1 /* 2 * sata_svw.c - ServerWorks / Apple K2 SATA 3 * 4 * Maintained by: Benjamin Herrenschmidt <benh@kernel.crashing.org> and 5 * Jeff Garzik <jgarzik@pobox.com> 6 * Please ALWAYS copy linux-ide@vger.kernel.org 7 * on emails. 8 * 9 * Copyright 2003 Benjamin Herrenschmidt <benh@kernel.crashing.org> 10 * 11 * Bits from Jeff Garzik, Copyright RedHat, Inc. 12 * 13 * This driver probably works with non-Apple versions of the 14 * Broadcom chipset... 15 * 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2, or (at your option) 20 * any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 * 27 * You should have received a copy of the GNU General Public License 28 * along with this program; see the file COPYING. If not, write to 29 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 30 * 31 * 32 * libata documentation is available via 'make {ps|pdf}docs', 33 * as Documentation/DocBook/libata.* 34 * 35 * Hardware documentation available under NDA. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/device.h> 47 #include <scsi/scsi_host.h> 48 #include <linux/libata.h> 49 50 #ifdef CONFIG_PPC_OF 51 #include <asm/prom.h> 52 #include <asm/pci-bridge.h> 53 #endif /* CONFIG_PPC_OF */ 54 55 #define DRV_NAME "sata_svw" 56 #define DRV_VERSION "2.2" 57 58 enum { 59 /* ap->flags bits */ 60 K2_FLAG_SATA_8_PORTS = (1 << 24), 61 K2_FLAG_NO_ATAPI_DMA = (1 << 25), 62 63 /* Taskfile registers offsets */ 64 K2_SATA_TF_CMD_OFFSET = 0x00, 65 K2_SATA_TF_DATA_OFFSET = 0x00, 66 K2_SATA_TF_ERROR_OFFSET = 0x04, 67 K2_SATA_TF_NSECT_OFFSET = 0x08, 68 K2_SATA_TF_LBAL_OFFSET = 0x0c, 69 K2_SATA_TF_LBAM_OFFSET = 0x10, 70 K2_SATA_TF_LBAH_OFFSET = 0x14, 71 K2_SATA_TF_DEVICE_OFFSET = 0x18, 72 K2_SATA_TF_CMDSTAT_OFFSET = 0x1c, 73 K2_SATA_TF_CTL_OFFSET = 0x20, 74 75 /* DMA base */ 76 K2_SATA_DMA_CMD_OFFSET = 0x30, 77 78 /* SCRs base */ 79 K2_SATA_SCR_STATUS_OFFSET = 0x40, 80 K2_SATA_SCR_ERROR_OFFSET = 0x44, 81 K2_SATA_SCR_CONTROL_OFFSET = 0x48, 82 83 /* Others */ 84 K2_SATA_SICR1_OFFSET = 0x80, 85 K2_SATA_SICR2_OFFSET = 0x84, 86 K2_SATA_SIM_OFFSET = 0x88, 87 88 /* Port stride */ 89 K2_SATA_PORT_OFFSET = 0x100, 90 91 board_svw4 = 0, 92 board_svw8 = 1, 93 }; 94 95 static u8 k2_stat_check_status(struct ata_port *ap); 96 97 98 static int k2_sata_check_atapi_dma(struct ata_queued_cmd *qc) 99 { 100 if (qc->ap->flags & K2_FLAG_NO_ATAPI_DMA) 101 return -1; /* ATAPI DMA not supported */ 102 103 return 0; 104 } 105 106 static u32 k2_sata_scr_read (struct ata_port *ap, unsigned int sc_reg) 107 { 108 if (sc_reg > SCR_CONTROL) 109 return 0xffffffffU; 110 return readl(ap->ioaddr.scr_addr + (sc_reg * 4)); 111 } 112 113 114 static void k2_sata_scr_write (struct ata_port *ap, unsigned int sc_reg, 115 u32 val) 116 { 117 if (sc_reg > SCR_CONTROL) 118 return; 119 writel(val, ap->ioaddr.scr_addr + (sc_reg * 4)); 120 } 121 122 123 static void k2_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 124 { 125 struct ata_ioports *ioaddr = &ap->ioaddr; 126 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 127 128 if (tf->ctl != ap->last_ctl) { 129 writeb(tf->ctl, ioaddr->ctl_addr); 130 ap->last_ctl = tf->ctl; 131 ata_wait_idle(ap); 132 } 133 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 134 writew(tf->feature | (((u16)tf->hob_feature) << 8), 135 ioaddr->feature_addr); 136 writew(tf->nsect | (((u16)tf->hob_nsect) << 8), 137 ioaddr->nsect_addr); 138 writew(tf->lbal | (((u16)tf->hob_lbal) << 8), 139 ioaddr->lbal_addr); 140 writew(tf->lbam | (((u16)tf->hob_lbam) << 8), 141 ioaddr->lbam_addr); 142 writew(tf->lbah | (((u16)tf->hob_lbah) << 8), 143 ioaddr->lbah_addr); 144 } else if (is_addr) { 145 writew(tf->feature, ioaddr->feature_addr); 146 writew(tf->nsect, ioaddr->nsect_addr); 147 writew(tf->lbal, ioaddr->lbal_addr); 148 writew(tf->lbam, ioaddr->lbam_addr); 149 writew(tf->lbah, ioaddr->lbah_addr); 150 } 151 152 if (tf->flags & ATA_TFLAG_DEVICE) 153 writeb(tf->device, ioaddr->device_addr); 154 155 ata_wait_idle(ap); 156 } 157 158 159 static void k2_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 160 { 161 struct ata_ioports *ioaddr = &ap->ioaddr; 162 u16 nsect, lbal, lbam, lbah, feature; 163 164 tf->command = k2_stat_check_status(ap); 165 tf->device = readw(ioaddr->device_addr); 166 feature = readw(ioaddr->error_addr); 167 nsect = readw(ioaddr->nsect_addr); 168 lbal = readw(ioaddr->lbal_addr); 169 lbam = readw(ioaddr->lbam_addr); 170 lbah = readw(ioaddr->lbah_addr); 171 172 tf->feature = feature; 173 tf->nsect = nsect; 174 tf->lbal = lbal; 175 tf->lbam = lbam; 176 tf->lbah = lbah; 177 178 if (tf->flags & ATA_TFLAG_LBA48) { 179 tf->hob_feature = feature >> 8; 180 tf->hob_nsect = nsect >> 8; 181 tf->hob_lbal = lbal >> 8; 182 tf->hob_lbam = lbam >> 8; 183 tf->hob_lbah = lbah >> 8; 184 } 185 } 186 187 /** 188 * k2_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction (MMIO) 189 * @qc: Info associated with this ATA transaction. 190 * 191 * LOCKING: 192 * spin_lock_irqsave(host lock) 193 */ 194 195 static void k2_bmdma_setup_mmio (struct ata_queued_cmd *qc) 196 { 197 struct ata_port *ap = qc->ap; 198 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 199 u8 dmactl; 200 void __iomem *mmio = ap->ioaddr.bmdma_addr; 201 202 /* load PRD table addr. */ 203 mb(); /* make sure PRD table writes are visible to controller */ 204 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS); 205 206 /* specify data direction, triple-check start bit is clear */ 207 dmactl = readb(mmio + ATA_DMA_CMD); 208 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 209 if (!rw) 210 dmactl |= ATA_DMA_WR; 211 writeb(dmactl, mmio + ATA_DMA_CMD); 212 213 /* issue r/w command if this is not a ATA DMA command*/ 214 if (qc->tf.protocol != ATA_PROT_DMA) 215 ap->ops->exec_command(ap, &qc->tf); 216 } 217 218 /** 219 * k2_bmdma_start_mmio - Start a PCI IDE BMDMA transaction (MMIO) 220 * @qc: Info associated with this ATA transaction. 221 * 222 * LOCKING: 223 * spin_lock_irqsave(host lock) 224 */ 225 226 static void k2_bmdma_start_mmio (struct ata_queued_cmd *qc) 227 { 228 struct ata_port *ap = qc->ap; 229 void __iomem *mmio = ap->ioaddr.bmdma_addr; 230 u8 dmactl; 231 232 /* start host DMA transaction */ 233 dmactl = readb(mmio + ATA_DMA_CMD); 234 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD); 235 /* There is a race condition in certain SATA controllers that can 236 be seen when the r/w command is given to the controller before the 237 host DMA is started. On a Read command, the controller would initiate 238 the command to the drive even before it sees the DMA start. When there 239 are very fast drives connected to the controller, or when the data request 240 hits in the drive cache, there is the possibility that the drive returns a part 241 or all of the requested data to the controller before the DMA start is issued. 242 In this case, the controller would become confused as to what to do with the data. 243 In the worst case when all the data is returned back to the controller, the 244 controller could hang. In other cases it could return partial data returning 245 in data corruption. This problem has been seen in PPC systems and can also appear 246 on an system with very fast disks, where the SATA controller is sitting behind a 247 number of bridges, and hence there is significant latency between the r/w command 248 and the start command. */ 249 /* issue r/w command if the access is to ATA*/ 250 if (qc->tf.protocol == ATA_PROT_DMA) 251 ap->ops->exec_command(ap, &qc->tf); 252 } 253 254 255 static u8 k2_stat_check_status(struct ata_port *ap) 256 { 257 return readl(ap->ioaddr.status_addr); 258 } 259 260 #ifdef CONFIG_PPC_OF 261 /* 262 * k2_sata_proc_info 263 * inout : decides on the direction of the dataflow and the meaning of the 264 * variables 265 * buffer: If inout==FALSE data is being written to it else read from it 266 * *start: If inout==FALSE start of the valid data in the buffer 267 * offset: If inout==FALSE offset from the beginning of the imaginary file 268 * from which we start writing into the buffer 269 * length: If inout==FALSE max number of bytes to be written into the buffer 270 * else number of bytes in the buffer 271 */ 272 static int k2_sata_proc_info(struct Scsi_Host *shost, char *page, char **start, 273 off_t offset, int count, int inout) 274 { 275 struct ata_port *ap; 276 struct device_node *np; 277 int len, index; 278 279 /* Find the ata_port */ 280 ap = ata_shost_to_port(shost); 281 if (ap == NULL) 282 return 0; 283 284 /* Find the OF node for the PCI device proper */ 285 np = pci_device_to_OF_node(to_pci_dev(ap->host->dev)); 286 if (np == NULL) 287 return 0; 288 289 /* Match it to a port node */ 290 index = (ap == ap->host->ports[0]) ? 0 : 1; 291 for (np = np->child; np != NULL; np = np->sibling) { 292 const u32 *reg = of_get_property(np, "reg", NULL); 293 if (!reg) 294 continue; 295 if (index == *reg) 296 break; 297 } 298 if (np == NULL) 299 return 0; 300 301 len = sprintf(page, "devspec: %s\n", np->full_name); 302 303 return len; 304 } 305 #endif /* CONFIG_PPC_OF */ 306 307 308 static struct scsi_host_template k2_sata_sht = { 309 .module = THIS_MODULE, 310 .name = DRV_NAME, 311 .ioctl = ata_scsi_ioctl, 312 .queuecommand = ata_scsi_queuecmd, 313 .can_queue = ATA_DEF_QUEUE, 314 .this_id = ATA_SHT_THIS_ID, 315 .sg_tablesize = LIBATA_MAX_PRD, 316 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 317 .emulated = ATA_SHT_EMULATED, 318 .use_clustering = ATA_SHT_USE_CLUSTERING, 319 .proc_name = DRV_NAME, 320 .dma_boundary = ATA_DMA_BOUNDARY, 321 .slave_configure = ata_scsi_slave_config, 322 .slave_destroy = ata_scsi_slave_destroy, 323 #ifdef CONFIG_PPC_OF 324 .proc_info = k2_sata_proc_info, 325 #endif 326 .bios_param = ata_std_bios_param, 327 }; 328 329 330 static const struct ata_port_operations k2_sata_ops = { 331 .port_disable = ata_port_disable, 332 .tf_load = k2_sata_tf_load, 333 .tf_read = k2_sata_tf_read, 334 .check_status = k2_stat_check_status, 335 .exec_command = ata_exec_command, 336 .dev_select = ata_std_dev_select, 337 .check_atapi_dma = k2_sata_check_atapi_dma, 338 .bmdma_setup = k2_bmdma_setup_mmio, 339 .bmdma_start = k2_bmdma_start_mmio, 340 .bmdma_stop = ata_bmdma_stop, 341 .bmdma_status = ata_bmdma_status, 342 .qc_prep = ata_qc_prep, 343 .qc_issue = ata_qc_issue_prot, 344 .data_xfer = ata_data_xfer, 345 .freeze = ata_bmdma_freeze, 346 .thaw = ata_bmdma_thaw, 347 .error_handler = ata_bmdma_error_handler, 348 .post_internal_cmd = ata_bmdma_post_internal_cmd, 349 .irq_clear = ata_bmdma_irq_clear, 350 .irq_on = ata_irq_on, 351 .irq_ack = ata_irq_ack, 352 .scr_read = k2_sata_scr_read, 353 .scr_write = k2_sata_scr_write, 354 .port_start = ata_port_start, 355 }; 356 357 static const struct ata_port_info k2_port_info[] = { 358 /* board_svw4 */ 359 { 360 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 361 ATA_FLAG_MMIO | K2_FLAG_NO_ATAPI_DMA, 362 .pio_mask = 0x1f, 363 .mwdma_mask = 0x07, 364 .udma_mask = ATA_UDMA6, 365 .port_ops = &k2_sata_ops, 366 }, 367 /* board_svw8 */ 368 { 369 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 370 ATA_FLAG_MMIO | K2_FLAG_NO_ATAPI_DMA | 371 K2_FLAG_SATA_8_PORTS, 372 .pio_mask = 0x1f, 373 .mwdma_mask = 0x07, 374 .udma_mask = ATA_UDMA6, 375 .port_ops = &k2_sata_ops, 376 }, 377 }; 378 379 static void k2_sata_setup_port(struct ata_ioports *port, void __iomem *base) 380 { 381 port->cmd_addr = base + K2_SATA_TF_CMD_OFFSET; 382 port->data_addr = base + K2_SATA_TF_DATA_OFFSET; 383 port->feature_addr = 384 port->error_addr = base + K2_SATA_TF_ERROR_OFFSET; 385 port->nsect_addr = base + K2_SATA_TF_NSECT_OFFSET; 386 port->lbal_addr = base + K2_SATA_TF_LBAL_OFFSET; 387 port->lbam_addr = base + K2_SATA_TF_LBAM_OFFSET; 388 port->lbah_addr = base + K2_SATA_TF_LBAH_OFFSET; 389 port->device_addr = base + K2_SATA_TF_DEVICE_OFFSET; 390 port->command_addr = 391 port->status_addr = base + K2_SATA_TF_CMDSTAT_OFFSET; 392 port->altstatus_addr = 393 port->ctl_addr = base + K2_SATA_TF_CTL_OFFSET; 394 port->bmdma_addr = base + K2_SATA_DMA_CMD_OFFSET; 395 port->scr_addr = base + K2_SATA_SCR_STATUS_OFFSET; 396 } 397 398 399 static int k2_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) 400 { 401 static int printed_version; 402 const struct ata_port_info *ppi[] = 403 { &k2_port_info[ent->driver_data], NULL }; 404 struct ata_host *host; 405 void __iomem *mmio_base; 406 int n_ports, i, rc; 407 408 if (!printed_version++) 409 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); 410 411 /* allocate host */ 412 n_ports = 4; 413 if (ppi[0]->flags & K2_FLAG_SATA_8_PORTS) 414 n_ports = 8; 415 416 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 417 if (!host) 418 return -ENOMEM; 419 420 /* 421 * If this driver happens to only be useful on Apple's K2, then 422 * we should check that here as it has a normal Serverworks ID 423 */ 424 rc = pcim_enable_device(pdev); 425 if (rc) 426 return rc; 427 428 /* 429 * Check if we have resources mapped at all (second function may 430 * have been disabled by firmware) 431 */ 432 if (pci_resource_len(pdev, 5) == 0) 433 return -ENODEV; 434 435 /* Request and iomap PCI regions */ 436 rc = pcim_iomap_regions(pdev, 1 << 5, DRV_NAME); 437 if (rc == -EBUSY) 438 pcim_pin_device(pdev); 439 if (rc) 440 return rc; 441 host->iomap = pcim_iomap_table(pdev); 442 mmio_base = host->iomap[5]; 443 444 /* different controllers have different number of ports - currently 4 or 8 */ 445 /* All ports are on the same function. Multi-function device is no 446 * longer available. This should not be seen in any system. */ 447 for (i = 0; i < host->n_ports; i++) 448 k2_sata_setup_port(&host->ports[i]->ioaddr, 449 mmio_base + i * K2_SATA_PORT_OFFSET); 450 451 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 452 if (rc) 453 return rc; 454 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 455 if (rc) 456 return rc; 457 458 /* Clear a magic bit in SCR1 according to Darwin, those help 459 * some funky seagate drives (though so far, those were already 460 * set by the firmware on the machines I had access to) 461 */ 462 writel(readl(mmio_base + K2_SATA_SICR1_OFFSET) & ~0x00040000, 463 mmio_base + K2_SATA_SICR1_OFFSET); 464 465 /* Clear SATA error & interrupts we don't use */ 466 writel(0xffffffff, mmio_base + K2_SATA_SCR_ERROR_OFFSET); 467 writel(0x0, mmio_base + K2_SATA_SIM_OFFSET); 468 469 pci_set_master(pdev); 470 return ata_host_activate(host, pdev->irq, ata_interrupt, IRQF_SHARED, 471 &k2_sata_sht); 472 } 473 474 /* 0x240 is device ID for Apple K2 device 475 * 0x241 is device ID for Serverworks Frodo4 476 * 0x242 is device ID for Serverworks Frodo8 477 * 0x24a is device ID for BCM5785 (aka HT1000) HT southbridge integrated SATA 478 * controller 479 * */ 480 static const struct pci_device_id k2_sata_pci_tbl[] = { 481 { PCI_VDEVICE(SERVERWORKS, 0x0240), board_svw4 }, 482 { PCI_VDEVICE(SERVERWORKS, 0x0241), board_svw4 }, 483 { PCI_VDEVICE(SERVERWORKS, 0x0242), board_svw8 }, 484 { PCI_VDEVICE(SERVERWORKS, 0x024a), board_svw4 }, 485 { PCI_VDEVICE(SERVERWORKS, 0x024b), board_svw4 }, 486 487 { } 488 }; 489 490 static struct pci_driver k2_sata_pci_driver = { 491 .name = DRV_NAME, 492 .id_table = k2_sata_pci_tbl, 493 .probe = k2_sata_init_one, 494 .remove = ata_pci_remove_one, 495 }; 496 497 static int __init k2_sata_init(void) 498 { 499 return pci_register_driver(&k2_sata_pci_driver); 500 } 501 502 static void __exit k2_sata_exit(void) 503 { 504 pci_unregister_driver(&k2_sata_pci_driver); 505 } 506 507 MODULE_AUTHOR("Benjamin Herrenschmidt"); 508 MODULE_DESCRIPTION("low-level driver for K2 SATA controller"); 509 MODULE_LICENSE("GPL"); 510 MODULE_DEVICE_TABLE(pci, k2_sata_pci_tbl); 511 MODULE_VERSION(DRV_VERSION); 512 513 module_init(k2_sata_init); 514 module_exit(k2_sata_exit); 515