1 /*
2
3 he.c
4
5 ForeRunnerHE ATM Adapter driver for ATM on Linux
6 Copyright (C) 1999-2001 Naval Research Laboratory
7
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
22 */
23
24 /*
25
26 he.c
27
28 ForeRunnerHE ATM Adapter driver for ATM on Linux
29 Copyright (C) 1999-2001 Naval Research Laboratory
30
31 Permission to use, copy, modify and distribute this software and its
32 documentation is hereby granted, provided that both the copyright
33 notice and this permission notice appear in all copies of the software,
34 derivative works or modified versions, and any portions thereof, and
35 that both notices appear in supporting documentation.
36
37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39 RESULTING FROM THE USE OF THIS SOFTWARE.
40
41 This driver was written using the "Programmer's Reference Manual for
42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44 AUTHORS:
45 chas williams <chas@cmf.nrl.navy.mil>
46 eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48 NOTES:
49 4096 supported 'connections'
50 group 0 is used for all traffic
51 interrupt queue 0 is used for all interrupts
52 aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54 */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...) do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 CS_HIGH | CLK_HIGH,
125 CS_LOW | CLK_LOW,
126 CLK_HIGH, /* 0 */
127 CLK_LOW,
128 CLK_HIGH, /* 0 */
129 CLK_LOW,
130 CLK_HIGH, /* 0 */
131 CLK_LOW,
132 CLK_HIGH, /* 0 */
133 CLK_LOW,
134 CLK_HIGH, /* 0 */
135 CLK_LOW,
136 CLK_HIGH, /* 0 */
137 CLK_LOW | SI_HIGH,
138 CLK_HIGH | SI_HIGH, /* 1 */
139 CLK_LOW | SI_HIGH,
140 CLK_HIGH | SI_HIGH /* 1 */
141 };
142
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 CLK_LOW,
146 CLK_HIGH,
147 CLK_LOW,
148 CLK_HIGH,
149 CLK_LOW,
150 CLK_HIGH,
151 CLK_LOW,
152 CLK_HIGH,
153 CLK_LOW,
154 CLK_HIGH,
155 CLK_LOW,
156 CLK_HIGH,
157 CLK_LOW,
158 CLK_HIGH,
159 CLK_LOW,
160 CLK_HIGH,
161 CLK_LOW
162 };
163
164 static const struct atmdev_ops he_ops =
165 {
166 .open = he_open,
167 .close = he_close,
168 .ioctl = he_ioctl,
169 .send = he_send,
170 .phy_put = he_phy_put,
171 .phy_get = he_phy_get,
172 .proc_read = he_proc_read,
173 .owner = THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg) readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
he_writel_internal(struct he_dev * he_dev,unsigned val,unsigned addr,unsigned flags)182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 unsigned flags)
184 {
185 he_writel(he_dev, val, CON_DAT);
186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */
187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg) \
192 he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg) \
195 he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg) \
198 he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
he_readl_internal(struct he_dev * he_dev,unsigned addr,unsigned flags)201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209 he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212 he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215 he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241 /* from page 2-20
242 *
243 * NOTE While the transmit connection is active, bits 23 through 0
244 * of this register must not be written by the host. Byte
245 * enables should be used during normal operation when writing
246 * the most significant byte.
247 */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 CON_CTL_TCM \
252 | CON_BYTE_DISABLE_2 \
253 | CON_BYTE_DISABLE_1 \
254 | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 CON_CTL_TCM \
295 | CON_BYTE_DISABLE_2 \
296 | CON_BYTE_DISABLE_1 \
297 | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
__find_vcc(struct he_dev * he_dev,unsigned cid)328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330 struct hlist_head *head;
331 struct atm_vcc *vcc;
332 struct sock *s;
333 short vpi;
334 int vci;
335
336 vpi = cid >> he_dev->vcibits;
337 vci = cid & ((1 << he_dev->vcibits) - 1);
338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340 sk_for_each(s, head) {
341 vcc = atm_sk(s);
342 if (vcc->dev == he_dev->atm_dev &&
343 vcc->vci == vci && vcc->vpi == vpi &&
344 vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 return vcc;
346 }
347 }
348 return NULL;
349 }
350
he_init_one(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)351 static int he_init_one(struct pci_dev *pci_dev,
352 const struct pci_device_id *pci_ent)
353 {
354 struct atm_dev *atm_dev = NULL;
355 struct he_dev *he_dev = NULL;
356 int err = 0;
357
358 printk(KERN_INFO "ATM he driver\n");
359
360 if (pci_enable_device(pci_dev))
361 return -EIO;
362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363 printk(KERN_WARNING "he: no suitable dma available\n");
364 err = -EIO;
365 goto init_one_failure;
366 }
367
368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 if (!atm_dev) {
370 err = -ENODEV;
371 goto init_one_failure;
372 }
373 pci_set_drvdata(pci_dev, atm_dev);
374
375 he_dev = kzalloc(sizeof(struct he_dev),
376 GFP_KERNEL);
377 if (!he_dev) {
378 err = -ENOMEM;
379 goto init_one_failure;
380 }
381 he_dev->pci_dev = pci_dev;
382 he_dev->atm_dev = atm_dev;
383 he_dev->atm_dev->dev_data = he_dev;
384 atm_dev->dev_data = he_dev;
385 he_dev->number = atm_dev->number;
386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 spin_lock_init(&he_dev->global_lock);
388
389 if (he_start(atm_dev)) {
390 he_stop(he_dev);
391 err = -ENODEV;
392 goto init_one_failure;
393 }
394 he_dev->next = NULL;
395 if (he_devs)
396 he_dev->next = he_devs;
397 he_devs = he_dev;
398 return 0;
399
400 init_one_failure:
401 if (atm_dev)
402 atm_dev_deregister(atm_dev);
403 kfree(he_dev);
404 pci_disable_device(pci_dev);
405 return err;
406 }
407
he_remove_one(struct pci_dev * pci_dev)408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410 struct atm_dev *atm_dev;
411 struct he_dev *he_dev;
412
413 atm_dev = pci_get_drvdata(pci_dev);
414 he_dev = HE_DEV(atm_dev);
415
416 /* need to remove from he_devs */
417
418 he_stop(he_dev);
419 atm_dev_deregister(atm_dev);
420 kfree(he_dev);
421
422 pci_disable_device(pci_dev);
423 }
424
425
426 static unsigned
rate_to_atmf(unsigned rate)427 rate_to_atmf(unsigned rate) /* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430
431 unsigned exp = 0;
432
433 if (rate == 0)
434 return 0;
435
436 rate <<= 9;
437 while (rate > 0x3ff) {
438 ++exp;
439 rate >>= 1;
440 }
441
442 return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444
he_init_rx_lbfp0(struct he_dev * he_dev)445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451
452 lbufd_index = 0;
453 lbm_offset = he_readl(he_dev, RCMLBM_BA);
454
455 he_writel(he_dev, lbufd_index, RLBF0_H);
456
457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458 lbufd_index += 2;
459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460
461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463
464 if (++lbuf_count == lbufs_per_row) {
465 lbuf_count = 0;
466 row_offset += he_dev->bytes_per_row;
467 }
468 lbm_offset += 4;
469 }
470
471 he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474
he_init_rx_lbfp1(struct he_dev * he_dev)475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481
482 lbufd_index = 1;
483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484
485 he_writel(he_dev, lbufd_index, RLBF1_H);
486
487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488 lbufd_index += 2;
489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490
491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493
494 if (++lbuf_count == lbufs_per_row) {
495 lbuf_count = 0;
496 row_offset += he_dev->bytes_per_row;
497 }
498 lbm_offset += 4;
499 }
500
501 he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504
he_init_tx_lbfp(struct he_dev * he_dev)505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511
512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514
515 he_writel(he_dev, lbufd_index, TLBF_H);
516
517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518 lbufd_index += 1;
519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520
521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523
524 if (++lbuf_count == lbufs_per_row) {
525 lbuf_count = 0;
526 row_offset += he_dev->bytes_per_row;
527 }
528 lbm_offset += 2;
529 }
530
531 he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533
he_init_tpdrq(struct he_dev * he_dev)534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536 he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538 &he_dev->tpdrq_phys,
539 GFP_KERNEL);
540 if (he_dev->tpdrq_base == NULL) {
541 hprintk("failed to alloc tpdrq\n");
542 return -ENOMEM;
543 }
544
545 he_dev->tpdrq_tail = he_dev->tpdrq_base;
546 he_dev->tpdrq_head = he_dev->tpdrq_base;
547
548 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
549 he_writel(he_dev, 0, TPDRQ_T);
550 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
551
552 return 0;
553 }
554
he_init_cs_block(struct he_dev * he_dev)555 static void he_init_cs_block(struct he_dev *he_dev)
556 {
557 unsigned clock, rate, delta;
558 int reg;
559
560 /* 5.1.7 cs block initialization */
561
562 for (reg = 0; reg < 0x20; ++reg)
563 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
564
565 /* rate grid timer reload values */
566
567 clock = he_is622(he_dev) ? 66667000 : 50000000;
568 rate = he_dev->atm_dev->link_rate;
569 delta = rate / 16 / 2;
570
571 for (reg = 0; reg < 0x10; ++reg) {
572 /* 2.4 internal transmit function
573 *
574 * we initialize the first row in the rate grid.
575 * values are period (in clock cycles) of timer
576 */
577 unsigned period = clock / rate;
578
579 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
580 rate -= delta;
581 }
582
583 if (he_is622(he_dev)) {
584 /* table 5.2 (4 cells per lbuf) */
585 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
586 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
587 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
588 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
589 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
590
591 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
592 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
593 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
594 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
595 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
596 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
597 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
598
599 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
600
601 /* table 5.8 */
602 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
603 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
604 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
605 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
606 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
607 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
608
609 /* table 5.9 */
610 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
611 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
612 } else {
613 /* table 5.1 (4 cells per lbuf) */
614 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
615 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
616 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
617 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
618 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
619
620 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
621 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
622 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
623 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
624 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
625 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
626 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
627
628 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
629
630 /* table 5.8 */
631 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
632 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
633 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
634 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
635 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
636 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
637
638 /* table 5.9 */
639 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
640 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
641 }
642
643 he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
644
645 for (reg = 0; reg < 0x8; ++reg)
646 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
647
648 }
649
he_init_cs_block_rcm(struct he_dev * he_dev)650 static int he_init_cs_block_rcm(struct he_dev *he_dev)
651 {
652 unsigned (*rategrid)[16][16];
653 unsigned rate, delta;
654 int i, j, reg;
655
656 unsigned rate_atmf, exp, man;
657 unsigned long long rate_cps;
658 int mult, buf, buf_limit = 4;
659
660 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
661 if (!rategrid)
662 return -ENOMEM;
663
664 /* initialize rate grid group table */
665
666 for (reg = 0x0; reg < 0xff; ++reg)
667 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
668
669 /* initialize rate controller groups */
670
671 for (reg = 0x100; reg < 0x1ff; ++reg)
672 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
673
674 /* initialize tNrm lookup table */
675
676 /* the manual makes reference to a routine in a sample driver
677 for proper configuration; fortunately, we only need this
678 in order to support abr connection */
679
680 /* initialize rate to group table */
681
682 rate = he_dev->atm_dev->link_rate;
683 delta = rate / 32;
684
685 /*
686 * 2.4 transmit internal functions
687 *
688 * we construct a copy of the rate grid used by the scheduler
689 * in order to construct the rate to group table below
690 */
691
692 for (j = 0; j < 16; j++) {
693 (*rategrid)[0][j] = rate;
694 rate -= delta;
695 }
696
697 for (i = 1; i < 16; i++)
698 for (j = 0; j < 16; j++)
699 if (i > 14)
700 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
701 else
702 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
703
704 /*
705 * 2.4 transmit internal function
706 *
707 * this table maps the upper 5 bits of exponent and mantissa
708 * of the atm forum representation of the rate into an index
709 * on rate grid
710 */
711
712 rate_atmf = 0;
713 while (rate_atmf < 0x400) {
714 man = (rate_atmf & 0x1f) << 4;
715 exp = rate_atmf >> 5;
716
717 /*
718 instead of '/ 512', use '>> 9' to prevent a call
719 to divdu3 on x86 platforms
720 */
721 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
722
723 if (rate_cps < 10)
724 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */
725
726 for (i = 255; i > 0; i--)
727 if ((*rategrid)[i/16][i%16] >= rate_cps)
728 break; /* pick nearest rate instead? */
729
730 /*
731 * each table entry is 16 bits: (rate grid index (8 bits)
732 * and a buffer limit (8 bits)
733 * there are two table entries in each 32-bit register
734 */
735
736 #ifdef notdef
737 buf = rate_cps * he_dev->tx_numbuffs /
738 (he_dev->atm_dev->link_rate * 2);
739 #else
740 /* this is pretty, but avoids _divdu3 and is mostly correct */
741 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
742 if (rate_cps > (272ULL * mult))
743 buf = 4;
744 else if (rate_cps > (204ULL * mult))
745 buf = 3;
746 else if (rate_cps > (136ULL * mult))
747 buf = 2;
748 else if (rate_cps > (68ULL * mult))
749 buf = 1;
750 else
751 buf = 0;
752 #endif
753 if (buf > buf_limit)
754 buf = buf_limit;
755 reg = (reg << 16) | ((i << 8) | buf);
756
757 #define RTGTBL_OFFSET 0x400
758
759 if (rate_atmf & 0x1)
760 he_writel_rcm(he_dev, reg,
761 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
762
763 ++rate_atmf;
764 }
765
766 kfree(rategrid);
767 return 0;
768 }
769
he_init_group(struct he_dev * he_dev,int group)770 static int he_init_group(struct he_dev *he_dev, int group)
771 {
772 struct he_buff *heb, *next;
773 dma_addr_t mapping;
774 int i;
775
776 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
777 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
778 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
779 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
780 G0_RBPS_BS + (group * 32));
781
782 /* bitmap table */
783 he_dev->rbpl_table = bitmap_zalloc(RBPL_TABLE_SIZE, GFP_KERNEL);
784 if (!he_dev->rbpl_table) {
785 hprintk("unable to allocate rbpl bitmap table\n");
786 return -ENOMEM;
787 }
788
789 /* rbpl_virt 64-bit pointers */
790 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
791 sizeof(*he_dev->rbpl_virt),
792 GFP_KERNEL);
793 if (!he_dev->rbpl_virt) {
794 hprintk("unable to allocate rbpl virt table\n");
795 goto out_free_rbpl_table;
796 }
797
798 /* large buffer pool */
799 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
800 CONFIG_RBPL_BUFSIZE, 64, 0);
801 if (he_dev->rbpl_pool == NULL) {
802 hprintk("unable to create rbpl pool\n");
803 goto out_free_rbpl_virt;
804 }
805
806 he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
807 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
808 &he_dev->rbpl_phys, GFP_KERNEL);
809 if (he_dev->rbpl_base == NULL) {
810 hprintk("failed to alloc rbpl_base\n");
811 goto out_destroy_rbpl_pool;
812 }
813
814 INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
815
816 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
817
818 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
819 if (!heb)
820 goto out_free_rbpl;
821 heb->mapping = mapping;
822 list_add(&heb->entry, &he_dev->rbpl_outstanding);
823
824 set_bit(i, he_dev->rbpl_table);
825 he_dev->rbpl_virt[i] = heb;
826 he_dev->rbpl_hint = i + 1;
827 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
828 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
829 }
830 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
831
832 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
833 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
834 G0_RBPL_T + (group * 32));
835 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
836 G0_RBPL_BS + (group * 32));
837 he_writel(he_dev,
838 RBP_THRESH(CONFIG_RBPL_THRESH) |
839 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
840 RBP_INT_ENB,
841 G0_RBPL_QI + (group * 32));
842
843 /* rx buffer ready queue */
844
845 he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
846 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
847 &he_dev->rbrq_phys, GFP_KERNEL);
848 if (he_dev->rbrq_base == NULL) {
849 hprintk("failed to allocate rbrq\n");
850 goto out_free_rbpl;
851 }
852
853 he_dev->rbrq_head = he_dev->rbrq_base;
854 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
855 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
856 he_writel(he_dev,
857 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
858 G0_RBRQ_Q + (group * 16));
859 if (irq_coalesce) {
860 hprintk("coalescing interrupts\n");
861 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
862 G0_RBRQ_I + (group * 16));
863 } else
864 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
865 G0_RBRQ_I + (group * 16));
866
867 /* tx buffer ready queue */
868
869 he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
870 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
871 &he_dev->tbrq_phys, GFP_KERNEL);
872 if (he_dev->tbrq_base == NULL) {
873 hprintk("failed to allocate tbrq\n");
874 goto out_free_rbpq_base;
875 }
876
877 he_dev->tbrq_head = he_dev->tbrq_base;
878
879 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
880 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
881 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
882 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
883
884 return 0;
885
886 out_free_rbpq_base:
887 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
888 sizeof(struct he_rbrq), he_dev->rbrq_base,
889 he_dev->rbrq_phys);
890 out_free_rbpl:
891 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
892 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
893
894 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
895 sizeof(struct he_rbp), he_dev->rbpl_base,
896 he_dev->rbpl_phys);
897 out_destroy_rbpl_pool:
898 dma_pool_destroy(he_dev->rbpl_pool);
899 out_free_rbpl_virt:
900 kfree(he_dev->rbpl_virt);
901 out_free_rbpl_table:
902 bitmap_free(he_dev->rbpl_table);
903
904 return -ENOMEM;
905 }
906
he_init_irq(struct he_dev * he_dev)907 static int he_init_irq(struct he_dev *he_dev)
908 {
909 int i;
910
911 /* 2.9.3.5 tail offset for each interrupt queue is located after the
912 end of the interrupt queue */
913
914 he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
915 (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
916 &he_dev->irq_phys, GFP_KERNEL);
917 if (he_dev->irq_base == NULL) {
918 hprintk("failed to allocate irq\n");
919 return -ENOMEM;
920 }
921 he_dev->irq_tailoffset = (unsigned *)
922 &he_dev->irq_base[CONFIG_IRQ_SIZE];
923 *he_dev->irq_tailoffset = 0;
924 he_dev->irq_head = he_dev->irq_base;
925 he_dev->irq_tail = he_dev->irq_base;
926
927 for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
928 he_dev->irq_base[i].isw = ITYPE_INVALID;
929
930 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
931 he_writel(he_dev,
932 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
933 IRQ0_HEAD);
934 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
935 he_writel(he_dev, 0x0, IRQ0_DATA);
936
937 he_writel(he_dev, 0x0, IRQ1_BASE);
938 he_writel(he_dev, 0x0, IRQ1_HEAD);
939 he_writel(he_dev, 0x0, IRQ1_CNTL);
940 he_writel(he_dev, 0x0, IRQ1_DATA);
941
942 he_writel(he_dev, 0x0, IRQ2_BASE);
943 he_writel(he_dev, 0x0, IRQ2_HEAD);
944 he_writel(he_dev, 0x0, IRQ2_CNTL);
945 he_writel(he_dev, 0x0, IRQ2_DATA);
946
947 he_writel(he_dev, 0x0, IRQ3_BASE);
948 he_writel(he_dev, 0x0, IRQ3_HEAD);
949 he_writel(he_dev, 0x0, IRQ3_CNTL);
950 he_writel(he_dev, 0x0, IRQ3_DATA);
951
952 /* 2.9.3.2 interrupt queue mapping registers */
953
954 he_writel(he_dev, 0x0, GRP_10_MAP);
955 he_writel(he_dev, 0x0, GRP_32_MAP);
956 he_writel(he_dev, 0x0, GRP_54_MAP);
957 he_writel(he_dev, 0x0, GRP_76_MAP);
958
959 if (request_irq(he_dev->pci_dev->irq,
960 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
961 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
962 return -EINVAL;
963 }
964
965 he_dev->irq = he_dev->pci_dev->irq;
966
967 return 0;
968 }
969
he_start(struct atm_dev * dev)970 static int he_start(struct atm_dev *dev)
971 {
972 struct he_dev *he_dev;
973 struct pci_dev *pci_dev;
974 unsigned long membase;
975
976 u16 command;
977 u32 gen_cntl_0, host_cntl, lb_swap;
978 u8 cache_size, timer;
979
980 unsigned err;
981 unsigned int status, reg;
982 int i, group;
983
984 he_dev = HE_DEV(dev);
985 pci_dev = he_dev->pci_dev;
986
987 membase = pci_resource_start(pci_dev, 0);
988 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
989
990 /*
991 * pci bus controller initialization
992 */
993
994 /* 4.3 pci bus controller-specific initialization */
995 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
996 hprintk("can't read GEN_CNTL_0\n");
997 return -EINVAL;
998 }
999 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1000 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1001 hprintk("can't write GEN_CNTL_0.\n");
1002 return -EINVAL;
1003 }
1004
1005 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1006 hprintk("can't read PCI_COMMAND.\n");
1007 return -EINVAL;
1008 }
1009
1010 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1011 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1012 hprintk("can't enable memory.\n");
1013 return -EINVAL;
1014 }
1015
1016 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1017 hprintk("can't read cache line size?\n");
1018 return -EINVAL;
1019 }
1020
1021 if (cache_size < 16) {
1022 cache_size = 16;
1023 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1024 hprintk("can't set cache line size to %d\n", cache_size);
1025 }
1026
1027 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1028 hprintk("can't read latency timer?\n");
1029 return -EINVAL;
1030 }
1031
1032 /* from table 3.9
1033 *
1034 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1035 *
1036 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1037 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1038 *
1039 */
1040 #define LAT_TIMER 209
1041 if (timer < LAT_TIMER) {
1042 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1043 timer = LAT_TIMER;
1044 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1045 hprintk("can't set latency timer to %d\n", timer);
1046 }
1047
1048 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1049 hprintk("can't set up page mapping\n");
1050 return -EINVAL;
1051 }
1052
1053 /* 4.4 card reset */
1054 he_writel(he_dev, 0x0, RESET_CNTL);
1055 he_writel(he_dev, 0xff, RESET_CNTL);
1056
1057 msleep(16); /* 16 ms */
1058 status = he_readl(he_dev, RESET_CNTL);
1059 if ((status & BOARD_RST_STATUS) == 0) {
1060 hprintk("reset failed\n");
1061 return -EINVAL;
1062 }
1063
1064 /* 4.5 set bus width */
1065 host_cntl = he_readl(he_dev, HOST_CNTL);
1066 if (host_cntl & PCI_BUS_SIZE64)
1067 gen_cntl_0 |= ENBL_64;
1068 else
1069 gen_cntl_0 &= ~ENBL_64;
1070
1071 if (disable64 == 1) {
1072 hprintk("disabling 64-bit pci bus transfers\n");
1073 gen_cntl_0 &= ~ENBL_64;
1074 }
1075
1076 if (gen_cntl_0 & ENBL_64)
1077 hprintk("64-bit transfers enabled\n");
1078
1079 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1080
1081 /* 4.7 read prom contents */
1082 for (i = 0; i < PROD_ID_LEN; ++i)
1083 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1084
1085 he_dev->media = read_prom_byte(he_dev, MEDIA);
1086
1087 for (i = 0; i < 6; ++i)
1088 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1089
1090 hprintk("%s%s, %pM\n", he_dev->prod_id,
1091 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1092 he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1093 ATM_OC12_PCR : ATM_OC3_PCR;
1094
1095 /* 4.6 set host endianess */
1096 lb_swap = he_readl(he_dev, LB_SWAP);
1097 if (he_is622(he_dev))
1098 lb_swap &= ~XFER_SIZE; /* 4 cells */
1099 else
1100 lb_swap |= XFER_SIZE; /* 8 cells */
1101 #ifdef __BIG_ENDIAN
1102 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1103 #else
1104 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1105 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1106 #endif /* __BIG_ENDIAN */
1107 he_writel(he_dev, lb_swap, LB_SWAP);
1108
1109 /* 4.8 sdram controller initialization */
1110 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1111
1112 /* 4.9 initialize rnum value */
1113 lb_swap |= SWAP_RNUM_MAX(0xf);
1114 he_writel(he_dev, lb_swap, LB_SWAP);
1115
1116 /* 4.10 initialize the interrupt queues */
1117 if ((err = he_init_irq(he_dev)) != 0)
1118 return err;
1119
1120 /* 4.11 enable pci bus controller state machines */
1121 host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1122 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1123 he_writel(he_dev, host_cntl, HOST_CNTL);
1124
1125 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1126 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1127
1128 /*
1129 * atm network controller initialization
1130 */
1131
1132 /* 5.1.1 generic configuration state */
1133
1134 /*
1135 * local (cell) buffer memory map
1136 *
1137 * HE155 HE622
1138 *
1139 * 0 ____________1023 bytes 0 _______________________2047 bytes
1140 * | | | | |
1141 * | utility | | rx0 | |
1142 * 5|____________| 255|___________________| u |
1143 * 6| | 256| | t |
1144 * | | | | i |
1145 * | rx0 | row | tx | l |
1146 * | | | | i |
1147 * | | 767|___________________| t |
1148 * 517|____________| 768| | y |
1149 * row 518| | | rx1 | |
1150 * | | 1023|___________________|___|
1151 * | |
1152 * | tx |
1153 * | |
1154 * | |
1155 * 1535|____________|
1156 * 1536| |
1157 * | rx1 |
1158 * 2047|____________|
1159 *
1160 */
1161
1162 /* total 4096 connections */
1163 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1164 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1165
1166 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1167 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1168 return -ENODEV;
1169 }
1170
1171 if (nvpibits != -1) {
1172 he_dev->vpibits = nvpibits;
1173 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1174 }
1175
1176 if (nvcibits != -1) {
1177 he_dev->vcibits = nvcibits;
1178 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1179 }
1180
1181
1182 if (he_is622(he_dev)) {
1183 he_dev->cells_per_row = 40;
1184 he_dev->bytes_per_row = 2048;
1185 he_dev->r0_numrows = 256;
1186 he_dev->tx_numrows = 512;
1187 he_dev->r1_numrows = 256;
1188 he_dev->r0_startrow = 0;
1189 he_dev->tx_startrow = 256;
1190 he_dev->r1_startrow = 768;
1191 } else {
1192 he_dev->cells_per_row = 20;
1193 he_dev->bytes_per_row = 1024;
1194 he_dev->r0_numrows = 512;
1195 he_dev->tx_numrows = 1018;
1196 he_dev->r1_numrows = 512;
1197 he_dev->r0_startrow = 6;
1198 he_dev->tx_startrow = 518;
1199 he_dev->r1_startrow = 1536;
1200 }
1201
1202 he_dev->cells_per_lbuf = 4;
1203 he_dev->buffer_limit = 4;
1204 he_dev->r0_numbuffs = he_dev->r0_numrows *
1205 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1206 if (he_dev->r0_numbuffs > 2560)
1207 he_dev->r0_numbuffs = 2560;
1208
1209 he_dev->r1_numbuffs = he_dev->r1_numrows *
1210 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1211 if (he_dev->r1_numbuffs > 2560)
1212 he_dev->r1_numbuffs = 2560;
1213
1214 he_dev->tx_numbuffs = he_dev->tx_numrows *
1215 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1216 if (he_dev->tx_numbuffs > 5120)
1217 he_dev->tx_numbuffs = 5120;
1218
1219 /* 5.1.2 configure hardware dependent registers */
1220
1221 he_writel(he_dev,
1222 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1223 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1224 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1225 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1226 LBARB);
1227
1228 he_writel(he_dev, BANK_ON |
1229 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1230 SDRAMCON);
1231
1232 he_writel(he_dev,
1233 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1234 RM_RW_WAIT(1), RCMCONFIG);
1235 he_writel(he_dev,
1236 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1237 TM_RW_WAIT(1), TCMCONFIG);
1238
1239 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1240
1241 he_writel(he_dev,
1242 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1243 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1244 RX_VALVP(he_dev->vpibits) |
1245 RX_VALVC(he_dev->vcibits), RC_CONFIG);
1246
1247 he_writel(he_dev, DRF_THRESH(0x20) |
1248 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1249 TX_VCI_MASK(he_dev->vcibits) |
1250 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
1251
1252 he_writel(he_dev, 0x0, TXAAL5_PROTO);
1253
1254 he_writel(he_dev, PHY_INT_ENB |
1255 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1256 RH_CONFIG);
1257
1258 /* 5.1.3 initialize connection memory */
1259
1260 for (i = 0; i < TCM_MEM_SIZE; ++i)
1261 he_writel_tcm(he_dev, 0, i);
1262
1263 for (i = 0; i < RCM_MEM_SIZE; ++i)
1264 he_writel_rcm(he_dev, 0, i);
1265
1266 /*
1267 * transmit connection memory map
1268 *
1269 * tx memory
1270 * 0x0 ___________________
1271 * | |
1272 * | |
1273 * | TSRa |
1274 * | |
1275 * | |
1276 * 0x8000|___________________|
1277 * | |
1278 * | TSRb |
1279 * 0xc000|___________________|
1280 * | |
1281 * | TSRc |
1282 * 0xe000|___________________|
1283 * | TSRd |
1284 * 0xf000|___________________|
1285 * | tmABR |
1286 * 0x10000|___________________|
1287 * | |
1288 * | tmTPD |
1289 * |___________________|
1290 * | |
1291 * ....
1292 * 0x1ffff|___________________|
1293 *
1294 *
1295 */
1296
1297 he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1298 he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1299 he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1300 he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1301 he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1302
1303
1304 /*
1305 * receive connection memory map
1306 *
1307 * 0x0 ___________________
1308 * | |
1309 * | |
1310 * | RSRa |
1311 * | |
1312 * | |
1313 * 0x8000|___________________|
1314 * | |
1315 * | rx0/1 |
1316 * | LBM | link lists of local
1317 * | tx | buffer memory
1318 * | |
1319 * 0xd000|___________________|
1320 * | |
1321 * | rmABR |
1322 * 0xe000|___________________|
1323 * | |
1324 * | RSRb |
1325 * |___________________|
1326 * | |
1327 * ....
1328 * 0xffff|___________________|
1329 */
1330
1331 he_writel(he_dev, 0x08000, RCMLBM_BA);
1332 he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1333 he_writel(he_dev, 0x0d800, RCMABR_BA);
1334
1335 /* 5.1.4 initialize local buffer free pools linked lists */
1336
1337 he_init_rx_lbfp0(he_dev);
1338 he_init_rx_lbfp1(he_dev);
1339
1340 he_writel(he_dev, 0x0, RLBC_H);
1341 he_writel(he_dev, 0x0, RLBC_T);
1342 he_writel(he_dev, 0x0, RLBC_H2);
1343
1344 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */
1345 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */
1346
1347 he_init_tx_lbfp(he_dev);
1348
1349 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1350
1351 /* 5.1.5 initialize intermediate receive queues */
1352
1353 if (he_is622(he_dev)) {
1354 he_writel(he_dev, 0x000f, G0_INMQ_S);
1355 he_writel(he_dev, 0x200f, G0_INMQ_L);
1356
1357 he_writel(he_dev, 0x001f, G1_INMQ_S);
1358 he_writel(he_dev, 0x201f, G1_INMQ_L);
1359
1360 he_writel(he_dev, 0x002f, G2_INMQ_S);
1361 he_writel(he_dev, 0x202f, G2_INMQ_L);
1362
1363 he_writel(he_dev, 0x003f, G3_INMQ_S);
1364 he_writel(he_dev, 0x203f, G3_INMQ_L);
1365
1366 he_writel(he_dev, 0x004f, G4_INMQ_S);
1367 he_writel(he_dev, 0x204f, G4_INMQ_L);
1368
1369 he_writel(he_dev, 0x005f, G5_INMQ_S);
1370 he_writel(he_dev, 0x205f, G5_INMQ_L);
1371
1372 he_writel(he_dev, 0x006f, G6_INMQ_S);
1373 he_writel(he_dev, 0x206f, G6_INMQ_L);
1374
1375 he_writel(he_dev, 0x007f, G7_INMQ_S);
1376 he_writel(he_dev, 0x207f, G7_INMQ_L);
1377 } else {
1378 he_writel(he_dev, 0x0000, G0_INMQ_S);
1379 he_writel(he_dev, 0x0008, G0_INMQ_L);
1380
1381 he_writel(he_dev, 0x0001, G1_INMQ_S);
1382 he_writel(he_dev, 0x0009, G1_INMQ_L);
1383
1384 he_writel(he_dev, 0x0002, G2_INMQ_S);
1385 he_writel(he_dev, 0x000a, G2_INMQ_L);
1386
1387 he_writel(he_dev, 0x0003, G3_INMQ_S);
1388 he_writel(he_dev, 0x000b, G3_INMQ_L);
1389
1390 he_writel(he_dev, 0x0004, G4_INMQ_S);
1391 he_writel(he_dev, 0x000c, G4_INMQ_L);
1392
1393 he_writel(he_dev, 0x0005, G5_INMQ_S);
1394 he_writel(he_dev, 0x000d, G5_INMQ_L);
1395
1396 he_writel(he_dev, 0x0006, G6_INMQ_S);
1397 he_writel(he_dev, 0x000e, G6_INMQ_L);
1398
1399 he_writel(he_dev, 0x0007, G7_INMQ_S);
1400 he_writel(he_dev, 0x000f, G7_INMQ_L);
1401 }
1402
1403 /* 5.1.6 application tunable parameters */
1404
1405 he_writel(he_dev, 0x0, MCC);
1406 he_writel(he_dev, 0x0, OEC);
1407 he_writel(he_dev, 0x0, DCC);
1408 he_writel(he_dev, 0x0, CEC);
1409
1410 /* 5.1.7 cs block initialization */
1411
1412 he_init_cs_block(he_dev);
1413
1414 /* 5.1.8 cs block connection memory initialization */
1415
1416 if (he_init_cs_block_rcm(he_dev) < 0)
1417 return -ENOMEM;
1418
1419 /* 5.1.10 initialize host structures */
1420
1421 he_init_tpdrq(he_dev);
1422
1423 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1424 sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1425 if (he_dev->tpd_pool == NULL) {
1426 hprintk("unable to create tpd dma_pool\n");
1427 return -ENOMEM;
1428 }
1429
1430 INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1431
1432 if (he_init_group(he_dev, 0) != 0)
1433 return -ENOMEM;
1434
1435 for (group = 1; group < HE_NUM_GROUPS; ++group) {
1436 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1437 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1438 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1439 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1440 G0_RBPS_BS + (group * 32));
1441
1442 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1443 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1444 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1445 G0_RBPL_QI + (group * 32));
1446 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1447
1448 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1449 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1450 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1451 G0_RBRQ_Q + (group * 16));
1452 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1453
1454 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1455 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1456 he_writel(he_dev, TBRQ_THRESH(0x1),
1457 G0_TBRQ_THRESH + (group * 16));
1458 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1459 }
1460
1461 /* host status page */
1462
1463 he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1464 sizeof(struct he_hsp),
1465 &he_dev->hsp_phys, GFP_KERNEL);
1466 if (he_dev->hsp == NULL) {
1467 hprintk("failed to allocate host status page\n");
1468 return -ENOMEM;
1469 }
1470 he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1471
1472 /* initialize framer */
1473
1474 #ifdef CONFIG_ATM_HE_USE_SUNI
1475 if (he_isMM(he_dev))
1476 suni_init(he_dev->atm_dev);
1477 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1478 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1479 #endif /* CONFIG_ATM_HE_USE_SUNI */
1480
1481 if (sdh) {
1482 /* this really should be in suni.c but for now... */
1483 int val;
1484
1485 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1486 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1487 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1488 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1489 }
1490
1491 /* 5.1.12 enable transmit and receive */
1492
1493 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1494 reg |= TX_ENABLE|ER_ENABLE;
1495 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1496
1497 reg = he_readl(he_dev, RC_CONFIG);
1498 reg |= RX_ENABLE;
1499 he_writel(he_dev, reg, RC_CONFIG);
1500
1501 for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1502 he_dev->cs_stper[i].inuse = 0;
1503 he_dev->cs_stper[i].pcr = -1;
1504 }
1505 he_dev->total_bw = 0;
1506
1507
1508 /* atm linux initialization */
1509
1510 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1511 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1512
1513 he_dev->irq_peak = 0;
1514 he_dev->rbrq_peak = 0;
1515 he_dev->rbpl_peak = 0;
1516 he_dev->tbrq_peak = 0;
1517
1518 HPRINTK("hell bent for leather!\n");
1519
1520 return 0;
1521 }
1522
1523 static void
he_stop(struct he_dev * he_dev)1524 he_stop(struct he_dev *he_dev)
1525 {
1526 struct he_buff *heb, *next;
1527 struct pci_dev *pci_dev;
1528 u32 gen_cntl_0, reg;
1529 u16 command;
1530
1531 pci_dev = he_dev->pci_dev;
1532
1533 /* disable interrupts */
1534
1535 if (he_dev->membase) {
1536 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1537 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1538 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1539
1540 tasklet_disable(&he_dev->tasklet);
1541
1542 /* disable recv and transmit */
1543
1544 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1545 reg &= ~(TX_ENABLE|ER_ENABLE);
1546 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1547
1548 reg = he_readl(he_dev, RC_CONFIG);
1549 reg &= ~(RX_ENABLE);
1550 he_writel(he_dev, reg, RC_CONFIG);
1551 }
1552
1553 #ifdef CONFIG_ATM_HE_USE_SUNI
1554 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1555 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1556 #endif /* CONFIG_ATM_HE_USE_SUNI */
1557
1558 if (he_dev->irq)
1559 free_irq(he_dev->irq, he_dev);
1560
1561 if (he_dev->irq_base)
1562 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1563 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1564
1565 if (he_dev->hsp)
1566 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1567 he_dev->hsp, he_dev->hsp_phys);
1568
1569 if (he_dev->rbpl_base) {
1570 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1571 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1572
1573 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1574 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1575 }
1576
1577 kfree(he_dev->rbpl_virt);
1578 bitmap_free(he_dev->rbpl_table);
1579 dma_pool_destroy(he_dev->rbpl_pool);
1580
1581 if (he_dev->rbrq_base)
1582 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1583 he_dev->rbrq_base, he_dev->rbrq_phys);
1584
1585 if (he_dev->tbrq_base)
1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1587 he_dev->tbrq_base, he_dev->tbrq_phys);
1588
1589 if (he_dev->tpdrq_base)
1590 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1591 he_dev->tpdrq_base, he_dev->tpdrq_phys);
1592
1593 dma_pool_destroy(he_dev->tpd_pool);
1594
1595 if (he_dev->pci_dev) {
1596 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1597 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1598 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1599 }
1600
1601 if (he_dev->membase)
1602 iounmap(he_dev->membase);
1603 }
1604
1605 static struct he_tpd *
__alloc_tpd(struct he_dev * he_dev)1606 __alloc_tpd(struct he_dev *he_dev)
1607 {
1608 struct he_tpd *tpd;
1609 dma_addr_t mapping;
1610
1611 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1612 if (tpd == NULL)
1613 return NULL;
1614
1615 tpd->status = TPD_ADDR(mapping);
1616 tpd->reserved = 0;
1617 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1618 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1619 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1620
1621 return tpd;
1622 }
1623
1624 #define AAL5_LEN(buf,len) \
1625 ((((unsigned char *)(buf))[(len)-6] << 8) | \
1626 (((unsigned char *)(buf))[(len)-5]))
1627
1628 /* 2.10.1.2 receive
1629 *
1630 * aal5 packets can optionally return the tcp checksum in the lower
1631 * 16 bits of the crc (RSR0_TCP_CKSUM)
1632 */
1633
1634 #define TCP_CKSUM(buf,len) \
1635 ((((unsigned char *)(buf))[(len)-2] << 8) | \
1636 (((unsigned char *)(buf))[(len-1)]))
1637
1638 static int
he_service_rbrq(struct he_dev * he_dev,int group)1639 he_service_rbrq(struct he_dev *he_dev, int group)
1640 {
1641 struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1642 ((unsigned long)he_dev->rbrq_base |
1643 he_dev->hsp->group[group].rbrq_tail);
1644 unsigned cid, lastcid = -1;
1645 struct sk_buff *skb;
1646 struct atm_vcc *vcc = NULL;
1647 struct he_vcc *he_vcc;
1648 struct he_buff *heb, *next;
1649 int i;
1650 int pdus_assembled = 0;
1651 int updated = 0;
1652
1653 read_lock(&vcc_sklist_lock);
1654 while (he_dev->rbrq_head != rbrq_tail) {
1655 ++updated;
1656
1657 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1658 he_dev->rbrq_head, group,
1659 RBRQ_ADDR(he_dev->rbrq_head),
1660 RBRQ_BUFLEN(he_dev->rbrq_head),
1661 RBRQ_CID(he_dev->rbrq_head),
1662 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1663 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1664 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1665 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1666 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1667 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1668
1669 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1670 heb = he_dev->rbpl_virt[i];
1671
1672 cid = RBRQ_CID(he_dev->rbrq_head);
1673 if (cid != lastcid)
1674 vcc = __find_vcc(he_dev, cid);
1675 lastcid = cid;
1676
1677 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1678 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
1679 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1680 clear_bit(i, he_dev->rbpl_table);
1681 list_del(&heb->entry);
1682 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1683 }
1684
1685 goto next_rbrq_entry;
1686 }
1687
1688 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1689 hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
1690 atomic_inc(&vcc->stats->rx_drop);
1691 goto return_host_buffers;
1692 }
1693
1694 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1695 clear_bit(i, he_dev->rbpl_table);
1696 list_move_tail(&heb->entry, &he_vcc->buffers);
1697 he_vcc->pdu_len += heb->len;
1698
1699 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1700 lastcid = -1;
1701 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
1702 wake_up(&he_vcc->rx_waitq);
1703 goto return_host_buffers;
1704 }
1705
1706 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1707 goto next_rbrq_entry;
1708
1709 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1710 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1711 HPRINTK("%s%s (%d.%d)\n",
1712 RBRQ_CRC_ERR(he_dev->rbrq_head)
1713 ? "CRC_ERR " : "",
1714 RBRQ_LEN_ERR(he_dev->rbrq_head)
1715 ? "LEN_ERR" : "",
1716 vcc->vpi, vcc->vci);
1717 atomic_inc(&vcc->stats->rx_err);
1718 goto return_host_buffers;
1719 }
1720
1721 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1722 GFP_ATOMIC);
1723 if (!skb) {
1724 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1725 goto return_host_buffers;
1726 }
1727
1728 if (rx_skb_reserve > 0)
1729 skb_reserve(skb, rx_skb_reserve);
1730
1731 __net_timestamp(skb);
1732
1733 list_for_each_entry(heb, &he_vcc->buffers, entry)
1734 skb_put_data(skb, &heb->data, heb->len);
1735
1736 switch (vcc->qos.aal) {
1737 case ATM_AAL0:
1738 /* 2.10.1.5 raw cell receive */
1739 skb->len = ATM_AAL0_SDU;
1740 skb_set_tail_pointer(skb, skb->len);
1741 break;
1742 case ATM_AAL5:
1743 /* 2.10.1.2 aal5 receive */
1744
1745 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1746 skb_set_tail_pointer(skb, skb->len);
1747 #ifdef USE_CHECKSUM_HW
1748 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1749 skb->ip_summed = CHECKSUM_COMPLETE;
1750 skb->csum = TCP_CKSUM(skb->data,
1751 he_vcc->pdu_len);
1752 }
1753 #endif
1754 break;
1755 }
1756
1757 #ifdef should_never_happen
1758 if (skb->len > vcc->qos.rxtp.max_sdu)
1759 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1760 #endif
1761
1762 #ifdef notdef
1763 ATM_SKB(skb)->vcc = vcc;
1764 #endif
1765 spin_unlock(&he_dev->global_lock);
1766 vcc->push(vcc, skb);
1767 spin_lock(&he_dev->global_lock);
1768
1769 atomic_inc(&vcc->stats->rx);
1770
1771 return_host_buffers:
1772 ++pdus_assembled;
1773
1774 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1775 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1776 INIT_LIST_HEAD(&he_vcc->buffers);
1777 he_vcc->pdu_len = 0;
1778
1779 next_rbrq_entry:
1780 he_dev->rbrq_head = (struct he_rbrq *)
1781 ((unsigned long) he_dev->rbrq_base |
1782 RBRQ_MASK(he_dev->rbrq_head + 1));
1783
1784 }
1785 read_unlock(&vcc_sklist_lock);
1786
1787 if (updated) {
1788 if (updated > he_dev->rbrq_peak)
1789 he_dev->rbrq_peak = updated;
1790
1791 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1792 G0_RBRQ_H + (group * 16));
1793 }
1794
1795 return pdus_assembled;
1796 }
1797
1798 static void
he_service_tbrq(struct he_dev * he_dev,int group)1799 he_service_tbrq(struct he_dev *he_dev, int group)
1800 {
1801 struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1802 ((unsigned long)he_dev->tbrq_base |
1803 he_dev->hsp->group[group].tbrq_tail);
1804 struct he_tpd *tpd;
1805 int slot, updated = 0;
1806 struct he_tpd *__tpd;
1807
1808 /* 2.1.6 transmit buffer return queue */
1809
1810 while (he_dev->tbrq_head != tbrq_tail) {
1811 ++updated;
1812
1813 HPRINTK("tbrq%d 0x%x%s%s\n",
1814 group,
1815 TBRQ_TPD(he_dev->tbrq_head),
1816 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1817 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1818 tpd = NULL;
1819 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1820 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1821 tpd = __tpd;
1822 list_del(&__tpd->entry);
1823 break;
1824 }
1825 }
1826
1827 if (tpd == NULL) {
1828 hprintk("unable to locate tpd for dma buffer %x\n",
1829 TBRQ_TPD(he_dev->tbrq_head));
1830 goto next_tbrq_entry;
1831 }
1832
1833 if (TBRQ_EOS(he_dev->tbrq_head)) {
1834 HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1835 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1836 if (tpd->vcc)
1837 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1838
1839 goto next_tbrq_entry;
1840 }
1841
1842 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1843 if (tpd->iovec[slot].addr)
1844 dma_unmap_single(&he_dev->pci_dev->dev,
1845 tpd->iovec[slot].addr,
1846 tpd->iovec[slot].len & TPD_LEN_MASK,
1847 DMA_TO_DEVICE);
1848 if (tpd->iovec[slot].len & TPD_LST)
1849 break;
1850
1851 }
1852
1853 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1854 if (tpd->vcc && tpd->vcc->pop)
1855 tpd->vcc->pop(tpd->vcc, tpd->skb);
1856 else
1857 dev_kfree_skb_any(tpd->skb);
1858 }
1859
1860 next_tbrq_entry:
1861 if (tpd)
1862 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1863 he_dev->tbrq_head = (struct he_tbrq *)
1864 ((unsigned long) he_dev->tbrq_base |
1865 TBRQ_MASK(he_dev->tbrq_head + 1));
1866 }
1867
1868 if (updated) {
1869 if (updated > he_dev->tbrq_peak)
1870 he_dev->tbrq_peak = updated;
1871
1872 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1873 G0_TBRQ_H + (group * 16));
1874 }
1875 }
1876
1877 static void
he_service_rbpl(struct he_dev * he_dev,int group)1878 he_service_rbpl(struct he_dev *he_dev, int group)
1879 {
1880 struct he_rbp *new_tail;
1881 struct he_rbp *rbpl_head;
1882 struct he_buff *heb;
1883 dma_addr_t mapping;
1884 int i;
1885 int moved = 0;
1886
1887 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1888 RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1889
1890 for (;;) {
1891 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1892 RBPL_MASK(he_dev->rbpl_tail+1));
1893
1894 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1895 if (new_tail == rbpl_head)
1896 break;
1897
1898 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1899 if (i > (RBPL_TABLE_SIZE - 1)) {
1900 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1901 if (i > (RBPL_TABLE_SIZE - 1))
1902 break;
1903 }
1904 he_dev->rbpl_hint = i + 1;
1905
1906 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1907 if (!heb)
1908 break;
1909 heb->mapping = mapping;
1910 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1911 he_dev->rbpl_virt[i] = heb;
1912 set_bit(i, he_dev->rbpl_table);
1913 new_tail->idx = i << RBP_IDX_OFFSET;
1914 new_tail->phys = mapping + offsetof(struct he_buff, data);
1915
1916 he_dev->rbpl_tail = new_tail;
1917 ++moved;
1918 }
1919
1920 if (moved)
1921 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1922 }
1923
1924 static void
he_tasklet(unsigned long data)1925 he_tasklet(unsigned long data)
1926 {
1927 unsigned long flags;
1928 struct he_dev *he_dev = (struct he_dev *) data;
1929 int group, type;
1930 int updated = 0;
1931
1932 HPRINTK("tasklet (0x%lx)\n", data);
1933 spin_lock_irqsave(&he_dev->global_lock, flags);
1934
1935 while (he_dev->irq_head != he_dev->irq_tail) {
1936 ++updated;
1937
1938 type = ITYPE_TYPE(he_dev->irq_head->isw);
1939 group = ITYPE_GROUP(he_dev->irq_head->isw);
1940
1941 switch (type) {
1942 case ITYPE_RBRQ_THRESH:
1943 HPRINTK("rbrq%d threshold\n", group);
1944 fallthrough;
1945 case ITYPE_RBRQ_TIMER:
1946 if (he_service_rbrq(he_dev, group))
1947 he_service_rbpl(he_dev, group);
1948 break;
1949 case ITYPE_TBRQ_THRESH:
1950 HPRINTK("tbrq%d threshold\n", group);
1951 fallthrough;
1952 case ITYPE_TPD_COMPLETE:
1953 he_service_tbrq(he_dev, group);
1954 break;
1955 case ITYPE_RBPL_THRESH:
1956 he_service_rbpl(he_dev, group);
1957 break;
1958 case ITYPE_RBPS_THRESH:
1959 /* shouldn't happen unless small buffers enabled */
1960 break;
1961 case ITYPE_PHY:
1962 HPRINTK("phy interrupt\n");
1963 #ifdef CONFIG_ATM_HE_USE_SUNI
1964 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1965 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1966 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1967 spin_lock_irqsave(&he_dev->global_lock, flags);
1968 #endif
1969 break;
1970 case ITYPE_OTHER:
1971 switch (type|group) {
1972 case ITYPE_PARITY:
1973 hprintk("parity error\n");
1974 break;
1975 case ITYPE_ABORT:
1976 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1977 break;
1978 }
1979 break;
1980 case ITYPE_TYPE(ITYPE_INVALID):
1981 /* see 8.1.1 -- check all queues */
1982
1983 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1984
1985 he_service_rbrq(he_dev, 0);
1986 he_service_rbpl(he_dev, 0);
1987 he_service_tbrq(he_dev, 0);
1988 break;
1989 default:
1990 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1991 }
1992
1993 he_dev->irq_head->isw = ITYPE_INVALID;
1994
1995 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1996 }
1997
1998 if (updated) {
1999 if (updated > he_dev->irq_peak)
2000 he_dev->irq_peak = updated;
2001
2002 he_writel(he_dev,
2003 IRQ_SIZE(CONFIG_IRQ_SIZE) |
2004 IRQ_THRESH(CONFIG_IRQ_THRESH) |
2005 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2006 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2007 }
2008 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2009 }
2010
2011 static irqreturn_t
he_irq_handler(int irq,void * dev_id)2012 he_irq_handler(int irq, void *dev_id)
2013 {
2014 unsigned long flags;
2015 struct he_dev *he_dev = (struct he_dev * )dev_id;
2016 int handled = 0;
2017
2018 if (he_dev == NULL)
2019 return IRQ_NONE;
2020
2021 spin_lock_irqsave(&he_dev->global_lock, flags);
2022
2023 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2024 (*he_dev->irq_tailoffset << 2));
2025
2026 if (he_dev->irq_tail == he_dev->irq_head) {
2027 HPRINTK("tailoffset not updated?\n");
2028 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2029 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2030 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */
2031 }
2032
2033 #ifdef DEBUG
2034 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2035 hprintk("spurious (or shared) interrupt?\n");
2036 #endif
2037
2038 if (he_dev->irq_head != he_dev->irq_tail) {
2039 handled = 1;
2040 tasklet_schedule(&he_dev->tasklet);
2041 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */
2042 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */
2043 }
2044 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2045 return IRQ_RETVAL(handled);
2046
2047 }
2048
2049 static __inline__ void
__enqueue_tpd(struct he_dev * he_dev,struct he_tpd * tpd,unsigned cid)2050 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2051 {
2052 struct he_tpdrq *new_tail;
2053
2054 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2055 tpd, cid, he_dev->tpdrq_tail);
2056
2057 /* new_tail = he_dev->tpdrq_tail; */
2058 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2059 TPDRQ_MASK(he_dev->tpdrq_tail+1));
2060
2061 /*
2062 * check to see if we are about to set the tail == head
2063 * if true, update the head pointer from the adapter
2064 * to see if this is really the case (reading the queue
2065 * head for every enqueue would be unnecessarily slow)
2066 */
2067
2068 if (new_tail == he_dev->tpdrq_head) {
2069 he_dev->tpdrq_head = (struct he_tpdrq *)
2070 (((unsigned long)he_dev->tpdrq_base) |
2071 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2072
2073 if (new_tail == he_dev->tpdrq_head) {
2074 int slot;
2075
2076 hprintk("tpdrq full (cid 0x%x)\n", cid);
2077 /*
2078 * FIXME
2079 * push tpd onto a transmit backlog queue
2080 * after service_tbrq, service the backlog
2081 * for now, we just drop the pdu
2082 */
2083 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2084 if (tpd->iovec[slot].addr)
2085 dma_unmap_single(&he_dev->pci_dev->dev,
2086 tpd->iovec[slot].addr,
2087 tpd->iovec[slot].len & TPD_LEN_MASK,
2088 DMA_TO_DEVICE);
2089 }
2090 if (tpd->skb) {
2091 if (tpd->vcc->pop)
2092 tpd->vcc->pop(tpd->vcc, tpd->skb);
2093 else
2094 dev_kfree_skb_any(tpd->skb);
2095 atomic_inc(&tpd->vcc->stats->tx_err);
2096 }
2097 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2098 return;
2099 }
2100 }
2101
2102 /* 2.1.5 transmit packet descriptor ready queue */
2103 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2104 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2105 he_dev->tpdrq_tail->cid = cid;
2106 wmb();
2107
2108 he_dev->tpdrq_tail = new_tail;
2109
2110 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2111 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */
2112 }
2113
2114 static int
he_open(struct atm_vcc * vcc)2115 he_open(struct atm_vcc *vcc)
2116 {
2117 unsigned long flags;
2118 struct he_dev *he_dev = HE_DEV(vcc->dev);
2119 struct he_vcc *he_vcc;
2120 int err = 0;
2121 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2122 short vpi = vcc->vpi;
2123 int vci = vcc->vci;
2124
2125 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2126 return 0;
2127
2128 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2129
2130 set_bit(ATM_VF_ADDR, &vcc->flags);
2131
2132 cid = he_mkcid(he_dev, vpi, vci);
2133
2134 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2135 if (he_vcc == NULL) {
2136 hprintk("unable to allocate he_vcc during open\n");
2137 return -ENOMEM;
2138 }
2139
2140 INIT_LIST_HEAD(&he_vcc->buffers);
2141 he_vcc->pdu_len = 0;
2142 he_vcc->rc_index = -1;
2143
2144 init_waitqueue_head(&he_vcc->rx_waitq);
2145 init_waitqueue_head(&he_vcc->tx_waitq);
2146
2147 vcc->dev_data = he_vcc;
2148
2149 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2150 int pcr_goal;
2151
2152 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2153 if (pcr_goal == 0)
2154 pcr_goal = he_dev->atm_dev->link_rate;
2155 if (pcr_goal < 0) /* means round down, technically */
2156 pcr_goal = -pcr_goal;
2157
2158 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2159
2160 switch (vcc->qos.aal) {
2161 case ATM_AAL5:
2162 tsr0_aal = TSR0_AAL5;
2163 tsr4 = TSR4_AAL5;
2164 break;
2165 case ATM_AAL0:
2166 tsr0_aal = TSR0_AAL0_SDU;
2167 tsr4 = TSR4_AAL0_SDU;
2168 break;
2169 default:
2170 err = -EINVAL;
2171 goto open_failed;
2172 }
2173
2174 spin_lock_irqsave(&he_dev->global_lock, flags);
2175 tsr0 = he_readl_tsr0(he_dev, cid);
2176 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2177
2178 if (TSR0_CONN_STATE(tsr0) != 0) {
2179 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2180 err = -EBUSY;
2181 goto open_failed;
2182 }
2183
2184 switch (vcc->qos.txtp.traffic_class) {
2185 case ATM_UBR:
2186 /* 2.3.3.1 open connection ubr */
2187
2188 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2189 TSR0_USE_WMIN | TSR0_UPDATE_GER;
2190 break;
2191
2192 case ATM_CBR:
2193 /* 2.3.3.2 open connection cbr */
2194
2195 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2196 if ((he_dev->total_bw + pcr_goal)
2197 > (he_dev->atm_dev->link_rate * 9 / 10))
2198 {
2199 err = -EBUSY;
2200 goto open_failed;
2201 }
2202
2203 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */
2204
2205 /* find an unused cs_stper register */
2206 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2207 if (he_dev->cs_stper[reg].inuse == 0 ||
2208 he_dev->cs_stper[reg].pcr == pcr_goal)
2209 break;
2210
2211 if (reg == HE_NUM_CS_STPER) {
2212 err = -EBUSY;
2213 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2214 goto open_failed;
2215 }
2216
2217 he_dev->total_bw += pcr_goal;
2218
2219 he_vcc->rc_index = reg;
2220 ++he_dev->cs_stper[reg].inuse;
2221 he_dev->cs_stper[reg].pcr = pcr_goal;
2222
2223 clock = he_is622(he_dev) ? 66667000 : 50000000;
2224 period = clock / pcr_goal;
2225
2226 HPRINTK("rc_index = %d period = %d\n",
2227 reg, period);
2228
2229 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2230 CS_STPER0 + reg);
2231 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2232
2233 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2234 TSR0_RC_INDEX(reg);
2235
2236 break;
2237 default:
2238 err = -EINVAL;
2239 goto open_failed;
2240 }
2241
2242 spin_lock_irqsave(&he_dev->global_lock, flags);
2243
2244 he_writel_tsr0(he_dev, tsr0, cid);
2245 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2246 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2247 TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2248 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2249 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2250
2251 he_writel_tsr3(he_dev, 0x0, cid);
2252 he_writel_tsr5(he_dev, 0x0, cid);
2253 he_writel_tsr6(he_dev, 0x0, cid);
2254 he_writel_tsr7(he_dev, 0x0, cid);
2255 he_writel_tsr8(he_dev, 0x0, cid);
2256 he_writel_tsr10(he_dev, 0x0, cid);
2257 he_writel_tsr11(he_dev, 0x0, cid);
2258 he_writel_tsr12(he_dev, 0x0, cid);
2259 he_writel_tsr13(he_dev, 0x0, cid);
2260 he_writel_tsr14(he_dev, 0x0, cid);
2261 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */
2262 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2263 }
2264
2265 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2266 unsigned aal;
2267
2268 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2269 &HE_VCC(vcc)->rx_waitq);
2270
2271 switch (vcc->qos.aal) {
2272 case ATM_AAL5:
2273 aal = RSR0_AAL5;
2274 break;
2275 case ATM_AAL0:
2276 aal = RSR0_RAWCELL;
2277 break;
2278 default:
2279 err = -EINVAL;
2280 goto open_failed;
2281 }
2282
2283 spin_lock_irqsave(&he_dev->global_lock, flags);
2284
2285 rsr0 = he_readl_rsr0(he_dev, cid);
2286 if (rsr0 & RSR0_OPEN_CONN) {
2287 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2288
2289 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2290 err = -EBUSY;
2291 goto open_failed;
2292 }
2293
2294 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2295 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2296 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2297 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2298
2299 #ifdef USE_CHECKSUM_HW
2300 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2301 rsr0 |= RSR0_TCP_CKSUM;
2302 #endif
2303
2304 he_writel_rsr4(he_dev, rsr4, cid);
2305 he_writel_rsr1(he_dev, rsr1, cid);
2306 /* 5.1.11 last parameter initialized should be
2307 the open/closed indication in rsr0 */
2308 he_writel_rsr0(he_dev,
2309 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2310 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2311
2312 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2313 }
2314
2315 open_failed:
2316
2317 if (err) {
2318 kfree(he_vcc);
2319 clear_bit(ATM_VF_ADDR, &vcc->flags);
2320 }
2321 else
2322 set_bit(ATM_VF_READY, &vcc->flags);
2323
2324 return err;
2325 }
2326
2327 static void
he_close(struct atm_vcc * vcc)2328 he_close(struct atm_vcc *vcc)
2329 {
2330 unsigned long flags;
2331 DECLARE_WAITQUEUE(wait, current);
2332 struct he_dev *he_dev = HE_DEV(vcc->dev);
2333 struct he_tpd *tpd;
2334 unsigned cid;
2335 struct he_vcc *he_vcc = HE_VCC(vcc);
2336 #define MAX_RETRY 30
2337 int retry = 0, sleep = 1, tx_inuse;
2338
2339 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2340
2341 clear_bit(ATM_VF_READY, &vcc->flags);
2342 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2343
2344 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2345 int timeout;
2346
2347 HPRINTK("close rx cid 0x%x\n", cid);
2348
2349 /* 2.7.2.2 close receive operation */
2350
2351 /* wait for previous close (if any) to finish */
2352
2353 spin_lock_irqsave(&he_dev->global_lock, flags);
2354 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2355 HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2356 udelay(250);
2357 }
2358
2359 set_current_state(TASK_UNINTERRUPTIBLE);
2360 add_wait_queue(&he_vcc->rx_waitq, &wait);
2361
2362 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2363 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2364 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2365 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2366
2367 timeout = schedule_timeout(30*HZ);
2368
2369 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2370 set_current_state(TASK_RUNNING);
2371
2372 if (timeout == 0)
2373 hprintk("close rx timeout cid 0x%x\n", cid);
2374
2375 HPRINTK("close rx cid 0x%x complete\n", cid);
2376
2377 }
2378
2379 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2380 volatile unsigned tsr4, tsr0;
2381 int timeout;
2382
2383 HPRINTK("close tx cid 0x%x\n", cid);
2384
2385 /* 2.1.2
2386 *
2387 * ... the host must first stop queueing packets to the TPDRQ
2388 * on the connection to be closed, then wait for all outstanding
2389 * packets to be transmitted and their buffers returned to the
2390 * TBRQ. When the last packet on the connection arrives in the
2391 * TBRQ, the host issues the close command to the adapter.
2392 */
2393
2394 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2395 (retry < MAX_RETRY)) {
2396 msleep(sleep);
2397 if (sleep < 250)
2398 sleep = sleep * 2;
2399
2400 ++retry;
2401 }
2402
2403 if (tx_inuse > 1)
2404 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2405
2406 /* 2.3.1.1 generic close operations with flush */
2407
2408 spin_lock_irqsave(&he_dev->global_lock, flags);
2409 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2410 /* also clears TSR4_SESSION_ENDED */
2411
2412 switch (vcc->qos.txtp.traffic_class) {
2413 case ATM_UBR:
2414 he_writel_tsr1(he_dev,
2415 TSR1_MCR(rate_to_atmf(200000))
2416 | TSR1_PCR(0), cid);
2417 break;
2418 case ATM_CBR:
2419 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2420 break;
2421 }
2422 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */
2423
2424 tpd = __alloc_tpd(he_dev);
2425 if (tpd == NULL) {
2426 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2427 goto close_tx_incomplete;
2428 }
2429 tpd->status |= TPD_EOS | TPD_INT;
2430 tpd->skb = NULL;
2431 tpd->vcc = vcc;
2432 wmb();
2433
2434 set_current_state(TASK_UNINTERRUPTIBLE);
2435 add_wait_queue(&he_vcc->tx_waitq, &wait);
2436 __enqueue_tpd(he_dev, tpd, cid);
2437 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2438
2439 timeout = schedule_timeout(30*HZ);
2440
2441 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2442 set_current_state(TASK_RUNNING);
2443
2444 spin_lock_irqsave(&he_dev->global_lock, flags);
2445
2446 if (timeout == 0) {
2447 hprintk("close tx timeout cid 0x%x\n", cid);
2448 goto close_tx_incomplete;
2449 }
2450
2451 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2452 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2453 udelay(250);
2454 }
2455
2456 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2457 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2458 udelay(250);
2459 }
2460
2461 close_tx_incomplete:
2462
2463 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2464 int reg = he_vcc->rc_index;
2465
2466 HPRINTK("cs_stper reg = %d\n", reg);
2467
2468 if (he_dev->cs_stper[reg].inuse == 0)
2469 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2470 else
2471 --he_dev->cs_stper[reg].inuse;
2472
2473 he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2474 }
2475 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2476
2477 HPRINTK("close tx cid 0x%x complete\n", cid);
2478 }
2479
2480 kfree(he_vcc);
2481
2482 clear_bit(ATM_VF_ADDR, &vcc->flags);
2483 }
2484
2485 static int
he_send(struct atm_vcc * vcc,struct sk_buff * skb)2486 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2487 {
2488 unsigned long flags;
2489 struct he_dev *he_dev = HE_DEV(vcc->dev);
2490 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2491 struct he_tpd *tpd;
2492 #ifdef USE_SCATTERGATHER
2493 int i, slot = 0;
2494 #endif
2495
2496 #define HE_TPD_BUFSIZE 0xffff
2497
2498 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2499
2500 if ((skb->len > HE_TPD_BUFSIZE) ||
2501 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2502 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2503 if (vcc->pop)
2504 vcc->pop(vcc, skb);
2505 else
2506 dev_kfree_skb_any(skb);
2507 atomic_inc(&vcc->stats->tx_err);
2508 return -EINVAL;
2509 }
2510
2511 #ifndef USE_SCATTERGATHER
2512 if (skb_shinfo(skb)->nr_frags) {
2513 hprintk("no scatter/gather support\n");
2514 if (vcc->pop)
2515 vcc->pop(vcc, skb);
2516 else
2517 dev_kfree_skb_any(skb);
2518 atomic_inc(&vcc->stats->tx_err);
2519 return -EINVAL;
2520 }
2521 #endif
2522 spin_lock_irqsave(&he_dev->global_lock, flags);
2523
2524 tpd = __alloc_tpd(he_dev);
2525 if (tpd == NULL) {
2526 if (vcc->pop)
2527 vcc->pop(vcc, skb);
2528 else
2529 dev_kfree_skb_any(skb);
2530 atomic_inc(&vcc->stats->tx_err);
2531 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2532 return -ENOMEM;
2533 }
2534
2535 if (vcc->qos.aal == ATM_AAL5)
2536 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2537 else {
2538 char *pti_clp = (void *) (skb->data + 3);
2539 int clp, pti;
2540
2541 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2542 clp = (*pti_clp & ATM_HDR_CLP);
2543 tpd->status |= TPD_CELLTYPE(pti);
2544 if (clp)
2545 tpd->status |= TPD_CLP;
2546
2547 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2548 }
2549
2550 #ifdef USE_SCATTERGATHER
2551 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2552 skb_headlen(skb), DMA_TO_DEVICE);
2553 tpd->iovec[slot].len = skb_headlen(skb);
2554 ++slot;
2555
2556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2557 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2558
2559 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */
2560 tpd->vcc = vcc;
2561 tpd->skb = NULL; /* not the last fragment
2562 so dont ->push() yet */
2563 wmb();
2564
2565 __enqueue_tpd(he_dev, tpd, cid);
2566 tpd = __alloc_tpd(he_dev);
2567 if (tpd == NULL) {
2568 if (vcc->pop)
2569 vcc->pop(vcc, skb);
2570 else
2571 dev_kfree_skb_any(skb);
2572 atomic_inc(&vcc->stats->tx_err);
2573 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2574 return -ENOMEM;
2575 }
2576 tpd->status |= TPD_USERCELL;
2577 slot = 0;
2578 }
2579
2580 tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2581 frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2582 tpd->iovec[slot].len = skb_frag_size(frag);
2583 ++slot;
2584
2585 }
2586
2587 tpd->iovec[slot - 1].len |= TPD_LST;
2588 #else
2589 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2590 tpd->length0 = skb->len | TPD_LST;
2591 #endif
2592 tpd->status |= TPD_INT;
2593
2594 tpd->vcc = vcc;
2595 tpd->skb = skb;
2596 wmb();
2597 ATM_SKB(skb)->vcc = vcc;
2598
2599 __enqueue_tpd(he_dev, tpd, cid);
2600 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2601
2602 atomic_inc(&vcc->stats->tx);
2603
2604 return 0;
2605 }
2606
2607 static int
he_ioctl(struct atm_dev * atm_dev,unsigned int cmd,void __user * arg)2608 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2609 {
2610 unsigned long flags;
2611 struct he_dev *he_dev = HE_DEV(atm_dev);
2612 struct he_ioctl_reg reg;
2613 int err = 0;
2614
2615 switch (cmd) {
2616 case HE_GET_REG:
2617 if (!capable(CAP_NET_ADMIN))
2618 return -EPERM;
2619
2620 if (copy_from_user(®, arg,
2621 sizeof(struct he_ioctl_reg)))
2622 return -EFAULT;
2623
2624 spin_lock_irqsave(&he_dev->global_lock, flags);
2625 switch (reg.type) {
2626 case HE_REGTYPE_PCI:
2627 if (reg.addr >= HE_REGMAP_SIZE) {
2628 err = -EINVAL;
2629 break;
2630 }
2631
2632 reg.val = he_readl(he_dev, reg.addr);
2633 break;
2634 case HE_REGTYPE_RCM:
2635 reg.val =
2636 he_readl_rcm(he_dev, reg.addr);
2637 break;
2638 case HE_REGTYPE_TCM:
2639 reg.val =
2640 he_readl_tcm(he_dev, reg.addr);
2641 break;
2642 case HE_REGTYPE_MBOX:
2643 reg.val =
2644 he_readl_mbox(he_dev, reg.addr);
2645 break;
2646 default:
2647 err = -EINVAL;
2648 break;
2649 }
2650 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2651 if (err == 0)
2652 if (copy_to_user(arg, ®,
2653 sizeof(struct he_ioctl_reg)))
2654 return -EFAULT;
2655 break;
2656 default:
2657 #ifdef CONFIG_ATM_HE_USE_SUNI
2658 if (atm_dev->phy && atm_dev->phy->ioctl)
2659 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2660 #else /* CONFIG_ATM_HE_USE_SUNI */
2661 err = -EINVAL;
2662 #endif /* CONFIG_ATM_HE_USE_SUNI */
2663 break;
2664 }
2665
2666 return err;
2667 }
2668
2669 static void
he_phy_put(struct atm_dev * atm_dev,unsigned char val,unsigned long addr)2670 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2671 {
2672 unsigned long flags;
2673 struct he_dev *he_dev = HE_DEV(atm_dev);
2674
2675 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2676
2677 spin_lock_irqsave(&he_dev->global_lock, flags);
2678 he_writel(he_dev, val, FRAMER + (addr*4));
2679 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */
2680 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2681 }
2682
2683
2684 static unsigned char
he_phy_get(struct atm_dev * atm_dev,unsigned long addr)2685 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2686 {
2687 unsigned long flags;
2688 struct he_dev *he_dev = HE_DEV(atm_dev);
2689 unsigned reg;
2690
2691 spin_lock_irqsave(&he_dev->global_lock, flags);
2692 reg = he_readl(he_dev, FRAMER + (addr*4));
2693 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2694
2695 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2696 return reg;
2697 }
2698
2699 static int
he_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2700 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2701 {
2702 unsigned long flags;
2703 struct he_dev *he_dev = HE_DEV(dev);
2704 int left, i;
2705 #ifdef notdef
2706 struct he_rbrq *rbrq_tail;
2707 struct he_tpdrq *tpdrq_head;
2708 int rbpl_head, rbpl_tail;
2709 #endif
2710 static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2711
2712
2713 left = *pos;
2714 if (!left--)
2715 return sprintf(page, "ATM he driver\n");
2716
2717 if (!left--)
2718 return sprintf(page, "%s%s\n\n",
2719 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2720
2721 if (!left--)
2722 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
2723
2724 spin_lock_irqsave(&he_dev->global_lock, flags);
2725 mcc += he_readl(he_dev, MCC);
2726 oec += he_readl(he_dev, OEC);
2727 dcc += he_readl(he_dev, DCC);
2728 cec += he_readl(he_dev, CEC);
2729 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2730
2731 if (!left--)
2732 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
2733 mcc, oec, dcc, cec);
2734
2735 if (!left--)
2736 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
2737 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2738
2739 if (!left--)
2740 return sprintf(page, "tpdrq_size = %d inuse = ?\n",
2741 CONFIG_TPDRQ_SIZE);
2742
2743 if (!left--)
2744 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
2745 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2746
2747 if (!left--)
2748 return sprintf(page, "tbrq_size = %d peak = %d\n",
2749 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2750
2751
2752 #ifdef notdef
2753 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2754 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2755
2756 inuse = rbpl_head - rbpl_tail;
2757 if (inuse < 0)
2758 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2759 inuse /= sizeof(struct he_rbp);
2760
2761 if (!left--)
2762 return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
2763 CONFIG_RBPL_SIZE, inuse);
2764 #endif
2765
2766 if (!left--)
2767 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
2768
2769 for (i = 0; i < HE_NUM_CS_STPER; ++i)
2770 if (!left--)
2771 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
2772 he_dev->cs_stper[i].pcr,
2773 he_dev->cs_stper[i].inuse);
2774
2775 if (!left--)
2776 return sprintf(page, "total bw (cbr): %d (limit %d)\n",
2777 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2778
2779 return 0;
2780 }
2781
2782 /* eeprom routines -- see 4.7 */
2783
read_prom_byte(struct he_dev * he_dev,int addr)2784 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2785 {
2786 u32 val = 0, tmp_read = 0;
2787 int i, j = 0;
2788 u8 byte_read = 0;
2789
2790 val = readl(he_dev->membase + HOST_CNTL);
2791 val &= 0xFFFFE0FF;
2792
2793 /* Turn on write enable */
2794 val |= 0x800;
2795 he_writel(he_dev, val, HOST_CNTL);
2796
2797 /* Send READ instruction */
2798 for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2799 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2800 udelay(EEPROM_DELAY);
2801 }
2802
2803 /* Next, we need to send the byte address to read from */
2804 for (i = 7; i >= 0; i--) {
2805 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2806 udelay(EEPROM_DELAY);
2807 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2808 udelay(EEPROM_DELAY);
2809 }
2810
2811 j = 0;
2812
2813 val &= 0xFFFFF7FF; /* Turn off write enable */
2814 he_writel(he_dev, val, HOST_CNTL);
2815
2816 /* Now, we can read data from the EEPROM by clocking it in */
2817 for (i = 7; i >= 0; i--) {
2818 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2819 udelay(EEPROM_DELAY);
2820 tmp_read = he_readl(he_dev, HOST_CNTL);
2821 byte_read |= (unsigned char)
2822 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2823 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2824 udelay(EEPROM_DELAY);
2825 }
2826
2827 he_writel(he_dev, val | ID_CS, HOST_CNTL);
2828 udelay(EEPROM_DELAY);
2829
2830 return byte_read;
2831 }
2832
2833 MODULE_LICENSE("GPL");
2834 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2835 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2836 module_param(disable64, bool, 0);
2837 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2838 module_param(nvpibits, short, 0);
2839 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2840 module_param(nvcibits, short, 0);
2841 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2842 module_param(rx_skb_reserve, short, 0);
2843 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2844 module_param(irq_coalesce, bool, 0);
2845 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2846 module_param(sdh, bool, 0);
2847 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2848
2849 static const struct pci_device_id he_pci_tbl[] = {
2850 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2851 { 0, }
2852 };
2853
2854 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2855
2856 static struct pci_driver he_driver = {
2857 .name = "he",
2858 .probe = he_init_one,
2859 .remove = he_remove_one,
2860 .id_table = he_pci_tbl,
2861 };
2862
2863 module_pci_driver(he_driver);
2864