xref: /openbmc/linux/drivers/atm/he.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /*
2 
3   he.c
4 
5   ForeRunnerHE ATM Adapter driver for ATM on Linux
6   Copyright (C) 1999-2001  Naval Research Laboratory
7 
8   This library is free software; you can redistribute it and/or
9   modify it under the terms of the GNU Lesser General Public
10   License as published by the Free Software Foundation; either
11   version 2.1 of the License, or (at your option) any later version.
12 
13   This library is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   Lesser General Public License for more details.
17 
18   You should have received a copy of the GNU Lesser General Public
19   License along with this library; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 
22 */
23 
24 /*
25 
26   he.c
27 
28   ForeRunnerHE ATM Adapter driver for ATM on Linux
29   Copyright (C) 1999-2001  Naval Research Laboratory
30 
31   Permission to use, copy, modify and distribute this software and its
32   documentation is hereby granted, provided that both the copyright
33   notice and this permission notice appear in all copies of the software,
34   derivative works or modified versions, and any portions thereof, and
35   that both notices appear in supporting documentation.
36 
37   NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38   DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39   RESULTING FROM THE USE OF THIS SOFTWARE.
40 
41   This driver was written using the "Programmer's Reference Manual for
42   ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43 
44   AUTHORS:
45 	chas williams <chas@cmf.nrl.navy.mil>
46 	eric kinzie <ekinzie@cmf.nrl.navy.mil>
47 
48   NOTES:
49 	4096 supported 'connections'
50 	group 0 is used for all traffic
51 	interrupt queue 0 is used for all interrupts
52 	aal0 support (based on work from ulrich.u.muller@nokia.com)
53 
54  */
55 
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
75 
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79 
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW			/* still confused about this */
82 /* #undef HE_DEBUG */
83 
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87 
88 #define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89 
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...)	do { } while (0)
94 #endif /* HE_DEBUG */
95 
96 /* declarations */
97 
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109 
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111 
112 /* globals */
113 
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121 
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 	CS_HIGH | CLK_HIGH,
125 	CS_LOW | CLK_LOW,
126 	CLK_HIGH,               /* 0 */
127 	CLK_LOW,
128 	CLK_HIGH,               /* 0 */
129 	CLK_LOW,
130 	CLK_HIGH,               /* 0 */
131 	CLK_LOW,
132 	CLK_HIGH,               /* 0 */
133 	CLK_LOW,
134 	CLK_HIGH,               /* 0 */
135 	CLK_LOW,
136 	CLK_HIGH,               /* 0 */
137 	CLK_LOW | SI_HIGH,
138 	CLK_HIGH | SI_HIGH,     /* 1 */
139 	CLK_LOW | SI_HIGH,
140 	CLK_HIGH | SI_HIGH      /* 1 */
141 };
142 
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 	CLK_LOW,
146 	CLK_HIGH,
147 	CLK_LOW,
148 	CLK_HIGH,
149 	CLK_LOW,
150 	CLK_HIGH,
151 	CLK_LOW,
152 	CLK_HIGH,
153 	CLK_LOW,
154 	CLK_HIGH,
155 	CLK_LOW,
156 	CLK_HIGH,
157 	CLK_LOW,
158 	CLK_HIGH,
159 	CLK_LOW,
160 	CLK_HIGH,
161 	CLK_LOW
162 };
163 
164 static const struct atmdev_ops he_ops =
165 {
166 	.open =		he_open,
167 	.close =	he_close,
168 	.ioctl =	he_ioctl,
169 	.send =		he_send,
170 	.phy_put =	he_phy_put,
171 	.phy_get =	he_phy_get,
172 	.proc_read =	he_proc_read,
173 	.owner =	THIS_MODULE
174 };
175 
176 #define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg)		readl((dev)->membase + (reg))
178 
179 /* section 2.12 connection memory access */
180 
181 static __inline__ void
182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 								unsigned flags)
184 {
185 	he_writel(he_dev, val, CON_DAT);
186 	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
187 	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190 
191 #define he_writel_rcm(dev, val, reg) 				\
192 			he_writel_internal(dev, val, reg, CON_CTL_RCM)
193 
194 #define he_writel_tcm(dev, val, reg) 				\
195 			he_writel_internal(dev, val, reg, CON_CTL_TCM)
196 
197 #define he_writel_mbox(dev, val, reg) 				\
198 			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199 
200 static unsigned
201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203 	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 	return he_readl(he_dev, CON_DAT);
206 }
207 
208 #define he_readl_rcm(dev, reg) \
209 			he_readl_internal(dev, reg, CON_CTL_RCM)
210 
211 #define he_readl_tcm(dev, reg) \
212 			he_readl_internal(dev, reg, CON_CTL_TCM)
213 
214 #define he_readl_mbox(dev, reg) \
215 			he_readl_internal(dev, reg, CON_CTL_MBOX)
216 
217 
218 /* figure 2.2 connection id */
219 
220 #define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
221 
222 /* 2.5.1 per connection transmit state registers */
223 
224 #define he_writel_tsr0(dev, val, cid) \
225 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228 
229 #define he_writel_tsr1(dev, val, cid) \
230 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231 
232 #define he_writel_tsr2(dev, val, cid) \
233 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234 
235 #define he_writel_tsr3(dev, val, cid) \
236 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237 
238 #define he_writel_tsr4(dev, val, cid) \
239 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240 
241 	/* from page 2-20
242 	 *
243 	 * NOTE While the transmit connection is active, bits 23 through 0
244 	 *      of this register must not be written by the host.  Byte
245 	 *      enables should be used during normal operation when writing
246 	 *      the most significant byte.
247 	 */
248 
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 							CON_CTL_TCM \
252 							| CON_BYTE_DISABLE_2 \
253 							| CON_BYTE_DISABLE_1 \
254 							| CON_BYTE_DISABLE_0)
255 
256 #define he_readl_tsr4(dev, cid) \
257 		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258 
259 #define he_writel_tsr5(dev, val, cid) \
260 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261 
262 #define he_writel_tsr6(dev, val, cid) \
263 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264 
265 #define he_writel_tsr7(dev, val, cid) \
266 		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267 
268 
269 #define he_writel_tsr8(dev, val, cid) \
270 		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271 
272 #define he_writel_tsr9(dev, val, cid) \
273 		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274 
275 #define he_writel_tsr10(dev, val, cid) \
276 		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277 
278 #define he_writel_tsr11(dev, val, cid) \
279 		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280 
281 
282 #define he_writel_tsr12(dev, val, cid) \
283 		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284 
285 #define he_writel_tsr13(dev, val, cid) \
286 		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287 
288 
289 #define he_writel_tsr14(dev, val, cid) \
290 		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291 
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 							CON_CTL_TCM \
295 							| CON_BYTE_DISABLE_2 \
296 							| CON_BYTE_DISABLE_1 \
297 							| CON_BYTE_DISABLE_0)
298 
299 /* 2.7.1 per connection receive state registers */
300 
301 #define he_writel_rsr0(dev, val, cid) \
302 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305 
306 #define he_writel_rsr1(dev, val, cid) \
307 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308 
309 #define he_writel_rsr2(dev, val, cid) \
310 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311 
312 #define he_writel_rsr3(dev, val, cid) \
313 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314 
315 #define he_writel_rsr4(dev, val, cid) \
316 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317 
318 #define he_writel_rsr5(dev, val, cid) \
319 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320 
321 #define he_writel_rsr6(dev, val, cid) \
322 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323 
324 #define he_writel_rsr7(dev, val, cid) \
325 		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326 
327 static __inline__ struct atm_vcc*
328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330 	struct hlist_head *head;
331 	struct atm_vcc *vcc;
332 	struct sock *s;
333 	short vpi;
334 	int vci;
335 
336 	vpi = cid >> he_dev->vcibits;
337 	vci = cid & ((1 << he_dev->vcibits) - 1);
338 	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339 
340 	sk_for_each(s, head) {
341 		vcc = atm_sk(s);
342 		if (vcc->dev == he_dev->atm_dev &&
343 		    vcc->vci == vci && vcc->vpi == vpi &&
344 		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 				return vcc;
346 		}
347 	}
348 	return NULL;
349 }
350 
351 static int he_init_one(struct pci_dev *pci_dev,
352 		       const struct pci_device_id *pci_ent)
353 {
354 	struct atm_dev *atm_dev = NULL;
355 	struct he_dev *he_dev = NULL;
356 	int err = 0;
357 
358 	printk(KERN_INFO "ATM he driver\n");
359 
360 	if (pci_enable_device(pci_dev))
361 		return -EIO;
362 	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363 		printk(KERN_WARNING "he: no suitable dma available\n");
364 		err = -EIO;
365 		goto init_one_failure;
366 	}
367 
368 	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 	if (!atm_dev) {
370 		err = -ENODEV;
371 		goto init_one_failure;
372 	}
373 	pci_set_drvdata(pci_dev, atm_dev);
374 
375 	he_dev = kzalloc(sizeof(struct he_dev),
376 							GFP_KERNEL);
377 	if (!he_dev) {
378 		err = -ENOMEM;
379 		goto init_one_failure;
380 	}
381 	he_dev->pci_dev = pci_dev;
382 	he_dev->atm_dev = atm_dev;
383 	he_dev->atm_dev->dev_data = he_dev;
384 	atm_dev->dev_data = he_dev;
385 	he_dev->number = atm_dev->number;
386 	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 	spin_lock_init(&he_dev->global_lock);
388 
389 	if (he_start(atm_dev)) {
390 		he_stop(he_dev);
391 		err = -ENODEV;
392 		goto init_one_failure;
393 	}
394 	he_dev->next = NULL;
395 	if (he_devs)
396 		he_dev->next = he_devs;
397 	he_devs = he_dev;
398 	return 0;
399 
400 init_one_failure:
401 	if (atm_dev)
402 		atm_dev_deregister(atm_dev);
403 	kfree(he_dev);
404 	pci_disable_device(pci_dev);
405 	return err;
406 }
407 
408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410 	struct atm_dev *atm_dev;
411 	struct he_dev *he_dev;
412 
413 	atm_dev = pci_get_drvdata(pci_dev);
414 	he_dev = HE_DEV(atm_dev);
415 
416 	/* need to remove from he_devs */
417 
418 	he_stop(he_dev);
419 	atm_dev_deregister(atm_dev);
420 	kfree(he_dev);
421 
422 	pci_disable_device(pci_dev);
423 }
424 
425 
426 static unsigned
427 rate_to_atmf(unsigned rate)		/* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430 
431 	unsigned exp = 0;
432 
433 	if (rate == 0)
434 		return 0;
435 
436 	rate <<= 9;
437 	while (rate > 0x3ff) {
438 		++exp;
439 		rate >>= 1;
440 	}
441 
442 	return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444 
445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447 	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448 	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449 	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450 	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451 
452 	lbufd_index = 0;
453 	lbm_offset = he_readl(he_dev, RCMLBM_BA);
454 
455 	he_writel(he_dev, lbufd_index, RLBF0_H);
456 
457 	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458 		lbufd_index += 2;
459 		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460 
461 		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462 		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463 
464 		if (++lbuf_count == lbufs_per_row) {
465 			lbuf_count = 0;
466 			row_offset += he_dev->bytes_per_row;
467 		}
468 		lbm_offset += 4;
469 	}
470 
471 	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472 	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474 
475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477 	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478 	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479 	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480 	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481 
482 	lbufd_index = 1;
483 	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484 
485 	he_writel(he_dev, lbufd_index, RLBF1_H);
486 
487 	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488 		lbufd_index += 2;
489 		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490 
491 		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492 		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493 
494 		if (++lbuf_count == lbufs_per_row) {
495 			lbuf_count = 0;
496 			row_offset += he_dev->bytes_per_row;
497 		}
498 		lbm_offset += 4;
499 	}
500 
501 	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502 	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504 
505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507 	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508 	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509 	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510 	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511 
512 	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513 	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514 
515 	he_writel(he_dev, lbufd_index, TLBF_H);
516 
517 	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518 		lbufd_index += 1;
519 		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520 
521 		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522 		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523 
524 		if (++lbuf_count == lbufs_per_row) {
525 			lbuf_count = 0;
526 			row_offset += he_dev->bytes_per_row;
527 		}
528 		lbm_offset += 2;
529 	}
530 
531 	he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533 
534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536 	he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
537 						CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538 						&he_dev->tpdrq_phys,
539 						GFP_KERNEL);
540 	if (he_dev->tpdrq_base == NULL) {
541 		hprintk("failed to alloc tpdrq\n");
542 		return -ENOMEM;
543 	}
544 
545 	he_dev->tpdrq_tail = he_dev->tpdrq_base;
546 	he_dev->tpdrq_head = he_dev->tpdrq_base;
547 
548 	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
549 	he_writel(he_dev, 0, TPDRQ_T);
550 	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
551 
552 	return 0;
553 }
554 
555 static void he_init_cs_block(struct he_dev *he_dev)
556 {
557 	unsigned clock, rate, delta;
558 	int reg;
559 
560 	/* 5.1.7 cs block initialization */
561 
562 	for (reg = 0; reg < 0x20; ++reg)
563 		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
564 
565 	/* rate grid timer reload values */
566 
567 	clock = he_is622(he_dev) ? 66667000 : 50000000;
568 	rate = he_dev->atm_dev->link_rate;
569 	delta = rate / 16 / 2;
570 
571 	for (reg = 0; reg < 0x10; ++reg) {
572 		/* 2.4 internal transmit function
573 		 *
574 	 	 * we initialize the first row in the rate grid.
575 		 * values are period (in clock cycles) of timer
576 		 */
577 		unsigned period = clock / rate;
578 
579 		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
580 		rate -= delta;
581 	}
582 
583 	if (he_is622(he_dev)) {
584 		/* table 5.2 (4 cells per lbuf) */
585 		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
586 		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
587 		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
588 		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
589 		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
590 
591 		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
592 		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
593 		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
594 		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
595 		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
596 		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
597 		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
598 
599 		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
600 
601 		/* table 5.8 */
602 		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
603 		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
604 		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
605 		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
606 		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
607 		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
608 
609 		/* table 5.9 */
610 		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
611 		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
612 	} else {
613 		/* table 5.1 (4 cells per lbuf) */
614 		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
615 		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
616 		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
617 		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
618 		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
619 
620 		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
621 		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
622 		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
623 		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
624 		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
625 		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
626 		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
627 
628 		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
629 
630 		/* table 5.8 */
631 		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
632 		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
633 		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
634 		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
635 		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
636 		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
637 
638 		/* table 5.9 */
639 		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
640 		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
641 	}
642 
643 	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
644 
645 	for (reg = 0; reg < 0x8; ++reg)
646 		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
647 
648 }
649 
650 static int he_init_cs_block_rcm(struct he_dev *he_dev)
651 {
652 	unsigned (*rategrid)[16][16];
653 	unsigned rate, delta;
654 	int i, j, reg;
655 
656 	unsigned rate_atmf, exp, man;
657 	unsigned long long rate_cps;
658 	int mult, buf, buf_limit = 4;
659 
660 	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
661 	if (!rategrid)
662 		return -ENOMEM;
663 
664 	/* initialize rate grid group table */
665 
666 	for (reg = 0x0; reg < 0xff; ++reg)
667 		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
668 
669 	/* initialize rate controller groups */
670 
671 	for (reg = 0x100; reg < 0x1ff; ++reg)
672 		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
673 
674 	/* initialize tNrm lookup table */
675 
676 	/* the manual makes reference to a routine in a sample driver
677 	   for proper configuration; fortunately, we only need this
678 	   in order to support abr connection */
679 
680 	/* initialize rate to group table */
681 
682 	rate = he_dev->atm_dev->link_rate;
683 	delta = rate / 32;
684 
685 	/*
686 	 * 2.4 transmit internal functions
687 	 *
688 	 * we construct a copy of the rate grid used by the scheduler
689 	 * in order to construct the rate to group table below
690 	 */
691 
692 	for (j = 0; j < 16; j++) {
693 		(*rategrid)[0][j] = rate;
694 		rate -= delta;
695 	}
696 
697 	for (i = 1; i < 16; i++)
698 		for (j = 0; j < 16; j++)
699 			if (i > 14)
700 				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
701 			else
702 				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
703 
704 	/*
705 	 * 2.4 transmit internal function
706 	 *
707 	 * this table maps the upper 5 bits of exponent and mantissa
708 	 * of the atm forum representation of the rate into an index
709 	 * on rate grid
710 	 */
711 
712 	rate_atmf = 0;
713 	while (rate_atmf < 0x400) {
714 		man = (rate_atmf & 0x1f) << 4;
715 		exp = rate_atmf >> 5;
716 
717 		/*
718 			instead of '/ 512', use '>> 9' to prevent a call
719 			to divdu3 on x86 platforms
720 		*/
721 		rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
722 
723 		if (rate_cps < 10)
724 			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
725 
726 		for (i = 255; i > 0; i--)
727 			if ((*rategrid)[i/16][i%16] >= rate_cps)
728 				break;	 /* pick nearest rate instead? */
729 
730 		/*
731 		 * each table entry is 16 bits: (rate grid index (8 bits)
732 		 * and a buffer limit (8 bits)
733 		 * there are two table entries in each 32-bit register
734 		 */
735 
736 #ifdef notdef
737 		buf = rate_cps * he_dev->tx_numbuffs /
738 				(he_dev->atm_dev->link_rate * 2);
739 #else
740 		/* this is pretty, but avoids _divdu3 and is mostly correct */
741 		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
742 		if (rate_cps > (272ULL * mult))
743 			buf = 4;
744 		else if (rate_cps > (204ULL * mult))
745 			buf = 3;
746 		else if (rate_cps > (136ULL * mult))
747 			buf = 2;
748 		else if (rate_cps > (68ULL * mult))
749 			buf = 1;
750 		else
751 			buf = 0;
752 #endif
753 		if (buf > buf_limit)
754 			buf = buf_limit;
755 		reg = (reg << 16) | ((i << 8) | buf);
756 
757 #define RTGTBL_OFFSET 0x400
758 
759 		if (rate_atmf & 0x1)
760 			he_writel_rcm(he_dev, reg,
761 				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
762 
763 		++rate_atmf;
764 	}
765 
766 	kfree(rategrid);
767 	return 0;
768 }
769 
770 static int he_init_group(struct he_dev *he_dev, int group)
771 {
772 	struct he_buff *heb, *next;
773 	dma_addr_t mapping;
774 	int i;
775 
776 	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
777 	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
778 	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
779 	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
780 		  G0_RBPS_BS + (group * 32));
781 
782 	/* bitmap table */
783 	he_dev->rbpl_table = bitmap_zalloc(RBPL_TABLE_SIZE, GFP_KERNEL);
784 	if (!he_dev->rbpl_table) {
785 		hprintk("unable to allocate rbpl bitmap table\n");
786 		return -ENOMEM;
787 	}
788 
789 	/* rbpl_virt 64-bit pointers */
790 	he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
791 					  sizeof(*he_dev->rbpl_virt),
792 					  GFP_KERNEL);
793 	if (!he_dev->rbpl_virt) {
794 		hprintk("unable to allocate rbpl virt table\n");
795 		goto out_free_rbpl_table;
796 	}
797 
798 	/* large buffer pool */
799 	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
800 					    CONFIG_RBPL_BUFSIZE, 64, 0);
801 	if (he_dev->rbpl_pool == NULL) {
802 		hprintk("unable to create rbpl pool\n");
803 		goto out_free_rbpl_virt;
804 	}
805 
806 	he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
807 					       CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
808 					       &he_dev->rbpl_phys, GFP_KERNEL);
809 	if (he_dev->rbpl_base == NULL) {
810 		hprintk("failed to alloc rbpl_base\n");
811 		goto out_destroy_rbpl_pool;
812 	}
813 
814 	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
815 
816 	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
817 
818 		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
819 		if (!heb)
820 			goto out_free_rbpl;
821 		heb->mapping = mapping;
822 		list_add(&heb->entry, &he_dev->rbpl_outstanding);
823 
824 		set_bit(i, he_dev->rbpl_table);
825 		he_dev->rbpl_virt[i] = heb;
826 		he_dev->rbpl_hint = i + 1;
827 		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
828 		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
829 	}
830 	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
831 
832 	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
833 	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
834 						G0_RBPL_T + (group * 32));
835 	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
836 						G0_RBPL_BS + (group * 32));
837 	he_writel(he_dev,
838 			RBP_THRESH(CONFIG_RBPL_THRESH) |
839 			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
840 			RBP_INT_ENB,
841 						G0_RBPL_QI + (group * 32));
842 
843 	/* rx buffer ready queue */
844 
845 	he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
846 					       CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
847 					       &he_dev->rbrq_phys, GFP_KERNEL);
848 	if (he_dev->rbrq_base == NULL) {
849 		hprintk("failed to allocate rbrq\n");
850 		goto out_free_rbpl;
851 	}
852 
853 	he_dev->rbrq_head = he_dev->rbrq_base;
854 	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
855 	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
856 	he_writel(he_dev,
857 		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
858 						G0_RBRQ_Q + (group * 16));
859 	if (irq_coalesce) {
860 		hprintk("coalescing interrupts\n");
861 		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
862 						G0_RBRQ_I + (group * 16));
863 	} else
864 		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
865 						G0_RBRQ_I + (group * 16));
866 
867 	/* tx buffer ready queue */
868 
869 	he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
870 					       CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
871 					       &he_dev->tbrq_phys, GFP_KERNEL);
872 	if (he_dev->tbrq_base == NULL) {
873 		hprintk("failed to allocate tbrq\n");
874 		goto out_free_rbpq_base;
875 	}
876 
877 	he_dev->tbrq_head = he_dev->tbrq_base;
878 
879 	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
880 	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
881 	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
882 	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
883 
884 	return 0;
885 
886 out_free_rbpq_base:
887 	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
888 			  sizeof(struct he_rbrq), he_dev->rbrq_base,
889 			  he_dev->rbrq_phys);
890 out_free_rbpl:
891 	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
892 		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
893 
894 	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
895 			  sizeof(struct he_rbp), he_dev->rbpl_base,
896 			  he_dev->rbpl_phys);
897 out_destroy_rbpl_pool:
898 	dma_pool_destroy(he_dev->rbpl_pool);
899 out_free_rbpl_virt:
900 	kfree(he_dev->rbpl_virt);
901 out_free_rbpl_table:
902 	bitmap_free(he_dev->rbpl_table);
903 
904 	return -ENOMEM;
905 }
906 
907 static int he_init_irq(struct he_dev *he_dev)
908 {
909 	int i;
910 
911 	/* 2.9.3.5  tail offset for each interrupt queue is located after the
912 		    end of the interrupt queue */
913 
914 	he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
915 					      (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
916 					      &he_dev->irq_phys, GFP_KERNEL);
917 	if (he_dev->irq_base == NULL) {
918 		hprintk("failed to allocate irq\n");
919 		return -ENOMEM;
920 	}
921 	he_dev->irq_tailoffset = (unsigned *)
922 					&he_dev->irq_base[CONFIG_IRQ_SIZE];
923 	*he_dev->irq_tailoffset = 0;
924 	he_dev->irq_head = he_dev->irq_base;
925 	he_dev->irq_tail = he_dev->irq_base;
926 
927 	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
928 		he_dev->irq_base[i].isw = ITYPE_INVALID;
929 
930 	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
931 	he_writel(he_dev,
932 		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
933 								IRQ0_HEAD);
934 	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
935 	he_writel(he_dev, 0x0, IRQ0_DATA);
936 
937 	he_writel(he_dev, 0x0, IRQ1_BASE);
938 	he_writel(he_dev, 0x0, IRQ1_HEAD);
939 	he_writel(he_dev, 0x0, IRQ1_CNTL);
940 	he_writel(he_dev, 0x0, IRQ1_DATA);
941 
942 	he_writel(he_dev, 0x0, IRQ2_BASE);
943 	he_writel(he_dev, 0x0, IRQ2_HEAD);
944 	he_writel(he_dev, 0x0, IRQ2_CNTL);
945 	he_writel(he_dev, 0x0, IRQ2_DATA);
946 
947 	he_writel(he_dev, 0x0, IRQ3_BASE);
948 	he_writel(he_dev, 0x0, IRQ3_HEAD);
949 	he_writel(he_dev, 0x0, IRQ3_CNTL);
950 	he_writel(he_dev, 0x0, IRQ3_DATA);
951 
952 	/* 2.9.3.2 interrupt queue mapping registers */
953 
954 	he_writel(he_dev, 0x0, GRP_10_MAP);
955 	he_writel(he_dev, 0x0, GRP_32_MAP);
956 	he_writel(he_dev, 0x0, GRP_54_MAP);
957 	he_writel(he_dev, 0x0, GRP_76_MAP);
958 
959 	if (request_irq(he_dev->pci_dev->irq,
960 			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
961 		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
962 		return -EINVAL;
963 	}
964 
965 	he_dev->irq = he_dev->pci_dev->irq;
966 
967 	return 0;
968 }
969 
970 static int he_start(struct atm_dev *dev)
971 {
972 	struct he_dev *he_dev;
973 	struct pci_dev *pci_dev;
974 	unsigned long membase;
975 
976 	u16 command;
977 	u32 gen_cntl_0, host_cntl, lb_swap;
978 	u8 cache_size, timer;
979 
980 	unsigned err;
981 	unsigned int status, reg;
982 	int i, group;
983 
984 	he_dev = HE_DEV(dev);
985 	pci_dev = he_dev->pci_dev;
986 
987 	membase = pci_resource_start(pci_dev, 0);
988 	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
989 
990 	/*
991 	 * pci bus controller initialization
992 	 */
993 
994 	/* 4.3 pci bus controller-specific initialization */
995 	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
996 		hprintk("can't read GEN_CNTL_0\n");
997 		return -EINVAL;
998 	}
999 	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1000 	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1001 		hprintk("can't write GEN_CNTL_0.\n");
1002 		return -EINVAL;
1003 	}
1004 
1005 	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1006 		hprintk("can't read PCI_COMMAND.\n");
1007 		return -EINVAL;
1008 	}
1009 
1010 	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1011 	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1012 		hprintk("can't enable memory.\n");
1013 		return -EINVAL;
1014 	}
1015 
1016 	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1017 		hprintk("can't read cache line size?\n");
1018 		return -EINVAL;
1019 	}
1020 
1021 	if (cache_size < 16) {
1022 		cache_size = 16;
1023 		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1024 			hprintk("can't set cache line size to %d\n", cache_size);
1025 	}
1026 
1027 	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1028 		hprintk("can't read latency timer?\n");
1029 		return -EINVAL;
1030 	}
1031 
1032 	/* from table 3.9
1033 	 *
1034 	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1035 	 *
1036 	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1037 	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1038 	 *
1039 	 */
1040 #define LAT_TIMER 209
1041 	if (timer < LAT_TIMER) {
1042 		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1043 		timer = LAT_TIMER;
1044 		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1045 			hprintk("can't set latency timer to %d\n", timer);
1046 	}
1047 
1048 	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1049 		hprintk("can't set up page mapping\n");
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* 4.4 card reset */
1054 	he_writel(he_dev, 0x0, RESET_CNTL);
1055 	he_writel(he_dev, 0xff, RESET_CNTL);
1056 
1057 	msleep(16);	/* 16 ms */
1058 	status = he_readl(he_dev, RESET_CNTL);
1059 	if ((status & BOARD_RST_STATUS) == 0) {
1060 		hprintk("reset failed\n");
1061 		return -EINVAL;
1062 	}
1063 
1064 	/* 4.5 set bus width */
1065 	host_cntl = he_readl(he_dev, HOST_CNTL);
1066 	if (host_cntl & PCI_BUS_SIZE64)
1067 		gen_cntl_0 |= ENBL_64;
1068 	else
1069 		gen_cntl_0 &= ~ENBL_64;
1070 
1071 	if (disable64 == 1) {
1072 		hprintk("disabling 64-bit pci bus transfers\n");
1073 		gen_cntl_0 &= ~ENBL_64;
1074 	}
1075 
1076 	if (gen_cntl_0 & ENBL_64)
1077 		hprintk("64-bit transfers enabled\n");
1078 
1079 	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1080 
1081 	/* 4.7 read prom contents */
1082 	for (i = 0; i < PROD_ID_LEN; ++i)
1083 		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1084 
1085 	he_dev->media = read_prom_byte(he_dev, MEDIA);
1086 
1087 	for (i = 0; i < 6; ++i)
1088 		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1089 
1090 	hprintk("%s%s, %pM\n", he_dev->prod_id,
1091 		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1092 	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1093 						ATM_OC12_PCR : ATM_OC3_PCR;
1094 
1095 	/* 4.6 set host endianess */
1096 	lb_swap = he_readl(he_dev, LB_SWAP);
1097 	if (he_is622(he_dev))
1098 		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1099 	else
1100 		lb_swap |= XFER_SIZE;		/* 8 cells */
1101 #ifdef __BIG_ENDIAN
1102 	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1103 #else
1104 	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1105 			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1106 #endif /* __BIG_ENDIAN */
1107 	he_writel(he_dev, lb_swap, LB_SWAP);
1108 
1109 	/* 4.8 sdram controller initialization */
1110 	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1111 
1112 	/* 4.9 initialize rnum value */
1113 	lb_swap |= SWAP_RNUM_MAX(0xf);
1114 	he_writel(he_dev, lb_swap, LB_SWAP);
1115 
1116 	/* 4.10 initialize the interrupt queues */
1117 	if ((err = he_init_irq(he_dev)) != 0)
1118 		return err;
1119 
1120 	/* 4.11 enable pci bus controller state machines */
1121 	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1122 				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1123 	he_writel(he_dev, host_cntl, HOST_CNTL);
1124 
1125 	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1126 	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1127 
1128 	/*
1129 	 * atm network controller initialization
1130 	 */
1131 
1132 	/* 5.1.1 generic configuration state */
1133 
1134 	/*
1135 	 *		local (cell) buffer memory map
1136 	 *
1137 	 *             HE155                          HE622
1138 	 *
1139 	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1140 	 *         |            |            |                   |   |
1141 	 *         |  utility   |            |        rx0        |   |
1142 	 *        5|____________|         255|___________________| u |
1143 	 *        6|            |         256|                   | t |
1144 	 *         |            |            |                   | i |
1145 	 *         |    rx0     |     row    |        tx         | l |
1146 	 *         |            |            |                   | i |
1147 	 *         |            |         767|___________________| t |
1148 	 *      517|____________|         768|                   | y |
1149 	 * row  518|            |            |        rx1        |   |
1150 	 *         |            |        1023|___________________|___|
1151 	 *         |            |
1152 	 *         |    tx      |
1153 	 *         |            |
1154 	 *         |            |
1155 	 *     1535|____________|
1156 	 *     1536|            |
1157 	 *         |    rx1     |
1158 	 *     2047|____________|
1159 	 *
1160 	 */
1161 
1162 	/* total 4096 connections */
1163 	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1164 	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1165 
1166 	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1167 		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1168 		return -ENODEV;
1169 	}
1170 
1171 	if (nvpibits != -1) {
1172 		he_dev->vpibits = nvpibits;
1173 		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1174 	}
1175 
1176 	if (nvcibits != -1) {
1177 		he_dev->vcibits = nvcibits;
1178 		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1179 	}
1180 
1181 
1182 	if (he_is622(he_dev)) {
1183 		he_dev->cells_per_row = 40;
1184 		he_dev->bytes_per_row = 2048;
1185 		he_dev->r0_numrows = 256;
1186 		he_dev->tx_numrows = 512;
1187 		he_dev->r1_numrows = 256;
1188 		he_dev->r0_startrow = 0;
1189 		he_dev->tx_startrow = 256;
1190 		he_dev->r1_startrow = 768;
1191 	} else {
1192 		he_dev->cells_per_row = 20;
1193 		he_dev->bytes_per_row = 1024;
1194 		he_dev->r0_numrows = 512;
1195 		he_dev->tx_numrows = 1018;
1196 		he_dev->r1_numrows = 512;
1197 		he_dev->r0_startrow = 6;
1198 		he_dev->tx_startrow = 518;
1199 		he_dev->r1_startrow = 1536;
1200 	}
1201 
1202 	he_dev->cells_per_lbuf = 4;
1203 	he_dev->buffer_limit = 4;
1204 	he_dev->r0_numbuffs = he_dev->r0_numrows *
1205 				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1206 	if (he_dev->r0_numbuffs > 2560)
1207 		he_dev->r0_numbuffs = 2560;
1208 
1209 	he_dev->r1_numbuffs = he_dev->r1_numrows *
1210 				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1211 	if (he_dev->r1_numbuffs > 2560)
1212 		he_dev->r1_numbuffs = 2560;
1213 
1214 	he_dev->tx_numbuffs = he_dev->tx_numrows *
1215 				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1216 	if (he_dev->tx_numbuffs > 5120)
1217 		he_dev->tx_numbuffs = 5120;
1218 
1219 	/* 5.1.2 configure hardware dependent registers */
1220 
1221 	he_writel(he_dev,
1222 		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1223 		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1224 		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1225 		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1226 								LBARB);
1227 
1228 	he_writel(he_dev, BANK_ON |
1229 		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1230 								SDRAMCON);
1231 
1232 	he_writel(he_dev,
1233 		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1234 						RM_RW_WAIT(1), RCMCONFIG);
1235 	he_writel(he_dev,
1236 		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1237 						TM_RW_WAIT(1), TCMCONFIG);
1238 
1239 	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1240 
1241 	he_writel(he_dev,
1242 		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1243 		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1244 		RX_VALVP(he_dev->vpibits) |
1245 		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1246 
1247 	he_writel(he_dev, DRF_THRESH(0x20) |
1248 		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1249 		TX_VCI_MASK(he_dev->vcibits) |
1250 		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1251 
1252 	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1253 
1254 	he_writel(he_dev, PHY_INT_ENB |
1255 		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1256 								RH_CONFIG);
1257 
1258 	/* 5.1.3 initialize connection memory */
1259 
1260 	for (i = 0; i < TCM_MEM_SIZE; ++i)
1261 		he_writel_tcm(he_dev, 0, i);
1262 
1263 	for (i = 0; i < RCM_MEM_SIZE; ++i)
1264 		he_writel_rcm(he_dev, 0, i);
1265 
1266 	/*
1267 	 *	transmit connection memory map
1268 	 *
1269 	 *                  tx memory
1270 	 *          0x0 ___________________
1271 	 *             |                   |
1272 	 *             |                   |
1273 	 *             |       TSRa        |
1274 	 *             |                   |
1275 	 *             |                   |
1276 	 *       0x8000|___________________|
1277 	 *             |                   |
1278 	 *             |       TSRb        |
1279 	 *       0xc000|___________________|
1280 	 *             |                   |
1281 	 *             |       TSRc        |
1282 	 *       0xe000|___________________|
1283 	 *             |       TSRd        |
1284 	 *       0xf000|___________________|
1285 	 *             |       tmABR       |
1286 	 *      0x10000|___________________|
1287 	 *             |                   |
1288 	 *             |       tmTPD       |
1289 	 *             |___________________|
1290 	 *             |                   |
1291 	 *                      ....
1292 	 *      0x1ffff|___________________|
1293 	 *
1294 	 *
1295 	 */
1296 
1297 	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1298 	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1299 	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1300 	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1301 	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1302 
1303 
1304 	/*
1305 	 *	receive connection memory map
1306 	 *
1307 	 *          0x0 ___________________
1308 	 *             |                   |
1309 	 *             |                   |
1310 	 *             |       RSRa        |
1311 	 *             |                   |
1312 	 *             |                   |
1313 	 *       0x8000|___________________|
1314 	 *             |                   |
1315 	 *             |             rx0/1 |
1316 	 *             |       LBM         |   link lists of local
1317 	 *             |             tx    |   buffer memory
1318 	 *             |                   |
1319 	 *       0xd000|___________________|
1320 	 *             |                   |
1321 	 *             |      rmABR        |
1322 	 *       0xe000|___________________|
1323 	 *             |                   |
1324 	 *             |       RSRb        |
1325 	 *             |___________________|
1326 	 *             |                   |
1327 	 *                      ....
1328 	 *       0xffff|___________________|
1329 	 */
1330 
1331 	he_writel(he_dev, 0x08000, RCMLBM_BA);
1332 	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1333 	he_writel(he_dev, 0x0d800, RCMABR_BA);
1334 
1335 	/* 5.1.4 initialize local buffer free pools linked lists */
1336 
1337 	he_init_rx_lbfp0(he_dev);
1338 	he_init_rx_lbfp1(he_dev);
1339 
1340 	he_writel(he_dev, 0x0, RLBC_H);
1341 	he_writel(he_dev, 0x0, RLBC_T);
1342 	he_writel(he_dev, 0x0, RLBC_H2);
1343 
1344 	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1345 	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1346 
1347 	he_init_tx_lbfp(he_dev);
1348 
1349 	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1350 
1351 	/* 5.1.5 initialize intermediate receive queues */
1352 
1353 	if (he_is622(he_dev)) {
1354 		he_writel(he_dev, 0x000f, G0_INMQ_S);
1355 		he_writel(he_dev, 0x200f, G0_INMQ_L);
1356 
1357 		he_writel(he_dev, 0x001f, G1_INMQ_S);
1358 		he_writel(he_dev, 0x201f, G1_INMQ_L);
1359 
1360 		he_writel(he_dev, 0x002f, G2_INMQ_S);
1361 		he_writel(he_dev, 0x202f, G2_INMQ_L);
1362 
1363 		he_writel(he_dev, 0x003f, G3_INMQ_S);
1364 		he_writel(he_dev, 0x203f, G3_INMQ_L);
1365 
1366 		he_writel(he_dev, 0x004f, G4_INMQ_S);
1367 		he_writel(he_dev, 0x204f, G4_INMQ_L);
1368 
1369 		he_writel(he_dev, 0x005f, G5_INMQ_S);
1370 		he_writel(he_dev, 0x205f, G5_INMQ_L);
1371 
1372 		he_writel(he_dev, 0x006f, G6_INMQ_S);
1373 		he_writel(he_dev, 0x206f, G6_INMQ_L);
1374 
1375 		he_writel(he_dev, 0x007f, G7_INMQ_S);
1376 		he_writel(he_dev, 0x207f, G7_INMQ_L);
1377 	} else {
1378 		he_writel(he_dev, 0x0000, G0_INMQ_S);
1379 		he_writel(he_dev, 0x0008, G0_INMQ_L);
1380 
1381 		he_writel(he_dev, 0x0001, G1_INMQ_S);
1382 		he_writel(he_dev, 0x0009, G1_INMQ_L);
1383 
1384 		he_writel(he_dev, 0x0002, G2_INMQ_S);
1385 		he_writel(he_dev, 0x000a, G2_INMQ_L);
1386 
1387 		he_writel(he_dev, 0x0003, G3_INMQ_S);
1388 		he_writel(he_dev, 0x000b, G3_INMQ_L);
1389 
1390 		he_writel(he_dev, 0x0004, G4_INMQ_S);
1391 		he_writel(he_dev, 0x000c, G4_INMQ_L);
1392 
1393 		he_writel(he_dev, 0x0005, G5_INMQ_S);
1394 		he_writel(he_dev, 0x000d, G5_INMQ_L);
1395 
1396 		he_writel(he_dev, 0x0006, G6_INMQ_S);
1397 		he_writel(he_dev, 0x000e, G6_INMQ_L);
1398 
1399 		he_writel(he_dev, 0x0007, G7_INMQ_S);
1400 		he_writel(he_dev, 0x000f, G7_INMQ_L);
1401 	}
1402 
1403 	/* 5.1.6 application tunable parameters */
1404 
1405 	he_writel(he_dev, 0x0, MCC);
1406 	he_writel(he_dev, 0x0, OEC);
1407 	he_writel(he_dev, 0x0, DCC);
1408 	he_writel(he_dev, 0x0, CEC);
1409 
1410 	/* 5.1.7 cs block initialization */
1411 
1412 	he_init_cs_block(he_dev);
1413 
1414 	/* 5.1.8 cs block connection memory initialization */
1415 
1416 	if (he_init_cs_block_rcm(he_dev) < 0)
1417 		return -ENOMEM;
1418 
1419 	/* 5.1.10 initialize host structures */
1420 
1421 	he_init_tpdrq(he_dev);
1422 
1423 	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1424 					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1425 	if (he_dev->tpd_pool == NULL) {
1426 		hprintk("unable to create tpd dma_pool\n");
1427 		return -ENOMEM;
1428 	}
1429 
1430 	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1431 
1432 	if (he_init_group(he_dev, 0) != 0)
1433 		return -ENOMEM;
1434 
1435 	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1436 		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1437 		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1438 		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1439 		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1440 						G0_RBPS_BS + (group * 32));
1441 
1442 		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1443 		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1444 		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1445 						G0_RBPL_QI + (group * 32));
1446 		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1447 
1448 		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1449 		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1450 		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1451 						G0_RBRQ_Q + (group * 16));
1452 		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1453 
1454 		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1455 		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1456 		he_writel(he_dev, TBRQ_THRESH(0x1),
1457 						G0_TBRQ_THRESH + (group * 16));
1458 		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1459 	}
1460 
1461 	/* host status page */
1462 
1463 	he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1464 					 sizeof(struct he_hsp),
1465 					 &he_dev->hsp_phys, GFP_KERNEL);
1466 	if (he_dev->hsp == NULL) {
1467 		hprintk("failed to allocate host status page\n");
1468 		return -ENOMEM;
1469 	}
1470 	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1471 
1472 	/* initialize framer */
1473 
1474 #ifdef CONFIG_ATM_HE_USE_SUNI
1475 	if (he_isMM(he_dev))
1476 		suni_init(he_dev->atm_dev);
1477 	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1478 		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1479 #endif /* CONFIG_ATM_HE_USE_SUNI */
1480 
1481 	if (sdh) {
1482 		/* this really should be in suni.c but for now... */
1483 		int val;
1484 
1485 		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1486 		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1487 		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1488 		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1489 	}
1490 
1491 	/* 5.1.12 enable transmit and receive */
1492 
1493 	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1494 	reg |= TX_ENABLE|ER_ENABLE;
1495 	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1496 
1497 	reg = he_readl(he_dev, RC_CONFIG);
1498 	reg |= RX_ENABLE;
1499 	he_writel(he_dev, reg, RC_CONFIG);
1500 
1501 	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1502 		he_dev->cs_stper[i].inuse = 0;
1503 		he_dev->cs_stper[i].pcr = -1;
1504 	}
1505 	he_dev->total_bw = 0;
1506 
1507 
1508 	/* atm linux initialization */
1509 
1510 	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1511 	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1512 
1513 	he_dev->irq_peak = 0;
1514 	he_dev->rbrq_peak = 0;
1515 	he_dev->rbpl_peak = 0;
1516 	he_dev->tbrq_peak = 0;
1517 
1518 	HPRINTK("hell bent for leather!\n");
1519 
1520 	return 0;
1521 }
1522 
1523 static void
1524 he_stop(struct he_dev *he_dev)
1525 {
1526 	struct he_buff *heb, *next;
1527 	struct pci_dev *pci_dev;
1528 	u32 gen_cntl_0, reg;
1529 	u16 command;
1530 
1531 	pci_dev = he_dev->pci_dev;
1532 
1533 	/* disable interrupts */
1534 
1535 	if (he_dev->membase) {
1536 		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1537 		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1538 		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1539 
1540 		tasklet_disable(&he_dev->tasklet);
1541 
1542 		/* disable recv and transmit */
1543 
1544 		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1545 		reg &= ~(TX_ENABLE|ER_ENABLE);
1546 		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1547 
1548 		reg = he_readl(he_dev, RC_CONFIG);
1549 		reg &= ~(RX_ENABLE);
1550 		he_writel(he_dev, reg, RC_CONFIG);
1551 	}
1552 
1553 #ifdef CONFIG_ATM_HE_USE_SUNI
1554 	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1555 		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1556 #endif /* CONFIG_ATM_HE_USE_SUNI */
1557 
1558 	if (he_dev->irq)
1559 		free_irq(he_dev->irq, he_dev);
1560 
1561 	if (he_dev->irq_base)
1562 		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1563 				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1564 
1565 	if (he_dev->hsp)
1566 		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1567 				  he_dev->hsp, he_dev->hsp_phys);
1568 
1569 	if (he_dev->rbpl_base) {
1570 		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1571 			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1572 
1573 		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1574 				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1575 	}
1576 
1577 	kfree(he_dev->rbpl_virt);
1578 	bitmap_free(he_dev->rbpl_table);
1579 	dma_pool_destroy(he_dev->rbpl_pool);
1580 
1581 	if (he_dev->rbrq_base)
1582 		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1583 				  he_dev->rbrq_base, he_dev->rbrq_phys);
1584 
1585 	if (he_dev->tbrq_base)
1586 		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1587 				  he_dev->tbrq_base, he_dev->tbrq_phys);
1588 
1589 	if (he_dev->tpdrq_base)
1590 		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1591 				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1592 
1593 	dma_pool_destroy(he_dev->tpd_pool);
1594 
1595 	if (he_dev->pci_dev) {
1596 		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1597 		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1598 		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1599 	}
1600 
1601 	if (he_dev->membase)
1602 		iounmap(he_dev->membase);
1603 }
1604 
1605 static struct he_tpd *
1606 __alloc_tpd(struct he_dev *he_dev)
1607 {
1608 	struct he_tpd *tpd;
1609 	dma_addr_t mapping;
1610 
1611 	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1612 	if (tpd == NULL)
1613 		return NULL;
1614 
1615 	tpd->status = TPD_ADDR(mapping);
1616 	tpd->reserved = 0;
1617 	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1618 	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1619 	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1620 
1621 	return tpd;
1622 }
1623 
1624 #define AAL5_LEN(buf,len) 						\
1625 			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1626 				(((unsigned char *)(buf))[(len)-5]))
1627 
1628 /* 2.10.1.2 receive
1629  *
1630  * aal5 packets can optionally return the tcp checksum in the lower
1631  * 16 bits of the crc (RSR0_TCP_CKSUM)
1632  */
1633 
1634 #define TCP_CKSUM(buf,len) 						\
1635 			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1636 				(((unsigned char *)(buf))[(len-1)]))
1637 
1638 static int
1639 he_service_rbrq(struct he_dev *he_dev, int group)
1640 {
1641 	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1642 				((unsigned long)he_dev->rbrq_base |
1643 					he_dev->hsp->group[group].rbrq_tail);
1644 	unsigned cid, lastcid = -1;
1645 	struct sk_buff *skb;
1646 	struct atm_vcc *vcc = NULL;
1647 	struct he_vcc *he_vcc;
1648 	struct he_buff *heb, *next;
1649 	int i;
1650 	int pdus_assembled = 0;
1651 	int updated = 0;
1652 
1653 	read_lock(&vcc_sklist_lock);
1654 	while (he_dev->rbrq_head != rbrq_tail) {
1655 		++updated;
1656 
1657 		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1658 			he_dev->rbrq_head, group,
1659 			RBRQ_ADDR(he_dev->rbrq_head),
1660 			RBRQ_BUFLEN(he_dev->rbrq_head),
1661 			RBRQ_CID(he_dev->rbrq_head),
1662 			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1663 			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1664 			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1665 			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1666 			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1667 			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1668 
1669 		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1670 		heb = he_dev->rbpl_virt[i];
1671 
1672 		cid = RBRQ_CID(he_dev->rbrq_head);
1673 		if (cid != lastcid)
1674 			vcc = __find_vcc(he_dev, cid);
1675 		lastcid = cid;
1676 
1677 		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1678 			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1679 			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1680 				clear_bit(i, he_dev->rbpl_table);
1681 				list_del(&heb->entry);
1682 				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1683 			}
1684 
1685 			goto next_rbrq_entry;
1686 		}
1687 
1688 		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1689 			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1690 			atomic_inc(&vcc->stats->rx_drop);
1691 			goto return_host_buffers;
1692 		}
1693 
1694 		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1695 		clear_bit(i, he_dev->rbpl_table);
1696 		list_move_tail(&heb->entry, &he_vcc->buffers);
1697 		he_vcc->pdu_len += heb->len;
1698 
1699 		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1700 			lastcid = -1;
1701 			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1702 			wake_up(&he_vcc->rx_waitq);
1703 			goto return_host_buffers;
1704 		}
1705 
1706 		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1707 			goto next_rbrq_entry;
1708 
1709 		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1710 				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1711 			HPRINTK("%s%s (%d.%d)\n",
1712 				RBRQ_CRC_ERR(he_dev->rbrq_head)
1713 							? "CRC_ERR " : "",
1714 				RBRQ_LEN_ERR(he_dev->rbrq_head)
1715 							? "LEN_ERR" : "",
1716 							vcc->vpi, vcc->vci);
1717 			atomic_inc(&vcc->stats->rx_err);
1718 			goto return_host_buffers;
1719 		}
1720 
1721 		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1722 							GFP_ATOMIC);
1723 		if (!skb) {
1724 			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1725 			goto return_host_buffers;
1726 		}
1727 
1728 		if (rx_skb_reserve > 0)
1729 			skb_reserve(skb, rx_skb_reserve);
1730 
1731 		__net_timestamp(skb);
1732 
1733 		list_for_each_entry(heb, &he_vcc->buffers, entry)
1734 			skb_put_data(skb, &heb->data, heb->len);
1735 
1736 		switch (vcc->qos.aal) {
1737 			case ATM_AAL0:
1738 				/* 2.10.1.5 raw cell receive */
1739 				skb->len = ATM_AAL0_SDU;
1740 				skb_set_tail_pointer(skb, skb->len);
1741 				break;
1742 			case ATM_AAL5:
1743 				/* 2.10.1.2 aal5 receive */
1744 
1745 				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1746 				skb_set_tail_pointer(skb, skb->len);
1747 #ifdef USE_CHECKSUM_HW
1748 				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1749 					skb->ip_summed = CHECKSUM_COMPLETE;
1750 					skb->csum = TCP_CKSUM(skb->data,
1751 							he_vcc->pdu_len);
1752 				}
1753 #endif
1754 				break;
1755 		}
1756 
1757 #ifdef should_never_happen
1758 		if (skb->len > vcc->qos.rxtp.max_sdu)
1759 			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1760 #endif
1761 
1762 #ifdef notdef
1763 		ATM_SKB(skb)->vcc = vcc;
1764 #endif
1765 		spin_unlock(&he_dev->global_lock);
1766 		vcc->push(vcc, skb);
1767 		spin_lock(&he_dev->global_lock);
1768 
1769 		atomic_inc(&vcc->stats->rx);
1770 
1771 return_host_buffers:
1772 		++pdus_assembled;
1773 
1774 		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1775 			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1776 		INIT_LIST_HEAD(&he_vcc->buffers);
1777 		he_vcc->pdu_len = 0;
1778 
1779 next_rbrq_entry:
1780 		he_dev->rbrq_head = (struct he_rbrq *)
1781 				((unsigned long) he_dev->rbrq_base |
1782 					RBRQ_MASK(he_dev->rbrq_head + 1));
1783 
1784 	}
1785 	read_unlock(&vcc_sklist_lock);
1786 
1787 	if (updated) {
1788 		if (updated > he_dev->rbrq_peak)
1789 			he_dev->rbrq_peak = updated;
1790 
1791 		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1792 						G0_RBRQ_H + (group * 16));
1793 	}
1794 
1795 	return pdus_assembled;
1796 }
1797 
1798 static void
1799 he_service_tbrq(struct he_dev *he_dev, int group)
1800 {
1801 	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1802 				((unsigned long)he_dev->tbrq_base |
1803 					he_dev->hsp->group[group].tbrq_tail);
1804 	struct he_tpd *tpd;
1805 	int slot, updated = 0;
1806 	struct he_tpd *__tpd;
1807 
1808 	/* 2.1.6 transmit buffer return queue */
1809 
1810 	while (he_dev->tbrq_head != tbrq_tail) {
1811 		++updated;
1812 
1813 		HPRINTK("tbrq%d 0x%x%s%s\n",
1814 			group,
1815 			TBRQ_TPD(he_dev->tbrq_head),
1816 			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1817 			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1818 		tpd = NULL;
1819 		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1820 			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1821 				tpd = __tpd;
1822 				list_del(&__tpd->entry);
1823 				break;
1824 			}
1825 		}
1826 
1827 		if (tpd == NULL) {
1828 			hprintk("unable to locate tpd for dma buffer %x\n",
1829 						TBRQ_TPD(he_dev->tbrq_head));
1830 			goto next_tbrq_entry;
1831 		}
1832 
1833 		if (TBRQ_EOS(he_dev->tbrq_head)) {
1834 			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1835 				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1836 			if (tpd->vcc)
1837 				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1838 
1839 			goto next_tbrq_entry;
1840 		}
1841 
1842 		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1843 			if (tpd->iovec[slot].addr)
1844 				dma_unmap_single(&he_dev->pci_dev->dev,
1845 					tpd->iovec[slot].addr,
1846 					tpd->iovec[slot].len & TPD_LEN_MASK,
1847 							DMA_TO_DEVICE);
1848 			if (tpd->iovec[slot].len & TPD_LST)
1849 				break;
1850 
1851 		}
1852 
1853 		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1854 			if (tpd->vcc && tpd->vcc->pop)
1855 				tpd->vcc->pop(tpd->vcc, tpd->skb);
1856 			else
1857 				dev_kfree_skb_any(tpd->skb);
1858 		}
1859 
1860 next_tbrq_entry:
1861 		if (tpd)
1862 			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1863 		he_dev->tbrq_head = (struct he_tbrq *)
1864 				((unsigned long) he_dev->tbrq_base |
1865 					TBRQ_MASK(he_dev->tbrq_head + 1));
1866 	}
1867 
1868 	if (updated) {
1869 		if (updated > he_dev->tbrq_peak)
1870 			he_dev->tbrq_peak = updated;
1871 
1872 		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1873 						G0_TBRQ_H + (group * 16));
1874 	}
1875 }
1876 
1877 static void
1878 he_service_rbpl(struct he_dev *he_dev, int group)
1879 {
1880 	struct he_rbp *new_tail;
1881 	struct he_rbp *rbpl_head;
1882 	struct he_buff *heb;
1883 	dma_addr_t mapping;
1884 	int i;
1885 	int moved = 0;
1886 
1887 	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1888 					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1889 
1890 	for (;;) {
1891 		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1892 						RBPL_MASK(he_dev->rbpl_tail+1));
1893 
1894 		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1895 		if (new_tail == rbpl_head)
1896 			break;
1897 
1898 		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1899 		if (i > (RBPL_TABLE_SIZE - 1)) {
1900 			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1901 			if (i > (RBPL_TABLE_SIZE - 1))
1902 				break;
1903 		}
1904 		he_dev->rbpl_hint = i + 1;
1905 
1906 		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1907 		if (!heb)
1908 			break;
1909 		heb->mapping = mapping;
1910 		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1911 		he_dev->rbpl_virt[i] = heb;
1912 		set_bit(i, he_dev->rbpl_table);
1913 		new_tail->idx = i << RBP_IDX_OFFSET;
1914 		new_tail->phys = mapping + offsetof(struct he_buff, data);
1915 
1916 		he_dev->rbpl_tail = new_tail;
1917 		++moved;
1918 	}
1919 
1920 	if (moved)
1921 		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1922 }
1923 
1924 static void
1925 he_tasklet(unsigned long data)
1926 {
1927 	unsigned long flags;
1928 	struct he_dev *he_dev = (struct he_dev *) data;
1929 	int group, type;
1930 	int updated = 0;
1931 
1932 	HPRINTK("tasklet (0x%lx)\n", data);
1933 	spin_lock_irqsave(&he_dev->global_lock, flags);
1934 
1935 	while (he_dev->irq_head != he_dev->irq_tail) {
1936 		++updated;
1937 
1938 		type = ITYPE_TYPE(he_dev->irq_head->isw);
1939 		group = ITYPE_GROUP(he_dev->irq_head->isw);
1940 
1941 		switch (type) {
1942 			case ITYPE_RBRQ_THRESH:
1943 				HPRINTK("rbrq%d threshold\n", group);
1944 				fallthrough;
1945 			case ITYPE_RBRQ_TIMER:
1946 				if (he_service_rbrq(he_dev, group))
1947 					he_service_rbpl(he_dev, group);
1948 				break;
1949 			case ITYPE_TBRQ_THRESH:
1950 				HPRINTK("tbrq%d threshold\n", group);
1951 				fallthrough;
1952 			case ITYPE_TPD_COMPLETE:
1953 				he_service_tbrq(he_dev, group);
1954 				break;
1955 			case ITYPE_RBPL_THRESH:
1956 				he_service_rbpl(he_dev, group);
1957 				break;
1958 			case ITYPE_RBPS_THRESH:
1959 				/* shouldn't happen unless small buffers enabled */
1960 				break;
1961 			case ITYPE_PHY:
1962 				HPRINTK("phy interrupt\n");
1963 #ifdef CONFIG_ATM_HE_USE_SUNI
1964 				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1965 				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1966 					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1967 				spin_lock_irqsave(&he_dev->global_lock, flags);
1968 #endif
1969 				break;
1970 			case ITYPE_OTHER:
1971 				switch (type|group) {
1972 					case ITYPE_PARITY:
1973 						hprintk("parity error\n");
1974 						break;
1975 					case ITYPE_ABORT:
1976 						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1977 						break;
1978 				}
1979 				break;
1980 			case ITYPE_TYPE(ITYPE_INVALID):
1981 				/* see 8.1.1 -- check all queues */
1982 
1983 				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1984 
1985 				he_service_rbrq(he_dev, 0);
1986 				he_service_rbpl(he_dev, 0);
1987 				he_service_tbrq(he_dev, 0);
1988 				break;
1989 			default:
1990 				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1991 		}
1992 
1993 		he_dev->irq_head->isw = ITYPE_INVALID;
1994 
1995 		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1996 	}
1997 
1998 	if (updated) {
1999 		if (updated > he_dev->irq_peak)
2000 			he_dev->irq_peak = updated;
2001 
2002 		he_writel(he_dev,
2003 			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2004 			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2005 			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2006 		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2007 	}
2008 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2009 }
2010 
2011 static irqreturn_t
2012 he_irq_handler(int irq, void *dev_id)
2013 {
2014 	unsigned long flags;
2015 	struct he_dev *he_dev = (struct he_dev * )dev_id;
2016 	int handled = 0;
2017 
2018 	if (he_dev == NULL)
2019 		return IRQ_NONE;
2020 
2021 	spin_lock_irqsave(&he_dev->global_lock, flags);
2022 
2023 	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2024 						(*he_dev->irq_tailoffset << 2));
2025 
2026 	if (he_dev->irq_tail == he_dev->irq_head) {
2027 		HPRINTK("tailoffset not updated?\n");
2028 		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2029 			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2030 		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2031 	}
2032 
2033 #ifdef DEBUG
2034 	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2035 		hprintk("spurious (or shared) interrupt?\n");
2036 #endif
2037 
2038 	if (he_dev->irq_head != he_dev->irq_tail) {
2039 		handled = 1;
2040 		tasklet_schedule(&he_dev->tasklet);
2041 		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2042 		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2043 	}
2044 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2045 	return IRQ_RETVAL(handled);
2046 
2047 }
2048 
2049 static __inline__ void
2050 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2051 {
2052 	struct he_tpdrq *new_tail;
2053 
2054 	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2055 					tpd, cid, he_dev->tpdrq_tail);
2056 
2057 	/* new_tail = he_dev->tpdrq_tail; */
2058 	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2059 					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2060 
2061 	/*
2062 	 * check to see if we are about to set the tail == head
2063 	 * if true, update the head pointer from the adapter
2064 	 * to see if this is really the case (reading the queue
2065 	 * head for every enqueue would be unnecessarily slow)
2066 	 */
2067 
2068 	if (new_tail == he_dev->tpdrq_head) {
2069 		he_dev->tpdrq_head = (struct he_tpdrq *)
2070 			(((unsigned long)he_dev->tpdrq_base) |
2071 				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2072 
2073 		if (new_tail == he_dev->tpdrq_head) {
2074 			int slot;
2075 
2076 			hprintk("tpdrq full (cid 0x%x)\n", cid);
2077 			/*
2078 			 * FIXME
2079 			 * push tpd onto a transmit backlog queue
2080 			 * after service_tbrq, service the backlog
2081 			 * for now, we just drop the pdu
2082 			 */
2083 			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2084 				if (tpd->iovec[slot].addr)
2085 					dma_unmap_single(&he_dev->pci_dev->dev,
2086 						tpd->iovec[slot].addr,
2087 						tpd->iovec[slot].len & TPD_LEN_MASK,
2088 								DMA_TO_DEVICE);
2089 			}
2090 			if (tpd->skb) {
2091 				if (tpd->vcc->pop)
2092 					tpd->vcc->pop(tpd->vcc, tpd->skb);
2093 				else
2094 					dev_kfree_skb_any(tpd->skb);
2095 				atomic_inc(&tpd->vcc->stats->tx_err);
2096 			}
2097 			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2098 			return;
2099 		}
2100 	}
2101 
2102 	/* 2.1.5 transmit packet descriptor ready queue */
2103 	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2104 	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2105 	he_dev->tpdrq_tail->cid = cid;
2106 	wmb();
2107 
2108 	he_dev->tpdrq_tail = new_tail;
2109 
2110 	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2111 	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2112 }
2113 
2114 static int
2115 he_open(struct atm_vcc *vcc)
2116 {
2117 	unsigned long flags;
2118 	struct he_dev *he_dev = HE_DEV(vcc->dev);
2119 	struct he_vcc *he_vcc;
2120 	int err = 0;
2121 	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2122 	short vpi = vcc->vpi;
2123 	int vci = vcc->vci;
2124 
2125 	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2126 		return 0;
2127 
2128 	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2129 
2130 	set_bit(ATM_VF_ADDR, &vcc->flags);
2131 
2132 	cid = he_mkcid(he_dev, vpi, vci);
2133 
2134 	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2135 	if (he_vcc == NULL) {
2136 		hprintk("unable to allocate he_vcc during open\n");
2137 		return -ENOMEM;
2138 	}
2139 
2140 	INIT_LIST_HEAD(&he_vcc->buffers);
2141 	he_vcc->pdu_len = 0;
2142 	he_vcc->rc_index = -1;
2143 
2144 	init_waitqueue_head(&he_vcc->rx_waitq);
2145 	init_waitqueue_head(&he_vcc->tx_waitq);
2146 
2147 	vcc->dev_data = he_vcc;
2148 
2149 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2150 		int pcr_goal;
2151 
2152 		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2153 		if (pcr_goal == 0)
2154 			pcr_goal = he_dev->atm_dev->link_rate;
2155 		if (pcr_goal < 0)	/* means round down, technically */
2156 			pcr_goal = -pcr_goal;
2157 
2158 		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2159 
2160 		switch (vcc->qos.aal) {
2161 			case ATM_AAL5:
2162 				tsr0_aal = TSR0_AAL5;
2163 				tsr4 = TSR4_AAL5;
2164 				break;
2165 			case ATM_AAL0:
2166 				tsr0_aal = TSR0_AAL0_SDU;
2167 				tsr4 = TSR4_AAL0_SDU;
2168 				break;
2169 			default:
2170 				err = -EINVAL;
2171 				goto open_failed;
2172 		}
2173 
2174 		spin_lock_irqsave(&he_dev->global_lock, flags);
2175 		tsr0 = he_readl_tsr0(he_dev, cid);
2176 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2177 
2178 		if (TSR0_CONN_STATE(tsr0) != 0) {
2179 			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2180 			err = -EBUSY;
2181 			goto open_failed;
2182 		}
2183 
2184 		switch (vcc->qos.txtp.traffic_class) {
2185 			case ATM_UBR:
2186 				/* 2.3.3.1 open connection ubr */
2187 
2188 				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2189 					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2190 				break;
2191 
2192 			case ATM_CBR:
2193 				/* 2.3.3.2 open connection cbr */
2194 
2195 				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2196 				if ((he_dev->total_bw + pcr_goal)
2197 					> (he_dev->atm_dev->link_rate * 9 / 10))
2198 				{
2199 					err = -EBUSY;
2200 					goto open_failed;
2201 				}
2202 
2203 				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2204 
2205 				/* find an unused cs_stper register */
2206 				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2207 					if (he_dev->cs_stper[reg].inuse == 0 ||
2208 					    he_dev->cs_stper[reg].pcr == pcr_goal)
2209 							break;
2210 
2211 				if (reg == HE_NUM_CS_STPER) {
2212 					err = -EBUSY;
2213 					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2214 					goto open_failed;
2215 				}
2216 
2217 				he_dev->total_bw += pcr_goal;
2218 
2219 				he_vcc->rc_index = reg;
2220 				++he_dev->cs_stper[reg].inuse;
2221 				he_dev->cs_stper[reg].pcr = pcr_goal;
2222 
2223 				clock = he_is622(he_dev) ? 66667000 : 50000000;
2224 				period = clock / pcr_goal;
2225 
2226 				HPRINTK("rc_index = %d period = %d\n",
2227 								reg, period);
2228 
2229 				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2230 							CS_STPER0 + reg);
2231 				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2232 
2233 				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2234 							TSR0_RC_INDEX(reg);
2235 
2236 				break;
2237 			default:
2238 				err = -EINVAL;
2239 				goto open_failed;
2240 		}
2241 
2242 		spin_lock_irqsave(&he_dev->global_lock, flags);
2243 
2244 		he_writel_tsr0(he_dev, tsr0, cid);
2245 		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2246 		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2247 					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2248 		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2249 		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2250 
2251 		he_writel_tsr3(he_dev, 0x0, cid);
2252 		he_writel_tsr5(he_dev, 0x0, cid);
2253 		he_writel_tsr6(he_dev, 0x0, cid);
2254 		he_writel_tsr7(he_dev, 0x0, cid);
2255 		he_writel_tsr8(he_dev, 0x0, cid);
2256 		he_writel_tsr10(he_dev, 0x0, cid);
2257 		he_writel_tsr11(he_dev, 0x0, cid);
2258 		he_writel_tsr12(he_dev, 0x0, cid);
2259 		he_writel_tsr13(he_dev, 0x0, cid);
2260 		he_writel_tsr14(he_dev, 0x0, cid);
2261 		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2262 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2263 	}
2264 
2265 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2266 		unsigned aal;
2267 
2268 		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2269 		 				&HE_VCC(vcc)->rx_waitq);
2270 
2271 		switch (vcc->qos.aal) {
2272 			case ATM_AAL5:
2273 				aal = RSR0_AAL5;
2274 				break;
2275 			case ATM_AAL0:
2276 				aal = RSR0_RAWCELL;
2277 				break;
2278 			default:
2279 				err = -EINVAL;
2280 				goto open_failed;
2281 		}
2282 
2283 		spin_lock_irqsave(&he_dev->global_lock, flags);
2284 
2285 		rsr0 = he_readl_rsr0(he_dev, cid);
2286 		if (rsr0 & RSR0_OPEN_CONN) {
2287 			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2288 
2289 			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2290 			err = -EBUSY;
2291 			goto open_failed;
2292 		}
2293 
2294 		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2295 		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2296 		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2297 				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2298 
2299 #ifdef USE_CHECKSUM_HW
2300 		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2301 			rsr0 |= RSR0_TCP_CKSUM;
2302 #endif
2303 
2304 		he_writel_rsr4(he_dev, rsr4, cid);
2305 		he_writel_rsr1(he_dev, rsr1, cid);
2306 		/* 5.1.11 last parameter initialized should be
2307 			  the open/closed indication in rsr0 */
2308 		he_writel_rsr0(he_dev,
2309 			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2310 		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2311 
2312 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2313 	}
2314 
2315 open_failed:
2316 
2317 	if (err) {
2318 		kfree(he_vcc);
2319 		clear_bit(ATM_VF_ADDR, &vcc->flags);
2320 	}
2321 	else
2322 		set_bit(ATM_VF_READY, &vcc->flags);
2323 
2324 	return err;
2325 }
2326 
2327 static void
2328 he_close(struct atm_vcc *vcc)
2329 {
2330 	unsigned long flags;
2331 	DECLARE_WAITQUEUE(wait, current);
2332 	struct he_dev *he_dev = HE_DEV(vcc->dev);
2333 	struct he_tpd *tpd;
2334 	unsigned cid;
2335 	struct he_vcc *he_vcc = HE_VCC(vcc);
2336 #define MAX_RETRY 30
2337 	int retry = 0, sleep = 1, tx_inuse;
2338 
2339 	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2340 
2341 	clear_bit(ATM_VF_READY, &vcc->flags);
2342 	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2343 
2344 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2345 		int timeout;
2346 
2347 		HPRINTK("close rx cid 0x%x\n", cid);
2348 
2349 		/* 2.7.2.2 close receive operation */
2350 
2351 		/* wait for previous close (if any) to finish */
2352 
2353 		spin_lock_irqsave(&he_dev->global_lock, flags);
2354 		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2355 			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2356 			udelay(250);
2357 		}
2358 
2359 		set_current_state(TASK_UNINTERRUPTIBLE);
2360 		add_wait_queue(&he_vcc->rx_waitq, &wait);
2361 
2362 		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2363 		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2364 		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2365 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2366 
2367 		timeout = schedule_timeout(30*HZ);
2368 
2369 		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2370 		set_current_state(TASK_RUNNING);
2371 
2372 		if (timeout == 0)
2373 			hprintk("close rx timeout cid 0x%x\n", cid);
2374 
2375 		HPRINTK("close rx cid 0x%x complete\n", cid);
2376 
2377 	}
2378 
2379 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2380 		volatile unsigned tsr4, tsr0;
2381 		int timeout;
2382 
2383 		HPRINTK("close tx cid 0x%x\n", cid);
2384 
2385 		/* 2.1.2
2386 		 *
2387 		 * ... the host must first stop queueing packets to the TPDRQ
2388 		 * on the connection to be closed, then wait for all outstanding
2389 		 * packets to be transmitted and their buffers returned to the
2390 		 * TBRQ. When the last packet on the connection arrives in the
2391 		 * TBRQ, the host issues the close command to the adapter.
2392 		 */
2393 
2394 		while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2395 		       (retry < MAX_RETRY)) {
2396 			msleep(sleep);
2397 			if (sleep < 250)
2398 				sleep = sleep * 2;
2399 
2400 			++retry;
2401 		}
2402 
2403 		if (tx_inuse > 1)
2404 			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2405 
2406 		/* 2.3.1.1 generic close operations with flush */
2407 
2408 		spin_lock_irqsave(&he_dev->global_lock, flags);
2409 		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2410 					/* also clears TSR4_SESSION_ENDED */
2411 
2412 		switch (vcc->qos.txtp.traffic_class) {
2413 			case ATM_UBR:
2414 				he_writel_tsr1(he_dev,
2415 					TSR1_MCR(rate_to_atmf(200000))
2416 					| TSR1_PCR(0), cid);
2417 				break;
2418 			case ATM_CBR:
2419 				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2420 				break;
2421 		}
2422 		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2423 
2424 		tpd = __alloc_tpd(he_dev);
2425 		if (tpd == NULL) {
2426 			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2427 			goto close_tx_incomplete;
2428 		}
2429 		tpd->status |= TPD_EOS | TPD_INT;
2430 		tpd->skb = NULL;
2431 		tpd->vcc = vcc;
2432 		wmb();
2433 
2434 		set_current_state(TASK_UNINTERRUPTIBLE);
2435 		add_wait_queue(&he_vcc->tx_waitq, &wait);
2436 		__enqueue_tpd(he_dev, tpd, cid);
2437 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2438 
2439 		timeout = schedule_timeout(30*HZ);
2440 
2441 		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2442 		set_current_state(TASK_RUNNING);
2443 
2444 		spin_lock_irqsave(&he_dev->global_lock, flags);
2445 
2446 		if (timeout == 0) {
2447 			hprintk("close tx timeout cid 0x%x\n", cid);
2448 			goto close_tx_incomplete;
2449 		}
2450 
2451 		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2452 			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2453 			udelay(250);
2454 		}
2455 
2456 		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2457 			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2458 			udelay(250);
2459 		}
2460 
2461 close_tx_incomplete:
2462 
2463 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2464 			int reg = he_vcc->rc_index;
2465 
2466 			HPRINTK("cs_stper reg = %d\n", reg);
2467 
2468 			if (he_dev->cs_stper[reg].inuse == 0)
2469 				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2470 			else
2471 				--he_dev->cs_stper[reg].inuse;
2472 
2473 			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2474 		}
2475 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2476 
2477 		HPRINTK("close tx cid 0x%x complete\n", cid);
2478 	}
2479 
2480 	kfree(he_vcc);
2481 
2482 	clear_bit(ATM_VF_ADDR, &vcc->flags);
2483 }
2484 
2485 static int
2486 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2487 {
2488 	unsigned long flags;
2489 	struct he_dev *he_dev = HE_DEV(vcc->dev);
2490 	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2491 	struct he_tpd *tpd;
2492 #ifdef USE_SCATTERGATHER
2493 	int i, slot = 0;
2494 #endif
2495 
2496 #define HE_TPD_BUFSIZE 0xffff
2497 
2498 	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2499 
2500 	if ((skb->len > HE_TPD_BUFSIZE) ||
2501 	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2502 		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2503 		if (vcc->pop)
2504 			vcc->pop(vcc, skb);
2505 		else
2506 			dev_kfree_skb_any(skb);
2507 		atomic_inc(&vcc->stats->tx_err);
2508 		return -EINVAL;
2509 	}
2510 
2511 #ifndef USE_SCATTERGATHER
2512 	if (skb_shinfo(skb)->nr_frags) {
2513 		hprintk("no scatter/gather support\n");
2514 		if (vcc->pop)
2515 			vcc->pop(vcc, skb);
2516 		else
2517 			dev_kfree_skb_any(skb);
2518 		atomic_inc(&vcc->stats->tx_err);
2519 		return -EINVAL;
2520 	}
2521 #endif
2522 	spin_lock_irqsave(&he_dev->global_lock, flags);
2523 
2524 	tpd = __alloc_tpd(he_dev);
2525 	if (tpd == NULL) {
2526 		if (vcc->pop)
2527 			vcc->pop(vcc, skb);
2528 		else
2529 			dev_kfree_skb_any(skb);
2530 		atomic_inc(&vcc->stats->tx_err);
2531 		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2532 		return -ENOMEM;
2533 	}
2534 
2535 	if (vcc->qos.aal == ATM_AAL5)
2536 		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2537 	else {
2538 		char *pti_clp = (void *) (skb->data + 3);
2539 		int clp, pti;
2540 
2541 		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2542 		clp = (*pti_clp & ATM_HDR_CLP);
2543 		tpd->status |= TPD_CELLTYPE(pti);
2544 		if (clp)
2545 			tpd->status |= TPD_CLP;
2546 
2547 		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2548 	}
2549 
2550 #ifdef USE_SCATTERGATHER
2551 	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2552 				skb_headlen(skb), DMA_TO_DEVICE);
2553 	tpd->iovec[slot].len = skb_headlen(skb);
2554 	++slot;
2555 
2556 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2557 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2558 
2559 		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2560 			tpd->vcc = vcc;
2561 			tpd->skb = NULL;	/* not the last fragment
2562 						   so dont ->push() yet */
2563 			wmb();
2564 
2565 			__enqueue_tpd(he_dev, tpd, cid);
2566 			tpd = __alloc_tpd(he_dev);
2567 			if (tpd == NULL) {
2568 				if (vcc->pop)
2569 					vcc->pop(vcc, skb);
2570 				else
2571 					dev_kfree_skb_any(skb);
2572 				atomic_inc(&vcc->stats->tx_err);
2573 				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2574 				return -ENOMEM;
2575 			}
2576 			tpd->status |= TPD_USERCELL;
2577 			slot = 0;
2578 		}
2579 
2580 		tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2581 				frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2582 		tpd->iovec[slot].len = skb_frag_size(frag);
2583 		++slot;
2584 
2585 	}
2586 
2587 	tpd->iovec[slot - 1].len |= TPD_LST;
2588 #else
2589 	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2590 	tpd->length0 = skb->len | TPD_LST;
2591 #endif
2592 	tpd->status |= TPD_INT;
2593 
2594 	tpd->vcc = vcc;
2595 	tpd->skb = skb;
2596 	wmb();
2597 	ATM_SKB(skb)->vcc = vcc;
2598 
2599 	__enqueue_tpd(he_dev, tpd, cid);
2600 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2601 
2602 	atomic_inc(&vcc->stats->tx);
2603 
2604 	return 0;
2605 }
2606 
2607 static int
2608 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2609 {
2610 	unsigned long flags;
2611 	struct he_dev *he_dev = HE_DEV(atm_dev);
2612 	struct he_ioctl_reg reg;
2613 	int err = 0;
2614 
2615 	switch (cmd) {
2616 		case HE_GET_REG:
2617 			if (!capable(CAP_NET_ADMIN))
2618 				return -EPERM;
2619 
2620 			if (copy_from_user(&reg, arg,
2621 					   sizeof(struct he_ioctl_reg)))
2622 				return -EFAULT;
2623 
2624 			spin_lock_irqsave(&he_dev->global_lock, flags);
2625 			switch (reg.type) {
2626 				case HE_REGTYPE_PCI:
2627 					if (reg.addr >= HE_REGMAP_SIZE) {
2628 						err = -EINVAL;
2629 						break;
2630 					}
2631 
2632 					reg.val = he_readl(he_dev, reg.addr);
2633 					break;
2634 				case HE_REGTYPE_RCM:
2635 					reg.val =
2636 						he_readl_rcm(he_dev, reg.addr);
2637 					break;
2638 				case HE_REGTYPE_TCM:
2639 					reg.val =
2640 						he_readl_tcm(he_dev, reg.addr);
2641 					break;
2642 				case HE_REGTYPE_MBOX:
2643 					reg.val =
2644 						he_readl_mbox(he_dev, reg.addr);
2645 					break;
2646 				default:
2647 					err = -EINVAL;
2648 					break;
2649 			}
2650 			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2651 			if (err == 0)
2652 				if (copy_to_user(arg, &reg,
2653 							sizeof(struct he_ioctl_reg)))
2654 					return -EFAULT;
2655 			break;
2656 		default:
2657 #ifdef CONFIG_ATM_HE_USE_SUNI
2658 			if (atm_dev->phy && atm_dev->phy->ioctl)
2659 				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2660 #else /* CONFIG_ATM_HE_USE_SUNI */
2661 			err = -EINVAL;
2662 #endif /* CONFIG_ATM_HE_USE_SUNI */
2663 			break;
2664 	}
2665 
2666 	return err;
2667 }
2668 
2669 static void
2670 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2671 {
2672 	unsigned long flags;
2673 	struct he_dev *he_dev = HE_DEV(atm_dev);
2674 
2675 	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2676 
2677 	spin_lock_irqsave(&he_dev->global_lock, flags);
2678 	he_writel(he_dev, val, FRAMER + (addr*4));
2679 	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2680 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2681 }
2682 
2683 
2684 static unsigned char
2685 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2686 {
2687 	unsigned long flags;
2688 	struct he_dev *he_dev = HE_DEV(atm_dev);
2689 	unsigned reg;
2690 
2691 	spin_lock_irqsave(&he_dev->global_lock, flags);
2692 	reg = he_readl(he_dev, FRAMER + (addr*4));
2693 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2694 
2695 	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2696 	return reg;
2697 }
2698 
2699 static int
2700 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2701 {
2702 	unsigned long flags;
2703 	struct he_dev *he_dev = HE_DEV(dev);
2704 	int left, i;
2705 #ifdef notdef
2706 	struct he_rbrq *rbrq_tail;
2707 	struct he_tpdrq *tpdrq_head;
2708 	int rbpl_head, rbpl_tail;
2709 #endif
2710 	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2711 
2712 
2713 	left = *pos;
2714 	if (!left--)
2715 		return sprintf(page, "ATM he driver\n");
2716 
2717 	if (!left--)
2718 		return sprintf(page, "%s%s\n\n",
2719 			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2720 
2721 	if (!left--)
2722 		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2723 
2724 	spin_lock_irqsave(&he_dev->global_lock, flags);
2725 	mcc += he_readl(he_dev, MCC);
2726 	oec += he_readl(he_dev, OEC);
2727 	dcc += he_readl(he_dev, DCC);
2728 	cec += he_readl(he_dev, CEC);
2729 	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2730 
2731 	if (!left--)
2732 		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n",
2733 							mcc, oec, dcc, cec);
2734 
2735 	if (!left--)
2736 		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2737 				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2738 
2739 	if (!left--)
2740 		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2741 						CONFIG_TPDRQ_SIZE);
2742 
2743 	if (!left--)
2744 		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2745 				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2746 
2747 	if (!left--)
2748 		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2749 					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2750 
2751 
2752 #ifdef notdef
2753 	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2754 	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2755 
2756 	inuse = rbpl_head - rbpl_tail;
2757 	if (inuse < 0)
2758 		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2759 	inuse /= sizeof(struct he_rbp);
2760 
2761 	if (!left--)
2762 		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2763 						CONFIG_RBPL_SIZE, inuse);
2764 #endif
2765 
2766 	if (!left--)
2767 		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2768 
2769 	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2770 		if (!left--)
2771 			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2772 						he_dev->cs_stper[i].pcr,
2773 						he_dev->cs_stper[i].inuse);
2774 
2775 	if (!left--)
2776 		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2777 			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2778 
2779 	return 0;
2780 }
2781 
2782 /* eeprom routines  -- see 4.7 */
2783 
2784 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2785 {
2786 	u32 val = 0, tmp_read = 0;
2787 	int i, j = 0;
2788 	u8 byte_read = 0;
2789 
2790 	val = readl(he_dev->membase + HOST_CNTL);
2791 	val &= 0xFFFFE0FF;
2792 
2793 	/* Turn on write enable */
2794 	val |= 0x800;
2795 	he_writel(he_dev, val, HOST_CNTL);
2796 
2797 	/* Send READ instruction */
2798 	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2799 		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2800 		udelay(EEPROM_DELAY);
2801 	}
2802 
2803 	/* Next, we need to send the byte address to read from */
2804 	for (i = 7; i >= 0; i--) {
2805 		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2806 		udelay(EEPROM_DELAY);
2807 		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2808 		udelay(EEPROM_DELAY);
2809 	}
2810 
2811 	j = 0;
2812 
2813 	val &= 0xFFFFF7FF;      /* Turn off write enable */
2814 	he_writel(he_dev, val, HOST_CNTL);
2815 
2816 	/* Now, we can read data from the EEPROM by clocking it in */
2817 	for (i = 7; i >= 0; i--) {
2818 		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2819 		udelay(EEPROM_DELAY);
2820 		tmp_read = he_readl(he_dev, HOST_CNTL);
2821 		byte_read |= (unsigned char)
2822 			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2823 		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2824 		udelay(EEPROM_DELAY);
2825 	}
2826 
2827 	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2828 	udelay(EEPROM_DELAY);
2829 
2830 	return byte_read;
2831 }
2832 
2833 MODULE_LICENSE("GPL");
2834 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2835 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2836 module_param(disable64, bool, 0);
2837 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2838 module_param(nvpibits, short, 0);
2839 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2840 module_param(nvcibits, short, 0);
2841 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2842 module_param(rx_skb_reserve, short, 0);
2843 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2844 module_param(irq_coalesce, bool, 0);
2845 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2846 module_param(sdh, bool, 0);
2847 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2848 
2849 static const struct pci_device_id he_pci_tbl[] = {
2850 	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2851 	{ 0, }
2852 };
2853 
2854 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2855 
2856 static struct pci_driver he_driver = {
2857 	.name =		"he",
2858 	.probe =	he_init_one,
2859 	.remove =	he_remove_one,
2860 	.id_table =	he_pci_tbl,
2861 };
2862 
2863 module_pci_driver(he_driver);
2864