq->lock, flags); 1943 } 1944 1945 static void process_rsq(ns_dev * card) 1946 { 1947 ns_rsqe *previous; 1948 1949 if (!ns_rsqe_valid(card->rsq.next)) 1950 return; 1951 do { 1952 dequeue_rx(card, card->rsq.next); 1953 ns_rsqe_init(card->rsq.next); 1954 previous = card->rsq.next; 1955 if (card->rsq.next == card->rsq.last) 1956 card->rsq.next = card->rsq.base; 1957 else 1958 card->rsq.next++; 1959 } while (ns_rsqe_valid(card->rsq.next)); 1960 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); 1961 } 1962 1963 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) 1964 { 1965 u32 vpi, vci; 1966 vc_map *vc; 1967 struct sk_buff *iovb; 1968 struct iovec *iov; 1969 struct atm_vcc *vcc; 1970 struct sk_buff *skb; 1971 unsigned short aal5_len; 1972 int len; 1973 u32 stat; 1974 u32 id; 1975 1976 stat = readl(card->membase + STAT); 1977 card->sbfqc = ns_stat_sfbqc_get(stat); 1978 card->lbfqc = ns_stat_lfbqc_get(stat); 1979 1980 id = le32_to_cpu(rsqe->buffer_handle); 1981 skb = idr_find(&card->idr, id); 1982 if (!skb) { 1983 RXPRINTK(KERN_ERR 1984 "nicstar%d: idr_find() failed!\n", card->index); 1985 return; 1986 } 1987 idr_remove(&card->idr, id); 1988 dma_sync_single_for_cpu(&card->pcidev->dev, 1989 NS_PRV_DMA(skb), 1990 (NS_PRV_BUFTYPE(skb) == BUF_SM 1991 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1992 DMA_FROM_DEVICE); 1993 dma_unmap_single(&card->pcidev->dev, 1994 NS_PRV_DMA(skb), 1995 (NS_PRV_BUFTYPE(skb) == BUF_SM 1996 ? NS_SMSKBSIZE : NS_LGSKBSIZE), 1997 DMA_FROM_DEVICE); 1998 vpi = ns_rsqe_vpi(rsqe); 1999 vci = ns_rsqe_vci(rsqe); 2000 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { 2001 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", 2002 card->index, vpi, vci); 2003 recycle_rx_buf(card, skb); 2004 return; 2005 } 2006 2007 vc = &(card->vcmap[vpi << card->vcibits | vci]); 2008 if (!vc->rx) { 2009 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", 2010 card->index, vpi, vci); 2011 recycle_rx_buf(card, skb); 2012 return; 2013 } 2014 2015 vcc = vc->rx_vcc; 2016 2017 if (vcc->qos.aal == ATM_AAL0) { 2018 struct sk_buff *sb; 2019 unsigned char *cell; 2020 int i; 2021 2022 cell = skb->data; 2023 for (i = ns_rsqe_cellcount(rsqe); i; i--) { 2024 if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) { 2025 printk 2026 ("nicstar%d: Can't allocate buffers for aal0.\n", 2027 card->index); 2028 atomic_add(i, &vcc->stats->rx_drop); 2029 break; 2030 } 2031 if (!atm_charge(vcc, sb->truesize)) { 2032 RXPRINTK 2033 ("nicstar%d: atm_charge() dropped aal0 packets.\n", 2034 card->index); 2035 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ 2036 dev_kfree_skb_any(sb); 2037 break; 2038 } 2039 /* Rebuild the header */ 2040 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | 2041 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); 2042 if (i == 1 && ns_rsqe_eopdu(rsqe)) 2043 *((u32 *) sb->data) |= 0x00000002; 2044 skb_put(sb, NS_AAL0_HEADER); 2045 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); 2046 skb_put(sb, ATM_CELL_PAYLOAD); 2047 ATM_SKB(sb)->vcc = vcc; 2048 __net_timestamp(sb); 2049 vcc->push(vcc, sb); 2050 atomic_inc(&vcc->stats->rx); 2051 cell += ATM_CELL_PAYLOAD; 2052 } 2053 2054 recycle_rx_buf(card, skb); 2055 return; 2056 } 2057 2058 /* To reach this point, the AAL layer can only be AAL5 */ 2059 2060 if ((iovb = vc->rx_iov) == NULL) { 2061 iovb = skb_dequeue(&(card->iovpool.queue)); 2062 if (iovb == NULL) { /* No buffers in the queue */ 2063 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); 2064 if (iovb == NULL) { 2065 printk("nicstar%d: Out of iovec buffers.\n", 2066 card->index); 2067 atomic_inc(&vcc->stats->rx_drop); 2068 recycle_rx_buf(card, skb); 2069 return; 2070 } 2071 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2072 } else if (--card->iovpool.count < card->iovnr.min) { 2073 struct sk_buff *new_iovb; 2074 if ((new_iovb = 2075 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { 2076 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2077 skb_queue_tail(&card->iovpool.queue, new_iovb); 2078 card->iovpool.count++; 2079 } 2080 } 2081 vc->rx_iov = iovb; 2082 NS_PRV_IOVCNT(iovb) = 0; 2083 iovb->len = 0; 2084 iovb->data = iovb->head; 2085 skb_reset_tail_pointer(iovb); 2086 /* IMPORTANT: a pointer to the sk_buff containing the small or large 2087 buffer is stored as iovec base, NOT a pointer to the 2088 small or large buffer itself. */ 2089 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { 2090 printk("nicstar%d: received too big AAL5 SDU.\n", card->index); 2091 atomic_inc(&vcc->stats->rx_err); 2092 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2093 NS_MAX_IOVECS); 2094 NS_PRV_IOVCNT(iovb) = 0; 2095 iovb->len = 0; 2096 iovb->data = iovb->head; 2097 skb_reset_tail_pointer(iovb); 2098 } 2099 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; 2100 iov->iov_base = (void *)skb; 2101 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; 2102 iovb->len += iov->iov_len; 2103 2104 #ifdef EXTRA_DEBUG 2105 if (NS_PRV_IOVCNT(iovb) == 1) { 2106 if (NS_PRV_BUFTYPE(skb) != BUF_SM) { 2107 printk 2108 ("nicstar%d: Expected a small buffer, and this is not one.\n", 2109 card->index); 2110 which_list(card, skb); 2111 atomic_inc(&vcc->stats->rx_err); 2112 recycle_rx_buf(card, skb); 2113 vc->rx_iov = NULL; 2114 recycle_iov_buf(card, iovb); 2115 return; 2116 } 2117 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ 2118 2119 if (NS_PRV_BUFTYPE(skb) != BUF_LG) { 2120 printk 2121 ("nicstar%d: Expected a large buffer, and this is not one.\n", 2122 card->index); 2123 which_list(card, skb); 2124 atomic_inc(&vcc->stats->rx_err); 2125 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2126 NS_PRV_IOVCNT(iovb)); 2127 vc->rx_iov = NULL; 2128 recycle_iov_buf(card, iovb); 2129 return; 2130 } 2131 } 2132 #endif /* EXTRA_DEBUG */ 2133 2134 if (ns_rsqe_eopdu(rsqe)) { 2135 /* This works correctly regardless of the endianness of the host */ 2136 unsigned char *L1L2 = (unsigned char *) 2137 (skb->data + iov->iov_len - 6); 2138 aal5_len = L1L2[0] << 8 | L1L2[1]; 2139 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; 2140 if (ns_rsqe_crcerr(rsqe) || 2141 len + 8 > iovb->len || len + (47 + 8) < iovb->len) { 2142 printk("nicstar%d: AAL5 CRC error", card->index); 2143 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) 2144 printk(" - PDU size mismatch.\n"); 2145 else 2146 printk(".\n"); 2147 atomic_inc(&vcc->stats->rx_err); 2148 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, 2149 NS_PRV_IOVCNT(iovb)); 2150 vc->rx_iov = NULL; 2151 recycle_iov_buf(card, iovb); 2152 return; 2153 } 2154 2155 /* By this point we (hopefully) have a complete SDU without errors. */ 2156 2157 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ 2158 /* skb points to a small buffer */ 2159 if (!atm_charge(vcc, skb->truesize)) { 2160 push_rxbufs(card, skb); 2161 atomic_inc(&vcc->stats->rx_drop); 2162 } else { 2163 skb_put(skb, len); 2164 dequeue_sm_buf(card, skb); 2165 ATM_SKB(skb)->vcc = vcc; 2166 __net_timestamp(skb); 2167 vcc->push(vcc, skb); 2168 atomic_inc(&vcc->stats->rx); 2169 } 2170 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ 2171 struct sk_buff *sb; 2172 2173 sb = (struct sk_buff *)(iov - 1)->iov_base; 2174 /* skb points to a large buffer */ 2175 2176 if (len <= NS_SMBUFSIZE) { 2177 if (!atm_charge(vcc, sb->truesize)) { 2178 push_rxbufs(card, sb); 2179 atomic_inc(&vcc->stats->rx_drop); 2180 } else { 2181 skb_put(sb, len); 2182 dequeue_sm_buf(card, sb); 2183 ATM_SKB(sb)->vcc = vcc; 2184 __net_timestamp(sb); 2185 vcc->push(vcc, sb); 2186 atomic_inc(&vcc->stats->rx); 2187 } 2188 2189 push_rxbufs(card, skb); 2190 2191 } else { /* len > NS_SMBUFSIZE, the usual case */ 2192 2193 if (!atm_charge(vcc, skb->truesize)) { 2194 push_rxbufs(card, skb); 2195 atomic_inc(&vcc->stats->rx_drop); 2196 } else { 2197 dequeue_lg_buf(card, skb); 2198 skb_push(skb, NS_SMBUFSIZE); 2199 skb_copy_from_linear_data(sb, skb->data, 2200 NS_SMBUFSIZE); 2201 skb_put(skb, len - NS_SMBUFSIZE); 2202 ATM_SKB(skb)->vcc = vcc; 2203 __net_timestamp(skb); 2204 vcc->push(vcc, skb); 2205 atomic_inc(&vcc->stats->rx); 2206 } 2207 2208 push_rxbufs(card, sb); 2209 2210 } 2211 2212 } else { /* Must push a huge buffer */ 2213 2214 struct sk_buff *hb, *sb, *lb; 2215 int remaining, tocopy; 2216 int j; 2217 2218 hb = skb_dequeue(&(card->hbpool.queue)); 2219 if (hb == NULL) { /* No buffers in the queue */ 2220 2221 hb = dev_alloc_skb(NS_HBUFSIZE); 2222 if (hb == NULL) { 2223 printk 2224 ("nicstar%d: Out of huge buffers.\n", 2225 card->index); 2226 atomic_inc(&vcc->stats->rx_drop); 2227 recycle_iovec_rx_bufs(card, 2228 (struct iovec *) 2229 iovb->data, 2230 NS_PRV_IOVCNT(iovb)); 2231 vc->rx_iov = NULL; 2232 recycle_iov_buf(card, iovb); 2233 return; 2234 } else if (card->hbpool.count < card->hbnr.min) { 2235 struct sk_buff *new_hb; 2236 if ((new_hb = 2237 dev_alloc_skb(NS_HBUFSIZE)) != 2238 NULL) { 2239 skb_queue_tail(&card->hbpool. 2240 queue, new_hb); 2241 card->hbpool.count++; 2242 } 2243 } 2244 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2245 } else if (--card->hbpool.count < card->hbnr.min) { 2246 struct sk_buff *new_hb; 2247 if ((new_hb = 2248 dev_alloc_skb(NS_HBUFSIZE)) != NULL) { 2249 NS_PRV_BUFTYPE(new_hb) = BUF_NONE; 2250 skb_queue_tail(&card->hbpool.queue, 2251 new_hb); 2252 card->hbpool.count++; 2253 } 2254 if (card->hbpool.count < card->hbnr.min) { 2255 if ((new_hb = 2256 dev_alloc_skb(NS_HBUFSIZE)) != 2257 NULL) { 2258 NS_PRV_BUFTYPE(new_hb) = 2259 BUF_NONE; 2260 skb_queue_tail(&card->hbpool. 2261 queue, new_hb); 2262 card->hbpool.count++; 2263 } 2264 } 2265 } 2266 2267 iov = (struct iovec *)iovb->data; 2268 2269 if (!atm_charge(vcc, hb->truesize)) { 2270 recycle_iovec_rx_bufs(card, iov, 2271 NS_PRV_IOVCNT(iovb)); 2272 if (card->hbpool.count < card->hbnr.max) { 2273 skb_queue_tail(&card->hbpool.queue, hb); 2274 card->hbpool.count++; 2275 } else 2276 dev_kfree_skb_any(hb); 2277 atomic_inc(&vcc->stats->rx_drop); 2278 } else { 2279 /* Copy the small buffer to the huge buffer */ 2280 sb = (struct sk_buff *)iov->iov_base; 2281 skb_copy_from_linear_data(sb, hb->data, 2282 iov->iov_len); 2283 skb_put(hb, iov->iov_len); 2284 remaining = len - iov->iov_len; 2285 iov++; 2286 /* Free the small buffer */ 2287 push_rxbufs(card, sb); 2288 2289 /* Copy all large buffers to the huge buffer and free them */ 2290 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { 2291 lb = (struct sk_buff *)iov->iov_base; 2292 tocopy = 2293 min_t(int, remaining, iov->iov_len); 2294 skb_copy_from_linear_data(lb, 2295 skb_tail_pointer 2296 (hb), tocopy); 2297 skb_put(hb, tocopy); 2298 iov++; 2299 remaining -= tocopy; 2300 push_rxbufs(card, lb); 2301 } 2302 #ifdef EXTRA_DEBUG 2303 if (remaining != 0 || hb->len != len) 2304 printk 2305 ("nicstar%d: Huge buffer len mismatch.\n", 2306 card->index); 2307 #endif /* EXTRA_DEBUG */ 2308 ATM_SKB(hb)->vcc = vcc; 2309 __net_timestamp(hb); 2310 vcc->push(vcc, hb); 2311 atomic_inc(&vcc->stats->rx); 2312 } 2313 } 2314 2315 vc->rx_iov = NULL; 2316 recycle_iov_buf(card, iovb); 2317 } 2318 2319 } 2320 2321 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) 2322 { 2323 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { 2324 printk("nicstar%d: What kind of rx buffer is this?\n", 2325 card->index); 2326 dev_kfree_skb_any(skb); 2327 } else 2328 push_rxbufs(card, skb); 2329 } 2330 2331 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) 2332 { 2333 while (count-- > 0) 2334 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); 2335 } 2336 2337 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) 2338 { 2339 if (card->iovpool.count < card->iovnr.max) { 2340 skb_queue_tail(&card->iovpool.queue, iovb); 2341 card->iovpool.count++; 2342 } else 2343 dev_kfree_skb_any(iovb); 2344 } 2345 2346 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) 2347 { 2348 skb_unlink(sb, &card->sbpool.queue); 2349 if (card->sbfqc < card->sbnr.init) { 2350 struct sk_buff *new_sb; 2351 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2352 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2353 skb_queue_tail(&card->sbpool.queue, new_sb); 2354 skb_reserve(new_sb, NS_AAL0_HEADER); 2355 push_rxbufs(card, new_sb); 2356 } 2357 } 2358 if (card->sbfqc < card->sbnr.init) 2359 { 2360 struct sk_buff *new_sb; 2361 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { 2362 NS_PRV_BUFTYPE(new_sb) = BUF_SM; 2363 skb_queue_tail(&card->sbpool.queue, new_sb); 2364 skb_reserve(new_sb, NS_AAL0_HEADER); 2365 push_rxbufs(card, new_sb); 2366 } 2367 } 2368 } 2369 2370 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) 2371 { 2372 skb_unlink(lb, &card->lbpool.queue); 2373 if (card->lbfqc < card->lbnr.init) { 2374 struct sk_buff *new_lb; 2375 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2376 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2377 skb_queue_tail(&card->lbpool.queue, new_lb); 2378 skb_reserve(new_lb, NS_SMBUFSIZE); 2379 push_rxbufs(card, new_lb); 2380 } 2381 } 2382 if (card->lbfqc < card->lbnr.init) 2383 { 2384 struct sk_buff *new_lb; 2385 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { 2386 NS_PRV_BUFTYPE(new_lb) = BUF_LG; 2387 skb_queue_tail(&card->lbpool.queue, new_lb); 2388 skb_reserve(new_lb, NS_SMBUFSIZE); 2389 push_rxbufs(card, new_lb); 2390 } 2391 } 2392 } 2393 2394 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) 2395 { 2396 u32 stat; 2397 ns_dev *card; 2398 int left; 2399 2400 left = (int)*pos; 2401 card = (ns_dev *) dev->dev_data; 2402 stat = readl(card->membase + STAT); 2403 if (!left--) 2404 return sprintf(page, "Pool count min init max \n"); 2405 if (!left--) 2406 return sprintf(page, "Small %5d %5d %5d %5d \n", 2407 ns_stat_sfbqc_get(stat), card->sbnr.min, 2408 card->sbnr.init, card->sbnr.max); 2409 if (!left--) 2410 return sprintf(page, "Large %5d %5d %5d %5d \n", 2411 ns_stat_lfbqc_get(stat), card->lbnr.min, 2412 card->lbnr.init, card->lbnr.max); 2413 if (!left--) 2414 return sprintf(page, "Huge %5d %5d %5d %5d \n", 2415 card->hbpool.count, card->hbnr.min, 2416 card->hbnr.init, card->hbnr.max); 2417 if (!left--) 2418 return sprintf(page, "Iovec %5d %5d %5d %5d \n", 2419 card->iovpool.count, card->iovnr.min, 2420 card->iovnr.init, card->iovnr.max); 2421 if (!left--) { 2422 int retval; 2423 retval = 2424 sprintf(page, "Interrupt counter: %u \n", card->intcnt); 2425 card->intcnt = 0; 2426 return retval; 2427 } 2428 #if 0 2429 /* Dump 25.6 Mbps PHY registers */ 2430 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it 2431 here just in case it's needed for debugging. */ 2432 if (card->max_pcr == ATM_25_PCR && !left--) { 2433 u32 phy_regs[4]; 2434 u32 i; 2435 2436 for (i = 0; i < 4; i++) { 2437 while (CMD_BUSY(card)) ; 2438 writel(NS_CMD_READ_UTILITY | 0x00000200 | i, 2439 card->membase + CMD); 2440 while (CMD_BUSY(card)) ; 2441 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; 2442 } 2443 2444 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", 2445 phy_regs[0], phy_regs[1], phy_regs[2], 2446 phy_regs[3]); 2447 } 2448 #endif /* 0 - Dump 25.6 Mbps PHY registers */ 2449 #if 0 2450 /* Dump TST */ 2451 if (left-- < NS_TST_NUM_ENTRIES) { 2452 if (card->tste2vc[left + 1] == NULL) 2453 return sprintf(page, "%5d - VBR/UBR \n", left + 1); 2454 else 2455 return sprintf(page, "%5d - %d %d \n", left + 1, 2456 card->tste2vc[left + 1]->tx_vcc->vpi, 2457 card->tste2vc[left + 1]->tx_vcc->vci); 2458 } 2459 #endif /* 0 */ 2460 return 0; 2461 } 2462 2463 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) 2464 { 2465 ns_dev *card; 2466 pool_levels pl; 2467 long btype; 2468 unsigned long flags; 2469 2470 card = dev->dev_data; 2471 switch (cmd) { 2472 case NS_GETPSTAT: 2473 if (get_user 2474 (pl.buftype, &((pool_levels __user *) arg)->buftype)) 2475 return -EFAULT; 2476 switch (pl.buftype) { 2477 case NS_BUFTYPE_SMALL: 2478 pl.count = 2479 ns_stat_sfbqc_get(readl(card->membase + STAT)); 2480 pl.level.min = card->sbnr.min; 2481 pl.level.init = card->sbnr.init; 2482 pl.level.max = card->sbnr.max; 2483 break; 2484 2485 case NS_BUFTYPE_LARGE: 2486 pl.count = 2487 ns_stat_lfbqc_get(readl(card->membase + STAT)); 2488 pl.level.min = card->lbnr.min; 2489 pl.level.init = card->lbnr.init; 2490 pl.level.max = card->lbnr.max; 2491 break; 2492 2493 case NS_BUFTYPE_HUGE: 2494 pl.count = card->hbpool.count; 2495 pl.level.min = card->hbnr.min; 2496 pl.level.init = card->hbnr.init; 2497 pl.level.max = card->hbnr.max; 2498 break; 2499 2500 case NS_BUFTYPE_IOVEC: 2501 pl.count = card->iovpool.count; 2502 pl.level.min = card->iovnr.min; 2503 pl.level.init = card->iovnr.init; 2504 pl.level.max = card->iovnr.max; 2505 break; 2506 2507 default: 2508 return -ENOIOCTLCMD; 2509 2510 } 2511 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) 2512 return (sizeof(pl)); 2513 else 2514 return -EFAULT; 2515 2516 case NS_SETBUFLEV: 2517 if (!capable(CAP_NET_ADMIN)) 2518 return -EPERM; 2519 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) 2520 return -EFAULT; 2521 if (pl.level.min >= pl.level.init 2522 || pl.level.init >= pl.level.max) 2523 return -EINVAL; 2524 if (pl.level.min == 0) 2525 return -EINVAL; 2526 switch (pl.buftype) { 2527 case NS_BUFTYPE_SMALL: 2528 if (pl.level.max > TOP_SB) 2529 return -EINVAL; 2530 card->sbnr.min = pl.level.min; 2531 card->sbnr.init = pl.level.init; 2532 card->sbnr.max = pl.level.max; 2533 break; 2534 2535 case NS_BUFTYPE_LARGE: 2536 if (pl.level.max > TOP_LB) 2537 return -EINVAL; 2538 card->lbnr.min = pl.level.min; 2539 card->lbnr.init = pl.level.init; 2540 card->lbnr.max = pl.level.max; 2541 break; 2542 2543 case NS_BUFTYPE_HUGE: 2544 if (pl.level.max > TOP_HB) 2545 return -EINVAL; 2546 card->hbnr.min = pl.level.min; 2547 card->hbnr.init = pl.level.init; 2548 card->hbnr.max = pl.level.max; 2549 break; 2550 2551 case NS_BUFTYPE_IOVEC: 2552 if (pl.level.max > TOP_IOVB) 2553 return -EINVAL; 2554 card->iovnr.min = pl.level.min; 2555 card->iovnr.init = pl.level.init; 2556 card->iovnr.max = pl.level.max; 2557 break; 2558 2559 default: 2560 return -EINVAL; 2561 2562 } 2563 return 0; 2564 2565 case NS_ADJBUFLEV: 2566 if (!capable(CAP_NET_ADMIN)) 2567 return -EPERM; 2568 btype = (long)arg; /* a long is the same size as a pointer or bigger */ 2569 switch (btype) { 2570 case NS_BUFTYPE_SMALL: 2571 while (card->sbfqc < card->sbnr.init) { 2572 struct sk_buff *sb; 2573 2574 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); 2575 if (sb == NULL) 2576 return -ENOMEM; 2577 NS_PRV_BUFTYPE(sb) = BUF_SM; 2578 skb_queue_tail(&card->sbpool.queue, sb); 2579 skb_reserve(sb, NS_AAL0_HEADER); 2580 push_rxbufs(card, sb); 2581 } 2582 break; 2583 2584 case NS_BUFTYPE_LARGE: 2585 while (card->lbfqc < card->lbnr.init) { 2586 struct sk_buff *lb; 2587 2588 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); 2589 if (lb == NULL) 2590 return -ENOMEM; 2591 NS_PRV_BUFTYPE(lb) = BUF_LG; 2592 skb_queue_tail(&card->lbpool.queue, lb); 2593 skb_reserve(lb, NS_SMBUFSIZE); 2594 push_rxbufs(card, lb); 2595 } 2596 break; 2597 2598 case NS_BUFTYPE_HUGE: 2599 while (card->hbpool.count > card->hbnr.init) { 2600 struct sk_buff *hb; 2601 2602 spin_lock_irqsave(&card->int_lock, flags); 2603 hb = skb_dequeue(&card->hbpool.queue); 2604 card->hbpool.count--; 2605 spin_unlock_irqrestore(&card->int_lock, flags); 2606 if (hb == NULL) 2607 printk 2608 ("nicstar%d: huge buffer count inconsistent.\n", 2609 card->index); 2610 else 2611 dev_kfree_skb_any(hb); 2612 2613 } 2614 while (card->hbpool.count < card->hbnr.init) { 2615 struct sk_buff *hb; 2616 2617 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); 2618 if (hb == NULL) 2619 return -ENOMEM; 2620 NS_PRV_BUFTYPE(hb) = BUF_NONE; 2621 spin_lock_irqsave(&card->int_lock, flags); 2622 skb_queue_tail(&card->hbpool.queue, hb); 2623 card->hbpool.count++; 2624 spin_unlock_irqrestore(&card->int_lock, flags); 2625 } 2626 break; 2627 2628 case NS_BUFTYPE_IOVEC: 2629 while (card->iovpool.count > card->iovnr.init) { 2630 struct sk_buff *iovb; 2631 2632 spin_lock_irqsave(&card->int_lock, flags); 2633 iovb = skb_dequeue(&card->iovpool.queue); 2634 card->iovpool.count--; 2635 spin_unlock_irqrestore(&card->int_lock, flags); 2636 if (iovb == NULL) 2637 printk 2638 ("nicstar%d: iovec buffer count inconsistent.\n", 2639 card->index); 2640 else 2641 dev_kfree_skb_any(iovb); 2642 2643 } 2644 while (card->iovpool.count < card->iovnr.init) { 2645 struct sk_buff *iovb; 2646 2647 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); 2648 if (iovb == NULL) 2649 return -ENOMEM; 2650 NS_PRV_BUFTYPE(iovb) = BUF_NONE; 2651 spin_lock_irqsave(&card->int_lock, flags); 2652 skb_queue_tail(&card->iovpool.queue, iovb); 2653 card->iovpool.count++; 2654 spin_unlock_irqrestore(&card->int_lock, flags); 2655 } 2656 break; 2657 2658 default: 2659 return -EINVAL; 2660 2661 } 2662 return 0; 2663 2664 default: 2665 if (dev->phy && dev->phy->ioctl) { 2666 return dev->phy->ioctl(dev, cmd, arg); 2667 } else { 2668 printk("nicstar%d: %s == NULL \n", card->index, 2669 dev->phy ? "dev->phy->ioctl" : "dev->phy"); 2670 return -ENOIOCTLCMD; 2671 } 2672 } 2673 } 2674 2675 #ifdef EXTRA_DEBUG 2676 static void which_list(ns_dev * card, struct sk_buff *skb) 2677 { 2678 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); 2679 } 2680 #endif /* EXTRA_DEBUG */ 2681 2682 static void ns_poll(unsigned long arg) 2683 { 2684 int i; 2685 ns_dev *card; 2686 unsigned long flags; 2687 u32 stat_r, stat_w; 2688 2689 PRINTK("nicstar: Entering ns_poll().\n"); 2690 for (i = 0; i < num_cards; i++) { 2691 card = cards[i]; 2692 if (spin_is_locked(&card->int_lock)) { 2693 /* Probably it isn't worth spinning */ 2694 continue; 2695 } 2696 spin_lock_irqsave(&card->int_lock, flags); 2697 2698 stat_w = 0; 2699 stat_r = readl(card->membase + STAT); 2700 if (stat_r & NS_STAT_TSIF) 2701 stat_w |= NS_STAT_TSIF; 2702 if (stat_r & NS_STAT_EOPDU) 2703 stat_w |= NS_STAT_EOPDU; 2704 2705 process_tsq(card); 2706 process_rsq(card); 2707 2708 writel(stat_w, card->membase + STAT); 2709 spin_unlock_irqrestore(&card->int_lock, flags); 2710 } 2711 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); 2712 PRINTK("nicstar: Leaving ns_poll().\n"); 2713 } 2714 2715 static void ns_phy_put(struct atm_dev *dev, unsigned char value, 2716 unsigned long addr) 2717 { 2718 ns_dev *card; 2719 unsigned long flags; 2720 2721 card = dev->dev_data; 2722 spin_lock_irqsave(&card->res_lock, flags); 2723 while (CMD_BUSY(card)) ; 2724 writel((u32) value, card->membase + DR0); 2725 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), 2726 card->membase + CMD); 2727 spin_unlock_irqrestore(&card->res_lock, flags); 2728 } 2729 2730 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) 2731 { 2732 ns_dev *card; 2733 unsigned long flags; 2734 u32 data; 2735 2736 card = dev->dev_data; 2737 spin_lock_irqsave(&card->res_lock, flags); 2738 while (CMD_BUSY(card)) ; 2739 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), 2740 card->membase + CMD); 2741 while (CMD_BUSY(card)) ; 2742 data = readl(card->membase + DR0) & 0x000000FF; 2743 spin_unlock_irqrestore(&card->res_lock, flags); 2744 return (unsigned char)data; 2745 } 2746 2747 module_init(nicstar_init); 2748 module_exit(nicstar_cleanup); 2749