1 /* 2 A FORE Systems 200E-series driver for ATM on Linux. 3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. 4 5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). 6 7 This driver simultaneously supports PCA-200E and SBA-200E adapters 8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/capability.h> 30 #include <linux/interrupt.h> 31 #include <linux/bitops.h> 32 #include <linux/pci.h> 33 #include <linux/module.h> 34 #include <linux/atmdev.h> 35 #include <linux/sonet.h> 36 #include <linux/atm_suni.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/delay.h> 39 #include <linux/firmware.h> 40 #include <asm/io.h> 41 #include <asm/string.h> 42 #include <asm/page.h> 43 #include <asm/irq.h> 44 #include <asm/dma.h> 45 #include <asm/byteorder.h> 46 #include <asm/uaccess.h> 47 #include <linux/atomic.h> 48 49 #ifdef CONFIG_SBUS 50 #include <linux/of.h> 51 #include <linux/of_device.h> 52 #include <asm/idprom.h> 53 #include <asm/openprom.h> 54 #include <asm/oplib.h> 55 #include <asm/pgtable.h> 56 #endif 57 58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ 59 #define FORE200E_USE_TASKLET 60 #endif 61 62 #if 0 /* enable the debugging code of the buffer supply queues */ 63 #define FORE200E_BSQ_DEBUG 64 #endif 65 66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ 67 #define FORE200E_52BYTE_AAL0_SDU 68 #endif 69 70 #include "fore200e.h" 71 #include "suni.h" 72 73 #define FORE200E_VERSION "0.3e" 74 75 #define FORE200E "fore200e: " 76 77 #if 0 /* override .config */ 78 #define CONFIG_ATM_FORE200E_DEBUG 1 79 #endif 80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 81 #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ 82 printk(FORE200E format, ##args); } while (0) 83 #else 84 #define DPRINTK(level, format, args...) do {} while (0) 85 #endif 86 87 88 #define FORE200E_ALIGN(addr, alignment) \ 89 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) 90 91 #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) 92 93 #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) 94 95 #define FORE200E_NEXT_ENTRY(index, modulo) (index = ((index) + 1) % (modulo)) 96 97 #if 1 98 #define ASSERT(expr) if (!(expr)) { \ 99 printk(FORE200E "assertion failed! %s[%d]: %s\n", \ 100 __func__, __LINE__, #expr); \ 101 panic(FORE200E "%s", __func__); \ 102 } 103 #else 104 #define ASSERT(expr) do {} while (0) 105 #endif 106 107 108 static const struct atmdev_ops fore200e_ops; 109 static const struct fore200e_bus fore200e_bus[]; 110 111 static LIST_HEAD(fore200e_boards); 112 113 114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); 115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); 116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); 117 118 119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 120 { BUFFER_S1_NBR, BUFFER_L1_NBR }, 121 { BUFFER_S2_NBR, BUFFER_L2_NBR } 122 }; 123 124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { 125 { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, 126 { BUFFER_S2_SIZE, BUFFER_L2_SIZE } 127 }; 128 129 130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) 131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; 132 #endif 133 134 135 #if 0 /* currently unused */ 136 static int 137 fore200e_fore2atm_aal(enum fore200e_aal aal) 138 { 139 switch(aal) { 140 case FORE200E_AAL0: return ATM_AAL0; 141 case FORE200E_AAL34: return ATM_AAL34; 142 case FORE200E_AAL5: return ATM_AAL5; 143 } 144 145 return -EINVAL; 146 } 147 #endif 148 149 150 static enum fore200e_aal 151 fore200e_atm2fore_aal(int aal) 152 { 153 switch(aal) { 154 case ATM_AAL0: return FORE200E_AAL0; 155 case ATM_AAL34: return FORE200E_AAL34; 156 case ATM_AAL1: 157 case ATM_AAL2: 158 case ATM_AAL5: return FORE200E_AAL5; 159 } 160 161 return -EINVAL; 162 } 163 164 165 static char* 166 fore200e_irq_itoa(int irq) 167 { 168 static char str[8]; 169 sprintf(str, "%d", irq); 170 return str; 171 } 172 173 174 /* allocate and align a chunk of memory intended to hold the data behing exchanged 175 between the driver and the adapter (using streaming DVMA) */ 176 177 static int 178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) 179 { 180 unsigned long offset = 0; 181 182 if (alignment <= sizeof(int)) 183 alignment = 0; 184 185 chunk->alloc_size = size + alignment; 186 chunk->align_size = size; 187 chunk->direction = direction; 188 189 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA); 190 if (chunk->alloc_addr == NULL) 191 return -ENOMEM; 192 193 if (alignment > 0) 194 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 195 196 chunk->align_addr = chunk->alloc_addr + offset; 197 198 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction); 199 200 return 0; 201 } 202 203 204 /* free a chunk of memory */ 205 206 static void 207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 208 { 209 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction); 210 211 kfree(chunk->alloc_addr); 212 } 213 214 215 static void 216 fore200e_spin(int msecs) 217 { 218 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 219 while (time_before(jiffies, timeout)); 220 } 221 222 223 static int 224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) 225 { 226 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 227 int ok; 228 229 mb(); 230 do { 231 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) 232 break; 233 234 } while (time_before(jiffies, timeout)); 235 236 #if 1 237 if (!ok) { 238 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", 239 *addr, val); 240 } 241 #endif 242 243 return ok; 244 } 245 246 247 static int 248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) 249 { 250 unsigned long timeout = jiffies + msecs_to_jiffies(msecs); 251 int ok; 252 253 do { 254 if ((ok = (fore200e->bus->read(addr) == val))) 255 break; 256 257 } while (time_before(jiffies, timeout)); 258 259 #if 1 260 if (!ok) { 261 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", 262 fore200e->bus->read(addr), val); 263 } 264 #endif 265 266 return ok; 267 } 268 269 270 static void 271 fore200e_free_rx_buf(struct fore200e* fore200e) 272 { 273 int scheme, magn, nbr; 274 struct buffer* buffer; 275 276 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 277 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 278 279 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { 280 281 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { 282 283 struct chunk* data = &buffer[ nbr ].data; 284 285 if (data->alloc_addr != NULL) 286 fore200e_chunk_free(fore200e, data); 287 } 288 } 289 } 290 } 291 } 292 293 294 static void 295 fore200e_uninit_bs_queue(struct fore200e* fore200e) 296 { 297 int scheme, magn; 298 299 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 300 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 301 302 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; 303 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; 304 305 if (status->alloc_addr) 306 fore200e->bus->dma_chunk_free(fore200e, status); 307 308 if (rbd_block->alloc_addr) 309 fore200e->bus->dma_chunk_free(fore200e, rbd_block); 310 } 311 } 312 } 313 314 315 static int 316 fore200e_reset(struct fore200e* fore200e, int diag) 317 { 318 int ok; 319 320 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; 321 322 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); 323 324 fore200e->bus->reset(fore200e); 325 326 if (diag) { 327 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); 328 if (ok == 0) { 329 330 printk(FORE200E "device %s self-test failed\n", fore200e->name); 331 return -ENODEV; 332 } 333 334 printk(FORE200E "device %s self-test passed\n", fore200e->name); 335 336 fore200e->state = FORE200E_STATE_RESET; 337 } 338 339 return 0; 340 } 341 342 343 static void 344 fore200e_shutdown(struct fore200e* fore200e) 345 { 346 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", 347 fore200e->name, fore200e->phys_base, 348 fore200e_irq_itoa(fore200e->irq)); 349 350 if (fore200e->state > FORE200E_STATE_RESET) { 351 /* first, reset the board to prevent further interrupts or data transfers */ 352 fore200e_reset(fore200e, 0); 353 } 354 355 /* then, release all allocated resources */ 356 switch(fore200e->state) { 357 358 case FORE200E_STATE_COMPLETE: 359 kfree(fore200e->stats); 360 361 case FORE200E_STATE_IRQ: 362 free_irq(fore200e->irq, fore200e->atm_dev); 363 364 case FORE200E_STATE_ALLOC_BUF: 365 fore200e_free_rx_buf(fore200e); 366 367 case FORE200E_STATE_INIT_BSQ: 368 fore200e_uninit_bs_queue(fore200e); 369 370 case FORE200E_STATE_INIT_RXQ: 371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status); 372 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); 373 374 case FORE200E_STATE_INIT_TXQ: 375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status); 376 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd); 377 378 case FORE200E_STATE_INIT_CMDQ: 379 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status); 380 381 case FORE200E_STATE_INITIALIZE: 382 /* nothing to do for that state */ 383 384 case FORE200E_STATE_START_FW: 385 /* nothing to do for that state */ 386 387 case FORE200E_STATE_RESET: 388 /* nothing to do for that state */ 389 390 case FORE200E_STATE_MAP: 391 fore200e->bus->unmap(fore200e); 392 393 case FORE200E_STATE_CONFIGURE: 394 /* nothing to do for that state */ 395 396 case FORE200E_STATE_REGISTER: 397 /* XXX shouldn't we *start* by deregistering the device? */ 398 atm_dev_deregister(fore200e->atm_dev); 399 400 case FORE200E_STATE_BLANK: 401 /* nothing to do for that state */ 402 break; 403 } 404 } 405 406 407 #ifdef CONFIG_PCI 408 409 static u32 fore200e_pca_read(volatile u32 __iomem *addr) 410 { 411 /* on big-endian hosts, the board is configured to convert 412 the endianess of slave RAM accesses */ 413 return le32_to_cpu(readl(addr)); 414 } 415 416 417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) 418 { 419 /* on big-endian hosts, the board is configured to convert 420 the endianess of slave RAM accesses */ 421 writel(cpu_to_le32(val), addr); 422 } 423 424 425 static u32 426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) 427 { 428 u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction); 429 430 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n", 431 virt_addr, size, direction, dma_addr); 432 433 return dma_addr; 434 } 435 436 437 static void 438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 439 { 440 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n", 441 dma_addr, size, direction); 442 443 pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 444 } 445 446 447 static void 448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 449 { 450 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 451 452 pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 453 } 454 455 static void 456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) 457 { 458 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 459 460 pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); 461 } 462 463 464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism 465 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ 466 467 static int 468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, 469 int size, int nbr, int alignment) 470 { 471 /* returned chunks are page-aligned */ 472 chunk->alloc_size = size * nbr; 473 chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev, 474 chunk->alloc_size, 475 &chunk->dma_addr); 476 477 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) 478 return -ENOMEM; 479 480 chunk->align_addr = chunk->alloc_addr; 481 482 return 0; 483 } 484 485 486 /* free a DMA consistent chunk of memory */ 487 488 static void 489 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) 490 { 491 pci_free_consistent((struct pci_dev*)fore200e->bus_dev, 492 chunk->alloc_size, 493 chunk->alloc_addr, 494 chunk->dma_addr); 495 } 496 497 498 static int 499 fore200e_pca_irq_check(struct fore200e* fore200e) 500 { 501 /* this is a 1 bit register */ 502 int irq_posted = readl(fore200e->regs.pca.psr); 503 504 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) 505 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { 506 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); 507 } 508 #endif 509 510 return irq_posted; 511 } 512 513 514 static void 515 fore200e_pca_irq_ack(struct fore200e* fore200e) 516 { 517 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); 518 } 519 520 521 static void 522 fore200e_pca_reset(struct fore200e* fore200e) 523 { 524 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); 525 fore200e_spin(10); 526 writel(0, fore200e->regs.pca.hcr); 527 } 528 529 530 static int __devinit 531 fore200e_pca_map(struct fore200e* fore200e) 532 { 533 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); 534 535 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); 536 537 if (fore200e->virt_base == NULL) { 538 printk(FORE200E "can't map device %s\n", fore200e->name); 539 return -EFAULT; 540 } 541 542 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 543 544 /* gain access to the PCA specific registers */ 545 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; 546 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; 547 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; 548 549 fore200e->state = FORE200E_STATE_MAP; 550 return 0; 551 } 552 553 554 static void 555 fore200e_pca_unmap(struct fore200e* fore200e) 556 { 557 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); 558 559 if (fore200e->virt_base != NULL) 560 iounmap(fore200e->virt_base); 561 } 562 563 564 static int __devinit 565 fore200e_pca_configure(struct fore200e* fore200e) 566 { 567 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; 568 u8 master_ctrl, latency; 569 570 DPRINTK(2, "device %s being configured\n", fore200e->name); 571 572 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { 573 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); 574 return -EIO; 575 } 576 577 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); 578 579 master_ctrl = master_ctrl 580 #if defined(__BIG_ENDIAN) 581 /* request the PCA board to convert the endianess of slave RAM accesses */ 582 | PCA200E_CTRL_CONVERT_ENDIAN 583 #endif 584 #if 0 585 | PCA200E_CTRL_DIS_CACHE_RD 586 | PCA200E_CTRL_DIS_WRT_INVAL 587 | PCA200E_CTRL_ENA_CONT_REQ_MODE 588 | PCA200E_CTRL_2_CACHE_WRT_INVAL 589 #endif 590 | PCA200E_CTRL_LARGE_PCI_BURSTS; 591 592 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); 593 594 /* raise latency from 32 (default) to 192, as this seems to prevent NIC 595 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. 596 this may impact the performances of other PCI devices on the same bus, though */ 597 latency = 192; 598 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); 599 600 fore200e->state = FORE200E_STATE_CONFIGURE; 601 return 0; 602 } 603 604 605 static int __init 606 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) 607 { 608 struct host_cmdq* cmdq = &fore200e->host_cmdq; 609 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 610 struct prom_opcode opcode; 611 int ok; 612 u32 prom_dma; 613 614 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 615 616 opcode.opcode = OPCODE_GET_PROM; 617 opcode.pad = 0; 618 619 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE); 620 621 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); 622 623 *entry->status = STATUS_PENDING; 624 625 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); 626 627 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 628 629 *entry->status = STATUS_FREE; 630 631 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); 632 633 if (ok == 0) { 634 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); 635 return -EIO; 636 } 637 638 #if defined(__BIG_ENDIAN) 639 640 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) 641 642 /* MAC address is stored as little-endian */ 643 swap_here(&prom->mac_addr[0]); 644 swap_here(&prom->mac_addr[4]); 645 #endif 646 647 return 0; 648 } 649 650 651 static int 652 fore200e_pca_proc_read(struct fore200e* fore200e, char *page) 653 { 654 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; 655 656 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", 657 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); 658 } 659 660 #endif /* CONFIG_PCI */ 661 662 663 #ifdef CONFIG_SBUS 664 665 static u32 fore200e_sba_read(volatile u32 __iomem *addr) 666 { 667 return sbus_readl(addr); 668 } 669 670 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr) 671 { 672 sbus_writel(val, addr); 673 } 674 675 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction) 676 { 677 struct platform_device *op = fore200e->bus_dev; 678 u32 dma_addr; 679 680 dma_addr = dma_map_single(&op->dev, virt_addr, size, direction); 681 682 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n", 683 virt_addr, size, direction, dma_addr); 684 685 return dma_addr; 686 } 687 688 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 689 { 690 struct platform_device *op = fore200e->bus_dev; 691 692 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n", 693 dma_addr, size, direction); 694 695 dma_unmap_single(&op->dev, dma_addr, size, direction); 696 } 697 698 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 699 { 700 struct platform_device *op = fore200e->bus_dev; 701 702 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 703 704 dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction); 705 } 706 707 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction) 708 { 709 struct platform_device *op = fore200e->bus_dev; 710 711 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); 712 713 dma_sync_single_for_device(&op->dev, dma_addr, size, direction); 714 } 715 716 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter. 718 */ 719 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk, 720 int size, int nbr, int alignment) 721 { 722 struct platform_device *op = fore200e->bus_dev; 723 724 chunk->alloc_size = chunk->align_size = size * nbr; 725 726 /* returned chunks are page-aligned */ 727 chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size, 728 &chunk->dma_addr, GFP_ATOMIC); 729 730 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) 731 return -ENOMEM; 732 733 chunk->align_addr = chunk->alloc_addr; 734 735 return 0; 736 } 737 738 /* free a DVMA consistent chunk of memory */ 739 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk) 740 { 741 struct platform_device *op = fore200e->bus_dev; 742 743 dma_free_coherent(&op->dev, chunk->alloc_size, 744 chunk->alloc_addr, chunk->dma_addr); 745 } 746 747 static void fore200e_sba_irq_enable(struct fore200e *fore200e) 748 { 749 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 750 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); 751 } 752 753 static int fore200e_sba_irq_check(struct fore200e *fore200e) 754 { 755 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; 756 } 757 758 static void fore200e_sba_irq_ack(struct fore200e *fore200e) 759 { 760 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; 761 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); 762 } 763 764 static void fore200e_sba_reset(struct fore200e *fore200e) 765 { 766 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); 767 fore200e_spin(10); 768 fore200e->bus->write(0, fore200e->regs.sba.hcr); 769 } 770 771 static int __init fore200e_sba_map(struct fore200e *fore200e) 772 { 773 struct platform_device *op = fore200e->bus_dev; 774 unsigned int bursts; 775 776 /* gain access to the SBA specific registers */ 777 fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); 778 fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); 779 fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); 780 fore200e->virt_base = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); 781 782 if (!fore200e->virt_base) { 783 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); 784 return -EFAULT; 785 } 786 787 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); 788 789 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ 790 791 /* get the supported DVMA burst sizes */ 792 bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00); 793 794 if (sbus_can_dma_64bit()) 795 sbus_set_sbus64(&op->dev, bursts); 796 797 fore200e->state = FORE200E_STATE_MAP; 798 return 0; 799 } 800 801 static void fore200e_sba_unmap(struct fore200e *fore200e) 802 { 803 struct platform_device *op = fore200e->bus_dev; 804 805 of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); 806 of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); 807 of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); 808 of_iounmap(&op->resource[3], fore200e->virt_base, SBA200E_RAM_LENGTH); 809 } 810 811 static int __init fore200e_sba_configure(struct fore200e *fore200e) 812 { 813 fore200e->state = FORE200E_STATE_CONFIGURE; 814 return 0; 815 } 816 817 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom) 818 { 819 struct platform_device *op = fore200e->bus_dev; 820 const u8 *prop; 821 int len; 822 823 prop = of_get_property(op->dev.of_node, "madaddrlo2", &len); 824 if (!prop) 825 return -ENODEV; 826 memcpy(&prom->mac_addr[4], prop, 4); 827 828 prop = of_get_property(op->dev.of_node, "madaddrhi4", &len); 829 if (!prop) 830 return -ENODEV; 831 memcpy(&prom->mac_addr[2], prop, 4); 832 833 prom->serial_number = of_getintprop_default(op->dev.of_node, 834 "serialnumber", 0); 835 prom->hw_revision = of_getintprop_default(op->dev.of_node, 836 "promversion", 0); 837 838 return 0; 839 } 840 841 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page) 842 { 843 struct platform_device *op = fore200e->bus_dev; 844 const struct linux_prom_registers *regs; 845 846 regs = of_get_property(op->dev.of_node, "reg", NULL); 847 848 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", 849 (regs ? regs->which_io : 0), op->dev.of_node->name); 850 } 851 #endif /* CONFIG_SBUS */ 852 853 854 static void 855 fore200e_tx_irq(struct fore200e* fore200e) 856 { 857 struct host_txq* txq = &fore200e->host_txq; 858 struct host_txq_entry* entry; 859 struct atm_vcc* vcc; 860 struct fore200e_vc_map* vc_map; 861 862 if (fore200e->host_txq.txing == 0) 863 return; 864 865 for (;;) { 866 867 entry = &txq->host_entry[ txq->tail ]; 868 869 if ((*entry->status & STATUS_COMPLETE) == 0) { 870 break; 871 } 872 873 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 874 entry, txq->tail, entry->vc_map, entry->skb); 875 876 /* free copy of misaligned data */ 877 kfree(entry->data); 878 879 /* remove DMA mapping */ 880 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, 881 DMA_TO_DEVICE); 882 883 vc_map = entry->vc_map; 884 885 /* vcc closed since the time the entry was submitted for tx? */ 886 if ((vc_map->vcc == NULL) || 887 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 888 889 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", 890 fore200e->atm_dev->number); 891 892 dev_kfree_skb_any(entry->skb); 893 } 894 else { 895 ASSERT(vc_map->vcc); 896 897 /* vcc closed then immediately re-opened? */ 898 if (vc_map->incarn != entry->incarn) { 899 900 /* when a vcc is closed, some PDUs may be still pending in the tx queue. 901 if the same vcc is immediately re-opened, those pending PDUs must 902 not be popped after the completion of their emission, as they refer 903 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc 904 would be decremented by the size of the (unrelated) skb, possibly 905 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. 906 we thus bind the tx entry to the current incarnation of the vcc 907 when the entry is submitted for tx. When the tx later completes, 908 if the incarnation number of the tx entry does not match the one 909 of the vcc, then this implies that the vcc has been closed then re-opened. 910 we thus just drop the skb here. */ 911 912 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", 913 fore200e->atm_dev->number); 914 915 dev_kfree_skb_any(entry->skb); 916 } 917 else { 918 vcc = vc_map->vcc; 919 ASSERT(vcc); 920 921 /* notify tx completion */ 922 if (vcc->pop) { 923 vcc->pop(vcc, entry->skb); 924 } 925 else { 926 dev_kfree_skb_any(entry->skb); 927 } 928 #if 1 929 /* race fixed by the above incarnation mechanism, but... */ 930 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) { 931 atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0); 932 } 933 #endif 934 /* check error condition */ 935 if (*entry->status & STATUS_ERROR) 936 atomic_inc(&vcc->stats->tx_err); 937 else 938 atomic_inc(&vcc->stats->tx); 939 } 940 } 941 942 *entry->status = STATUS_FREE; 943 944 fore200e->host_txq.txing--; 945 946 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); 947 } 948 } 949 950 951 #ifdef FORE200E_BSQ_DEBUG 952 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) 953 { 954 struct buffer* buffer; 955 int count = 0; 956 957 buffer = bsq->freebuf; 958 while (buffer) { 959 960 if (buffer->supplied) { 961 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", 962 where, scheme, magn, buffer->index); 963 } 964 965 if (buffer->magn != magn) { 966 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", 967 where, scheme, magn, buffer->index, buffer->magn); 968 } 969 970 if (buffer->scheme != scheme) { 971 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", 972 where, scheme, magn, buffer->index, buffer->scheme); 973 } 974 975 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { 976 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", 977 where, scheme, magn, buffer->index); 978 } 979 980 count++; 981 buffer = buffer->next; 982 } 983 984 if (count != bsq->freebuf_count) { 985 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", 986 where, scheme, magn, count, bsq->freebuf_count); 987 } 988 return 0; 989 } 990 #endif 991 992 993 static void 994 fore200e_supply(struct fore200e* fore200e) 995 { 996 int scheme, magn, i; 997 998 struct host_bsq* bsq; 999 struct host_bsq_entry* entry; 1000 struct buffer* buffer; 1001 1002 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 1003 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 1004 1005 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 1006 1007 #ifdef FORE200E_BSQ_DEBUG 1008 bsq_audit(1, bsq, scheme, magn); 1009 #endif 1010 while (bsq->freebuf_count >= RBD_BLK_SIZE) { 1011 1012 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", 1013 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); 1014 1015 entry = &bsq->host_entry[ bsq->head ]; 1016 1017 for (i = 0; i < RBD_BLK_SIZE; i++) { 1018 1019 /* take the first buffer in the free buffer list */ 1020 buffer = bsq->freebuf; 1021 if (!buffer) { 1022 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", 1023 scheme, magn, bsq->freebuf_count); 1024 return; 1025 } 1026 bsq->freebuf = buffer->next; 1027 1028 #ifdef FORE200E_BSQ_DEBUG 1029 if (buffer->supplied) 1030 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", 1031 scheme, magn, buffer->index); 1032 buffer->supplied = 1; 1033 #endif 1034 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; 1035 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); 1036 } 1037 1038 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); 1039 1040 /* decrease accordingly the number of free rx buffers */ 1041 bsq->freebuf_count -= RBD_BLK_SIZE; 1042 1043 *entry->status = STATUS_PENDING; 1044 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); 1045 } 1046 } 1047 } 1048 } 1049 1050 1051 static int 1052 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) 1053 { 1054 struct sk_buff* skb; 1055 struct buffer* buffer; 1056 struct fore200e_vcc* fore200e_vcc; 1057 int i, pdu_len = 0; 1058 #ifdef FORE200E_52BYTE_AAL0_SDU 1059 u32 cell_header = 0; 1060 #endif 1061 1062 ASSERT(vcc); 1063 1064 fore200e_vcc = FORE200E_VCC(vcc); 1065 ASSERT(fore200e_vcc); 1066 1067 #ifdef FORE200E_52BYTE_AAL0_SDU 1068 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { 1069 1070 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | 1071 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | 1072 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | 1073 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 1074 rpd->atm_header.clp; 1075 pdu_len = 4; 1076 } 1077 #endif 1078 1079 /* compute total PDU length */ 1080 for (i = 0; i < rpd->nseg; i++) 1081 pdu_len += rpd->rsd[ i ].length; 1082 1083 skb = alloc_skb(pdu_len, GFP_ATOMIC); 1084 if (skb == NULL) { 1085 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); 1086 1087 atomic_inc(&vcc->stats->rx_drop); 1088 return -ENOMEM; 1089 } 1090 1091 __net_timestamp(skb); 1092 1093 #ifdef FORE200E_52BYTE_AAL0_SDU 1094 if (cell_header) { 1095 *((u32*)skb_put(skb, 4)) = cell_header; 1096 } 1097 #endif 1098 1099 /* reassemble segments */ 1100 for (i = 0; i < rpd->nseg; i++) { 1101 1102 /* rebuild rx buffer address from rsd handle */ 1103 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1104 1105 /* Make device DMA transfer visible to CPU. */ 1106 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); 1107 1108 memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length); 1109 1110 /* Now let the device get at it again. */ 1111 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); 1112 } 1113 1114 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); 1115 1116 if (pdu_len < fore200e_vcc->rx_min_pdu) 1117 fore200e_vcc->rx_min_pdu = pdu_len; 1118 if (pdu_len > fore200e_vcc->rx_max_pdu) 1119 fore200e_vcc->rx_max_pdu = pdu_len; 1120 fore200e_vcc->rx_pdu++; 1121 1122 /* push PDU */ 1123 if (atm_charge(vcc, skb->truesize) == 0) { 1124 1125 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", 1126 vcc->itf, vcc->vpi, vcc->vci); 1127 1128 dev_kfree_skb_any(skb); 1129 1130 atomic_inc(&vcc->stats->rx_drop); 1131 return -ENOMEM; 1132 } 1133 1134 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1135 1136 vcc->push(vcc, skb); 1137 atomic_inc(&vcc->stats->rx); 1138 1139 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1140 1141 return 0; 1142 } 1143 1144 1145 static void 1146 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) 1147 { 1148 struct host_bsq* bsq; 1149 struct buffer* buffer; 1150 int i; 1151 1152 for (i = 0; i < rpd->nseg; i++) { 1153 1154 /* rebuild rx buffer address from rsd handle */ 1155 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); 1156 1157 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; 1158 1159 #ifdef FORE200E_BSQ_DEBUG 1160 bsq_audit(2, bsq, buffer->scheme, buffer->magn); 1161 1162 if (buffer->supplied == 0) 1163 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", 1164 buffer->scheme, buffer->magn, buffer->index); 1165 buffer->supplied = 0; 1166 #endif 1167 1168 /* re-insert the buffer into the free buffer list */ 1169 buffer->next = bsq->freebuf; 1170 bsq->freebuf = buffer; 1171 1172 /* then increment the number of free rx buffers */ 1173 bsq->freebuf_count++; 1174 } 1175 } 1176 1177 1178 static void 1179 fore200e_rx_irq(struct fore200e* fore200e) 1180 { 1181 struct host_rxq* rxq = &fore200e->host_rxq; 1182 struct host_rxq_entry* entry; 1183 struct atm_vcc* vcc; 1184 struct fore200e_vc_map* vc_map; 1185 1186 for (;;) { 1187 1188 entry = &rxq->host_entry[ rxq->head ]; 1189 1190 /* no more received PDUs */ 1191 if ((*entry->status & STATUS_COMPLETE) == 0) 1192 break; 1193 1194 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1195 1196 if ((vc_map->vcc == NULL) || 1197 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { 1198 1199 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", 1200 fore200e->atm_dev->number, 1201 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1202 } 1203 else { 1204 vcc = vc_map->vcc; 1205 ASSERT(vcc); 1206 1207 if ((*entry->status & STATUS_ERROR) == 0) { 1208 1209 fore200e_push_rpd(fore200e, vcc, entry->rpd); 1210 } 1211 else { 1212 DPRINTK(2, "damaged PDU on %d.%d.%d\n", 1213 fore200e->atm_dev->number, 1214 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); 1215 atomic_inc(&vcc->stats->rx_err); 1216 } 1217 } 1218 1219 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); 1220 1221 fore200e_collect_rpd(fore200e, entry->rpd); 1222 1223 /* rewrite the rpd address to ack the received PDU */ 1224 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); 1225 *entry->status = STATUS_FREE; 1226 1227 fore200e_supply(fore200e); 1228 } 1229 } 1230 1231 1232 #ifndef FORE200E_USE_TASKLET 1233 static void 1234 fore200e_irq(struct fore200e* fore200e) 1235 { 1236 unsigned long flags; 1237 1238 spin_lock_irqsave(&fore200e->q_lock, flags); 1239 fore200e_rx_irq(fore200e); 1240 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1241 1242 spin_lock_irqsave(&fore200e->q_lock, flags); 1243 fore200e_tx_irq(fore200e); 1244 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1245 } 1246 #endif 1247 1248 1249 static irqreturn_t 1250 fore200e_interrupt(int irq, void* dev) 1251 { 1252 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); 1253 1254 if (fore200e->bus->irq_check(fore200e) == 0) { 1255 1256 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); 1257 return IRQ_NONE; 1258 } 1259 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); 1260 1261 #ifdef FORE200E_USE_TASKLET 1262 tasklet_schedule(&fore200e->tx_tasklet); 1263 tasklet_schedule(&fore200e->rx_tasklet); 1264 #else 1265 fore200e_irq(fore200e); 1266 #endif 1267 1268 fore200e->bus->irq_ack(fore200e); 1269 return IRQ_HANDLED; 1270 } 1271 1272 1273 #ifdef FORE200E_USE_TASKLET 1274 static void 1275 fore200e_tx_tasklet(unsigned long data) 1276 { 1277 struct fore200e* fore200e = (struct fore200e*) data; 1278 unsigned long flags; 1279 1280 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1281 1282 spin_lock_irqsave(&fore200e->q_lock, flags); 1283 fore200e_tx_irq(fore200e); 1284 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1285 } 1286 1287 1288 static void 1289 fore200e_rx_tasklet(unsigned long data) 1290 { 1291 struct fore200e* fore200e = (struct fore200e*) data; 1292 unsigned long flags; 1293 1294 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); 1295 1296 spin_lock_irqsave(&fore200e->q_lock, flags); 1297 fore200e_rx_irq((struct fore200e*) data); 1298 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1299 } 1300 #endif 1301 1302 1303 static int 1304 fore200e_select_scheme(struct atm_vcc* vcc) 1305 { 1306 /* fairly balance the VCs over (identical) buffer schemes */ 1307 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; 1308 1309 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", 1310 vcc->itf, vcc->vpi, vcc->vci, scheme); 1311 1312 return scheme; 1313 } 1314 1315 1316 static int 1317 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) 1318 { 1319 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1320 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1321 struct activate_opcode activ_opcode; 1322 struct deactivate_opcode deactiv_opcode; 1323 struct vpvc vpvc; 1324 int ok; 1325 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); 1326 1327 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1328 1329 if (activate) { 1330 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); 1331 1332 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; 1333 activ_opcode.aal = aal; 1334 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; 1335 activ_opcode.pad = 0; 1336 } 1337 else { 1338 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; 1339 deactiv_opcode.pad = 0; 1340 } 1341 1342 vpvc.vci = vcc->vci; 1343 vpvc.vpi = vcc->vpi; 1344 1345 *entry->status = STATUS_PENDING; 1346 1347 if (activate) { 1348 1349 #ifdef FORE200E_52BYTE_AAL0_SDU 1350 mtu = 48; 1351 #endif 1352 /* the MTU is not used by the cp, except in the case of AAL0 */ 1353 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); 1354 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); 1355 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); 1356 } 1357 else { 1358 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); 1359 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); 1360 } 1361 1362 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1363 1364 *entry->status = STATUS_FREE; 1365 1366 if (ok == 0) { 1367 printk(FORE200E "unable to %s VC %d.%d.%d\n", 1368 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); 1369 return -EIO; 1370 } 1371 1372 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 1373 activate ? "open" : "clos"); 1374 1375 return 0; 1376 } 1377 1378 1379 #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ 1380 1381 static void 1382 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) 1383 { 1384 if (qos->txtp.max_pcr < ATM_OC3_PCR) { 1385 1386 /* compute the data cells to idle cells ratio from the tx PCR */ 1387 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; 1388 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; 1389 } 1390 else { 1391 /* disable rate control */ 1392 rate->data_cells = rate->idle_cells = 0; 1393 } 1394 } 1395 1396 1397 static int 1398 fore200e_open(struct atm_vcc *vcc) 1399 { 1400 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1401 struct fore200e_vcc* fore200e_vcc; 1402 struct fore200e_vc_map* vc_map; 1403 unsigned long flags; 1404 int vci = vcc->vci; 1405 short vpi = vcc->vpi; 1406 1407 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); 1408 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); 1409 1410 spin_lock_irqsave(&fore200e->q_lock, flags); 1411 1412 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); 1413 if (vc_map->vcc) { 1414 1415 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1416 1417 printk(FORE200E "VC %d.%d.%d already in use\n", 1418 fore200e->atm_dev->number, vpi, vci); 1419 1420 return -EINVAL; 1421 } 1422 1423 vc_map->vcc = vcc; 1424 1425 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1426 1427 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); 1428 if (fore200e_vcc == NULL) { 1429 vc_map->vcc = NULL; 1430 return -ENOMEM; 1431 } 1432 1433 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1434 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", 1435 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1436 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], 1437 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, 1438 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], 1439 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); 1440 1441 /* pseudo-CBR bandwidth requested? */ 1442 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1443 1444 mutex_lock(&fore200e->rate_mtx); 1445 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { 1446 mutex_unlock(&fore200e->rate_mtx); 1447 1448 kfree(fore200e_vcc); 1449 vc_map->vcc = NULL; 1450 return -EAGAIN; 1451 } 1452 1453 /* reserve bandwidth */ 1454 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; 1455 mutex_unlock(&fore200e->rate_mtx); 1456 } 1457 1458 vcc->itf = vcc->dev->number; 1459 1460 set_bit(ATM_VF_PARTIAL,&vcc->flags); 1461 set_bit(ATM_VF_ADDR, &vcc->flags); 1462 1463 vcc->dev_data = fore200e_vcc; 1464 1465 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { 1466 1467 vc_map->vcc = NULL; 1468 1469 clear_bit(ATM_VF_ADDR, &vcc->flags); 1470 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1471 1472 vcc->dev_data = NULL; 1473 1474 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1475 1476 kfree(fore200e_vcc); 1477 return -EINVAL; 1478 } 1479 1480 /* compute rate control parameters */ 1481 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1482 1483 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); 1484 set_bit(ATM_VF_HASQOS, &vcc->flags); 1485 1486 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", 1487 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1488 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 1489 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); 1490 } 1491 1492 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; 1493 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; 1494 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; 1495 1496 /* new incarnation of the vcc */ 1497 vc_map->incarn = ++fore200e->incarn_count; 1498 1499 /* VC unusable before this flag is set */ 1500 set_bit(ATM_VF_READY, &vcc->flags); 1501 1502 return 0; 1503 } 1504 1505 1506 static void 1507 fore200e_close(struct atm_vcc* vcc) 1508 { 1509 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1510 struct fore200e_vcc* fore200e_vcc; 1511 struct fore200e_vc_map* vc_map; 1512 unsigned long flags; 1513 1514 ASSERT(vcc); 1515 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); 1516 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); 1517 1518 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); 1519 1520 clear_bit(ATM_VF_READY, &vcc->flags); 1521 1522 fore200e_activate_vcin(fore200e, 0, vcc, 0); 1523 1524 spin_lock_irqsave(&fore200e->q_lock, flags); 1525 1526 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1527 1528 /* the vc is no longer considered as "in use" by fore200e_open() */ 1529 vc_map->vcc = NULL; 1530 1531 vcc->itf = vcc->vci = vcc->vpi = 0; 1532 1533 fore200e_vcc = FORE200E_VCC(vcc); 1534 vcc->dev_data = NULL; 1535 1536 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1537 1538 /* release reserved bandwidth, if any */ 1539 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { 1540 1541 mutex_lock(&fore200e->rate_mtx); 1542 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 1543 mutex_unlock(&fore200e->rate_mtx); 1544 1545 clear_bit(ATM_VF_HASQOS, &vcc->flags); 1546 } 1547 1548 clear_bit(ATM_VF_ADDR, &vcc->flags); 1549 clear_bit(ATM_VF_PARTIAL,&vcc->flags); 1550 1551 ASSERT(fore200e_vcc); 1552 kfree(fore200e_vcc); 1553 } 1554 1555 1556 static int 1557 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) 1558 { 1559 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1560 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1561 struct fore200e_vc_map* vc_map; 1562 struct host_txq* txq = &fore200e->host_txq; 1563 struct host_txq_entry* entry; 1564 struct tpd* tpd; 1565 struct tpd_haddr tpd_haddr; 1566 int retry = CONFIG_ATM_FORE200E_TX_RETRY; 1567 int tx_copy = 0; 1568 int tx_len = skb->len; 1569 u32* cell_header = NULL; 1570 unsigned char* skb_data; 1571 int skb_len; 1572 unsigned char* data; 1573 unsigned long flags; 1574 1575 ASSERT(vcc); 1576 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); 1577 ASSERT(fore200e); 1578 ASSERT(fore200e_vcc); 1579 1580 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1581 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); 1582 dev_kfree_skb_any(skb); 1583 return -EINVAL; 1584 } 1585 1586 #ifdef FORE200E_52BYTE_AAL0_SDU 1587 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { 1588 cell_header = (u32*) skb->data; 1589 skb_data = skb->data + 4; /* skip 4-byte cell header */ 1590 skb_len = tx_len = skb->len - 4; 1591 1592 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); 1593 } 1594 else 1595 #endif 1596 { 1597 skb_data = skb->data; 1598 skb_len = skb->len; 1599 } 1600 1601 if (((unsigned long)skb_data) & 0x3) { 1602 1603 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); 1604 tx_copy = 1; 1605 tx_len = skb_len; 1606 } 1607 1608 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { 1609 1610 /* this simply NUKES the PCA board */ 1611 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); 1612 tx_copy = 1; 1613 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; 1614 } 1615 1616 if (tx_copy) { 1617 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA); 1618 if (data == NULL) { 1619 if (vcc->pop) { 1620 vcc->pop(vcc, skb); 1621 } 1622 else { 1623 dev_kfree_skb_any(skb); 1624 } 1625 return -ENOMEM; 1626 } 1627 1628 memcpy(data, skb_data, skb_len); 1629 if (skb_len < tx_len) 1630 memset(data + skb_len, 0x00, tx_len - skb_len); 1631 } 1632 else { 1633 data = skb_data; 1634 } 1635 1636 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); 1637 ASSERT(vc_map->vcc == vcc); 1638 1639 retry_here: 1640 1641 spin_lock_irqsave(&fore200e->q_lock, flags); 1642 1643 entry = &txq->host_entry[ txq->head ]; 1644 1645 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { 1646 1647 /* try to free completed tx queue entries */ 1648 fore200e_tx_irq(fore200e); 1649 1650 if (*entry->status != STATUS_FREE) { 1651 1652 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1653 1654 /* retry once again? */ 1655 if (--retry > 0) { 1656 udelay(50); 1657 goto retry_here; 1658 } 1659 1660 atomic_inc(&vcc->stats->tx_err); 1661 1662 fore200e->tx_sat++; 1663 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", 1664 fore200e->name, fore200e->cp_queues->heartbeat); 1665 if (vcc->pop) { 1666 vcc->pop(vcc, skb); 1667 } 1668 else { 1669 dev_kfree_skb_any(skb); 1670 } 1671 1672 if (tx_copy) 1673 kfree(data); 1674 1675 return -ENOBUFS; 1676 } 1677 } 1678 1679 entry->incarn = vc_map->incarn; 1680 entry->vc_map = vc_map; 1681 entry->skb = skb; 1682 entry->data = tx_copy ? data : NULL; 1683 1684 tpd = entry->tpd; 1685 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE); 1686 tpd->tsd[ 0 ].length = tx_len; 1687 1688 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); 1689 txq->txing++; 1690 1691 /* The dma_map call above implies a dma_sync so the device can use it, 1692 * thus no explicit dma_sync call is necessary here. 1693 */ 1694 1695 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 1696 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 1697 tpd->tsd[0].length, skb_len); 1698 1699 if (skb_len < fore200e_vcc->tx_min_pdu) 1700 fore200e_vcc->tx_min_pdu = skb_len; 1701 if (skb_len > fore200e_vcc->tx_max_pdu) 1702 fore200e_vcc->tx_max_pdu = skb_len; 1703 fore200e_vcc->tx_pdu++; 1704 1705 /* set tx rate control information */ 1706 tpd->rate.data_cells = fore200e_vcc->rate.data_cells; 1707 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; 1708 1709 if (cell_header) { 1710 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); 1711 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 1712 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; 1713 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; 1714 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; 1715 } 1716 else { 1717 /* set the ATM header, common to all cells conveying the PDU */ 1718 tpd->atm_header.clp = 0; 1719 tpd->atm_header.plt = 0; 1720 tpd->atm_header.vci = vcc->vci; 1721 tpd->atm_header.vpi = vcc->vpi; 1722 tpd->atm_header.gfc = 0; 1723 } 1724 1725 tpd->spec.length = tx_len; 1726 tpd->spec.nseg = 1; 1727 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); 1728 tpd->spec.intr = 1; 1729 1730 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ 1731 tpd_haddr.pad = 0; 1732 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ 1733 1734 *entry->status = STATUS_PENDING; 1735 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); 1736 1737 spin_unlock_irqrestore(&fore200e->q_lock, flags); 1738 1739 return 0; 1740 } 1741 1742 1743 static int 1744 fore200e_getstats(struct fore200e* fore200e) 1745 { 1746 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1747 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1748 struct stats_opcode opcode; 1749 int ok; 1750 u32 stats_dma_addr; 1751 1752 if (fore200e->stats == NULL) { 1753 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA); 1754 if (fore200e->stats == NULL) 1755 return -ENOMEM; 1756 } 1757 1758 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats, 1759 sizeof(struct stats), DMA_FROM_DEVICE); 1760 1761 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1762 1763 opcode.opcode = OPCODE_GET_STATS; 1764 opcode.pad = 0; 1765 1766 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); 1767 1768 *entry->status = STATUS_PENDING; 1769 1770 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); 1771 1772 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1773 1774 *entry->status = STATUS_FREE; 1775 1776 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); 1777 1778 if (ok == 0) { 1779 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); 1780 return -EIO; 1781 } 1782 1783 return 0; 1784 } 1785 1786 1787 static int 1788 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) 1789 { 1790 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1791 1792 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1793 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1794 1795 return -EINVAL; 1796 } 1797 1798 1799 static int 1800 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen) 1801 { 1802 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ 1803 1804 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", 1805 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); 1806 1807 return -EINVAL; 1808 } 1809 1810 1811 #if 0 /* currently unused */ 1812 static int 1813 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) 1814 { 1815 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1816 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1817 struct oc3_opcode opcode; 1818 int ok; 1819 u32 oc3_regs_dma_addr; 1820 1821 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1822 1823 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1824 1825 opcode.opcode = OPCODE_GET_OC3; 1826 opcode.reg = 0; 1827 opcode.value = 0; 1828 opcode.mask = 0; 1829 1830 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1831 1832 *entry->status = STATUS_PENDING; 1833 1834 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); 1835 1836 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1837 1838 *entry->status = STATUS_FREE; 1839 1840 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); 1841 1842 if (ok == 0) { 1843 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); 1844 return -EIO; 1845 } 1846 1847 return 0; 1848 } 1849 #endif 1850 1851 1852 static int 1853 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) 1854 { 1855 struct host_cmdq* cmdq = &fore200e->host_cmdq; 1856 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; 1857 struct oc3_opcode opcode; 1858 int ok; 1859 1860 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); 1861 1862 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); 1863 1864 opcode.opcode = OPCODE_SET_OC3; 1865 opcode.reg = reg; 1866 opcode.value = value; 1867 opcode.mask = mask; 1868 1869 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); 1870 1871 *entry->status = STATUS_PENDING; 1872 1873 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); 1874 1875 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); 1876 1877 *entry->status = STATUS_FREE; 1878 1879 if (ok == 0) { 1880 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); 1881 return -EIO; 1882 } 1883 1884 return 0; 1885 } 1886 1887 1888 static int 1889 fore200e_setloop(struct fore200e* fore200e, int loop_mode) 1890 { 1891 u32 mct_value, mct_mask; 1892 int error; 1893 1894 if (!capable(CAP_NET_ADMIN)) 1895 return -EPERM; 1896 1897 switch (loop_mode) { 1898 1899 case ATM_LM_NONE: 1900 mct_value = 0; 1901 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; 1902 break; 1903 1904 case ATM_LM_LOC_PHY: 1905 mct_value = mct_mask = SUNI_MCT_DLE; 1906 break; 1907 1908 case ATM_LM_RMT_PHY: 1909 mct_value = mct_mask = SUNI_MCT_LLE; 1910 break; 1911 1912 default: 1913 return -EINVAL; 1914 } 1915 1916 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); 1917 if (error == 0) 1918 fore200e->loop_mode = loop_mode; 1919 1920 return error; 1921 } 1922 1923 1924 static int 1925 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) 1926 { 1927 struct sonet_stats tmp; 1928 1929 if (fore200e_getstats(fore200e) < 0) 1930 return -EIO; 1931 1932 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors); 1933 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors); 1934 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors); 1935 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors); 1936 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors); 1937 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors); 1938 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors); 1939 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) + 1940 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) + 1941 be32_to_cpu(fore200e->stats->aal5.cells_transmitted); 1942 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) + 1943 be32_to_cpu(fore200e->stats->aal34.cells_received) + 1944 be32_to_cpu(fore200e->stats->aal5.cells_received); 1945 1946 if (arg) 1947 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; 1948 1949 return 0; 1950 } 1951 1952 1953 static int 1954 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) 1955 { 1956 struct fore200e* fore200e = FORE200E_DEV(dev); 1957 1958 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); 1959 1960 switch (cmd) { 1961 1962 case SONET_GETSTAT: 1963 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); 1964 1965 case SONET_GETDIAG: 1966 return put_user(0, (int __user *)arg) ? -EFAULT : 0; 1967 1968 case ATM_SETLOOP: 1969 return fore200e_setloop(fore200e, (int)(unsigned long)arg); 1970 1971 case ATM_GETLOOP: 1972 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; 1973 1974 case ATM_QUERYLOOP: 1975 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; 1976 } 1977 1978 return -ENOSYS; /* not implemented */ 1979 } 1980 1981 1982 static int 1983 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) 1984 { 1985 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); 1986 struct fore200e* fore200e = FORE200E_DEV(vcc->dev); 1987 1988 if (!test_bit(ATM_VF_READY, &vcc->flags)) { 1989 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); 1990 return -EINVAL; 1991 } 1992 1993 DPRINTK(2, "change_qos %d.%d.%d, " 1994 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " 1995 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" 1996 "available_cell_rate = %u", 1997 vcc->itf, vcc->vpi, vcc->vci, 1998 fore200e_traffic_class[ qos->txtp.traffic_class ], 1999 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, 2000 fore200e_traffic_class[ qos->rxtp.traffic_class ], 2001 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, 2002 flags, fore200e->available_cell_rate); 2003 2004 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { 2005 2006 mutex_lock(&fore200e->rate_mtx); 2007 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { 2008 mutex_unlock(&fore200e->rate_mtx); 2009 return -EAGAIN; 2010 } 2011 2012 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; 2013 fore200e->available_cell_rate -= qos->txtp.max_pcr; 2014 2015 mutex_unlock(&fore200e->rate_mtx); 2016 2017 memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); 2018 2019 /* update rate control parameters */ 2020 fore200e_rate_ctrl(qos, &fore200e_vcc->rate); 2021 2022 set_bit(ATM_VF_HASQOS, &vcc->flags); 2023 2024 return 0; 2025 } 2026 2027 return -EINVAL; 2028 } 2029 2030 2031 static int __devinit 2032 fore200e_irq_request(struct fore200e* fore200e) 2033 { 2034 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) { 2035 2036 printk(FORE200E "unable to reserve IRQ %s for device %s\n", 2037 fore200e_irq_itoa(fore200e->irq), fore200e->name); 2038 return -EBUSY; 2039 } 2040 2041 printk(FORE200E "IRQ %s reserved for device %s\n", 2042 fore200e_irq_itoa(fore200e->irq), fore200e->name); 2043 2044 #ifdef FORE200E_USE_TASKLET 2045 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); 2046 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); 2047 #endif 2048 2049 fore200e->state = FORE200E_STATE_IRQ; 2050 return 0; 2051 } 2052 2053 2054 static int __devinit 2055 fore200e_get_esi(struct fore200e* fore200e) 2056 { 2057 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA); 2058 int ok, i; 2059 2060 if (!prom) 2061 return -ENOMEM; 2062 2063 ok = fore200e->bus->prom_read(fore200e, prom); 2064 if (ok < 0) { 2065 kfree(prom); 2066 return -EBUSY; 2067 } 2068 2069 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n", 2070 fore200e->name, 2071 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ 2072 prom->serial_number & 0xFFFF, &prom->mac_addr[2]); 2073 2074 for (i = 0; i < ESI_LEN; i++) { 2075 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; 2076 } 2077 2078 kfree(prom); 2079 2080 return 0; 2081 } 2082 2083 2084 static int __devinit 2085 fore200e_alloc_rx_buf(struct fore200e* fore200e) 2086 { 2087 int scheme, magn, nbr, size, i; 2088 2089 struct host_bsq* bsq; 2090 struct buffer* buffer; 2091 2092 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2093 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2094 2095 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2096 2097 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; 2098 size = fore200e_rx_buf_size[ scheme ][ magn ]; 2099 2100 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); 2101 2102 /* allocate the array of receive buffers */ 2103 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL); 2104 2105 if (buffer == NULL) 2106 return -ENOMEM; 2107 2108 bsq->freebuf = NULL; 2109 2110 for (i = 0; i < nbr; i++) { 2111 2112 buffer[ i ].scheme = scheme; 2113 buffer[ i ].magn = magn; 2114 #ifdef FORE200E_BSQ_DEBUG 2115 buffer[ i ].index = i; 2116 buffer[ i ].supplied = 0; 2117 #endif 2118 2119 /* allocate the receive buffer body */ 2120 if (fore200e_chunk_alloc(fore200e, 2121 &buffer[ i ].data, size, fore200e->bus->buffer_alignment, 2122 DMA_FROM_DEVICE) < 0) { 2123 2124 while (i > 0) 2125 fore200e_chunk_free(fore200e, &buffer[ --i ].data); 2126 kfree(buffer); 2127 2128 return -ENOMEM; 2129 } 2130 2131 /* insert the buffer into the free buffer list */ 2132 buffer[ i ].next = bsq->freebuf; 2133 bsq->freebuf = &buffer[ i ]; 2134 } 2135 /* all the buffers are free, initially */ 2136 bsq->freebuf_count = nbr; 2137 2138 #ifdef FORE200E_BSQ_DEBUG 2139 bsq_audit(3, bsq, scheme, magn); 2140 #endif 2141 } 2142 } 2143 2144 fore200e->state = FORE200E_STATE_ALLOC_BUF; 2145 return 0; 2146 } 2147 2148 2149 static int __devinit 2150 fore200e_init_bs_queue(struct fore200e* fore200e) 2151 { 2152 int scheme, magn, i; 2153 2154 struct host_bsq* bsq; 2155 struct cp_bsq_entry __iomem * cp_entry; 2156 2157 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { 2158 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { 2159 2160 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); 2161 2162 bsq = &fore200e->host_bsq[ scheme ][ magn ]; 2163 2164 /* allocate and align the array of status words */ 2165 if (fore200e->bus->dma_chunk_alloc(fore200e, 2166 &bsq->status, 2167 sizeof(enum status), 2168 QUEUE_SIZE_BS, 2169 fore200e->bus->status_alignment) < 0) { 2170 return -ENOMEM; 2171 } 2172 2173 /* allocate and align the array of receive buffer descriptors */ 2174 if (fore200e->bus->dma_chunk_alloc(fore200e, 2175 &bsq->rbd_block, 2176 sizeof(struct rbd_block), 2177 QUEUE_SIZE_BS, 2178 fore200e->bus->descr_alignment) < 0) { 2179 2180 fore200e->bus->dma_chunk_free(fore200e, &bsq->status); 2181 return -ENOMEM; 2182 } 2183 2184 /* get the base address of the cp resident buffer supply queue entries */ 2185 cp_entry = fore200e->virt_base + 2186 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); 2187 2188 /* fill the host resident and cp resident buffer supply queue entries */ 2189 for (i = 0; i < QUEUE_SIZE_BS; i++) { 2190 2191 bsq->host_entry[ i ].status = 2192 FORE200E_INDEX(bsq->status.align_addr, enum status, i); 2193 bsq->host_entry[ i ].rbd_block = 2194 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); 2195 bsq->host_entry[ i ].rbd_block_dma = 2196 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); 2197 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2198 2199 *bsq->host_entry[ i ].status = STATUS_FREE; 2200 2201 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 2202 &cp_entry[ i ].status_haddr); 2203 } 2204 } 2205 } 2206 2207 fore200e->state = FORE200E_STATE_INIT_BSQ; 2208 return 0; 2209 } 2210 2211 2212 static int __devinit 2213 fore200e_init_rx_queue(struct fore200e* fore200e) 2214 { 2215 struct host_rxq* rxq = &fore200e->host_rxq; 2216 struct cp_rxq_entry __iomem * cp_entry; 2217 int i; 2218 2219 DPRINTK(2, "receive queue is being initialized\n"); 2220 2221 /* allocate and align the array of status words */ 2222 if (fore200e->bus->dma_chunk_alloc(fore200e, 2223 &rxq->status, 2224 sizeof(enum status), 2225 QUEUE_SIZE_RX, 2226 fore200e->bus->status_alignment) < 0) { 2227 return -ENOMEM; 2228 } 2229 2230 /* allocate and align the array of receive PDU descriptors */ 2231 if (fore200e->bus->dma_chunk_alloc(fore200e, 2232 &rxq->rpd, 2233 sizeof(struct rpd), 2234 QUEUE_SIZE_RX, 2235 fore200e->bus->descr_alignment) < 0) { 2236 2237 fore200e->bus->dma_chunk_free(fore200e, &rxq->status); 2238 return -ENOMEM; 2239 } 2240 2241 /* get the base address of the cp resident rx queue entries */ 2242 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); 2243 2244 /* fill the host resident and cp resident rx entries */ 2245 for (i=0; i < QUEUE_SIZE_RX; i++) { 2246 2247 rxq->host_entry[ i ].status = 2248 FORE200E_INDEX(rxq->status.align_addr, enum status, i); 2249 rxq->host_entry[ i ].rpd = 2250 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); 2251 rxq->host_entry[ i ].rpd_dma = 2252 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); 2253 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2254 2255 *rxq->host_entry[ i ].status = STATUS_FREE; 2256 2257 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 2258 &cp_entry[ i ].status_haddr); 2259 2260 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), 2261 &cp_entry[ i ].rpd_haddr); 2262 } 2263 2264 /* set the head entry of the queue */ 2265 rxq->head = 0; 2266 2267 fore200e->state = FORE200E_STATE_INIT_RXQ; 2268 return 0; 2269 } 2270 2271 2272 static int __devinit 2273 fore200e_init_tx_queue(struct fore200e* fore200e) 2274 { 2275 struct host_txq* txq = &fore200e->host_txq; 2276 struct cp_txq_entry __iomem * cp_entry; 2277 int i; 2278 2279 DPRINTK(2, "transmit queue is being initialized\n"); 2280 2281 /* allocate and align the array of status words */ 2282 if (fore200e->bus->dma_chunk_alloc(fore200e, 2283 &txq->status, 2284 sizeof(enum status), 2285 QUEUE_SIZE_TX, 2286 fore200e->bus->status_alignment) < 0) { 2287 return -ENOMEM; 2288 } 2289 2290 /* allocate and align the array of transmit PDU descriptors */ 2291 if (fore200e->bus->dma_chunk_alloc(fore200e, 2292 &txq->tpd, 2293 sizeof(struct tpd), 2294 QUEUE_SIZE_TX, 2295 fore200e->bus->descr_alignment) < 0) { 2296 2297 fore200e->bus->dma_chunk_free(fore200e, &txq->status); 2298 return -ENOMEM; 2299 } 2300 2301 /* get the base address of the cp resident tx queue entries */ 2302 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); 2303 2304 /* fill the host resident and cp resident tx entries */ 2305 for (i=0; i < QUEUE_SIZE_TX; i++) { 2306 2307 txq->host_entry[ i ].status = 2308 FORE200E_INDEX(txq->status.align_addr, enum status, i); 2309 txq->host_entry[ i ].tpd = 2310 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); 2311 txq->host_entry[ i ].tpd_dma = 2312 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); 2313 txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2314 2315 *txq->host_entry[ i ].status = STATUS_FREE; 2316 2317 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 2318 &cp_entry[ i ].status_haddr); 2319 2320 /* although there is a one-to-one mapping of tx queue entries and tpds, 2321 we do not write here the DMA (physical) base address of each tpd into 2322 the related cp resident entry, because the cp relies on this write 2323 operation to detect that a new pdu has been submitted for tx */ 2324 } 2325 2326 /* set the head and tail entries of the queue */ 2327 txq->head = 0; 2328 txq->tail = 0; 2329 2330 fore200e->state = FORE200E_STATE_INIT_TXQ; 2331 return 0; 2332 } 2333 2334 2335 static int __devinit 2336 fore200e_init_cmd_queue(struct fore200e* fore200e) 2337 { 2338 struct host_cmdq* cmdq = &fore200e->host_cmdq; 2339 struct cp_cmdq_entry __iomem * cp_entry; 2340 int i; 2341 2342 DPRINTK(2, "command queue is being initialized\n"); 2343 2344 /* allocate and align the array of status words */ 2345 if (fore200e->bus->dma_chunk_alloc(fore200e, 2346 &cmdq->status, 2347 sizeof(enum status), 2348 QUEUE_SIZE_CMD, 2349 fore200e->bus->status_alignment) < 0) { 2350 return -ENOMEM; 2351 } 2352 2353 /* get the base address of the cp resident cmd queue entries */ 2354 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); 2355 2356 /* fill the host resident and cp resident cmd entries */ 2357 for (i=0; i < QUEUE_SIZE_CMD; i++) { 2358 2359 cmdq->host_entry[ i ].status = 2360 FORE200E_INDEX(cmdq->status.align_addr, enum status, i); 2361 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; 2362 2363 *cmdq->host_entry[ i ].status = STATUS_FREE; 2364 2365 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 2366 &cp_entry[ i ].status_haddr); 2367 } 2368 2369 /* set the head entry of the queue */ 2370 cmdq->head = 0; 2371 2372 fore200e->state = FORE200E_STATE_INIT_CMDQ; 2373 return 0; 2374 } 2375 2376 2377 static void __devinit 2378 fore200e_param_bs_queue(struct fore200e* fore200e, 2379 enum buffer_scheme scheme, enum buffer_magn magn, 2380 int queue_length, int pool_size, int supply_blksize) 2381 { 2382 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; 2383 2384 fore200e->bus->write(queue_length, &bs_spec->queue_length); 2385 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); 2386 fore200e->bus->write(pool_size, &bs_spec->pool_size); 2387 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); 2388 } 2389 2390 2391 static int __devinit 2392 fore200e_initialize(struct fore200e* fore200e) 2393 { 2394 struct cp_queues __iomem * cpq; 2395 int ok, scheme, magn; 2396 2397 DPRINTK(2, "device %s being initialized\n", fore200e->name); 2398 2399 mutex_init(&fore200e->rate_mtx); 2400 spin_lock_init(&fore200e->q_lock); 2401 2402 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; 2403 2404 /* enable cp to host interrupts */ 2405 fore200e->bus->write(1, &cpq->imask); 2406 2407 if (fore200e->bus->irq_enable) 2408 fore200e->bus->irq_enable(fore200e); 2409 2410 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); 2411 2412 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); 2413 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); 2414 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); 2415 2416 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); 2417 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); 2418 2419 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) 2420 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) 2421 fore200e_param_bs_queue(fore200e, scheme, magn, 2422 QUEUE_SIZE_BS, 2423 fore200e_rx_buf_nbr[ scheme ][ magn ], 2424 RBD_BLK_SIZE); 2425 2426 /* issue the initialize command */ 2427 fore200e->bus->write(STATUS_PENDING, &cpq->init.status); 2428 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); 2429 2430 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); 2431 if (ok == 0) { 2432 printk(FORE200E "device %s initialization failed\n", fore200e->name); 2433 return -ENODEV; 2434 } 2435 2436 printk(FORE200E "device %s initialized\n", fore200e->name); 2437 2438 fore200e->state = FORE200E_STATE_INITIALIZE; 2439 return 0; 2440 } 2441 2442 2443 static void __devinit 2444 fore200e_monitor_putc(struct fore200e* fore200e, char c) 2445 { 2446 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2447 2448 #if 0 2449 printk("%c", c); 2450 #endif 2451 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); 2452 } 2453 2454 2455 static int __devinit 2456 fore200e_monitor_getc(struct fore200e* fore200e) 2457 { 2458 struct cp_monitor __iomem * monitor = fore200e->cp_monitor; 2459 unsigned long timeout = jiffies + msecs_to_jiffies(50); 2460 int c; 2461 2462 while (time_before(jiffies, timeout)) { 2463 2464 c = (int) fore200e->bus->read(&monitor->soft_uart.recv); 2465 2466 if (c & FORE200E_CP_MONITOR_UART_AVAIL) { 2467 2468 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); 2469 #if 0 2470 printk("%c", c & 0xFF); 2471 #endif 2472 return c & 0xFF; 2473 } 2474 } 2475 2476 return -1; 2477 } 2478 2479 2480 static void __devinit 2481 fore200e_monitor_puts(struct fore200e* fore200e, char* str) 2482 { 2483 while (*str) { 2484 2485 /* the i960 monitor doesn't accept any new character if it has something to say */ 2486 while (fore200e_monitor_getc(fore200e) >= 0); 2487 2488 fore200e_monitor_putc(fore200e, *str++); 2489 } 2490 2491 while (fore200e_monitor_getc(fore200e) >= 0); 2492 } 2493 2494 #ifdef __LITTLE_ENDIAN 2495 #define FW_EXT ".bin" 2496 #else 2497 #define FW_EXT "_ecd.bin2" 2498 #endif 2499 2500 static int __devinit 2501 fore200e_load_and_start_fw(struct fore200e* fore200e) 2502 { 2503 const struct firmware *firmware; 2504 struct device *device; 2505 struct fw_header *fw_header; 2506 const __le32 *fw_data; 2507 u32 fw_size; 2508 u32 __iomem *load_addr; 2509 char buf[48]; 2510 int err = -ENODEV; 2511 2512 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0) 2513 device = &((struct pci_dev *) fore200e->bus_dev)->dev; 2514 #ifdef CONFIG_SBUS 2515 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0) 2516 device = &((struct platform_device *) fore200e->bus_dev)->dev; 2517 #endif 2518 else 2519 return err; 2520 2521 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT); 2522 if ((err = request_firmware(&firmware, buf, device)) < 0) { 2523 printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name); 2524 return err; 2525 } 2526 2527 fw_data = (__le32 *) firmware->data; 2528 fw_size = firmware->size / sizeof(u32); 2529 fw_header = (struct fw_header *) firmware->data; 2530 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); 2531 2532 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", 2533 fore200e->name, load_addr, fw_size); 2534 2535 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { 2536 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); 2537 goto release; 2538 } 2539 2540 for (; fw_size--; fw_data++, load_addr++) 2541 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); 2542 2543 DPRINTK(2, "device %s firmware being started\n", fore200e->name); 2544 2545 #if defined(__sparc_v9__) 2546 /* reported to be required by SBA cards on some sparc64 hosts */ 2547 fore200e_spin(100); 2548 #endif 2549 2550 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); 2551 fore200e_monitor_puts(fore200e, buf); 2552 2553 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) { 2554 printk(FORE200E "device %s firmware didn't start\n", fore200e->name); 2555 goto release; 2556 } 2557 2558 printk(FORE200E "device %s firmware started\n", fore200e->name); 2559 2560 fore200e->state = FORE200E_STATE_START_FW; 2561 err = 0; 2562 2563 release: 2564 release_firmware(firmware); 2565 return err; 2566 } 2567 2568 2569 static int __devinit 2570 fore200e_register(struct fore200e* fore200e, struct device *parent) 2571 { 2572 struct atm_dev* atm_dev; 2573 2574 DPRINTK(2, "device %s being registered\n", fore200e->name); 2575 2576 atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops, 2577 -1, NULL); 2578 if (atm_dev == NULL) { 2579 printk(FORE200E "unable to register device %s\n", fore200e->name); 2580 return -ENODEV; 2581 } 2582 2583 atm_dev->dev_data = fore200e; 2584 fore200e->atm_dev = atm_dev; 2585 2586 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; 2587 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; 2588 2589 fore200e->available_cell_rate = ATM_OC3_PCR; 2590 2591 fore200e->state = FORE200E_STATE_REGISTER; 2592 return 0; 2593 } 2594 2595 2596 static int __devinit 2597 fore200e_init(struct fore200e* fore200e, struct device *parent) 2598 { 2599 if (fore200e_register(fore200e, parent) < 0) 2600 return -ENODEV; 2601 2602 if (fore200e->bus->configure(fore200e) < 0) 2603 return -ENODEV; 2604 2605 if (fore200e->bus->map(fore200e) < 0) 2606 return -ENODEV; 2607 2608 if (fore200e_reset(fore200e, 1) < 0) 2609 return -ENODEV; 2610 2611 if (fore200e_load_and_start_fw(fore200e) < 0) 2612 return -ENODEV; 2613 2614 if (fore200e_initialize(fore200e) < 0) 2615 return -ENODEV; 2616 2617 if (fore200e_init_cmd_queue(fore200e) < 0) 2618 return -ENOMEM; 2619 2620 if (fore200e_init_tx_queue(fore200e) < 0) 2621 return -ENOMEM; 2622 2623 if (fore200e_init_rx_queue(fore200e) < 0) 2624 return -ENOMEM; 2625 2626 if (fore200e_init_bs_queue(fore200e) < 0) 2627 return -ENOMEM; 2628 2629 if (fore200e_alloc_rx_buf(fore200e) < 0) 2630 return -ENOMEM; 2631 2632 if (fore200e_get_esi(fore200e) < 0) 2633 return -EIO; 2634 2635 if (fore200e_irq_request(fore200e) < 0) 2636 return -EBUSY; 2637 2638 fore200e_supply(fore200e); 2639 2640 /* all done, board initialization is now complete */ 2641 fore200e->state = FORE200E_STATE_COMPLETE; 2642 return 0; 2643 } 2644 2645 #ifdef CONFIG_SBUS 2646 static const struct of_device_id fore200e_sba_match[]; 2647 static int __devinit fore200e_sba_probe(struct platform_device *op) 2648 { 2649 const struct of_device_id *match; 2650 const struct fore200e_bus *bus; 2651 struct fore200e *fore200e; 2652 static int index = 0; 2653 int err; 2654 2655 match = of_match_device(fore200e_sba_match, &op->dev); 2656 if (!match) 2657 return -EINVAL; 2658 bus = match->data; 2659 2660 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2661 if (!fore200e) 2662 return -ENOMEM; 2663 2664 fore200e->bus = bus; 2665 fore200e->bus_dev = op; 2666 fore200e->irq = op->archdata.irqs[0]; 2667 fore200e->phys_base = op->resource[0].start; 2668 2669 sprintf(fore200e->name, "%s-%d", bus->model_name, index); 2670 2671 err = fore200e_init(fore200e, &op->dev); 2672 if (err < 0) { 2673 fore200e_shutdown(fore200e); 2674 kfree(fore200e); 2675 return err; 2676 } 2677 2678 index++; 2679 dev_set_drvdata(&op->dev, fore200e); 2680 2681 return 0; 2682 } 2683 2684 static int __devexit fore200e_sba_remove(struct platform_device *op) 2685 { 2686 struct fore200e *fore200e = dev_get_drvdata(&op->dev); 2687 2688 fore200e_shutdown(fore200e); 2689 kfree(fore200e); 2690 2691 return 0; 2692 } 2693 2694 static const struct of_device_id fore200e_sba_match[] = { 2695 { 2696 .name = SBA200E_PROM_NAME, 2697 .data = (void *) &fore200e_bus[1], 2698 }, 2699 {}, 2700 }; 2701 MODULE_DEVICE_TABLE(of, fore200e_sba_match); 2702 2703 static struct platform_driver fore200e_sba_driver = { 2704 .driver = { 2705 .name = "fore_200e", 2706 .owner = THIS_MODULE, 2707 .of_match_table = fore200e_sba_match, 2708 }, 2709 .probe = fore200e_sba_probe, 2710 .remove = __devexit_p(fore200e_sba_remove), 2711 }; 2712 #endif 2713 2714 #ifdef CONFIG_PCI 2715 static int __devinit 2716 fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) 2717 { 2718 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data; 2719 struct fore200e* fore200e; 2720 int err = 0; 2721 static int index = 0; 2722 2723 if (pci_enable_device(pci_dev)) { 2724 err = -EINVAL; 2725 goto out; 2726 } 2727 2728 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL); 2729 if (fore200e == NULL) { 2730 err = -ENOMEM; 2731 goto out_disable; 2732 } 2733 2734 fore200e->bus = bus; 2735 fore200e->bus_dev = pci_dev; 2736 fore200e->irq = pci_dev->irq; 2737 fore200e->phys_base = pci_resource_start(pci_dev, 0); 2738 2739 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); 2740 2741 pci_set_master(pci_dev); 2742 2743 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", 2744 fore200e->bus->model_name, 2745 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); 2746 2747 sprintf(fore200e->name, "%s-%d", bus->model_name, index); 2748 2749 err = fore200e_init(fore200e, &pci_dev->dev); 2750 if (err < 0) { 2751 fore200e_shutdown(fore200e); 2752 goto out_free; 2753 } 2754 2755 ++index; 2756 pci_set_drvdata(pci_dev, fore200e); 2757 2758 out: 2759 return err; 2760 2761 out_free: 2762 kfree(fore200e); 2763 out_disable: 2764 pci_disable_device(pci_dev); 2765 goto out; 2766 } 2767 2768 2769 static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev) 2770 { 2771 struct fore200e *fore200e; 2772 2773 fore200e = pci_get_drvdata(pci_dev); 2774 2775 fore200e_shutdown(fore200e); 2776 kfree(fore200e); 2777 pci_disable_device(pci_dev); 2778 } 2779 2780 2781 static struct pci_device_id fore200e_pca_tbl[] = { 2782 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID, 2783 0, 0, (unsigned long) &fore200e_bus[0] }, 2784 { 0, } 2785 }; 2786 2787 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); 2788 2789 static struct pci_driver fore200e_pca_driver = { 2790 .name = "fore_200e", 2791 .probe = fore200e_pca_detect, 2792 .remove = __devexit_p(fore200e_pca_remove_one), 2793 .id_table = fore200e_pca_tbl, 2794 }; 2795 #endif 2796 2797 static int __init fore200e_module_init(void) 2798 { 2799 int err; 2800 2801 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); 2802 2803 #ifdef CONFIG_SBUS 2804 err = platform_driver_register(&fore200e_sba_driver); 2805 if (err) 2806 return err; 2807 #endif 2808 2809 #ifdef CONFIG_PCI 2810 err = pci_register_driver(&fore200e_pca_driver); 2811 #endif 2812 2813 #ifdef CONFIG_SBUS 2814 if (err) 2815 platform_driver_unregister(&fore200e_sba_driver); 2816 #endif 2817 2818 return err; 2819 } 2820 2821 static void __exit fore200e_module_cleanup(void) 2822 { 2823 #ifdef CONFIG_PCI 2824 pci_unregister_driver(&fore200e_pca_driver); 2825 #endif 2826 #ifdef CONFIG_SBUS 2827 platform_driver_unregister(&fore200e_sba_driver); 2828 #endif 2829 } 2830 2831 static int 2832 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) 2833 { 2834 struct fore200e* fore200e = FORE200E_DEV(dev); 2835 struct fore200e_vcc* fore200e_vcc; 2836 struct atm_vcc* vcc; 2837 int i, len, left = *pos; 2838 unsigned long flags; 2839 2840 if (!left--) { 2841 2842 if (fore200e_getstats(fore200e) < 0) 2843 return -EIO; 2844 2845 len = sprintf(page,"\n" 2846 " device:\n" 2847 " internal name:\t\t%s\n", fore200e->name); 2848 2849 /* print bus-specific information */ 2850 if (fore200e->bus->proc_read) 2851 len += fore200e->bus->proc_read(fore200e, page + len); 2852 2853 len += sprintf(page + len, 2854 " interrupt line:\t\t%s\n" 2855 " physical base address:\t0x%p\n" 2856 " virtual base address:\t0x%p\n" 2857 " factory address (ESI):\t%pM\n" 2858 " board serial number:\t\t%d\n\n", 2859 fore200e_irq_itoa(fore200e->irq), 2860 (void*)fore200e->phys_base, 2861 fore200e->virt_base, 2862 fore200e->esi, 2863 fore200e->esi[4] * 256 + fore200e->esi[5]); 2864 2865 return len; 2866 } 2867 2868 if (!left--) 2869 return sprintf(page, 2870 " free small bufs, scheme 1:\t%d\n" 2871 " free large bufs, scheme 1:\t%d\n" 2872 " free small bufs, scheme 2:\t%d\n" 2873 " free large bufs, scheme 2:\t%d\n", 2874 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, 2875 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, 2876 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, 2877 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); 2878 2879 if (!left--) { 2880 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); 2881 2882 len = sprintf(page,"\n\n" 2883 " cell processor:\n" 2884 " heartbeat state:\t\t"); 2885 2886 if (hb >> 16 != 0xDEAD) 2887 len += sprintf(page + len, "0x%08x\n", hb); 2888 else 2889 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); 2890 2891 return len; 2892 } 2893 2894 if (!left--) { 2895 static const char* media_name[] = { 2896 "unshielded twisted pair", 2897 "multimode optical fiber ST", 2898 "multimode optical fiber SC", 2899 "single-mode optical fiber ST", 2900 "single-mode optical fiber SC", 2901 "unknown" 2902 }; 2903 2904 static const char* oc3_mode[] = { 2905 "normal operation", 2906 "diagnostic loopback", 2907 "line loopback", 2908 "unknown" 2909 }; 2910 2911 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); 2912 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); 2913 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); 2914 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); 2915 u32 oc3_index; 2916 2917 if (media_index > 4) 2918 media_index = 5; 2919 2920 switch (fore200e->loop_mode) { 2921 case ATM_LM_NONE: oc3_index = 0; 2922 break; 2923 case ATM_LM_LOC_PHY: oc3_index = 1; 2924 break; 2925 case ATM_LM_RMT_PHY: oc3_index = 2; 2926 break; 2927 default: oc3_index = 3; 2928 } 2929 2930 return sprintf(page, 2931 " firmware release:\t\t%d.%d.%d\n" 2932 " monitor release:\t\t%d.%d\n" 2933 " media type:\t\t\t%s\n" 2934 " OC-3 revision:\t\t0x%x\n" 2935 " OC-3 mode:\t\t\t%s", 2936 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, 2937 mon960_release >> 16, mon960_release << 16 >> 16, 2938 media_name[ media_index ], 2939 oc3_revision, 2940 oc3_mode[ oc3_index ]); 2941 } 2942 2943 if (!left--) { 2944 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; 2945 2946 return sprintf(page, 2947 "\n\n" 2948 " monitor:\n" 2949 " version number:\t\t%d\n" 2950 " boot status word:\t\t0x%08x\n", 2951 fore200e->bus->read(&cp_monitor->mon_version), 2952 fore200e->bus->read(&cp_monitor->bstat)); 2953 } 2954 2955 if (!left--) 2956 return sprintf(page, 2957 "\n" 2958 " device statistics:\n" 2959 " 4b5b:\n" 2960 " crc_header_errors:\t\t%10u\n" 2961 " framing_errors:\t\t%10u\n", 2962 be32_to_cpu(fore200e->stats->phy.crc_header_errors), 2963 be32_to_cpu(fore200e->stats->phy.framing_errors)); 2964 2965 if (!left--) 2966 return sprintf(page, "\n" 2967 " OC-3:\n" 2968 " section_bip8_errors:\t%10u\n" 2969 " path_bip8_errors:\t\t%10u\n" 2970 " line_bip24_errors:\t\t%10u\n" 2971 " line_febe_errors:\t\t%10u\n" 2972 " path_febe_errors:\t\t%10u\n" 2973 " corr_hcs_errors:\t\t%10u\n" 2974 " ucorr_hcs_errors:\t\t%10u\n", 2975 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors), 2976 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors), 2977 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors), 2978 be32_to_cpu(fore200e->stats->oc3.line_febe_errors), 2979 be32_to_cpu(fore200e->stats->oc3.path_febe_errors), 2980 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors), 2981 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors)); 2982 2983 if (!left--) 2984 return sprintf(page,"\n" 2985 " ATM:\t\t\t\t cells\n" 2986 " TX:\t\t\t%10u\n" 2987 " RX:\t\t\t%10u\n" 2988 " vpi out of range:\t\t%10u\n" 2989 " vpi no conn:\t\t%10u\n" 2990 " vci out of range:\t\t%10u\n" 2991 " vci no conn:\t\t%10u\n", 2992 be32_to_cpu(fore200e->stats->atm.cells_transmitted), 2993 be32_to_cpu(fore200e->stats->atm.cells_received), 2994 be32_to_cpu(fore200e->stats->atm.vpi_bad_range), 2995 be32_to_cpu(fore200e->stats->atm.vpi_no_conn), 2996 be32_to_cpu(fore200e->stats->atm.vci_bad_range), 2997 be32_to_cpu(fore200e->stats->atm.vci_no_conn)); 2998 2999 if (!left--) 3000 return sprintf(page,"\n" 3001 " AAL0:\t\t\t cells\n" 3002 " TX:\t\t\t%10u\n" 3003 " RX:\t\t\t%10u\n" 3004 " dropped:\t\t\t%10u\n", 3005 be32_to_cpu(fore200e->stats->aal0.cells_transmitted), 3006 be32_to_cpu(fore200e->stats->aal0.cells_received), 3007 be32_to_cpu(fore200e->stats->aal0.cells_dropped)); 3008 3009 if (!left--) 3010 return sprintf(page,"\n" 3011 " AAL3/4:\n" 3012 " SAR sublayer:\t\t cells\n" 3013 " TX:\t\t\t%10u\n" 3014 " RX:\t\t\t%10u\n" 3015 " dropped:\t\t\t%10u\n" 3016 " CRC errors:\t\t%10u\n" 3017 " protocol errors:\t\t%10u\n\n" 3018 " CS sublayer:\t\t PDUs\n" 3019 " TX:\t\t\t%10u\n" 3020 " RX:\t\t\t%10u\n" 3021 " dropped:\t\t\t%10u\n" 3022 " protocol errors:\t\t%10u\n", 3023 be32_to_cpu(fore200e->stats->aal34.cells_transmitted), 3024 be32_to_cpu(fore200e->stats->aal34.cells_received), 3025 be32_to_cpu(fore200e->stats->aal34.cells_dropped), 3026 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors), 3027 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors), 3028 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted), 3029 be32_to_cpu(fore200e->stats->aal34.cspdus_received), 3030 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped), 3031 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors)); 3032 3033 if (!left--) 3034 return sprintf(page,"\n" 3035 " AAL5:\n" 3036 " SAR sublayer:\t\t cells\n" 3037 " TX:\t\t\t%10u\n" 3038 " RX:\t\t\t%10u\n" 3039 " dropped:\t\t\t%10u\n" 3040 " congestions:\t\t%10u\n\n" 3041 " CS sublayer:\t\t PDUs\n" 3042 " TX:\t\t\t%10u\n" 3043 " RX:\t\t\t%10u\n" 3044 " dropped:\t\t\t%10u\n" 3045 " CRC errors:\t\t%10u\n" 3046 " protocol errors:\t\t%10u\n", 3047 be32_to_cpu(fore200e->stats->aal5.cells_transmitted), 3048 be32_to_cpu(fore200e->stats->aal5.cells_received), 3049 be32_to_cpu(fore200e->stats->aal5.cells_dropped), 3050 be32_to_cpu(fore200e->stats->aal5.congestion_experienced), 3051 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted), 3052 be32_to_cpu(fore200e->stats->aal5.cspdus_received), 3053 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped), 3054 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors), 3055 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors)); 3056 3057 if (!left--) 3058 return sprintf(page,"\n" 3059 " AUX:\t\t allocation failures\n" 3060 " small b1:\t\t\t%10u\n" 3061 " large b1:\t\t\t%10u\n" 3062 " small b2:\t\t\t%10u\n" 3063 " large b2:\t\t\t%10u\n" 3064 " RX PDUs:\t\t\t%10u\n" 3065 " TX PDUs:\t\t\t%10lu\n", 3066 be32_to_cpu(fore200e->stats->aux.small_b1_failed), 3067 be32_to_cpu(fore200e->stats->aux.large_b1_failed), 3068 be32_to_cpu(fore200e->stats->aux.small_b2_failed), 3069 be32_to_cpu(fore200e->stats->aux.large_b2_failed), 3070 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed), 3071 fore200e->tx_sat); 3072 3073 if (!left--) 3074 return sprintf(page,"\n" 3075 " receive carrier:\t\t\t%s\n", 3076 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); 3077 3078 if (!left--) { 3079 return sprintf(page,"\n" 3080 " VCCs:\n address VPI VCI AAL " 3081 "TX PDUs TX min/max size RX PDUs RX min/max size\n"); 3082 } 3083 3084 for (i = 0; i < NBR_CONNECT; i++) { 3085 3086 vcc = fore200e->vc_map[i].vcc; 3087 3088 if (vcc == NULL) 3089 continue; 3090 3091 spin_lock_irqsave(&fore200e->q_lock, flags); 3092 3093 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { 3094 3095 fore200e_vcc = FORE200E_VCC(vcc); 3096 ASSERT(fore200e_vcc); 3097 3098 len = sprintf(page, 3099 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", 3100 (u32)(unsigned long)vcc, 3101 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), 3102 fore200e_vcc->tx_pdu, 3103 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, 3104 fore200e_vcc->tx_max_pdu, 3105 fore200e_vcc->rx_pdu, 3106 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, 3107 fore200e_vcc->rx_max_pdu); 3108 3109 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3110 return len; 3111 } 3112 3113 spin_unlock_irqrestore(&fore200e->q_lock, flags); 3114 } 3115 3116 return 0; 3117 } 3118 3119 module_init(fore200e_module_init); 3120 module_exit(fore200e_module_cleanup); 3121 3122 3123 static const struct atmdev_ops fore200e_ops = 3124 { 3125 .open = fore200e_open, 3126 .close = fore200e_close, 3127 .ioctl = fore200e_ioctl, 3128 .getsockopt = fore200e_getsockopt, 3129 .setsockopt = fore200e_setsockopt, 3130 .send = fore200e_send, 3131 .change_qos = fore200e_change_qos, 3132 .proc_read = fore200e_proc_read, 3133 .owner = THIS_MODULE 3134 }; 3135 3136 3137 static const struct fore200e_bus fore200e_bus[] = { 3138 #ifdef CONFIG_PCI 3139 { "PCA-200E", "pca200e", 32, 4, 32, 3140 fore200e_pca_read, 3141 fore200e_pca_write, 3142 fore200e_pca_dma_map, 3143 fore200e_pca_dma_unmap, 3144 fore200e_pca_dma_sync_for_cpu, 3145 fore200e_pca_dma_sync_for_device, 3146 fore200e_pca_dma_chunk_alloc, 3147 fore200e_pca_dma_chunk_free, 3148 fore200e_pca_configure, 3149 fore200e_pca_map, 3150 fore200e_pca_reset, 3151 fore200e_pca_prom_read, 3152 fore200e_pca_unmap, 3153 NULL, 3154 fore200e_pca_irq_check, 3155 fore200e_pca_irq_ack, 3156 fore200e_pca_proc_read, 3157 }, 3158 #endif 3159 #ifdef CONFIG_SBUS 3160 { "SBA-200E", "sba200e", 32, 64, 32, 3161 fore200e_sba_read, 3162 fore200e_sba_write, 3163 fore200e_sba_dma_map, 3164 fore200e_sba_dma_unmap, 3165 fore200e_sba_dma_sync_for_cpu, 3166 fore200e_sba_dma_sync_for_device, 3167 fore200e_sba_dma_chunk_alloc, 3168 fore200e_sba_dma_chunk_free, 3169 fore200e_sba_configure, 3170 fore200e_sba_map, 3171 fore200e_sba_reset, 3172 fore200e_sba_prom_read, 3173 fore200e_sba_unmap, 3174 fore200e_sba_irq_enable, 3175 fore200e_sba_irq_check, 3176 fore200e_sba_irq_ack, 3177 fore200e_sba_proc_read, 3178 }, 3179 #endif 3180 {} 3181 }; 3182 3183 MODULE_LICENSE("GPL"); 3184 #ifdef CONFIG_PCI 3185 #ifdef __LITTLE_ENDIAN__ 3186 MODULE_FIRMWARE("pca200e.bin"); 3187 #else 3188 MODULE_FIRMWARE("pca200e_ecd.bin2"); 3189 #endif 3190 #endif /* CONFIG_PCI */ 3191 #ifdef CONFIG_SBUS 3192 MODULE_FIRMWARE("sba200e_ecd.bin2"); 3193 #endif 3194