xref: /openbmc/linux/drivers/ata/sata_nv.c (revision e8e0929d)
1 /*
2  *  sata_nv.c - NVIDIA nForce SATA
3  *
4  *  Copyright 2004 NVIDIA Corp.  All rights reserved.
5  *  Copyright 2004 Andrew Chew
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2, or (at your option)
11  *  any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; see the file COPYING.  If not, write to
20  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  *
23  *  libata documentation is available via 'make {ps|pdf}docs',
24  *  as Documentation/DocBook/libata.*
25  *
26  *  No hardware documentation available outside of NVIDIA.
27  *  This driver programs the NVIDIA SATA controller in a similar
28  *  fashion as with other PCI IDE BMDMA controllers, with a few
29  *  NV-specific details such as register offsets, SATA phy location,
30  *  hotplug info, etc.
31  *
32  *  CK804/MCP04 controllers support an alternate programming interface
33  *  similar to the ADMA specification (with some modifications).
34  *  This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35  *  sent through the legacy interface.
36  *
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <linux/libata.h>
50 
51 #define DRV_NAME			"sata_nv"
52 #define DRV_VERSION			"3.5"
53 
54 #define NV_ADMA_DMA_BOUNDARY		0xffffffffUL
55 
56 enum {
57 	NV_MMIO_BAR			= 5,
58 
59 	NV_PORTS			= 2,
60 	NV_PIO_MASK			= ATA_PIO4,
61 	NV_MWDMA_MASK			= ATA_MWDMA2,
62 	NV_UDMA_MASK			= ATA_UDMA6,
63 	NV_PORT0_SCR_REG_OFFSET		= 0x00,
64 	NV_PORT1_SCR_REG_OFFSET		= 0x40,
65 
66 	/* INT_STATUS/ENABLE */
67 	NV_INT_STATUS			= 0x10,
68 	NV_INT_ENABLE			= 0x11,
69 	NV_INT_STATUS_CK804		= 0x440,
70 	NV_INT_ENABLE_CK804		= 0x441,
71 
72 	/* INT_STATUS/ENABLE bits */
73 	NV_INT_DEV			= 0x01,
74 	NV_INT_PM			= 0x02,
75 	NV_INT_ADDED			= 0x04,
76 	NV_INT_REMOVED			= 0x08,
77 
78 	NV_INT_PORT_SHIFT		= 4,	/* each port occupies 4 bits */
79 
80 	NV_INT_ALL			= 0x0f,
81 	NV_INT_MASK			= NV_INT_DEV |
82 					  NV_INT_ADDED | NV_INT_REMOVED,
83 
84 	/* INT_CONFIG */
85 	NV_INT_CONFIG			= 0x12,
86 	NV_INT_CONFIG_METHD		= 0x01, // 0 = INT, 1 = SMI
87 
88 	// For PCI config register 20
89 	NV_MCP_SATA_CFG_20		= 0x50,
90 	NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
91 	NV_MCP_SATA_CFG_20_PORT0_EN	= (1 << 17),
92 	NV_MCP_SATA_CFG_20_PORT1_EN	= (1 << 16),
93 	NV_MCP_SATA_CFG_20_PORT0_PWB_EN	= (1 << 14),
94 	NV_MCP_SATA_CFG_20_PORT1_PWB_EN	= (1 << 12),
95 
96 	NV_ADMA_MAX_CPBS		= 32,
97 	NV_ADMA_CPB_SZ			= 128,
98 	NV_ADMA_APRD_SZ			= 16,
99 	NV_ADMA_SGTBL_LEN		= (1024 - NV_ADMA_CPB_SZ) /
100 					   NV_ADMA_APRD_SZ,
101 	NV_ADMA_SGTBL_TOTAL_LEN		= NV_ADMA_SGTBL_LEN + 5,
102 	NV_ADMA_SGTBL_SZ                = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
103 	NV_ADMA_PORT_PRIV_DMA_SZ        = NV_ADMA_MAX_CPBS *
104 					   (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
105 
106 	/* BAR5 offset to ADMA general registers */
107 	NV_ADMA_GEN			= 0x400,
108 	NV_ADMA_GEN_CTL			= 0x00,
109 	NV_ADMA_NOTIFIER_CLEAR		= 0x30,
110 
111 	/* BAR5 offset to ADMA ports */
112 	NV_ADMA_PORT			= 0x480,
113 
114 	/* size of ADMA port register space  */
115 	NV_ADMA_PORT_SIZE		= 0x100,
116 
117 	/* ADMA port registers */
118 	NV_ADMA_CTL			= 0x40,
119 	NV_ADMA_CPB_COUNT		= 0x42,
120 	NV_ADMA_NEXT_CPB_IDX		= 0x43,
121 	NV_ADMA_STAT			= 0x44,
122 	NV_ADMA_CPB_BASE_LOW		= 0x48,
123 	NV_ADMA_CPB_BASE_HIGH		= 0x4C,
124 	NV_ADMA_APPEND			= 0x50,
125 	NV_ADMA_NOTIFIER		= 0x68,
126 	NV_ADMA_NOTIFIER_ERROR		= 0x6C,
127 
128 	/* NV_ADMA_CTL register bits */
129 	NV_ADMA_CTL_HOTPLUG_IEN		= (1 << 0),
130 	NV_ADMA_CTL_CHANNEL_RESET	= (1 << 5),
131 	NV_ADMA_CTL_GO			= (1 << 7),
132 	NV_ADMA_CTL_AIEN		= (1 << 8),
133 	NV_ADMA_CTL_READ_NON_COHERENT	= (1 << 11),
134 	NV_ADMA_CTL_WRITE_NON_COHERENT	= (1 << 12),
135 
136 	/* CPB response flag bits */
137 	NV_CPB_RESP_DONE		= (1 << 0),
138 	NV_CPB_RESP_ATA_ERR		= (1 << 3),
139 	NV_CPB_RESP_CMD_ERR		= (1 << 4),
140 	NV_CPB_RESP_CPB_ERR		= (1 << 7),
141 
142 	/* CPB control flag bits */
143 	NV_CPB_CTL_CPB_VALID		= (1 << 0),
144 	NV_CPB_CTL_QUEUE		= (1 << 1),
145 	NV_CPB_CTL_APRD_VALID		= (1 << 2),
146 	NV_CPB_CTL_IEN			= (1 << 3),
147 	NV_CPB_CTL_FPDMA		= (1 << 4),
148 
149 	/* APRD flags */
150 	NV_APRD_WRITE			= (1 << 1),
151 	NV_APRD_END			= (1 << 2),
152 	NV_APRD_CONT			= (1 << 3),
153 
154 	/* NV_ADMA_STAT flags */
155 	NV_ADMA_STAT_TIMEOUT		= (1 << 0),
156 	NV_ADMA_STAT_HOTUNPLUG		= (1 << 1),
157 	NV_ADMA_STAT_HOTPLUG		= (1 << 2),
158 	NV_ADMA_STAT_CPBERR		= (1 << 4),
159 	NV_ADMA_STAT_SERROR		= (1 << 5),
160 	NV_ADMA_STAT_CMD_COMPLETE	= (1 << 6),
161 	NV_ADMA_STAT_IDLE		= (1 << 8),
162 	NV_ADMA_STAT_LEGACY		= (1 << 9),
163 	NV_ADMA_STAT_STOPPED		= (1 << 10),
164 	NV_ADMA_STAT_DONE		= (1 << 12),
165 	NV_ADMA_STAT_ERR		= NV_ADMA_STAT_CPBERR |
166 					  NV_ADMA_STAT_TIMEOUT,
167 
168 	/* port flags */
169 	NV_ADMA_PORT_REGISTER_MODE	= (1 << 0),
170 	NV_ADMA_ATAPI_SETUP_COMPLETE	= (1 << 1),
171 
172 	/* MCP55 reg offset */
173 	NV_CTL_MCP55			= 0x400,
174 	NV_INT_STATUS_MCP55		= 0x440,
175 	NV_INT_ENABLE_MCP55		= 0x444,
176 	NV_NCQ_REG_MCP55		= 0x448,
177 
178 	/* MCP55 */
179 	NV_INT_ALL_MCP55		= 0xffff,
180 	NV_INT_PORT_SHIFT_MCP55		= 16,	/* each port occupies 16 bits */
181 	NV_INT_MASK_MCP55		= NV_INT_ALL_MCP55 & 0xfffd,
182 
183 	/* SWNCQ ENABLE BITS*/
184 	NV_CTL_PRI_SWNCQ		= 0x02,
185 	NV_CTL_SEC_SWNCQ		= 0x04,
186 
187 	/* SW NCQ status bits*/
188 	NV_SWNCQ_IRQ_DEV		= (1 << 0),
189 	NV_SWNCQ_IRQ_PM			= (1 << 1),
190 	NV_SWNCQ_IRQ_ADDED		= (1 << 2),
191 	NV_SWNCQ_IRQ_REMOVED		= (1 << 3),
192 
193 	NV_SWNCQ_IRQ_BACKOUT		= (1 << 4),
194 	NV_SWNCQ_IRQ_SDBFIS		= (1 << 5),
195 	NV_SWNCQ_IRQ_DHREGFIS		= (1 << 6),
196 	NV_SWNCQ_IRQ_DMASETUP		= (1 << 7),
197 
198 	NV_SWNCQ_IRQ_HOTPLUG		= NV_SWNCQ_IRQ_ADDED |
199 					  NV_SWNCQ_IRQ_REMOVED,
200 
201 };
202 
203 /* ADMA Physical Region Descriptor - one SG segment */
204 struct nv_adma_prd {
205 	__le64			addr;
206 	__le32			len;
207 	u8			flags;
208 	u8			packet_len;
209 	__le16			reserved;
210 };
211 
212 enum nv_adma_regbits {
213 	CMDEND	= (1 << 15),		/* end of command list */
214 	WNB	= (1 << 14),		/* wait-not-BSY */
215 	IGN	= (1 << 13),		/* ignore this entry */
216 	CS1n	= (1 << (4 + 8)),	/* std. PATA signals follow... */
217 	DA2	= (1 << (2 + 8)),
218 	DA1	= (1 << (1 + 8)),
219 	DA0	= (1 << (0 + 8)),
220 };
221 
222 /* ADMA Command Parameter Block
223    The first 5 SG segments are stored inside the Command Parameter Block itself.
224    If there are more than 5 segments the remainder are stored in a separate
225    memory area indicated by next_aprd. */
226 struct nv_adma_cpb {
227 	u8			resp_flags;    /* 0 */
228 	u8			reserved1;     /* 1 */
229 	u8			ctl_flags;     /* 2 */
230 	/* len is length of taskfile in 64 bit words */
231 	u8			len;		/* 3  */
232 	u8			tag;           /* 4 */
233 	u8			next_cpb_idx;  /* 5 */
234 	__le16			reserved2;     /* 6-7 */
235 	__le16			tf[12];        /* 8-31 */
236 	struct nv_adma_prd	aprd[5];       /* 32-111 */
237 	__le64			next_aprd;     /* 112-119 */
238 	__le64			reserved3;     /* 120-127 */
239 };
240 
241 
242 struct nv_adma_port_priv {
243 	struct nv_adma_cpb	*cpb;
244 	dma_addr_t		cpb_dma;
245 	struct nv_adma_prd	*aprd;
246 	dma_addr_t		aprd_dma;
247 	void __iomem		*ctl_block;
248 	void __iomem		*gen_block;
249 	void __iomem		*notifier_clear_block;
250 	u64			adma_dma_mask;
251 	u8			flags;
252 	int			last_issue_ncq;
253 };
254 
255 struct nv_host_priv {
256 	unsigned long		type;
257 };
258 
259 struct defer_queue {
260 	u32		defer_bits;
261 	unsigned int	head;
262 	unsigned int	tail;
263 	unsigned int	tag[ATA_MAX_QUEUE];
264 };
265 
266 enum ncq_saw_flag_list {
267 	ncq_saw_d2h	= (1U << 0),
268 	ncq_saw_dmas	= (1U << 1),
269 	ncq_saw_sdb	= (1U << 2),
270 	ncq_saw_backout	= (1U << 3),
271 };
272 
273 struct nv_swncq_port_priv {
274 	struct ata_prd	*prd;	 /* our SG list */
275 	dma_addr_t	prd_dma; /* and its DMA mapping */
276 	void __iomem	*sactive_block;
277 	void __iomem	*irq_block;
278 	void __iomem	*tag_block;
279 	u32		qc_active;
280 
281 	unsigned int	last_issue_tag;
282 
283 	/* fifo circular queue to store deferral command */
284 	struct defer_queue defer_queue;
285 
286 	/* for NCQ interrupt analysis */
287 	u32		dhfis_bits;
288 	u32		dmafis_bits;
289 	u32		sdbfis_bits;
290 
291 	unsigned int	ncq_flags;
292 };
293 
294 
295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
296 
297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
298 #ifdef CONFIG_PM
299 static int nv_pci_device_resume(struct pci_dev *pdev);
300 #endif
301 static void nv_ck804_host_stop(struct ata_host *host);
302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
305 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
306 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
307 
308 static int nv_hardreset(struct ata_link *link, unsigned int *class,
309 			unsigned long deadline);
310 static void nv_nf2_freeze(struct ata_port *ap);
311 static void nv_nf2_thaw(struct ata_port *ap);
312 static void nv_ck804_freeze(struct ata_port *ap);
313 static void nv_ck804_thaw(struct ata_port *ap);
314 static int nv_adma_slave_config(struct scsi_device *sdev);
315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
319 static void nv_adma_irq_clear(struct ata_port *ap);
320 static int nv_adma_port_start(struct ata_port *ap);
321 static void nv_adma_port_stop(struct ata_port *ap);
322 #ifdef CONFIG_PM
323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
324 static int nv_adma_port_resume(struct ata_port *ap);
325 #endif
326 static void nv_adma_freeze(struct ata_port *ap);
327 static void nv_adma_thaw(struct ata_port *ap);
328 static void nv_adma_error_handler(struct ata_port *ap);
329 static void nv_adma_host_stop(struct ata_host *host);
330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
332 
333 static void nv_mcp55_thaw(struct ata_port *ap);
334 static void nv_mcp55_freeze(struct ata_port *ap);
335 static void nv_swncq_error_handler(struct ata_port *ap);
336 static int nv_swncq_slave_config(struct scsi_device *sdev);
337 static int nv_swncq_port_start(struct ata_port *ap);
338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
343 #ifdef CONFIG_PM
344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
345 static int nv_swncq_port_resume(struct ata_port *ap);
346 #endif
347 
348 enum nv_host_type
349 {
350 	GENERIC,
351 	NFORCE2,
352 	NFORCE3 = NFORCE2,	/* NF2 == NF3 as far as sata_nv is concerned */
353 	CK804,
354 	ADMA,
355 	MCP5x,
356 	SWNCQ,
357 };
358 
359 static const struct pci_device_id nv_pci_tbl[] = {
360 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
361 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
362 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
363 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
364 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
365 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
366 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
367 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
368 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
369 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
370 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
371 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
372 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
373 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
374 
375 	{ } /* terminate list */
376 };
377 
378 static struct pci_driver nv_pci_driver = {
379 	.name			= DRV_NAME,
380 	.id_table		= nv_pci_tbl,
381 	.probe			= nv_init_one,
382 #ifdef CONFIG_PM
383 	.suspend		= ata_pci_device_suspend,
384 	.resume			= nv_pci_device_resume,
385 #endif
386 	.remove			= ata_pci_remove_one,
387 };
388 
389 static struct scsi_host_template nv_sht = {
390 	ATA_BMDMA_SHT(DRV_NAME),
391 };
392 
393 static struct scsi_host_template nv_adma_sht = {
394 	ATA_NCQ_SHT(DRV_NAME),
395 	.can_queue		= NV_ADMA_MAX_CPBS,
396 	.sg_tablesize		= NV_ADMA_SGTBL_TOTAL_LEN,
397 	.dma_boundary		= NV_ADMA_DMA_BOUNDARY,
398 	.slave_configure	= nv_adma_slave_config,
399 };
400 
401 static struct scsi_host_template nv_swncq_sht = {
402 	ATA_NCQ_SHT(DRV_NAME),
403 	.can_queue		= ATA_MAX_QUEUE,
404 	.sg_tablesize		= LIBATA_MAX_PRD,
405 	.dma_boundary		= ATA_DMA_BOUNDARY,
406 	.slave_configure	= nv_swncq_slave_config,
407 };
408 
409 /*
410  * NV SATA controllers have various different problems with hardreset
411  * protocol depending on the specific controller and device.
412  *
413  * GENERIC:
414  *
415  *  bko11195 reports that link doesn't come online after hardreset on
416  *  generic nv's and there have been several other similar reports on
417  *  linux-ide.
418  *
419  *  bko12351#c23 reports that warmplug on MCP61 doesn't work with
420  *  softreset.
421  *
422  * NF2/3:
423  *
424  *  bko3352 reports nf2/3 controllers can't determine device signature
425  *  reliably after hardreset.  The following thread reports detection
426  *  failure on cold boot with the standard debouncing timing.
427  *
428  *  http://thread.gmane.org/gmane.linux.ide/34098
429  *
430  *  bko12176 reports that hardreset fails to bring up the link during
431  *  boot on nf2.
432  *
433  * CK804:
434  *
435  *  For initial probing after boot and hot plugging, hardreset mostly
436  *  works fine on CK804 but curiously, reprobing on the initial port
437  *  by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
438  *  FIS in somewhat undeterministic way.
439  *
440  * SWNCQ:
441  *
442  *  bko12351 reports that when SWNCQ is enabled, for hotplug to work,
443  *  hardreset should be used and hardreset can't report proper
444  *  signature, which suggests that mcp5x is closer to nf2 as long as
445  *  reset quirkiness is concerned.
446  *
447  *  bko12703 reports that boot probing fails for intel SSD with
448  *  hardreset.  Link fails to come online.  Softreset works fine.
449  *
450  * The failures are varied but the following patterns seem true for
451  * all flavors.
452  *
453  * - Softreset during boot always works.
454  *
455  * - Hardreset during boot sometimes fails to bring up the link on
456  *   certain comibnations and device signature acquisition is
457  *   unreliable.
458  *
459  * - Hardreset is often necessary after hotplug.
460  *
461  * So, preferring softreset for boot probing and error handling (as
462  * hardreset might bring down the link) but using hardreset for
463  * post-boot probing should work around the above issues in most
464  * cases.  Define nv_hardreset() which only kicks in for post-boot
465  * probing and use it for all variants.
466  */
467 static struct ata_port_operations nv_generic_ops = {
468 	.inherits		= &ata_bmdma_port_ops,
469 	.lost_interrupt		= ATA_OP_NULL,
470 	.scr_read		= nv_scr_read,
471 	.scr_write		= nv_scr_write,
472 	.hardreset		= nv_hardreset,
473 };
474 
475 static struct ata_port_operations nv_nf2_ops = {
476 	.inherits		= &nv_generic_ops,
477 	.freeze			= nv_nf2_freeze,
478 	.thaw			= nv_nf2_thaw,
479 };
480 
481 static struct ata_port_operations nv_ck804_ops = {
482 	.inherits		= &nv_generic_ops,
483 	.freeze			= nv_ck804_freeze,
484 	.thaw			= nv_ck804_thaw,
485 	.host_stop		= nv_ck804_host_stop,
486 };
487 
488 static struct ata_port_operations nv_adma_ops = {
489 	.inherits		= &nv_ck804_ops,
490 
491 	.check_atapi_dma	= nv_adma_check_atapi_dma,
492 	.sff_tf_read		= nv_adma_tf_read,
493 	.qc_defer		= ata_std_qc_defer,
494 	.qc_prep		= nv_adma_qc_prep,
495 	.qc_issue		= nv_adma_qc_issue,
496 	.sff_irq_clear		= nv_adma_irq_clear,
497 
498 	.freeze			= nv_adma_freeze,
499 	.thaw			= nv_adma_thaw,
500 	.error_handler		= nv_adma_error_handler,
501 	.post_internal_cmd	= nv_adma_post_internal_cmd,
502 
503 	.port_start		= nv_adma_port_start,
504 	.port_stop		= nv_adma_port_stop,
505 #ifdef CONFIG_PM
506 	.port_suspend		= nv_adma_port_suspend,
507 	.port_resume		= nv_adma_port_resume,
508 #endif
509 	.host_stop		= nv_adma_host_stop,
510 };
511 
512 static struct ata_port_operations nv_swncq_ops = {
513 	.inherits		= &nv_generic_ops,
514 
515 	.qc_defer		= ata_std_qc_defer,
516 	.qc_prep		= nv_swncq_qc_prep,
517 	.qc_issue		= nv_swncq_qc_issue,
518 
519 	.freeze			= nv_mcp55_freeze,
520 	.thaw			= nv_mcp55_thaw,
521 	.error_handler		= nv_swncq_error_handler,
522 
523 #ifdef CONFIG_PM
524 	.port_suspend		= nv_swncq_port_suspend,
525 	.port_resume		= nv_swncq_port_resume,
526 #endif
527 	.port_start		= nv_swncq_port_start,
528 };
529 
530 struct nv_pi_priv {
531 	irq_handler_t			irq_handler;
532 	struct scsi_host_template	*sht;
533 };
534 
535 #define NV_PI_PRIV(_irq_handler, _sht) \
536 	&(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
537 
538 static const struct ata_port_info nv_port_info[] = {
539 	/* generic */
540 	{
541 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
542 		.pio_mask	= NV_PIO_MASK,
543 		.mwdma_mask	= NV_MWDMA_MASK,
544 		.udma_mask	= NV_UDMA_MASK,
545 		.port_ops	= &nv_generic_ops,
546 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
547 	},
548 	/* nforce2/3 */
549 	{
550 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
551 		.pio_mask	= NV_PIO_MASK,
552 		.mwdma_mask	= NV_MWDMA_MASK,
553 		.udma_mask	= NV_UDMA_MASK,
554 		.port_ops	= &nv_nf2_ops,
555 		.private_data	= NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
556 	},
557 	/* ck804 */
558 	{
559 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
560 		.pio_mask	= NV_PIO_MASK,
561 		.mwdma_mask	= NV_MWDMA_MASK,
562 		.udma_mask	= NV_UDMA_MASK,
563 		.port_ops	= &nv_ck804_ops,
564 		.private_data	= NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
565 	},
566 	/* ADMA */
567 	{
568 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
569 				  ATA_FLAG_MMIO | ATA_FLAG_NCQ,
570 		.pio_mask	= NV_PIO_MASK,
571 		.mwdma_mask	= NV_MWDMA_MASK,
572 		.udma_mask	= NV_UDMA_MASK,
573 		.port_ops	= &nv_adma_ops,
574 		.private_data	= NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
575 	},
576 	/* MCP5x */
577 	{
578 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
579 		.pio_mask	= NV_PIO_MASK,
580 		.mwdma_mask	= NV_MWDMA_MASK,
581 		.udma_mask	= NV_UDMA_MASK,
582 		.port_ops	= &nv_generic_ops,
583 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
584 	},
585 	/* SWNCQ */
586 	{
587 		.flags	        = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
588 				  ATA_FLAG_NCQ,
589 		.pio_mask	= NV_PIO_MASK,
590 		.mwdma_mask	= NV_MWDMA_MASK,
591 		.udma_mask	= NV_UDMA_MASK,
592 		.port_ops	= &nv_swncq_ops,
593 		.private_data	= NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
594 	},
595 };
596 
597 MODULE_AUTHOR("NVIDIA");
598 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
599 MODULE_LICENSE("GPL");
600 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
601 MODULE_VERSION(DRV_VERSION);
602 
603 static int adma_enabled;
604 static int swncq_enabled = 1;
605 static int msi_enabled;
606 
607 static void nv_adma_register_mode(struct ata_port *ap)
608 {
609 	struct nv_adma_port_priv *pp = ap->private_data;
610 	void __iomem *mmio = pp->ctl_block;
611 	u16 tmp, status;
612 	int count = 0;
613 
614 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
615 		return;
616 
617 	status = readw(mmio + NV_ADMA_STAT);
618 	while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
619 		ndelay(50);
620 		status = readw(mmio + NV_ADMA_STAT);
621 		count++;
622 	}
623 	if (count == 20)
624 		ata_port_printk(ap, KERN_WARNING,
625 			"timeout waiting for ADMA IDLE, stat=0x%hx\n",
626 			status);
627 
628 	tmp = readw(mmio + NV_ADMA_CTL);
629 	writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
630 
631 	count = 0;
632 	status = readw(mmio + NV_ADMA_STAT);
633 	while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
634 		ndelay(50);
635 		status = readw(mmio + NV_ADMA_STAT);
636 		count++;
637 	}
638 	if (count == 20)
639 		ata_port_printk(ap, KERN_WARNING,
640 			 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
641 			 status);
642 
643 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
644 }
645 
646 static void nv_adma_mode(struct ata_port *ap)
647 {
648 	struct nv_adma_port_priv *pp = ap->private_data;
649 	void __iomem *mmio = pp->ctl_block;
650 	u16 tmp, status;
651 	int count = 0;
652 
653 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
654 		return;
655 
656 	WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
657 
658 	tmp = readw(mmio + NV_ADMA_CTL);
659 	writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
660 
661 	status = readw(mmio + NV_ADMA_STAT);
662 	while (((status & NV_ADMA_STAT_LEGACY) ||
663 	      !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
664 		ndelay(50);
665 		status = readw(mmio + NV_ADMA_STAT);
666 		count++;
667 	}
668 	if (count == 20)
669 		ata_port_printk(ap, KERN_WARNING,
670 			"timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
671 			status);
672 
673 	pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
674 }
675 
676 static int nv_adma_slave_config(struct scsi_device *sdev)
677 {
678 	struct ata_port *ap = ata_shost_to_port(sdev->host);
679 	struct nv_adma_port_priv *pp = ap->private_data;
680 	struct nv_adma_port_priv *port0, *port1;
681 	struct scsi_device *sdev0, *sdev1;
682 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
683 	unsigned long segment_boundary, flags;
684 	unsigned short sg_tablesize;
685 	int rc;
686 	int adma_enable;
687 	u32 current_reg, new_reg, config_mask;
688 
689 	rc = ata_scsi_slave_config(sdev);
690 
691 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
692 		/* Not a proper libata device, ignore */
693 		return rc;
694 
695 	spin_lock_irqsave(ap->lock, flags);
696 
697 	if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
698 		/*
699 		 * NVIDIA reports that ADMA mode does not support ATAPI commands.
700 		 * Therefore ATAPI commands are sent through the legacy interface.
701 		 * However, the legacy interface only supports 32-bit DMA.
702 		 * Restrict DMA parameters as required by the legacy interface
703 		 * when an ATAPI device is connected.
704 		 */
705 		segment_boundary = ATA_DMA_BOUNDARY;
706 		/* Subtract 1 since an extra entry may be needed for padding, see
707 		   libata-scsi.c */
708 		sg_tablesize = LIBATA_MAX_PRD - 1;
709 
710 		/* Since the legacy DMA engine is in use, we need to disable ADMA
711 		   on the port. */
712 		adma_enable = 0;
713 		nv_adma_register_mode(ap);
714 	} else {
715 		segment_boundary = NV_ADMA_DMA_BOUNDARY;
716 		sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
717 		adma_enable = 1;
718 	}
719 
720 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
721 
722 	if (ap->port_no == 1)
723 		config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
724 			      NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
725 	else
726 		config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
727 			      NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
728 
729 	if (adma_enable) {
730 		new_reg = current_reg | config_mask;
731 		pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
732 	} else {
733 		new_reg = current_reg & ~config_mask;
734 		pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
735 	}
736 
737 	if (current_reg != new_reg)
738 		pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
739 
740 	port0 = ap->host->ports[0]->private_data;
741 	port1 = ap->host->ports[1]->private_data;
742 	sdev0 = ap->host->ports[0]->link.device[0].sdev;
743 	sdev1 = ap->host->ports[1]->link.device[0].sdev;
744 	if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
745 	    (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
746 		/** We have to set the DMA mask to 32-bit if either port is in
747 		    ATAPI mode, since they are on the same PCI device which is
748 		    used for DMA mapping. If we set the mask we also need to set
749 		    the bounce limit on both ports to ensure that the block
750 		    layer doesn't feed addresses that cause DMA mapping to
751 		    choke. If either SCSI device is not allocated yet, it's OK
752 		    since that port will discover its correct setting when it
753 		    does get allocated.
754 		    Note: Setting 32-bit mask should not fail. */
755 		if (sdev0)
756 			blk_queue_bounce_limit(sdev0->request_queue,
757 					       ATA_DMA_MASK);
758 		if (sdev1)
759 			blk_queue_bounce_limit(sdev1->request_queue,
760 					       ATA_DMA_MASK);
761 
762 		pci_set_dma_mask(pdev, ATA_DMA_MASK);
763 	} else {
764 		/** This shouldn't fail as it was set to this value before */
765 		pci_set_dma_mask(pdev, pp->adma_dma_mask);
766 		if (sdev0)
767 			blk_queue_bounce_limit(sdev0->request_queue,
768 					       pp->adma_dma_mask);
769 		if (sdev1)
770 			blk_queue_bounce_limit(sdev1->request_queue,
771 					       pp->adma_dma_mask);
772 	}
773 
774 	blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
775 	blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize);
776 	ata_port_printk(ap, KERN_INFO,
777 		"DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
778 		(unsigned long long)*ap->host->dev->dma_mask,
779 		segment_boundary, sg_tablesize);
780 
781 	spin_unlock_irqrestore(ap->lock, flags);
782 
783 	return rc;
784 }
785 
786 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
787 {
788 	struct nv_adma_port_priv *pp = qc->ap->private_data;
789 	return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
790 }
791 
792 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
793 {
794 	/* Other than when internal or pass-through commands are executed,
795 	   the only time this function will be called in ADMA mode will be
796 	   if a command fails. In the failure case we don't care about going
797 	   into register mode with ADMA commands pending, as the commands will
798 	   all shortly be aborted anyway. We assume that NCQ commands are not
799 	   issued via passthrough, which is the only way that switching into
800 	   ADMA mode could abort outstanding commands. */
801 	nv_adma_register_mode(ap);
802 
803 	ata_sff_tf_read(ap, tf);
804 }
805 
806 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
807 {
808 	unsigned int idx = 0;
809 
810 	if (tf->flags & ATA_TFLAG_ISADDR) {
811 		if (tf->flags & ATA_TFLAG_LBA48) {
812 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR   << 8) | tf->hob_feature | WNB);
813 			cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
814 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAL  << 8) | tf->hob_lbal);
815 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAM  << 8) | tf->hob_lbam);
816 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAH  << 8) | tf->hob_lbah);
817 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature);
818 		} else
819 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature | WNB);
820 
821 		cpb[idx++] = cpu_to_le16((ATA_REG_NSECT  << 8) | tf->nsect);
822 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAL   << 8) | tf->lbal);
823 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAM   << 8) | tf->lbam);
824 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAH   << 8) | tf->lbah);
825 	}
826 
827 	if (tf->flags & ATA_TFLAG_DEVICE)
828 		cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
829 
830 	cpb[idx++] = cpu_to_le16((ATA_REG_CMD    << 8) | tf->command | CMDEND);
831 
832 	while (idx < 12)
833 		cpb[idx++] = cpu_to_le16(IGN);
834 
835 	return idx;
836 }
837 
838 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
839 {
840 	struct nv_adma_port_priv *pp = ap->private_data;
841 	u8 flags = pp->cpb[cpb_num].resp_flags;
842 
843 	VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
844 
845 	if (unlikely((force_err ||
846 		     flags & (NV_CPB_RESP_ATA_ERR |
847 			      NV_CPB_RESP_CMD_ERR |
848 			      NV_CPB_RESP_CPB_ERR)))) {
849 		struct ata_eh_info *ehi = &ap->link.eh_info;
850 		int freeze = 0;
851 
852 		ata_ehi_clear_desc(ehi);
853 		__ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
854 		if (flags & NV_CPB_RESP_ATA_ERR) {
855 			ata_ehi_push_desc(ehi, "ATA error");
856 			ehi->err_mask |= AC_ERR_DEV;
857 		} else if (flags & NV_CPB_RESP_CMD_ERR) {
858 			ata_ehi_push_desc(ehi, "CMD error");
859 			ehi->err_mask |= AC_ERR_DEV;
860 		} else if (flags & NV_CPB_RESP_CPB_ERR) {
861 			ata_ehi_push_desc(ehi, "CPB error");
862 			ehi->err_mask |= AC_ERR_SYSTEM;
863 			freeze = 1;
864 		} else {
865 			/* notifier error, but no error in CPB flags? */
866 			ata_ehi_push_desc(ehi, "unknown");
867 			ehi->err_mask |= AC_ERR_OTHER;
868 			freeze = 1;
869 		}
870 		/* Kill all commands. EH will determine what actually failed. */
871 		if (freeze)
872 			ata_port_freeze(ap);
873 		else
874 			ata_port_abort(ap);
875 		return 1;
876 	}
877 
878 	if (likely(flags & NV_CPB_RESP_DONE)) {
879 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
880 		VPRINTK("CPB flags done, flags=0x%x\n", flags);
881 		if (likely(qc)) {
882 			DPRINTK("Completing qc from tag %d\n", cpb_num);
883 			ata_qc_complete(qc);
884 		} else {
885 			struct ata_eh_info *ehi = &ap->link.eh_info;
886 			/* Notifier bits set without a command may indicate the drive
887 			   is misbehaving. Raise host state machine violation on this
888 			   condition. */
889 			ata_port_printk(ap, KERN_ERR,
890 					"notifier for tag %d with no cmd?\n",
891 					cpb_num);
892 			ehi->err_mask |= AC_ERR_HSM;
893 			ehi->action |= ATA_EH_RESET;
894 			ata_port_freeze(ap);
895 			return 1;
896 		}
897 	}
898 	return 0;
899 }
900 
901 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
902 {
903 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
904 
905 	/* freeze if hotplugged */
906 	if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
907 		ata_port_freeze(ap);
908 		return 1;
909 	}
910 
911 	/* bail out if not our interrupt */
912 	if (!(irq_stat & NV_INT_DEV))
913 		return 0;
914 
915 	/* DEV interrupt w/ no active qc? */
916 	if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
917 		ata_sff_check_status(ap);
918 		return 1;
919 	}
920 
921 	/* handle interrupt */
922 	return ata_sff_host_intr(ap, qc);
923 }
924 
925 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
926 {
927 	struct ata_host *host = dev_instance;
928 	int i, handled = 0;
929 	u32 notifier_clears[2];
930 
931 	spin_lock(&host->lock);
932 
933 	for (i = 0; i < host->n_ports; i++) {
934 		struct ata_port *ap = host->ports[i];
935 		notifier_clears[i] = 0;
936 
937 		if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
938 			struct nv_adma_port_priv *pp = ap->private_data;
939 			void __iomem *mmio = pp->ctl_block;
940 			u16 status;
941 			u32 gen_ctl;
942 			u32 notifier, notifier_error;
943 
944 			/* if ADMA is disabled, use standard ata interrupt handler */
945 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
946 				u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
947 					>> (NV_INT_PORT_SHIFT * i);
948 				handled += nv_host_intr(ap, irq_stat);
949 				continue;
950 			}
951 
952 			/* if in ATA register mode, check for standard interrupts */
953 			if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
954 				u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
955 					>> (NV_INT_PORT_SHIFT * i);
956 				if (ata_tag_valid(ap->link.active_tag))
957 					/** NV_INT_DEV indication seems unreliable at times
958 					    at least in ADMA mode. Force it on always when a
959 					    command is active, to prevent losing interrupts. */
960 					irq_stat |= NV_INT_DEV;
961 				handled += nv_host_intr(ap, irq_stat);
962 			}
963 
964 			notifier = readl(mmio + NV_ADMA_NOTIFIER);
965 			notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
966 			notifier_clears[i] = notifier | notifier_error;
967 
968 			gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
969 
970 			if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
971 			    !notifier_error)
972 				/* Nothing to do */
973 				continue;
974 
975 			status = readw(mmio + NV_ADMA_STAT);
976 
977 			/* Clear status. Ensure the controller sees the clearing before we start
978 			   looking at any of the CPB statuses, so that any CPB completions after
979 			   this point in the handler will raise another interrupt. */
980 			writew(status, mmio + NV_ADMA_STAT);
981 			readw(mmio + NV_ADMA_STAT); /* flush posted write */
982 			rmb();
983 
984 			handled++; /* irq handled if we got here */
985 
986 			/* freeze if hotplugged or controller error */
987 			if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
988 					       NV_ADMA_STAT_HOTUNPLUG |
989 					       NV_ADMA_STAT_TIMEOUT |
990 					       NV_ADMA_STAT_SERROR))) {
991 				struct ata_eh_info *ehi = &ap->link.eh_info;
992 
993 				ata_ehi_clear_desc(ehi);
994 				__ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
995 				if (status & NV_ADMA_STAT_TIMEOUT) {
996 					ehi->err_mask |= AC_ERR_SYSTEM;
997 					ata_ehi_push_desc(ehi, "timeout");
998 				} else if (status & NV_ADMA_STAT_HOTPLUG) {
999 					ata_ehi_hotplugged(ehi);
1000 					ata_ehi_push_desc(ehi, "hotplug");
1001 				} else if (status & NV_ADMA_STAT_HOTUNPLUG) {
1002 					ata_ehi_hotplugged(ehi);
1003 					ata_ehi_push_desc(ehi, "hot unplug");
1004 				} else if (status & NV_ADMA_STAT_SERROR) {
1005 					/* let libata analyze SError and figure out the cause */
1006 					ata_ehi_push_desc(ehi, "SError");
1007 				} else
1008 					ata_ehi_push_desc(ehi, "unknown");
1009 				ata_port_freeze(ap);
1010 				continue;
1011 			}
1012 
1013 			if (status & (NV_ADMA_STAT_DONE |
1014 				      NV_ADMA_STAT_CPBERR |
1015 				      NV_ADMA_STAT_CMD_COMPLETE)) {
1016 				u32 check_commands = notifier_clears[i];
1017 				int pos, error = 0;
1018 
1019 				if (status & NV_ADMA_STAT_CPBERR) {
1020 					/* Check all active commands */
1021 					if (ata_tag_valid(ap->link.active_tag))
1022 						check_commands = 1 <<
1023 							ap->link.active_tag;
1024 					else
1025 						check_commands = ap->
1026 							link.sactive;
1027 				}
1028 
1029 				/** Check CPBs for completed commands */
1030 				while ((pos = ffs(check_commands)) && !error) {
1031 					pos--;
1032 					error = nv_adma_check_cpb(ap, pos,
1033 						notifier_error & (1 << pos));
1034 					check_commands &= ~(1 << pos);
1035 				}
1036 			}
1037 		}
1038 	}
1039 
1040 	if (notifier_clears[0] || notifier_clears[1]) {
1041 		/* Note: Both notifier clear registers must be written
1042 		   if either is set, even if one is zero, according to NVIDIA. */
1043 		struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1044 		writel(notifier_clears[0], pp->notifier_clear_block);
1045 		pp = host->ports[1]->private_data;
1046 		writel(notifier_clears[1], pp->notifier_clear_block);
1047 	}
1048 
1049 	spin_unlock(&host->lock);
1050 
1051 	return IRQ_RETVAL(handled);
1052 }
1053 
1054 static void nv_adma_freeze(struct ata_port *ap)
1055 {
1056 	struct nv_adma_port_priv *pp = ap->private_data;
1057 	void __iomem *mmio = pp->ctl_block;
1058 	u16 tmp;
1059 
1060 	nv_ck804_freeze(ap);
1061 
1062 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1063 		return;
1064 
1065 	/* clear any outstanding CK804 notifications */
1066 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1067 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1068 
1069 	/* Disable interrupt */
1070 	tmp = readw(mmio + NV_ADMA_CTL);
1071 	writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1072 		mmio + NV_ADMA_CTL);
1073 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1074 }
1075 
1076 static void nv_adma_thaw(struct ata_port *ap)
1077 {
1078 	struct nv_adma_port_priv *pp = ap->private_data;
1079 	void __iomem *mmio = pp->ctl_block;
1080 	u16 tmp;
1081 
1082 	nv_ck804_thaw(ap);
1083 
1084 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1085 		return;
1086 
1087 	/* Enable interrupt */
1088 	tmp = readw(mmio + NV_ADMA_CTL);
1089 	writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1090 		mmio + NV_ADMA_CTL);
1091 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1092 }
1093 
1094 static void nv_adma_irq_clear(struct ata_port *ap)
1095 {
1096 	struct nv_adma_port_priv *pp = ap->private_data;
1097 	void __iomem *mmio = pp->ctl_block;
1098 	u32 notifier_clears[2];
1099 
1100 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1101 		ata_sff_irq_clear(ap);
1102 		return;
1103 	}
1104 
1105 	/* clear any outstanding CK804 notifications */
1106 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1107 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1108 
1109 	/* clear ADMA status */
1110 	writew(0xffff, mmio + NV_ADMA_STAT);
1111 
1112 	/* clear notifiers - note both ports need to be written with
1113 	   something even though we are only clearing on one */
1114 	if (ap->port_no == 0) {
1115 		notifier_clears[0] = 0xFFFFFFFF;
1116 		notifier_clears[1] = 0;
1117 	} else {
1118 		notifier_clears[0] = 0;
1119 		notifier_clears[1] = 0xFFFFFFFF;
1120 	}
1121 	pp = ap->host->ports[0]->private_data;
1122 	writel(notifier_clears[0], pp->notifier_clear_block);
1123 	pp = ap->host->ports[1]->private_data;
1124 	writel(notifier_clears[1], pp->notifier_clear_block);
1125 }
1126 
1127 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1128 {
1129 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1130 
1131 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1132 		ata_sff_post_internal_cmd(qc);
1133 }
1134 
1135 static int nv_adma_port_start(struct ata_port *ap)
1136 {
1137 	struct device *dev = ap->host->dev;
1138 	struct nv_adma_port_priv *pp;
1139 	int rc;
1140 	void *mem;
1141 	dma_addr_t mem_dma;
1142 	void __iomem *mmio;
1143 	struct pci_dev *pdev = to_pci_dev(dev);
1144 	u16 tmp;
1145 
1146 	VPRINTK("ENTER\n");
1147 
1148 	/* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1149 	   pad buffers */
1150 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1151 	if (rc)
1152 		return rc;
1153 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1154 	if (rc)
1155 		return rc;
1156 
1157 	rc = ata_port_start(ap);
1158 	if (rc)
1159 		return rc;
1160 
1161 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1162 	if (!pp)
1163 		return -ENOMEM;
1164 
1165 	mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1166 	       ap->port_no * NV_ADMA_PORT_SIZE;
1167 	pp->ctl_block = mmio;
1168 	pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1169 	pp->notifier_clear_block = pp->gen_block +
1170 	       NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1171 
1172 	/* Now that the legacy PRD and padding buffer are allocated we can
1173 	   safely raise the DMA mask to allocate the CPB/APRD table.
1174 	   These are allowed to fail since we store the value that ends up
1175 	   being used to set as the bounce limit in slave_config later if
1176 	   needed. */
1177 	pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1178 	pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1179 	pp->adma_dma_mask = *dev->dma_mask;
1180 
1181 	mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1182 				  &mem_dma, GFP_KERNEL);
1183 	if (!mem)
1184 		return -ENOMEM;
1185 	memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1186 
1187 	/*
1188 	 * First item in chunk of DMA memory:
1189 	 * 128-byte command parameter block (CPB)
1190 	 * one for each command tag
1191 	 */
1192 	pp->cpb     = mem;
1193 	pp->cpb_dma = mem_dma;
1194 
1195 	writel(mem_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1196 	writel((mem_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1197 
1198 	mem     += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1199 	mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1200 
1201 	/*
1202 	 * Second item: block of ADMA_SGTBL_LEN s/g entries
1203 	 */
1204 	pp->aprd = mem;
1205 	pp->aprd_dma = mem_dma;
1206 
1207 	ap->private_data = pp;
1208 
1209 	/* clear any outstanding interrupt conditions */
1210 	writew(0xffff, mmio + NV_ADMA_STAT);
1211 
1212 	/* initialize port variables */
1213 	pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1214 
1215 	/* clear CPB fetch count */
1216 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1217 
1218 	/* clear GO for register mode, enable interrupt */
1219 	tmp = readw(mmio + NV_ADMA_CTL);
1220 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1221 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1222 
1223 	tmp = readw(mmio + NV_ADMA_CTL);
1224 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1225 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1226 	udelay(1);
1227 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1228 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1229 
1230 	return 0;
1231 }
1232 
1233 static void nv_adma_port_stop(struct ata_port *ap)
1234 {
1235 	struct nv_adma_port_priv *pp = ap->private_data;
1236 	void __iomem *mmio = pp->ctl_block;
1237 
1238 	VPRINTK("ENTER\n");
1239 	writew(0, mmio + NV_ADMA_CTL);
1240 }
1241 
1242 #ifdef CONFIG_PM
1243 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1244 {
1245 	struct nv_adma_port_priv *pp = ap->private_data;
1246 	void __iomem *mmio = pp->ctl_block;
1247 
1248 	/* Go to register mode - clears GO */
1249 	nv_adma_register_mode(ap);
1250 
1251 	/* clear CPB fetch count */
1252 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1253 
1254 	/* disable interrupt, shut down port */
1255 	writew(0, mmio + NV_ADMA_CTL);
1256 
1257 	return 0;
1258 }
1259 
1260 static int nv_adma_port_resume(struct ata_port *ap)
1261 {
1262 	struct nv_adma_port_priv *pp = ap->private_data;
1263 	void __iomem *mmio = pp->ctl_block;
1264 	u16 tmp;
1265 
1266 	/* set CPB block location */
1267 	writel(pp->cpb_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1268 	writel((pp->cpb_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1269 
1270 	/* clear any outstanding interrupt conditions */
1271 	writew(0xffff, mmio + NV_ADMA_STAT);
1272 
1273 	/* initialize port variables */
1274 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1275 
1276 	/* clear CPB fetch count */
1277 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1278 
1279 	/* clear GO for register mode, enable interrupt */
1280 	tmp = readw(mmio + NV_ADMA_CTL);
1281 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1282 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1283 
1284 	tmp = readw(mmio + NV_ADMA_CTL);
1285 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1286 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1287 	udelay(1);
1288 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1289 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1290 
1291 	return 0;
1292 }
1293 #endif
1294 
1295 static void nv_adma_setup_port(struct ata_port *ap)
1296 {
1297 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1298 	struct ata_ioports *ioport = &ap->ioaddr;
1299 
1300 	VPRINTK("ENTER\n");
1301 
1302 	mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1303 
1304 	ioport->cmd_addr	= mmio;
1305 	ioport->data_addr	= mmio + (ATA_REG_DATA * 4);
1306 	ioport->error_addr	=
1307 	ioport->feature_addr	= mmio + (ATA_REG_ERR * 4);
1308 	ioport->nsect_addr	= mmio + (ATA_REG_NSECT * 4);
1309 	ioport->lbal_addr	= mmio + (ATA_REG_LBAL * 4);
1310 	ioport->lbam_addr	= mmio + (ATA_REG_LBAM * 4);
1311 	ioport->lbah_addr	= mmio + (ATA_REG_LBAH * 4);
1312 	ioport->device_addr	= mmio + (ATA_REG_DEVICE * 4);
1313 	ioport->status_addr	=
1314 	ioport->command_addr	= mmio + (ATA_REG_STATUS * 4);
1315 	ioport->altstatus_addr	=
1316 	ioport->ctl_addr	= mmio + 0x20;
1317 }
1318 
1319 static int nv_adma_host_init(struct ata_host *host)
1320 {
1321 	struct pci_dev *pdev = to_pci_dev(host->dev);
1322 	unsigned int i;
1323 	u32 tmp32;
1324 
1325 	VPRINTK("ENTER\n");
1326 
1327 	/* enable ADMA on the ports */
1328 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1329 	tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1330 		 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1331 		 NV_MCP_SATA_CFG_20_PORT1_EN |
1332 		 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1333 
1334 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1335 
1336 	for (i = 0; i < host->n_ports; i++)
1337 		nv_adma_setup_port(host->ports[i]);
1338 
1339 	return 0;
1340 }
1341 
1342 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1343 			      struct scatterlist *sg,
1344 			      int idx,
1345 			      struct nv_adma_prd *aprd)
1346 {
1347 	u8 flags = 0;
1348 	if (qc->tf.flags & ATA_TFLAG_WRITE)
1349 		flags |= NV_APRD_WRITE;
1350 	if (idx == qc->n_elem - 1)
1351 		flags |= NV_APRD_END;
1352 	else if (idx != 4)
1353 		flags |= NV_APRD_CONT;
1354 
1355 	aprd->addr  = cpu_to_le64(((u64)sg_dma_address(sg)));
1356 	aprd->len   = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1357 	aprd->flags = flags;
1358 	aprd->packet_len = 0;
1359 }
1360 
1361 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1362 {
1363 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1364 	struct nv_adma_prd *aprd;
1365 	struct scatterlist *sg;
1366 	unsigned int si;
1367 
1368 	VPRINTK("ENTER\n");
1369 
1370 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1371 		aprd = (si < 5) ? &cpb->aprd[si] :
1372 			       &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1373 		nv_adma_fill_aprd(qc, sg, si, aprd);
1374 	}
1375 	if (si > 5)
1376 		cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1377 	else
1378 		cpb->next_aprd = cpu_to_le64(0);
1379 }
1380 
1381 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1382 {
1383 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1384 
1385 	/* ADMA engine can only be used for non-ATAPI DMA commands,
1386 	   or interrupt-driven no-data commands. */
1387 	if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1388 	   (qc->tf.flags & ATA_TFLAG_POLLING))
1389 		return 1;
1390 
1391 	if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1392 	   (qc->tf.protocol == ATA_PROT_NODATA))
1393 		return 0;
1394 
1395 	return 1;
1396 }
1397 
1398 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1399 {
1400 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1401 	struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1402 	u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1403 		       NV_CPB_CTL_IEN;
1404 
1405 	if (nv_adma_use_reg_mode(qc)) {
1406 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1407 			(qc->flags & ATA_QCFLAG_DMAMAP));
1408 		nv_adma_register_mode(qc->ap);
1409 		ata_sff_qc_prep(qc);
1410 		return;
1411 	}
1412 
1413 	cpb->resp_flags = NV_CPB_RESP_DONE;
1414 	wmb();
1415 	cpb->ctl_flags = 0;
1416 	wmb();
1417 
1418 	cpb->len		= 3;
1419 	cpb->tag		= qc->tag;
1420 	cpb->next_cpb_idx	= 0;
1421 
1422 	/* turn on NCQ flags for NCQ commands */
1423 	if (qc->tf.protocol == ATA_PROT_NCQ)
1424 		ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1425 
1426 	VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1427 
1428 	nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1429 
1430 	if (qc->flags & ATA_QCFLAG_DMAMAP) {
1431 		nv_adma_fill_sg(qc, cpb);
1432 		ctl_flags |= NV_CPB_CTL_APRD_VALID;
1433 	} else
1434 		memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1435 
1436 	/* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1437 	   until we are finished filling in all of the contents */
1438 	wmb();
1439 	cpb->ctl_flags = ctl_flags;
1440 	wmb();
1441 	cpb->resp_flags = 0;
1442 }
1443 
1444 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1445 {
1446 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1447 	void __iomem *mmio = pp->ctl_block;
1448 	int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1449 
1450 	VPRINTK("ENTER\n");
1451 
1452 	/* We can't handle result taskfile with NCQ commands, since
1453 	   retrieving the taskfile switches us out of ADMA mode and would abort
1454 	   existing commands. */
1455 	if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1456 		     (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1457 		ata_dev_printk(qc->dev, KERN_ERR,
1458 			"NCQ w/ RESULT_TF not allowed\n");
1459 		return AC_ERR_SYSTEM;
1460 	}
1461 
1462 	if (nv_adma_use_reg_mode(qc)) {
1463 		/* use ATA register mode */
1464 		VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1465 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1466 			(qc->flags & ATA_QCFLAG_DMAMAP));
1467 		nv_adma_register_mode(qc->ap);
1468 		return ata_sff_qc_issue(qc);
1469 	} else
1470 		nv_adma_mode(qc->ap);
1471 
1472 	/* write append register, command tag in lower 8 bits
1473 	   and (number of cpbs to append -1) in top 8 bits */
1474 	wmb();
1475 
1476 	if (curr_ncq != pp->last_issue_ncq) {
1477 		/* Seems to need some delay before switching between NCQ and
1478 		   non-NCQ commands, else we get command timeouts and such. */
1479 		udelay(20);
1480 		pp->last_issue_ncq = curr_ncq;
1481 	}
1482 
1483 	writew(qc->tag, mmio + NV_ADMA_APPEND);
1484 
1485 	DPRINTK("Issued tag %u\n", qc->tag);
1486 
1487 	return 0;
1488 }
1489 
1490 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1491 {
1492 	struct ata_host *host = dev_instance;
1493 	unsigned int i;
1494 	unsigned int handled = 0;
1495 	unsigned long flags;
1496 
1497 	spin_lock_irqsave(&host->lock, flags);
1498 
1499 	for (i = 0; i < host->n_ports; i++) {
1500 		struct ata_port *ap;
1501 
1502 		ap = host->ports[i];
1503 		if (ap &&
1504 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1505 			struct ata_queued_cmd *qc;
1506 
1507 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1508 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
1509 				handled += ata_sff_host_intr(ap, qc);
1510 			else
1511 				// No request pending?  Clear interrupt status
1512 				// anyway, in case there's one pending.
1513 				ap->ops->sff_check_status(ap);
1514 		}
1515 
1516 	}
1517 
1518 	spin_unlock_irqrestore(&host->lock, flags);
1519 
1520 	return IRQ_RETVAL(handled);
1521 }
1522 
1523 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1524 {
1525 	int i, handled = 0;
1526 
1527 	for (i = 0; i < host->n_ports; i++) {
1528 		struct ata_port *ap = host->ports[i];
1529 
1530 		if (ap && !(ap->flags & ATA_FLAG_DISABLED))
1531 			handled += nv_host_intr(ap, irq_stat);
1532 
1533 		irq_stat >>= NV_INT_PORT_SHIFT;
1534 	}
1535 
1536 	return IRQ_RETVAL(handled);
1537 }
1538 
1539 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1540 {
1541 	struct ata_host *host = dev_instance;
1542 	u8 irq_stat;
1543 	irqreturn_t ret;
1544 
1545 	spin_lock(&host->lock);
1546 	irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1547 	ret = nv_do_interrupt(host, irq_stat);
1548 	spin_unlock(&host->lock);
1549 
1550 	return ret;
1551 }
1552 
1553 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1554 {
1555 	struct ata_host *host = dev_instance;
1556 	u8 irq_stat;
1557 	irqreturn_t ret;
1558 
1559 	spin_lock(&host->lock);
1560 	irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1561 	ret = nv_do_interrupt(host, irq_stat);
1562 	spin_unlock(&host->lock);
1563 
1564 	return ret;
1565 }
1566 
1567 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1568 {
1569 	if (sc_reg > SCR_CONTROL)
1570 		return -EINVAL;
1571 
1572 	*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1573 	return 0;
1574 }
1575 
1576 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1577 {
1578 	if (sc_reg > SCR_CONTROL)
1579 		return -EINVAL;
1580 
1581 	iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1582 	return 0;
1583 }
1584 
1585 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1586 			unsigned long deadline)
1587 {
1588 	struct ata_eh_context *ehc = &link->eh_context;
1589 
1590 	/* Do hardreset iff it's post-boot probing, please read the
1591 	 * comment above port ops for details.
1592 	 */
1593 	if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1594 	    !ata_dev_enabled(link->device))
1595 		sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1596 				    NULL, NULL);
1597 	else if (!(ehc->i.flags & ATA_EHI_QUIET))
1598 		ata_link_printk(link, KERN_INFO,
1599 				"nv: skipping hardreset on occupied port\n");
1600 
1601 	/* device signature acquisition is unreliable */
1602 	return -EAGAIN;
1603 }
1604 
1605 static void nv_nf2_freeze(struct ata_port *ap)
1606 {
1607 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1608 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1609 	u8 mask;
1610 
1611 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1612 	mask &= ~(NV_INT_ALL << shift);
1613 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1614 }
1615 
1616 static void nv_nf2_thaw(struct ata_port *ap)
1617 {
1618 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1619 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1620 	u8 mask;
1621 
1622 	iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1623 
1624 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1625 	mask |= (NV_INT_MASK << shift);
1626 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1627 }
1628 
1629 static void nv_ck804_freeze(struct ata_port *ap)
1630 {
1631 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1632 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1633 	u8 mask;
1634 
1635 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1636 	mask &= ~(NV_INT_ALL << shift);
1637 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1638 }
1639 
1640 static void nv_ck804_thaw(struct ata_port *ap)
1641 {
1642 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1643 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1644 	u8 mask;
1645 
1646 	writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1647 
1648 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1649 	mask |= (NV_INT_MASK << shift);
1650 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1651 }
1652 
1653 static void nv_mcp55_freeze(struct ata_port *ap)
1654 {
1655 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1656 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1657 	u32 mask;
1658 
1659 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1660 
1661 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1662 	mask &= ~(NV_INT_ALL_MCP55 << shift);
1663 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1664 	ata_sff_freeze(ap);
1665 }
1666 
1667 static void nv_mcp55_thaw(struct ata_port *ap)
1668 {
1669 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1670 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1671 	u32 mask;
1672 
1673 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1674 
1675 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1676 	mask |= (NV_INT_MASK_MCP55 << shift);
1677 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1678 	ata_sff_thaw(ap);
1679 }
1680 
1681 static void nv_adma_error_handler(struct ata_port *ap)
1682 {
1683 	struct nv_adma_port_priv *pp = ap->private_data;
1684 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1685 		void __iomem *mmio = pp->ctl_block;
1686 		int i;
1687 		u16 tmp;
1688 
1689 		if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1690 			u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1691 			u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1692 			u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1693 			u32 status = readw(mmio + NV_ADMA_STAT);
1694 			u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1695 			u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1696 
1697 			ata_port_printk(ap, KERN_ERR,
1698 				"EH in ADMA mode, notifier 0x%X "
1699 				"notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1700 				"next cpb count 0x%X next cpb idx 0x%x\n",
1701 				notifier, notifier_error, gen_ctl, status,
1702 				cpb_count, next_cpb_idx);
1703 
1704 			for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1705 				struct nv_adma_cpb *cpb = &pp->cpb[i];
1706 				if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1707 				    ap->link.sactive & (1 << i))
1708 					ata_port_printk(ap, KERN_ERR,
1709 						"CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1710 						i, cpb->ctl_flags, cpb->resp_flags);
1711 			}
1712 		}
1713 
1714 		/* Push us back into port register mode for error handling. */
1715 		nv_adma_register_mode(ap);
1716 
1717 		/* Mark all of the CPBs as invalid to prevent them from
1718 		   being executed */
1719 		for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1720 			pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1721 
1722 		/* clear CPB fetch count */
1723 		writew(0, mmio + NV_ADMA_CPB_COUNT);
1724 
1725 		/* Reset channel */
1726 		tmp = readw(mmio + NV_ADMA_CTL);
1727 		writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1728 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1729 		udelay(1);
1730 		writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1731 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1732 	}
1733 
1734 	ata_sff_error_handler(ap);
1735 }
1736 
1737 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1738 {
1739 	struct nv_swncq_port_priv *pp = ap->private_data;
1740 	struct defer_queue *dq = &pp->defer_queue;
1741 
1742 	/* queue is full */
1743 	WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1744 	dq->defer_bits |= (1 << qc->tag);
1745 	dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1746 }
1747 
1748 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1749 {
1750 	struct nv_swncq_port_priv *pp = ap->private_data;
1751 	struct defer_queue *dq = &pp->defer_queue;
1752 	unsigned int tag;
1753 
1754 	if (dq->head == dq->tail)	/* null queue */
1755 		return NULL;
1756 
1757 	tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1758 	dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1759 	WARN_ON(!(dq->defer_bits & (1 << tag)));
1760 	dq->defer_bits &= ~(1 << tag);
1761 
1762 	return ata_qc_from_tag(ap, tag);
1763 }
1764 
1765 static void nv_swncq_fis_reinit(struct ata_port *ap)
1766 {
1767 	struct nv_swncq_port_priv *pp = ap->private_data;
1768 
1769 	pp->dhfis_bits = 0;
1770 	pp->dmafis_bits = 0;
1771 	pp->sdbfis_bits = 0;
1772 	pp->ncq_flags = 0;
1773 }
1774 
1775 static void nv_swncq_pp_reinit(struct ata_port *ap)
1776 {
1777 	struct nv_swncq_port_priv *pp = ap->private_data;
1778 	struct defer_queue *dq = &pp->defer_queue;
1779 
1780 	dq->head = 0;
1781 	dq->tail = 0;
1782 	dq->defer_bits = 0;
1783 	pp->qc_active = 0;
1784 	pp->last_issue_tag = ATA_TAG_POISON;
1785 	nv_swncq_fis_reinit(ap);
1786 }
1787 
1788 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1789 {
1790 	struct nv_swncq_port_priv *pp = ap->private_data;
1791 
1792 	writew(fis, pp->irq_block);
1793 }
1794 
1795 static void __ata_bmdma_stop(struct ata_port *ap)
1796 {
1797 	struct ata_queued_cmd qc;
1798 
1799 	qc.ap = ap;
1800 	ata_bmdma_stop(&qc);
1801 }
1802 
1803 static void nv_swncq_ncq_stop(struct ata_port *ap)
1804 {
1805 	struct nv_swncq_port_priv *pp = ap->private_data;
1806 	unsigned int i;
1807 	u32 sactive;
1808 	u32 done_mask;
1809 
1810 	ata_port_printk(ap, KERN_ERR,
1811 			"EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1812 			ap->qc_active, ap->link.sactive);
1813 	ata_port_printk(ap, KERN_ERR,
1814 		"SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n  "
1815 		"dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1816 		pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1817 		pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1818 
1819 	ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1820 			ap->ops->sff_check_status(ap),
1821 			ioread8(ap->ioaddr.error_addr));
1822 
1823 	sactive = readl(pp->sactive_block);
1824 	done_mask = pp->qc_active ^ sactive;
1825 
1826 	ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1827 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
1828 		u8 err = 0;
1829 		if (pp->qc_active & (1 << i))
1830 			err = 0;
1831 		else if (done_mask & (1 << i))
1832 			err = 1;
1833 		else
1834 			continue;
1835 
1836 		ata_port_printk(ap, KERN_ERR,
1837 				"tag 0x%x: %01x %01x %01x %01x %s\n", i,
1838 				(pp->dhfis_bits >> i) & 0x1,
1839 				(pp->dmafis_bits >> i) & 0x1,
1840 				(pp->sdbfis_bits >> i) & 0x1,
1841 				(sactive >> i) & 0x1,
1842 				(err ? "error! tag doesn't exit" : " "));
1843 	}
1844 
1845 	nv_swncq_pp_reinit(ap);
1846 	ap->ops->sff_irq_clear(ap);
1847 	__ata_bmdma_stop(ap);
1848 	nv_swncq_irq_clear(ap, 0xffff);
1849 }
1850 
1851 static void nv_swncq_error_handler(struct ata_port *ap)
1852 {
1853 	struct ata_eh_context *ehc = &ap->link.eh_context;
1854 
1855 	if (ap->link.sactive) {
1856 		nv_swncq_ncq_stop(ap);
1857 		ehc->i.action |= ATA_EH_RESET;
1858 	}
1859 
1860 	ata_sff_error_handler(ap);
1861 }
1862 
1863 #ifdef CONFIG_PM
1864 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1865 {
1866 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1867 	u32 tmp;
1868 
1869 	/* clear irq */
1870 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1871 
1872 	/* disable irq */
1873 	writel(0, mmio + NV_INT_ENABLE_MCP55);
1874 
1875 	/* disable swncq */
1876 	tmp = readl(mmio + NV_CTL_MCP55);
1877 	tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1878 	writel(tmp, mmio + NV_CTL_MCP55);
1879 
1880 	return 0;
1881 }
1882 
1883 static int nv_swncq_port_resume(struct ata_port *ap)
1884 {
1885 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1886 	u32 tmp;
1887 
1888 	/* clear irq */
1889 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1890 
1891 	/* enable irq */
1892 	writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1893 
1894 	/* enable swncq */
1895 	tmp = readl(mmio + NV_CTL_MCP55);
1896 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1897 
1898 	return 0;
1899 }
1900 #endif
1901 
1902 static void nv_swncq_host_init(struct ata_host *host)
1903 {
1904 	u32 tmp;
1905 	void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1906 	struct pci_dev *pdev = to_pci_dev(host->dev);
1907 	u8 regval;
1908 
1909 	/* disable  ECO 398 */
1910 	pci_read_config_byte(pdev, 0x7f, &regval);
1911 	regval &= ~(1 << 7);
1912 	pci_write_config_byte(pdev, 0x7f, regval);
1913 
1914 	/* enable swncq */
1915 	tmp = readl(mmio + NV_CTL_MCP55);
1916 	VPRINTK("HOST_CTL:0x%X\n", tmp);
1917 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1918 
1919 	/* enable irq intr */
1920 	tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1921 	VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1922 	writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1923 
1924 	/*  clear port irq */
1925 	writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1926 }
1927 
1928 static int nv_swncq_slave_config(struct scsi_device *sdev)
1929 {
1930 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1931 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1932 	struct ata_device *dev;
1933 	int rc;
1934 	u8 rev;
1935 	u8 check_maxtor = 0;
1936 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
1937 
1938 	rc = ata_scsi_slave_config(sdev);
1939 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1940 		/* Not a proper libata device, ignore */
1941 		return rc;
1942 
1943 	dev = &ap->link.device[sdev->id];
1944 	if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1945 		return rc;
1946 
1947 	/* if MCP51 and Maxtor, then disable ncq */
1948 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1949 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1950 		check_maxtor = 1;
1951 
1952 	/* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1953 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1954 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1955 		pci_read_config_byte(pdev, 0x8, &rev);
1956 		if (rev <= 0xa2)
1957 			check_maxtor = 1;
1958 	}
1959 
1960 	if (!check_maxtor)
1961 		return rc;
1962 
1963 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1964 
1965 	if (strncmp(model_num, "Maxtor", 6) == 0) {
1966 		ata_scsi_change_queue_depth(sdev, 1);
1967 		ata_dev_printk(dev, KERN_NOTICE,
1968 			"Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1969 	}
1970 
1971 	return rc;
1972 }
1973 
1974 static int nv_swncq_port_start(struct ata_port *ap)
1975 {
1976 	struct device *dev = ap->host->dev;
1977 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1978 	struct nv_swncq_port_priv *pp;
1979 	int rc;
1980 
1981 	rc = ata_port_start(ap);
1982 	if (rc)
1983 		return rc;
1984 
1985 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1986 	if (!pp)
1987 		return -ENOMEM;
1988 
1989 	pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1990 				      &pp->prd_dma, GFP_KERNEL);
1991 	if (!pp->prd)
1992 		return -ENOMEM;
1993 	memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
1994 
1995 	ap->private_data = pp;
1996 	pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1997 	pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1998 	pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
1999 
2000 	return 0;
2001 }
2002 
2003 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
2004 {
2005 	if (qc->tf.protocol != ATA_PROT_NCQ) {
2006 		ata_sff_qc_prep(qc);
2007 		return;
2008 	}
2009 
2010 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2011 		return;
2012 
2013 	nv_swncq_fill_sg(qc);
2014 }
2015 
2016 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2017 {
2018 	struct ata_port *ap = qc->ap;
2019 	struct scatterlist *sg;
2020 	struct nv_swncq_port_priv *pp = ap->private_data;
2021 	struct ata_prd *prd;
2022 	unsigned int si, idx;
2023 
2024 	prd = pp->prd + ATA_MAX_PRD * qc->tag;
2025 
2026 	idx = 0;
2027 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2028 		u32 addr, offset;
2029 		u32 sg_len, len;
2030 
2031 		addr = (u32)sg_dma_address(sg);
2032 		sg_len = sg_dma_len(sg);
2033 
2034 		while (sg_len) {
2035 			offset = addr & 0xffff;
2036 			len = sg_len;
2037 			if ((offset + sg_len) > 0x10000)
2038 				len = 0x10000 - offset;
2039 
2040 			prd[idx].addr = cpu_to_le32(addr);
2041 			prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2042 
2043 			idx++;
2044 			sg_len -= len;
2045 			addr += len;
2046 		}
2047 	}
2048 
2049 	prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2050 }
2051 
2052 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2053 					  struct ata_queued_cmd *qc)
2054 {
2055 	struct nv_swncq_port_priv *pp = ap->private_data;
2056 
2057 	if (qc == NULL)
2058 		return 0;
2059 
2060 	DPRINTK("Enter\n");
2061 
2062 	writel((1 << qc->tag), pp->sactive_block);
2063 	pp->last_issue_tag = qc->tag;
2064 	pp->dhfis_bits &= ~(1 << qc->tag);
2065 	pp->dmafis_bits &= ~(1 << qc->tag);
2066 	pp->qc_active |= (0x1 << qc->tag);
2067 
2068 	ap->ops->sff_tf_load(ap, &qc->tf);	 /* load tf registers */
2069 	ap->ops->sff_exec_command(ap, &qc->tf);
2070 
2071 	DPRINTK("Issued tag %u\n", qc->tag);
2072 
2073 	return 0;
2074 }
2075 
2076 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2077 {
2078 	struct ata_port *ap = qc->ap;
2079 	struct nv_swncq_port_priv *pp = ap->private_data;
2080 
2081 	if (qc->tf.protocol != ATA_PROT_NCQ)
2082 		return ata_sff_qc_issue(qc);
2083 
2084 	DPRINTK("Enter\n");
2085 
2086 	if (!pp->qc_active)
2087 		nv_swncq_issue_atacmd(ap, qc);
2088 	else
2089 		nv_swncq_qc_to_dq(ap, qc);	/* add qc to defer queue */
2090 
2091 	return 0;
2092 }
2093 
2094 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2095 {
2096 	u32 serror;
2097 	struct ata_eh_info *ehi = &ap->link.eh_info;
2098 
2099 	ata_ehi_clear_desc(ehi);
2100 
2101 	/* AHCI needs SError cleared; otherwise, it might lock up */
2102 	sata_scr_read(&ap->link, SCR_ERROR, &serror);
2103 	sata_scr_write(&ap->link, SCR_ERROR, serror);
2104 
2105 	/* analyze @irq_stat */
2106 	if (fis & NV_SWNCQ_IRQ_ADDED)
2107 		ata_ehi_push_desc(ehi, "hot plug");
2108 	else if (fis & NV_SWNCQ_IRQ_REMOVED)
2109 		ata_ehi_push_desc(ehi, "hot unplug");
2110 
2111 	ata_ehi_hotplugged(ehi);
2112 
2113 	/* okay, let's hand over to EH */
2114 	ehi->serror |= serror;
2115 
2116 	ata_port_freeze(ap);
2117 }
2118 
2119 static int nv_swncq_sdbfis(struct ata_port *ap)
2120 {
2121 	struct ata_queued_cmd *qc;
2122 	struct nv_swncq_port_priv *pp = ap->private_data;
2123 	struct ata_eh_info *ehi = &ap->link.eh_info;
2124 	u32 sactive;
2125 	int nr_done = 0;
2126 	u32 done_mask;
2127 	int i;
2128 	u8 host_stat;
2129 	u8 lack_dhfis = 0;
2130 
2131 	host_stat = ap->ops->bmdma_status(ap);
2132 	if (unlikely(host_stat & ATA_DMA_ERR)) {
2133 		/* error when transfering data to/from memory */
2134 		ata_ehi_clear_desc(ehi);
2135 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2136 		ehi->err_mask |= AC_ERR_HOST_BUS;
2137 		ehi->action |= ATA_EH_RESET;
2138 		return -EINVAL;
2139 	}
2140 
2141 	ap->ops->sff_irq_clear(ap);
2142 	__ata_bmdma_stop(ap);
2143 
2144 	sactive = readl(pp->sactive_block);
2145 	done_mask = pp->qc_active ^ sactive;
2146 
2147 	if (unlikely(done_mask & sactive)) {
2148 		ata_ehi_clear_desc(ehi);
2149 		ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
2150 				  "(%08x->%08x)", pp->qc_active, sactive);
2151 		ehi->err_mask |= AC_ERR_HSM;
2152 		ehi->action |= ATA_EH_RESET;
2153 		return -EINVAL;
2154 	}
2155 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
2156 		if (!(done_mask & (1 << i)))
2157 			continue;
2158 
2159 		qc = ata_qc_from_tag(ap, i);
2160 		if (qc) {
2161 			ata_qc_complete(qc);
2162 			pp->qc_active &= ~(1 << i);
2163 			pp->dhfis_bits &= ~(1 << i);
2164 			pp->dmafis_bits &= ~(1 << i);
2165 			pp->sdbfis_bits |= (1 << i);
2166 			nr_done++;
2167 		}
2168 	}
2169 
2170 	if (!ap->qc_active) {
2171 		DPRINTK("over\n");
2172 		nv_swncq_pp_reinit(ap);
2173 		return nr_done;
2174 	}
2175 
2176 	if (pp->qc_active & pp->dhfis_bits)
2177 		return nr_done;
2178 
2179 	if ((pp->ncq_flags & ncq_saw_backout) ||
2180 	    (pp->qc_active ^ pp->dhfis_bits))
2181 		/* if the controller cann't get a device to host register FIS,
2182 		 * The driver needs to reissue the new command.
2183 		 */
2184 		lack_dhfis = 1;
2185 
2186 	DPRINTK("id 0x%x QC: qc_active 0x%x,"
2187 		"SWNCQ:qc_active 0x%X defer_bits %X "
2188 		"dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2189 		ap->print_id, ap->qc_active, pp->qc_active,
2190 		pp->defer_queue.defer_bits, pp->dhfis_bits,
2191 		pp->dmafis_bits, pp->last_issue_tag);
2192 
2193 	nv_swncq_fis_reinit(ap);
2194 
2195 	if (lack_dhfis) {
2196 		qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2197 		nv_swncq_issue_atacmd(ap, qc);
2198 		return nr_done;
2199 	}
2200 
2201 	if (pp->defer_queue.defer_bits) {
2202 		/* send deferral queue command */
2203 		qc = nv_swncq_qc_from_dq(ap);
2204 		WARN_ON(qc == NULL);
2205 		nv_swncq_issue_atacmd(ap, qc);
2206 	}
2207 
2208 	return nr_done;
2209 }
2210 
2211 static inline u32 nv_swncq_tag(struct ata_port *ap)
2212 {
2213 	struct nv_swncq_port_priv *pp = ap->private_data;
2214 	u32 tag;
2215 
2216 	tag = readb(pp->tag_block) >> 2;
2217 	return (tag & 0x1f);
2218 }
2219 
2220 static int nv_swncq_dmafis(struct ata_port *ap)
2221 {
2222 	struct ata_queued_cmd *qc;
2223 	unsigned int rw;
2224 	u8 dmactl;
2225 	u32 tag;
2226 	struct nv_swncq_port_priv *pp = ap->private_data;
2227 
2228 	__ata_bmdma_stop(ap);
2229 	tag = nv_swncq_tag(ap);
2230 
2231 	DPRINTK("dma setup tag 0x%x\n", tag);
2232 	qc = ata_qc_from_tag(ap, tag);
2233 
2234 	if (unlikely(!qc))
2235 		return 0;
2236 
2237 	rw = qc->tf.flags & ATA_TFLAG_WRITE;
2238 
2239 	/* load PRD table addr. */
2240 	iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2241 		  ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2242 
2243 	/* specify data direction, triple-check start bit is clear */
2244 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2245 	dmactl &= ~ATA_DMA_WR;
2246 	if (!rw)
2247 		dmactl |= ATA_DMA_WR;
2248 
2249 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2250 
2251 	return 1;
2252 }
2253 
2254 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2255 {
2256 	struct nv_swncq_port_priv *pp = ap->private_data;
2257 	struct ata_queued_cmd *qc;
2258 	struct ata_eh_info *ehi = &ap->link.eh_info;
2259 	u32 serror;
2260 	u8 ata_stat;
2261 	int rc = 0;
2262 
2263 	ata_stat = ap->ops->sff_check_status(ap);
2264 	nv_swncq_irq_clear(ap, fis);
2265 	if (!fis)
2266 		return;
2267 
2268 	if (ap->pflags & ATA_PFLAG_FROZEN)
2269 		return;
2270 
2271 	if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2272 		nv_swncq_hotplug(ap, fis);
2273 		return;
2274 	}
2275 
2276 	if (!pp->qc_active)
2277 		return;
2278 
2279 	if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2280 		return;
2281 	ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2282 
2283 	if (ata_stat & ATA_ERR) {
2284 		ata_ehi_clear_desc(ehi);
2285 		ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2286 		ehi->err_mask |= AC_ERR_DEV;
2287 		ehi->serror |= serror;
2288 		ehi->action |= ATA_EH_RESET;
2289 		ata_port_freeze(ap);
2290 		return;
2291 	}
2292 
2293 	if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2294 		/* If the IRQ is backout, driver must issue
2295 		 * the new command again some time later.
2296 		 */
2297 		pp->ncq_flags |= ncq_saw_backout;
2298 	}
2299 
2300 	if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2301 		pp->ncq_flags |= ncq_saw_sdb;
2302 		DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2303 			"dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2304 			ap->print_id, pp->qc_active, pp->dhfis_bits,
2305 			pp->dmafis_bits, readl(pp->sactive_block));
2306 		rc = nv_swncq_sdbfis(ap);
2307 		if (rc < 0)
2308 			goto irq_error;
2309 	}
2310 
2311 	if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2312 		/* The interrupt indicates the new command
2313 		 * was transmitted correctly to the drive.
2314 		 */
2315 		pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2316 		pp->ncq_flags |= ncq_saw_d2h;
2317 		if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2318 			ata_ehi_push_desc(ehi, "illegal fis transaction");
2319 			ehi->err_mask |= AC_ERR_HSM;
2320 			ehi->action |= ATA_EH_RESET;
2321 			goto irq_error;
2322 		}
2323 
2324 		if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2325 		    !(pp->ncq_flags & ncq_saw_dmas)) {
2326 			ata_stat = ap->ops->sff_check_status(ap);
2327 			if (ata_stat & ATA_BUSY)
2328 				goto irq_exit;
2329 
2330 			if (pp->defer_queue.defer_bits) {
2331 				DPRINTK("send next command\n");
2332 				qc = nv_swncq_qc_from_dq(ap);
2333 				nv_swncq_issue_atacmd(ap, qc);
2334 			}
2335 		}
2336 	}
2337 
2338 	if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2339 		/* program the dma controller with appropriate PRD buffers
2340 		 * and start the DMA transfer for requested command.
2341 		 */
2342 		pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2343 		pp->ncq_flags |= ncq_saw_dmas;
2344 		rc = nv_swncq_dmafis(ap);
2345 	}
2346 
2347 irq_exit:
2348 	return;
2349 irq_error:
2350 	ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2351 	ata_port_freeze(ap);
2352 	return;
2353 }
2354 
2355 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2356 {
2357 	struct ata_host *host = dev_instance;
2358 	unsigned int i;
2359 	unsigned int handled = 0;
2360 	unsigned long flags;
2361 	u32 irq_stat;
2362 
2363 	spin_lock_irqsave(&host->lock, flags);
2364 
2365 	irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2366 
2367 	for (i = 0; i < host->n_ports; i++) {
2368 		struct ata_port *ap = host->ports[i];
2369 
2370 		if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
2371 			if (ap->link.sactive) {
2372 				nv_swncq_host_interrupt(ap, (u16)irq_stat);
2373 				handled = 1;
2374 			} else {
2375 				if (irq_stat)	/* reserve Hotplug */
2376 					nv_swncq_irq_clear(ap, 0xfff0);
2377 
2378 				handled += nv_host_intr(ap, (u8)irq_stat);
2379 			}
2380 		}
2381 		irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2382 	}
2383 
2384 	spin_unlock_irqrestore(&host->lock, flags);
2385 
2386 	return IRQ_RETVAL(handled);
2387 }
2388 
2389 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2390 {
2391 	static int printed_version;
2392 	const struct ata_port_info *ppi[] = { NULL, NULL };
2393 	struct nv_pi_priv *ipriv;
2394 	struct ata_host *host;
2395 	struct nv_host_priv *hpriv;
2396 	int rc;
2397 	u32 bar;
2398 	void __iomem *base;
2399 	unsigned long type = ent->driver_data;
2400 
2401         // Make sure this is a SATA controller by counting the number of bars
2402         // (NVIDIA SATA controllers will always have six bars).  Otherwise,
2403         // it's an IDE controller and we ignore it.
2404 	for (bar = 0; bar < 6; bar++)
2405 		if (pci_resource_start(pdev, bar) == 0)
2406 			return -ENODEV;
2407 
2408 	if (!printed_version++)
2409 		dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2410 
2411 	rc = pcim_enable_device(pdev);
2412 	if (rc)
2413 		return rc;
2414 
2415 	/* determine type and allocate host */
2416 	if (type == CK804 && adma_enabled) {
2417 		dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2418 		type = ADMA;
2419 	} else if (type == MCP5x && swncq_enabled) {
2420 		dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n");
2421 		type = SWNCQ;
2422 	}
2423 
2424 	ppi[0] = &nv_port_info[type];
2425 	ipriv = ppi[0]->private_data;
2426 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2427 	if (rc)
2428 		return rc;
2429 
2430 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2431 	if (!hpriv)
2432 		return -ENOMEM;
2433 	hpriv->type = type;
2434 	host->private_data = hpriv;
2435 
2436 	/* request and iomap NV_MMIO_BAR */
2437 	rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2438 	if (rc)
2439 		return rc;
2440 
2441 	/* configure SCR access */
2442 	base = host->iomap[NV_MMIO_BAR];
2443 	host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2444 	host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2445 
2446 	/* enable SATA space for CK804 */
2447 	if (type >= CK804) {
2448 		u8 regval;
2449 
2450 		pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2451 		regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2452 		pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2453 	}
2454 
2455 	/* init ADMA */
2456 	if (type == ADMA) {
2457 		rc = nv_adma_host_init(host);
2458 		if (rc)
2459 			return rc;
2460 	} else if (type == SWNCQ)
2461 		nv_swncq_host_init(host);
2462 
2463 	if (msi_enabled) {
2464 		dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n");
2465 		pci_enable_msi(pdev);
2466 	}
2467 
2468 	pci_set_master(pdev);
2469 	return ata_host_activate(host, pdev->irq, ipriv->irq_handler,
2470 				 IRQF_SHARED, ipriv->sht);
2471 }
2472 
2473 #ifdef CONFIG_PM
2474 static int nv_pci_device_resume(struct pci_dev *pdev)
2475 {
2476 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
2477 	struct nv_host_priv *hpriv = host->private_data;
2478 	int rc;
2479 
2480 	rc = ata_pci_device_do_resume(pdev);
2481 	if (rc)
2482 		return rc;
2483 
2484 	if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2485 		if (hpriv->type >= CK804) {
2486 			u8 regval;
2487 
2488 			pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2489 			regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2490 			pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2491 		}
2492 		if (hpriv->type == ADMA) {
2493 			u32 tmp32;
2494 			struct nv_adma_port_priv *pp;
2495 			/* enable/disable ADMA on the ports appropriately */
2496 			pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2497 
2498 			pp = host->ports[0]->private_data;
2499 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2500 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2501 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2502 			else
2503 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT0_EN |
2504 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2505 			pp = host->ports[1]->private_data;
2506 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2507 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2508 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2509 			else
2510 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT1_EN |
2511 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2512 
2513 			pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2514 		}
2515 	}
2516 
2517 	ata_host_resume(host);
2518 
2519 	return 0;
2520 }
2521 #endif
2522 
2523 static void nv_ck804_host_stop(struct ata_host *host)
2524 {
2525 	struct pci_dev *pdev = to_pci_dev(host->dev);
2526 	u8 regval;
2527 
2528 	/* disable SATA space for CK804 */
2529 	pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2530 	regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2531 	pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2532 }
2533 
2534 static void nv_adma_host_stop(struct ata_host *host)
2535 {
2536 	struct pci_dev *pdev = to_pci_dev(host->dev);
2537 	u32 tmp32;
2538 
2539 	/* disable ADMA on the ports */
2540 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2541 	tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2542 		   NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2543 		   NV_MCP_SATA_CFG_20_PORT1_EN |
2544 		   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2545 
2546 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2547 
2548 	nv_ck804_host_stop(host);
2549 }
2550 
2551 static int __init nv_init(void)
2552 {
2553 	return pci_register_driver(&nv_pci_driver);
2554 }
2555 
2556 static void __exit nv_exit(void)
2557 {
2558 	pci_unregister_driver(&nv_pci_driver);
2559 }
2560 
2561 module_init(nv_init);
2562 module_exit(nv_exit);
2563 module_param_named(adma, adma_enabled, bool, 0444);
2564 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2565 module_param_named(swncq, swncq_enabled, bool, 0444);
2566 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2567 module_param_named(msi, msi_enabled, bool, 0444);
2568 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");
2569 
2570