xref: /openbmc/linux/drivers/atm/fore200e.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4 
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6 
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9 
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14 
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19 
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48 
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57 
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61 
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65 
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69 
70 #include "fore200e.h"
71 #include "suni.h"
72 
73 #define FORE200E_VERSION "0.3e"
74 
75 #define FORE200E         "fore200e: "
76 
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86 
87 
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90 
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92 
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94 
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96 
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 				    __func__, __LINE__, #expr); \
101 			     panic(FORE200E "%s", __func__); \
102 			 }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106 
107 
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110 
111 static LIST_HEAD(fore200e_boards);
112 
113 
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117 
118 
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123 
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128 
129 
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133 
134 
135 #if 0 /* currently unused */
136 static int
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144 
145     return -EINVAL;
146 }
147 #endif
148 
149 
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160 
161     return -EINVAL;
162 }
163 
164 
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172 
173 
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176 
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181 
182     if (alignment <= sizeof(int))
183 	alignment = 0;
184 
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188 
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191 	return -ENOMEM;
192 
193     if (alignment > 0)
194 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195 
196     chunk->align_addr = chunk->alloc_addr + offset;
197 
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199 
200     return 0;
201 }
202 
203 
204 /* free a chunk of memory */
205 
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210 
211     kfree(chunk->alloc_addr);
212 }
213 
214 
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221 
222 
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228 
229     mb();
230     do {
231 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 	    break;
233 
234     } while (time_before(jiffies, timeout));
235 
236 #if 1
237     if (!ok) {
238 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 	       *addr, val);
240     }
241 #endif
242 
243     return ok;
244 }
245 
246 
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252 
253     do {
254 	if ((ok = (fore200e->bus->read(addr) == val)))
255 	    break;
256 
257     } while (time_before(jiffies, timeout));
258 
259 #if 1
260     if (!ok) {
261 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 	       fore200e->bus->read(addr), val);
263     }
264 #endif
265 
266     return ok;
267 }
268 
269 
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275 
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278 
279 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280 
281 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282 
283 		    struct chunk* data = &buffer[ nbr ].data;
284 
285 		    if (data->alloc_addr != NULL)
286 			fore200e_chunk_free(fore200e, data);
287 		}
288 	    }
289 	}
290     }
291 }
292 
293 
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298 
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301 
302 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304 
305 	    if (status->alloc_addr)
306 		fore200e->bus->dma_chunk_free(fore200e, status);
307 
308 	    if (rbd_block->alloc_addr)
309 		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 	}
311     }
312 }
313 
314 
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319 
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321 
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323 
324     fore200e->bus->reset(fore200e);
325 
326     if (diag) {
327 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 	if (ok == 0) {
329 
330 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 	    return -ENODEV;
332 	}
333 
334 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335 
336 	fore200e->state = FORE200E_STATE_RESET;
337     }
338 
339     return 0;
340 }
341 
342 
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 	   fore200e->name, fore200e->phys_base,
348 	   fore200e_irq_itoa(fore200e->irq));
349 
350     if (fore200e->state > FORE200E_STATE_RESET) {
351 	/* first, reset the board to prevent further interrupts or data transfers */
352 	fore200e_reset(fore200e, 0);
353     }
354 
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357 
358     case FORE200E_STATE_COMPLETE:
359 	kfree(fore200e->stats);
360 
361 	/* fall through */
362     case FORE200E_STATE_IRQ:
363 	free_irq(fore200e->irq, fore200e->atm_dev);
364 
365 	/* fall through */
366     case FORE200E_STATE_ALLOC_BUF:
367 	fore200e_free_rx_buf(fore200e);
368 
369 	/* fall through */
370     case FORE200E_STATE_INIT_BSQ:
371 	fore200e_uninit_bs_queue(fore200e);
372 
373 	/* fall through */
374     case FORE200E_STATE_INIT_RXQ:
375 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377 
378 	/* fall through */
379     case FORE200E_STATE_INIT_TXQ:
380 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382 
383 	/* fall through */
384     case FORE200E_STATE_INIT_CMDQ:
385 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386 
387 	/* fall through */
388     case FORE200E_STATE_INITIALIZE:
389 	/* nothing to do for that state */
390 
391     case FORE200E_STATE_START_FW:
392 	/* nothing to do for that state */
393 
394     case FORE200E_STATE_RESET:
395 	/* nothing to do for that state */
396 
397     case FORE200E_STATE_MAP:
398 	fore200e->bus->unmap(fore200e);
399 
400 	/* fall through */
401     case FORE200E_STATE_CONFIGURE:
402 	/* nothing to do for that state */
403 
404     case FORE200E_STATE_REGISTER:
405 	/* XXX shouldn't we *start* by deregistering the device? */
406 	atm_dev_deregister(fore200e->atm_dev);
407 
408     case FORE200E_STATE_BLANK:
409 	/* nothing to do for that state */
410 	break;
411     }
412 }
413 
414 
415 #ifdef CONFIG_PCI
416 
417 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     return le32_to_cpu(readl(addr));
422 }
423 
424 
425 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426 {
427     /* on big-endian hosts, the board is configured to convert
428        the endianess of slave RAM accesses  */
429     writel(cpu_to_le32(val), addr);
430 }
431 
432 
433 static u32
434 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435 {
436     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
437 
438     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
439 	    virt_addr, size, direction, dma_addr);
440 
441     return dma_addr;
442 }
443 
444 
445 static void
446 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447 {
448     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449 	    dma_addr, size, direction);
450 
451     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
452 }
453 
454 
455 static void
456 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459 
460     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462 
463 static void
464 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465 {
466     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467 
468     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
469 }
470 
471 
472 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474 
475 static int
476 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477 			     int size, int nbr, int alignment)
478 {
479     /* returned chunks are page-aligned */
480     chunk->alloc_size = size * nbr;
481     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482 					   chunk->alloc_size,
483 					   &chunk->dma_addr,
484 					   GFP_KERNEL);
485 
486     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487 	return -ENOMEM;
488 
489     chunk->align_addr = chunk->alloc_addr;
490 
491     return 0;
492 }
493 
494 
495 /* free a DMA consistent chunk of memory */
496 
497 static void
498 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499 {
500     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
501 			chunk->alloc_size,
502 			chunk->alloc_addr,
503 			chunk->dma_addr);
504 }
505 
506 
507 static int
508 fore200e_pca_irq_check(struct fore200e* fore200e)
509 {
510     /* this is a 1 bit register */
511     int irq_posted = readl(fore200e->regs.pca.psr);
512 
513 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516     }
517 #endif
518 
519     return irq_posted;
520 }
521 
522 
523 static void
524 fore200e_pca_irq_ack(struct fore200e* fore200e)
525 {
526     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527 }
528 
529 
530 static void
531 fore200e_pca_reset(struct fore200e* fore200e)
532 {
533     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534     fore200e_spin(10);
535     writel(0, fore200e->regs.pca.hcr);
536 }
537 
538 
539 static int fore200e_pca_map(struct fore200e* fore200e)
540 {
541     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542 
543     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544 
545     if (fore200e->virt_base == NULL) {
546 	printk(FORE200E "can't map device %s\n", fore200e->name);
547 	return -EFAULT;
548     }
549 
550     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551 
552     /* gain access to the PCA specific registers  */
553     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556 
557     fore200e->state = FORE200E_STATE_MAP;
558     return 0;
559 }
560 
561 
562 static void
563 fore200e_pca_unmap(struct fore200e* fore200e)
564 {
565     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566 
567     if (fore200e->virt_base != NULL)
568 	iounmap(fore200e->virt_base);
569 }
570 
571 
572 static int fore200e_pca_configure(struct fore200e *fore200e)
573 {
574     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575     u8              master_ctrl, latency;
576 
577     DPRINTK(2, "device %s being configured\n", fore200e->name);
578 
579     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581 	return -EIO;
582     }
583 
584     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585 
586     master_ctrl = master_ctrl
587 #if defined(__BIG_ENDIAN)
588 	/* request the PCA board to convert the endianess of slave RAM accesses */
589 	| PCA200E_CTRL_CONVERT_ENDIAN
590 #endif
591 #if 0
592         | PCA200E_CTRL_DIS_CACHE_RD
593         | PCA200E_CTRL_DIS_WRT_INVAL
594         | PCA200E_CTRL_ENA_CONT_REQ_MODE
595         | PCA200E_CTRL_2_CACHE_WRT_INVAL
596 #endif
597 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
598 
599     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600 
601     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603        this may impact the performances of other PCI devices on the same bus, though */
604     latency = 192;
605     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606 
607     fore200e->state = FORE200E_STATE_CONFIGURE;
608     return 0;
609 }
610 
611 
612 static int __init
613 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614 {
615     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
616     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617     struct prom_opcode      opcode;
618     int                     ok;
619     u32                     prom_dma;
620 
621     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622 
623     opcode.opcode = OPCODE_GET_PROM;
624     opcode.pad    = 0;
625 
626     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627 
628     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629 
630     *entry->status = STATUS_PENDING;
631 
632     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633 
634     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635 
636     *entry->status = STATUS_FREE;
637 
638     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639 
640     if (ok == 0) {
641 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642 	return -EIO;
643     }
644 
645 #if defined(__BIG_ENDIAN)
646 
647 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648 
649     /* MAC address is stored as little-endian */
650     swap_here(&prom->mac_addr[0]);
651     swap_here(&prom->mac_addr[4]);
652 #endif
653 
654     return 0;
655 }
656 
657 
658 static int
659 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660 {
661     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662 
663     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
664 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665 }
666 
667 #endif /* CONFIG_PCI */
668 
669 
670 #ifdef CONFIG_SBUS
671 
672 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
673 {
674     return sbus_readl(addr);
675 }
676 
677 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
678 {
679     sbus_writel(val, addr);
680 }
681 
682 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
683 {
684 	struct platform_device *op = fore200e->bus_dev;
685 	u32 dma_addr;
686 
687 	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688 
689 	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690 		virt_addr, size, direction, dma_addr);
691 
692 	return dma_addr;
693 }
694 
695 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
696 {
697 	struct platform_device *op = fore200e->bus_dev;
698 
699 	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700 		dma_addr, size, direction);
701 
702 	dma_unmap_single(&op->dev, dma_addr, size, direction);
703 }
704 
705 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706 {
707 	struct platform_device *op = fore200e->bus_dev;
708 
709 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710 
711 	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
712 }
713 
714 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
715 {
716 	struct platform_device *op = fore200e->bus_dev;
717 
718 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
719 
720 	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
721 }
722 
723 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725  */
726 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727 					int size, int nbr, int alignment)
728 {
729 	struct platform_device *op = fore200e->bus_dev;
730 
731 	chunk->alloc_size = chunk->align_size = size * nbr;
732 
733 	/* returned chunks are page-aligned */
734 	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735 					       &chunk->dma_addr, GFP_ATOMIC);
736 
737 	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738 		return -ENOMEM;
739 
740 	chunk->align_addr = chunk->alloc_addr;
741 
742 	return 0;
743 }
744 
745 /* free a DVMA consistent chunk of memory */
746 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
747 {
748 	struct platform_device *op = fore200e->bus_dev;
749 
750 	dma_free_coherent(&op->dev, chunk->alloc_size,
751 			  chunk->alloc_addr, chunk->dma_addr);
752 }
753 
754 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
755 {
756 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
758 }
759 
760 static int fore200e_sba_irq_check(struct fore200e *fore200e)
761 {
762 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
763 }
764 
765 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
766 {
767 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
769 }
770 
771 static void fore200e_sba_reset(struct fore200e *fore200e)
772 {
773 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774 	fore200e_spin(10);
775 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
776 }
777 
778 static int __init fore200e_sba_map(struct fore200e *fore200e)
779 {
780 	struct platform_device *op = fore200e->bus_dev;
781 	unsigned int bursts;
782 
783 	/* gain access to the SBA specific registers  */
784 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
788 
789 	if (!fore200e->virt_base) {
790 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791 		return -EFAULT;
792 	}
793 
794 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
795 
796 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
797 
798 	/* get the supported DVMA burst sizes */
799 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
800 
801 	if (sbus_can_dma_64bit())
802 		sbus_set_sbus64(&op->dev, bursts);
803 
804 	fore200e->state = FORE200E_STATE_MAP;
805 	return 0;
806 }
807 
808 static void fore200e_sba_unmap(struct fore200e *fore200e)
809 {
810 	struct platform_device *op = fore200e->bus_dev;
811 
812 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
816 }
817 
818 static int __init fore200e_sba_configure(struct fore200e *fore200e)
819 {
820 	fore200e->state = FORE200E_STATE_CONFIGURE;
821 	return 0;
822 }
823 
824 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
825 {
826 	struct platform_device *op = fore200e->bus_dev;
827 	const u8 *prop;
828 	int len;
829 
830 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
831 	if (!prop)
832 		return -ENODEV;
833 	memcpy(&prom->mac_addr[4], prop, 4);
834 
835 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
836 	if (!prop)
837 		return -ENODEV;
838 	memcpy(&prom->mac_addr[2], prop, 4);
839 
840 	prom->serial_number = of_getintprop_default(op->dev.of_node,
841 						    "serialnumber", 0);
842 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
843 						  "promversion", 0);
844 
845 	return 0;
846 }
847 
848 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
849 {
850 	struct platform_device *op = fore200e->bus_dev;
851 	const struct linux_prom_registers *regs;
852 
853 	regs = of_get_property(op->dev.of_node, "reg", NULL);
854 
855 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
856 		       (regs ? regs->which_io : 0), op->dev.of_node->name);
857 }
858 #endif /* CONFIG_SBUS */
859 
860 
861 static void
862 fore200e_tx_irq(struct fore200e* fore200e)
863 {
864     struct host_txq*        txq = &fore200e->host_txq;
865     struct host_txq_entry*  entry;
866     struct atm_vcc*         vcc;
867     struct fore200e_vc_map* vc_map;
868 
869     if (fore200e->host_txq.txing == 0)
870 	return;
871 
872     for (;;) {
873 
874 	entry = &txq->host_entry[ txq->tail ];
875 
876         if ((*entry->status & STATUS_COMPLETE) == 0) {
877 	    break;
878 	}
879 
880 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
881 		entry, txq->tail, entry->vc_map, entry->skb);
882 
883 	/* free copy of misaligned data */
884 	kfree(entry->data);
885 
886 	/* remove DMA mapping */
887 	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888 				 DMA_TO_DEVICE);
889 
890 	vc_map = entry->vc_map;
891 
892 	/* vcc closed since the time the entry was submitted for tx? */
893 	if ((vc_map->vcc == NULL) ||
894 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895 
896 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897 		    fore200e->atm_dev->number);
898 
899 	    dev_kfree_skb_any(entry->skb);
900 	}
901 	else {
902 	    ASSERT(vc_map->vcc);
903 
904 	    /* vcc closed then immediately re-opened? */
905 	    if (vc_map->incarn != entry->incarn) {
906 
907 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
908 		   if the same vcc is immediately re-opened, those pending PDUs must
909 		   not be popped after the completion of their emission, as they refer
910 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911 		   would be decremented by the size of the (unrelated) skb, possibly
912 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913 		   we thus bind the tx entry to the current incarnation of the vcc
914 		   when the entry is submitted for tx. When the tx later completes,
915 		   if the incarnation number of the tx entry does not match the one
916 		   of the vcc, then this implies that the vcc has been closed then re-opened.
917 		   we thus just drop the skb here. */
918 
919 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920 			fore200e->atm_dev->number);
921 
922 		dev_kfree_skb_any(entry->skb);
923 	    }
924 	    else {
925 		vcc = vc_map->vcc;
926 		ASSERT(vcc);
927 
928 		/* notify tx completion */
929 		if (vcc->pop) {
930 		    vcc->pop(vcc, entry->skb);
931 		}
932 		else {
933 		    dev_kfree_skb_any(entry->skb);
934 		}
935 
936 		/* check error condition */
937 		if (*entry->status & STATUS_ERROR)
938 		    atomic_inc(&vcc->stats->tx_err);
939 		else
940 		    atomic_inc(&vcc->stats->tx);
941 	    }
942 	}
943 
944 	*entry->status = STATUS_FREE;
945 
946 	fore200e->host_txq.txing--;
947 
948 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949     }
950 }
951 
952 
953 #ifdef FORE200E_BSQ_DEBUG
954 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955 {
956     struct buffer* buffer;
957     int count = 0;
958 
959     buffer = bsq->freebuf;
960     while (buffer) {
961 
962 	if (buffer->supplied) {
963 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964 		   where, scheme, magn, buffer->index);
965 	}
966 
967 	if (buffer->magn != magn) {
968 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969 		   where, scheme, magn, buffer->index, buffer->magn);
970 	}
971 
972 	if (buffer->scheme != scheme) {
973 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974 		   where, scheme, magn, buffer->index, buffer->scheme);
975 	}
976 
977 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979 		   where, scheme, magn, buffer->index);
980 	}
981 
982 	count++;
983 	buffer = buffer->next;
984     }
985 
986     if (count != bsq->freebuf_count) {
987 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988 	       where, scheme, magn, count, bsq->freebuf_count);
989     }
990     return 0;
991 }
992 #endif
993 
994 
995 static void
996 fore200e_supply(struct fore200e* fore200e)
997 {
998     int  scheme, magn, i;
999 
1000     struct host_bsq*       bsq;
1001     struct host_bsq_entry* entry;
1002     struct buffer*         buffer;
1003 
1004     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006 
1007 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008 
1009 #ifdef FORE200E_BSQ_DEBUG
1010 	    bsq_audit(1, bsq, scheme, magn);
1011 #endif
1012 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013 
1014 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016 
1017 		entry = &bsq->host_entry[ bsq->head ];
1018 
1019 		for (i = 0; i < RBD_BLK_SIZE; i++) {
1020 
1021 		    /* take the first buffer in the free buffer list */
1022 		    buffer = bsq->freebuf;
1023 		    if (!buffer) {
1024 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025 			       scheme, magn, bsq->freebuf_count);
1026 			return;
1027 		    }
1028 		    bsq->freebuf = buffer->next;
1029 
1030 #ifdef FORE200E_BSQ_DEBUG
1031 		    if (buffer->supplied)
1032 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033 			       scheme, magn, buffer->index);
1034 		    buffer->supplied = 1;
1035 #endif
1036 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1038 		}
1039 
1040 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041 
1042  		/* decrease accordingly the number of free rx buffers */
1043 		bsq->freebuf_count -= RBD_BLK_SIZE;
1044 
1045 		*entry->status = STATUS_PENDING;
1046 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047 	    }
1048 	}
1049     }
1050 }
1051 
1052 
1053 static int
1054 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055 {
1056     struct sk_buff*      skb;
1057     struct buffer*       buffer;
1058     struct fore200e_vcc* fore200e_vcc;
1059     int                  i, pdu_len = 0;
1060 #ifdef FORE200E_52BYTE_AAL0_SDU
1061     u32                  cell_header = 0;
1062 #endif
1063 
1064     ASSERT(vcc);
1065 
1066     fore200e_vcc = FORE200E_VCC(vcc);
1067     ASSERT(fore200e_vcc);
1068 
1069 #ifdef FORE200E_52BYTE_AAL0_SDU
1070     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071 
1072 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1076                        rpd->atm_header.clp;
1077 	pdu_len = 4;
1078     }
1079 #endif
1080 
1081     /* compute total PDU length */
1082     for (i = 0; i < rpd->nseg; i++)
1083 	pdu_len += rpd->rsd[ i ].length;
1084 
1085     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086     if (skb == NULL) {
1087 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088 
1089 	atomic_inc(&vcc->stats->rx_drop);
1090 	return -ENOMEM;
1091     }
1092 
1093     __net_timestamp(skb);
1094 
1095 #ifdef FORE200E_52BYTE_AAL0_SDU
1096     if (cell_header) {
1097 	*((u32*)skb_put(skb, 4)) = cell_header;
1098     }
1099 #endif
1100 
1101     /* reassemble segments */
1102     for (i = 0; i < rpd->nseg; i++) {
1103 
1104 	/* rebuild rx buffer address from rsd handle */
1105 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106 
1107 	/* Make device DMA transfer visible to CPU.  */
1108 	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109 
1110 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111 
1112 	/* Now let the device get at it again.  */
1113 	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114     }
1115 
1116     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117 
1118     if (pdu_len < fore200e_vcc->rx_min_pdu)
1119 	fore200e_vcc->rx_min_pdu = pdu_len;
1120     if (pdu_len > fore200e_vcc->rx_max_pdu)
1121 	fore200e_vcc->rx_max_pdu = pdu_len;
1122     fore200e_vcc->rx_pdu++;
1123 
1124     /* push PDU */
1125     if (atm_charge(vcc, skb->truesize) == 0) {
1126 
1127 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128 		vcc->itf, vcc->vpi, vcc->vci);
1129 
1130 	dev_kfree_skb_any(skb);
1131 
1132 	atomic_inc(&vcc->stats->rx_drop);
1133 	return -ENOMEM;
1134     }
1135 
1136     vcc->push(vcc, skb);
1137     atomic_inc(&vcc->stats->rx);
1138 
1139     return 0;
1140 }
1141 
1142 
1143 static void
1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145 {
1146     struct host_bsq* bsq;
1147     struct buffer*   buffer;
1148     int              i;
1149 
1150     for (i = 0; i < rpd->nseg; i++) {
1151 
1152 	/* rebuild rx buffer address from rsd handle */
1153 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154 
1155 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156 
1157 #ifdef FORE200E_BSQ_DEBUG
1158 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159 
1160 	if (buffer->supplied == 0)
1161 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 		   buffer->scheme, buffer->magn, buffer->index);
1163 	buffer->supplied = 0;
1164 #endif
1165 
1166 	/* re-insert the buffer into the free buffer list */
1167 	buffer->next = bsq->freebuf;
1168 	bsq->freebuf = buffer;
1169 
1170 	/* then increment the number of free rx buffers */
1171 	bsq->freebuf_count++;
1172     }
1173 }
1174 
1175 
1176 static void
1177 fore200e_rx_irq(struct fore200e* fore200e)
1178 {
1179     struct host_rxq*        rxq = &fore200e->host_rxq;
1180     struct host_rxq_entry*  entry;
1181     struct atm_vcc*         vcc;
1182     struct fore200e_vc_map* vc_map;
1183 
1184     for (;;) {
1185 
1186 	entry = &rxq->host_entry[ rxq->head ];
1187 
1188 	/* no more received PDUs */
1189 	if ((*entry->status & STATUS_COMPLETE) == 0)
1190 	    break;
1191 
1192 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193 
1194 	if ((vc_map->vcc == NULL) ||
1195 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196 
1197 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 		    fore200e->atm_dev->number,
1199 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 	}
1201 	else {
1202 	    vcc = vc_map->vcc;
1203 	    ASSERT(vcc);
1204 
1205 	    if ((*entry->status & STATUS_ERROR) == 0) {
1206 
1207 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 	    }
1209 	    else {
1210 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 			fore200e->atm_dev->number,
1212 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 		atomic_inc(&vcc->stats->rx_err);
1214 	    }
1215 	}
1216 
1217 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218 
1219 	fore200e_collect_rpd(fore200e, entry->rpd);
1220 
1221 	/* rewrite the rpd address to ack the received PDU */
1222 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 	*entry->status = STATUS_FREE;
1224 
1225 	fore200e_supply(fore200e);
1226     }
1227 }
1228 
1229 
1230 #ifndef FORE200E_USE_TASKLET
1231 static void
1232 fore200e_irq(struct fore200e* fore200e)
1233 {
1234     unsigned long flags;
1235 
1236     spin_lock_irqsave(&fore200e->q_lock, flags);
1237     fore200e_rx_irq(fore200e);
1238     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239 
1240     spin_lock_irqsave(&fore200e->q_lock, flags);
1241     fore200e_tx_irq(fore200e);
1242     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243 }
1244 #endif
1245 
1246 
1247 static irqreturn_t
1248 fore200e_interrupt(int irq, void* dev)
1249 {
1250     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251 
1252     if (fore200e->bus->irq_check(fore200e) == 0) {
1253 
1254 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 	return IRQ_NONE;
1256     }
1257     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258 
1259 #ifdef FORE200E_USE_TASKLET
1260     tasklet_schedule(&fore200e->tx_tasklet);
1261     tasklet_schedule(&fore200e->rx_tasklet);
1262 #else
1263     fore200e_irq(fore200e);
1264 #endif
1265 
1266     fore200e->bus->irq_ack(fore200e);
1267     return IRQ_HANDLED;
1268 }
1269 
1270 
1271 #ifdef FORE200E_USE_TASKLET
1272 static void
1273 fore200e_tx_tasklet(unsigned long data)
1274 {
1275     struct fore200e* fore200e = (struct fore200e*) data;
1276     unsigned long flags;
1277 
1278     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279 
1280     spin_lock_irqsave(&fore200e->q_lock, flags);
1281     fore200e_tx_irq(fore200e);
1282     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283 }
1284 
1285 
1286 static void
1287 fore200e_rx_tasklet(unsigned long data)
1288 {
1289     struct fore200e* fore200e = (struct fore200e*) data;
1290     unsigned long    flags;
1291 
1292     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293 
1294     spin_lock_irqsave(&fore200e->q_lock, flags);
1295     fore200e_rx_irq((struct fore200e*) data);
1296     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297 }
1298 #endif
1299 
1300 
1301 static int
1302 fore200e_select_scheme(struct atm_vcc* vcc)
1303 {
1304     /* fairly balance the VCs over (identical) buffer schemes */
1305     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306 
1307     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309 
1310     return scheme;
1311 }
1312 
1313 
1314 static int
1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316 {
1317     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319     struct activate_opcode   activ_opcode;
1320     struct deactivate_opcode deactiv_opcode;
1321     struct vpvc              vpvc;
1322     int                      ok;
1323     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324 
1325     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326 
1327     if (activate) {
1328 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329 
1330 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 	activ_opcode.aal    = aal;
1332 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 	activ_opcode.pad    = 0;
1334     }
1335     else {
1336 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 	deactiv_opcode.pad    = 0;
1338     }
1339 
1340     vpvc.vci = vcc->vci;
1341     vpvc.vpi = vcc->vpi;
1342 
1343     *entry->status = STATUS_PENDING;
1344 
1345     if (activate) {
1346 
1347 #ifdef FORE200E_52BYTE_AAL0_SDU
1348 	mtu = 48;
1349 #endif
1350 	/* the MTU is not used by the cp, except in the case of AAL0 */
1351 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354     }
1355     else {
1356 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358     }
1359 
1360     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361 
1362     *entry->status = STATUS_FREE;
1363 
1364     if (ok == 0) {
1365 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 	return -EIO;
1368     }
1369 
1370     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 	    activate ? "open" : "clos");
1372 
1373     return 0;
1374 }
1375 
1376 
1377 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378 
1379 static void
1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381 {
1382     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383 
1384 	/* compute the data cells to idle cells ratio from the tx PCR */
1385 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387     }
1388     else {
1389 	/* disable rate control */
1390 	rate->data_cells = rate->idle_cells = 0;
1391     }
1392 }
1393 
1394 
1395 static int
1396 fore200e_open(struct atm_vcc *vcc)
1397 {
1398     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399     struct fore200e_vcc*    fore200e_vcc;
1400     struct fore200e_vc_map* vc_map;
1401     unsigned long	    flags;
1402     int			    vci = vcc->vci;
1403     short		    vpi = vcc->vpi;
1404 
1405     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407 
1408     spin_lock_irqsave(&fore200e->q_lock, flags);
1409 
1410     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411     if (vc_map->vcc) {
1412 
1413 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414 
1415 	printk(FORE200E "VC %d.%d.%d already in use\n",
1416 	       fore200e->atm_dev->number, vpi, vci);
1417 
1418 	return -EINVAL;
1419     }
1420 
1421     vc_map->vcc = vcc;
1422 
1423     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424 
1425     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426     if (fore200e_vcc == NULL) {
1427 	vc_map->vcc = NULL;
1428 	return -ENOMEM;
1429     }
1430 
1431     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438 
1439     /* pseudo-CBR bandwidth requested? */
1440     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441 
1442 	mutex_lock(&fore200e->rate_mtx);
1443 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444 	    mutex_unlock(&fore200e->rate_mtx);
1445 
1446 	    kfree(fore200e_vcc);
1447 	    vc_map->vcc = NULL;
1448 	    return -EAGAIN;
1449 	}
1450 
1451 	/* reserve bandwidth */
1452 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453 	mutex_unlock(&fore200e->rate_mtx);
1454     }
1455 
1456     vcc->itf = vcc->dev->number;
1457 
1458     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459     set_bit(ATM_VF_ADDR, &vcc->flags);
1460 
1461     vcc->dev_data = fore200e_vcc;
1462 
1463     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464 
1465 	vc_map->vcc = NULL;
1466 
1467 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469 
1470 	vcc->dev_data = NULL;
1471 
1472 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473 
1474 	kfree(fore200e_vcc);
1475 	return -EINVAL;
1476     }
1477 
1478     /* compute rate control parameters */
1479     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480 
1481 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483 
1484 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488     }
1489 
1490     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493 
1494     /* new incarnation of the vcc */
1495     vc_map->incarn = ++fore200e->incarn_count;
1496 
1497     /* VC unusable before this flag is set */
1498     set_bit(ATM_VF_READY, &vcc->flags);
1499 
1500     return 0;
1501 }
1502 
1503 
1504 static void
1505 fore200e_close(struct atm_vcc* vcc)
1506 {
1507     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508     struct fore200e_vcc*    fore200e_vcc;
1509     struct fore200e_vc_map* vc_map;
1510     unsigned long           flags;
1511 
1512     ASSERT(vcc);
1513     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515 
1516     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517 
1518     clear_bit(ATM_VF_READY, &vcc->flags);
1519 
1520     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521 
1522     spin_lock_irqsave(&fore200e->q_lock, flags);
1523 
1524     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525 
1526     /* the vc is no longer considered as "in use" by fore200e_open() */
1527     vc_map->vcc = NULL;
1528 
1529     vcc->itf = vcc->vci = vcc->vpi = 0;
1530 
1531     fore200e_vcc = FORE200E_VCC(vcc);
1532     vcc->dev_data = NULL;
1533 
1534     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535 
1536     /* release reserved bandwidth, if any */
1537     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538 
1539 	mutex_lock(&fore200e->rate_mtx);
1540 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541 	mutex_unlock(&fore200e->rate_mtx);
1542 
1543 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544     }
1545 
1546     clear_bit(ATM_VF_ADDR, &vcc->flags);
1547     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548 
1549     ASSERT(fore200e_vcc);
1550     kfree(fore200e_vcc);
1551 }
1552 
1553 
1554 static int
1555 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556 {
1557     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559     struct fore200e_vc_map* vc_map;
1560     struct host_txq*        txq          = &fore200e->host_txq;
1561     struct host_txq_entry*  entry;
1562     struct tpd*             tpd;
1563     struct tpd_haddr        tpd_haddr;
1564     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565     int                     tx_copy      = 0;
1566     int                     tx_len       = skb->len;
1567     u32*                    cell_header  = NULL;
1568     unsigned char*          skb_data;
1569     int                     skb_len;
1570     unsigned char*          data;
1571     unsigned long           flags;
1572 
1573     ASSERT(vcc);
1574     ASSERT(fore200e);
1575     ASSERT(fore200e_vcc);
1576 
1577     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1578 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1579 	dev_kfree_skb_any(skb);
1580 	return -EINVAL;
1581     }
1582 
1583 #ifdef FORE200E_52BYTE_AAL0_SDU
1584     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1585 	cell_header = (u32*) skb->data;
1586 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1587 	skb_len     = tx_len = skb->len  - 4;
1588 
1589 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1590     }
1591     else
1592 #endif
1593     {
1594 	skb_data = skb->data;
1595 	skb_len  = skb->len;
1596     }
1597 
1598     if (((unsigned long)skb_data) & 0x3) {
1599 
1600 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1601 	tx_copy = 1;
1602 	tx_len  = skb_len;
1603     }
1604 
1605     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1606 
1607         /* this simply NUKES the PCA board */
1608 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1609 	tx_copy = 1;
1610 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1611     }
1612 
1613     if (tx_copy) {
1614 	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1615 	if (data == NULL) {
1616 	    if (vcc->pop) {
1617 		vcc->pop(vcc, skb);
1618 	    }
1619 	    else {
1620 		dev_kfree_skb_any(skb);
1621 	    }
1622 	    return -ENOMEM;
1623 	}
1624 
1625 	memcpy(data, skb_data, skb_len);
1626 	if (skb_len < tx_len)
1627 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1628     }
1629     else {
1630 	data = skb_data;
1631     }
1632 
1633     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1634     ASSERT(vc_map->vcc == vcc);
1635 
1636   retry_here:
1637 
1638     spin_lock_irqsave(&fore200e->q_lock, flags);
1639 
1640     entry = &txq->host_entry[ txq->head ];
1641 
1642     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1643 
1644 	/* try to free completed tx queue entries */
1645 	fore200e_tx_irq(fore200e);
1646 
1647 	if (*entry->status != STATUS_FREE) {
1648 
1649 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1650 
1651 	    /* retry once again? */
1652 	    if (--retry > 0) {
1653 		udelay(50);
1654 		goto retry_here;
1655 	    }
1656 
1657 	    atomic_inc(&vcc->stats->tx_err);
1658 
1659 	    fore200e->tx_sat++;
1660 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1661 		    fore200e->name, fore200e->cp_queues->heartbeat);
1662 	    if (vcc->pop) {
1663 		vcc->pop(vcc, skb);
1664 	    }
1665 	    else {
1666 		dev_kfree_skb_any(skb);
1667 	    }
1668 
1669 	    if (tx_copy)
1670 		kfree(data);
1671 
1672 	    return -ENOBUFS;
1673 	}
1674     }
1675 
1676     entry->incarn = vc_map->incarn;
1677     entry->vc_map = vc_map;
1678     entry->skb    = skb;
1679     entry->data   = tx_copy ? data : NULL;
1680 
1681     tpd = entry->tpd;
1682     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1683     tpd->tsd[ 0 ].length = tx_len;
1684 
1685     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1686     txq->txing++;
1687 
1688     /* The dma_map call above implies a dma_sync so the device can use it,
1689      * thus no explicit dma_sync call is necessary here.
1690      */
1691 
1692     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1693 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1694 	    tpd->tsd[0].length, skb_len);
1695 
1696     if (skb_len < fore200e_vcc->tx_min_pdu)
1697 	fore200e_vcc->tx_min_pdu = skb_len;
1698     if (skb_len > fore200e_vcc->tx_max_pdu)
1699 	fore200e_vcc->tx_max_pdu = skb_len;
1700     fore200e_vcc->tx_pdu++;
1701 
1702     /* set tx rate control information */
1703     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1704     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1705 
1706     if (cell_header) {
1707 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1708 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1709 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1710 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1711 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1712     }
1713     else {
1714 	/* set the ATM header, common to all cells conveying the PDU */
1715 	tpd->atm_header.clp = 0;
1716 	tpd->atm_header.plt = 0;
1717 	tpd->atm_header.vci = vcc->vci;
1718 	tpd->atm_header.vpi = vcc->vpi;
1719 	tpd->atm_header.gfc = 0;
1720     }
1721 
1722     tpd->spec.length = tx_len;
1723     tpd->spec.nseg   = 1;
1724     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1725     tpd->spec.intr   = 1;
1726 
1727     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1728     tpd_haddr.pad   = 0;
1729     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1730 
1731     *entry->status = STATUS_PENDING;
1732     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1733 
1734     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1735 
1736     return 0;
1737 }
1738 
1739 
1740 static int
1741 fore200e_getstats(struct fore200e* fore200e)
1742 {
1743     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1744     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1745     struct stats_opcode     opcode;
1746     int                     ok;
1747     u32                     stats_dma_addr;
1748 
1749     if (fore200e->stats == NULL) {
1750 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1751 	if (fore200e->stats == NULL)
1752 	    return -ENOMEM;
1753     }
1754 
1755     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1756 					    sizeof(struct stats), DMA_FROM_DEVICE);
1757 
1758     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1759 
1760     opcode.opcode = OPCODE_GET_STATS;
1761     opcode.pad    = 0;
1762 
1763     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1764 
1765     *entry->status = STATUS_PENDING;
1766 
1767     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1768 
1769     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1770 
1771     *entry->status = STATUS_FREE;
1772 
1773     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1774 
1775     if (ok == 0) {
1776 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1777 	return -EIO;
1778     }
1779 
1780     return 0;
1781 }
1782 
1783 
1784 static int
1785 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1786 {
1787     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1788 
1789     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1790 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1791 
1792     return -EINVAL;
1793 }
1794 
1795 
1796 static int
1797 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1798 {
1799     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1800 
1801     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1802 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1803 
1804     return -EINVAL;
1805 }
1806 
1807 
1808 #if 0 /* currently unused */
1809 static int
1810 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1811 {
1812     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1813     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1814     struct oc3_opcode       opcode;
1815     int                     ok;
1816     u32                     oc3_regs_dma_addr;
1817 
1818     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1819 
1820     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1821 
1822     opcode.opcode = OPCODE_GET_OC3;
1823     opcode.reg    = 0;
1824     opcode.value  = 0;
1825     opcode.mask   = 0;
1826 
1827     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1828 
1829     *entry->status = STATUS_PENDING;
1830 
1831     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1832 
1833     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1834 
1835     *entry->status = STATUS_FREE;
1836 
1837     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1838 
1839     if (ok == 0) {
1840 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1841 	return -EIO;
1842     }
1843 
1844     return 0;
1845 }
1846 #endif
1847 
1848 
1849 static int
1850 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1851 {
1852     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1853     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1854     struct oc3_opcode       opcode;
1855     int                     ok;
1856 
1857     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1858 
1859     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1860 
1861     opcode.opcode = OPCODE_SET_OC3;
1862     opcode.reg    = reg;
1863     opcode.value  = value;
1864     opcode.mask   = mask;
1865 
1866     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1867 
1868     *entry->status = STATUS_PENDING;
1869 
1870     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1871 
1872     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1873 
1874     *entry->status = STATUS_FREE;
1875 
1876     if (ok == 0) {
1877 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1878 	return -EIO;
1879     }
1880 
1881     return 0;
1882 }
1883 
1884 
1885 static int
1886 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1887 {
1888     u32 mct_value, mct_mask;
1889     int error;
1890 
1891     if (!capable(CAP_NET_ADMIN))
1892 	return -EPERM;
1893 
1894     switch (loop_mode) {
1895 
1896     case ATM_LM_NONE:
1897 	mct_value = 0;
1898 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1899 	break;
1900 
1901     case ATM_LM_LOC_PHY:
1902 	mct_value = mct_mask = SUNI_MCT_DLE;
1903 	break;
1904 
1905     case ATM_LM_RMT_PHY:
1906 	mct_value = mct_mask = SUNI_MCT_LLE;
1907 	break;
1908 
1909     default:
1910 	return -EINVAL;
1911     }
1912 
1913     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1914     if (error == 0)
1915 	fore200e->loop_mode = loop_mode;
1916 
1917     return error;
1918 }
1919 
1920 
1921 static int
1922 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1923 {
1924     struct sonet_stats tmp;
1925 
1926     if (fore200e_getstats(fore200e) < 0)
1927 	return -EIO;
1928 
1929     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1930     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1931     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1932     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1933     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1934     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1935     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1936     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1937 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1938 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1939     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1940 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1941 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1942 
1943     if (arg)
1944 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1945 
1946     return 0;
1947 }
1948 
1949 
1950 static int
1951 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1952 {
1953     struct fore200e* fore200e = FORE200E_DEV(dev);
1954 
1955     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1956 
1957     switch (cmd) {
1958 
1959     case SONET_GETSTAT:
1960 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1961 
1962     case SONET_GETDIAG:
1963 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1964 
1965     case ATM_SETLOOP:
1966 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1967 
1968     case ATM_GETLOOP:
1969 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1970 
1971     case ATM_QUERYLOOP:
1972 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1973     }
1974 
1975     return -ENOSYS; /* not implemented */
1976 }
1977 
1978 
1979 static int
1980 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1981 {
1982     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1983     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1984 
1985     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1986 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1987 	return -EINVAL;
1988     }
1989 
1990     DPRINTK(2, "change_qos %d.%d.%d, "
1991 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1992 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1993 	    "available_cell_rate = %u",
1994 	    vcc->itf, vcc->vpi, vcc->vci,
1995 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1996 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1997 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1998 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1999 	    flags, fore200e->available_cell_rate);
2000 
2001     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2002 
2003 	mutex_lock(&fore200e->rate_mtx);
2004 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2005 	    mutex_unlock(&fore200e->rate_mtx);
2006 	    return -EAGAIN;
2007 	}
2008 
2009 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2010 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2011 
2012 	mutex_unlock(&fore200e->rate_mtx);
2013 
2014 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2015 
2016 	/* update rate control parameters */
2017 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2018 
2019 	set_bit(ATM_VF_HASQOS, &vcc->flags);
2020 
2021 	return 0;
2022     }
2023 
2024     return -EINVAL;
2025 }
2026 
2027 
2028 static int fore200e_irq_request(struct fore200e *fore200e)
2029 {
2030     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2031 
2032 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2033 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2034 	return -EBUSY;
2035     }
2036 
2037     printk(FORE200E "IRQ %s reserved for device %s\n",
2038 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2039 
2040 #ifdef FORE200E_USE_TASKLET
2041     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2042     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2043 #endif
2044 
2045     fore200e->state = FORE200E_STATE_IRQ;
2046     return 0;
2047 }
2048 
2049 
2050 static int fore200e_get_esi(struct fore200e *fore200e)
2051 {
2052     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2053     int ok, i;
2054 
2055     if (!prom)
2056 	return -ENOMEM;
2057 
2058     ok = fore200e->bus->prom_read(fore200e, prom);
2059     if (ok < 0) {
2060 	kfree(prom);
2061 	return -EBUSY;
2062     }
2063 
2064     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2065 	   fore200e->name,
2066 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2067 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2068 
2069     for (i = 0; i < ESI_LEN; i++) {
2070 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2071     }
2072 
2073     kfree(prom);
2074 
2075     return 0;
2076 }
2077 
2078 
2079 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2080 {
2081     int scheme, magn, nbr, size, i;
2082 
2083     struct host_bsq* bsq;
2084     struct buffer*   buffer;
2085 
2086     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2087 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2088 
2089 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2090 
2091 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2092 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2093 
2094 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2095 
2096 	    /* allocate the array of receive buffers */
2097 	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2098                                            GFP_KERNEL);
2099 
2100 	    if (buffer == NULL)
2101 		return -ENOMEM;
2102 
2103 	    bsq->freebuf = NULL;
2104 
2105 	    for (i = 0; i < nbr; i++) {
2106 
2107 		buffer[ i ].scheme = scheme;
2108 		buffer[ i ].magn   = magn;
2109 #ifdef FORE200E_BSQ_DEBUG
2110 		buffer[ i ].index  = i;
2111 		buffer[ i ].supplied = 0;
2112 #endif
2113 
2114 		/* allocate the receive buffer body */
2115 		if (fore200e_chunk_alloc(fore200e,
2116 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117 					 DMA_FROM_DEVICE) < 0) {
2118 
2119 		    while (i > 0)
2120 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2121 		    kfree(buffer);
2122 
2123 		    return -ENOMEM;
2124 		}
2125 
2126 		/* insert the buffer into the free buffer list */
2127 		buffer[ i ].next = bsq->freebuf;
2128 		bsq->freebuf = &buffer[ i ];
2129 	    }
2130 	    /* all the buffers are free, initially */
2131 	    bsq->freebuf_count = nbr;
2132 
2133 #ifdef FORE200E_BSQ_DEBUG
2134 	    bsq_audit(3, bsq, scheme, magn);
2135 #endif
2136 	}
2137     }
2138 
2139     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140     return 0;
2141 }
2142 
2143 
2144 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2145 {
2146     int scheme, magn, i;
2147 
2148     struct host_bsq*     bsq;
2149     struct cp_bsq_entry __iomem * cp_entry;
2150 
2151     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153 
2154 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155 
2156 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157 
2158 	    /* allocate and align the array of status words */
2159 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2160 					       &bsq->status,
2161 					       sizeof(enum status),
2162 					       QUEUE_SIZE_BS,
2163 					       fore200e->bus->status_alignment) < 0) {
2164 		return -ENOMEM;
2165 	    }
2166 
2167 	    /* allocate and align the array of receive buffer descriptors */
2168 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2169 					       &bsq->rbd_block,
2170 					       sizeof(struct rbd_block),
2171 					       QUEUE_SIZE_BS,
2172 					       fore200e->bus->descr_alignment) < 0) {
2173 
2174 		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175 		return -ENOMEM;
2176 	    }
2177 
2178 	    /* get the base address of the cp resident buffer supply queue entries */
2179 	    cp_entry = fore200e->virt_base +
2180 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181 
2182 	    /* fill the host resident and cp resident buffer supply queue entries */
2183 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184 
2185 		bsq->host_entry[ i ].status =
2186 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187 	        bsq->host_entry[ i ].rbd_block =
2188 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189 		bsq->host_entry[ i ].rbd_block_dma =
2190 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192 
2193 		*bsq->host_entry[ i ].status = STATUS_FREE;
2194 
2195 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2196 				     &cp_entry[ i ].status_haddr);
2197 	    }
2198 	}
2199     }
2200 
2201     fore200e->state = FORE200E_STATE_INIT_BSQ;
2202     return 0;
2203 }
2204 
2205 
2206 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2207 {
2208     struct host_rxq*     rxq =  &fore200e->host_rxq;
2209     struct cp_rxq_entry __iomem * cp_entry;
2210     int i;
2211 
2212     DPRINTK(2, "receive queue is being initialized\n");
2213 
2214     /* allocate and align the array of status words */
2215     if (fore200e->bus->dma_chunk_alloc(fore200e,
2216 				       &rxq->status,
2217 				       sizeof(enum status),
2218 				       QUEUE_SIZE_RX,
2219 				       fore200e->bus->status_alignment) < 0) {
2220 	return -ENOMEM;
2221     }
2222 
2223     /* allocate and align the array of receive PDU descriptors */
2224     if (fore200e->bus->dma_chunk_alloc(fore200e,
2225 				       &rxq->rpd,
2226 				       sizeof(struct rpd),
2227 				       QUEUE_SIZE_RX,
2228 				       fore200e->bus->descr_alignment) < 0) {
2229 
2230 	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231 	return -ENOMEM;
2232     }
2233 
2234     /* get the base address of the cp resident rx queue entries */
2235     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236 
2237     /* fill the host resident and cp resident rx entries */
2238     for (i=0; i < QUEUE_SIZE_RX; i++) {
2239 
2240 	rxq->host_entry[ i ].status =
2241 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242 	rxq->host_entry[ i ].rpd =
2243 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244 	rxq->host_entry[ i ].rpd_dma =
2245 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247 
2248 	*rxq->host_entry[ i ].status = STATUS_FREE;
2249 
2250 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2251 			     &cp_entry[ i ].status_haddr);
2252 
2253 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254 			     &cp_entry[ i ].rpd_haddr);
2255     }
2256 
2257     /* set the head entry of the queue */
2258     rxq->head = 0;
2259 
2260     fore200e->state = FORE200E_STATE_INIT_RXQ;
2261     return 0;
2262 }
2263 
2264 
2265 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2266 {
2267     struct host_txq*     txq =  &fore200e->host_txq;
2268     struct cp_txq_entry __iomem * cp_entry;
2269     int i;
2270 
2271     DPRINTK(2, "transmit queue is being initialized\n");
2272 
2273     /* allocate and align the array of status words */
2274     if (fore200e->bus->dma_chunk_alloc(fore200e,
2275 				       &txq->status,
2276 				       sizeof(enum status),
2277 				       QUEUE_SIZE_TX,
2278 				       fore200e->bus->status_alignment) < 0) {
2279 	return -ENOMEM;
2280     }
2281 
2282     /* allocate and align the array of transmit PDU descriptors */
2283     if (fore200e->bus->dma_chunk_alloc(fore200e,
2284 				       &txq->tpd,
2285 				       sizeof(struct tpd),
2286 				       QUEUE_SIZE_TX,
2287 				       fore200e->bus->descr_alignment) < 0) {
2288 
2289 	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290 	return -ENOMEM;
2291     }
2292 
2293     /* get the base address of the cp resident tx queue entries */
2294     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295 
2296     /* fill the host resident and cp resident tx entries */
2297     for (i=0; i < QUEUE_SIZE_TX; i++) {
2298 
2299 	txq->host_entry[ i ].status =
2300 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301 	txq->host_entry[ i ].tpd =
2302 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303 	txq->host_entry[ i ].tpd_dma  =
2304                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306 
2307 	*txq->host_entry[ i ].status = STATUS_FREE;
2308 
2309 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2310 			     &cp_entry[ i ].status_haddr);
2311 
2312         /* although there is a one-to-one mapping of tx queue entries and tpds,
2313 	   we do not write here the DMA (physical) base address of each tpd into
2314 	   the related cp resident entry, because the cp relies on this write
2315 	   operation to detect that a new pdu has been submitted for tx */
2316     }
2317 
2318     /* set the head and tail entries of the queue */
2319     txq->head = 0;
2320     txq->tail = 0;
2321 
2322     fore200e->state = FORE200E_STATE_INIT_TXQ;
2323     return 0;
2324 }
2325 
2326 
2327 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2328 {
2329     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2330     struct cp_cmdq_entry __iomem * cp_entry;
2331     int i;
2332 
2333     DPRINTK(2, "command queue is being initialized\n");
2334 
2335     /* allocate and align the array of status words */
2336     if (fore200e->bus->dma_chunk_alloc(fore200e,
2337 				       &cmdq->status,
2338 				       sizeof(enum status),
2339 				       QUEUE_SIZE_CMD,
2340 				       fore200e->bus->status_alignment) < 0) {
2341 	return -ENOMEM;
2342     }
2343 
2344     /* get the base address of the cp resident cmd queue entries */
2345     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346 
2347     /* fill the host resident and cp resident cmd entries */
2348     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349 
2350 	cmdq->host_entry[ i ].status   =
2351                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353 
2354 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2355 
2356 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2357                              &cp_entry[ i ].status_haddr);
2358     }
2359 
2360     /* set the head entry of the queue */
2361     cmdq->head = 0;
2362 
2363     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364     return 0;
2365 }
2366 
2367 
2368 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369 				    enum buffer_scheme scheme,
2370 				    enum buffer_magn magn, int queue_length,
2371 				    int pool_size, int supply_blksize)
2372 {
2373     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374 
2375     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2376     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2378     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2379 }
2380 
2381 
2382 static int fore200e_initialize(struct fore200e *fore200e)
2383 {
2384     struct cp_queues __iomem * cpq;
2385     int               ok, scheme, magn;
2386 
2387     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388 
2389     mutex_init(&fore200e->rate_mtx);
2390     spin_lock_init(&fore200e->q_lock);
2391 
2392     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393 
2394     /* enable cp to host interrupts */
2395     fore200e->bus->write(1, &cpq->imask);
2396 
2397     if (fore200e->bus->irq_enable)
2398 	fore200e->bus->irq_enable(fore200e);
2399 
2400     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401 
2402     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2404     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2405 
2406     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2407     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2408 
2409     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2412 				    QUEUE_SIZE_BS,
2413 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2414 				    RBD_BLK_SIZE);
2415 
2416     /* issue the initialize command */
2417     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2418     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419 
2420     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421     if (ok == 0) {
2422 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423 	return -ENODEV;
2424     }
2425 
2426     printk(FORE200E "device %s initialized\n", fore200e->name);
2427 
2428     fore200e->state = FORE200E_STATE_INITIALIZE;
2429     return 0;
2430 }
2431 
2432 
2433 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2434 {
2435     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436 
2437 #if 0
2438     printk("%c", c);
2439 #endif
2440     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441 }
2442 
2443 
2444 static int fore200e_monitor_getc(struct fore200e *fore200e)
2445 {
2446     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2448     int                c;
2449 
2450     while (time_before(jiffies, timeout)) {
2451 
2452 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453 
2454 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455 
2456 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457 #if 0
2458 	    printk("%c", c & 0xFF);
2459 #endif
2460 	    return c & 0xFF;
2461 	}
2462     }
2463 
2464     return -1;
2465 }
2466 
2467 
2468 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2469 {
2470     while (*str) {
2471 
2472 	/* the i960 monitor doesn't accept any new character if it has something to say */
2473 	while (fore200e_monitor_getc(fore200e) >= 0);
2474 
2475 	fore200e_monitor_putc(fore200e, *str++);
2476     }
2477 
2478     while (fore200e_monitor_getc(fore200e) >= 0);
2479 }
2480 
2481 #ifdef __LITTLE_ENDIAN
2482 #define FW_EXT ".bin"
2483 #else
2484 #define FW_EXT "_ecd.bin2"
2485 #endif
2486 
2487 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2488 {
2489     const struct firmware *firmware;
2490     struct device *device;
2491     const struct fw_header *fw_header;
2492     const __le32 *fw_data;
2493     u32 fw_size;
2494     u32 __iomem *load_addr;
2495     char buf[48];
2496     int err = -ENODEV;
2497 
2498     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499 	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500 #ifdef CONFIG_SBUS
2501     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2502 	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2503 #endif
2504     else
2505 	return err;
2506 
2507     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2508     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2510 	return err;
2511     }
2512 
2513     fw_data = (const __le32 *)firmware->data;
2514     fw_size = firmware->size / sizeof(u32);
2515     fw_header = (const struct fw_header *)firmware->data;
2516     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517 
2518     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519 	    fore200e->name, load_addr, fw_size);
2520 
2521     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523 	goto release;
2524     }
2525 
2526     for (; fw_size--; fw_data++, load_addr++)
2527 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2528 
2529     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530 
2531 #if defined(__sparc_v9__)
2532     /* reported to be required by SBA cards on some sparc64 hosts */
2533     fore200e_spin(100);
2534 #endif
2535 
2536     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537     fore200e_monitor_puts(fore200e, buf);
2538 
2539     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2540 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2541 	goto release;
2542     }
2543 
2544     printk(FORE200E "device %s firmware started\n", fore200e->name);
2545 
2546     fore200e->state = FORE200E_STATE_START_FW;
2547     err = 0;
2548 
2549 release:
2550     release_firmware(firmware);
2551     return err;
2552 }
2553 
2554 
2555 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2556 {
2557     struct atm_dev* atm_dev;
2558 
2559     DPRINTK(2, "device %s being registered\n", fore200e->name);
2560 
2561     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562                                -1, NULL);
2563     if (atm_dev == NULL) {
2564 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2565 	return -ENODEV;
2566     }
2567 
2568     atm_dev->dev_data = fore200e;
2569     fore200e->atm_dev = atm_dev;
2570 
2571     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573 
2574     fore200e->available_cell_rate = ATM_OC3_PCR;
2575 
2576     fore200e->state = FORE200E_STATE_REGISTER;
2577     return 0;
2578 }
2579 
2580 
2581 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2582 {
2583     if (fore200e_register(fore200e, parent) < 0)
2584 	return -ENODEV;
2585 
2586     if (fore200e->bus->configure(fore200e) < 0)
2587 	return -ENODEV;
2588 
2589     if (fore200e->bus->map(fore200e) < 0)
2590 	return -ENODEV;
2591 
2592     if (fore200e_reset(fore200e, 1) < 0)
2593 	return -ENODEV;
2594 
2595     if (fore200e_load_and_start_fw(fore200e) < 0)
2596 	return -ENODEV;
2597 
2598     if (fore200e_initialize(fore200e) < 0)
2599 	return -ENODEV;
2600 
2601     if (fore200e_init_cmd_queue(fore200e) < 0)
2602 	return -ENOMEM;
2603 
2604     if (fore200e_init_tx_queue(fore200e) < 0)
2605 	return -ENOMEM;
2606 
2607     if (fore200e_init_rx_queue(fore200e) < 0)
2608 	return -ENOMEM;
2609 
2610     if (fore200e_init_bs_queue(fore200e) < 0)
2611 	return -ENOMEM;
2612 
2613     if (fore200e_alloc_rx_buf(fore200e) < 0)
2614 	return -ENOMEM;
2615 
2616     if (fore200e_get_esi(fore200e) < 0)
2617 	return -EIO;
2618 
2619     if (fore200e_irq_request(fore200e) < 0)
2620 	return -EBUSY;
2621 
2622     fore200e_supply(fore200e);
2623 
2624     /* all done, board initialization is now complete */
2625     fore200e->state = FORE200E_STATE_COMPLETE;
2626     return 0;
2627 }
2628 
2629 #ifdef CONFIG_SBUS
2630 static const struct of_device_id fore200e_sba_match[];
2631 static int fore200e_sba_probe(struct platform_device *op)
2632 {
2633 	const struct of_device_id *match;
2634 	const struct fore200e_bus *bus;
2635 	struct fore200e *fore200e;
2636 	static int index = 0;
2637 	int err;
2638 
2639 	match = of_match_device(fore200e_sba_match, &op->dev);
2640 	if (!match)
2641 		return -EINVAL;
2642 	bus = match->data;
2643 
2644 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645 	if (!fore200e)
2646 		return -ENOMEM;
2647 
2648 	fore200e->bus = bus;
2649 	fore200e->bus_dev = op;
2650 	fore200e->irq = op->archdata.irqs[0];
2651 	fore200e->phys_base = op->resource[0].start;
2652 
2653 	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654 
2655 	err = fore200e_init(fore200e, &op->dev);
2656 	if (err < 0) {
2657 		fore200e_shutdown(fore200e);
2658 		kfree(fore200e);
2659 		return err;
2660 	}
2661 
2662 	index++;
2663 	dev_set_drvdata(&op->dev, fore200e);
2664 
2665 	return 0;
2666 }
2667 
2668 static int fore200e_sba_remove(struct platform_device *op)
2669 {
2670 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671 
2672 	fore200e_shutdown(fore200e);
2673 	kfree(fore200e);
2674 
2675 	return 0;
2676 }
2677 
2678 static const struct of_device_id fore200e_sba_match[] = {
2679 	{
2680 		.name = SBA200E_PROM_NAME,
2681 		.data = (void *) &fore200e_bus[1],
2682 	},
2683 	{},
2684 };
2685 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686 
2687 static struct platform_driver fore200e_sba_driver = {
2688 	.driver = {
2689 		.name = "fore_200e",
2690 		.of_match_table = fore200e_sba_match,
2691 	},
2692 	.probe		= fore200e_sba_probe,
2693 	.remove		= fore200e_sba_remove,
2694 };
2695 #endif
2696 
2697 #ifdef CONFIG_PCI
2698 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2699 			       const struct pci_device_id *pci_ent)
2700 {
2701     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2702     struct fore200e* fore200e;
2703     int err = 0;
2704     static int index = 0;
2705 
2706     if (pci_enable_device(pci_dev)) {
2707 	err = -EINVAL;
2708 	goto out;
2709     }
2710 
2711     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2712 	err = -EINVAL;
2713 	goto out;
2714     }
2715 
2716     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2717     if (fore200e == NULL) {
2718 	err = -ENOMEM;
2719 	goto out_disable;
2720     }
2721 
2722     fore200e->bus       = bus;
2723     fore200e->bus_dev   = pci_dev;
2724     fore200e->irq       = pci_dev->irq;
2725     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2726 
2727     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2728 
2729     pci_set_master(pci_dev);
2730 
2731     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2732 	   fore200e->bus->model_name,
2733 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2734 
2735     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2736 
2737     err = fore200e_init(fore200e, &pci_dev->dev);
2738     if (err < 0) {
2739 	fore200e_shutdown(fore200e);
2740 	goto out_free;
2741     }
2742 
2743     ++index;
2744     pci_set_drvdata(pci_dev, fore200e);
2745 
2746 out:
2747     return err;
2748 
2749 out_free:
2750     kfree(fore200e);
2751 out_disable:
2752     pci_disable_device(pci_dev);
2753     goto out;
2754 }
2755 
2756 
2757 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2758 {
2759     struct fore200e *fore200e;
2760 
2761     fore200e = pci_get_drvdata(pci_dev);
2762 
2763     fore200e_shutdown(fore200e);
2764     kfree(fore200e);
2765     pci_disable_device(pci_dev);
2766 }
2767 
2768 
2769 static const struct pci_device_id fore200e_pca_tbl[] = {
2770     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2771       0, 0, (unsigned long) &fore200e_bus[0] },
2772     { 0, }
2773 };
2774 
2775 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2776 
2777 static struct pci_driver fore200e_pca_driver = {
2778     .name =     "fore_200e",
2779     .probe =    fore200e_pca_detect,
2780     .remove =   fore200e_pca_remove_one,
2781     .id_table = fore200e_pca_tbl,
2782 };
2783 #endif
2784 
2785 static int __init fore200e_module_init(void)
2786 {
2787 	int err = 0;
2788 
2789 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2790 
2791 #ifdef CONFIG_SBUS
2792 	err = platform_driver_register(&fore200e_sba_driver);
2793 	if (err)
2794 		return err;
2795 #endif
2796 
2797 #ifdef CONFIG_PCI
2798 	err = pci_register_driver(&fore200e_pca_driver);
2799 #endif
2800 
2801 #ifdef CONFIG_SBUS
2802 	if (err)
2803 		platform_driver_unregister(&fore200e_sba_driver);
2804 #endif
2805 
2806 	return err;
2807 }
2808 
2809 static void __exit fore200e_module_cleanup(void)
2810 {
2811 #ifdef CONFIG_PCI
2812 	pci_unregister_driver(&fore200e_pca_driver);
2813 #endif
2814 #ifdef CONFIG_SBUS
2815 	platform_driver_unregister(&fore200e_sba_driver);
2816 #endif
2817 }
2818 
2819 static int
2820 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2821 {
2822     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2823     struct fore200e_vcc* fore200e_vcc;
2824     struct atm_vcc*      vcc;
2825     int                  i, len, left = *pos;
2826     unsigned long        flags;
2827 
2828     if (!left--) {
2829 
2830 	if (fore200e_getstats(fore200e) < 0)
2831 	    return -EIO;
2832 
2833 	len = sprintf(page,"\n"
2834 		       " device:\n"
2835 		       "   internal name:\t\t%s\n", fore200e->name);
2836 
2837 	/* print bus-specific information */
2838 	if (fore200e->bus->proc_read)
2839 	    len += fore200e->bus->proc_read(fore200e, page + len);
2840 
2841 	len += sprintf(page + len,
2842 		"   interrupt line:\t\t%s\n"
2843 		"   physical base address:\t0x%p\n"
2844 		"   virtual base address:\t0x%p\n"
2845 		"   factory address (ESI):\t%pM\n"
2846 		"   board serial number:\t\t%d\n\n",
2847 		fore200e_irq_itoa(fore200e->irq),
2848 		(void*)fore200e->phys_base,
2849 		fore200e->virt_base,
2850 		fore200e->esi,
2851 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2852 
2853 	return len;
2854     }
2855 
2856     if (!left--)
2857 	return sprintf(page,
2858 		       "   free small bufs, scheme 1:\t%d\n"
2859 		       "   free large bufs, scheme 1:\t%d\n"
2860 		       "   free small bufs, scheme 2:\t%d\n"
2861 		       "   free large bufs, scheme 2:\t%d\n",
2862 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2863 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2864 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2865 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2866 
2867     if (!left--) {
2868 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2869 
2870 	len = sprintf(page,"\n\n"
2871 		      " cell processor:\n"
2872 		      "   heartbeat state:\t\t");
2873 
2874 	if (hb >> 16 != 0xDEAD)
2875 	    len += sprintf(page + len, "0x%08x\n", hb);
2876 	else
2877 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2878 
2879 	return len;
2880     }
2881 
2882     if (!left--) {
2883 	static const char* media_name[] = {
2884 	    "unshielded twisted pair",
2885 	    "multimode optical fiber ST",
2886 	    "multimode optical fiber SC",
2887 	    "single-mode optical fiber ST",
2888 	    "single-mode optical fiber SC",
2889 	    "unknown"
2890 	};
2891 
2892 	static const char* oc3_mode[] = {
2893 	    "normal operation",
2894 	    "diagnostic loopback",
2895 	    "line loopback",
2896 	    "unknown"
2897 	};
2898 
2899 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2900 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2901 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2902 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2903 	u32 oc3_index;
2904 
2905 	if (media_index > 4)
2906 		media_index = 5;
2907 
2908 	switch (fore200e->loop_mode) {
2909 	    case ATM_LM_NONE:    oc3_index = 0;
2910 		                 break;
2911 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2912 		                 break;
2913 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2914 		                 break;
2915 	    default:             oc3_index = 3;
2916 	}
2917 
2918 	return sprintf(page,
2919 		       "   firmware release:\t\t%d.%d.%d\n"
2920 		       "   monitor release:\t\t%d.%d\n"
2921 		       "   media type:\t\t\t%s\n"
2922 		       "   OC-3 revision:\t\t0x%x\n"
2923                        "   OC-3 mode:\t\t\t%s",
2924 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2925 		       mon960_release >> 16, mon960_release << 16 >> 16,
2926 		       media_name[ media_index ],
2927 		       oc3_revision,
2928 		       oc3_mode[ oc3_index ]);
2929     }
2930 
2931     if (!left--) {
2932 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2933 
2934 	return sprintf(page,
2935 		       "\n\n"
2936 		       " monitor:\n"
2937 		       "   version number:\t\t%d\n"
2938 		       "   boot status word:\t\t0x%08x\n",
2939 		       fore200e->bus->read(&cp_monitor->mon_version),
2940 		       fore200e->bus->read(&cp_monitor->bstat));
2941     }
2942 
2943     if (!left--)
2944 	return sprintf(page,
2945 		       "\n"
2946 		       " device statistics:\n"
2947 		       "  4b5b:\n"
2948 		       "     crc_header_errors:\t\t%10u\n"
2949 		       "     framing_errors:\t\t%10u\n",
2950 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2951 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2952 
2953     if (!left--)
2954 	return sprintf(page, "\n"
2955 		       "  OC-3:\n"
2956 		       "     section_bip8_errors:\t%10u\n"
2957 		       "     path_bip8_errors:\t\t%10u\n"
2958 		       "     line_bip24_errors:\t\t%10u\n"
2959 		       "     line_febe_errors:\t\t%10u\n"
2960 		       "     path_febe_errors:\t\t%10u\n"
2961 		       "     corr_hcs_errors:\t\t%10u\n"
2962 		       "     ucorr_hcs_errors:\t\t%10u\n",
2963 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2964 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2965 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2966 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2967 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2968 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2969 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2970 
2971     if (!left--)
2972 	return sprintf(page,"\n"
2973 		       "   ATM:\t\t\t\t     cells\n"
2974 		       "     TX:\t\t\t%10u\n"
2975 		       "     RX:\t\t\t%10u\n"
2976 		       "     vpi out of range:\t\t%10u\n"
2977 		       "     vpi no conn:\t\t%10u\n"
2978 		       "     vci out of range:\t\t%10u\n"
2979 		       "     vci no conn:\t\t%10u\n",
2980 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2981 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2982 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2983 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2984 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2985 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2986 
2987     if (!left--)
2988 	return sprintf(page,"\n"
2989 		       "   AAL0:\t\t\t     cells\n"
2990 		       "     TX:\t\t\t%10u\n"
2991 		       "     RX:\t\t\t%10u\n"
2992 		       "     dropped:\t\t\t%10u\n",
2993 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2994 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2995 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2996 
2997     if (!left--)
2998 	return sprintf(page,"\n"
2999 		       "   AAL3/4:\n"
3000 		       "     SAR sublayer:\t\t     cells\n"
3001 		       "       TX:\t\t\t%10u\n"
3002 		       "       RX:\t\t\t%10u\n"
3003 		       "       dropped:\t\t\t%10u\n"
3004 		       "       CRC errors:\t\t%10u\n"
3005 		       "       protocol errors:\t\t%10u\n\n"
3006 		       "     CS  sublayer:\t\t      PDUs\n"
3007 		       "       TX:\t\t\t%10u\n"
3008 		       "       RX:\t\t\t%10u\n"
3009 		       "       dropped:\t\t\t%10u\n"
3010 		       "       protocol errors:\t\t%10u\n",
3011 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3012 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3013 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3014 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3015 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3016 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3017 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3018 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3019 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3020 
3021     if (!left--)
3022 	return sprintf(page,"\n"
3023 		       "   AAL5:\n"
3024 		       "     SAR sublayer:\t\t     cells\n"
3025 		       "       TX:\t\t\t%10u\n"
3026 		       "       RX:\t\t\t%10u\n"
3027 		       "       dropped:\t\t\t%10u\n"
3028 		       "       congestions:\t\t%10u\n\n"
3029 		       "     CS  sublayer:\t\t      PDUs\n"
3030 		       "       TX:\t\t\t%10u\n"
3031 		       "       RX:\t\t\t%10u\n"
3032 		       "       dropped:\t\t\t%10u\n"
3033 		       "       CRC errors:\t\t%10u\n"
3034 		       "       protocol errors:\t\t%10u\n",
3035 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3036 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3037 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3038 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3039 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3040 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3041 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3042 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3043 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3044 
3045     if (!left--)
3046 	return sprintf(page,"\n"
3047 		       "   AUX:\t\t       allocation failures\n"
3048 		       "     small b1:\t\t\t%10u\n"
3049 		       "     large b1:\t\t\t%10u\n"
3050 		       "     small b2:\t\t\t%10u\n"
3051 		       "     large b2:\t\t\t%10u\n"
3052 		       "     RX PDUs:\t\t\t%10u\n"
3053 		       "     TX PDUs:\t\t\t%10lu\n",
3054 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3055 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3056 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3057 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3058 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3059 		       fore200e->tx_sat);
3060 
3061     if (!left--)
3062 	return sprintf(page,"\n"
3063 		       " receive carrier:\t\t\t%s\n",
3064 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3065 
3066     if (!left--) {
3067         return sprintf(page,"\n"
3068 		       " VCCs:\n  address   VPI VCI   AAL "
3069 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3070     }
3071 
3072     for (i = 0; i < NBR_CONNECT; i++) {
3073 
3074 	vcc = fore200e->vc_map[i].vcc;
3075 
3076 	if (vcc == NULL)
3077 	    continue;
3078 
3079 	spin_lock_irqsave(&fore200e->q_lock, flags);
3080 
3081 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3082 
3083 	    fore200e_vcc = FORE200E_VCC(vcc);
3084 	    ASSERT(fore200e_vcc);
3085 
3086 	    len = sprintf(page,
3087 			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3088 			  vcc,
3089 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3090 			  fore200e_vcc->tx_pdu,
3091 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3092 			  fore200e_vcc->tx_max_pdu,
3093 			  fore200e_vcc->rx_pdu,
3094 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3095 			  fore200e_vcc->rx_max_pdu);
3096 
3097 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098 	    return len;
3099 	}
3100 
3101 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3102     }
3103 
3104     return 0;
3105 }
3106 
3107 module_init(fore200e_module_init);
3108 module_exit(fore200e_module_cleanup);
3109 
3110 
3111 static const struct atmdev_ops fore200e_ops =
3112 {
3113 	.open       = fore200e_open,
3114 	.close      = fore200e_close,
3115 	.ioctl      = fore200e_ioctl,
3116 	.getsockopt = fore200e_getsockopt,
3117 	.setsockopt = fore200e_setsockopt,
3118 	.send       = fore200e_send,
3119 	.change_qos = fore200e_change_qos,
3120 	.proc_read  = fore200e_proc_read,
3121 	.owner      = THIS_MODULE
3122 };
3123 
3124 
3125 static const struct fore200e_bus fore200e_bus[] = {
3126 #ifdef CONFIG_PCI
3127     { "PCA-200E", "pca200e", 32, 4, 32,
3128       fore200e_pca_read,
3129       fore200e_pca_write,
3130       fore200e_pca_dma_map,
3131       fore200e_pca_dma_unmap,
3132       fore200e_pca_dma_sync_for_cpu,
3133       fore200e_pca_dma_sync_for_device,
3134       fore200e_pca_dma_chunk_alloc,
3135       fore200e_pca_dma_chunk_free,
3136       fore200e_pca_configure,
3137       fore200e_pca_map,
3138       fore200e_pca_reset,
3139       fore200e_pca_prom_read,
3140       fore200e_pca_unmap,
3141       NULL,
3142       fore200e_pca_irq_check,
3143       fore200e_pca_irq_ack,
3144       fore200e_pca_proc_read,
3145     },
3146 #endif
3147 #ifdef CONFIG_SBUS
3148     { "SBA-200E", "sba200e", 32, 64, 32,
3149       fore200e_sba_read,
3150       fore200e_sba_write,
3151       fore200e_sba_dma_map,
3152       fore200e_sba_dma_unmap,
3153       fore200e_sba_dma_sync_for_cpu,
3154       fore200e_sba_dma_sync_for_device,
3155       fore200e_sba_dma_chunk_alloc,
3156       fore200e_sba_dma_chunk_free,
3157       fore200e_sba_configure,
3158       fore200e_sba_map,
3159       fore200e_sba_reset,
3160       fore200e_sba_prom_read,
3161       fore200e_sba_unmap,
3162       fore200e_sba_irq_enable,
3163       fore200e_sba_irq_check,
3164       fore200e_sba_irq_ack,
3165       fore200e_sba_proc_read,
3166     },
3167 #endif
3168     {}
3169 };
3170 
3171 MODULE_LICENSE("GPL");
3172 #ifdef CONFIG_PCI
3173 #ifdef __LITTLE_ENDIAN__
3174 MODULE_FIRMWARE("pca200e.bin");
3175 #else
3176 MODULE_FIRMWARE("pca200e_ecd.bin2");
3177 #endif
3178 #endif /* CONFIG_PCI */
3179 #ifdef CONFIG_SBUS
3180 MODULE_FIRMWARE("sba200e_ecd.bin2");
3181 #endif
3182