xref: /openbmc/linux/drivers/atm/fore200e.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   A FORE Systems 200E-series driver for ATM on Linux.
4   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5 
6   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7 
8   This driver simultaneously supports PCA-200E and SBA-200E adapters
9   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10 
11 */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/capability.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/pci.h>
21 #include <linux/module.h>
22 #include <linux/atmdev.h>
23 #include <linux/sonet.h>
24 #include <linux/atm_suni.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/delay.h>
27 #include <linux/firmware.h>
28 #include <linux/pgtable.h>
29 #include <asm/io.h>
30 #include <asm/string.h>
31 #include <asm/page.h>
32 #include <asm/irq.h>
33 #include <asm/dma.h>
34 #include <asm/byteorder.h>
35 #include <linux/uaccess.h>
36 #include <linux/atomic.h>
37 
38 #ifdef CONFIG_SBUS
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <asm/idprom.h>
42 #include <asm/openprom.h>
43 #include <asm/oplib.h>
44 #endif
45 
46 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47 #define FORE200E_USE_TASKLET
48 #endif
49 
50 #if 0 /* enable the debugging code of the buffer supply queues */
51 #define FORE200E_BSQ_DEBUG
52 #endif
53 
54 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55 #define FORE200E_52BYTE_AAL0_SDU
56 #endif
57 
58 #include "fore200e.h"
59 #include "suni.h"
60 
61 #define FORE200E_VERSION "0.3e"
62 
63 #define FORE200E         "fore200e: "
64 
65 #if 0 /* override .config */
66 #define CONFIG_ATM_FORE200E_DEBUG 1
67 #endif
68 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70                                                   printk(FORE200E format, ##args); } while (0)
71 #else
72 #define DPRINTK(level, format, args...)  do {} while (0)
73 #endif
74 
75 
76 #define FORE200E_ALIGN(addr, alignment) \
77         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78 
79 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
80 
81 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
82 
83 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
84 
85 #if 1
86 #define ASSERT(expr)     if (!(expr)) { \
87 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88 				    __func__, __LINE__, #expr); \
89 			     panic(FORE200E "%s", __func__); \
90 			 }
91 #else
92 #define ASSERT(expr)     do {} while (0)
93 #endif
94 
95 
96 static const struct atmdev_ops   fore200e_ops;
97 
98 static LIST_HEAD(fore200e_boards);
99 
100 
101 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104 
105 
106 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107     { BUFFER_S1_NBR, BUFFER_L1_NBR },
108     { BUFFER_S2_NBR, BUFFER_L2_NBR }
109 };
110 
111 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114 };
115 
116 
117 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119 #endif
120 
121 
122 #if 0 /* currently unused */
123 static int
124 fore200e_fore2atm_aal(enum fore200e_aal aal)
125 {
126     switch(aal) {
127     case FORE200E_AAL0:  return ATM_AAL0;
128     case FORE200E_AAL34: return ATM_AAL34;
129     case FORE200E_AAL5:  return ATM_AAL5;
130     }
131 
132     return -EINVAL;
133 }
134 #endif
135 
136 
137 static enum fore200e_aal
138 fore200e_atm2fore_aal(int aal)
139 {
140     switch(aal) {
141     case ATM_AAL0:  return FORE200E_AAL0;
142     case ATM_AAL34: return FORE200E_AAL34;
143     case ATM_AAL1:
144     case ATM_AAL2:
145     case ATM_AAL5:  return FORE200E_AAL5;
146     }
147 
148     return -EINVAL;
149 }
150 
151 
152 static char*
153 fore200e_irq_itoa(int irq)
154 {
155     static char str[8];
156     sprintf(str, "%d", irq);
157     return str;
158 }
159 
160 
161 /* allocate and align a chunk of memory intended to hold the data behing exchanged
162    between the driver and the adapter (using streaming DVMA) */
163 
164 static int
165 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166 {
167     unsigned long offset = 0;
168 
169     if (alignment <= sizeof(int))
170 	alignment = 0;
171 
172     chunk->alloc_size = size + alignment;
173     chunk->direction  = direction;
174 
175     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176     if (chunk->alloc_addr == NULL)
177 	return -ENOMEM;
178 
179     if (alignment > 0)
180 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
181 
182     chunk->align_addr = chunk->alloc_addr + offset;
183 
184     chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185 				     size, direction);
186     if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187 	kfree(chunk->alloc_addr);
188 	return -ENOMEM;
189     }
190     return 0;
191 }
192 
193 
194 /* free a chunk of memory */
195 
196 static void
197 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198 {
199     dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200 		     chunk->direction);
201     kfree(chunk->alloc_addr);
202 }
203 
204 /*
205  * Allocate a DMA consistent chunk of memory intended to act as a communication
206  * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207  * and the adapter.
208  */
209 static int
210 fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211 		int size, int nbr, int alignment)
212 {
213 	/* returned chunks are page-aligned */
214 	chunk->alloc_size = size * nbr;
215 	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216 					       &chunk->dma_addr, GFP_KERNEL);
217 	if (!chunk->alloc_addr)
218 		return -ENOMEM;
219 	chunk->align_addr = chunk->alloc_addr;
220 	return 0;
221 }
222 
223 /*
224  * Free a DMA consistent chunk of memory.
225  */
226 static void
227 fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228 {
229 	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230 			  chunk->dma_addr);
231 }
232 
233 static void
234 fore200e_spin(int msecs)
235 {
236     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237     while (time_before(jiffies, timeout));
238 }
239 
240 
241 static int
242 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243 {
244     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245     int           ok;
246 
247     mb();
248     do {
249 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250 	    break;
251 
252     } while (time_before(jiffies, timeout));
253 
254 #if 1
255     if (!ok) {
256 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257 	       *addr, val);
258     }
259 #endif
260 
261     return ok;
262 }
263 
264 
265 static int
266 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267 {
268     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269     int           ok;
270 
271     do {
272 	if ((ok = (fore200e->bus->read(addr) == val)))
273 	    break;
274 
275     } while (time_before(jiffies, timeout));
276 
277 #if 1
278     if (!ok) {
279 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280 	       fore200e->bus->read(addr), val);
281     }
282 #endif
283 
284     return ok;
285 }
286 
287 
288 static void
289 fore200e_free_rx_buf(struct fore200e* fore200e)
290 {
291     int scheme, magn, nbr;
292     struct buffer* buffer;
293 
294     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296 
297 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298 
299 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300 
301 		    struct chunk* data = &buffer[ nbr ].data;
302 
303 		    if (data->alloc_addr != NULL)
304 			fore200e_chunk_free(fore200e, data);
305 		}
306 	    }
307 	}
308     }
309 }
310 
311 
312 static void
313 fore200e_uninit_bs_queue(struct fore200e* fore200e)
314 {
315     int scheme, magn;
316 
317     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319 
320 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
321 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322 
323 	    if (status->alloc_addr)
324 		fore200e_dma_chunk_free(fore200e, status);
325 
326 	    if (rbd_block->alloc_addr)
327 		fore200e_dma_chunk_free(fore200e, rbd_block);
328 	}
329     }
330 }
331 
332 
333 static int
334 fore200e_reset(struct fore200e* fore200e, int diag)
335 {
336     int ok;
337 
338     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339 
340     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341 
342     fore200e->bus->reset(fore200e);
343 
344     if (diag) {
345 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346 	if (ok == 0) {
347 
348 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
349 	    return -ENODEV;
350 	}
351 
352 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
353 
354 	fore200e->state = FORE200E_STATE_RESET;
355     }
356 
357     return 0;
358 }
359 
360 
361 static void
362 fore200e_shutdown(struct fore200e* fore200e)
363 {
364     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365 	   fore200e->name, fore200e->phys_base,
366 	   fore200e_irq_itoa(fore200e->irq));
367 
368     if (fore200e->state > FORE200E_STATE_RESET) {
369 	/* first, reset the board to prevent further interrupts or data transfers */
370 	fore200e_reset(fore200e, 0);
371     }
372 
373     /* then, release all allocated resources */
374     switch(fore200e->state) {
375 
376     case FORE200E_STATE_COMPLETE:
377 	kfree(fore200e->stats);
378 
379 	fallthrough;
380     case FORE200E_STATE_IRQ:
381 	free_irq(fore200e->irq, fore200e->atm_dev);
382 
383 	fallthrough;
384     case FORE200E_STATE_ALLOC_BUF:
385 	fore200e_free_rx_buf(fore200e);
386 
387 	fallthrough;
388     case FORE200E_STATE_INIT_BSQ:
389 	fore200e_uninit_bs_queue(fore200e);
390 
391 	fallthrough;
392     case FORE200E_STATE_INIT_RXQ:
393 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394 	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395 
396 	fallthrough;
397     case FORE200E_STATE_INIT_TXQ:
398 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399 	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400 
401 	fallthrough;
402     case FORE200E_STATE_INIT_CMDQ:
403 	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404 
405 	fallthrough;
406     case FORE200E_STATE_INITIALIZE:
407 	/* nothing to do for that state */
408 
409     case FORE200E_STATE_START_FW:
410 	/* nothing to do for that state */
411 
412     case FORE200E_STATE_RESET:
413 	/* nothing to do for that state */
414 
415     case FORE200E_STATE_MAP:
416 	fore200e->bus->unmap(fore200e);
417 
418 	fallthrough;
419     case FORE200E_STATE_CONFIGURE:
420 	/* nothing to do for that state */
421 
422     case FORE200E_STATE_REGISTER:
423 	/* XXX shouldn't we *start* by deregistering the device? */
424 	atm_dev_deregister(fore200e->atm_dev);
425 
426     case FORE200E_STATE_BLANK:
427 	/* nothing to do for that state */
428 	break;
429     }
430 }
431 
432 
433 #ifdef CONFIG_PCI
434 
435 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436 {
437     /* on big-endian hosts, the board is configured to convert
438        the endianess of slave RAM accesses  */
439     return le32_to_cpu(readl(addr));
440 }
441 
442 
443 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444 {
445     /* on big-endian hosts, the board is configured to convert
446        the endianess of slave RAM accesses  */
447     writel(cpu_to_le32(val), addr);
448 }
449 
450 static int
451 fore200e_pca_irq_check(struct fore200e* fore200e)
452 {
453     /* this is a 1 bit register */
454     int irq_posted = readl(fore200e->regs.pca.psr);
455 
456 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459     }
460 #endif
461 
462     return irq_posted;
463 }
464 
465 
466 static void
467 fore200e_pca_irq_ack(struct fore200e* fore200e)
468 {
469     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470 }
471 
472 
473 static void
474 fore200e_pca_reset(struct fore200e* fore200e)
475 {
476     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477     fore200e_spin(10);
478     writel(0, fore200e->regs.pca.hcr);
479 }
480 
481 
482 static int fore200e_pca_map(struct fore200e* fore200e)
483 {
484     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485 
486     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487 
488     if (fore200e->virt_base == NULL) {
489 	printk(FORE200E "can't map device %s\n", fore200e->name);
490 	return -EFAULT;
491     }
492 
493     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494 
495     /* gain access to the PCA specific registers  */
496     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499 
500     fore200e->state = FORE200E_STATE_MAP;
501     return 0;
502 }
503 
504 
505 static void
506 fore200e_pca_unmap(struct fore200e* fore200e)
507 {
508     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509 
510     if (fore200e->virt_base != NULL)
511 	iounmap(fore200e->virt_base);
512 }
513 
514 
515 static int fore200e_pca_configure(struct fore200e *fore200e)
516 {
517     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518     u8              master_ctrl, latency;
519 
520     DPRINTK(2, "device %s being configured\n", fore200e->name);
521 
522     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524 	return -EIO;
525     }
526 
527     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528 
529     master_ctrl = master_ctrl
530 #if defined(__BIG_ENDIAN)
531 	/* request the PCA board to convert the endianess of slave RAM accesses */
532 	| PCA200E_CTRL_CONVERT_ENDIAN
533 #endif
534 #if 0
535         | PCA200E_CTRL_DIS_CACHE_RD
536         | PCA200E_CTRL_DIS_WRT_INVAL
537         | PCA200E_CTRL_ENA_CONT_REQ_MODE
538         | PCA200E_CTRL_2_CACHE_WRT_INVAL
539 #endif
540 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
541 
542     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543 
544     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546        this may impact the performances of other PCI devices on the same bus, though */
547     latency = 192;
548     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549 
550     fore200e->state = FORE200E_STATE_CONFIGURE;
551     return 0;
552 }
553 
554 
555 static int __init
556 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557 {
558     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
559     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560     struct prom_opcode      opcode;
561     int                     ok;
562     u32                     prom_dma;
563 
564     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565 
566     opcode.opcode = OPCODE_GET_PROM;
567     opcode.pad    = 0;
568 
569     prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570 			      DMA_FROM_DEVICE);
571     if (dma_mapping_error(fore200e->dev, prom_dma))
572 	return -ENOMEM;
573 
574     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575 
576     *entry->status = STATUS_PENDING;
577 
578     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579 
580     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581 
582     *entry->status = STATUS_FREE;
583 
584     dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585 
586     if (ok == 0) {
587 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588 	return -EIO;
589     }
590 
591 #if defined(__BIG_ENDIAN)
592 
593 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594 
595     /* MAC address is stored as little-endian */
596     swap_here(&prom->mac_addr[0]);
597     swap_here(&prom->mac_addr[4]);
598 #endif
599 
600     return 0;
601 }
602 
603 
604 static int
605 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606 {
607     struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608 
609     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
610 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611 }
612 
613 static const struct fore200e_bus fore200e_pci_ops = {
614 	.model_name		= "PCA-200E",
615 	.proc_name		= "pca200e",
616 	.descr_alignment	= 32,
617 	.buffer_alignment	= 4,
618 	.status_alignment	= 32,
619 	.read			= fore200e_pca_read,
620 	.write			= fore200e_pca_write,
621 	.configure		= fore200e_pca_configure,
622 	.map			= fore200e_pca_map,
623 	.reset			= fore200e_pca_reset,
624 	.prom_read		= fore200e_pca_prom_read,
625 	.unmap			= fore200e_pca_unmap,
626 	.irq_check		= fore200e_pca_irq_check,
627 	.irq_ack		= fore200e_pca_irq_ack,
628 	.proc_read		= fore200e_pca_proc_read,
629 };
630 #endif /* CONFIG_PCI */
631 
632 #ifdef CONFIG_SBUS
633 
634 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635 {
636     return sbus_readl(addr);
637 }
638 
639 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640 {
641     sbus_writel(val, addr);
642 }
643 
644 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645 {
646 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648 }
649 
650 static int fore200e_sba_irq_check(struct fore200e *fore200e)
651 {
652 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653 }
654 
655 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656 {
657 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659 }
660 
661 static void fore200e_sba_reset(struct fore200e *fore200e)
662 {
663 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664 	fore200e_spin(10);
665 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
666 }
667 
668 static int __init fore200e_sba_map(struct fore200e *fore200e)
669 {
670 	struct platform_device *op = to_platform_device(fore200e->dev);
671 	unsigned int bursts;
672 
673 	/* gain access to the SBA specific registers  */
674 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678 
679 	if (!fore200e->virt_base) {
680 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681 		return -EFAULT;
682 	}
683 
684 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685 
686 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687 
688 	/* get the supported DVMA burst sizes */
689 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690 
691 	if (sbus_can_dma_64bit())
692 		sbus_set_sbus64(&op->dev, bursts);
693 
694 	fore200e->state = FORE200E_STATE_MAP;
695 	return 0;
696 }
697 
698 static void fore200e_sba_unmap(struct fore200e *fore200e)
699 {
700 	struct platform_device *op = to_platform_device(fore200e->dev);
701 
702 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
706 }
707 
708 static int __init fore200e_sba_configure(struct fore200e *fore200e)
709 {
710 	fore200e->state = FORE200E_STATE_CONFIGURE;
711 	return 0;
712 }
713 
714 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715 {
716 	struct platform_device *op = to_platform_device(fore200e->dev);
717 	const u8 *prop;
718 	int len;
719 
720 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721 	if (!prop)
722 		return -ENODEV;
723 	memcpy(&prom->mac_addr[4], prop, 4);
724 
725 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726 	if (!prop)
727 		return -ENODEV;
728 	memcpy(&prom->mac_addr[2], prop, 4);
729 
730 	prom->serial_number = of_getintprop_default(op->dev.of_node,
731 						    "serialnumber", 0);
732 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
733 						  "promversion", 0);
734 
735 	return 0;
736 }
737 
738 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739 {
740 	struct platform_device *op = to_platform_device(fore200e->dev);
741 	const struct linux_prom_registers *regs;
742 
743 	regs = of_get_property(op->dev.of_node, "reg", NULL);
744 
745 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
746 		       (regs ? regs->which_io : 0), op->dev.of_node);
747 }
748 
749 static const struct fore200e_bus fore200e_sbus_ops = {
750 	.model_name		= "SBA-200E",
751 	.proc_name		= "sba200e",
752 	.descr_alignment	= 32,
753 	.buffer_alignment	= 64,
754 	.status_alignment	= 32,
755 	.read			= fore200e_sba_read,
756 	.write			= fore200e_sba_write,
757 	.configure		= fore200e_sba_configure,
758 	.map			= fore200e_sba_map,
759 	.reset			= fore200e_sba_reset,
760 	.prom_read		= fore200e_sba_prom_read,
761 	.unmap			= fore200e_sba_unmap,
762 	.irq_enable		= fore200e_sba_irq_enable,
763 	.irq_check		= fore200e_sba_irq_check,
764 	.irq_ack		= fore200e_sba_irq_ack,
765 	.proc_read		= fore200e_sba_proc_read,
766 };
767 #endif /* CONFIG_SBUS */
768 
769 static void
770 fore200e_tx_irq(struct fore200e* fore200e)
771 {
772     struct host_txq*        txq = &fore200e->host_txq;
773     struct host_txq_entry*  entry;
774     struct atm_vcc*         vcc;
775     struct fore200e_vc_map* vc_map;
776 
777     if (fore200e->host_txq.txing == 0)
778 	return;
779 
780     for (;;) {
781 
782 	entry = &txq->host_entry[ txq->tail ];
783 
784         if ((*entry->status & STATUS_COMPLETE) == 0) {
785 	    break;
786 	}
787 
788 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
789 		entry, txq->tail, entry->vc_map, entry->skb);
790 
791 	/* free copy of misaligned data */
792 	kfree(entry->data);
793 
794 	/* remove DMA mapping */
795 	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796 				 DMA_TO_DEVICE);
797 
798 	vc_map = entry->vc_map;
799 
800 	/* vcc closed since the time the entry was submitted for tx? */
801 	if ((vc_map->vcc == NULL) ||
802 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803 
804 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805 		    fore200e->atm_dev->number);
806 
807 	    dev_kfree_skb_any(entry->skb);
808 	}
809 	else {
810 	    ASSERT(vc_map->vcc);
811 
812 	    /* vcc closed then immediately re-opened? */
813 	    if (vc_map->incarn != entry->incarn) {
814 
815 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
816 		   if the same vcc is immediately re-opened, those pending PDUs must
817 		   not be popped after the completion of their emission, as they refer
818 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819 		   would be decremented by the size of the (unrelated) skb, possibly
820 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821 		   we thus bind the tx entry to the current incarnation of the vcc
822 		   when the entry is submitted for tx. When the tx later completes,
823 		   if the incarnation number of the tx entry does not match the one
824 		   of the vcc, then this implies that the vcc has been closed then re-opened.
825 		   we thus just drop the skb here. */
826 
827 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828 			fore200e->atm_dev->number);
829 
830 		dev_kfree_skb_any(entry->skb);
831 	    }
832 	    else {
833 		vcc = vc_map->vcc;
834 		ASSERT(vcc);
835 
836 		/* notify tx completion */
837 		if (vcc->pop) {
838 		    vcc->pop(vcc, entry->skb);
839 		}
840 		else {
841 		    dev_kfree_skb_any(entry->skb);
842 		}
843 
844 		/* check error condition */
845 		if (*entry->status & STATUS_ERROR)
846 		    atomic_inc(&vcc->stats->tx_err);
847 		else
848 		    atomic_inc(&vcc->stats->tx);
849 	    }
850 	}
851 
852 	*entry->status = STATUS_FREE;
853 
854 	fore200e->host_txq.txing--;
855 
856 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857     }
858 }
859 
860 
861 #ifdef FORE200E_BSQ_DEBUG
862 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863 {
864     struct buffer* buffer;
865     int count = 0;
866 
867     buffer = bsq->freebuf;
868     while (buffer) {
869 
870 	if (buffer->supplied) {
871 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872 		   where, scheme, magn, buffer->index);
873 	}
874 
875 	if (buffer->magn != magn) {
876 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877 		   where, scheme, magn, buffer->index, buffer->magn);
878 	}
879 
880 	if (buffer->scheme != scheme) {
881 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882 		   where, scheme, magn, buffer->index, buffer->scheme);
883 	}
884 
885 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887 		   where, scheme, magn, buffer->index);
888 	}
889 
890 	count++;
891 	buffer = buffer->next;
892     }
893 
894     if (count != bsq->freebuf_count) {
895 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896 	       where, scheme, magn, count, bsq->freebuf_count);
897     }
898     return 0;
899 }
900 #endif
901 
902 
903 static void
904 fore200e_supply(struct fore200e* fore200e)
905 {
906     int  scheme, magn, i;
907 
908     struct host_bsq*       bsq;
909     struct host_bsq_entry* entry;
910     struct buffer*         buffer;
911 
912     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914 
915 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
916 
917 #ifdef FORE200E_BSQ_DEBUG
918 	    bsq_audit(1, bsq, scheme, magn);
919 #endif
920 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921 
922 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924 
925 		entry = &bsq->host_entry[ bsq->head ];
926 
927 		for (i = 0; i < RBD_BLK_SIZE; i++) {
928 
929 		    /* take the first buffer in the free buffer list */
930 		    buffer = bsq->freebuf;
931 		    if (!buffer) {
932 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933 			       scheme, magn, bsq->freebuf_count);
934 			return;
935 		    }
936 		    bsq->freebuf = buffer->next;
937 
938 #ifdef FORE200E_BSQ_DEBUG
939 		    if (buffer->supplied)
940 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941 			       scheme, magn, buffer->index);
942 		    buffer->supplied = 1;
943 #endif
944 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
946 		}
947 
948 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949 
950  		/* decrease accordingly the number of free rx buffers */
951 		bsq->freebuf_count -= RBD_BLK_SIZE;
952 
953 		*entry->status = STATUS_PENDING;
954 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955 	    }
956 	}
957     }
958 }
959 
960 
961 static int
962 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963 {
964     struct sk_buff*      skb;
965     struct buffer*       buffer;
966     struct fore200e_vcc* fore200e_vcc;
967     int                  i, pdu_len = 0;
968 #ifdef FORE200E_52BYTE_AAL0_SDU
969     u32                  cell_header = 0;
970 #endif
971 
972     ASSERT(vcc);
973 
974     fore200e_vcc = FORE200E_VCC(vcc);
975     ASSERT(fore200e_vcc);
976 
977 #ifdef FORE200E_52BYTE_AAL0_SDU
978     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979 
980 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
984                        rpd->atm_header.clp;
985 	pdu_len = 4;
986     }
987 #endif
988 
989     /* compute total PDU length */
990     for (i = 0; i < rpd->nseg; i++)
991 	pdu_len += rpd->rsd[ i ].length;
992 
993     skb = alloc_skb(pdu_len, GFP_ATOMIC);
994     if (skb == NULL) {
995 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996 
997 	atomic_inc(&vcc->stats->rx_drop);
998 	return -ENOMEM;
999     }
1000 
1001     __net_timestamp(skb);
1002 
1003 #ifdef FORE200E_52BYTE_AAL0_SDU
1004     if (cell_header) {
1005 	*((u32*)skb_put(skb, 4)) = cell_header;
1006     }
1007 #endif
1008 
1009     /* reassemble segments */
1010     for (i = 0; i < rpd->nseg; i++) {
1011 
1012 	/* rebuild rx buffer address from rsd handle */
1013 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014 
1015 	/* Make device DMA transfer visible to CPU.  */
1016 	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017 				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018 
1019 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020 
1021 	/* Now let the device get at it again.  */
1022 	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023 				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024     }
1025 
1026     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027 
1028     if (pdu_len < fore200e_vcc->rx_min_pdu)
1029 	fore200e_vcc->rx_min_pdu = pdu_len;
1030     if (pdu_len > fore200e_vcc->rx_max_pdu)
1031 	fore200e_vcc->rx_max_pdu = pdu_len;
1032     fore200e_vcc->rx_pdu++;
1033 
1034     /* push PDU */
1035     if (atm_charge(vcc, skb->truesize) == 0) {
1036 
1037 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038 		vcc->itf, vcc->vpi, vcc->vci);
1039 
1040 	dev_kfree_skb_any(skb);
1041 
1042 	atomic_inc(&vcc->stats->rx_drop);
1043 	return -ENOMEM;
1044     }
1045 
1046     vcc->push(vcc, skb);
1047     atomic_inc(&vcc->stats->rx);
1048 
1049     return 0;
1050 }
1051 
1052 
1053 static void
1054 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055 {
1056     struct host_bsq* bsq;
1057     struct buffer*   buffer;
1058     int              i;
1059 
1060     for (i = 0; i < rpd->nseg; i++) {
1061 
1062 	/* rebuild rx buffer address from rsd handle */
1063 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064 
1065 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066 
1067 #ifdef FORE200E_BSQ_DEBUG
1068 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069 
1070 	if (buffer->supplied == 0)
1071 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072 		   buffer->scheme, buffer->magn, buffer->index);
1073 	buffer->supplied = 0;
1074 #endif
1075 
1076 	/* re-insert the buffer into the free buffer list */
1077 	buffer->next = bsq->freebuf;
1078 	bsq->freebuf = buffer;
1079 
1080 	/* then increment the number of free rx buffers */
1081 	bsq->freebuf_count++;
1082     }
1083 }
1084 
1085 
1086 static void
1087 fore200e_rx_irq(struct fore200e* fore200e)
1088 {
1089     struct host_rxq*        rxq = &fore200e->host_rxq;
1090     struct host_rxq_entry*  entry;
1091     struct atm_vcc*         vcc;
1092     struct fore200e_vc_map* vc_map;
1093 
1094     for (;;) {
1095 
1096 	entry = &rxq->host_entry[ rxq->head ];
1097 
1098 	/* no more received PDUs */
1099 	if ((*entry->status & STATUS_COMPLETE) == 0)
1100 	    break;
1101 
1102 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103 
1104 	if ((vc_map->vcc == NULL) ||
1105 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106 
1107 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108 		    fore200e->atm_dev->number,
1109 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110 	}
1111 	else {
1112 	    vcc = vc_map->vcc;
1113 	    ASSERT(vcc);
1114 
1115 	    if ((*entry->status & STATUS_ERROR) == 0) {
1116 
1117 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118 	    }
1119 	    else {
1120 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121 			fore200e->atm_dev->number,
1122 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123 		atomic_inc(&vcc->stats->rx_err);
1124 	    }
1125 	}
1126 
1127 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128 
1129 	fore200e_collect_rpd(fore200e, entry->rpd);
1130 
1131 	/* rewrite the rpd address to ack the received PDU */
1132 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133 	*entry->status = STATUS_FREE;
1134 
1135 	fore200e_supply(fore200e);
1136     }
1137 }
1138 
1139 
1140 #ifndef FORE200E_USE_TASKLET
1141 static void
1142 fore200e_irq(struct fore200e* fore200e)
1143 {
1144     unsigned long flags;
1145 
1146     spin_lock_irqsave(&fore200e->q_lock, flags);
1147     fore200e_rx_irq(fore200e);
1148     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149 
1150     spin_lock_irqsave(&fore200e->q_lock, flags);
1151     fore200e_tx_irq(fore200e);
1152     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153 }
1154 #endif
1155 
1156 
1157 static irqreturn_t
1158 fore200e_interrupt(int irq, void* dev)
1159 {
1160     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161 
1162     if (fore200e->bus->irq_check(fore200e) == 0) {
1163 
1164 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165 	return IRQ_NONE;
1166     }
1167     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168 
1169 #ifdef FORE200E_USE_TASKLET
1170     tasklet_schedule(&fore200e->tx_tasklet);
1171     tasklet_schedule(&fore200e->rx_tasklet);
1172 #else
1173     fore200e_irq(fore200e);
1174 #endif
1175 
1176     fore200e->bus->irq_ack(fore200e);
1177     return IRQ_HANDLED;
1178 }
1179 
1180 
1181 #ifdef FORE200E_USE_TASKLET
1182 static void
1183 fore200e_tx_tasklet(unsigned long data)
1184 {
1185     struct fore200e* fore200e = (struct fore200e*) data;
1186     unsigned long flags;
1187 
1188     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189 
1190     spin_lock_irqsave(&fore200e->q_lock, flags);
1191     fore200e_tx_irq(fore200e);
1192     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193 }
1194 
1195 
1196 static void
1197 fore200e_rx_tasklet(unsigned long data)
1198 {
1199     struct fore200e* fore200e = (struct fore200e*) data;
1200     unsigned long    flags;
1201 
1202     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203 
1204     spin_lock_irqsave(&fore200e->q_lock, flags);
1205     fore200e_rx_irq((struct fore200e*) data);
1206     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207 }
1208 #endif
1209 
1210 
1211 static int
1212 fore200e_select_scheme(struct atm_vcc* vcc)
1213 {
1214     /* fairly balance the VCs over (identical) buffer schemes */
1215     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216 
1217     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219 
1220     return scheme;
1221 }
1222 
1223 
1224 static int
1225 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226 {
1227     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229     struct activate_opcode   activ_opcode;
1230     struct deactivate_opcode deactiv_opcode;
1231     struct vpvc              vpvc;
1232     int                      ok;
1233     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234 
1235     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236 
1237     if (activate) {
1238 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239 
1240 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241 	activ_opcode.aal    = aal;
1242 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243 	activ_opcode.pad    = 0;
1244     }
1245     else {
1246 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247 	deactiv_opcode.pad    = 0;
1248     }
1249 
1250     vpvc.vci = vcc->vci;
1251     vpvc.vpi = vcc->vpi;
1252 
1253     *entry->status = STATUS_PENDING;
1254 
1255     if (activate) {
1256 
1257 #ifdef FORE200E_52BYTE_AAL0_SDU
1258 	mtu = 48;
1259 #endif
1260 	/* the MTU is not used by the cp, except in the case of AAL0 */
1261 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264     }
1265     else {
1266 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268     }
1269 
1270     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271 
1272     *entry->status = STATUS_FREE;
1273 
1274     if (ok == 0) {
1275 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277 	return -EIO;
1278     }
1279 
1280     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1281 	    activate ? "open" : "clos");
1282 
1283     return 0;
1284 }
1285 
1286 
1287 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288 
1289 static void
1290 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291 {
1292     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293 
1294 	/* compute the data cells to idle cells ratio from the tx PCR */
1295 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297     }
1298     else {
1299 	/* disable rate control */
1300 	rate->data_cells = rate->idle_cells = 0;
1301     }
1302 }
1303 
1304 
1305 static int
1306 fore200e_open(struct atm_vcc *vcc)
1307 {
1308     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309     struct fore200e_vcc*    fore200e_vcc;
1310     struct fore200e_vc_map* vc_map;
1311     unsigned long	    flags;
1312     int			    vci = vcc->vci;
1313     short		    vpi = vcc->vpi;
1314 
1315     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317 
1318     spin_lock_irqsave(&fore200e->q_lock, flags);
1319 
1320     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321     if (vc_map->vcc) {
1322 
1323 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324 
1325 	printk(FORE200E "VC %d.%d.%d already in use\n",
1326 	       fore200e->atm_dev->number, vpi, vci);
1327 
1328 	return -EINVAL;
1329     }
1330 
1331     vc_map->vcc = vcc;
1332 
1333     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334 
1335     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336     if (fore200e_vcc == NULL) {
1337 	vc_map->vcc = NULL;
1338 	return -ENOMEM;
1339     }
1340 
1341     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348 
1349     /* pseudo-CBR bandwidth requested? */
1350     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351 
1352 	mutex_lock(&fore200e->rate_mtx);
1353 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354 	    mutex_unlock(&fore200e->rate_mtx);
1355 
1356 	    kfree(fore200e_vcc);
1357 	    vc_map->vcc = NULL;
1358 	    return -EAGAIN;
1359 	}
1360 
1361 	/* reserve bandwidth */
1362 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363 	mutex_unlock(&fore200e->rate_mtx);
1364     }
1365 
1366     vcc->itf = vcc->dev->number;
1367 
1368     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369     set_bit(ATM_VF_ADDR, &vcc->flags);
1370 
1371     vcc->dev_data = fore200e_vcc;
1372 
1373     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374 
1375 	vc_map->vcc = NULL;
1376 
1377 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379 
1380 	vcc->dev_data = NULL;
1381 
1382 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383 
1384 	kfree(fore200e_vcc);
1385 	return -EINVAL;
1386     }
1387 
1388     /* compute rate control parameters */
1389     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390 
1391 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393 
1394 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1397 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398     }
1399 
1400     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403 
1404     /* new incarnation of the vcc */
1405     vc_map->incarn = ++fore200e->incarn_count;
1406 
1407     /* VC unusable before this flag is set */
1408     set_bit(ATM_VF_READY, &vcc->flags);
1409 
1410     return 0;
1411 }
1412 
1413 
1414 static void
1415 fore200e_close(struct atm_vcc* vcc)
1416 {
1417     struct fore200e_vcc*    fore200e_vcc;
1418     struct fore200e*        fore200e;
1419     struct fore200e_vc_map* vc_map;
1420     unsigned long           flags;
1421 
1422     ASSERT(vcc);
1423     fore200e = FORE200E_DEV(vcc->dev);
1424 
1425     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427 
1428     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429 
1430     clear_bit(ATM_VF_READY, &vcc->flags);
1431 
1432     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433 
1434     spin_lock_irqsave(&fore200e->q_lock, flags);
1435 
1436     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437 
1438     /* the vc is no longer considered as "in use" by fore200e_open() */
1439     vc_map->vcc = NULL;
1440 
1441     vcc->itf = vcc->vci = vcc->vpi = 0;
1442 
1443     fore200e_vcc = FORE200E_VCC(vcc);
1444     vcc->dev_data = NULL;
1445 
1446     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447 
1448     /* release reserved bandwidth, if any */
1449     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450 
1451 	mutex_lock(&fore200e->rate_mtx);
1452 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453 	mutex_unlock(&fore200e->rate_mtx);
1454 
1455 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456     }
1457 
1458     clear_bit(ATM_VF_ADDR, &vcc->flags);
1459     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460 
1461     ASSERT(fore200e_vcc);
1462     kfree(fore200e_vcc);
1463 }
1464 
1465 
1466 static int
1467 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468 {
1469     struct fore200e*        fore200e;
1470     struct fore200e_vcc*    fore200e_vcc;
1471     struct fore200e_vc_map* vc_map;
1472     struct host_txq*        txq;
1473     struct host_txq_entry*  entry;
1474     struct tpd*             tpd;
1475     struct tpd_haddr        tpd_haddr;
1476     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477     int                     tx_copy      = 0;
1478     int                     tx_len       = skb->len;
1479     u32*                    cell_header  = NULL;
1480     unsigned char*          skb_data;
1481     int                     skb_len;
1482     unsigned char*          data;
1483     unsigned long           flags;
1484 
1485     if (!vcc)
1486         return -EINVAL;
1487 
1488     fore200e = FORE200E_DEV(vcc->dev);
1489     fore200e_vcc = FORE200E_VCC(vcc);
1490 
1491     if (!fore200e)
1492         return -EINVAL;
1493 
1494     txq = &fore200e->host_txq;
1495     if (!fore200e_vcc)
1496         return -EINVAL;
1497 
1498     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500 	dev_kfree_skb_any(skb);
1501 	return -EINVAL;
1502     }
1503 
1504 #ifdef FORE200E_52BYTE_AAL0_SDU
1505     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506 	cell_header = (u32*) skb->data;
1507 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508 	skb_len     = tx_len = skb->len  - 4;
1509 
1510 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511     }
1512     else
1513 #endif
1514     {
1515 	skb_data = skb->data;
1516 	skb_len  = skb->len;
1517     }
1518 
1519     if (((unsigned long)skb_data) & 0x3) {
1520 
1521 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522 	tx_copy = 1;
1523 	tx_len  = skb_len;
1524     }
1525 
1526     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527 
1528         /* this simply NUKES the PCA board */
1529 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530 	tx_copy = 1;
1531 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532     }
1533 
1534     if (tx_copy) {
1535 	data = kmalloc(tx_len, GFP_ATOMIC);
1536 	if (data == NULL) {
1537 	    if (vcc->pop) {
1538 		vcc->pop(vcc, skb);
1539 	    }
1540 	    else {
1541 		dev_kfree_skb_any(skb);
1542 	    }
1543 	    return -ENOMEM;
1544 	}
1545 
1546 	memcpy(data, skb_data, skb_len);
1547 	if (skb_len < tx_len)
1548 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1549     }
1550     else {
1551 	data = skb_data;
1552     }
1553 
1554     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555     ASSERT(vc_map->vcc == vcc);
1556 
1557   retry_here:
1558 
1559     spin_lock_irqsave(&fore200e->q_lock, flags);
1560 
1561     entry = &txq->host_entry[ txq->head ];
1562 
1563     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564 
1565 	/* try to free completed tx queue entries */
1566 	fore200e_tx_irq(fore200e);
1567 
1568 	if (*entry->status != STATUS_FREE) {
1569 
1570 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571 
1572 	    /* retry once again? */
1573 	    if (--retry > 0) {
1574 		udelay(50);
1575 		goto retry_here;
1576 	    }
1577 
1578 	    atomic_inc(&vcc->stats->tx_err);
1579 
1580 	    fore200e->tx_sat++;
1581 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582 		    fore200e->name, fore200e->cp_queues->heartbeat);
1583 	    if (vcc->pop) {
1584 		vcc->pop(vcc, skb);
1585 	    }
1586 	    else {
1587 		dev_kfree_skb_any(skb);
1588 	    }
1589 
1590 	    if (tx_copy)
1591 		kfree(data);
1592 
1593 	    return -ENOBUFS;
1594 	}
1595     }
1596 
1597     entry->incarn = vc_map->incarn;
1598     entry->vc_map = vc_map;
1599     entry->skb    = skb;
1600     entry->data   = tx_copy ? data : NULL;
1601 
1602     tpd = entry->tpd;
1603     tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604 					  DMA_TO_DEVICE);
1605     if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606 	if (tx_copy)
1607 	    kfree(data);
1608 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609 	return -ENOMEM;
1610     }
1611     tpd->tsd[ 0 ].length = tx_len;
1612 
1613     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614     txq->txing++;
1615 
1616     /* The dma_map call above implies a dma_sync so the device can use it,
1617      * thus no explicit dma_sync call is necessary here.
1618      */
1619 
1620     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1621 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622 	    tpd->tsd[0].length, skb_len);
1623 
1624     if (skb_len < fore200e_vcc->tx_min_pdu)
1625 	fore200e_vcc->tx_min_pdu = skb_len;
1626     if (skb_len > fore200e_vcc->tx_max_pdu)
1627 	fore200e_vcc->tx_max_pdu = skb_len;
1628     fore200e_vcc->tx_pdu++;
1629 
1630     /* set tx rate control information */
1631     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633 
1634     if (cell_header) {
1635 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640     }
1641     else {
1642 	/* set the ATM header, common to all cells conveying the PDU */
1643 	tpd->atm_header.clp = 0;
1644 	tpd->atm_header.plt = 0;
1645 	tpd->atm_header.vci = vcc->vci;
1646 	tpd->atm_header.vpi = vcc->vpi;
1647 	tpd->atm_header.gfc = 0;
1648     }
1649 
1650     tpd->spec.length = tx_len;
1651     tpd->spec.nseg   = 1;
1652     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653     tpd->spec.intr   = 1;
1654 
1655     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656     tpd_haddr.pad   = 0;
1657     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658 
1659     *entry->status = STATUS_PENDING;
1660     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661 
1662     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663 
1664     return 0;
1665 }
1666 
1667 
1668 static int
1669 fore200e_getstats(struct fore200e* fore200e)
1670 {
1671     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673     struct stats_opcode     opcode;
1674     int                     ok;
1675     u32                     stats_dma_addr;
1676 
1677     if (fore200e->stats == NULL) {
1678 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679 	if (fore200e->stats == NULL)
1680 	    return -ENOMEM;
1681     }
1682 
1683     stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684 				    sizeof(struct stats), DMA_FROM_DEVICE);
1685     if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686     	return -ENOMEM;
1687 
1688     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689 
1690     opcode.opcode = OPCODE_GET_STATS;
1691     opcode.pad    = 0;
1692 
1693     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694 
1695     *entry->status = STATUS_PENDING;
1696 
1697     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698 
1699     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700 
1701     *entry->status = STATUS_FREE;
1702 
1703     dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704 
1705     if (ok == 0) {
1706 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707 	return -EIO;
1708     }
1709 
1710     return 0;
1711 }
1712 
1713 #if 0 /* currently unused */
1714 static int
1715 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716 {
1717     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719     struct oc3_opcode       opcode;
1720     int                     ok;
1721     u32                     oc3_regs_dma_addr;
1722 
1723     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724 
1725     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726 
1727     opcode.opcode = OPCODE_GET_OC3;
1728     opcode.reg    = 0;
1729     opcode.value  = 0;
1730     opcode.mask   = 0;
1731 
1732     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733 
1734     *entry->status = STATUS_PENDING;
1735 
1736     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737 
1738     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739 
1740     *entry->status = STATUS_FREE;
1741 
1742     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743 
1744     if (ok == 0) {
1745 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746 	return -EIO;
1747     }
1748 
1749     return 0;
1750 }
1751 #endif
1752 
1753 
1754 static int
1755 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756 {
1757     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759     struct oc3_opcode       opcode;
1760     int                     ok;
1761 
1762     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763 
1764     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765 
1766     opcode.opcode = OPCODE_SET_OC3;
1767     opcode.reg    = reg;
1768     opcode.value  = value;
1769     opcode.mask   = mask;
1770 
1771     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772 
1773     *entry->status = STATUS_PENDING;
1774 
1775     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776 
1777     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778 
1779     *entry->status = STATUS_FREE;
1780 
1781     if (ok == 0) {
1782 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783 	return -EIO;
1784     }
1785 
1786     return 0;
1787 }
1788 
1789 
1790 static int
1791 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792 {
1793     u32 mct_value, mct_mask;
1794     int error;
1795 
1796     if (!capable(CAP_NET_ADMIN))
1797 	return -EPERM;
1798 
1799     switch (loop_mode) {
1800 
1801     case ATM_LM_NONE:
1802 	mct_value = 0;
1803 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804 	break;
1805 
1806     case ATM_LM_LOC_PHY:
1807 	mct_value = mct_mask = SUNI_MCT_DLE;
1808 	break;
1809 
1810     case ATM_LM_RMT_PHY:
1811 	mct_value = mct_mask = SUNI_MCT_LLE;
1812 	break;
1813 
1814     default:
1815 	return -EINVAL;
1816     }
1817 
1818     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819     if (error == 0)
1820 	fore200e->loop_mode = loop_mode;
1821 
1822     return error;
1823 }
1824 
1825 
1826 static int
1827 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828 {
1829     struct sonet_stats tmp;
1830 
1831     if (fore200e_getstats(fore200e) < 0)
1832 	return -EIO;
1833 
1834     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1847 
1848     if (arg)
1849 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1850 
1851     return 0;
1852 }
1853 
1854 
1855 static int
1856 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857 {
1858     struct fore200e* fore200e = FORE200E_DEV(dev);
1859 
1860     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861 
1862     switch (cmd) {
1863 
1864     case SONET_GETSTAT:
1865 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866 
1867     case SONET_GETDIAG:
1868 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869 
1870     case ATM_SETLOOP:
1871 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872 
1873     case ATM_GETLOOP:
1874 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875 
1876     case ATM_QUERYLOOP:
1877 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878     }
1879 
1880     return -ENOSYS; /* not implemented */
1881 }
1882 
1883 
1884 static int
1885 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886 {
1887     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889 
1890     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892 	return -EINVAL;
1893     }
1894 
1895     DPRINTK(2, "change_qos %d.%d.%d, "
1896 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898 	    "available_cell_rate = %u",
1899 	    vcc->itf, vcc->vpi, vcc->vci,
1900 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1901 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904 	    flags, fore200e->available_cell_rate);
1905 
1906     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907 
1908 	mutex_lock(&fore200e->rate_mtx);
1909 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910 	    mutex_unlock(&fore200e->rate_mtx);
1911 	    return -EAGAIN;
1912 	}
1913 
1914 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916 
1917 	mutex_unlock(&fore200e->rate_mtx);
1918 
1919 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920 
1921 	/* update rate control parameters */
1922 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923 
1924 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1925 
1926 	return 0;
1927     }
1928 
1929     return -EINVAL;
1930 }
1931 
1932 
1933 static int fore200e_irq_request(struct fore200e *fore200e)
1934 {
1935     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936 
1937 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939 	return -EBUSY;
1940     }
1941 
1942     printk(FORE200E "IRQ %s reserved for device %s\n",
1943 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944 
1945 #ifdef FORE200E_USE_TASKLET
1946     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948 #endif
1949 
1950     fore200e->state = FORE200E_STATE_IRQ;
1951     return 0;
1952 }
1953 
1954 
1955 static int fore200e_get_esi(struct fore200e *fore200e)
1956 {
1957     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958     int ok, i;
1959 
1960     if (!prom)
1961 	return -ENOMEM;
1962 
1963     ok = fore200e->bus->prom_read(fore200e, prom);
1964     if (ok < 0) {
1965 	kfree(prom);
1966 	return -EBUSY;
1967     }
1968 
1969     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970 	   fore200e->name,
1971 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973 
1974     for (i = 0; i < ESI_LEN; i++) {
1975 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976     }
1977 
1978     kfree(prom);
1979 
1980     return 0;
1981 }
1982 
1983 
1984 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985 {
1986     int scheme, magn, nbr, size, i;
1987 
1988     struct host_bsq* bsq;
1989     struct buffer*   buffer;
1990 
1991     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993 
1994 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995 
1996 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1998 
1999 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000 
2001 	    /* allocate the array of receive buffers */
2002 	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                            GFP_KERNEL);
2004 
2005 	    if (buffer == NULL)
2006 		return -ENOMEM;
2007 
2008 	    bsq->freebuf = NULL;
2009 
2010 	    for (i = 0; i < nbr; i++) {
2011 
2012 		buffer[ i ].scheme = scheme;
2013 		buffer[ i ].magn   = magn;
2014 #ifdef FORE200E_BSQ_DEBUG
2015 		buffer[ i ].index  = i;
2016 		buffer[ i ].supplied = 0;
2017 #endif
2018 
2019 		/* allocate the receive buffer body */
2020 		if (fore200e_chunk_alloc(fore200e,
2021 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022 					 DMA_FROM_DEVICE) < 0) {
2023 
2024 		    while (i > 0)
2025 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026 		    kfree(buffer);
2027 
2028 		    return -ENOMEM;
2029 		}
2030 
2031 		/* insert the buffer into the free buffer list */
2032 		buffer[ i ].next = bsq->freebuf;
2033 		bsq->freebuf = &buffer[ i ];
2034 	    }
2035 	    /* all the buffers are free, initially */
2036 	    bsq->freebuf_count = nbr;
2037 
2038 #ifdef FORE200E_BSQ_DEBUG
2039 	    bsq_audit(3, bsq, scheme, magn);
2040 #endif
2041 	}
2042     }
2043 
2044     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045     return 0;
2046 }
2047 
2048 
2049 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050 {
2051     int scheme, magn, i;
2052 
2053     struct host_bsq*     bsq;
2054     struct cp_bsq_entry __iomem * cp_entry;
2055 
2056     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058 
2059 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060 
2061 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062 
2063 	    /* allocate and align the array of status words */
2064 	    if (fore200e_dma_chunk_alloc(fore200e,
2065 					       &bsq->status,
2066 					       sizeof(enum status),
2067 					       QUEUE_SIZE_BS,
2068 					       fore200e->bus->status_alignment) < 0) {
2069 		return -ENOMEM;
2070 	    }
2071 
2072 	    /* allocate and align the array of receive buffer descriptors */
2073 	    if (fore200e_dma_chunk_alloc(fore200e,
2074 					       &bsq->rbd_block,
2075 					       sizeof(struct rbd_block),
2076 					       QUEUE_SIZE_BS,
2077 					       fore200e->bus->descr_alignment) < 0) {
2078 
2079 		fore200e_dma_chunk_free(fore200e, &bsq->status);
2080 		return -ENOMEM;
2081 	    }
2082 
2083 	    /* get the base address of the cp resident buffer supply queue entries */
2084 	    cp_entry = fore200e->virt_base +
2085 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086 
2087 	    /* fill the host resident and cp resident buffer supply queue entries */
2088 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089 
2090 		bsq->host_entry[ i ].status =
2091 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092 	        bsq->host_entry[ i ].rbd_block =
2093 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094 		bsq->host_entry[ i ].rbd_block_dma =
2095 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097 
2098 		*bsq->host_entry[ i ].status = STATUS_FREE;
2099 
2100 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2101 				     &cp_entry[ i ].status_haddr);
2102 	    }
2103 	}
2104     }
2105 
2106     fore200e->state = FORE200E_STATE_INIT_BSQ;
2107     return 0;
2108 }
2109 
2110 
2111 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112 {
2113     struct host_rxq*     rxq =  &fore200e->host_rxq;
2114     struct cp_rxq_entry __iomem * cp_entry;
2115     int i;
2116 
2117     DPRINTK(2, "receive queue is being initialized\n");
2118 
2119     /* allocate and align the array of status words */
2120     if (fore200e_dma_chunk_alloc(fore200e,
2121 				       &rxq->status,
2122 				       sizeof(enum status),
2123 				       QUEUE_SIZE_RX,
2124 				       fore200e->bus->status_alignment) < 0) {
2125 	return -ENOMEM;
2126     }
2127 
2128     /* allocate and align the array of receive PDU descriptors */
2129     if (fore200e_dma_chunk_alloc(fore200e,
2130 				       &rxq->rpd,
2131 				       sizeof(struct rpd),
2132 				       QUEUE_SIZE_RX,
2133 				       fore200e->bus->descr_alignment) < 0) {
2134 
2135 	fore200e_dma_chunk_free(fore200e, &rxq->status);
2136 	return -ENOMEM;
2137     }
2138 
2139     /* get the base address of the cp resident rx queue entries */
2140     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141 
2142     /* fill the host resident and cp resident rx entries */
2143     for (i=0; i < QUEUE_SIZE_RX; i++) {
2144 
2145 	rxq->host_entry[ i ].status =
2146 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147 	rxq->host_entry[ i ].rpd =
2148 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149 	rxq->host_entry[ i ].rpd_dma =
2150 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152 
2153 	*rxq->host_entry[ i ].status = STATUS_FREE;
2154 
2155 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2156 			     &cp_entry[ i ].status_haddr);
2157 
2158 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159 			     &cp_entry[ i ].rpd_haddr);
2160     }
2161 
2162     /* set the head entry of the queue */
2163     rxq->head = 0;
2164 
2165     fore200e->state = FORE200E_STATE_INIT_RXQ;
2166     return 0;
2167 }
2168 
2169 
2170 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171 {
2172     struct host_txq*     txq =  &fore200e->host_txq;
2173     struct cp_txq_entry __iomem * cp_entry;
2174     int i;
2175 
2176     DPRINTK(2, "transmit queue is being initialized\n");
2177 
2178     /* allocate and align the array of status words */
2179     if (fore200e_dma_chunk_alloc(fore200e,
2180 				       &txq->status,
2181 				       sizeof(enum status),
2182 				       QUEUE_SIZE_TX,
2183 				       fore200e->bus->status_alignment) < 0) {
2184 	return -ENOMEM;
2185     }
2186 
2187     /* allocate and align the array of transmit PDU descriptors */
2188     if (fore200e_dma_chunk_alloc(fore200e,
2189 				       &txq->tpd,
2190 				       sizeof(struct tpd),
2191 				       QUEUE_SIZE_TX,
2192 				       fore200e->bus->descr_alignment) < 0) {
2193 
2194 	fore200e_dma_chunk_free(fore200e, &txq->status);
2195 	return -ENOMEM;
2196     }
2197 
2198     /* get the base address of the cp resident tx queue entries */
2199     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200 
2201     /* fill the host resident and cp resident tx entries */
2202     for (i=0; i < QUEUE_SIZE_TX; i++) {
2203 
2204 	txq->host_entry[ i ].status =
2205 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206 	txq->host_entry[ i ].tpd =
2207 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208 	txq->host_entry[ i ].tpd_dma  =
2209                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211 
2212 	*txq->host_entry[ i ].status = STATUS_FREE;
2213 
2214 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2215 			     &cp_entry[ i ].status_haddr);
2216 
2217         /* although there is a one-to-one mapping of tx queue entries and tpds,
2218 	   we do not write here the DMA (physical) base address of each tpd into
2219 	   the related cp resident entry, because the cp relies on this write
2220 	   operation to detect that a new pdu has been submitted for tx */
2221     }
2222 
2223     /* set the head and tail entries of the queue */
2224     txq->head = 0;
2225     txq->tail = 0;
2226 
2227     fore200e->state = FORE200E_STATE_INIT_TXQ;
2228     return 0;
2229 }
2230 
2231 
2232 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233 {
2234     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235     struct cp_cmdq_entry __iomem * cp_entry;
2236     int i;
2237 
2238     DPRINTK(2, "command queue is being initialized\n");
2239 
2240     /* allocate and align the array of status words */
2241     if (fore200e_dma_chunk_alloc(fore200e,
2242 				       &cmdq->status,
2243 				       sizeof(enum status),
2244 				       QUEUE_SIZE_CMD,
2245 				       fore200e->bus->status_alignment) < 0) {
2246 	return -ENOMEM;
2247     }
2248 
2249     /* get the base address of the cp resident cmd queue entries */
2250     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251 
2252     /* fill the host resident and cp resident cmd entries */
2253     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254 
2255 	cmdq->host_entry[ i ].status   =
2256                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258 
2259 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2260 
2261 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2262                              &cp_entry[ i ].status_haddr);
2263     }
2264 
2265     /* set the head entry of the queue */
2266     cmdq->head = 0;
2267 
2268     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269     return 0;
2270 }
2271 
2272 
2273 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274 				    enum buffer_scheme scheme,
2275 				    enum buffer_magn magn, int queue_length,
2276 				    int pool_size, int supply_blksize)
2277 {
2278     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279 
2280     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284 }
2285 
2286 
2287 static int fore200e_initialize(struct fore200e *fore200e)
2288 {
2289     struct cp_queues __iomem * cpq;
2290     int               ok, scheme, magn;
2291 
2292     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293 
2294     mutex_init(&fore200e->rate_mtx);
2295     spin_lock_init(&fore200e->q_lock);
2296 
2297     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298 
2299     /* enable cp to host interrupts */
2300     fore200e->bus->write(1, &cpq->imask);
2301 
2302     if (fore200e->bus->irq_enable)
2303 	fore200e->bus->irq_enable(fore200e);
2304 
2305     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306 
2307     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310 
2311     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313 
2314     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2317 				    QUEUE_SIZE_BS,
2318 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319 				    RBD_BLK_SIZE);
2320 
2321     /* issue the initialize command */
2322     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324 
2325     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326     if (ok == 0) {
2327 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328 	return -ENODEV;
2329     }
2330 
2331     printk(FORE200E "device %s initialized\n", fore200e->name);
2332 
2333     fore200e->state = FORE200E_STATE_INITIALIZE;
2334     return 0;
2335 }
2336 
2337 
2338 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339 {
2340     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341 
2342 #if 0
2343     printk("%c", c);
2344 #endif
2345     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346 }
2347 
2348 
2349 static int fore200e_monitor_getc(struct fore200e *fore200e)
2350 {
2351     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353     int                c;
2354 
2355     while (time_before(jiffies, timeout)) {
2356 
2357 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358 
2359 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360 
2361 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362 #if 0
2363 	    printk("%c", c & 0xFF);
2364 #endif
2365 	    return c & 0xFF;
2366 	}
2367     }
2368 
2369     return -1;
2370 }
2371 
2372 
2373 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374 {
2375     while (*str) {
2376 
2377 	/* the i960 monitor doesn't accept any new character if it has something to say */
2378 	while (fore200e_monitor_getc(fore200e) >= 0);
2379 
2380 	fore200e_monitor_putc(fore200e, *str++);
2381     }
2382 
2383     while (fore200e_monitor_getc(fore200e) >= 0);
2384 }
2385 
2386 #ifdef __LITTLE_ENDIAN
2387 #define FW_EXT ".bin"
2388 #else
2389 #define FW_EXT "_ecd.bin2"
2390 #endif
2391 
2392 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393 {
2394     const struct firmware *firmware;
2395     const struct fw_header *fw_header;
2396     const __le32 *fw_data;
2397     u32 fw_size;
2398     u32 __iomem *load_addr;
2399     char buf[48];
2400     int err;
2401 
2402     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403     if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405 	return err;
2406     }
2407 
2408     fw_data = (const __le32 *)firmware->data;
2409     fw_size = firmware->size / sizeof(u32);
2410     fw_header = (const struct fw_header *)firmware->data;
2411     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412 
2413     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414 	    fore200e->name, load_addr, fw_size);
2415 
2416     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418 	goto release;
2419     }
2420 
2421     for (; fw_size--; fw_data++, load_addr++)
2422 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423 
2424     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425 
2426 #if defined(__sparc_v9__)
2427     /* reported to be required by SBA cards on some sparc64 hosts */
2428     fore200e_spin(100);
2429 #endif
2430 
2431     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432     fore200e_monitor_puts(fore200e, buf);
2433 
2434     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436 	goto release;
2437     }
2438 
2439     printk(FORE200E "device %s firmware started\n", fore200e->name);
2440 
2441     fore200e->state = FORE200E_STATE_START_FW;
2442     err = 0;
2443 
2444 release:
2445     release_firmware(firmware);
2446     return err;
2447 }
2448 
2449 
2450 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451 {
2452     struct atm_dev* atm_dev;
2453 
2454     DPRINTK(2, "device %s being registered\n", fore200e->name);
2455 
2456     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                                -1, NULL);
2458     if (atm_dev == NULL) {
2459 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2460 	return -ENODEV;
2461     }
2462 
2463     atm_dev->dev_data = fore200e;
2464     fore200e->atm_dev = atm_dev;
2465 
2466     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468 
2469     fore200e->available_cell_rate = ATM_OC3_PCR;
2470 
2471     fore200e->state = FORE200E_STATE_REGISTER;
2472     return 0;
2473 }
2474 
2475 
2476 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477 {
2478     if (fore200e_register(fore200e, parent) < 0)
2479 	return -ENODEV;
2480 
2481     if (fore200e->bus->configure(fore200e) < 0)
2482 	return -ENODEV;
2483 
2484     if (fore200e->bus->map(fore200e) < 0)
2485 	return -ENODEV;
2486 
2487     if (fore200e_reset(fore200e, 1) < 0)
2488 	return -ENODEV;
2489 
2490     if (fore200e_load_and_start_fw(fore200e) < 0)
2491 	return -ENODEV;
2492 
2493     if (fore200e_initialize(fore200e) < 0)
2494 	return -ENODEV;
2495 
2496     if (fore200e_init_cmd_queue(fore200e) < 0)
2497 	return -ENOMEM;
2498 
2499     if (fore200e_init_tx_queue(fore200e) < 0)
2500 	return -ENOMEM;
2501 
2502     if (fore200e_init_rx_queue(fore200e) < 0)
2503 	return -ENOMEM;
2504 
2505     if (fore200e_init_bs_queue(fore200e) < 0)
2506 	return -ENOMEM;
2507 
2508     if (fore200e_alloc_rx_buf(fore200e) < 0)
2509 	return -ENOMEM;
2510 
2511     if (fore200e_get_esi(fore200e) < 0)
2512 	return -EIO;
2513 
2514     if (fore200e_irq_request(fore200e) < 0)
2515 	return -EBUSY;
2516 
2517     fore200e_supply(fore200e);
2518 
2519     /* all done, board initialization is now complete */
2520     fore200e->state = FORE200E_STATE_COMPLETE;
2521     return 0;
2522 }
2523 
2524 #ifdef CONFIG_SBUS
2525 static const struct of_device_id fore200e_sba_match[];
2526 static int fore200e_sba_probe(struct platform_device *op)
2527 {
2528 	const struct of_device_id *match;
2529 	struct fore200e *fore200e;
2530 	static int index = 0;
2531 	int err;
2532 
2533 	match = of_match_device(fore200e_sba_match, &op->dev);
2534 	if (!match)
2535 		return -EINVAL;
2536 
2537 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538 	if (!fore200e)
2539 		return -ENOMEM;
2540 
2541 	fore200e->bus = &fore200e_sbus_ops;
2542 	fore200e->dev = &op->dev;
2543 	fore200e->irq = op->archdata.irqs[0];
2544 	fore200e->phys_base = op->resource[0].start;
2545 
2546 	sprintf(fore200e->name, "SBA-200E-%d", index);
2547 
2548 	err = fore200e_init(fore200e, &op->dev);
2549 	if (err < 0) {
2550 		fore200e_shutdown(fore200e);
2551 		kfree(fore200e);
2552 		return err;
2553 	}
2554 
2555 	index++;
2556 	dev_set_drvdata(&op->dev, fore200e);
2557 
2558 	return 0;
2559 }
2560 
2561 static int fore200e_sba_remove(struct platform_device *op)
2562 {
2563 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564 
2565 	fore200e_shutdown(fore200e);
2566 	kfree(fore200e);
2567 
2568 	return 0;
2569 }
2570 
2571 static const struct of_device_id fore200e_sba_match[] = {
2572 	{
2573 		.name = SBA200E_PROM_NAME,
2574 	},
2575 	{},
2576 };
2577 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578 
2579 static struct platform_driver fore200e_sba_driver = {
2580 	.driver = {
2581 		.name = "fore_200e",
2582 		.of_match_table = fore200e_sba_match,
2583 	},
2584 	.probe		= fore200e_sba_probe,
2585 	.remove		= fore200e_sba_remove,
2586 };
2587 #endif
2588 
2589 #ifdef CONFIG_PCI
2590 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591 			       const struct pci_device_id *pci_ent)
2592 {
2593     struct fore200e* fore200e;
2594     int err = 0;
2595     static int index = 0;
2596 
2597     if (pci_enable_device(pci_dev)) {
2598 	err = -EINVAL;
2599 	goto out;
2600     }
2601 
2602     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603 	err = -EINVAL;
2604 	goto out;
2605     }
2606 
2607     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608     if (fore200e == NULL) {
2609 	err = -ENOMEM;
2610 	goto out_disable;
2611     }
2612 
2613     fore200e->bus       = &fore200e_pci_ops;
2614     fore200e->dev	= &pci_dev->dev;
2615     fore200e->irq       = pci_dev->irq;
2616     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617 
2618     sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619 
2620     pci_set_master(pci_dev);
2621 
2622     printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624 
2625     sprintf(fore200e->name, "PCA-200E-%d", index);
2626 
2627     err = fore200e_init(fore200e, &pci_dev->dev);
2628     if (err < 0) {
2629 	fore200e_shutdown(fore200e);
2630 	goto out_free;
2631     }
2632 
2633     ++index;
2634     pci_set_drvdata(pci_dev, fore200e);
2635 
2636 out:
2637     return err;
2638 
2639 out_free:
2640     kfree(fore200e);
2641 out_disable:
2642     pci_disable_device(pci_dev);
2643     goto out;
2644 }
2645 
2646 
2647 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648 {
2649     struct fore200e *fore200e;
2650 
2651     fore200e = pci_get_drvdata(pci_dev);
2652 
2653     fore200e_shutdown(fore200e);
2654     kfree(fore200e);
2655     pci_disable_device(pci_dev);
2656 }
2657 
2658 
2659 static const struct pci_device_id fore200e_pca_tbl[] = {
2660     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661     { 0, }
2662 };
2663 
2664 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665 
2666 static struct pci_driver fore200e_pca_driver = {
2667     .name =     "fore_200e",
2668     .probe =    fore200e_pca_detect,
2669     .remove =   fore200e_pca_remove_one,
2670     .id_table = fore200e_pca_tbl,
2671 };
2672 #endif
2673 
2674 static int __init fore200e_module_init(void)
2675 {
2676 	int err = 0;
2677 
2678 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679 
2680 #ifdef CONFIG_SBUS
2681 	err = platform_driver_register(&fore200e_sba_driver);
2682 	if (err)
2683 		return err;
2684 #endif
2685 
2686 #ifdef CONFIG_PCI
2687 	err = pci_register_driver(&fore200e_pca_driver);
2688 #endif
2689 
2690 #ifdef CONFIG_SBUS
2691 	if (err)
2692 		platform_driver_unregister(&fore200e_sba_driver);
2693 #endif
2694 
2695 	return err;
2696 }
2697 
2698 static void __exit fore200e_module_cleanup(void)
2699 {
2700 #ifdef CONFIG_PCI
2701 	pci_unregister_driver(&fore200e_pca_driver);
2702 #endif
2703 #ifdef CONFIG_SBUS
2704 	platform_driver_unregister(&fore200e_sba_driver);
2705 #endif
2706 }
2707 
2708 static int
2709 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710 {
2711     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712     struct fore200e_vcc* fore200e_vcc;
2713     struct atm_vcc*      vcc;
2714     int                  i, len, left = *pos;
2715     unsigned long        flags;
2716 
2717     if (!left--) {
2718 
2719 	if (fore200e_getstats(fore200e) < 0)
2720 	    return -EIO;
2721 
2722 	len = sprintf(page,"\n"
2723 		       " device:\n"
2724 		       "   internal name:\t\t%s\n", fore200e->name);
2725 
2726 	/* print bus-specific information */
2727 	if (fore200e->bus->proc_read)
2728 	    len += fore200e->bus->proc_read(fore200e, page + len);
2729 
2730 	len += sprintf(page + len,
2731 		"   interrupt line:\t\t%s\n"
2732 		"   physical base address:\t0x%p\n"
2733 		"   virtual base address:\t0x%p\n"
2734 		"   factory address (ESI):\t%pM\n"
2735 		"   board serial number:\t\t%d\n\n",
2736 		fore200e_irq_itoa(fore200e->irq),
2737 		(void*)fore200e->phys_base,
2738 		fore200e->virt_base,
2739 		fore200e->esi,
2740 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2741 
2742 	return len;
2743     }
2744 
2745     if (!left--)
2746 	return sprintf(page,
2747 		       "   free small bufs, scheme 1:\t%d\n"
2748 		       "   free large bufs, scheme 1:\t%d\n"
2749 		       "   free small bufs, scheme 2:\t%d\n"
2750 		       "   free large bufs, scheme 2:\t%d\n",
2751 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755 
2756     if (!left--) {
2757 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758 
2759 	len = sprintf(page,"\n\n"
2760 		      " cell processor:\n"
2761 		      "   heartbeat state:\t\t");
2762 
2763 	if (hb >> 16 != 0xDEAD)
2764 	    len += sprintf(page + len, "0x%08x\n", hb);
2765 	else
2766 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767 
2768 	return len;
2769     }
2770 
2771     if (!left--) {
2772 	static const char* media_name[] = {
2773 	    "unshielded twisted pair",
2774 	    "multimode optical fiber ST",
2775 	    "multimode optical fiber SC",
2776 	    "single-mode optical fiber ST",
2777 	    "single-mode optical fiber SC",
2778 	    "unknown"
2779 	};
2780 
2781 	static const char* oc3_mode[] = {
2782 	    "normal operation",
2783 	    "diagnostic loopback",
2784 	    "line loopback",
2785 	    "unknown"
2786 	};
2787 
2788 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792 	u32 oc3_index;
2793 
2794 	if (media_index > 4)
2795 		media_index = 5;
2796 
2797 	switch (fore200e->loop_mode) {
2798 	    case ATM_LM_NONE:    oc3_index = 0;
2799 		                 break;
2800 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2801 		                 break;
2802 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2803 		                 break;
2804 	    default:             oc3_index = 3;
2805 	}
2806 
2807 	return sprintf(page,
2808 		       "   firmware release:\t\t%d.%d.%d\n"
2809 		       "   monitor release:\t\t%d.%d\n"
2810 		       "   media type:\t\t\t%s\n"
2811 		       "   OC-3 revision:\t\t0x%x\n"
2812                        "   OC-3 mode:\t\t\t%s",
2813 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814 		       mon960_release >> 16, mon960_release << 16 >> 16,
2815 		       media_name[ media_index ],
2816 		       oc3_revision,
2817 		       oc3_mode[ oc3_index ]);
2818     }
2819 
2820     if (!left--) {
2821 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822 
2823 	return sprintf(page,
2824 		       "\n\n"
2825 		       " monitor:\n"
2826 		       "   version number:\t\t%d\n"
2827 		       "   boot status word:\t\t0x%08x\n",
2828 		       fore200e->bus->read(&cp_monitor->mon_version),
2829 		       fore200e->bus->read(&cp_monitor->bstat));
2830     }
2831 
2832     if (!left--)
2833 	return sprintf(page,
2834 		       "\n"
2835 		       " device statistics:\n"
2836 		       "  4b5b:\n"
2837 		       "     crc_header_errors:\t\t%10u\n"
2838 		       "     framing_errors:\t\t%10u\n",
2839 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841 
2842     if (!left--)
2843 	return sprintf(page, "\n"
2844 		       "  OC-3:\n"
2845 		       "     section_bip8_errors:\t%10u\n"
2846 		       "     path_bip8_errors:\t\t%10u\n"
2847 		       "     line_bip24_errors:\t\t%10u\n"
2848 		       "     line_febe_errors:\t\t%10u\n"
2849 		       "     path_febe_errors:\t\t%10u\n"
2850 		       "     corr_hcs_errors:\t\t%10u\n"
2851 		       "     ucorr_hcs_errors:\t\t%10u\n",
2852 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859 
2860     if (!left--)
2861 	return sprintf(page,"\n"
2862 		       "   ATM:\t\t\t\t     cells\n"
2863 		       "     TX:\t\t\t%10u\n"
2864 		       "     RX:\t\t\t%10u\n"
2865 		       "     vpi out of range:\t\t%10u\n"
2866 		       "     vpi no conn:\t\t%10u\n"
2867 		       "     vci out of range:\t\t%10u\n"
2868 		       "     vci no conn:\t\t%10u\n",
2869 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2871 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875 
2876     if (!left--)
2877 	return sprintf(page,"\n"
2878 		       "   AAL0:\t\t\t     cells\n"
2879 		       "     TX:\t\t\t%10u\n"
2880 		       "     RX:\t\t\t%10u\n"
2881 		       "     dropped:\t\t\t%10u\n",
2882 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885 
2886     if (!left--)
2887 	return sprintf(page,"\n"
2888 		       "   AAL3/4:\n"
2889 		       "     SAR sublayer:\t\t     cells\n"
2890 		       "       TX:\t\t\t%10u\n"
2891 		       "       RX:\t\t\t%10u\n"
2892 		       "       dropped:\t\t\t%10u\n"
2893 		       "       CRC errors:\t\t%10u\n"
2894 		       "       protocol errors:\t\t%10u\n\n"
2895 		       "     CS  sublayer:\t\t      PDUs\n"
2896 		       "       TX:\t\t\t%10u\n"
2897 		       "       RX:\t\t\t%10u\n"
2898 		       "       dropped:\t\t\t%10u\n"
2899 		       "       protocol errors:\t\t%10u\n",
2900 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909 
2910     if (!left--)
2911 	return sprintf(page,"\n"
2912 		       "   AAL5:\n"
2913 		       "     SAR sublayer:\t\t     cells\n"
2914 		       "       TX:\t\t\t%10u\n"
2915 		       "       RX:\t\t\t%10u\n"
2916 		       "       dropped:\t\t\t%10u\n"
2917 		       "       congestions:\t\t%10u\n\n"
2918 		       "     CS  sublayer:\t\t      PDUs\n"
2919 		       "       TX:\t\t\t%10u\n"
2920 		       "       RX:\t\t\t%10u\n"
2921 		       "       dropped:\t\t\t%10u\n"
2922 		       "       CRC errors:\t\t%10u\n"
2923 		       "       protocol errors:\t\t%10u\n",
2924 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933 
2934     if (!left--)
2935 	return sprintf(page,"\n"
2936 		       "   AUX:\t\t       allocation failures\n"
2937 		       "     small b1:\t\t\t%10u\n"
2938 		       "     large b1:\t\t\t%10u\n"
2939 		       "     small b2:\t\t\t%10u\n"
2940 		       "     large b2:\t\t\t%10u\n"
2941 		       "     RX PDUs:\t\t\t%10u\n"
2942 		       "     TX PDUs:\t\t\t%10lu\n",
2943 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948 		       fore200e->tx_sat);
2949 
2950     if (!left--)
2951 	return sprintf(page,"\n"
2952 		       " receive carrier:\t\t\t%s\n",
2953 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954 
2955     if (!left--) {
2956         return sprintf(page,"\n"
2957 		       " VCCs:\n  address   VPI VCI   AAL "
2958 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959     }
2960 
2961     for (i = 0; i < NBR_CONNECT; i++) {
2962 
2963 	vcc = fore200e->vc_map[i].vcc;
2964 
2965 	if (vcc == NULL)
2966 	    continue;
2967 
2968 	spin_lock_irqsave(&fore200e->q_lock, flags);
2969 
2970 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971 
2972 	    fore200e_vcc = FORE200E_VCC(vcc);
2973 	    ASSERT(fore200e_vcc);
2974 
2975 	    len = sprintf(page,
2976 			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977 			  vcc,
2978 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979 			  fore200e_vcc->tx_pdu,
2980 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981 			  fore200e_vcc->tx_max_pdu,
2982 			  fore200e_vcc->rx_pdu,
2983 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984 			  fore200e_vcc->rx_max_pdu);
2985 
2986 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987 	    return len;
2988 	}
2989 
2990 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991     }
2992 
2993     return 0;
2994 }
2995 
2996 module_init(fore200e_module_init);
2997 module_exit(fore200e_module_cleanup);
2998 
2999 
3000 static const struct atmdev_ops fore200e_ops = {
3001 	.open       = fore200e_open,
3002 	.close      = fore200e_close,
3003 	.ioctl      = fore200e_ioctl,
3004 	.send       = fore200e_send,
3005 	.change_qos = fore200e_change_qos,
3006 	.proc_read  = fore200e_proc_read,
3007 	.owner      = THIS_MODULE
3008 };
3009 
3010 MODULE_LICENSE("GPL");
3011 #ifdef CONFIG_PCI
3012 #ifdef __LITTLE_ENDIAN__
3013 MODULE_FIRMWARE("pca200e.bin");
3014 #else
3015 MODULE_FIRMWARE("pca200e_ecd.bin2");
3016 #endif
3017 #endif /* CONFIG_PCI */
3018 #ifdef CONFIG_SBUS
3019 MODULE_FIRMWARE("sba200e_ecd.bin2");
3020 #endif
3021