1 /* 2 3 he.c 4 5 ForeRunnerHE ATM Adapter driver for ATM on Linux 6 Copyright (C) 1999-2001 Naval Research Laboratory 7 8 This library is free software; you can redistribute it and/or 9 modify it under the terms of the GNU Lesser General Public 10 License as published by the Free Software Foundation; either 11 version 2.1 of the License, or (at your option) any later version. 12 13 This library is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 Lesser General Public License for more details. 17 18 You should have received a copy of the GNU Lesser General Public 19 License along with this library; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 22 */ 23 24 /* 25 26 he.c 27 28 ForeRunnerHE ATM Adapter driver for ATM on Linux 29 Copyright (C) 1999-2001 Naval Research Laboratory 30 31 Permission to use, copy, modify and distribute this software and its 32 documentation is hereby granted, provided that both the copyright 33 notice and this permission notice appear in all copies of the software, 34 derivative works or modified versions, and any portions thereof, and 35 that both notices appear in supporting documentation. 36 37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND 38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER 39 RESULTING FROM THE USE OF THIS SOFTWARE. 40 41 This driver was written using the "Programmer's Reference Manual for 42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98. 43 44 AUTHORS: 45 chas williams <chas@cmf.nrl.navy.mil> 46 eric kinzie <ekinzie@cmf.nrl.navy.mil> 47 48 NOTES: 49 4096 supported 'connections' 50 group 0 is used for all traffic 51 interrupt queue 0 is used for all interrupts 52 aal0 support (based on work from ulrich.u.muller@nokia.com) 53 54 */ 55 56 #include <linux/module.h> 57 #include <linux/kernel.h> 58 #include <linux/skbuff.h> 59 #include <linux/pci.h> 60 #include <linux/errno.h> 61 #include <linux/types.h> 62 #include <linux/string.h> 63 #include <linux/delay.h> 64 #include <linux/init.h> 65 #include <linux/mm.h> 66 #include <linux/sched.h> 67 #include <linux/timer.h> 68 #include <linux/interrupt.h> 69 #include <linux/dma-mapping.h> 70 #include <linux/bitmap.h> 71 #include <linux/slab.h> 72 #include <asm/io.h> 73 #include <asm/byteorder.h> 74 #include <asm/uaccess.h> 75 76 #include <linux/atmdev.h> 77 #include <linux/atm.h> 78 #include <linux/sonet.h> 79 80 #undef USE_SCATTERGATHER 81 #undef USE_CHECKSUM_HW /* still confused about this */ 82 /* #undef HE_DEBUG */ 83 84 #include "he.h" 85 #include "suni.h" 86 #include <linux/atm_he.h> 87 88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args) 89 90 #ifdef HE_DEBUG 91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args) 92 #else /* !HE_DEBUG */ 93 #define HPRINTK(fmt,args...) do { } while (0) 94 #endif /* HE_DEBUG */ 95 96 /* declarations */ 97 98 static int he_open(struct atm_vcc *vcc); 99 static void he_close(struct atm_vcc *vcc); 100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb); 101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg); 102 static irqreturn_t he_irq_handler(int irq, void *dev_id); 103 static void he_tasklet(unsigned long data); 104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page); 105 static int he_start(struct atm_dev *dev); 106 static void he_stop(struct he_dev *dev); 107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long); 108 static unsigned char he_phy_get(struct atm_dev *, unsigned long); 109 110 static u8 read_prom_byte(struct he_dev *he_dev, int addr); 111 112 /* globals */ 113 114 static struct he_dev *he_devs; 115 static bool disable64; 116 static short nvpibits = -1; 117 static short nvcibits = -1; 118 static short rx_skb_reserve = 16; 119 static bool irq_coalesce = true; 120 static bool sdh; 121 122 /* Read from EEPROM = 0000 0011b */ 123 static unsigned int readtab[] = { 124 CS_HIGH | CLK_HIGH, 125 CS_LOW | CLK_LOW, 126 CLK_HIGH, /* 0 */ 127 CLK_LOW, 128 CLK_HIGH, /* 0 */ 129 CLK_LOW, 130 CLK_HIGH, /* 0 */ 131 CLK_LOW, 132 CLK_HIGH, /* 0 */ 133 CLK_LOW, 134 CLK_HIGH, /* 0 */ 135 CLK_LOW, 136 CLK_HIGH, /* 0 */ 137 CLK_LOW | SI_HIGH, 138 CLK_HIGH | SI_HIGH, /* 1 */ 139 CLK_LOW | SI_HIGH, 140 CLK_HIGH | SI_HIGH /* 1 */ 141 }; 142 143 /* Clock to read from/write to the EEPROM */ 144 static unsigned int clocktab[] = { 145 CLK_LOW, 146 CLK_HIGH, 147 CLK_LOW, 148 CLK_HIGH, 149 CLK_LOW, 150 CLK_HIGH, 151 CLK_LOW, 152 CLK_HIGH, 153 CLK_LOW, 154 CLK_HIGH, 155 CLK_LOW, 156 CLK_HIGH, 157 CLK_LOW, 158 CLK_HIGH, 159 CLK_LOW, 160 CLK_HIGH, 161 CLK_LOW 162 }; 163 164 static struct atmdev_ops he_ops = 165 { 166 .open = he_open, 167 .close = he_close, 168 .ioctl = he_ioctl, 169 .send = he_send, 170 .phy_put = he_phy_put, 171 .phy_get = he_phy_get, 172 .proc_read = he_proc_read, 173 .owner = THIS_MODULE 174 }; 175 176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0) 177 #define he_readl(dev, reg) readl((dev)->membase + (reg)) 178 179 /* section 2.12 connection memory access */ 180 181 static __inline__ void 182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr, 183 unsigned flags) 184 { 185 he_writel(he_dev, val, CON_DAT); 186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */ 187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL); 188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 189 } 190 191 #define he_writel_rcm(dev, val, reg) \ 192 he_writel_internal(dev, val, reg, CON_CTL_RCM) 193 194 #define he_writel_tcm(dev, val, reg) \ 195 he_writel_internal(dev, val, reg, CON_CTL_TCM) 196 197 #define he_writel_mbox(dev, val, reg) \ 198 he_writel_internal(dev, val, reg, CON_CTL_MBOX) 199 200 static unsigned 201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags) 202 { 203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL); 204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY); 205 return he_readl(he_dev, CON_DAT); 206 } 207 208 #define he_readl_rcm(dev, reg) \ 209 he_readl_internal(dev, reg, CON_CTL_RCM) 210 211 #define he_readl_tcm(dev, reg) \ 212 he_readl_internal(dev, reg, CON_CTL_TCM) 213 214 #define he_readl_mbox(dev, reg) \ 215 he_readl_internal(dev, reg, CON_CTL_MBOX) 216 217 218 /* figure 2.2 connection id */ 219 220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff) 221 222 /* 2.5.1 per connection transmit state registers */ 223 224 #define he_writel_tsr0(dev, val, cid) \ 225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0) 226 #define he_readl_tsr0(dev, cid) \ 227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0) 228 229 #define he_writel_tsr1(dev, val, cid) \ 230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1) 231 232 #define he_writel_tsr2(dev, val, cid) \ 233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2) 234 235 #define he_writel_tsr3(dev, val, cid) \ 236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3) 237 238 #define he_writel_tsr4(dev, val, cid) \ 239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4) 240 241 /* from page 2-20 242 * 243 * NOTE While the transmit connection is active, bits 23 through 0 244 * of this register must not be written by the host. Byte 245 * enables should be used during normal operation when writing 246 * the most significant byte. 247 */ 248 249 #define he_writel_tsr4_upper(dev, val, cid) \ 250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \ 251 CON_CTL_TCM \ 252 | CON_BYTE_DISABLE_2 \ 253 | CON_BYTE_DISABLE_1 \ 254 | CON_BYTE_DISABLE_0) 255 256 #define he_readl_tsr4(dev, cid) \ 257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4) 258 259 #define he_writel_tsr5(dev, val, cid) \ 260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5) 261 262 #define he_writel_tsr6(dev, val, cid) \ 263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6) 264 265 #define he_writel_tsr7(dev, val, cid) \ 266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7) 267 268 269 #define he_writel_tsr8(dev, val, cid) \ 270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0) 271 272 #define he_writel_tsr9(dev, val, cid) \ 273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1) 274 275 #define he_writel_tsr10(dev, val, cid) \ 276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2) 277 278 #define he_writel_tsr11(dev, val, cid) \ 279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3) 280 281 282 #define he_writel_tsr12(dev, val, cid) \ 283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0) 284 285 #define he_writel_tsr13(dev, val, cid) \ 286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1) 287 288 289 #define he_writel_tsr14(dev, val, cid) \ 290 he_writel_tcm(dev, val, CONFIG_TSRD | cid) 291 292 #define he_writel_tsr14_upper(dev, val, cid) \ 293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \ 294 CON_CTL_TCM \ 295 | CON_BYTE_DISABLE_2 \ 296 | CON_BYTE_DISABLE_1 \ 297 | CON_BYTE_DISABLE_0) 298 299 /* 2.7.1 per connection receive state registers */ 300 301 #define he_writel_rsr0(dev, val, cid) \ 302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0) 303 #define he_readl_rsr0(dev, cid) \ 304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0) 305 306 #define he_writel_rsr1(dev, val, cid) \ 307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1) 308 309 #define he_writel_rsr2(dev, val, cid) \ 310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2) 311 312 #define he_writel_rsr3(dev, val, cid) \ 313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3) 314 315 #define he_writel_rsr4(dev, val, cid) \ 316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4) 317 318 #define he_writel_rsr5(dev, val, cid) \ 319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5) 320 321 #define he_writel_rsr6(dev, val, cid) \ 322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6) 323 324 #define he_writel_rsr7(dev, val, cid) \ 325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7) 326 327 static __inline__ struct atm_vcc* 328 __find_vcc(struct he_dev *he_dev, unsigned cid) 329 { 330 struct hlist_head *head; 331 struct atm_vcc *vcc; 332 struct sock *s; 333 short vpi; 334 int vci; 335 336 vpi = cid >> he_dev->vcibits; 337 vci = cid & ((1 << he_dev->vcibits) - 1); 338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)]; 339 340 sk_for_each(s, head) { 341 vcc = atm_sk(s); 342 if (vcc->dev == he_dev->atm_dev && 343 vcc->vci == vci && vcc->vpi == vpi && 344 vcc->qos.rxtp.traffic_class != ATM_NONE) { 345 return vcc; 346 } 347 } 348 return NULL; 349 } 350 351 static int he_init_one(struct pci_dev *pci_dev, 352 const struct pci_device_id *pci_ent) 353 { 354 struct atm_dev *atm_dev = NULL; 355 struct he_dev *he_dev = NULL; 356 int err = 0; 357 358 printk(KERN_INFO "ATM he driver\n"); 359 360 if (pci_enable_device(pci_dev)) 361 return -EIO; 362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) { 363 printk(KERN_WARNING "he: no suitable dma available\n"); 364 err = -EIO; 365 goto init_one_failure; 366 } 367 368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL); 369 if (!atm_dev) { 370 err = -ENODEV; 371 goto init_one_failure; 372 } 373 pci_set_drvdata(pci_dev, atm_dev); 374 375 he_dev = kzalloc(sizeof(struct he_dev), 376 GFP_KERNEL); 377 if (!he_dev) { 378 err = -ENOMEM; 379 goto init_one_failure; 380 } 381 he_dev->pci_dev = pci_dev; 382 he_dev->atm_dev = atm_dev; 383 he_dev->atm_dev->dev_data = he_dev; 384 atm_dev->dev_data = he_dev; 385 he_dev->number = atm_dev->number; 386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev); 387 spin_lock_init(&he_dev->global_lock); 388 389 if (he_start(atm_dev)) { 390 he_stop(he_dev); 391 err = -ENODEV; 392 goto init_one_failure; 393 } 394 he_dev->next = NULL; 395 if (he_devs) 396 he_dev->next = he_devs; 397 he_devs = he_dev; 398 return 0; 399 400 init_one_failure: 401 if (atm_dev) 402 atm_dev_deregister(atm_dev); 403 kfree(he_dev); 404 pci_disable_device(pci_dev); 405 return err; 406 } 407 408 static void he_remove_one(struct pci_dev *pci_dev) 409 { 410 struct atm_dev *atm_dev; 411 struct he_dev *he_dev; 412 413 atm_dev = pci_get_drvdata(pci_dev); 414 he_dev = HE_DEV(atm_dev); 415 416 /* need to remove from he_devs */ 417 418 he_stop(he_dev); 419 atm_dev_deregister(atm_dev); 420 kfree(he_dev); 421 422 pci_disable_device(pci_dev); 423 } 424 425 426 static unsigned 427 rate_to_atmf(unsigned rate) /* cps to atm forum format */ 428 { 429 #define NONZERO (1 << 14) 430 431 unsigned exp = 0; 432 433 if (rate == 0) 434 return 0; 435 436 rate <<= 9; 437 while (rate > 0x3ff) { 438 ++exp; 439 rate >>= 1; 440 } 441 442 return (NONZERO | (exp << 9) | (rate & 0x1ff)); 443 } 444 445 static void he_init_rx_lbfp0(struct he_dev *he_dev) 446 { 447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row; 451 452 lbufd_index = 0; 453 lbm_offset = he_readl(he_dev, RCMLBM_BA); 454 455 he_writel(he_dev, lbufd_index, RLBF0_H); 456 457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) { 458 lbufd_index += 2; 459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 460 461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 463 464 if (++lbuf_count == lbufs_per_row) { 465 lbuf_count = 0; 466 row_offset += he_dev->bytes_per_row; 467 } 468 lbm_offset += 4; 469 } 470 471 he_writel(he_dev, lbufd_index - 2, RLBF0_T); 472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C); 473 } 474 475 static void he_init_rx_lbfp1(struct he_dev *he_dev) 476 { 477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row; 481 482 lbufd_index = 1; 483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 484 485 he_writel(he_dev, lbufd_index, RLBF1_H); 486 487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) { 488 lbufd_index += 2; 489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 490 491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 493 494 if (++lbuf_count == lbufs_per_row) { 495 lbuf_count = 0; 496 row_offset += he_dev->bytes_per_row; 497 } 498 lbm_offset += 4; 499 } 500 501 he_writel(he_dev, lbufd_index - 2, RLBF1_T); 502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C); 503 } 504 505 static void he_init_tx_lbfp(struct he_dev *he_dev) 506 { 507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count; 508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf; 509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD; 510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row; 511 512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs; 513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index); 514 515 he_writel(he_dev, lbufd_index, TLBF_H); 516 517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) { 518 lbufd_index += 1; 519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32; 520 521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset); 522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1); 523 524 if (++lbuf_count == lbufs_per_row) { 525 lbuf_count = 0; 526 row_offset += he_dev->bytes_per_row; 527 } 528 lbm_offset += 2; 529 } 530 531 he_writel(he_dev, lbufd_index - 1, TLBF_T); 532 } 533 534 static int he_init_tpdrq(struct he_dev *he_dev) 535 { 536 he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), 538 &he_dev->tpdrq_phys, GFP_KERNEL); 539 if (he_dev->tpdrq_base == NULL) { 540 hprintk("failed to alloc tpdrq\n"); 541 return -ENOMEM; 542 } 543 544 he_dev->tpdrq_tail = he_dev->tpdrq_base; 545 he_dev->tpdrq_head = he_dev->tpdrq_base; 546 547 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H); 548 he_writel(he_dev, 0, TPDRQ_T); 549 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S); 550 551 return 0; 552 } 553 554 static void he_init_cs_block(struct he_dev *he_dev) 555 { 556 unsigned clock, rate, delta; 557 int reg; 558 559 /* 5.1.7 cs block initialization */ 560 561 for (reg = 0; reg < 0x20; ++reg) 562 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg); 563 564 /* rate grid timer reload values */ 565 566 clock = he_is622(he_dev) ? 66667000 : 50000000; 567 rate = he_dev->atm_dev->link_rate; 568 delta = rate / 16 / 2; 569 570 for (reg = 0; reg < 0x10; ++reg) { 571 /* 2.4 internal transmit function 572 * 573 * we initialize the first row in the rate grid. 574 * values are period (in clock cycles) of timer 575 */ 576 unsigned period = clock / rate; 577 578 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg); 579 rate -= delta; 580 } 581 582 if (he_is622(he_dev)) { 583 /* table 5.2 (4 cells per lbuf) */ 584 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0); 585 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1); 586 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2); 587 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3); 588 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4); 589 590 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 591 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0); 592 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1); 593 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2); 594 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 595 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1); 596 he_writel_mbox(he_dev, 0x14585, CS_RTFWR); 597 598 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 599 600 /* table 5.8 */ 601 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET); 602 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX); 603 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN); 604 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC); 605 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC); 606 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL); 607 608 /* table 5.9 */ 609 he_writel_mbox(he_dev, 0x5, CS_OTPPER); 610 he_writel_mbox(he_dev, 0x14, CS_OTWPER); 611 } else { 612 /* table 5.1 (4 cells per lbuf) */ 613 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0); 614 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1); 615 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2); 616 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3); 617 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4); 618 619 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */ 620 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0); 621 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1); 622 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2); 623 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0); 624 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1); 625 he_writel_mbox(he_dev, 0xf424, CS_RTFWR); 626 627 he_writel_mbox(he_dev, 0x4680, CS_RTATR); 628 629 /* table 5.8 */ 630 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET); 631 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX); 632 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN); 633 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC); 634 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC); 635 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL); 636 637 /* table 5.9 */ 638 he_writel_mbox(he_dev, 0x6, CS_OTPPER); 639 he_writel_mbox(he_dev, 0x1e, CS_OTWPER); 640 } 641 642 he_writel_mbox(he_dev, 0x8, CS_OTTLIM); 643 644 for (reg = 0; reg < 0x8; ++reg) 645 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg); 646 647 } 648 649 static int he_init_cs_block_rcm(struct he_dev *he_dev) 650 { 651 unsigned (*rategrid)[16][16]; 652 unsigned rate, delta; 653 int i, j, reg; 654 655 unsigned rate_atmf, exp, man; 656 unsigned long long rate_cps; 657 int mult, buf, buf_limit = 4; 658 659 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL); 660 if (!rategrid) 661 return -ENOMEM; 662 663 /* initialize rate grid group table */ 664 665 for (reg = 0x0; reg < 0xff; ++reg) 666 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 667 668 /* initialize rate controller groups */ 669 670 for (reg = 0x100; reg < 0x1ff; ++reg) 671 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg); 672 673 /* initialize tNrm lookup table */ 674 675 /* the manual makes reference to a routine in a sample driver 676 for proper configuration; fortunately, we only need this 677 in order to support abr connection */ 678 679 /* initialize rate to group table */ 680 681 rate = he_dev->atm_dev->link_rate; 682 delta = rate / 32; 683 684 /* 685 * 2.4 transmit internal functions 686 * 687 * we construct a copy of the rate grid used by the scheduler 688 * in order to construct the rate to group table below 689 */ 690 691 for (j = 0; j < 16; j++) { 692 (*rategrid)[0][j] = rate; 693 rate -= delta; 694 } 695 696 for (i = 1; i < 16; i++) 697 for (j = 0; j < 16; j++) 698 if (i > 14) 699 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4; 700 else 701 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2; 702 703 /* 704 * 2.4 transmit internal function 705 * 706 * this table maps the upper 5 bits of exponent and mantissa 707 * of the atm forum representation of the rate into an index 708 * on rate grid 709 */ 710 711 rate_atmf = 0; 712 while (rate_atmf < 0x400) { 713 man = (rate_atmf & 0x1f) << 4; 714 exp = rate_atmf >> 5; 715 716 /* 717 instead of '/ 512', use '>> 9' to prevent a call 718 to divdu3 on x86 platforms 719 */ 720 rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9; 721 722 if (rate_cps < 10) 723 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */ 724 725 for (i = 255; i > 0; i--) 726 if ((*rategrid)[i/16][i%16] >= rate_cps) 727 break; /* pick nearest rate instead? */ 728 729 /* 730 * each table entry is 16 bits: (rate grid index (8 bits) 731 * and a buffer limit (8 bits) 732 * there are two table entries in each 32-bit register 733 */ 734 735 #ifdef notdef 736 buf = rate_cps * he_dev->tx_numbuffs / 737 (he_dev->atm_dev->link_rate * 2); 738 #else 739 /* this is pretty, but avoids _divdu3 and is mostly correct */ 740 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR; 741 if (rate_cps > (272 * mult)) 742 buf = 4; 743 else if (rate_cps > (204 * mult)) 744 buf = 3; 745 else if (rate_cps > (136 * mult)) 746 buf = 2; 747 else if (rate_cps > (68 * mult)) 748 buf = 1; 749 else 750 buf = 0; 751 #endif 752 if (buf > buf_limit) 753 buf = buf_limit; 754 reg = (reg << 16) | ((i << 8) | buf); 755 756 #define RTGTBL_OFFSET 0x400 757 758 if (rate_atmf & 0x1) 759 he_writel_rcm(he_dev, reg, 760 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1)); 761 762 ++rate_atmf; 763 } 764 765 kfree(rategrid); 766 return 0; 767 } 768 769 static int he_init_group(struct he_dev *he_dev, int group) 770 { 771 struct he_buff *heb, *next; 772 dma_addr_t mapping; 773 int i; 774 775 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 776 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 777 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 778 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 779 G0_RBPS_BS + (group * 32)); 780 781 /* bitmap table */ 782 he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE), 783 sizeof(*he_dev->rbpl_table), 784 GFP_KERNEL); 785 if (!he_dev->rbpl_table) { 786 hprintk("unable to allocate rbpl bitmap table\n"); 787 return -ENOMEM; 788 } 789 bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE); 790 791 /* rbpl_virt 64-bit pointers */ 792 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE, 793 sizeof(*he_dev->rbpl_virt), 794 GFP_KERNEL); 795 if (!he_dev->rbpl_virt) { 796 hprintk("unable to allocate rbpl virt table\n"); 797 goto out_free_rbpl_table; 798 } 799 800 /* large buffer pool */ 801 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev, 802 CONFIG_RBPL_BUFSIZE, 64, 0); 803 if (he_dev->rbpl_pool == NULL) { 804 hprintk("unable to create rbpl pool\n"); 805 goto out_free_rbpl_virt; 806 } 807 808 he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 809 CONFIG_RBPL_SIZE * sizeof(struct he_rbp), 810 &he_dev->rbpl_phys, GFP_KERNEL); 811 if (he_dev->rbpl_base == NULL) { 812 hprintk("failed to alloc rbpl_base\n"); 813 goto out_destroy_rbpl_pool; 814 } 815 816 INIT_LIST_HEAD(&he_dev->rbpl_outstanding); 817 818 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) { 819 820 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping); 821 if (!heb) 822 goto out_free_rbpl; 823 heb->mapping = mapping; 824 list_add(&heb->entry, &he_dev->rbpl_outstanding); 825 826 set_bit(i, he_dev->rbpl_table); 827 he_dev->rbpl_virt[i] = heb; 828 he_dev->rbpl_hint = i + 1; 829 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET; 830 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data); 831 } 832 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1]; 833 834 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32)); 835 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), 836 G0_RBPL_T + (group * 32)); 837 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4, 838 G0_RBPL_BS + (group * 32)); 839 he_writel(he_dev, 840 RBP_THRESH(CONFIG_RBPL_THRESH) | 841 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) | 842 RBP_INT_ENB, 843 G0_RBPL_QI + (group * 32)); 844 845 /* rx buffer ready queue */ 846 847 he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 848 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 849 &he_dev->rbrq_phys, GFP_KERNEL); 850 if (he_dev->rbrq_base == NULL) { 851 hprintk("failed to allocate rbrq\n"); 852 goto out_free_rbpl; 853 } 854 855 he_dev->rbrq_head = he_dev->rbrq_base; 856 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16)); 857 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16)); 858 he_writel(he_dev, 859 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1), 860 G0_RBRQ_Q + (group * 16)); 861 if (irq_coalesce) { 862 hprintk("coalescing interrupts\n"); 863 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7), 864 G0_RBRQ_I + (group * 16)); 865 } else 866 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1), 867 G0_RBRQ_I + (group * 16)); 868 869 /* tx buffer ready queue */ 870 871 he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 872 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 873 &he_dev->tbrq_phys, GFP_KERNEL); 874 if (he_dev->tbrq_base == NULL) { 875 hprintk("failed to allocate tbrq\n"); 876 goto out_free_rbpq_base; 877 } 878 879 he_dev->tbrq_head = he_dev->tbrq_base; 880 881 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16)); 882 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16)); 883 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16)); 884 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16)); 885 886 return 0; 887 888 out_free_rbpq_base: 889 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * 890 sizeof(struct he_rbrq), he_dev->rbrq_base, 891 he_dev->rbrq_phys); 892 out_free_rbpl: 893 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 894 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 895 896 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE * 897 sizeof(struct he_rbp), he_dev->rbpl_base, 898 he_dev->rbpl_phys); 899 out_destroy_rbpl_pool: 900 dma_pool_destroy(he_dev->rbpl_pool); 901 out_free_rbpl_virt: 902 kfree(he_dev->rbpl_virt); 903 out_free_rbpl_table: 904 kfree(he_dev->rbpl_table); 905 906 return -ENOMEM; 907 } 908 909 static int he_init_irq(struct he_dev *he_dev) 910 { 911 int i; 912 913 /* 2.9.3.5 tail offset for each interrupt queue is located after the 914 end of the interrupt queue */ 915 916 he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev, 917 (CONFIG_IRQ_SIZE + 1) 918 * sizeof(struct he_irq), 919 &he_dev->irq_phys, 920 GFP_KERNEL); 921 if (he_dev->irq_base == NULL) { 922 hprintk("failed to allocate irq\n"); 923 return -ENOMEM; 924 } 925 he_dev->irq_tailoffset = (unsigned *) 926 &he_dev->irq_base[CONFIG_IRQ_SIZE]; 927 *he_dev->irq_tailoffset = 0; 928 he_dev->irq_head = he_dev->irq_base; 929 he_dev->irq_tail = he_dev->irq_base; 930 931 for (i = 0; i < CONFIG_IRQ_SIZE; ++i) 932 he_dev->irq_base[i].isw = ITYPE_INVALID; 933 934 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE); 935 he_writel(he_dev, 936 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH), 937 IRQ0_HEAD); 938 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL); 939 he_writel(he_dev, 0x0, IRQ0_DATA); 940 941 he_writel(he_dev, 0x0, IRQ1_BASE); 942 he_writel(he_dev, 0x0, IRQ1_HEAD); 943 he_writel(he_dev, 0x0, IRQ1_CNTL); 944 he_writel(he_dev, 0x0, IRQ1_DATA); 945 946 he_writel(he_dev, 0x0, IRQ2_BASE); 947 he_writel(he_dev, 0x0, IRQ2_HEAD); 948 he_writel(he_dev, 0x0, IRQ2_CNTL); 949 he_writel(he_dev, 0x0, IRQ2_DATA); 950 951 he_writel(he_dev, 0x0, IRQ3_BASE); 952 he_writel(he_dev, 0x0, IRQ3_HEAD); 953 he_writel(he_dev, 0x0, IRQ3_CNTL); 954 he_writel(he_dev, 0x0, IRQ3_DATA); 955 956 /* 2.9.3.2 interrupt queue mapping registers */ 957 958 he_writel(he_dev, 0x0, GRP_10_MAP); 959 he_writel(he_dev, 0x0, GRP_32_MAP); 960 he_writel(he_dev, 0x0, GRP_54_MAP); 961 he_writel(he_dev, 0x0, GRP_76_MAP); 962 963 if (request_irq(he_dev->pci_dev->irq, 964 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) { 965 hprintk("irq %d already in use\n", he_dev->pci_dev->irq); 966 return -EINVAL; 967 } 968 969 he_dev->irq = he_dev->pci_dev->irq; 970 971 return 0; 972 } 973 974 static int he_start(struct atm_dev *dev) 975 { 976 struct he_dev *he_dev; 977 struct pci_dev *pci_dev; 978 unsigned long membase; 979 980 u16 command; 981 u32 gen_cntl_0, host_cntl, lb_swap; 982 u8 cache_size, timer; 983 984 unsigned err; 985 unsigned int status, reg; 986 int i, group; 987 988 he_dev = HE_DEV(dev); 989 pci_dev = he_dev->pci_dev; 990 991 membase = pci_resource_start(pci_dev, 0); 992 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq); 993 994 /* 995 * pci bus controller initialization 996 */ 997 998 /* 4.3 pci bus controller-specific initialization */ 999 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) { 1000 hprintk("can't read GEN_CNTL_0\n"); 1001 return -EINVAL; 1002 } 1003 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT); 1004 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) { 1005 hprintk("can't write GEN_CNTL_0.\n"); 1006 return -EINVAL; 1007 } 1008 1009 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) { 1010 hprintk("can't read PCI_COMMAND.\n"); 1011 return -EINVAL; 1012 } 1013 1014 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE); 1015 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) { 1016 hprintk("can't enable memory.\n"); 1017 return -EINVAL; 1018 } 1019 1020 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) { 1021 hprintk("can't read cache line size?\n"); 1022 return -EINVAL; 1023 } 1024 1025 if (cache_size < 16) { 1026 cache_size = 16; 1027 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size)) 1028 hprintk("can't set cache line size to %d\n", cache_size); 1029 } 1030 1031 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) { 1032 hprintk("can't read latency timer?\n"); 1033 return -EINVAL; 1034 } 1035 1036 /* from table 3.9 1037 * 1038 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE 1039 * 1040 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles] 1041 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles] 1042 * 1043 */ 1044 #define LAT_TIMER 209 1045 if (timer < LAT_TIMER) { 1046 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER); 1047 timer = LAT_TIMER; 1048 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer)) 1049 hprintk("can't set latency timer to %d\n", timer); 1050 } 1051 1052 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) { 1053 hprintk("can't set up page mapping\n"); 1054 return -EINVAL; 1055 } 1056 1057 /* 4.4 card reset */ 1058 he_writel(he_dev, 0x0, RESET_CNTL); 1059 he_writel(he_dev, 0xff, RESET_CNTL); 1060 1061 msleep(16); /* 16 ms */ 1062 status = he_readl(he_dev, RESET_CNTL); 1063 if ((status & BOARD_RST_STATUS) == 0) { 1064 hprintk("reset failed\n"); 1065 return -EINVAL; 1066 } 1067 1068 /* 4.5 set bus width */ 1069 host_cntl = he_readl(he_dev, HOST_CNTL); 1070 if (host_cntl & PCI_BUS_SIZE64) 1071 gen_cntl_0 |= ENBL_64; 1072 else 1073 gen_cntl_0 &= ~ENBL_64; 1074 1075 if (disable64 == 1) { 1076 hprintk("disabling 64-bit pci bus transfers\n"); 1077 gen_cntl_0 &= ~ENBL_64; 1078 } 1079 1080 if (gen_cntl_0 & ENBL_64) 1081 hprintk("64-bit transfers enabled\n"); 1082 1083 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1084 1085 /* 4.7 read prom contents */ 1086 for (i = 0; i < PROD_ID_LEN; ++i) 1087 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i); 1088 1089 he_dev->media = read_prom_byte(he_dev, MEDIA); 1090 1091 for (i = 0; i < 6; ++i) 1092 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i); 1093 1094 hprintk("%s%s, %pM\n", he_dev->prod_id, 1095 he_dev->media & 0x40 ? "SM" : "MM", dev->esi); 1096 he_dev->atm_dev->link_rate = he_is622(he_dev) ? 1097 ATM_OC12_PCR : ATM_OC3_PCR; 1098 1099 /* 4.6 set host endianess */ 1100 lb_swap = he_readl(he_dev, LB_SWAP); 1101 if (he_is622(he_dev)) 1102 lb_swap &= ~XFER_SIZE; /* 4 cells */ 1103 else 1104 lb_swap |= XFER_SIZE; /* 8 cells */ 1105 #ifdef __BIG_ENDIAN 1106 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST; 1107 #else 1108 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST | 1109 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP); 1110 #endif /* __BIG_ENDIAN */ 1111 he_writel(he_dev, lb_swap, LB_SWAP); 1112 1113 /* 4.8 sdram controller initialization */ 1114 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL); 1115 1116 /* 4.9 initialize rnum value */ 1117 lb_swap |= SWAP_RNUM_MAX(0xf); 1118 he_writel(he_dev, lb_swap, LB_SWAP); 1119 1120 /* 4.10 initialize the interrupt queues */ 1121 if ((err = he_init_irq(he_dev)) != 0) 1122 return err; 1123 1124 /* 4.11 enable pci bus controller state machines */ 1125 host_cntl |= (OUTFF_ENB | CMDFF_ENB | 1126 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB); 1127 he_writel(he_dev, host_cntl, HOST_CNTL); 1128 1129 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB; 1130 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1131 1132 /* 1133 * atm network controller initialization 1134 */ 1135 1136 /* 5.1.1 generic configuration state */ 1137 1138 /* 1139 * local (cell) buffer memory map 1140 * 1141 * HE155 HE622 1142 * 1143 * 0 ____________1023 bytes 0 _______________________2047 bytes 1144 * | | | | | 1145 * | utility | | rx0 | | 1146 * 5|____________| 255|___________________| u | 1147 * 6| | 256| | t | 1148 * | | | | i | 1149 * | rx0 | row | tx | l | 1150 * | | | | i | 1151 * | | 767|___________________| t | 1152 * 517|____________| 768| | y | 1153 * row 518| | | rx1 | | 1154 * | | 1023|___________________|___| 1155 * | | 1156 * | tx | 1157 * | | 1158 * | | 1159 * 1535|____________| 1160 * 1536| | 1161 * | rx1 | 1162 * 2047|____________| 1163 * 1164 */ 1165 1166 /* total 4096 connections */ 1167 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS; 1168 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS; 1169 1170 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) { 1171 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS); 1172 return -ENODEV; 1173 } 1174 1175 if (nvpibits != -1) { 1176 he_dev->vpibits = nvpibits; 1177 he_dev->vcibits = HE_MAXCIDBITS - nvpibits; 1178 } 1179 1180 if (nvcibits != -1) { 1181 he_dev->vcibits = nvcibits; 1182 he_dev->vpibits = HE_MAXCIDBITS - nvcibits; 1183 } 1184 1185 1186 if (he_is622(he_dev)) { 1187 he_dev->cells_per_row = 40; 1188 he_dev->bytes_per_row = 2048; 1189 he_dev->r0_numrows = 256; 1190 he_dev->tx_numrows = 512; 1191 he_dev->r1_numrows = 256; 1192 he_dev->r0_startrow = 0; 1193 he_dev->tx_startrow = 256; 1194 he_dev->r1_startrow = 768; 1195 } else { 1196 he_dev->cells_per_row = 20; 1197 he_dev->bytes_per_row = 1024; 1198 he_dev->r0_numrows = 512; 1199 he_dev->tx_numrows = 1018; 1200 he_dev->r1_numrows = 512; 1201 he_dev->r0_startrow = 6; 1202 he_dev->tx_startrow = 518; 1203 he_dev->r1_startrow = 1536; 1204 } 1205 1206 he_dev->cells_per_lbuf = 4; 1207 he_dev->buffer_limit = 4; 1208 he_dev->r0_numbuffs = he_dev->r0_numrows * 1209 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1210 if (he_dev->r0_numbuffs > 2560) 1211 he_dev->r0_numbuffs = 2560; 1212 1213 he_dev->r1_numbuffs = he_dev->r1_numrows * 1214 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1215 if (he_dev->r1_numbuffs > 2560) 1216 he_dev->r1_numbuffs = 2560; 1217 1218 he_dev->tx_numbuffs = he_dev->tx_numrows * 1219 he_dev->cells_per_row / he_dev->cells_per_lbuf; 1220 if (he_dev->tx_numbuffs > 5120) 1221 he_dev->tx_numbuffs = 5120; 1222 1223 /* 5.1.2 configure hardware dependent registers */ 1224 1225 he_writel(he_dev, 1226 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) | 1227 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) | 1228 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) | 1229 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)), 1230 LBARB); 1231 1232 he_writel(he_dev, BANK_ON | 1233 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)), 1234 SDRAMCON); 1235 1236 he_writel(he_dev, 1237 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) | 1238 RM_RW_WAIT(1), RCMCONFIG); 1239 he_writel(he_dev, 1240 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) | 1241 TM_RW_WAIT(1), TCMCONFIG); 1242 1243 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG); 1244 1245 he_writel(he_dev, 1246 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) | 1247 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) | 1248 RX_VALVP(he_dev->vpibits) | 1249 RX_VALVC(he_dev->vcibits), RC_CONFIG); 1250 1251 he_writel(he_dev, DRF_THRESH(0x20) | 1252 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) | 1253 TX_VCI_MASK(he_dev->vcibits) | 1254 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG); 1255 1256 he_writel(he_dev, 0x0, TXAAL5_PROTO); 1257 1258 he_writel(he_dev, PHY_INT_ENB | 1259 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)), 1260 RH_CONFIG); 1261 1262 /* 5.1.3 initialize connection memory */ 1263 1264 for (i = 0; i < TCM_MEM_SIZE; ++i) 1265 he_writel_tcm(he_dev, 0, i); 1266 1267 for (i = 0; i < RCM_MEM_SIZE; ++i) 1268 he_writel_rcm(he_dev, 0, i); 1269 1270 /* 1271 * transmit connection memory map 1272 * 1273 * tx memory 1274 * 0x0 ___________________ 1275 * | | 1276 * | | 1277 * | TSRa | 1278 * | | 1279 * | | 1280 * 0x8000|___________________| 1281 * | | 1282 * | TSRb | 1283 * 0xc000|___________________| 1284 * | | 1285 * | TSRc | 1286 * 0xe000|___________________| 1287 * | TSRd | 1288 * 0xf000|___________________| 1289 * | tmABR | 1290 * 0x10000|___________________| 1291 * | | 1292 * | tmTPD | 1293 * |___________________| 1294 * | | 1295 * .... 1296 * 0x1ffff|___________________| 1297 * 1298 * 1299 */ 1300 1301 he_writel(he_dev, CONFIG_TSRB, TSRB_BA); 1302 he_writel(he_dev, CONFIG_TSRC, TSRC_BA); 1303 he_writel(he_dev, CONFIG_TSRD, TSRD_BA); 1304 he_writel(he_dev, CONFIG_TMABR, TMABR_BA); 1305 he_writel(he_dev, CONFIG_TPDBA, TPD_BA); 1306 1307 1308 /* 1309 * receive connection memory map 1310 * 1311 * 0x0 ___________________ 1312 * | | 1313 * | | 1314 * | RSRa | 1315 * | | 1316 * | | 1317 * 0x8000|___________________| 1318 * | | 1319 * | rx0/1 | 1320 * | LBM | link lists of local 1321 * | tx | buffer memory 1322 * | | 1323 * 0xd000|___________________| 1324 * | | 1325 * | rmABR | 1326 * 0xe000|___________________| 1327 * | | 1328 * | RSRb | 1329 * |___________________| 1330 * | | 1331 * .... 1332 * 0xffff|___________________| 1333 */ 1334 1335 he_writel(he_dev, 0x08000, RCMLBM_BA); 1336 he_writel(he_dev, 0x0e000, RCMRSRB_BA); 1337 he_writel(he_dev, 0x0d800, RCMABR_BA); 1338 1339 /* 5.1.4 initialize local buffer free pools linked lists */ 1340 1341 he_init_rx_lbfp0(he_dev); 1342 he_init_rx_lbfp1(he_dev); 1343 1344 he_writel(he_dev, 0x0, RLBC_H); 1345 he_writel(he_dev, 0x0, RLBC_T); 1346 he_writel(he_dev, 0x0, RLBC_H2); 1347 1348 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */ 1349 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */ 1350 1351 he_init_tx_lbfp(he_dev); 1352 1353 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA); 1354 1355 /* 5.1.5 initialize intermediate receive queues */ 1356 1357 if (he_is622(he_dev)) { 1358 he_writel(he_dev, 0x000f, G0_INMQ_S); 1359 he_writel(he_dev, 0x200f, G0_INMQ_L); 1360 1361 he_writel(he_dev, 0x001f, G1_INMQ_S); 1362 he_writel(he_dev, 0x201f, G1_INMQ_L); 1363 1364 he_writel(he_dev, 0x002f, G2_INMQ_S); 1365 he_writel(he_dev, 0x202f, G2_INMQ_L); 1366 1367 he_writel(he_dev, 0x003f, G3_INMQ_S); 1368 he_writel(he_dev, 0x203f, G3_INMQ_L); 1369 1370 he_writel(he_dev, 0x004f, G4_INMQ_S); 1371 he_writel(he_dev, 0x204f, G4_INMQ_L); 1372 1373 he_writel(he_dev, 0x005f, G5_INMQ_S); 1374 he_writel(he_dev, 0x205f, G5_INMQ_L); 1375 1376 he_writel(he_dev, 0x006f, G6_INMQ_S); 1377 he_writel(he_dev, 0x206f, G6_INMQ_L); 1378 1379 he_writel(he_dev, 0x007f, G7_INMQ_S); 1380 he_writel(he_dev, 0x207f, G7_INMQ_L); 1381 } else { 1382 he_writel(he_dev, 0x0000, G0_INMQ_S); 1383 he_writel(he_dev, 0x0008, G0_INMQ_L); 1384 1385 he_writel(he_dev, 0x0001, G1_INMQ_S); 1386 he_writel(he_dev, 0x0009, G1_INMQ_L); 1387 1388 he_writel(he_dev, 0x0002, G2_INMQ_S); 1389 he_writel(he_dev, 0x000a, G2_INMQ_L); 1390 1391 he_writel(he_dev, 0x0003, G3_INMQ_S); 1392 he_writel(he_dev, 0x000b, G3_INMQ_L); 1393 1394 he_writel(he_dev, 0x0004, G4_INMQ_S); 1395 he_writel(he_dev, 0x000c, G4_INMQ_L); 1396 1397 he_writel(he_dev, 0x0005, G5_INMQ_S); 1398 he_writel(he_dev, 0x000d, G5_INMQ_L); 1399 1400 he_writel(he_dev, 0x0006, G6_INMQ_S); 1401 he_writel(he_dev, 0x000e, G6_INMQ_L); 1402 1403 he_writel(he_dev, 0x0007, G7_INMQ_S); 1404 he_writel(he_dev, 0x000f, G7_INMQ_L); 1405 } 1406 1407 /* 5.1.6 application tunable parameters */ 1408 1409 he_writel(he_dev, 0x0, MCC); 1410 he_writel(he_dev, 0x0, OEC); 1411 he_writel(he_dev, 0x0, DCC); 1412 he_writel(he_dev, 0x0, CEC); 1413 1414 /* 5.1.7 cs block initialization */ 1415 1416 he_init_cs_block(he_dev); 1417 1418 /* 5.1.8 cs block connection memory initialization */ 1419 1420 if (he_init_cs_block_rcm(he_dev) < 0) 1421 return -ENOMEM; 1422 1423 /* 5.1.10 initialize host structures */ 1424 1425 he_init_tpdrq(he_dev); 1426 1427 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev, 1428 sizeof(struct he_tpd), TPD_ALIGNMENT, 0); 1429 if (he_dev->tpd_pool == NULL) { 1430 hprintk("unable to create tpd dma_pool\n"); 1431 return -ENOMEM; 1432 } 1433 1434 INIT_LIST_HEAD(&he_dev->outstanding_tpds); 1435 1436 if (he_init_group(he_dev, 0) != 0) 1437 return -ENOMEM; 1438 1439 for (group = 1; group < HE_NUM_GROUPS; ++group) { 1440 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32)); 1441 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32)); 1442 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32)); 1443 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1444 G0_RBPS_BS + (group * 32)); 1445 1446 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32)); 1447 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32)); 1448 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0), 1449 G0_RBPL_QI + (group * 32)); 1450 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32)); 1451 1452 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16)); 1453 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16)); 1454 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0), 1455 G0_RBRQ_Q + (group * 16)); 1456 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16)); 1457 1458 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16)); 1459 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16)); 1460 he_writel(he_dev, TBRQ_THRESH(0x1), 1461 G0_TBRQ_THRESH + (group * 16)); 1462 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16)); 1463 } 1464 1465 /* host status page */ 1466 1467 he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev, 1468 sizeof(struct he_hsp), 1469 &he_dev->hsp_phys, GFP_KERNEL); 1470 if (he_dev->hsp == NULL) { 1471 hprintk("failed to allocate host status page\n"); 1472 return -ENOMEM; 1473 } 1474 he_writel(he_dev, he_dev->hsp_phys, HSP_BA); 1475 1476 /* initialize framer */ 1477 1478 #ifdef CONFIG_ATM_HE_USE_SUNI 1479 if (he_isMM(he_dev)) 1480 suni_init(he_dev->atm_dev); 1481 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start) 1482 he_dev->atm_dev->phy->start(he_dev->atm_dev); 1483 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1484 1485 if (sdh) { 1486 /* this really should be in suni.c but for now... */ 1487 int val; 1488 1489 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM); 1490 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT); 1491 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM); 1492 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP); 1493 } 1494 1495 /* 5.1.12 enable transmit and receive */ 1496 1497 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1498 reg |= TX_ENABLE|ER_ENABLE; 1499 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1500 1501 reg = he_readl(he_dev, RC_CONFIG); 1502 reg |= RX_ENABLE; 1503 he_writel(he_dev, reg, RC_CONFIG); 1504 1505 for (i = 0; i < HE_NUM_CS_STPER; ++i) { 1506 he_dev->cs_stper[i].inuse = 0; 1507 he_dev->cs_stper[i].pcr = -1; 1508 } 1509 he_dev->total_bw = 0; 1510 1511 1512 /* atm linux initialization */ 1513 1514 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits; 1515 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits; 1516 1517 he_dev->irq_peak = 0; 1518 he_dev->rbrq_peak = 0; 1519 he_dev->rbpl_peak = 0; 1520 he_dev->tbrq_peak = 0; 1521 1522 HPRINTK("hell bent for leather!\n"); 1523 1524 return 0; 1525 } 1526 1527 static void 1528 he_stop(struct he_dev *he_dev) 1529 { 1530 struct he_buff *heb, *next; 1531 struct pci_dev *pci_dev; 1532 u32 gen_cntl_0, reg; 1533 u16 command; 1534 1535 pci_dev = he_dev->pci_dev; 1536 1537 /* disable interrupts */ 1538 1539 if (he_dev->membase) { 1540 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0); 1541 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB); 1542 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0); 1543 1544 tasklet_disable(&he_dev->tasklet); 1545 1546 /* disable recv and transmit */ 1547 1548 reg = he_readl_mbox(he_dev, CS_ERCTL0); 1549 reg &= ~(TX_ENABLE|ER_ENABLE); 1550 he_writel_mbox(he_dev, reg, CS_ERCTL0); 1551 1552 reg = he_readl(he_dev, RC_CONFIG); 1553 reg &= ~(RX_ENABLE); 1554 he_writel(he_dev, reg, RC_CONFIG); 1555 } 1556 1557 #ifdef CONFIG_ATM_HE_USE_SUNI 1558 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop) 1559 he_dev->atm_dev->phy->stop(he_dev->atm_dev); 1560 #endif /* CONFIG_ATM_HE_USE_SUNI */ 1561 1562 if (he_dev->irq) 1563 free_irq(he_dev->irq, he_dev); 1564 1565 if (he_dev->irq_base) 1566 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1) 1567 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys); 1568 1569 if (he_dev->hsp) 1570 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp), 1571 he_dev->hsp, he_dev->hsp_phys); 1572 1573 if (he_dev->rbpl_base) { 1574 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry) 1575 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1576 1577 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE 1578 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys); 1579 } 1580 1581 kfree(he_dev->rbpl_virt); 1582 kfree(he_dev->rbpl_table); 1583 dma_pool_destroy(he_dev->rbpl_pool); 1584 1585 if (he_dev->rbrq_base) 1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), 1587 he_dev->rbrq_base, he_dev->rbrq_phys); 1588 1589 if (he_dev->tbrq_base) 1590 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 1591 he_dev->tbrq_base, he_dev->tbrq_phys); 1592 1593 if (he_dev->tpdrq_base) 1594 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), 1595 he_dev->tpdrq_base, he_dev->tpdrq_phys); 1596 1597 dma_pool_destroy(he_dev->tpd_pool); 1598 1599 if (he_dev->pci_dev) { 1600 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command); 1601 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 1602 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command); 1603 } 1604 1605 if (he_dev->membase) 1606 iounmap(he_dev->membase); 1607 } 1608 1609 static struct he_tpd * 1610 __alloc_tpd(struct he_dev *he_dev) 1611 { 1612 struct he_tpd *tpd; 1613 dma_addr_t mapping; 1614 1615 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping); 1616 if (tpd == NULL) 1617 return NULL; 1618 1619 tpd->status = TPD_ADDR(mapping); 1620 tpd->reserved = 0; 1621 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0; 1622 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0; 1623 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0; 1624 1625 return tpd; 1626 } 1627 1628 #define AAL5_LEN(buf,len) \ 1629 ((((unsigned char *)(buf))[(len)-6] << 8) | \ 1630 (((unsigned char *)(buf))[(len)-5])) 1631 1632 /* 2.10.1.2 receive 1633 * 1634 * aal5 packets can optionally return the tcp checksum in the lower 1635 * 16 bits of the crc (RSR0_TCP_CKSUM) 1636 */ 1637 1638 #define TCP_CKSUM(buf,len) \ 1639 ((((unsigned char *)(buf))[(len)-2] << 8) | \ 1640 (((unsigned char *)(buf))[(len-1)])) 1641 1642 static int 1643 he_service_rbrq(struct he_dev *he_dev, int group) 1644 { 1645 struct he_rbrq *rbrq_tail = (struct he_rbrq *) 1646 ((unsigned long)he_dev->rbrq_base | 1647 he_dev->hsp->group[group].rbrq_tail); 1648 unsigned cid, lastcid = -1; 1649 struct sk_buff *skb; 1650 struct atm_vcc *vcc = NULL; 1651 struct he_vcc *he_vcc; 1652 struct he_buff *heb, *next; 1653 int i; 1654 int pdus_assembled = 0; 1655 int updated = 0; 1656 1657 read_lock(&vcc_sklist_lock); 1658 while (he_dev->rbrq_head != rbrq_tail) { 1659 ++updated; 1660 1661 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n", 1662 he_dev->rbrq_head, group, 1663 RBRQ_ADDR(he_dev->rbrq_head), 1664 RBRQ_BUFLEN(he_dev->rbrq_head), 1665 RBRQ_CID(he_dev->rbrq_head), 1666 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "", 1667 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "", 1668 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "", 1669 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "", 1670 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "", 1671 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : ""); 1672 1673 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET; 1674 heb = he_dev->rbpl_virt[i]; 1675 1676 cid = RBRQ_CID(he_dev->rbrq_head); 1677 if (cid != lastcid) 1678 vcc = __find_vcc(he_dev, cid); 1679 lastcid = cid; 1680 1681 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) { 1682 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid); 1683 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1684 clear_bit(i, he_dev->rbpl_table); 1685 list_del(&heb->entry); 1686 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1687 } 1688 1689 goto next_rbrq_entry; 1690 } 1691 1692 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) { 1693 hprintk("HBUF_ERR! (cid 0x%x)\n", cid); 1694 atomic_inc(&vcc->stats->rx_drop); 1695 goto return_host_buffers; 1696 } 1697 1698 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4; 1699 clear_bit(i, he_dev->rbpl_table); 1700 list_move_tail(&heb->entry, &he_vcc->buffers); 1701 he_vcc->pdu_len += heb->len; 1702 1703 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) { 1704 lastcid = -1; 1705 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid); 1706 wake_up(&he_vcc->rx_waitq); 1707 goto return_host_buffers; 1708 } 1709 1710 if (!RBRQ_END_PDU(he_dev->rbrq_head)) 1711 goto next_rbrq_entry; 1712 1713 if (RBRQ_LEN_ERR(he_dev->rbrq_head) 1714 || RBRQ_CRC_ERR(he_dev->rbrq_head)) { 1715 HPRINTK("%s%s (%d.%d)\n", 1716 RBRQ_CRC_ERR(he_dev->rbrq_head) 1717 ? "CRC_ERR " : "", 1718 RBRQ_LEN_ERR(he_dev->rbrq_head) 1719 ? "LEN_ERR" : "", 1720 vcc->vpi, vcc->vci); 1721 atomic_inc(&vcc->stats->rx_err); 1722 goto return_host_buffers; 1723 } 1724 1725 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve, 1726 GFP_ATOMIC); 1727 if (!skb) { 1728 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci); 1729 goto return_host_buffers; 1730 } 1731 1732 if (rx_skb_reserve > 0) 1733 skb_reserve(skb, rx_skb_reserve); 1734 1735 __net_timestamp(skb); 1736 1737 list_for_each_entry(heb, &he_vcc->buffers, entry) 1738 memcpy(skb_put(skb, heb->len), &heb->data, heb->len); 1739 1740 switch (vcc->qos.aal) { 1741 case ATM_AAL0: 1742 /* 2.10.1.5 raw cell receive */ 1743 skb->len = ATM_AAL0_SDU; 1744 skb_set_tail_pointer(skb, skb->len); 1745 break; 1746 case ATM_AAL5: 1747 /* 2.10.1.2 aal5 receive */ 1748 1749 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len); 1750 skb_set_tail_pointer(skb, skb->len); 1751 #ifdef USE_CHECKSUM_HW 1752 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) { 1753 skb->ip_summed = CHECKSUM_COMPLETE; 1754 skb->csum = TCP_CKSUM(skb->data, 1755 he_vcc->pdu_len); 1756 } 1757 #endif 1758 break; 1759 } 1760 1761 #ifdef should_never_happen 1762 if (skb->len > vcc->qos.rxtp.max_sdu) 1763 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid); 1764 #endif 1765 1766 #ifdef notdef 1767 ATM_SKB(skb)->vcc = vcc; 1768 #endif 1769 spin_unlock(&he_dev->global_lock); 1770 vcc->push(vcc, skb); 1771 spin_lock(&he_dev->global_lock); 1772 1773 atomic_inc(&vcc->stats->rx); 1774 1775 return_host_buffers: 1776 ++pdus_assembled; 1777 1778 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry) 1779 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping); 1780 INIT_LIST_HEAD(&he_vcc->buffers); 1781 he_vcc->pdu_len = 0; 1782 1783 next_rbrq_entry: 1784 he_dev->rbrq_head = (struct he_rbrq *) 1785 ((unsigned long) he_dev->rbrq_base | 1786 RBRQ_MASK(he_dev->rbrq_head + 1)); 1787 1788 } 1789 read_unlock(&vcc_sklist_lock); 1790 1791 if (updated) { 1792 if (updated > he_dev->rbrq_peak) 1793 he_dev->rbrq_peak = updated; 1794 1795 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head), 1796 G0_RBRQ_H + (group * 16)); 1797 } 1798 1799 return pdus_assembled; 1800 } 1801 1802 static void 1803 he_service_tbrq(struct he_dev *he_dev, int group) 1804 { 1805 struct he_tbrq *tbrq_tail = (struct he_tbrq *) 1806 ((unsigned long)he_dev->tbrq_base | 1807 he_dev->hsp->group[group].tbrq_tail); 1808 struct he_tpd *tpd; 1809 int slot, updated = 0; 1810 struct he_tpd *__tpd; 1811 1812 /* 2.1.6 transmit buffer return queue */ 1813 1814 while (he_dev->tbrq_head != tbrq_tail) { 1815 ++updated; 1816 1817 HPRINTK("tbrq%d 0x%x%s%s\n", 1818 group, 1819 TBRQ_TPD(he_dev->tbrq_head), 1820 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "", 1821 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : ""); 1822 tpd = NULL; 1823 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) { 1824 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) { 1825 tpd = __tpd; 1826 list_del(&__tpd->entry); 1827 break; 1828 } 1829 } 1830 1831 if (tpd == NULL) { 1832 hprintk("unable to locate tpd for dma buffer %x\n", 1833 TBRQ_TPD(he_dev->tbrq_head)); 1834 goto next_tbrq_entry; 1835 } 1836 1837 if (TBRQ_EOS(he_dev->tbrq_head)) { 1838 HPRINTK("wake_up(tx_waitq) cid 0x%x\n", 1839 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci)); 1840 if (tpd->vcc) 1841 wake_up(&HE_VCC(tpd->vcc)->tx_waitq); 1842 1843 goto next_tbrq_entry; 1844 } 1845 1846 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 1847 if (tpd->iovec[slot].addr) 1848 dma_unmap_single(&he_dev->pci_dev->dev, 1849 tpd->iovec[slot].addr, 1850 tpd->iovec[slot].len & TPD_LEN_MASK, 1851 DMA_TO_DEVICE); 1852 if (tpd->iovec[slot].len & TPD_LST) 1853 break; 1854 1855 } 1856 1857 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */ 1858 if (tpd->vcc && tpd->vcc->pop) 1859 tpd->vcc->pop(tpd->vcc, tpd->skb); 1860 else 1861 dev_kfree_skb_any(tpd->skb); 1862 } 1863 1864 next_tbrq_entry: 1865 if (tpd) 1866 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 1867 he_dev->tbrq_head = (struct he_tbrq *) 1868 ((unsigned long) he_dev->tbrq_base | 1869 TBRQ_MASK(he_dev->tbrq_head + 1)); 1870 } 1871 1872 if (updated) { 1873 if (updated > he_dev->tbrq_peak) 1874 he_dev->tbrq_peak = updated; 1875 1876 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head), 1877 G0_TBRQ_H + (group * 16)); 1878 } 1879 } 1880 1881 static void 1882 he_service_rbpl(struct he_dev *he_dev, int group) 1883 { 1884 struct he_rbp *new_tail; 1885 struct he_rbp *rbpl_head; 1886 struct he_buff *heb; 1887 dma_addr_t mapping; 1888 int i; 1889 int moved = 0; 1890 1891 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1892 RBPL_MASK(he_readl(he_dev, G0_RBPL_S))); 1893 1894 for (;;) { 1895 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base | 1896 RBPL_MASK(he_dev->rbpl_tail+1)); 1897 1898 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */ 1899 if (new_tail == rbpl_head) 1900 break; 1901 1902 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint); 1903 if (i > (RBPL_TABLE_SIZE - 1)) { 1904 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE); 1905 if (i > (RBPL_TABLE_SIZE - 1)) 1906 break; 1907 } 1908 he_dev->rbpl_hint = i + 1; 1909 1910 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping); 1911 if (!heb) 1912 break; 1913 heb->mapping = mapping; 1914 list_add(&heb->entry, &he_dev->rbpl_outstanding); 1915 he_dev->rbpl_virt[i] = heb; 1916 set_bit(i, he_dev->rbpl_table); 1917 new_tail->idx = i << RBP_IDX_OFFSET; 1918 new_tail->phys = mapping + offsetof(struct he_buff, data); 1919 1920 he_dev->rbpl_tail = new_tail; 1921 ++moved; 1922 } 1923 1924 if (moved) 1925 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T); 1926 } 1927 1928 static void 1929 he_tasklet(unsigned long data) 1930 { 1931 unsigned long flags; 1932 struct he_dev *he_dev = (struct he_dev *) data; 1933 int group, type; 1934 int updated = 0; 1935 1936 HPRINTK("tasklet (0x%lx)\n", data); 1937 spin_lock_irqsave(&he_dev->global_lock, flags); 1938 1939 while (he_dev->irq_head != he_dev->irq_tail) { 1940 ++updated; 1941 1942 type = ITYPE_TYPE(he_dev->irq_head->isw); 1943 group = ITYPE_GROUP(he_dev->irq_head->isw); 1944 1945 switch (type) { 1946 case ITYPE_RBRQ_THRESH: 1947 HPRINTK("rbrq%d threshold\n", group); 1948 /* fall through */ 1949 case ITYPE_RBRQ_TIMER: 1950 if (he_service_rbrq(he_dev, group)) 1951 he_service_rbpl(he_dev, group); 1952 break; 1953 case ITYPE_TBRQ_THRESH: 1954 HPRINTK("tbrq%d threshold\n", group); 1955 /* fall through */ 1956 case ITYPE_TPD_COMPLETE: 1957 he_service_tbrq(he_dev, group); 1958 break; 1959 case ITYPE_RBPL_THRESH: 1960 he_service_rbpl(he_dev, group); 1961 break; 1962 case ITYPE_RBPS_THRESH: 1963 /* shouldn't happen unless small buffers enabled */ 1964 break; 1965 case ITYPE_PHY: 1966 HPRINTK("phy interrupt\n"); 1967 #ifdef CONFIG_ATM_HE_USE_SUNI 1968 spin_unlock_irqrestore(&he_dev->global_lock, flags); 1969 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt) 1970 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev); 1971 spin_lock_irqsave(&he_dev->global_lock, flags); 1972 #endif 1973 break; 1974 case ITYPE_OTHER: 1975 switch (type|group) { 1976 case ITYPE_PARITY: 1977 hprintk("parity error\n"); 1978 break; 1979 case ITYPE_ABORT: 1980 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR)); 1981 break; 1982 } 1983 break; 1984 case ITYPE_TYPE(ITYPE_INVALID): 1985 /* see 8.1.1 -- check all queues */ 1986 1987 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw); 1988 1989 he_service_rbrq(he_dev, 0); 1990 he_service_rbpl(he_dev, 0); 1991 he_service_tbrq(he_dev, 0); 1992 break; 1993 default: 1994 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw); 1995 } 1996 1997 he_dev->irq_head->isw = ITYPE_INVALID; 1998 1999 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK); 2000 } 2001 2002 if (updated) { 2003 if (updated > he_dev->irq_peak) 2004 he_dev->irq_peak = updated; 2005 2006 he_writel(he_dev, 2007 IRQ_SIZE(CONFIG_IRQ_SIZE) | 2008 IRQ_THRESH(CONFIG_IRQ_THRESH) | 2009 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD); 2010 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */ 2011 } 2012 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2013 } 2014 2015 static irqreturn_t 2016 he_irq_handler(int irq, void *dev_id) 2017 { 2018 unsigned long flags; 2019 struct he_dev *he_dev = (struct he_dev * )dev_id; 2020 int handled = 0; 2021 2022 if (he_dev == NULL) 2023 return IRQ_NONE; 2024 2025 spin_lock_irqsave(&he_dev->global_lock, flags); 2026 2027 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) | 2028 (*he_dev->irq_tailoffset << 2)); 2029 2030 if (he_dev->irq_tail == he_dev->irq_head) { 2031 HPRINTK("tailoffset not updated?\n"); 2032 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base | 2033 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2)); 2034 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */ 2035 } 2036 2037 #ifdef DEBUG 2038 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */) 2039 hprintk("spurious (or shared) interrupt?\n"); 2040 #endif 2041 2042 if (he_dev->irq_head != he_dev->irq_tail) { 2043 handled = 1; 2044 tasklet_schedule(&he_dev->tasklet); 2045 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */ 2046 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */ 2047 } 2048 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2049 return IRQ_RETVAL(handled); 2050 2051 } 2052 2053 static __inline__ void 2054 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid) 2055 { 2056 struct he_tpdrq *new_tail; 2057 2058 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n", 2059 tpd, cid, he_dev->tpdrq_tail); 2060 2061 /* new_tail = he_dev->tpdrq_tail; */ 2062 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base | 2063 TPDRQ_MASK(he_dev->tpdrq_tail+1)); 2064 2065 /* 2066 * check to see if we are about to set the tail == head 2067 * if true, update the head pointer from the adapter 2068 * to see if this is really the case (reading the queue 2069 * head for every enqueue would be unnecessarily slow) 2070 */ 2071 2072 if (new_tail == he_dev->tpdrq_head) { 2073 he_dev->tpdrq_head = (struct he_tpdrq *) 2074 (((unsigned long)he_dev->tpdrq_base) | 2075 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H))); 2076 2077 if (new_tail == he_dev->tpdrq_head) { 2078 int slot; 2079 2080 hprintk("tpdrq full (cid 0x%x)\n", cid); 2081 /* 2082 * FIXME 2083 * push tpd onto a transmit backlog queue 2084 * after service_tbrq, service the backlog 2085 * for now, we just drop the pdu 2086 */ 2087 for (slot = 0; slot < TPD_MAXIOV; ++slot) { 2088 if (tpd->iovec[slot].addr) 2089 dma_unmap_single(&he_dev->pci_dev->dev, 2090 tpd->iovec[slot].addr, 2091 tpd->iovec[slot].len & TPD_LEN_MASK, 2092 DMA_TO_DEVICE); 2093 } 2094 if (tpd->skb) { 2095 if (tpd->vcc->pop) 2096 tpd->vcc->pop(tpd->vcc, tpd->skb); 2097 else 2098 dev_kfree_skb_any(tpd->skb); 2099 atomic_inc(&tpd->vcc->stats->tx_err); 2100 } 2101 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status)); 2102 return; 2103 } 2104 } 2105 2106 /* 2.1.5 transmit packet descriptor ready queue */ 2107 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds); 2108 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status); 2109 he_dev->tpdrq_tail->cid = cid; 2110 wmb(); 2111 2112 he_dev->tpdrq_tail = new_tail; 2113 2114 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T); 2115 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */ 2116 } 2117 2118 static int 2119 he_open(struct atm_vcc *vcc) 2120 { 2121 unsigned long flags; 2122 struct he_dev *he_dev = HE_DEV(vcc->dev); 2123 struct he_vcc *he_vcc; 2124 int err = 0; 2125 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock; 2126 short vpi = vcc->vpi; 2127 int vci = vcc->vci; 2128 2129 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC) 2130 return 0; 2131 2132 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci); 2133 2134 set_bit(ATM_VF_ADDR, &vcc->flags); 2135 2136 cid = he_mkcid(he_dev, vpi, vci); 2137 2138 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC); 2139 if (he_vcc == NULL) { 2140 hprintk("unable to allocate he_vcc during open\n"); 2141 return -ENOMEM; 2142 } 2143 2144 INIT_LIST_HEAD(&he_vcc->buffers); 2145 he_vcc->pdu_len = 0; 2146 he_vcc->rc_index = -1; 2147 2148 init_waitqueue_head(&he_vcc->rx_waitq); 2149 init_waitqueue_head(&he_vcc->tx_waitq); 2150 2151 vcc->dev_data = he_vcc; 2152 2153 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2154 int pcr_goal; 2155 2156 pcr_goal = atm_pcr_goal(&vcc->qos.txtp); 2157 if (pcr_goal == 0) 2158 pcr_goal = he_dev->atm_dev->link_rate; 2159 if (pcr_goal < 0) /* means round down, technically */ 2160 pcr_goal = -pcr_goal; 2161 2162 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal); 2163 2164 switch (vcc->qos.aal) { 2165 case ATM_AAL5: 2166 tsr0_aal = TSR0_AAL5; 2167 tsr4 = TSR4_AAL5; 2168 break; 2169 case ATM_AAL0: 2170 tsr0_aal = TSR0_AAL0_SDU; 2171 tsr4 = TSR4_AAL0_SDU; 2172 break; 2173 default: 2174 err = -EINVAL; 2175 goto open_failed; 2176 } 2177 2178 spin_lock_irqsave(&he_dev->global_lock, flags); 2179 tsr0 = he_readl_tsr0(he_dev, cid); 2180 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2181 2182 if (TSR0_CONN_STATE(tsr0) != 0) { 2183 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0); 2184 err = -EBUSY; 2185 goto open_failed; 2186 } 2187 2188 switch (vcc->qos.txtp.traffic_class) { 2189 case ATM_UBR: 2190 /* 2.3.3.1 open connection ubr */ 2191 2192 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal | 2193 TSR0_USE_WMIN | TSR0_UPDATE_GER; 2194 break; 2195 2196 case ATM_CBR: 2197 /* 2.3.3.2 open connection cbr */ 2198 2199 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */ 2200 if ((he_dev->total_bw + pcr_goal) 2201 > (he_dev->atm_dev->link_rate * 9 / 10)) 2202 { 2203 err = -EBUSY; 2204 goto open_failed; 2205 } 2206 2207 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */ 2208 2209 /* find an unused cs_stper register */ 2210 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg) 2211 if (he_dev->cs_stper[reg].inuse == 0 || 2212 he_dev->cs_stper[reg].pcr == pcr_goal) 2213 break; 2214 2215 if (reg == HE_NUM_CS_STPER) { 2216 err = -EBUSY; 2217 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2218 goto open_failed; 2219 } 2220 2221 he_dev->total_bw += pcr_goal; 2222 2223 he_vcc->rc_index = reg; 2224 ++he_dev->cs_stper[reg].inuse; 2225 he_dev->cs_stper[reg].pcr = pcr_goal; 2226 2227 clock = he_is622(he_dev) ? 66667000 : 50000000; 2228 period = clock / pcr_goal; 2229 2230 HPRINTK("rc_index = %d period = %d\n", 2231 reg, period); 2232 2233 he_writel_mbox(he_dev, rate_to_atmf(period/2), 2234 CS_STPER0 + reg); 2235 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2236 2237 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal | 2238 TSR0_RC_INDEX(reg); 2239 2240 break; 2241 default: 2242 err = -EINVAL; 2243 goto open_failed; 2244 } 2245 2246 spin_lock_irqsave(&he_dev->global_lock, flags); 2247 2248 he_writel_tsr0(he_dev, tsr0, cid); 2249 he_writel_tsr4(he_dev, tsr4 | 1, cid); 2250 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) | 2251 TSR1_PCR(rate_to_atmf(pcr_goal)), cid); 2252 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid); 2253 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid); 2254 2255 he_writel_tsr3(he_dev, 0x0, cid); 2256 he_writel_tsr5(he_dev, 0x0, cid); 2257 he_writel_tsr6(he_dev, 0x0, cid); 2258 he_writel_tsr7(he_dev, 0x0, cid); 2259 he_writel_tsr8(he_dev, 0x0, cid); 2260 he_writel_tsr10(he_dev, 0x0, cid); 2261 he_writel_tsr11(he_dev, 0x0, cid); 2262 he_writel_tsr12(he_dev, 0x0, cid); 2263 he_writel_tsr13(he_dev, 0x0, cid); 2264 he_writel_tsr14(he_dev, 0x0, cid); 2265 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */ 2266 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2267 } 2268 2269 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2270 unsigned aal; 2271 2272 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid, 2273 &HE_VCC(vcc)->rx_waitq); 2274 2275 switch (vcc->qos.aal) { 2276 case ATM_AAL5: 2277 aal = RSR0_AAL5; 2278 break; 2279 case ATM_AAL0: 2280 aal = RSR0_RAWCELL; 2281 break; 2282 default: 2283 err = -EINVAL; 2284 goto open_failed; 2285 } 2286 2287 spin_lock_irqsave(&he_dev->global_lock, flags); 2288 2289 rsr0 = he_readl_rsr0(he_dev, cid); 2290 if (rsr0 & RSR0_OPEN_CONN) { 2291 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2292 2293 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0); 2294 err = -EBUSY; 2295 goto open_failed; 2296 } 2297 2298 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY; 2299 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY; 2300 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 2301 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0; 2302 2303 #ifdef USE_CHECKSUM_HW 2304 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI) 2305 rsr0 |= RSR0_TCP_CKSUM; 2306 #endif 2307 2308 he_writel_rsr4(he_dev, rsr4, cid); 2309 he_writel_rsr1(he_dev, rsr1, cid); 2310 /* 5.1.11 last parameter initialized should be 2311 the open/closed indication in rsr0 */ 2312 he_writel_rsr0(he_dev, 2313 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid); 2314 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2315 2316 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2317 } 2318 2319 open_failed: 2320 2321 if (err) { 2322 kfree(he_vcc); 2323 clear_bit(ATM_VF_ADDR, &vcc->flags); 2324 } 2325 else 2326 set_bit(ATM_VF_READY, &vcc->flags); 2327 2328 return err; 2329 } 2330 2331 static void 2332 he_close(struct atm_vcc *vcc) 2333 { 2334 unsigned long flags; 2335 DECLARE_WAITQUEUE(wait, current); 2336 struct he_dev *he_dev = HE_DEV(vcc->dev); 2337 struct he_tpd *tpd; 2338 unsigned cid; 2339 struct he_vcc *he_vcc = HE_VCC(vcc); 2340 #define MAX_RETRY 30 2341 int retry = 0, sleep = 1, tx_inuse; 2342 2343 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci); 2344 2345 clear_bit(ATM_VF_READY, &vcc->flags); 2346 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2347 2348 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2349 int timeout; 2350 2351 HPRINTK("close rx cid 0x%x\n", cid); 2352 2353 /* 2.7.2.2 close receive operation */ 2354 2355 /* wait for previous close (if any) to finish */ 2356 2357 spin_lock_irqsave(&he_dev->global_lock, flags); 2358 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) { 2359 HPRINTK("close cid 0x%x RCC_BUSY\n", cid); 2360 udelay(250); 2361 } 2362 2363 set_current_state(TASK_UNINTERRUPTIBLE); 2364 add_wait_queue(&he_vcc->rx_waitq, &wait); 2365 2366 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid); 2367 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */ 2368 he_writel_mbox(he_dev, cid, RXCON_CLOSE); 2369 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2370 2371 timeout = schedule_timeout(30*HZ); 2372 2373 remove_wait_queue(&he_vcc->rx_waitq, &wait); 2374 set_current_state(TASK_RUNNING); 2375 2376 if (timeout == 0) 2377 hprintk("close rx timeout cid 0x%x\n", cid); 2378 2379 HPRINTK("close rx cid 0x%x complete\n", cid); 2380 2381 } 2382 2383 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2384 volatile unsigned tsr4, tsr0; 2385 int timeout; 2386 2387 HPRINTK("close tx cid 0x%x\n", cid); 2388 2389 /* 2.1.2 2390 * 2391 * ... the host must first stop queueing packets to the TPDRQ 2392 * on the connection to be closed, then wait for all outstanding 2393 * packets to be transmitted and their buffers returned to the 2394 * TBRQ. When the last packet on the connection arrives in the 2395 * TBRQ, the host issues the close command to the adapter. 2396 */ 2397 2398 while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) && 2399 (retry < MAX_RETRY)) { 2400 msleep(sleep); 2401 if (sleep < 250) 2402 sleep = sleep * 2; 2403 2404 ++retry; 2405 } 2406 2407 if (tx_inuse > 1) 2408 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse); 2409 2410 /* 2.3.1.1 generic close operations with flush */ 2411 2412 spin_lock_irqsave(&he_dev->global_lock, flags); 2413 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid); 2414 /* also clears TSR4_SESSION_ENDED */ 2415 2416 switch (vcc->qos.txtp.traffic_class) { 2417 case ATM_UBR: 2418 he_writel_tsr1(he_dev, 2419 TSR1_MCR(rate_to_atmf(200000)) 2420 | TSR1_PCR(0), cid); 2421 break; 2422 case ATM_CBR: 2423 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid); 2424 break; 2425 } 2426 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */ 2427 2428 tpd = __alloc_tpd(he_dev); 2429 if (tpd == NULL) { 2430 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid); 2431 goto close_tx_incomplete; 2432 } 2433 tpd->status |= TPD_EOS | TPD_INT; 2434 tpd->skb = NULL; 2435 tpd->vcc = vcc; 2436 wmb(); 2437 2438 set_current_state(TASK_UNINTERRUPTIBLE); 2439 add_wait_queue(&he_vcc->tx_waitq, &wait); 2440 __enqueue_tpd(he_dev, tpd, cid); 2441 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2442 2443 timeout = schedule_timeout(30*HZ); 2444 2445 remove_wait_queue(&he_vcc->tx_waitq, &wait); 2446 set_current_state(TASK_RUNNING); 2447 2448 spin_lock_irqsave(&he_dev->global_lock, flags); 2449 2450 if (timeout == 0) { 2451 hprintk("close tx timeout cid 0x%x\n", cid); 2452 goto close_tx_incomplete; 2453 } 2454 2455 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) { 2456 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4); 2457 udelay(250); 2458 } 2459 2460 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) { 2461 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0); 2462 udelay(250); 2463 } 2464 2465 close_tx_incomplete: 2466 2467 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 2468 int reg = he_vcc->rc_index; 2469 2470 HPRINTK("cs_stper reg = %d\n", reg); 2471 2472 if (he_dev->cs_stper[reg].inuse == 0) 2473 hprintk("cs_stper[%d].inuse = 0!\n", reg); 2474 else 2475 --he_dev->cs_stper[reg].inuse; 2476 2477 he_dev->total_bw -= he_dev->cs_stper[reg].pcr; 2478 } 2479 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2480 2481 HPRINTK("close tx cid 0x%x complete\n", cid); 2482 } 2483 2484 kfree(he_vcc); 2485 2486 clear_bit(ATM_VF_ADDR, &vcc->flags); 2487 } 2488 2489 static int 2490 he_send(struct atm_vcc *vcc, struct sk_buff *skb) 2491 { 2492 unsigned long flags; 2493 struct he_dev *he_dev = HE_DEV(vcc->dev); 2494 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci); 2495 struct he_tpd *tpd; 2496 #ifdef USE_SCATTERGATHER 2497 int i, slot = 0; 2498 #endif 2499 2500 #define HE_TPD_BUFSIZE 0xffff 2501 2502 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci); 2503 2504 if ((skb->len > HE_TPD_BUFSIZE) || 2505 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) { 2506 hprintk("buffer too large (or small) -- %d bytes\n", skb->len ); 2507 if (vcc->pop) 2508 vcc->pop(vcc, skb); 2509 else 2510 dev_kfree_skb_any(skb); 2511 atomic_inc(&vcc->stats->tx_err); 2512 return -EINVAL; 2513 } 2514 2515 #ifndef USE_SCATTERGATHER 2516 if (skb_shinfo(skb)->nr_frags) { 2517 hprintk("no scatter/gather support\n"); 2518 if (vcc->pop) 2519 vcc->pop(vcc, skb); 2520 else 2521 dev_kfree_skb_any(skb); 2522 atomic_inc(&vcc->stats->tx_err); 2523 return -EINVAL; 2524 } 2525 #endif 2526 spin_lock_irqsave(&he_dev->global_lock, flags); 2527 2528 tpd = __alloc_tpd(he_dev); 2529 if (tpd == NULL) { 2530 if (vcc->pop) 2531 vcc->pop(vcc, skb); 2532 else 2533 dev_kfree_skb_any(skb); 2534 atomic_inc(&vcc->stats->tx_err); 2535 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2536 return -ENOMEM; 2537 } 2538 2539 if (vcc->qos.aal == ATM_AAL5) 2540 tpd->status |= TPD_CELLTYPE(TPD_USERCELL); 2541 else { 2542 char *pti_clp = (void *) (skb->data + 3); 2543 int clp, pti; 2544 2545 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 2546 clp = (*pti_clp & ATM_HDR_CLP); 2547 tpd->status |= TPD_CELLTYPE(pti); 2548 if (clp) 2549 tpd->status |= TPD_CLP; 2550 2551 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD); 2552 } 2553 2554 #ifdef USE_SCATTERGATHER 2555 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data, 2556 skb_headlen(skb), DMA_TO_DEVICE); 2557 tpd->iovec[slot].len = skb_headlen(skb); 2558 ++slot; 2559 2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2561 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2562 2563 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */ 2564 tpd->vcc = vcc; 2565 tpd->skb = NULL; /* not the last fragment 2566 so dont ->push() yet */ 2567 wmb(); 2568 2569 __enqueue_tpd(he_dev, tpd, cid); 2570 tpd = __alloc_tpd(he_dev); 2571 if (tpd == NULL) { 2572 if (vcc->pop) 2573 vcc->pop(vcc, skb); 2574 else 2575 dev_kfree_skb_any(skb); 2576 atomic_inc(&vcc->stats->tx_err); 2577 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2578 return -ENOMEM; 2579 } 2580 tpd->status |= TPD_USERCELL; 2581 slot = 0; 2582 } 2583 2584 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, 2585 (void *) page_address(frag->page) + frag->page_offset, 2586 frag->size, DMA_TO_DEVICE); 2587 tpd->iovec[slot].len = frag->size; 2588 ++slot; 2589 2590 } 2591 2592 tpd->iovec[slot - 1].len |= TPD_LST; 2593 #else 2594 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE); 2595 tpd->length0 = skb->len | TPD_LST; 2596 #endif 2597 tpd->status |= TPD_INT; 2598 2599 tpd->vcc = vcc; 2600 tpd->skb = skb; 2601 wmb(); 2602 ATM_SKB(skb)->vcc = vcc; 2603 2604 __enqueue_tpd(he_dev, tpd, cid); 2605 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2606 2607 atomic_inc(&vcc->stats->tx); 2608 2609 return 0; 2610 } 2611 2612 static int 2613 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg) 2614 { 2615 unsigned long flags; 2616 struct he_dev *he_dev = HE_DEV(atm_dev); 2617 struct he_ioctl_reg reg; 2618 int err = 0; 2619 2620 switch (cmd) { 2621 case HE_GET_REG: 2622 if (!capable(CAP_NET_ADMIN)) 2623 return -EPERM; 2624 2625 if (copy_from_user(®, arg, 2626 sizeof(struct he_ioctl_reg))) 2627 return -EFAULT; 2628 2629 spin_lock_irqsave(&he_dev->global_lock, flags); 2630 switch (reg.type) { 2631 case HE_REGTYPE_PCI: 2632 if (reg.addr >= HE_REGMAP_SIZE) { 2633 err = -EINVAL; 2634 break; 2635 } 2636 2637 reg.val = he_readl(he_dev, reg.addr); 2638 break; 2639 case HE_REGTYPE_RCM: 2640 reg.val = 2641 he_readl_rcm(he_dev, reg.addr); 2642 break; 2643 case HE_REGTYPE_TCM: 2644 reg.val = 2645 he_readl_tcm(he_dev, reg.addr); 2646 break; 2647 case HE_REGTYPE_MBOX: 2648 reg.val = 2649 he_readl_mbox(he_dev, reg.addr); 2650 break; 2651 default: 2652 err = -EINVAL; 2653 break; 2654 } 2655 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2656 if (err == 0) 2657 if (copy_to_user(arg, ®, 2658 sizeof(struct he_ioctl_reg))) 2659 return -EFAULT; 2660 break; 2661 default: 2662 #ifdef CONFIG_ATM_HE_USE_SUNI 2663 if (atm_dev->phy && atm_dev->phy->ioctl) 2664 err = atm_dev->phy->ioctl(atm_dev, cmd, arg); 2665 #else /* CONFIG_ATM_HE_USE_SUNI */ 2666 err = -EINVAL; 2667 #endif /* CONFIG_ATM_HE_USE_SUNI */ 2668 break; 2669 } 2670 2671 return err; 2672 } 2673 2674 static void 2675 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr) 2676 { 2677 unsigned long flags; 2678 struct he_dev *he_dev = HE_DEV(atm_dev); 2679 2680 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr); 2681 2682 spin_lock_irqsave(&he_dev->global_lock, flags); 2683 he_writel(he_dev, val, FRAMER + (addr*4)); 2684 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */ 2685 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2686 } 2687 2688 2689 static unsigned char 2690 he_phy_get(struct atm_dev *atm_dev, unsigned long addr) 2691 { 2692 unsigned long flags; 2693 struct he_dev *he_dev = HE_DEV(atm_dev); 2694 unsigned reg; 2695 2696 spin_lock_irqsave(&he_dev->global_lock, flags); 2697 reg = he_readl(he_dev, FRAMER + (addr*4)); 2698 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2699 2700 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg); 2701 return reg; 2702 } 2703 2704 static int 2705 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page) 2706 { 2707 unsigned long flags; 2708 struct he_dev *he_dev = HE_DEV(dev); 2709 int left, i; 2710 #ifdef notdef 2711 struct he_rbrq *rbrq_tail; 2712 struct he_tpdrq *tpdrq_head; 2713 int rbpl_head, rbpl_tail; 2714 #endif 2715 static long mcc = 0, oec = 0, dcc = 0, cec = 0; 2716 2717 2718 left = *pos; 2719 if (!left--) 2720 return sprintf(page, "ATM he driver\n"); 2721 2722 if (!left--) 2723 return sprintf(page, "%s%s\n\n", 2724 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM"); 2725 2726 if (!left--) 2727 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n"); 2728 2729 spin_lock_irqsave(&he_dev->global_lock, flags); 2730 mcc += he_readl(he_dev, MCC); 2731 oec += he_readl(he_dev, OEC); 2732 dcc += he_readl(he_dev, DCC); 2733 cec += he_readl(he_dev, CEC); 2734 spin_unlock_irqrestore(&he_dev->global_lock, flags); 2735 2736 if (!left--) 2737 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n", 2738 mcc, oec, dcc, cec); 2739 2740 if (!left--) 2741 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n", 2742 CONFIG_IRQ_SIZE, he_dev->irq_peak); 2743 2744 if (!left--) 2745 return sprintf(page, "tpdrq_size = %d inuse = ?\n", 2746 CONFIG_TPDRQ_SIZE); 2747 2748 if (!left--) 2749 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n", 2750 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak); 2751 2752 if (!left--) 2753 return sprintf(page, "tbrq_size = %d peak = %d\n", 2754 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak); 2755 2756 2757 #ifdef notdef 2758 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S)); 2759 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T)); 2760 2761 inuse = rbpl_head - rbpl_tail; 2762 if (inuse < 0) 2763 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp); 2764 inuse /= sizeof(struct he_rbp); 2765 2766 if (!left--) 2767 return sprintf(page, "rbpl_size = %d inuse = %d\n\n", 2768 CONFIG_RBPL_SIZE, inuse); 2769 #endif 2770 2771 if (!left--) 2772 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n"); 2773 2774 for (i = 0; i < HE_NUM_CS_STPER; ++i) 2775 if (!left--) 2776 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i, 2777 he_dev->cs_stper[i].pcr, 2778 he_dev->cs_stper[i].inuse); 2779 2780 if (!left--) 2781 return sprintf(page, "total bw (cbr): %d (limit %d)\n", 2782 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9); 2783 2784 return 0; 2785 } 2786 2787 /* eeprom routines -- see 4.7 */ 2788 2789 static u8 read_prom_byte(struct he_dev *he_dev, int addr) 2790 { 2791 u32 val = 0, tmp_read = 0; 2792 int i, j = 0; 2793 u8 byte_read = 0; 2794 2795 val = readl(he_dev->membase + HOST_CNTL); 2796 val &= 0xFFFFE0FF; 2797 2798 /* Turn on write enable */ 2799 val |= 0x800; 2800 he_writel(he_dev, val, HOST_CNTL); 2801 2802 /* Send READ instruction */ 2803 for (i = 0; i < ARRAY_SIZE(readtab); i++) { 2804 he_writel(he_dev, val | readtab[i], HOST_CNTL); 2805 udelay(EEPROM_DELAY); 2806 } 2807 2808 /* Next, we need to send the byte address to read from */ 2809 for (i = 7; i >= 0; i--) { 2810 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2811 udelay(EEPROM_DELAY); 2812 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL); 2813 udelay(EEPROM_DELAY); 2814 } 2815 2816 j = 0; 2817 2818 val &= 0xFFFFF7FF; /* Turn off write enable */ 2819 he_writel(he_dev, val, HOST_CNTL); 2820 2821 /* Now, we can read data from the EEPROM by clocking it in */ 2822 for (i = 7; i >= 0; i--) { 2823 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2824 udelay(EEPROM_DELAY); 2825 tmp_read = he_readl(he_dev, HOST_CNTL); 2826 byte_read |= (unsigned char) 2827 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i); 2828 he_writel(he_dev, val | clocktab[j++], HOST_CNTL); 2829 udelay(EEPROM_DELAY); 2830 } 2831 2832 he_writel(he_dev, val | ID_CS, HOST_CNTL); 2833 udelay(EEPROM_DELAY); 2834 2835 return byte_read; 2836 } 2837 2838 MODULE_LICENSE("GPL"); 2839 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>"); 2840 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver"); 2841 module_param(disable64, bool, 0); 2842 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers"); 2843 module_param(nvpibits, short, 0); 2844 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)"); 2845 module_param(nvcibits, short, 0); 2846 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)"); 2847 module_param(rx_skb_reserve, short, 0); 2848 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)"); 2849 module_param(irq_coalesce, bool, 0); 2850 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)"); 2851 module_param(sdh, bool, 0); 2852 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)"); 2853 2854 static struct pci_device_id he_pci_tbl[] = { 2855 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 }, 2856 { 0, } 2857 }; 2858 2859 MODULE_DEVICE_TABLE(pci, he_pci_tbl); 2860 2861 static struct pci_driver he_driver = { 2862 .name = "he", 2863 .probe = he_init_one, 2864 .remove = he_remove_one, 2865 .id_table = he_pci_tbl, 2866 }; 2867 2868 module_pci_driver(he_driver); 2869