1 /* 2 * sata_vsc.c - Vitesse VSC7174 4 port DPA SATA 3 * 4 * Maintained by: Jeremy Higdon @ SGI 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2004 SGI 9 * 10 * Bits from Jeff Garzik, Copyright RedHat, Inc. 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; see the file COPYING. If not, write to 25 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * 28 * libata documentation is available via 'make {ps|pdf}docs', 29 * as Documentation/DocBook/libata.* 30 * 31 * Vitesse hardware documentation presumably available under NDA. 32 * Intel 31244 (same hardware interface) documentation presumably 33 * available from http://developer.intel.com/ 34 * 35 */ 36 37 #include <linux/kernel.h> 38 #include <linux/module.h> 39 #include <linux/pci.h> 40 #include <linux/init.h> 41 #include <linux/blkdev.h> 42 #include <linux/delay.h> 43 #include <linux/interrupt.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/device.h> 46 #include <scsi/scsi_host.h> 47 #include <linux/libata.h> 48 49 #define DRV_NAME "sata_vsc" 50 #define DRV_VERSION "2.3" 51 52 enum { 53 VSC_MMIO_BAR = 0, 54 55 /* Interrupt register offsets (from chip base address) */ 56 VSC_SATA_INT_STAT_OFFSET = 0x00, 57 VSC_SATA_INT_MASK_OFFSET = 0x04, 58 59 /* Taskfile registers offsets */ 60 VSC_SATA_TF_CMD_OFFSET = 0x00, 61 VSC_SATA_TF_DATA_OFFSET = 0x00, 62 VSC_SATA_TF_ERROR_OFFSET = 0x04, 63 VSC_SATA_TF_FEATURE_OFFSET = 0x06, 64 VSC_SATA_TF_NSECT_OFFSET = 0x08, 65 VSC_SATA_TF_LBAL_OFFSET = 0x0c, 66 VSC_SATA_TF_LBAM_OFFSET = 0x10, 67 VSC_SATA_TF_LBAH_OFFSET = 0x14, 68 VSC_SATA_TF_DEVICE_OFFSET = 0x18, 69 VSC_SATA_TF_STATUS_OFFSET = 0x1c, 70 VSC_SATA_TF_COMMAND_OFFSET = 0x1d, 71 VSC_SATA_TF_ALTSTATUS_OFFSET = 0x28, 72 VSC_SATA_TF_CTL_OFFSET = 0x29, 73 74 /* DMA base */ 75 VSC_SATA_UP_DESCRIPTOR_OFFSET = 0x64, 76 VSC_SATA_UP_DATA_BUFFER_OFFSET = 0x6C, 77 VSC_SATA_DMA_CMD_OFFSET = 0x70, 78 79 /* SCRs base */ 80 VSC_SATA_SCR_STATUS_OFFSET = 0x100, 81 VSC_SATA_SCR_ERROR_OFFSET = 0x104, 82 VSC_SATA_SCR_CONTROL_OFFSET = 0x108, 83 84 /* Port stride */ 85 VSC_SATA_PORT_OFFSET = 0x200, 86 87 /* Error interrupt status bit offsets */ 88 VSC_SATA_INT_ERROR_CRC = 0x40, 89 VSC_SATA_INT_ERROR_T = 0x20, 90 VSC_SATA_INT_ERROR_P = 0x10, 91 VSC_SATA_INT_ERROR_R = 0x8, 92 VSC_SATA_INT_ERROR_E = 0x4, 93 VSC_SATA_INT_ERROR_M = 0x2, 94 VSC_SATA_INT_PHY_CHANGE = 0x1, 95 VSC_SATA_INT_ERROR = (VSC_SATA_INT_ERROR_CRC | VSC_SATA_INT_ERROR_T | \ 96 VSC_SATA_INT_ERROR_P | VSC_SATA_INT_ERROR_R | \ 97 VSC_SATA_INT_ERROR_E | VSC_SATA_INT_ERROR_M | \ 98 VSC_SATA_INT_PHY_CHANGE), 99 }; 100 101 static int vsc_sata_scr_read(struct ata_link *link, 102 unsigned int sc_reg, u32 *val) 103 { 104 if (sc_reg > SCR_CONTROL) 105 return -EINVAL; 106 *val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4)); 107 return 0; 108 } 109 110 111 static int vsc_sata_scr_write(struct ata_link *link, 112 unsigned int sc_reg, u32 val) 113 { 114 if (sc_reg > SCR_CONTROL) 115 return -EINVAL; 116 writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4)); 117 return 0; 118 } 119 120 121 static void vsc_freeze(struct ata_port *ap) 122 { 123 void __iomem *mask_addr; 124 125 mask_addr = ap->host->iomap[VSC_MMIO_BAR] + 126 VSC_SATA_INT_MASK_OFFSET + ap->port_no; 127 128 writeb(0, mask_addr); 129 } 130 131 132 static void vsc_thaw(struct ata_port *ap) 133 { 134 void __iomem *mask_addr; 135 136 mask_addr = ap->host->iomap[VSC_MMIO_BAR] + 137 VSC_SATA_INT_MASK_OFFSET + ap->port_no; 138 139 writeb(0xff, mask_addr); 140 } 141 142 143 static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl) 144 { 145 void __iomem *mask_addr; 146 u8 mask; 147 148 mask_addr = ap->host->iomap[VSC_MMIO_BAR] + 149 VSC_SATA_INT_MASK_OFFSET + ap->port_no; 150 mask = readb(mask_addr); 151 if (ctl & ATA_NIEN) 152 mask |= 0x80; 153 else 154 mask &= 0x7F; 155 writeb(mask, mask_addr); 156 } 157 158 159 static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 160 { 161 struct ata_ioports *ioaddr = &ap->ioaddr; 162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 163 164 /* 165 * The only thing the ctl register is used for is SRST. 166 * That is not enabled or disabled via tf_load. 167 * However, if ATA_NIEN is changed, then we need to change 168 * the interrupt register. 169 */ 170 if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) { 171 ap->last_ctl = tf->ctl; 172 vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN); 173 } 174 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 175 writew(tf->feature | (((u16)tf->hob_feature) << 8), 176 ioaddr->feature_addr); 177 writew(tf->nsect | (((u16)tf->hob_nsect) << 8), 178 ioaddr->nsect_addr); 179 writew(tf->lbal | (((u16)tf->hob_lbal) << 8), 180 ioaddr->lbal_addr); 181 writew(tf->lbam | (((u16)tf->hob_lbam) << 8), 182 ioaddr->lbam_addr); 183 writew(tf->lbah | (((u16)tf->hob_lbah) << 8), 184 ioaddr->lbah_addr); 185 } else if (is_addr) { 186 writew(tf->feature, ioaddr->feature_addr); 187 writew(tf->nsect, ioaddr->nsect_addr); 188 writew(tf->lbal, ioaddr->lbal_addr); 189 writew(tf->lbam, ioaddr->lbam_addr); 190 writew(tf->lbah, ioaddr->lbah_addr); 191 } 192 193 if (tf->flags & ATA_TFLAG_DEVICE) 194 writeb(tf->device, ioaddr->device_addr); 195 196 ata_wait_idle(ap); 197 } 198 199 200 static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 201 { 202 struct ata_ioports *ioaddr = &ap->ioaddr; 203 u16 nsect, lbal, lbam, lbah, feature; 204 205 tf->command = ata_sff_check_status(ap); 206 tf->device = readw(ioaddr->device_addr); 207 feature = readw(ioaddr->error_addr); 208 nsect = readw(ioaddr->nsect_addr); 209 lbal = readw(ioaddr->lbal_addr); 210 lbam = readw(ioaddr->lbam_addr); 211 lbah = readw(ioaddr->lbah_addr); 212 213 tf->feature = feature; 214 tf->nsect = nsect; 215 tf->lbal = lbal; 216 tf->lbam = lbam; 217 tf->lbah = lbah; 218 219 if (tf->flags & ATA_TFLAG_LBA48) { 220 tf->hob_feature = feature >> 8; 221 tf->hob_nsect = nsect >> 8; 222 tf->hob_lbal = lbal >> 8; 223 tf->hob_lbam = lbam >> 8; 224 tf->hob_lbah = lbah >> 8; 225 } 226 } 227 228 static inline void vsc_error_intr(u8 port_status, struct ata_port *ap) 229 { 230 if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M)) 231 ata_port_freeze(ap); 232 else 233 ata_port_abort(ap); 234 } 235 236 static void vsc_port_intr(u8 port_status, struct ata_port *ap) 237 { 238 struct ata_queued_cmd *qc; 239 int handled = 0; 240 241 if (unlikely(port_status & VSC_SATA_INT_ERROR)) { 242 vsc_error_intr(port_status, ap); 243 return; 244 } 245 246 qc = ata_qc_from_tag(ap, ap->link.active_tag); 247 if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING))) 248 handled = ata_bmdma_port_intr(ap, qc); 249 250 /* We received an interrupt during a polled command, 251 * or some other spurious condition. Interrupt reporting 252 * with this hardware is fairly reliable so it is safe to 253 * simply clear the interrupt 254 */ 255 if (unlikely(!handled)) 256 ap->ops->sff_check_status(ap); 257 } 258 259 /* 260 * vsc_sata_interrupt 261 * 262 * Read the interrupt register and process for the devices that have 263 * them pending. 264 */ 265 static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance) 266 { 267 struct ata_host *host = dev_instance; 268 unsigned int i; 269 unsigned int handled = 0; 270 u32 status; 271 272 status = readl(host->iomap[VSC_MMIO_BAR] + VSC_SATA_INT_STAT_OFFSET); 273 274 if (unlikely(status == 0xffffffff || status == 0)) { 275 if (status) 276 dev_err(host->dev, 277 ": IRQ status == 0xffffffff, PCI fault or device removal?\n"); 278 goto out; 279 } 280 281 spin_lock(&host->lock); 282 283 for (i = 0; i < host->n_ports; i++) { 284 u8 port_status = (status >> (8 * i)) & 0xff; 285 if (port_status) { 286 vsc_port_intr(port_status, host->ports[i]); 287 handled++; 288 } 289 } 290 291 spin_unlock(&host->lock); 292 out: 293 return IRQ_RETVAL(handled); 294 } 295 296 297 static struct scsi_host_template vsc_sata_sht = { 298 ATA_BMDMA_SHT(DRV_NAME), 299 }; 300 301 302 static struct ata_port_operations vsc_sata_ops = { 303 .inherits = &ata_bmdma_port_ops, 304 /* The IRQ handling is not quite standard SFF behaviour so we 305 cannot use the default lost interrupt handler */ 306 .lost_interrupt = ATA_OP_NULL, 307 .sff_tf_load = vsc_sata_tf_load, 308 .sff_tf_read = vsc_sata_tf_read, 309 .freeze = vsc_freeze, 310 .thaw = vsc_thaw, 311 .scr_read = vsc_sata_scr_read, 312 .scr_write = vsc_sata_scr_write, 313 }; 314 315 static void __devinit vsc_sata_setup_port(struct ata_ioports *port, 316 void __iomem *base) 317 { 318 port->cmd_addr = base + VSC_SATA_TF_CMD_OFFSET; 319 port->data_addr = base + VSC_SATA_TF_DATA_OFFSET; 320 port->error_addr = base + VSC_SATA_TF_ERROR_OFFSET; 321 port->feature_addr = base + VSC_SATA_TF_FEATURE_OFFSET; 322 port->nsect_addr = base + VSC_SATA_TF_NSECT_OFFSET; 323 port->lbal_addr = base + VSC_SATA_TF_LBAL_OFFSET; 324 port->lbam_addr = base + VSC_SATA_TF_LBAM_OFFSET; 325 port->lbah_addr = base + VSC_SATA_TF_LBAH_OFFSET; 326 port->device_addr = base + VSC_SATA_TF_DEVICE_OFFSET; 327 port->status_addr = base + VSC_SATA_TF_STATUS_OFFSET; 328 port->command_addr = base + VSC_SATA_TF_COMMAND_OFFSET; 329 port->altstatus_addr = base + VSC_SATA_TF_ALTSTATUS_OFFSET; 330 port->ctl_addr = base + VSC_SATA_TF_CTL_OFFSET; 331 port->bmdma_addr = base + VSC_SATA_DMA_CMD_OFFSET; 332 port->scr_addr = base + VSC_SATA_SCR_STATUS_OFFSET; 333 writel(0, base + VSC_SATA_UP_DESCRIPTOR_OFFSET); 334 writel(0, base + VSC_SATA_UP_DATA_BUFFER_OFFSET); 335 } 336 337 338 static int __devinit vsc_sata_init_one(struct pci_dev *pdev, 339 const struct pci_device_id *ent) 340 { 341 static const struct ata_port_info pi = { 342 .flags = ATA_FLAG_SATA, 343 .pio_mask = ATA_PIO4, 344 .mwdma_mask = ATA_MWDMA2, 345 .udma_mask = ATA_UDMA6, 346 .port_ops = &vsc_sata_ops, 347 }; 348 const struct ata_port_info *ppi[] = { &pi, NULL }; 349 struct ata_host *host; 350 void __iomem *mmio_base; 351 int i, rc; 352 u8 cls; 353 354 ata_print_version_once(&pdev->dev, DRV_VERSION); 355 356 /* allocate host */ 357 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4); 358 if (!host) 359 return -ENOMEM; 360 361 rc = pcim_enable_device(pdev); 362 if (rc) 363 return rc; 364 365 /* check if we have needed resource mapped */ 366 if (pci_resource_len(pdev, 0) == 0) 367 return -ENODEV; 368 369 /* map IO regions and initialize host accordingly */ 370 rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME); 371 if (rc == -EBUSY) 372 pcim_pin_device(pdev); 373 if (rc) 374 return rc; 375 host->iomap = pcim_iomap_table(pdev); 376 377 mmio_base = host->iomap[VSC_MMIO_BAR]; 378 379 for (i = 0; i < host->n_ports; i++) { 380 struct ata_port *ap = host->ports[i]; 381 unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET; 382 383 vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset); 384 385 ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio"); 386 ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port"); 387 } 388 389 /* 390 * Use 32 bit DMA mask, because 64 bit address support is poor. 391 */ 392 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 393 if (rc) 394 return rc; 395 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 396 if (rc) 397 return rc; 398 399 /* 400 * Due to a bug in the chip, the default cache line size can't be 401 * used (unless the default is non-zero). 402 */ 403 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls); 404 if (cls == 0x00) 405 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80); 406 407 if (pci_enable_msi(pdev) == 0) 408 pci_intx(pdev, 0); 409 410 /* 411 * Config offset 0x98 is "Extended Control and Status Register 0" 412 * Default value is (1 << 28). All bits except bit 28 are reserved in 413 * DPA mode. If bit 28 is set, LED 0 reflects all ports' activity. 414 * If bit 28 is clear, each port has its own LED. 415 */ 416 pci_write_config_dword(pdev, 0x98, 0); 417 418 pci_set_master(pdev); 419 return ata_host_activate(host, pdev->irq, vsc_sata_interrupt, 420 IRQF_SHARED, &vsc_sata_sht); 421 } 422 423 static const struct pci_device_id vsc_sata_pci_tbl[] = { 424 { PCI_VENDOR_ID_VITESSE, 0x7174, 425 PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 }, 426 { PCI_VENDOR_ID_INTEL, 0x3200, 427 PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 }, 428 429 { } /* terminate list */ 430 }; 431 432 static struct pci_driver vsc_sata_pci_driver = { 433 .name = DRV_NAME, 434 .id_table = vsc_sata_pci_tbl, 435 .probe = vsc_sata_init_one, 436 .remove = ata_pci_remove_one, 437 }; 438 439 static int __init vsc_sata_init(void) 440 { 441 return pci_register_driver(&vsc_sata_pci_driver); 442 } 443 444 static void __exit vsc_sata_exit(void) 445 { 446 pci_unregister_driver(&vsc_sata_pci_driver); 447 } 448 449 MODULE_AUTHOR("Jeremy Higdon"); 450 MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller"); 451 MODULE_LICENSE("GPL"); 452 MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl); 453 MODULE_VERSION(DRV_VERSION); 454 455 module_init(vsc_sata_init); 456 module_exit(vsc_sata_exit); 457