1 /* 2 A FORE Systems 200E-series driver for ATM on Linux. 3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. 4 5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). 6 7 This driver simultaneously supports PCA-200E and SBA-200E adapters 8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/capability.h> 30 #include <linux/interrupt.h> 31 #include <linux/bitops.h> 32 #include <linux/pci.h> 33 #include <linux/module.h> 34 #include <linux/atmdev.h> 35 #include <linux/sonet.h> 36 #include <linux/atm_suni.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/delay.h> 39 #include <linux/firmware.h> 40 #include <asm/io.h> 41 #include <asm/string.h> 42 #include <asm/page.h> 43 #include <asm/irq.h> 44 #include <asm/dma.h> 45 #include <asm/byteorder.h> 46 #include <asm/uaccess.h> 47 #include <asm/atomic.h> 48 49 #ifdef CONFIG_SBUS 50 #include <linux/of.h> 51 #include <linux/of_device.h> 52 #include <asm/idprom.h> 53 #include <asm/openprom.h> 54 #include <asm/oplib.h> 55 #include <asm/pgtable.h> 56 #endif 57 58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ 59 #define FORE200E_USE_TASKLET 60 #endif 61 62 #if 0 /* enable the debugging code of the buffer supply queues */ 63 #define FORE200E_BSQ_DEBUG 64 #endif 65 66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ 67 #define FORE200E_52BYTE_AAL0_SDU 68 #endif 69 70 #include "fore200e.h" 71 #include "suni.h" 72 73 #define FORE200E_VERSION "0.3e" 74 75 #define FORE200E "fore200e: " 76 77 #if 0 /* override .config */ 78 #define CONFIG_ATM_FORE200E_DEBUG 1 79 #endif 80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 81 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ 82 printk(FORE200E format, ##args); } while (0) 83 #else 84 #define DPRINTK(level, format, args...) do {} while (0) 85 #endif 86 87 88 #define FORE200E_ALIGN(addr, alignment) \ 89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) 90 91 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) 92 93 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) 94 95 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo)) 96 97 #if 1 98 #define ASSERT(expr) if (!(expr)) { \ 99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \ 100 __func__, __LINE__, #expr); \ 101 panic(FORE200E "%s", __func__); \ 102 } 103 #else 104 #define ASSERT(expr) do {} while (0) 105 #endif 106 107 108 static const struct atmdev_ops fore200e_ops; 109 static const struct fore200e_bus fore200e_bus[]; 110 111 static LIST_HEAD(fore200e_boards); 112 113 114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); 115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); 116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); 117 118 119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 120 { BUFFER_S1_NBR, BUFFER_L1_NBR }, 121 { BUFFER_S2_NBR, BUFFER_L2_NBR } 122 }; 123 124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, 126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE } 127 }; 128 129 130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; 132 #endif 133 134 135 #if 0 /* currently unused */ 136 static int 137 fore200e_fore2atm_aal(enum fore200e_aal aal) 138 { 139 switch(aal) { 140 case FORE200E_AAL0: return ATM_AAL0; 141 case FORE200E_AAL34: return ATM_AAL34; 142 case FORE200E_AAL5: return ATM_AAL5; 143 } 144 145 return -EINVAL; 146 } 147 #endif 148 149 150 static enum fore200e_aal 151 fore200e_atm2fore_aal(int aal) 152 { 153 switch(aal) { 154 case ATM_AAL0: return FORE200E_AAL0; 155 case ATM_AAL34: return FORE200E_AAL34; 156 case ATM_AAL1: 157 case ATM_AAL2: 158 case ATM_AAL5: return FORE200E_AAL5; 159 } 160 161 return -EINVAL; 162 } 163 164 165 static char* 166 fore200e_irq_itoa(int irq) 167 { 168 static char str[8]; 169 sprintf(str, "%d", irq); 170 return str; 171 } 172 173 174 /* allocate and align a chunk of memory intended to hold the data behing exchanged 175 between the driver and the adapter (using streaming DVMA) */ 176 177 static int 178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) 179 { 180 unsigned long offset = 0; 181 182 if (alignment <= sizeof(int)) 183 alignment = 0; 184 185 chunk->alloc_size = size + alignment; 186 chunk->align_size = size; 187 chunk->direction = direction; 188 189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA); 190 if (chunk->alloc_addr == NULL) 191 return -ENOMEM; 192 193 if (alignment > 0) 194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 195 196 chunk->align_addr = chunk->alloc_addr + offset; 197 198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction); 199 200 return 0; 201 } 202 203 204 /* free a chunk of memory */ 205 206 static void 207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 208 { 209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction); 210 211 kfree(chunk->alloc_addr); 212 } 213 214 215 static void 216 fore200e_spin(int msecs) 217 { 218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 219 while (time_before(jiffies, timeout)); 220 } 221 222 223 static int 224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) 225 { 226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 227 int ok; 228 229 mb(); 230 do { 231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) 232 break; 233 234 } while (time_before(jiffies, timeout)); 235 236 #if 1 237 if (!ok) { 238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", 239 *addr, val); 240 } 241 #endif 242 243 return ok; 244 } 245 246 247 static int 248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) 249 { 250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 251 int ok; 252 253 do { 254 if ((ok = (fore200e->bus->read(addr) == val))) 255 break; 256 257 } while (time_before(jiffies, timeout)); 258 259 #if 1 260 if (!ok) { 261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", 262 fore200e->bus->read(addr), val); 263 } 264 #endif 265 266 return ok; 267 } 268 269 270 static void 271 fore200e_free_rx_buf(struct fore200e* fore200e) 272 { 273 int scheme, magn, nbr; 274 struct buffer* buffer; 275 276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 278 279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { 280 281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { 282 283 struct chunk* data = &buffer[ nbr ].data; 284 285 if (data->alloc_addr != NULL) 286 fore200e_chunk_free(fore200e, data); 287 } 288 } 289 } 290 } 291 } 292 293 294 static void 295 fore200e_uninit_bs_queue(struct fore200e* fore200e) 296 { 297 int scheme, magn; 298 299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 301 302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; 303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; 304 305 if (status->alloc_addr) 306 fore200e->bus->dma_chunk_free(fore200e, status); 307 308 if (rbd_block->alloc_addr) 309 fore200e->bus->dma_chunk_free(fore200e, rbd_block); 310 } 311 } 312 } 313 314 315 static int 316 fore200e_reset(struct fore200e* fore200e, int diag) 317 { 318 int ok; 319 320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; 321 322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); 323 324 fore200e->bus->reset(fore200e); 325 326 if (diag) { 327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); 328 if (ok == 0) { 329 330 printk(FORE200E "device %s self-test failed\n", fore200e->name); 331 return -ENODEV; 332 } 333 334 printk(FORE200E "device %s self-test passed\n", fore200e->name); 335 336 fore200e->state = FORE200E_STATE_RESET; 337 } 338 339 return 0; 340 } 341 342 343 static void 344 fore200e_shutdown(struct fore200e* fore200e) 345 { 346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", 347 fore200e->name, fore200e->phys_base, 348 fore200e_irq_itoa(fore200e->irq)); 349 350 if (fore200e->state > FORE200E_STATE_RESET) { 351 /* first, reset the board to prevent further interrupts or data transfers */ 352 fore200e_reset(fore200e, 0); 353 } 354 355 /* then, release all allocated resources */ 356 switch(fore200e->state) { 357 358 case FORE200E_STATE_COMPLETE: 359 kfree(fore200e->stats); 360 361 case FORE200E_STATE_IRQ: 362 free_irq(fore200e->irq, fore200e->atm_dev); 363 364 case FORE200E_STATE_ALLOC_BUF: 365 fore200e_free_rx_buf(fore200e); 366 367 case FORE200E_STATE_INIT_BSQ: 368 fore200e_uninit_bs_queue(fore200e); 369 370 case FORE200E_STATE_INIT_RXQ: 371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status); 372 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); 373 374 case FORE200E_STATE_INIT_TXQ: 375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status); 376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd); 377 378 case FORE200E_STATE_INIT_CMDQ: 379 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status); 380 381 case FORE200E_STATE_INITIALIZE: 382 /* nothing to do for that state */ 383 384 case FORE200E_STATE_START_FW: 385 /* nothing to do for that state */ 386 387 case FORE200E_STATE_RESET: 388 /* nothing to do for that state */ 389 390 case FORE200E_STATE_MAP: 391 fore200e->bus->unmap(fore200e); 392 393 case FORE200E_STATE_CONFIGURE: 394 /* nothing to do for that state */ 395 396 case FORE200E_STATE_REGISTER: 397 /* XXX shouldn't we *start* by deregistering the device? */ 398 atm_dev_deregister(fore200e->atm_dev); 399 400 case FORE200E_STATE_BLANK: 401 /* nothing to do for that state */ 402 break; 403 } 404 } 405 406 407 #ifdef CONFIG_PCI 408 409 static u32 fore200e_pca_read(volatile u32 __iomem *addr) 410 { 411 /* on big-endian hosts, the board is configured to convert 412 the endianess of slave RAM accesses */ 413 return le32_to_cpu(readl(addr)); 414 } 415 416 417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) 418 { 419 /* on big-endian hosts, the board is configured to convert 420 the endianess of slave RAM accesses */ 421 writel(cpu_to_le32(val), addr); 422 } 423 424 425 static u32 426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) 427 { 428 u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction); 429 430 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n", 431 virt_addr, size, direction, dma_addr); 432 433 return dma_addr; 434 } 435 436 437 static void 438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 439 { 440 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n", 441 dma_addr, size, direction); 442 443 pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 444 } 445 446 447 static void 448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 449 { 450 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 451 452 pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 453 } 454 455 static void 456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 457 { 458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 459 460 pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 461 } 462 463 464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism 465 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ 466 467 static int 468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, 469 int size, int nbr, int alignment) 470 { 471 /* returned chunks are page-aligned */ 472 chunk->alloc_size = size * nbr; 473 chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev, 474 chunk->alloc_size, 475 &chunk->dma_addr); 476 477 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) 478 return -ENOMEM; 479 480 chunk->align_addr = chunk->alloc_addr; 481 482 return 0; 483 } 484 485 486 /* free a DMA consistent chunk of memory */ 487 488 static void 489 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 490 { 491 pci_free_consistent((struct pci_dev*)fore200e->bus_dev, 492 chunk->alloc_size, 493 chunk->alloc_addr, 494 chunk->dma_addr); 495 } 496 497 498 static int 499 fore200e_pca_irq_check(struct fore200e* fore200e) 500 { 501 /* this is a 1 bit register */ 502 int irq_posted = readl(fore200e->regs.pca.psr); 503 504 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) 505 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { 506 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); 507 } 508 #endif 509 510 return irq_posted; 511 } 512 513 514 static void 515 fore200e_pca_irq_ack(struct fore200e* fore200e) 516 { 517 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); 518 } 519 520 521 static void 522 fore200e_pca_reset(struct fore200e* fore200e) 523 { 524 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); 525 fore200e_spin(10); 526 writel(0, fore200e->regs.pca.hcr); 527 } 528 529 530 static int __devinit 531 fore200e_pca_map(struct fore200e* fore200e) 532 { 533 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); 534 535 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); 536 537 if (fore200e->virt_base == NULL) { 538 printk(FORE200E "can't map device %s\n", fore200e->name); 539 return -EFAULT; 540 } 541 542 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 543 544 /* gain access to the PCA specific registers */ 545 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; 546 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; 547 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; 548 549 fore200e->state = FORE200E_STATE_MAP; 550 return 0; 551 } 552 553 554 static void 555 fore200e_pca_unmap(struct fore200e* fore200e) 556 { 557 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); 558 559 if (fore200e->virt_base != NULL) 560 iounmap(fore200e->virt_base); 561 } 562 563 564 static int __devinit 565 fore200e_pca_configure(struct fore200e* fore200e) 566 { 567 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; 568 u8 master_ctrl, latency; 569 570 DPRINTK(2, "device %s being configured\n", fore200e->name); 571 572 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { 573 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); 574 return -EIO; 575 } 576 577 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); 578 579 master_ctrl = master_ctrl 580 #if defined(__BIG_ENDIAN) 581 /* request the PCA board to convert the endianess of slave RAM accesses */ 582 | PCA200E_CTRL_CONVERT_ENDIAN 583 #endif 584 #if 0 585 | PCA200E_CTRL_DIS_CACHE_RD 586 | PCA200E_CTRL_DIS_WRT_INVAL 587 | PCA200E_CTRL_ENA_CONT_REQ_MODE 588 | PCA200E_CTRL_2_CACHE_WRT_INVAL 589 #endif 590 | PCA200E_CTRL_LARGE_PCI_BURSTS; 591 592 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); 593 594 /* raise latency from 32 (default) to 192, as this seems to prevent NIC 595 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. 596 this may impact the performances of other PCI devices on the same bus, though */ 597 latency = 192; 598 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); 599 600 fore200e->state = FORE200E_STATE_CONFIGURE; 601 return 0; 602 } 603 604 605 static int __init 606 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) 607 { 608 struct host_cmdq* cmdq = &fore200e->host_cmdq; 609 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 610 struct prom_opcode opcode; 611 int ok; 612 u32 prom_dma; 613 614 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 615 616 opcode.opcode = OPCODE_GET_PROM; 617 opcode.pad = 0; 618 619 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE); 620 621 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); 622 623 *entry->status = STATUS_PENDING; 624 625 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); 626 627 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 628 629 *entry->status = STATUS_FREE; 630 631 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); 632 633 if (ok == 0) { 634 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); 635 return -EIO; 636 } 637 638 #if defined(__BIG_ENDIAN) 639 640 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) 641 642 /* MAC address is stored as little-endian */ 643 swap_here(&prom->mac_addr[0]); 644 swap_here(&prom->mac_addr[4]); 645 #endif 646 647 return 0; 648 } 649 650 651 static int 652 fore200e_pca_proc_read(struct fore200e* fore200e, char *page) 653 { 654 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; 655 656 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", 657 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); 658 } 659 660 #endif /* CONFIG_PCI */ 661 662 663 #ifdef CONFIG_SBUS 664 665 static u32 fore200e_sba_read(volatile u32 __iomem *addr) 666 { 667 return sbus_readl(addr); 668 } 669 670 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) 671 { 672 sbus_writel(val, addr); 673 } 674 675 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction) 676 { 677 struct of_device *op = fore200e->bus_dev; 678 u32 dma_addr; 679 680 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction); 681 682 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n", 683 virt_addr, size, direction, dma_addr); 684 685 return dma_addr; 686 } 687 688 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 689 { 690 struct of_device *op = fore200e->bus_dev; 691 692 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n", 693 dma_addr, size, direction); 694 695 dma_unmap_single(&op->dev, dma_addr, size, direction); 696 } 697 698 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 699 { 700 struct of_device *op = fore200e->bus_dev; 701 702 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 703 704 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction); 705 } 706 707 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 708 { 709 struct of_device *op = fore200e->bus_dev; 710 711 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 712 713 dma_sync_single_for_device(&op->dev, dma_addr, size, direction); 714 } 715 716 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter. 718 */ 719 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, 720 int size, int nbr, int alignment) 721 { 722 struct of_device *op = fore200e->bus_dev; 723 724 chunk->alloc_size = chunk->align_size = size * nbr; 725 726 /* returned chunks are page-aligned */ 727 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size, 728 &chunk->dma_addr, GFP_ATOMIC); 729 730 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) 731 return -ENOMEM; 732 733 chunk->align_addr = chunk->alloc_addr; 734 735 return 0; 736 } 737 738 /* free a DVMA consistent chunk of memory */ 739 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk) 740 { 741 struct of_device *op = fore200e->bus_dev; 742 743 dma_free_coherent(&op->dev, chunk->alloc_size, 744 chunk->alloc_addr, chunk->dma_addr); 745 } 746 747 static void fore200e_sba_irq_enable(struct fore200e *fore200e) 748 { 749 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 750 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); 751 } 752 753 static int fore200e_sba_irq_check(struct fore200e *fore200e) 754 { 755 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; 756 } 757 758 static void fore200e_sba_irq_ack(struct fore200e *fore200e) 759 { 760 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 761 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); 762 } 763 764 static void fore200e_sba_reset(struct fore200e *fore200e) 765 { 766 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); 767 fore200e_spin(10); 768 fore200e->bus->write(0, fore200e->regs.sba.hcr); 769 } 770 771 static int __init fore200e_sba_map(struct fore200e *fore200e) 772 { 773 struct of_device *op = fore200e->bus_dev; 774 unsigned int bursts; 775 776 /* gain access to the SBA specific registers */ 777 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); 778 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); 779 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); 780 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); 781 782 if (!fore200e->virt_base) { 783 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); 784 return -EFAULT; 785 } 786 787 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 788 789 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ 790 791 /* get the supported DVMA burst sizes */ 792 bursts = of_getintprop_default(op->node->parent, "burst-sizes", 0x00); 793 794 if (sbus_can_dma_64bit()) 795 sbus_set_sbus64(&op->dev, bursts); 796 797 fore200e->state = FORE200E_STATE_MAP; 798 return 0; 799 } 800 801 static void fore200e_sba_unmap(struct fore200e *fore200e) 802 { 803 struct of_device *op = fore200e->bus_dev; 804 805 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); 806 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); 807 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); 808 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); 809 } 810 811 static int __init fore200e_sba_configure(struct fore200e *fore200e) 812 { 813 fore200e->state = FORE200E_STATE_CONFIGURE; 814 return 0; 815 } 816 817 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) 818 { 819 struct of_device *op = fore200e->bus_dev; 820 const u8 *prop; 821 int len; 822 823 prop = of_get_property(op->node, "madaddrlo2", &len); 824 if (!prop) 825 return -ENODEV; 826 memcpy(&prom->mac_addr[4], prop, 4); 827 828 prop = of_get_property(op->node, "madaddrhi4", &len); 829 if (!prop) 830 return -ENODEV; 831 memcpy(&prom->mac_addr[2], prop, 4); 832 833 prom->serial_number = of_getintprop_default(op->node, "serialnumber", 0); 834 prom->hw_revision = of_getintprop_default(op->node, "promversion", 0); 835 836 return 0; 837 } 838 839 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) 840 { 841 struct of_device *op = fore200e->bus_dev; 842 const struct linux_prom_registers *regs; 843 844 regs = of_get_property(op->node, "reg", NULL); 845 846 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", 847 (regs ? regs->which_io : 0), op->node->name); 848 } 849 #endif /* CONFIG_SBUS */ 850 851 852 static void 853 fore200e_tx_irq(struct fore200e* fore200e) 854 { 855 struct host_txq* txq = &fore200e->host_txq; 856 struct host_txq_entry* entry; 857 struct atm_vcc* vcc; 858 struct fore200e_vc_map* vc_map; 859 860 if (fore200e->host_txq.txing == 0) 861 return; 862 863 for (;;) { 864 865 entry = &txq->host_entry[ txq->tail ]; 866 867 if ((*entry->status & STATUS_COMPLETE) == 0) { 868 break; 869 } 870 871 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 872 entry, txq->tail, entry->vc_map, entry->skb); 873 874 /* free copy of misaligned data */ 875 kfree(entry->data); 876 877 /* remove DMA mapping */ 878 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, 879 DMA_TO_DEVICE); 880 881 vc_map = entry->vc_map; 882 883 /* vcc closed since the time the entry was submitted for tx? */ 884 if ((vc_map->vcc == NULL) || 885 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 886 887 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", 888 fore200e->atm_dev->number); 889 890 dev_kfree_skb_any(entry->skb); 891 } 892 else { 893 ASSERT(vc_map->vcc); 894 895 /* vcc closed then immediately re-opened? */ 896 if (vc_map->incarn != entry->incarn) { 897 898 /* when a vcc is closed, some PDUs may be still pending in the tx queue. 899 if the same vcc is immediately re-opened, those pending PDUs must 900 not be popped after the completion of their emission, as they refer 901 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc 902 would be decremented by the size of the (unrelated) skb, possibly 903 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. 904 we thus bind the tx entry to the current incarnation of the vcc 905 when the entry is submitted for tx. When the tx later completes, 906 if the incarnation number of the tx entry does not match the one 907 of the vcc, then this implies that the vcc has been closed then re-opened. 908 we thus just drop the skb here. */ 909 910 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", 911 fore200e->atm_dev->number); 912 913 dev_kfree_skb_any(entry->skb); 914 } 915 else { 916 vcc = vc_map->vcc; 917 ASSERT(vcc); 918 919 /* notify tx completion */ 920 if (vcc->pop) { 921 vcc->pop(vcc, entry->skb); 922 } 923 else { 924 dev_kfree_skb_any(entry->skb); 925 } 926 #if 1 927 /* race fixed by the above incarnation mechanism, but... */ 928 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) { 929 atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0); 930 } 931 #endif 932 /* check error condition */ 933 if (*entry->status & STATUS_ERROR) 934 atomic_inc(&vcc->stats->tx_err); 935 else 936 atomic_inc(&vcc->stats->tx); 937 } 938 } 939 940 *entry->status = STATUS_FREE; 941 942 fore200e->host_txq.txing--; 943 944 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); 945 } 946 } 947 948 949 #ifdef FORE200E_BSQ_DEBUG 950 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) 951 { 952 struct buffer* buffer; 953 int count = 0; 954 955 buffer = bsq->freebuf; 956 while (buffer) { 957 958 if (buffer->supplied) { 959 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", 960 where, scheme, magn, buffer->index); 961 } 962 963 if (buffer->magn != magn) { 964 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", 965 where, scheme, magn, buffer->index, buffer->magn); 966 } 967 968 if (buffer->scheme != scheme) { 969 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", 970 where, scheme, magn, buffer->index, buffer->scheme); 971 } 972 973 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { 974 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", 975 where, scheme, magn, buffer->index); 976 } 977 978 count++; 979 buffer = buffer->next; 980 } 981 982 if (count != bsq->freebuf_count) { 983 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", 984 where, scheme, magn, count, bsq->freebuf_count); 985 } 986 return 0; 987 } 988 #endif 989 990 991 static void 992 fore200e_supply(struct fore200e* fore200e) 993 { 994 int scheme, magn, i; 995 996 struct host_bsq* bsq; 997 struct host_bsq_entry* entry; 998 struct buffer* buffer; 999 1000 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 1001 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 1002 1003 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 1004 1005 #ifdef FORE200E_BSQ_DEBUG 1006 bsq_audit(1, bsq, scheme, magn); 1007 #endif 1008 while (bsq->freebuf_count >= RBD_BLK_SIZE) { 1009 1010 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", 1011 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); 1012 1013 entry = &bsq->host_entry[ bsq->head ]; 1014 1015 for (i = 0; i < RBD_BLK_SIZE; i++) { 1016 1017 /* take the first buffer in the free buffer list */ 1018 buffer = bsq->freebuf; 1019 if (!buffer) { 1020 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", 1021 scheme, magn, bsq->freebuf_count); 1022 return; 1023 } 1024 bsq->freebuf = buffer->next; 1025 1026 #ifdef FORE200E_BSQ_DEBUG 1027 if (buffer->supplied) 1028 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", 1029 scheme, magn, buffer->index); 1030 buffer->supplied = 1; 1031 #endif 1032 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; 1033 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); 1034 } 1035 1036 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); 1037 1038 /* decrease accordingly the number of free rx buffers */ 1039 bsq->freebuf_count -= RBD_BLK_SIZE; 1040 1041 *entry->status = STATUS_PENDING; 1042 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); 1043 } 1044 } 1045 } 1046 } 1047 1048 1049 static int 1050 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) 1051 { 1052 struct sk_buff* skb; 1053 struct buffer* buffer; 1054 struct fore200e_vcc* fore200e_vcc; 1055 int i, pdu_len = 0; 1056 #ifdef FORE200E_52BYTE_AAL0_SDU 1057 u32 cell_header = 0; 1058 #endif 1059 1060 ASSERT(vcc); 1061 1062 fore200e_vcc = FORE200E_VCC(vcc); 1063 ASSERT(fore200e_vcc); 1064 1065 #ifdef FORE200E_52BYTE_AAL0_SDU 1066 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { 1067 1068 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | 1069 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | 1070 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | 1071 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 1072 rpd->atm_header.clp; 1073 pdu_len = 4; 1074 } 1075 #endif 1076 1077 /* compute total PDU length */ 1078 for (i = 0; i < rpd->nseg; i++) 1079 pdu_len += rpd->rsd[ i ].length; 1080 1081 skb = alloc_skb(pdu_len, GFP_ATOMIC); 1082 if (skb == NULL) { 1083 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); 1084 1085 atomic_inc(&vcc->stats->rx_drop); 1086 return -ENOMEM; 1087 } 1088 1089 __net_timestamp(skb); 1090 1091 #ifdef FORE200E_52BYTE_AAL0_SDU 1092 if (cell_header) { 1093 *((u32*)skb_put(skb, 4)) = cell_header; 1094 } 1095 #endif 1096 1097 /* reassemble segments */ 1098 for (i = 0; i < rpd->nseg; i++) { 1099 1100 /* rebuild rx buffer address from rsd handle */ 1101 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1102 1103 /* Make device DMA transfer visible to CPU. */ 1104 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); 1105 1106 memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length); 1107 1108 /* Now let the device get at it again. */ 1109 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); 1110 } 1111 1112 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); 1113 1114 if (pdu_len < fore200e_vcc->rx_min_pdu) 1115 fore200e_vcc->rx_min_pdu = pdu_len; 1116 if (pdu_len > fore200e_vcc->rx_max_pdu) 1117 fore200e_vcc->rx_max_pdu = pdu_len; 1118 fore200e_vcc->rx_pdu++; 1119 1120 /* push PDU */ 1121 if (atm_charge(vcc, skb->truesize) == 0) { 1122 1123 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", 1124 vcc->itf, vcc->vpi, vcc->vci); 1125 1126 dev_kfree_skb_any(skb); 1127 1128 atomic_inc(&vcc->stats->rx_drop); 1129 return -ENOMEM; 1130 } 1131 1132 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1133 1134 vcc->push(vcc, skb); 1135 atomic_inc(&vcc->stats->rx); 1136 1137 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1138 1139 return 0; 1140 } 1141 1142 1143 static void 1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) 1145 { 1146 struct host_bsq* bsq; 1147 struct buffer* buffer; 1148 int i; 1149 1150 for (i = 0; i < rpd->nseg; i++) { 1151 1152 /* rebuild rx buffer address from rsd handle */ 1153 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1154 1155 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; 1156 1157 #ifdef FORE200E_BSQ_DEBUG 1158 bsq_audit(2, bsq, buffer->scheme, buffer->magn); 1159 1160 if (buffer->supplied == 0) 1161 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", 1162 buffer->scheme, buffer->magn, buffer->index); 1163 buffer->supplied = 0; 1164 #endif 1165 1166 /* re-insert the buffer into the free buffer list */ 1167 buffer->next = bsq->freebuf; 1168 bsq->freebuf = buffer; 1169 1170 /* then increment the number of free rx buffers */ 1171 bsq->freebuf_count++; 1172 } 1173 } 1174 1175 1176 static void 1177 fore200e_rx_irq(struct fore200e* fore200e) 1178 { 1179 struct host_rxq* rxq = &fore200e->host_rxq; 1180 struct host_rxq_entry* entry; 1181 struct atm_vcc* vcc; 1182 struct fore200e_vc_map* vc_map; 1183 1184 for (;;) { 1185 1186 entry = &rxq->host_entry[ rxq->head ]; 1187 1188 /* no more received PDUs */ 1189 if ((*entry->status & STATUS_COMPLETE) == 0) 1190 break; 1191 1192 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1193 1194 if ((vc_map->vcc == NULL) || 1195 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 1196 1197 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", 1198 fore200e->atm_dev->number, 1199 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1200 } 1201 else { 1202 vcc = vc_map->vcc; 1203 ASSERT(vcc); 1204 1205 if ((*entry->status & STATUS_ERROR) == 0) { 1206 1207 fore200e_push_rpd(fore200e, vcc, entry->rpd); 1208 } 1209 else { 1210 DPRINTK(2, "damaged PDU on %d.%d.%d\n", 1211 fore200e->atm_dev->number, 1212 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1213 atomic_inc(&vcc->stats->rx_err); 1214 } 1215 } 1216 1217 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); 1218 1219 fore200e_collect_rpd(fore200e, entry->rpd); 1220 1221 /* rewrite the rpd address to ack the received PDU */ 1222 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); 1223 *entry->status = STATUS_FREE; 1224 1225 fore200e_supply(fore200e); 1226 } 1227 } 1228 1229 1230 #ifndef FORE200E_USE_TASKLET 1231 static void 1232 fore200e_irq(struct fore200e* fore200e) 1233 { 1234 unsigned long flags; 1235 1236 spin_lock_irqsave(&fore200e->q_lock, flags); 1237 fore200e_rx_irq(fore200e); 1238 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1239 1240 spin_lock_irqsave(&fore200e->q_lock, flags); 1241 fore200e_tx_irq(fore200e); 1242 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1243 } 1244 #endif 1245 1246 1247 static irqreturn_t 1248 fore200e_interrupt(int irq, void* dev) 1249 { 1250 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); 1251 1252 if (fore200e->bus->irq_check(fore200e) == 0) { 1253 1254 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); 1255 return IRQ_NONE; 1256 } 1257 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); 1258 1259 #ifdef FORE200E_USE_TASKLET 1260 tasklet_schedule(&fore200e->tx_tasklet); 1261 tasklet_schedule(&fore200e->rx_tasklet); 1262 #else 1263 fore200e_irq(fore200e); 1264 #endif 1265 1266 fore200e->bus->irq_ack(fore200e); 1267 return IRQ_HANDLED; 1268 } 1269 1270 1271 #ifdef FORE200E_USE_TASKLET 1272 static void 1273 fore200e_tx_tasklet(unsigned long data) 1274 { 1275 struct fore200e* fore200e = (struct fore200e*) data; 1276 unsigned long flags; 1277 1278 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1279 1280 spin_lock_irqsave(&fore200e->q_lock, flags); 1281 fore200e_tx_irq(fore200e); 1282 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1283 } 1284 1285 1286 static void 1287 fore200e_rx_tasklet(unsigned long data) 1288 { 1289 struct fore200e* fore200e = (struct fore200e*) data; 1290 unsigned long flags; 1291 1292 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1293 1294 spin_lock_irqsave(&fore200e->q_lock, flags); 1295 fore200e_rx_irq((struct fore200e*) data); 1296 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1297 } 1298 #endif 1299 1300 1301 static int 1302 fore200e_select_scheme(struct atm_vcc* vcc) 1303 { 1304 /* fairly balance the VCs over (identical) buffer schemes */ 1305 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; 1306 1307 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", 1308 vcc->itf, vcc->vpi, vcc->vci, scheme); 1309 1310 return scheme; 1311 } 1312 1313 1314 static int 1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) 1316 { 1317 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1318 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1319 struct activate_opcode activ_opcode; 1320 struct deactivate_opcode deactiv_opcode; 1321 struct vpvc vpvc; 1322 int ok; 1323 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); 1324 1325 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1326 1327 if (activate) { 1328 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); 1329 1330 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; 1331 activ_opcode.aal = aal; 1332 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; 1333 activ_opcode.pad = 0; 1334 } 1335 else { 1336 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; 1337 deactiv_opcode.pad = 0; 1338 } 1339 1340 vpvc.vci = vcc->vci; 1341 vpvc.vpi = vcc->vpi; 1342 1343 *entry->status = STATUS_PENDING; 1344 1345 if (activate) { 1346 1347 #ifdef FORE200E_52BYTE_AAL0_SDU 1348 mtu = 48; 1349 #endif 1350 /* the MTU is not used by the cp, except in the case of AAL0 */ 1351 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); 1352 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); 1353 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); 1354 } 1355 else { 1356 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); 1357 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); 1358 } 1359 1360 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1361 1362 *entry->status = STATUS_FREE; 1363 1364 if (ok == 0) { 1365 printk(FORE200E "unable to %s VC %d.%d.%d\n", 1366 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); 1367 return -EIO; 1368 } 1369 1370 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 1371 activate ? "open" : "clos"); 1372 1373 return 0; 1374 } 1375 1376 1377 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ 1378 1379 static void 1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) 1381 { 1382 if (qos->txtp.max_pcr < ATM_OC3_PCR) { 1383 1384 /* compute the data cells to idle cells ratio from the tx PCR */ 1385 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; 1386 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; 1387 } 1388 else { 1389 /* disable rate control */ 1390 rate->data_cells = rate->idle_cells = 0; 1391 } 1392 } 1393 1394 1395 static int 1396 fore200e_open(struct atm_vcc *vcc) 1397 { 1398 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1399 struct fore200e_vcc* fore200e_vcc; 1400 struct fore200e_vc_map* vc_map; 1401 unsigned long flags; 1402 int vci = vcc->vci; 1403 short vpi = vcc->vpi; 1404 1405 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); 1406 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); 1407 1408 spin_lock_irqsave(&fore200e->q_lock, flags); 1409 1410 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); 1411 if (vc_map->vcc) { 1412 1413 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1414 1415 printk(FORE200E "VC %d.%d.%d already in use\n", 1416 fore200e->atm_dev->number, vpi, vci); 1417 1418 return -EINVAL; 1419 } 1420 1421 vc_map->vcc = vcc; 1422 1423 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1424 1425 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); 1426 if (fore200e_vcc == NULL) { 1427 vc_map->vcc = NULL; 1428 return -ENOMEM; 1429 } 1430 1431 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1432 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", 1433 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1434 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], 1435 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, 1436 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], 1437 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); 1438 1439 /* pseudo-CBR bandwidth requested? */ 1440 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1441 1442 mutex_lock(&fore200e->rate_mtx); 1443 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { 1444 mutex_unlock(&fore200e->rate_mtx); 1445 1446 kfree(fore200e_vcc); 1447 vc_map->vcc = NULL; 1448 return -EAGAIN; 1449 } 1450 1451 /* reserve bandwidth */ 1452 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; 1453 mutex_unlock(&fore200e->rate_mtx); 1454 } 1455 1456 vcc->itf = vcc->dev->number; 1457 1458 set_bit(ATM_VF_PARTIAL,&vcc->flags); 1459 set_bit(ATM_VF_ADDR, &vcc->flags); 1460 1461 vcc->dev_data = fore200e_vcc; 1462 1463 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { 1464 1465 vc_map->vcc = NULL; 1466 1467 clear_bit(ATM_VF_ADDR, &vcc->flags); 1468 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1469 1470 vcc->dev_data = NULL; 1471 1472 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1473 1474 kfree(fore200e_vcc); 1475 return -EINVAL; 1476 } 1477 1478 /* compute rate control parameters */ 1479 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1480 1481 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); 1482 set_bit(ATM_VF_HASQOS, &vcc->flags); 1483 1484 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", 1485 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1486 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 1487 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); 1488 } 1489 1490 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; 1491 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; 1492 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; 1493 1494 /* new incarnation of the vcc */ 1495 vc_map->incarn = ++fore200e->incarn_count; 1496 1497 /* VC unusable before this flag is set */ 1498 set_bit(ATM_VF_READY, &vcc->flags); 1499 1500 return 0; 1501 } 1502 1503 1504 static void 1505 fore200e_close(struct atm_vcc* vcc) 1506 { 1507 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1508 struct fore200e_vcc* fore200e_vcc; 1509 struct fore200e_vc_map* vc_map; 1510 unsigned long flags; 1511 1512 ASSERT(vcc); 1513 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); 1514 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); 1515 1516 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); 1517 1518 clear_bit(ATM_VF_READY, &vcc->flags); 1519 1520 fore200e_activate_vcin(fore200e, 0, vcc, 0); 1521 1522 spin_lock_irqsave(&fore200e->q_lock, flags); 1523 1524 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1525 1526 /* the vc is no longer considered as "in use" by fore200e_open() */ 1527 vc_map->vcc = NULL; 1528 1529 vcc->itf = vcc->vci = vcc->vpi = 0; 1530 1531 fore200e_vcc = FORE200E_VCC(vcc); 1532 vcc->dev_data = NULL; 1533 1534 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1535 1536 /* release reserved bandwidth, if any */ 1537 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1538 1539 mutex_lock(&fore200e->rate_mtx); 1540 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1541 mutex_unlock(&fore200e->rate_mtx); 1542 1543 clear_bit(ATM_VF_HASQOS, &vcc->flags); 1544 } 1545 1546 clear_bit(ATM_VF_ADDR, &vcc->flags); 1547 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1548 1549 ASSERT(fore200e_vcc); 1550 kfree(fore200e_vcc); 1551 } 1552 1553 1554 static int 1555 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) 1556 { 1557 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1558 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1559 struct fore200e_vc_map* vc_map; 1560 struct host_txq* txq = &fore200e->host_txq; 1561 struct host_txq_entry* entry; 1562 struct tpd* tpd; 1563 struct tpd_haddr tpd_haddr; 1564 int retry = CONFIG_ATM_FORE200E_TX_RETRY; 1565 int tx_copy = 0; 1566 int tx_len = skb->len; 1567 u32* cell_header = NULL; 1568 unsigned char* skb_data; 1569 int skb_len; 1570 unsigned char* data; 1571 unsigned long flags; 1572 1573 ASSERT(vcc); 1574 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1575 ASSERT(fore200e); 1576 ASSERT(fore200e_vcc); 1577 1578 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1579 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); 1580 dev_kfree_skb_any(skb); 1581 return -EINVAL; 1582 } 1583 1584 #ifdef FORE200E_52BYTE_AAL0_SDU 1585 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { 1586 cell_header = (u32*) skb->data; 1587 skb_data = skb->data + 4; /* skip 4-byte cell header */ 1588 skb_len = tx_len = skb->len - 4; 1589 1590 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); 1591 } 1592 else 1593 #endif 1594 { 1595 skb_data = skb->data; 1596 skb_len = skb->len; 1597 } 1598 1599 if (((unsigned long)skb_data) & 0x3) { 1600 1601 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); 1602 tx_copy = 1; 1603 tx_len = skb_len; 1604 } 1605 1606 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { 1607 1608 /* this simply NUKES the PCA board */ 1609 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); 1610 tx_copy = 1; 1611 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; 1612 } 1613 1614 if (tx_copy) { 1615 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA); 1616 if (data == NULL) { 1617 if (vcc->pop) { 1618 vcc->pop(vcc, skb); 1619 } 1620 else { 1621 dev_kfree_skb_any(skb); 1622 } 1623 return -ENOMEM; 1624 } 1625 1626 memcpy(data, skb_data, skb_len); 1627 if (skb_len < tx_len) 1628 memset(data + skb_len, 0x00, tx_len - skb_len); 1629 } 1630 else { 1631 data = skb_data; 1632 } 1633 1634 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1635 ASSERT(vc_map->vcc == vcc); 1636 1637 retry_here: 1638 1639 spin_lock_irqsave(&fore200e->q_lock, flags); 1640 1641 entry = &txq->host_entry[ txq->head ]; 1642 1643 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { 1644 1645 /* try to free completed tx queue entries */ 1646 fore200e_tx_irq(fore200e); 1647 1648 if (*entry->status != STATUS_FREE) { 1649 1650 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1651 1652 /* retry once again? */ 1653 if (--retry > 0) { 1654 udelay(50); 1655 goto retry_here; 1656 } 1657 1658 atomic_inc(&vcc->stats->tx_err); 1659 1660 fore200e->tx_sat++; 1661 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", 1662 fore200e->name, fore200e->cp_queues->heartbeat); 1663 if (vcc->pop) { 1664 vcc->pop(vcc, skb); 1665 } 1666 else { 1667 dev_kfree_skb_any(skb); 1668 } 1669 1670 if (tx_copy) 1671 kfree(data); 1672 1673 return -ENOBUFS; 1674 } 1675 } 1676 1677 entry->incarn = vc_map->incarn; 1678 entry->vc_map = vc_map; 1679 entry->skb = skb; 1680 entry->data = tx_copy ? data : NULL; 1681 1682 tpd = entry->tpd; 1683 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE); 1684 tpd->tsd[ 0 ].length = tx_len; 1685 1686 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); 1687 txq->txing++; 1688 1689 /* The dma_map call above implies a dma_sync so the device can use it, 1690 * thus no explicit dma_sync call is necessary here. 1691 */ 1692 1693 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 1694 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1695 tpd->tsd[0].length, skb_len); 1696 1697 if (skb_len < fore200e_vcc->tx_min_pdu) 1698 fore200e_vcc->tx_min_pdu = skb_len; 1699 if (skb_len > fore200e_vcc->tx_max_pdu) 1700 fore200e_vcc->tx_max_pdu = skb_len; 1701 fore200e_vcc->tx_pdu++; 1702 1703 /* set tx rate control information */ 1704 tpd->rate.data_cells = fore200e_vcc->rate.data_cells; 1705 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; 1706 1707 if (cell_header) { 1708 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); 1709 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 1710 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; 1711 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; 1712 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; 1713 } 1714 else { 1715 /* set the ATM header, common to all cells conveying the PDU */ 1716 tpd->atm_header.clp = 0; 1717 tpd->atm_header.plt = 0; 1718 tpd->atm_header.vci = vcc->vci; 1719 tpd->atm_header.vpi = vcc->vpi; 1720 tpd->atm_header.gfc = 0; 1721 } 1722 1723 tpd->spec.length = tx_len; 1724 tpd->spec.nseg = 1; 1725 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); 1726 tpd->spec.intr = 1; 1727 1728 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ 1729 tpd_haddr.pad = 0; 1730 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ 1731 1732 *entry->status = STATUS_PENDING; 1733 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); 1734 1735 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1736 1737 return 0; 1738 } 1739 1740 1741 static int 1742 fore200e_getstats(struct fore200e* fore200e) 1743 { 1744 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1745 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1746 struct stats_opcode opcode; 1747 int ok; 1748 u32 stats_dma_addr; 1749 1750 if (fore200e->stats == NULL) { 1751 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA); 1752 if (fore200e->stats == NULL) 1753 return -ENOMEM; 1754 } 1755 1756 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats, 1757 sizeof(struct stats), DMA_FROM_DEVICE); 1758 1759 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1760 1761 opcode.opcode = OPCODE_GET_STATS; 1762 opcode.pad = 0; 1763 1764 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); 1765 1766 *entry->status = STATUS_PENDING; 1767 1768 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); 1769 1770 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1771 1772 *entry->status = STATUS_FREE; 1773 1774 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); 1775 1776 if (ok == 0) { 1777 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); 1778 return -EIO; 1779 } 1780 1781 return 0; 1782 } 1783 1784 1785 static int 1786 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) 1787 { 1788 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1789 1790 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1791 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1792 1793 return -EINVAL; 1794 } 1795 1796 1797 static int 1798 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) 1799 { 1800 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1801 1802 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1803 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1804 1805 return -EINVAL; 1806 } 1807 1808 1809 #if 0 /* currently unused */ 1810 static int 1811 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) 1812 { 1813 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1814 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1815 struct oc3_opcode opcode; 1816 int ok; 1817 u32 oc3_regs_dma_addr; 1818 1819 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1820 1821 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1822 1823 opcode.opcode = OPCODE_GET_OC3; 1824 opcode.reg = 0; 1825 opcode.value = 0; 1826 opcode.mask = 0; 1827 1828 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1829 1830 *entry->status = STATUS_PENDING; 1831 1832 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); 1833 1834 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1835 1836 *entry->status = STATUS_FREE; 1837 1838 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1839 1840 if (ok == 0) { 1841 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); 1842 return -EIO; 1843 } 1844 1845 return 0; 1846 } 1847 #endif 1848 1849 1850 static int 1851 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) 1852 { 1853 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1854 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1855 struct oc3_opcode opcode; 1856 int ok; 1857 1858 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); 1859 1860 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1861 1862 opcode.opcode = OPCODE_SET_OC3; 1863 opcode.reg = reg; 1864 opcode.value = value; 1865 opcode.mask = mask; 1866 1867 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1868 1869 *entry->status = STATUS_PENDING; 1870 1871 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); 1872 1873 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1874 1875 *entry->status = STATUS_FREE; 1876 1877 if (ok == 0) { 1878 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); 1879 return -EIO; 1880 } 1881 1882 return 0; 1883 } 1884 1885 1886 static int 1887 fore200e_setloop(struct fore200e* fore200e, int loop_mode) 1888 { 1889 u32 mct_value, mct_mask; 1890 int error; 1891 1892 if (!capable(CAP_NET_ADMIN)) 1893 return -EPERM; 1894 1895 switch (loop_mode) { 1896 1897 case ATM_LM_NONE: 1898 mct_value = 0; 1899 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; 1900 break; 1901 1902 case ATM_LM_LOC_PHY: 1903 mct_value = mct_mask = SUNI_MCT_DLE; 1904 break; 1905 1906 case ATM_LM_RMT_PHY: 1907 mct_value = mct_mask = SUNI_MCT_LLE; 1908 break; 1909 1910 default: 1911 return -EINVAL; 1912 } 1913 1914 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); 1915 if (error == 0) 1916 fore200e->loop_mode = loop_mode; 1917 1918 return error; 1919 } 1920 1921 1922 static int 1923 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) 1924 { 1925 struct sonet_stats tmp; 1926 1927 if (fore200e_getstats(fore200e) < 0) 1928 return -EIO; 1929 1930 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); 1931 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); 1932 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); 1933 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); 1934 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); 1935 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); 1936 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); 1937 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + 1938 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + 1939 be32_to_cpu(fore200e->stats->aal5.cells_transmitted); 1940 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + 1941 be32_to_cpu(fore200e->stats->aal34.cells_received) + 1942 be32_to_cpu(fore200e->stats->aal5.cells_received); 1943 1944 if (arg) 1945 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; 1946 1947 return 0; 1948 } 1949 1950 1951 static int 1952 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) 1953 { 1954 struct fore200e* fore200e = FORE200E_DEV(dev); 1955 1956 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); 1957 1958 switch (cmd) { 1959 1960 case SONET_GETSTAT: 1961 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); 1962 1963 case SONET_GETDIAG: 1964 return put_user(0, (int __user *)arg) ? -EFAULT : 0; 1965 1966 case ATM_SETLOOP: 1967 return fore200e_setloop(fore200e, (int)(unsigned long)arg); 1968 1969 case ATM_GETLOOP: 1970 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; 1971 1972 case ATM_QUERYLOOP: 1973 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; 1974 } 1975 1976 return -ENOSYS; /* not implemented */ 1977 } 1978 1979 1980 static int 1981 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) 1982 { 1983 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1984 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1985 1986 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1987 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); 1988 return -EINVAL; 1989 } 1990 1991 DPRINTK(2, "change_qos %d.%d.%d, " 1992 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1993 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" 1994 "available_cell_rate = %u", 1995 vcc->itf, vcc->vpi, vcc->vci, 1996 fore200e_traffic_class[ qos->txtp.traffic_class ], 1997 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, 1998 fore200e_traffic_class[ qos->rxtp.traffic_class ], 1999 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, 2000 flags, fore200e->available_cell_rate); 2001 2002 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { 2003 2004 mutex_lock(&fore200e->rate_mtx); 2005 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { 2006 mutex_unlock(&fore200e->rate_mtx); 2007 return -EAGAIN; 2008 } 2009 2010 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 2011 fore200e->available_cell_rate -= qos->txtp.max_pcr; 2012 2013 mutex_unlock(&fore200e->rate_mtx); 2014 2015 memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); 2016 2017 /* update rate control parameters */ 2018 fore200e_rate_ctrl(qos, &fore200e_vcc->rate); 2019 2020 set_bit(ATM_VF_HASQOS, &vcc->flags); 2021 2022 return 0; 2023 } 2024 2025 return -EINVAL; 2026 } 2027 2028 2029 static int __devinit 2030 fore200e_irq_request(struct fore200e* fore200e) 2031 { 2032 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { 2033 2034 printk(FORE200E "unable to reserve IRQ %s for device %s\n", 2035 fore200e_irq_itoa(fore200e->irq), fore200e->name); 2036 return -EBUSY; 2037 } 2038 2039 printk(FORE200E "IRQ %s reserved for device %s\n", 2040 fore200e_irq_itoa(fore200e->irq), fore200e->name); 2041 2042 #ifdef FORE200E_USE_TASKLET 2043 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); 2044 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); 2045 #endif 2046 2047 fore200e->state = FORE200E_STATE_IRQ; 2048 return 0; 2049 } 2050 2051 2052 static int __devinit 2053 fore200e_get_esi(struct fore200e* fore200e) 2054 { 2055 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA); 2056 int ok, i; 2057 2058 if (!prom) 2059 return -ENOMEM; 2060 2061 ok = fore200e->bus->prom_read(fore200e, prom); 2062 if (ok < 0) { 2063 kfree(prom); 2064 return -EBUSY; 2065 } 2066 2067 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n", 2068 fore200e->name, 2069 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ 2070 prom->serial_number & 0xFFFF, 2071 prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ], 2072 prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]); 2073 2074 for (i = 0; i < ESI_LEN; i++) { 2075 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; 2076 } 2077 2078 kfree(prom); 2079 2080 return 0; 2081 } 2082 2083 2084 static int __devinit 2085 fore200e_alloc_rx_buf(struct fore200e* fore200e) 2086 { 2087 int scheme, magn, nbr, size, i; 2088 2089 struct host_bsq* bsq; 2090 struct buffer* buffer; 2091 2092 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2093 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2094 2095 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2096 2097 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; 2098 size = fore200e_rx_buf_size[ scheme ][ magn ]; 2099 2100 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); 2101 2102 /* allocate the array of receive buffers */ 2103 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL); 2104 2105 if (buffer == NULL) 2106 return -ENOMEM; 2107 2108 bsq->freebuf = NULL; 2109 2110 for (i = 0; i < nbr; i++) { 2111 2112 buffer[ i ].scheme = scheme; 2113 buffer[ i ].magn = magn; 2114 #ifdef FORE200E_BSQ_DEBUG 2115 buffer[ i ].index = i; 2116 buffer[ i ].supplied = 0; 2117 #endif 2118 2119 /* allocate the receive buffer body */ 2120 if (fore200e_chunk_alloc(fore200e, 2121 &buffer[ i ].data, size, fore200e->bus->buffer_alignment, 2122 DMA_FROM_DEVICE) < 0) { 2123 2124 while (i > 0) 2125 fore200e_chunk_free(fore200e, &buffer[ --i ].data); 2126 kfree(buffer); 2127 2128 return -ENOMEM; 2129 } 2130 2131 /* insert the buffer into the free buffer list */ 2132 buffer[ i ].next = bsq->freebuf; 2133 bsq->freebuf = &buffer[ i ]; 2134 } 2135 /* all the buffers are free, initially */ 2136 bsq->freebuf_count = nbr; 2137 2138 #ifdef FORE200E_BSQ_DEBUG 2139 bsq_audit(3, bsq, scheme, magn); 2140 #endif 2141 } 2142 } 2143 2144 fore200e->state = FORE200E_STATE_ALLOC_BUF; 2145 return 0; 2146 } 2147 2148 2149 static int __devinit 2150 fore200e_init_bs_queue(struct fore200e* fore200e) 2151 { 2152 int scheme, magn, i; 2153 2154 struct host_bsq* bsq; 2155 struct cp_bsq_entry __iomem * cp_entry; 2156 2157 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2158 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2159 2160 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); 2161 2162 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2163 2164 /* allocate and align the array of status words */ 2165 if (fore200e->bus->dma_chunk_alloc(fore200e, 2166 &bsq->status, 2167 sizeof(enum status), 2168 QUEUE_SIZE_BS, 2169 fore200e->bus->status_alignment) < 0) { 2170 return -ENOMEM; 2171 } 2172 2173 /* allocate and align the array of receive buffer descriptors */ 2174 if (fore200e->bus->dma_chunk_alloc(fore200e, 2175 &bsq->rbd_block, 2176 sizeof(struct rbd_block), 2177 QUEUE_SIZE_BS, 2178 fore200e->bus->descr_alignment) < 0) { 2179 2180 fore200e->bus->dma_chunk_free(fore200e, &bsq->status); 2181 return -ENOMEM; 2182 } 2183 2184 /* get the base address of the cp resident buffer supply queue entries */ 2185 cp_entry = fore200e->virt_base + 2186 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); 2187 2188 /* fill the host resident and cp resident buffer supply queue entries */ 2189 for (i = 0; i < QUEUE_SIZE_BS; i++) { 2190 2191 bsq->host_entry[ i ].status = 2192 FORE200E_INDEX(bsq->status.align_addr, enum status, i); 2193 bsq->host_entry[ i ].rbd_block = 2194 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); 2195 bsq->host_entry[ i ].rbd_block_dma = 2196 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); 2197 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2198 2199 *bsq->host_entry[ i ].status = STATUS_FREE; 2200 2201 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 2202 &cp_entry[ i ].status_haddr); 2203 } 2204 } 2205 } 2206 2207 fore200e->state = FORE200E_STATE_INIT_BSQ; 2208 return 0; 2209 } 2210 2211 2212 static int __devinit 2213 fore200e_init_rx_queue(struct fore200e* fore200e) 2214 { 2215 struct host_rxq* rxq = &fore200e->host_rxq; 2216 struct cp_rxq_entry __iomem * cp_entry; 2217 int i; 2218 2219 DPRINTK(2, "receive queue is being initialized\n"); 2220 2221 /* allocate and align the array of status words */ 2222 if (fore200e->bus->dma_chunk_alloc(fore200e, 2223 &rxq->status, 2224 sizeof(enum status), 2225 QUEUE_SIZE_RX, 2226 fore200e->bus->status_alignment) < 0) { 2227 return -ENOMEM; 2228 } 2229 2230 /* allocate and align the array of receive PDU descriptors */ 2231 if (fore200e->bus->dma_chunk_alloc(fore200e, 2232 &rxq->rpd, 2233 sizeof(struct rpd), 2234 QUEUE_SIZE_RX, 2235 fore200e->bus->descr_alignment) < 0) { 2236 2237 fore200e->bus->dma_chunk_free(fore200e, &rxq->status); 2238 return -ENOMEM; 2239 } 2240 2241 /* get the base address of the cp resident rx queue entries */ 2242 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); 2243 2244 /* fill the host resident and cp resident rx entries */ 2245 for (i=0; i < QUEUE_SIZE_RX; i++) { 2246 2247 rxq->host_entry[ i ].status = 2248 FORE200E_INDEX(rxq->status.align_addr, enum status, i); 2249 rxq->host_entry[ i ].rpd = 2250 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); 2251 rxq->host_entry[ i ].rpd_dma = 2252 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); 2253 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2254 2255 *rxq->host_entry[ i ].status = STATUS_FREE; 2256 2257 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 2258 &cp_entry[ i ].status_haddr); 2259 2260 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), 2261 &cp_entry[ i ].rpd_haddr); 2262 } 2263 2264 /* set the head entry of the queue */ 2265 rxq->head = 0; 2266 2267 fore200e->state = FORE200E_STATE_INIT_RXQ; 2268 return 0; 2269 } 2270 2271 2272 static int __devinit 2273 fore200e_init_tx_queue(struct fore200e* fore200e) 2274 { 2275 struct host_txq* txq = &fore200e->host_txq; 2276 struct cp_txq_entry __iomem * cp_entry; 2277 int i; 2278 2279 DPRINTK(2, "transmit queue is being initialized\n"); 2280 2281 /* allocate and align the array of status words */ 2282 if (fore200e->bus->dma_chunk_alloc(fore200e, 2283 &txq->status, 2284 sizeof(enum status), 2285 QUEUE_SIZE_TX, 2286 fore200e->bus->status_alignment) < 0) { 2287 return -ENOMEM; 2288 } 2289 2290 /* allocate and align the array of transmit PDU descriptors */ 2291 if (fore200e->bus->dma_chunk_alloc(fore200e, 2292 &txq->tpd, 2293 sizeof(struct tpd), 2294 QUEUE_SIZE_TX, 2295 fore200e->bus->descr_alignment) < 0) { 2296 2297 fore200e->bus->dma_chunk_free(fore200e, &txq->status); 2298 return -ENOMEM; 2299 } 2300 2301 /* get the base address of the cp resident tx queue entries */ 2302 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); 2303 2304 /* fill the host resident and cp resident tx entries */ 2305 for (i=0; i < QUEUE_SIZE_TX; i++) { 2306 2307 txq->host_entry[ i ].status = 2308 FORE200E_INDEX(txq->status.align_addr, enum status, i); 2309 txq->host_entry[ i ].tpd = 2310 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); 2311 txq->host_entry[ i ].tpd_dma = 2312 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); 2313 txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2314 2315 *txq->host_entry[ i ].status = STATUS_FREE; 2316 2317 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 2318 &cp_entry[ i ].status_haddr); 2319 2320 /* although there is a one-to-one mapping of tx queue entries and tpds, 2321 we do not write here the DMA (physical) base address of each tpd into 2322 the related cp resident entry, because the cp relies on this write 2323 operation to detect that a new pdu has been submitted for tx */ 2324 } 2325 2326 /* set the head and tail entries of the queue */ 2327 txq->head = 0; 2328 txq->tail = 0; 2329 2330 fore200e->state = FORE200E_STATE_INIT_TXQ; 2331 return 0; 2332 } 2333 2334 2335 static int __devinit 2336 fore200e_init_cmd_queue(struct fore200e* fore200e) 2337 { 2338 struct host_cmdq* cmdq = &fore200e->host_cmdq; 2339 struct cp_cmdq_entry __iomem * cp_entry; 2340 int i; 2341 2342 DPRINTK(2, "command queue is being initialized\n"); 2343 2344 /* allocate and align the array of status words */ 2345 if (fore200e->bus->dma_chunk_alloc(fore200e, 2346 &cmdq->status, 2347 sizeof(enum status), 2348 QUEUE_SIZE_CMD, 2349 fore200e->bus->status_alignment) < 0) { 2350 return -ENOMEM; 2351 } 2352 2353 /* get the base address of the cp resident cmd queue entries */ 2354 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); 2355 2356 /* fill the host resident and cp resident cmd entries */ 2357 for (i=0; i < QUEUE_SIZE_CMD; i++) { 2358 2359 cmdq->host_entry[ i ].status = 2360 FORE200E_INDEX(cmdq->status.align_addr, enum status, i); 2361 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2362 2363 *cmdq->host_entry[ i ].status = STATUS_FREE; 2364 2365 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 2366 &cp_entry[ i ].status_haddr); 2367 } 2368 2369 /* set the head entry of the queue */ 2370 cmdq->head = 0; 2371 2372 fore200e->state = FORE200E_STATE_INIT_CMDQ; 2373 return 0; 2374 } 2375 2376 2377 static void __devinit 2378 fore200e_param_bs_queue(struct fore200e* fore200e, 2379 enum buffer_scheme scheme, enum buffer_magn magn, 2380 int queue_length, int pool_size, int supply_blksize) 2381 { 2382 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; 2383 2384 fore200e->bus->write(queue_length, &bs_spec->queue_length); 2385 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); 2386 fore200e->bus->write(pool_size, &bs_spec->pool_size); 2387 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); 2388 } 2389 2390 2391 static int __devinit 2392 fore200e_initialize(struct fore200e* fore200e) 2393 { 2394 struct cp_queues __iomem * cpq; 2395 int ok, scheme, magn; 2396 2397 DPRINTK(2, "device %s being initialized\n", fore200e->name); 2398 2399 mutex_init(&fore200e->rate_mtx); 2400 spin_lock_init(&fore200e->q_lock); 2401 2402 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; 2403 2404 /* enable cp to host interrupts */ 2405 fore200e->bus->write(1, &cpq->imask); 2406 2407 if (fore200e->bus->irq_enable) 2408 fore200e->bus->irq_enable(fore200e); 2409 2410 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); 2411 2412 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); 2413 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); 2414 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); 2415 2416 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); 2417 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); 2418 2419 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) 2420 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) 2421 fore200e_param_bs_queue(fore200e, scheme, magn, 2422 QUEUE_SIZE_BS, 2423 fore200e_rx_buf_nbr[ scheme ][ magn ], 2424 RBD_BLK_SIZE); 2425 2426 /* issue the initialize command */ 2427 fore200e->bus->write(STATUS_PENDING, &cpq->init.status); 2428 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); 2429 2430 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); 2431 if (ok == 0) { 2432 printk(FORE200E "device %s initialization failed\n", fore200e->name); 2433 return -ENODEV; 2434 } 2435 2436 printk(FORE200E "device %s initialized\n", fore200e->name); 2437 2438 fore200e->state = FORE200E_STATE_INITIALIZE; 2439 return 0; 2440 } 2441 2442 2443 static void __devinit 2444 fore200e_monitor_putc(struct fore200e* fore200e, char c) 2445 { 2446 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2447 2448 #if 0 2449 printk("%c", c); 2450 #endif 2451 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); 2452 } 2453 2454 2455 static int __devinit 2456 fore200e_monitor_getc(struct fore200e* fore200e) 2457 { 2458 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2459 unsigned long timeout = jiffies + msecs_to_jiffies(50); 2460 int c; 2461 2462 while (time_before(jiffies, timeout)) { 2463 2464 c = (int) fore200e->bus->read(&monitor->soft_uart.recv); 2465 2466 if (c & FORE200E_CP_MONITOR_UART_AVAIL) { 2467 2468 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); 2469 #if 0 2470 printk("%c", c & 0xFF); 2471 #endif 2472 return c & 0xFF; 2473 } 2474 } 2475 2476 return -1; 2477 } 2478 2479 2480 static void __devinit 2481 fore200e_monitor_puts(struct fore200e* fore200e, char* str) 2482 { 2483 while (*str) { 2484 2485 /* the i960 monitor doesn't accept any new character if it has something to say */ 2486 while (fore200e_monitor_getc(fore200e) >= 0); 2487 2488 fore200e_monitor_putc(fore200e, *str++); 2489 } 2490 2491 while (fore200e_monitor_getc(fore200e) >= 0); 2492 } 2493 2494 #ifdef __LITTLE_ENDIAN 2495 #define FW_EXT ".bin" 2496 #else 2497 #define FW_EXT "_ecd.bin2" 2498 #endif 2499 2500 static int __devinit 2501 fore200e_load_and_start_fw(struct fore200e* fore200e) 2502 { 2503 const struct firmware *firmware; 2504 struct device *device; 2505 struct fw_header *fw_header; 2506 const __le32 *fw_data; 2507 u32 fw_size; 2508 u32 __iomem *load_addr; 2509 char buf[48]; 2510 int err = -ENODEV; 2511 2512 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0) 2513 device = &((struct pci_dev *) fore200e->bus_dev)->dev; 2514 #ifdef CONFIG_SBUS 2515 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0) 2516 device = &((struct of_device *) fore200e->bus_dev)->dev; 2517 #endif 2518 else 2519 return err; 2520 2521 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); 2522 if ((err = request_firmware(&firmware, buf, device)) < 0) { 2523 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); 2524 return err; 2525 } 2526 2527 fw_data = (__le32 *) firmware->data; 2528 fw_size = firmware->size / sizeof(u32); 2529 fw_header = (struct fw_header *) firmware->data; 2530 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); 2531 2532 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", 2533 fore200e->name, load_addr, fw_size); 2534 2535 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { 2536 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); 2537 goto release; 2538 } 2539 2540 for (; fw_size--; fw_data++, load_addr++) 2541 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); 2542 2543 DPRINTK(2, "device %s firmware being started\n", fore200e->name); 2544 2545 #if defined(__sparc_v9__) 2546 /* reported to be required by SBA cards on some sparc64 hosts */ 2547 fore200e_spin(100); 2548 #endif 2549 2550 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); 2551 fore200e_monitor_puts(fore200e, buf); 2552 2553 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { 2554 printk(FORE200E "device %s firmware didn't start\n", fore200e->name); 2555 goto release; 2556 } 2557 2558 printk(FORE200E "device %s firmware started\n", fore200e->name); 2559 2560 fore200e->state = FORE200E_STATE_START_FW; 2561 err = 0; 2562 2563 release: 2564 release_firmware(firmware); 2565 return err; 2566 } 2567 2568 2569 static int __devinit 2570 fore200e_register(struct fore200e* fore200e) 2571 { 2572 struct atm_dev* atm_dev; 2573 2574 DPRINTK(2, "device %s being registered\n", fore200e->name); 2575 2576 atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1, 2577 NULL); 2578 if (atm_dev == NULL) { 2579 printk(FORE200E "unable to register device %s\n", fore200e->name); 2580 return -ENODEV; 2581 } 2582 2583 atm_dev->dev_data = fore200e; 2584 fore200e->atm_dev = atm_dev; 2585 2586 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; 2587 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; 2588 2589 fore200e->available_cell_rate = ATM_OC3_PCR; 2590 2591 fore200e->state = FORE200E_STATE_REGISTER; 2592 return 0; 2593 } 2594 2595 2596 static int __devinit 2597 fore200e_init(struct fore200e* fore200e) 2598 { 2599 if (fore200e_register(fore200e) < 0) 2600 return -ENODEV; 2601 2602 if (fore200e->bus->configure(fore200e) < 0) 2603 return -ENODEV; 2604 2605 if (fore200e->bus->map(fore200e) < 0) 2606 return -ENODEV; 2607 2608 if (fore200e_reset(fore200e, 1) < 0) 2609 return -ENODEV; 2610 2611 if (fore200e_load_and_start_fw(fore200e) < 0) 2612 return -ENODEV; 2613 2614 if (fore200e_initialize(fore200e) < 0) 2615 return -ENODEV; 2616 2617 if (fore200e_init_cmd_queue(fore200e) < 0) 2618 return -ENOMEM; 2619 2620 if (fore200e_init_tx_queue(fore200e) < 0) 2621 return -ENOMEM; 2622 2623 if (fore200e_init_rx_queue(fore200e) < 0) 2624 return -ENOMEM; 2625 2626 if (fore200e_init_bs_queue(fore200e) < 0) 2627 return -ENOMEM; 2628 2629 if (fore200e_alloc_rx_buf(fore200e) < 0) 2630 return -ENOMEM; 2631 2632 if (fore200e_get_esi(fore200e) < 0) 2633 return -EIO; 2634 2635 if (fore200e_irq_request(fore200e) < 0) 2636 return -EBUSY; 2637 2638 fore200e_supply(fore200e); 2639 2640 /* all done, board initialization is now complete */ 2641 fore200e->state = FORE200E_STATE_COMPLETE; 2642 return 0; 2643 } 2644 2645 #ifdef CONFIG_SBUS 2646 static int __devinit fore200e_sba_probe(struct of_device *op, 2647 const struct of_device_id *match) 2648 { 2649 const struct fore200e_bus *bus = match->data; 2650 struct fore200e *fore200e; 2651 static int index = 0; 2652 int err; 2653 2654 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2655 if (!fore200e) 2656 return -ENOMEM; 2657 2658 fore200e->bus = bus; 2659 fore200e->bus_dev = op; 2660 fore200e->irq = op->irqs[0]; 2661 fore200e->phys_base = op->resource[0].start; 2662 2663 sprintf(fore200e->name, "%s-%d", bus->model_name, index); 2664 2665 err = fore200e_init(fore200e); 2666 if (err < 0) { 2667 fore200e_shutdown(fore200e); 2668 kfree(fore200e); 2669 return err; 2670 } 2671 2672 index++; 2673 dev_set_drvdata(&op->dev, fore200e); 2674 2675 return 0; 2676 } 2677 2678 static int __devexit fore200e_sba_remove(struct of_device *op) 2679 { 2680 struct fore200e *fore200e = dev_get_drvdata(&op->dev); 2681 2682 fore200e_shutdown(fore200e); 2683 kfree(fore200e); 2684 2685 return 0; 2686 } 2687 2688 static const struct of_device_id fore200e_sba_match[] = { 2689 { 2690 .name = SBA200E_PROM_NAME, 2691 .data = (void *) &fore200e_bus[1], 2692 }, 2693 {}, 2694 }; 2695 MODULE_DEVICE_TABLE(of, fore200e_sba_match); 2696 2697 static struct of_platform_driver fore200e_sba_driver = { 2698 .name = "fore_200e", 2699 .match_table = fore200e_sba_match, 2700 .probe = fore200e_sba_probe, 2701 .remove = __devexit_p(fore200e_sba_remove), 2702 }; 2703 #endif 2704 2705 #ifdef CONFIG_PCI 2706 static int __devinit 2707 fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) 2708 { 2709 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data; 2710 struct fore200e* fore200e; 2711 int err = 0; 2712 static int index = 0; 2713 2714 if (pci_enable_device(pci_dev)) { 2715 err = -EINVAL; 2716 goto out; 2717 } 2718 2719 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2720 if (fore200e == NULL) { 2721 err = -ENOMEM; 2722 goto out_disable; 2723 } 2724 2725 fore200e->bus = bus; 2726 fore200e->bus_dev = pci_dev; 2727 fore200e->irq = pci_dev->irq; 2728 fore200e->phys_base = pci_resource_start(pci_dev, 0); 2729 2730 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); 2731 2732 pci_set_master(pci_dev); 2733 2734 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", 2735 fore200e->bus->model_name, 2736 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); 2737 2738 sprintf(fore200e->name, "%s-%d", bus->model_name, index); 2739 2740 err = fore200e_init(fore200e); 2741 if (err < 0) { 2742 fore200e_shutdown(fore200e); 2743 goto out_free; 2744 } 2745 2746 ++index; 2747 pci_set_drvdata(pci_dev, fore200e); 2748 2749 out: 2750 return err; 2751 2752 out_free: 2753 kfree(fore200e); 2754 out_disable: 2755 pci_disable_device(pci_dev); 2756 goto out; 2757 } 2758 2759 2760 static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev) 2761 { 2762 struct fore200e *fore200e; 2763 2764 fore200e = pci_get_drvdata(pci_dev); 2765 2766 fore200e_shutdown(fore200e); 2767 kfree(fore200e); 2768 pci_disable_device(pci_dev); 2769 } 2770 2771 2772 static struct pci_device_id fore200e_pca_tbl[] = { 2773 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID, 2774 0, 0, (unsigned long) &fore200e_bus[0] }, 2775 { 0, } 2776 }; 2777 2778 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); 2779 2780 static struct pci_driver fore200e_pca_driver = { 2781 .name = "fore_200e", 2782 .probe = fore200e_pca_detect, 2783 .remove = __devexit_p(fore200e_pca_remove_one), 2784 .id_table = fore200e_pca_tbl, 2785 }; 2786 #endif 2787 2788 static int __init fore200e_module_init(void) 2789 { 2790 int err; 2791 2792 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); 2793 2794 #ifdef CONFIG_SBUS 2795 err = of_register_driver(&fore200e_sba_driver, &of_bus_type); 2796 if (err) 2797 return err; 2798 #endif 2799 2800 #ifdef CONFIG_PCI 2801 err = pci_register_driver(&fore200e_pca_driver); 2802 #endif 2803 2804 #ifdef CONFIG_SBUS 2805 if (err) 2806 of_unregister_driver(&fore200e_sba_driver); 2807 #endif 2808 2809 return err; 2810 } 2811 2812 static void __exit fore200e_module_cleanup(void) 2813 { 2814 #ifdef CONFIG_PCI 2815 pci_unregister_driver(&fore200e_pca_driver); 2816 #endif 2817 #ifdef CONFIG_SBUS 2818 of_unregister_driver(&fore200e_sba_driver); 2819 #endif 2820 } 2821 2822 static int 2823 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) 2824 { 2825 struct fore200e* fore200e = FORE200E_DEV(dev); 2826 struct fore200e_vcc* fore200e_vcc; 2827 struct atm_vcc* vcc; 2828 int i, len, left = *pos; 2829 unsigned long flags; 2830 2831 if (!left--) { 2832 2833 if (fore200e_getstats(fore200e) < 0) 2834 return -EIO; 2835 2836 len = sprintf(page,"\n" 2837 " device:\n" 2838 " internal name:\t\t%s\n", fore200e->name); 2839 2840 /* print bus-specific information */ 2841 if (fore200e->bus->proc_read) 2842 len += fore200e->bus->proc_read(fore200e, page + len); 2843 2844 len += sprintf(page + len, 2845 " interrupt line:\t\t%s\n" 2846 " physical base address:\t0x%p\n" 2847 " virtual base address:\t0x%p\n" 2848 " factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n" 2849 " board serial number:\t\t%d\n\n", 2850 fore200e_irq_itoa(fore200e->irq), 2851 (void*)fore200e->phys_base, 2852 fore200e->virt_base, 2853 fore200e->esi[0], fore200e->esi[1], fore200e->esi[2], 2854 fore200e->esi[3], fore200e->esi[4], fore200e->esi[5], 2855 fore200e->esi[4] * 256 + fore200e->esi[5]); 2856 2857 return len; 2858 } 2859 2860 if (!left--) 2861 return sprintf(page, 2862 " free small bufs, scheme 1:\t%d\n" 2863 " free large bufs, scheme 1:\t%d\n" 2864 " free small bufs, scheme 2:\t%d\n" 2865 " free large bufs, scheme 2:\t%d\n", 2866 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, 2867 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, 2868 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, 2869 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); 2870 2871 if (!left--) { 2872 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); 2873 2874 len = sprintf(page,"\n\n" 2875 " cell processor:\n" 2876 " heartbeat state:\t\t"); 2877 2878 if (hb >> 16 != 0xDEAD) 2879 len += sprintf(page + len, "0x%08x\n", hb); 2880 else 2881 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); 2882 2883 return len; 2884 } 2885 2886 if (!left--) { 2887 static const char* media_name[] = { 2888 "unshielded twisted pair", 2889 "multimode optical fiber ST", 2890 "multimode optical fiber SC", 2891 "single-mode optical fiber ST", 2892 "single-mode optical fiber SC", 2893 "unknown" 2894 }; 2895 2896 static const char* oc3_mode[] = { 2897 "normal operation", 2898 "diagnostic loopback", 2899 "line loopback", 2900 "unknown" 2901 }; 2902 2903 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); 2904 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); 2905 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); 2906 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); 2907 u32 oc3_index; 2908 2909 if ((media_index < 0) || (media_index > 4)) 2910 media_index = 5; 2911 2912 switch (fore200e->loop_mode) { 2913 case ATM_LM_NONE: oc3_index = 0; 2914 break; 2915 case ATM_LM_LOC_PHY: oc3_index = 1; 2916 break; 2917 case ATM_LM_RMT_PHY: oc3_index = 2; 2918 break; 2919 default: oc3_index = 3; 2920 } 2921 2922 return sprintf(page, 2923 " firmware release:\t\t%d.%d.%d\n" 2924 " monitor release:\t\t%d.%d\n" 2925 " media type:\t\t\t%s\n" 2926 " OC-3 revision:\t\t0x%x\n" 2927 " OC-3 mode:\t\t\t%s", 2928 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, 2929 mon960_release >> 16, mon960_release << 16 >> 16, 2930 media_name[ media_index ], 2931 oc3_revision, 2932 oc3_mode[ oc3_index ]); 2933 } 2934 2935 if (!left--) { 2936 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; 2937 2938 return sprintf(page, 2939 "\n\n" 2940 " monitor:\n" 2941 " version number:\t\t%d\n" 2942 " boot status word:\t\t0x%08x\n", 2943 fore200e->bus->read(&cp_monitor->mon_version), 2944 fore200e->bus->read(&cp_monitor->bstat)); 2945 } 2946 2947 if (!left--) 2948 return sprintf(page, 2949 "\n" 2950 " device statistics:\n" 2951 " 4b5b:\n" 2952 " crc_header_errors:\t\t%10u\n" 2953 " framing_errors:\t\t%10u\n", 2954 be32_to_cpu(fore200e->stats->phy.crc_header_errors), 2955 be32_to_cpu(fore200e->stats->phy.framing_errors)); 2956 2957 if (!left--) 2958 return sprintf(page, "\n" 2959 " OC-3:\n" 2960 " section_bip8_errors:\t%10u\n" 2961 " path_bip8_errors:\t\t%10u\n" 2962 " line_bip24_errors:\t\t%10u\n" 2963 " line_febe_errors:\t\t%10u\n" 2964 " path_febe_errors:\t\t%10u\n" 2965 " corr_hcs_errors:\t\t%10u\n" 2966 " ucorr_hcs_errors:\t\t%10u\n", 2967 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), 2968 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), 2969 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), 2970 be32_to_cpu(fore200e->stats->oc3.line_febe_errors), 2971 be32_to_cpu(fore200e->stats->oc3.path_febe_errors), 2972 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), 2973 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); 2974 2975 if (!left--) 2976 return sprintf(page,"\n" 2977 " ATM:\t\t\t\t cells\n" 2978 " TX:\t\t\t%10u\n" 2979 " RX:\t\t\t%10u\n" 2980 " vpi out of range:\t\t%10u\n" 2981 " vpi no conn:\t\t%10u\n" 2982 " vci out of range:\t\t%10u\n" 2983 " vci no conn:\t\t%10u\n", 2984 be32_to_cpu(fore200e->stats->atm.cells_transmitted), 2985 be32_to_cpu(fore200e->stats->atm.cells_received), 2986 be32_to_cpu(fore200e->stats->atm.vpi_bad_range), 2987 be32_to_cpu(fore200e->stats->atm.vpi_no_conn), 2988 be32_to_cpu(fore200e->stats->atm.vci_bad_range), 2989 be32_to_cpu(fore200e->stats->atm.vci_no_conn)); 2990 2991 if (!left--) 2992 return sprintf(page,"\n" 2993 " AAL0:\t\t\t cells\n" 2994 " TX:\t\t\t%10u\n" 2995 " RX:\t\t\t%10u\n" 2996 " dropped:\t\t\t%10u\n", 2997 be32_to_cpu(fore200e->stats->aal0.cells_transmitted), 2998 be32_to_cpu(fore200e->stats->aal0.cells_received), 2999 be32_to_cpu(fore200e->stats->aal0.cells_dropped)); 3000 3001 if (!left--) 3002 return sprintf(page,"\n" 3003 " AAL3/4:\n" 3004 " SAR sublayer:\t\t cells\n" 3005 " TX:\t\t\t%10u\n" 3006 " RX:\t\t\t%10u\n" 3007 " dropped:\t\t\t%10u\n" 3008 " CRC errors:\t\t%10u\n" 3009 " protocol errors:\t\t%10u\n\n" 3010 " CS sublayer:\t\t PDUs\n" 3011 " TX:\t\t\t%10u\n" 3012 " RX:\t\t\t%10u\n" 3013 " dropped:\t\t\t%10u\n" 3014 " protocol errors:\t\t%10u\n", 3015 be32_to_cpu(fore200e->stats->aal34.cells_transmitted), 3016 be32_to_cpu(fore200e->stats->aal34.cells_received), 3017 be32_to_cpu(fore200e->stats->aal34.cells_dropped), 3018 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), 3019 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), 3020 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), 3021 be32_to_cpu(fore200e->stats->aal34.cspdus_received), 3022 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), 3023 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); 3024 3025 if (!left--) 3026 return sprintf(page,"\n" 3027 " AAL5:\n" 3028 " SAR sublayer:\t\t cells\n" 3029 " TX:\t\t\t%10u\n" 3030 " RX:\t\t\t%10u\n" 3031 " dropped:\t\t\t%10u\n" 3032 " congestions:\t\t%10u\n\n" 3033 " CS sublayer:\t\t PDUs\n" 3034 " TX:\t\t\t%10u\n" 3035 " RX:\t\t\t%10u\n" 3036 " dropped:\t\t\t%10u\n" 3037 " CRC errors:\t\t%10u\n" 3038 " protocol errors:\t\t%10u\n", 3039 be32_to_cpu(fore200e->stats->aal5.cells_transmitted), 3040 be32_to_cpu(fore200e->stats->aal5.cells_received), 3041 be32_to_cpu(fore200e->stats->aal5.cells_dropped), 3042 be32_to_cpu(fore200e->stats->aal5.congestion_experienced), 3043 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), 3044 be32_to_cpu(fore200e->stats->aal5.cspdus_received), 3045 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), 3046 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), 3047 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); 3048 3049 if (!left--) 3050 return sprintf(page,"\n" 3051 " AUX:\t\t allocation failures\n" 3052 " small b1:\t\t\t%10u\n" 3053 " large b1:\t\t\t%10u\n" 3054 " small b2:\t\t\t%10u\n" 3055 " large b2:\t\t\t%10u\n" 3056 " RX PDUs:\t\t\t%10u\n" 3057 " TX PDUs:\t\t\t%10lu\n", 3058 be32_to_cpu(fore200e->stats->aux.small_b1_failed), 3059 be32_to_cpu(fore200e->stats->aux.large_b1_failed), 3060 be32_to_cpu(fore200e->stats->aux.small_b2_failed), 3061 be32_to_cpu(fore200e->stats->aux.large_b2_failed), 3062 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), 3063 fore200e->tx_sat); 3064 3065 if (!left--) 3066 return sprintf(page,"\n" 3067 " receive carrier:\t\t\t%s\n", 3068 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); 3069 3070 if (!left--) { 3071 return sprintf(page,"\n" 3072 " VCCs:\n address VPI VCI AAL " 3073 "TX PDUs TX min/max size RX PDUs RX min/max size\n"); 3074 } 3075 3076 for (i = 0; i < NBR_CONNECT; i++) { 3077 3078 vcc = fore200e->vc_map[i].vcc; 3079 3080 if (vcc == NULL) 3081 continue; 3082 3083 spin_lock_irqsave(&fore200e->q_lock, flags); 3084 3085 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { 3086 3087 fore200e_vcc = FORE200E_VCC(vcc); 3088 ASSERT(fore200e_vcc); 3089 3090 len = sprintf(page, 3091 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", 3092 (u32)(unsigned long)vcc, 3093 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 3094 fore200e_vcc->tx_pdu, 3095 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, 3096 fore200e_vcc->tx_max_pdu, 3097 fore200e_vcc->rx_pdu, 3098 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, 3099 fore200e_vcc->rx_max_pdu); 3100 3101 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3102 return len; 3103 } 3104 3105 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3106 } 3107 3108 return 0; 3109 } 3110 3111 module_init(fore200e_module_init); 3112 module_exit(fore200e_module_cleanup); 3113 3114 3115 static const struct atmdev_ops fore200e_ops = 3116 { 3117 .open = fore200e_open, 3118 .close = fore200e_close, 3119 .ioctl = fore200e_ioctl, 3120 .getsockopt = fore200e_getsockopt, 3121 .setsockopt = fore200e_setsockopt, 3122 .send = fore200e_send, 3123 .change_qos = fore200e_change_qos, 3124 .proc_read = fore200e_proc_read, 3125 .owner = THIS_MODULE 3126 }; 3127 3128 3129 static const struct fore200e_bus fore200e_bus[] = { 3130 #ifdef CONFIG_PCI 3131 { "PCA-200E", "pca200e", 32, 4, 32, 3132 fore200e_pca_read, 3133 fore200e_pca_write, 3134 fore200e_pca_dma_map, 3135 fore200e_pca_dma_unmap, 3136 fore200e_pca_dma_sync_for_cpu, 3137 fore200e_pca_dma_sync_for_device, 3138 fore200e_pca_dma_chunk_alloc, 3139 fore200e_pca_dma_chunk_free, 3140 fore200e_pca_configure, 3141 fore200e_pca_map, 3142 fore200e_pca_reset, 3143 fore200e_pca_prom_read, 3144 fore200e_pca_unmap, 3145 NULL, 3146 fore200e_pca_irq_check, 3147 fore200e_pca_irq_ack, 3148 fore200e_pca_proc_read, 3149 }, 3150 #endif 3151 #ifdef CONFIG_SBUS 3152 { "SBA-200E", "sba200e", 32, 64, 32, 3153 fore200e_sba_read, 3154 fore200e_sba_write, 3155 fore200e_sba_dma_map, 3156 fore200e_sba_dma_unmap, 3157 fore200e_sba_dma_sync_for_cpu, 3158 fore200e_sba_dma_sync_for_device, 3159 fore200e_sba_dma_chunk_alloc, 3160 fore200e_sba_dma_chunk_free, 3161 fore200e_sba_configure, 3162 fore200e_sba_map, 3163 fore200e_sba_reset, 3164 fore200e_sba_prom_read, 3165 fore200e_sba_unmap, 3166 fore200e_sba_irq_enable, 3167 fore200e_sba_irq_check, 3168 fore200e_sba_irq_ack, 3169 fore200e_sba_proc_read, 3170 }, 3171 #endif 3172 {} 3173 }; 3174 3175 MODULE_LICENSE("GPL"); 3176 #ifdef CONFIG_PCI 3177 #ifdef __LITTLE_ENDIAN__ 3178 MODULE_FIRMWARE("pca200e.bin"); 3179 #else 3180 MODULE_FIRMWARE("pca200e_ecd.bin2"); 3181 #endif 3182 #endif /* CONFIG_PCI */ 3183 #ifdef CONFIG_SBUS 3184 MODULE_FIRMWARE("sba200e_ecd.bin2"); 3185 #endif 3186