1 /* 2 * sata_nv.c - NVIDIA nForce SATA 3 * 4 * Copyright 2004 NVIDIA Corp. All rights reserved. 5 * Copyright 2004 Andrew Chew 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; see the file COPYING. If not, write to 20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * 23 * libata documentation is available via 'make {ps|pdf}docs', 24 * as Documentation/driver-api/libata.rst 25 * 26 * No hardware documentation available outside of NVIDIA. 27 * This driver programs the NVIDIA SATA controller in a similar 28 * fashion as with other PCI IDE BMDMA controllers, with a few 29 * NV-specific details such as register offsets, SATA phy location, 30 * hotplug info, etc. 31 * 32 * CK804/MCP04 controllers support an alternate programming interface 33 * similar to the ADMA specification (with some modifications). 34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still 35 * sent through the legacy interface. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/gfp.h> 42 #include <linux/pci.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <linux/libata.h> 50 51 #define DRV_NAME "sata_nv" 52 #define DRV_VERSION "3.5" 53 54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL 55 56 enum { 57 NV_MMIO_BAR = 5, 58 59 NV_PORTS = 2, 60 NV_PIO_MASK = ATA_PIO4, 61 NV_MWDMA_MASK = ATA_MWDMA2, 62 NV_UDMA_MASK = ATA_UDMA6, 63 NV_PORT0_SCR_REG_OFFSET = 0x00, 64 NV_PORT1_SCR_REG_OFFSET = 0x40, 65 66 /* INT_STATUS/ENABLE */ 67 NV_INT_STATUS = 0x10, 68 NV_INT_ENABLE = 0x11, 69 NV_INT_STATUS_CK804 = 0x440, 70 NV_INT_ENABLE_CK804 = 0x441, 71 72 /* INT_STATUS/ENABLE bits */ 73 NV_INT_DEV = 0x01, 74 NV_INT_PM = 0x02, 75 NV_INT_ADDED = 0x04, 76 NV_INT_REMOVED = 0x08, 77 78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */ 79 80 NV_INT_ALL = 0x0f, 81 NV_INT_MASK = NV_INT_DEV | 82 NV_INT_ADDED | NV_INT_REMOVED, 83 84 /* INT_CONFIG */ 85 NV_INT_CONFIG = 0x12, 86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI 87 88 // For PCI config register 20 89 NV_MCP_SATA_CFG_20 = 0x50, 90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04, 91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17), 92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16), 93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14), 94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12), 95 96 NV_ADMA_MAX_CPBS = 32, 97 NV_ADMA_CPB_SZ = 128, 98 NV_ADMA_APRD_SZ = 16, 99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) / 100 NV_ADMA_APRD_SZ, 101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5, 102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ, 103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS * 104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ), 105 106 /* BAR5 offset to ADMA general registers */ 107 NV_ADMA_GEN = 0x400, 108 NV_ADMA_GEN_CTL = 0x00, 109 NV_ADMA_NOTIFIER_CLEAR = 0x30, 110 111 /* BAR5 offset to ADMA ports */ 112 NV_ADMA_PORT = 0x480, 113 114 /* size of ADMA port register space */ 115 NV_ADMA_PORT_SIZE = 0x100, 116 117 /* ADMA port registers */ 118 NV_ADMA_CTL = 0x40, 119 NV_ADMA_CPB_COUNT = 0x42, 120 NV_ADMA_NEXT_CPB_IDX = 0x43, 121 NV_ADMA_STAT = 0x44, 122 NV_ADMA_CPB_BASE_LOW = 0x48, 123 NV_ADMA_CPB_BASE_HIGH = 0x4C, 124 NV_ADMA_APPEND = 0x50, 125 NV_ADMA_NOTIFIER = 0x68, 126 NV_ADMA_NOTIFIER_ERROR = 0x6C, 127 128 /* NV_ADMA_CTL register bits */ 129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0), 130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5), 131 NV_ADMA_CTL_GO = (1 << 7), 132 NV_ADMA_CTL_AIEN = (1 << 8), 133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11), 134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12), 135 136 /* CPB response flag bits */ 137 NV_CPB_RESP_DONE = (1 << 0), 138 NV_CPB_RESP_ATA_ERR = (1 << 3), 139 NV_CPB_RESP_CMD_ERR = (1 << 4), 140 NV_CPB_RESP_CPB_ERR = (1 << 7), 141 142 /* CPB control flag bits */ 143 NV_CPB_CTL_CPB_VALID = (1 << 0), 144 NV_CPB_CTL_QUEUE = (1 << 1), 145 NV_CPB_CTL_APRD_VALID = (1 << 2), 146 NV_CPB_CTL_IEN = (1 << 3), 147 NV_CPB_CTL_FPDMA = (1 << 4), 148 149 /* APRD flags */ 150 NV_APRD_WRITE = (1 << 1), 151 NV_APRD_END = (1 << 2), 152 NV_APRD_CONT = (1 << 3), 153 154 /* NV_ADMA_STAT flags */ 155 NV_ADMA_STAT_TIMEOUT = (1 << 0), 156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1), 157 NV_ADMA_STAT_HOTPLUG = (1 << 2), 158 NV_ADMA_STAT_CPBERR = (1 << 4), 159 NV_ADMA_STAT_SERROR = (1 << 5), 160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6), 161 NV_ADMA_STAT_IDLE = (1 << 8), 162 NV_ADMA_STAT_LEGACY = (1 << 9), 163 NV_ADMA_STAT_STOPPED = (1 << 10), 164 NV_ADMA_STAT_DONE = (1 << 12), 165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR | 166 NV_ADMA_STAT_TIMEOUT, 167 168 /* port flags */ 169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0), 170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1), 171 172 /* MCP55 reg offset */ 173 NV_CTL_MCP55 = 0x400, 174 NV_INT_STATUS_MCP55 = 0x440, 175 NV_INT_ENABLE_MCP55 = 0x444, 176 NV_NCQ_REG_MCP55 = 0x448, 177 178 /* MCP55 */ 179 NV_INT_ALL_MCP55 = 0xffff, 180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */ 181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd, 182 183 /* SWNCQ ENABLE BITS*/ 184 NV_CTL_PRI_SWNCQ = 0x02, 185 NV_CTL_SEC_SWNCQ = 0x04, 186 187 /* SW NCQ status bits*/ 188 NV_SWNCQ_IRQ_DEV = (1 << 0), 189 NV_SWNCQ_IRQ_PM = (1 << 1), 190 NV_SWNCQ_IRQ_ADDED = (1 << 2), 191 NV_SWNCQ_IRQ_REMOVED = (1 << 3), 192 193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4), 194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5), 195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6), 196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7), 197 198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED | 199 NV_SWNCQ_IRQ_REMOVED, 200 201 }; 202 203 /* ADMA Physical Region Descriptor - one SG segment */ 204 struct nv_adma_prd { 205 __le64 addr; 206 __le32 len; 207 u8 flags; 208 u8 packet_len; 209 __le16 reserved; 210 }; 211 212 enum nv_adma_regbits { 213 CMDEND = (1 << 15), /* end of command list */ 214 WNB = (1 << 14), /* wait-not-BSY */ 215 IGN = (1 << 13), /* ignore this entry */ 216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */ 217 DA2 = (1 << (2 + 8)), 218 DA1 = (1 << (1 + 8)), 219 DA0 = (1 << (0 + 8)), 220 }; 221 222 /* ADMA Command Parameter Block 223 The first 5 SG segments are stored inside the Command Parameter Block itself. 224 If there are more than 5 segments the remainder are stored in a separate 225 memory area indicated by next_aprd. */ 226 struct nv_adma_cpb { 227 u8 resp_flags; /* 0 */ 228 u8 reserved1; /* 1 */ 229 u8 ctl_flags; /* 2 */ 230 /* len is length of taskfile in 64 bit words */ 231 u8 len; /* 3 */ 232 u8 tag; /* 4 */ 233 u8 next_cpb_idx; /* 5 */ 234 __le16 reserved2; /* 6-7 */ 235 __le16 tf[12]; /* 8-31 */ 236 struct nv_adma_prd aprd[5]; /* 32-111 */ 237 __le64 next_aprd; /* 112-119 */ 238 __le64 reserved3; /* 120-127 */ 239 }; 240 241 242 struct nv_adma_port_priv { 243 struct nv_adma_cpb *cpb; 244 dma_addr_t cpb_dma; 245 struct nv_adma_prd *aprd; 246 dma_addr_t aprd_dma; 247 void __iomem *ctl_block; 248 void __iomem *gen_block; 249 void __iomem *notifier_clear_block; 250 u64 adma_dma_mask; 251 u8 flags; 252 int last_issue_ncq; 253 }; 254 255 struct nv_host_priv { 256 unsigned long type; 257 }; 258 259 struct defer_queue { 260 u32 defer_bits; 261 unsigned int head; 262 unsigned int tail; 263 unsigned int tag[ATA_MAX_QUEUE]; 264 }; 265 266 enum ncq_saw_flag_list { 267 ncq_saw_d2h = (1U << 0), 268 ncq_saw_dmas = (1U << 1), 269 ncq_saw_sdb = (1U << 2), 270 ncq_saw_backout = (1U << 3), 271 }; 272 273 struct nv_swncq_port_priv { 274 struct ata_bmdma_prd *prd; /* our SG list */ 275 dma_addr_t prd_dma; /* and its DMA mapping */ 276 void __iomem *sactive_block; 277 void __iomem *irq_block; 278 void __iomem *tag_block; 279 u32 qc_active; 280 281 unsigned int last_issue_tag; 282 283 /* fifo circular queue to store deferral command */ 284 struct defer_queue defer_queue; 285 286 /* for NCQ interrupt analysis */ 287 u32 dhfis_bits; 288 u32 dmafis_bits; 289 u32 sdbfis_bits; 290 291 unsigned int ncq_flags; 292 }; 293 294 295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT))))) 296 297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 298 #ifdef CONFIG_PM_SLEEP 299 static int nv_pci_device_resume(struct pci_dev *pdev); 300 #endif 301 static void nv_ck804_host_stop(struct ata_host *host); 302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance); 303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance); 304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance); 305 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val); 306 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val); 307 308 static int nv_hardreset(struct ata_link *link, unsigned int *class, 309 unsigned long deadline); 310 static void nv_nf2_freeze(struct ata_port *ap); 311 static void nv_nf2_thaw(struct ata_port *ap); 312 static void nv_ck804_freeze(struct ata_port *ap); 313 static void nv_ck804_thaw(struct ata_port *ap); 314 static int nv_adma_slave_config(struct scsi_device *sdev); 315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc); 316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc); 317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc); 318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance); 319 static void nv_adma_irq_clear(struct ata_port *ap); 320 static int nv_adma_port_start(struct ata_port *ap); 321 static void nv_adma_port_stop(struct ata_port *ap); 322 #ifdef CONFIG_PM 323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg); 324 static int nv_adma_port_resume(struct ata_port *ap); 325 #endif 326 static void nv_adma_freeze(struct ata_port *ap); 327 static void nv_adma_thaw(struct ata_port *ap); 328 static void nv_adma_error_handler(struct ata_port *ap); 329 static void nv_adma_host_stop(struct ata_host *host); 330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc); 331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf); 332 333 static void nv_mcp55_thaw(struct ata_port *ap); 334 static void nv_mcp55_freeze(struct ata_port *ap); 335 static void nv_swncq_error_handler(struct ata_port *ap); 336 static int nv_swncq_slave_config(struct scsi_device *sdev); 337 static int nv_swncq_port_start(struct ata_port *ap); 338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc); 339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc); 340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc); 341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis); 342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance); 343 #ifdef CONFIG_PM 344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg); 345 static int nv_swncq_port_resume(struct ata_port *ap); 346 #endif 347 348 enum nv_host_type 349 { 350 GENERIC, 351 NFORCE2, 352 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */ 353 CK804, 354 ADMA, 355 MCP5x, 356 SWNCQ, 357 }; 358 359 static const struct pci_device_id nv_pci_tbl[] = { 360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 }, 361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 }, 362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 }, 363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 }, 364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 }, 365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 }, 366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 }, 367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x }, 368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x }, 369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x }, 370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x }, 371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC }, 372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC }, 373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC }, 374 375 { } /* terminate list */ 376 }; 377 378 static struct pci_driver nv_pci_driver = { 379 .name = DRV_NAME, 380 .id_table = nv_pci_tbl, 381 .probe = nv_init_one, 382 #ifdef CONFIG_PM_SLEEP 383 .suspend = ata_pci_device_suspend, 384 .resume = nv_pci_device_resume, 385 #endif 386 .remove = ata_pci_remove_one, 387 }; 388 389 static struct scsi_host_template nv_sht = { 390 ATA_BMDMA_SHT(DRV_NAME), 391 }; 392 393 static struct scsi_host_template nv_adma_sht = { 394 ATA_NCQ_SHT(DRV_NAME), 395 .can_queue = NV_ADMA_MAX_CPBS, 396 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN, 397 .dma_boundary = NV_ADMA_DMA_BOUNDARY, 398 .slave_configure = nv_adma_slave_config, 399 }; 400 401 static struct scsi_host_template nv_swncq_sht = { 402 ATA_NCQ_SHT(DRV_NAME), 403 .can_queue = ATA_MAX_QUEUE, 404 .sg_tablesize = LIBATA_MAX_PRD, 405 .dma_boundary = ATA_DMA_BOUNDARY, 406 .slave_configure = nv_swncq_slave_config, 407 }; 408 409 /* 410 * NV SATA controllers have various different problems with hardreset 411 * protocol depending on the specific controller and device. 412 * 413 * GENERIC: 414 * 415 * bko11195 reports that link doesn't come online after hardreset on 416 * generic nv's and there have been several other similar reports on 417 * linux-ide. 418 * 419 * bko12351#c23 reports that warmplug on MCP61 doesn't work with 420 * softreset. 421 * 422 * NF2/3: 423 * 424 * bko3352 reports nf2/3 controllers can't determine device signature 425 * reliably after hardreset. The following thread reports detection 426 * failure on cold boot with the standard debouncing timing. 427 * 428 * http://thread.gmane.org/gmane.linux.ide/34098 429 * 430 * bko12176 reports that hardreset fails to bring up the link during 431 * boot on nf2. 432 * 433 * CK804: 434 * 435 * For initial probing after boot and hot plugging, hardreset mostly 436 * works fine on CK804 but curiously, reprobing on the initial port 437 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg 438 * FIS in somewhat undeterministic way. 439 * 440 * SWNCQ: 441 * 442 * bko12351 reports that when SWNCQ is enabled, for hotplug to work, 443 * hardreset should be used and hardreset can't report proper 444 * signature, which suggests that mcp5x is closer to nf2 as long as 445 * reset quirkiness is concerned. 446 * 447 * bko12703 reports that boot probing fails for intel SSD with 448 * hardreset. Link fails to come online. Softreset works fine. 449 * 450 * The failures are varied but the following patterns seem true for 451 * all flavors. 452 * 453 * - Softreset during boot always works. 454 * 455 * - Hardreset during boot sometimes fails to bring up the link on 456 * certain comibnations and device signature acquisition is 457 * unreliable. 458 * 459 * - Hardreset is often necessary after hotplug. 460 * 461 * So, preferring softreset for boot probing and error handling (as 462 * hardreset might bring down the link) but using hardreset for 463 * post-boot probing should work around the above issues in most 464 * cases. Define nv_hardreset() which only kicks in for post-boot 465 * probing and use it for all variants. 466 */ 467 static struct ata_port_operations nv_generic_ops = { 468 .inherits = &ata_bmdma_port_ops, 469 .lost_interrupt = ATA_OP_NULL, 470 .scr_read = nv_scr_read, 471 .scr_write = nv_scr_write, 472 .hardreset = nv_hardreset, 473 }; 474 475 static struct ata_port_operations nv_nf2_ops = { 476 .inherits = &nv_generic_ops, 477 .freeze = nv_nf2_freeze, 478 .thaw = nv_nf2_thaw, 479 }; 480 481 static struct ata_port_operations nv_ck804_ops = { 482 .inherits = &nv_generic_ops, 483 .freeze = nv_ck804_freeze, 484 .thaw = nv_ck804_thaw, 485 .host_stop = nv_ck804_host_stop, 486 }; 487 488 static struct ata_port_operations nv_adma_ops = { 489 .inherits = &nv_ck804_ops, 490 491 .check_atapi_dma = nv_adma_check_atapi_dma, 492 .sff_tf_read = nv_adma_tf_read, 493 .qc_defer = ata_std_qc_defer, 494 .qc_prep = nv_adma_qc_prep, 495 .qc_issue = nv_adma_qc_issue, 496 .sff_irq_clear = nv_adma_irq_clear, 497 498 .freeze = nv_adma_freeze, 499 .thaw = nv_adma_thaw, 500 .error_handler = nv_adma_error_handler, 501 .post_internal_cmd = nv_adma_post_internal_cmd, 502 503 .port_start = nv_adma_port_start, 504 .port_stop = nv_adma_port_stop, 505 #ifdef CONFIG_PM 506 .port_suspend = nv_adma_port_suspend, 507 .port_resume = nv_adma_port_resume, 508 #endif 509 .host_stop = nv_adma_host_stop, 510 }; 511 512 static struct ata_port_operations nv_swncq_ops = { 513 .inherits = &nv_generic_ops, 514 515 .qc_defer = ata_std_qc_defer, 516 .qc_prep = nv_swncq_qc_prep, 517 .qc_issue = nv_swncq_qc_issue, 518 519 .freeze = nv_mcp55_freeze, 520 .thaw = nv_mcp55_thaw, 521 .error_handler = nv_swncq_error_handler, 522 523 #ifdef CONFIG_PM 524 .port_suspend = nv_swncq_port_suspend, 525 .port_resume = nv_swncq_port_resume, 526 #endif 527 .port_start = nv_swncq_port_start, 528 }; 529 530 struct nv_pi_priv { 531 irq_handler_t irq_handler; 532 struct scsi_host_template *sht; 533 }; 534 535 #define NV_PI_PRIV(_irq_handler, _sht) \ 536 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht } 537 538 static const struct ata_port_info nv_port_info[] = { 539 /* generic */ 540 { 541 .flags = ATA_FLAG_SATA, 542 .pio_mask = NV_PIO_MASK, 543 .mwdma_mask = NV_MWDMA_MASK, 544 .udma_mask = NV_UDMA_MASK, 545 .port_ops = &nv_generic_ops, 546 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 547 }, 548 /* nforce2/3 */ 549 { 550 .flags = ATA_FLAG_SATA, 551 .pio_mask = NV_PIO_MASK, 552 .mwdma_mask = NV_MWDMA_MASK, 553 .udma_mask = NV_UDMA_MASK, 554 .port_ops = &nv_nf2_ops, 555 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht), 556 }, 557 /* ck804 */ 558 { 559 .flags = ATA_FLAG_SATA, 560 .pio_mask = NV_PIO_MASK, 561 .mwdma_mask = NV_MWDMA_MASK, 562 .udma_mask = NV_UDMA_MASK, 563 .port_ops = &nv_ck804_ops, 564 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht), 565 }, 566 /* ADMA */ 567 { 568 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, 569 .pio_mask = NV_PIO_MASK, 570 .mwdma_mask = NV_MWDMA_MASK, 571 .udma_mask = NV_UDMA_MASK, 572 .port_ops = &nv_adma_ops, 573 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht), 574 }, 575 /* MCP5x */ 576 { 577 .flags = ATA_FLAG_SATA, 578 .pio_mask = NV_PIO_MASK, 579 .mwdma_mask = NV_MWDMA_MASK, 580 .udma_mask = NV_UDMA_MASK, 581 .port_ops = &nv_generic_ops, 582 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 583 }, 584 /* SWNCQ */ 585 { 586 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, 587 .pio_mask = NV_PIO_MASK, 588 .mwdma_mask = NV_MWDMA_MASK, 589 .udma_mask = NV_UDMA_MASK, 590 .port_ops = &nv_swncq_ops, 591 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht), 592 }, 593 }; 594 595 MODULE_AUTHOR("NVIDIA"); 596 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller"); 597 MODULE_LICENSE("GPL"); 598 MODULE_DEVICE_TABLE(pci, nv_pci_tbl); 599 MODULE_VERSION(DRV_VERSION); 600 601 static bool adma_enabled; 602 static bool swncq_enabled = true; 603 static bool msi_enabled; 604 605 static void nv_adma_register_mode(struct ata_port *ap) 606 { 607 struct nv_adma_port_priv *pp = ap->private_data; 608 void __iomem *mmio = pp->ctl_block; 609 u16 tmp, status; 610 int count = 0; 611 612 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 613 return; 614 615 status = readw(mmio + NV_ADMA_STAT); 616 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) { 617 ndelay(50); 618 status = readw(mmio + NV_ADMA_STAT); 619 count++; 620 } 621 if (count == 20) 622 ata_port_warn(ap, "timeout waiting for ADMA IDLE, stat=0x%hx\n", 623 status); 624 625 tmp = readw(mmio + NV_ADMA_CTL); 626 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 627 628 count = 0; 629 status = readw(mmio + NV_ADMA_STAT); 630 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) { 631 ndelay(50); 632 status = readw(mmio + NV_ADMA_STAT); 633 count++; 634 } 635 if (count == 20) 636 ata_port_warn(ap, 637 "timeout waiting for ADMA LEGACY, stat=0x%hx\n", 638 status); 639 640 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 641 } 642 643 static void nv_adma_mode(struct ata_port *ap) 644 { 645 struct nv_adma_port_priv *pp = ap->private_data; 646 void __iomem *mmio = pp->ctl_block; 647 u16 tmp, status; 648 int count = 0; 649 650 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) 651 return; 652 653 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 654 655 tmp = readw(mmio + NV_ADMA_CTL); 656 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 657 658 status = readw(mmio + NV_ADMA_STAT); 659 while (((status & NV_ADMA_STAT_LEGACY) || 660 !(status & NV_ADMA_STAT_IDLE)) && count < 20) { 661 ndelay(50); 662 status = readw(mmio + NV_ADMA_STAT); 663 count++; 664 } 665 if (count == 20) 666 ata_port_warn(ap, 667 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n", 668 status); 669 670 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE; 671 } 672 673 static int nv_adma_slave_config(struct scsi_device *sdev) 674 { 675 struct ata_port *ap = ata_shost_to_port(sdev->host); 676 struct nv_adma_port_priv *pp = ap->private_data; 677 struct nv_adma_port_priv *port0, *port1; 678 struct scsi_device *sdev0, *sdev1; 679 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 680 unsigned long segment_boundary, flags; 681 unsigned short sg_tablesize; 682 int rc; 683 int adma_enable; 684 u32 current_reg, new_reg, config_mask; 685 686 rc = ata_scsi_slave_config(sdev); 687 688 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 689 /* Not a proper libata device, ignore */ 690 return rc; 691 692 spin_lock_irqsave(ap->lock, flags); 693 694 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) { 695 /* 696 * NVIDIA reports that ADMA mode does not support ATAPI commands. 697 * Therefore ATAPI commands are sent through the legacy interface. 698 * However, the legacy interface only supports 32-bit DMA. 699 * Restrict DMA parameters as required by the legacy interface 700 * when an ATAPI device is connected. 701 */ 702 segment_boundary = ATA_DMA_BOUNDARY; 703 /* Subtract 1 since an extra entry may be needed for padding, see 704 libata-scsi.c */ 705 sg_tablesize = LIBATA_MAX_PRD - 1; 706 707 /* Since the legacy DMA engine is in use, we need to disable ADMA 708 on the port. */ 709 adma_enable = 0; 710 nv_adma_register_mode(ap); 711 } else { 712 segment_boundary = NV_ADMA_DMA_BOUNDARY; 713 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN; 714 adma_enable = 1; 715 } 716 717 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, ¤t_reg); 718 719 if (ap->port_no == 1) 720 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN | 721 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 722 else 723 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN | 724 NV_MCP_SATA_CFG_20_PORT0_PWB_EN; 725 726 if (adma_enable) { 727 new_reg = current_reg | config_mask; 728 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE; 729 } else { 730 new_reg = current_reg & ~config_mask; 731 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE; 732 } 733 734 if (current_reg != new_reg) 735 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg); 736 737 port0 = ap->host->ports[0]->private_data; 738 port1 = ap->host->ports[1]->private_data; 739 sdev0 = ap->host->ports[0]->link.device[0].sdev; 740 sdev1 = ap->host->ports[1]->link.device[0].sdev; 741 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 742 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) { 743 /** We have to set the DMA mask to 32-bit if either port is in 744 ATAPI mode, since they are on the same PCI device which is 745 used for DMA mapping. If we set the mask we also need to set 746 the bounce limit on both ports to ensure that the block 747 layer doesn't feed addresses that cause DMA mapping to 748 choke. If either SCSI device is not allocated yet, it's OK 749 since that port will discover its correct setting when it 750 does get allocated. 751 Note: Setting 32-bit mask should not fail. */ 752 if (sdev0) 753 blk_queue_bounce_limit(sdev0->request_queue, 754 ATA_DMA_MASK); 755 if (sdev1) 756 blk_queue_bounce_limit(sdev1->request_queue, 757 ATA_DMA_MASK); 758 759 dma_set_mask(&pdev->dev, ATA_DMA_MASK); 760 } else { 761 /** This shouldn't fail as it was set to this value before */ 762 dma_set_mask(&pdev->dev, pp->adma_dma_mask); 763 if (sdev0) 764 blk_queue_bounce_limit(sdev0->request_queue, 765 pp->adma_dma_mask); 766 if (sdev1) 767 blk_queue_bounce_limit(sdev1->request_queue, 768 pp->adma_dma_mask); 769 } 770 771 blk_queue_segment_boundary(sdev->request_queue, segment_boundary); 772 blk_queue_max_segments(sdev->request_queue, sg_tablesize); 773 ata_port_info(ap, 774 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n", 775 (unsigned long long)*ap->host->dev->dma_mask, 776 segment_boundary, sg_tablesize); 777 778 spin_unlock_irqrestore(ap->lock, flags); 779 780 return rc; 781 } 782 783 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc) 784 { 785 struct nv_adma_port_priv *pp = qc->ap->private_data; 786 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 787 } 788 789 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 790 { 791 /* Other than when internal or pass-through commands are executed, 792 the only time this function will be called in ADMA mode will be 793 if a command fails. In the failure case we don't care about going 794 into register mode with ADMA commands pending, as the commands will 795 all shortly be aborted anyway. We assume that NCQ commands are not 796 issued via passthrough, which is the only way that switching into 797 ADMA mode could abort outstanding commands. */ 798 nv_adma_register_mode(ap); 799 800 ata_sff_tf_read(ap, tf); 801 } 802 803 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb) 804 { 805 unsigned int idx = 0; 806 807 if (tf->flags & ATA_TFLAG_ISADDR) { 808 if (tf->flags & ATA_TFLAG_LBA48) { 809 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB); 810 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect); 811 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal); 812 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam); 813 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah); 814 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature); 815 } else 816 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB); 817 818 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect); 819 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal); 820 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam); 821 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah); 822 } 823 824 if (tf->flags & ATA_TFLAG_DEVICE) 825 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device); 826 827 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND); 828 829 while (idx < 12) 830 cpb[idx++] = cpu_to_le16(IGN); 831 832 return idx; 833 } 834 835 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err) 836 { 837 struct nv_adma_port_priv *pp = ap->private_data; 838 u8 flags = pp->cpb[cpb_num].resp_flags; 839 840 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags); 841 842 if (unlikely((force_err || 843 flags & (NV_CPB_RESP_ATA_ERR | 844 NV_CPB_RESP_CMD_ERR | 845 NV_CPB_RESP_CPB_ERR)))) { 846 struct ata_eh_info *ehi = &ap->link.eh_info; 847 int freeze = 0; 848 849 ata_ehi_clear_desc(ehi); 850 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags); 851 if (flags & NV_CPB_RESP_ATA_ERR) { 852 ata_ehi_push_desc(ehi, "ATA error"); 853 ehi->err_mask |= AC_ERR_DEV; 854 } else if (flags & NV_CPB_RESP_CMD_ERR) { 855 ata_ehi_push_desc(ehi, "CMD error"); 856 ehi->err_mask |= AC_ERR_DEV; 857 } else if (flags & NV_CPB_RESP_CPB_ERR) { 858 ata_ehi_push_desc(ehi, "CPB error"); 859 ehi->err_mask |= AC_ERR_SYSTEM; 860 freeze = 1; 861 } else { 862 /* notifier error, but no error in CPB flags? */ 863 ata_ehi_push_desc(ehi, "unknown"); 864 ehi->err_mask |= AC_ERR_OTHER; 865 freeze = 1; 866 } 867 /* Kill all commands. EH will determine what actually failed. */ 868 if (freeze) 869 ata_port_freeze(ap); 870 else 871 ata_port_abort(ap); 872 return -1; 873 } 874 875 if (likely(flags & NV_CPB_RESP_DONE)) 876 return 1; 877 return 0; 878 } 879 880 static int nv_host_intr(struct ata_port *ap, u8 irq_stat) 881 { 882 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 883 884 /* freeze if hotplugged */ 885 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) { 886 ata_port_freeze(ap); 887 return 1; 888 } 889 890 /* bail out if not our interrupt */ 891 if (!(irq_stat & NV_INT_DEV)) 892 return 0; 893 894 /* DEV interrupt w/ no active qc? */ 895 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 896 ata_sff_check_status(ap); 897 return 1; 898 } 899 900 /* handle interrupt */ 901 return ata_bmdma_port_intr(ap, qc); 902 } 903 904 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) 905 { 906 struct ata_host *host = dev_instance; 907 int i, handled = 0; 908 u32 notifier_clears[2]; 909 910 spin_lock(&host->lock); 911 912 for (i = 0; i < host->n_ports; i++) { 913 struct ata_port *ap = host->ports[i]; 914 struct nv_adma_port_priv *pp = ap->private_data; 915 void __iomem *mmio = pp->ctl_block; 916 u16 status; 917 u32 gen_ctl; 918 u32 notifier, notifier_error; 919 920 notifier_clears[i] = 0; 921 922 /* if ADMA is disabled, use standard ata interrupt handler */ 923 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 924 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 925 >> (NV_INT_PORT_SHIFT * i); 926 handled += nv_host_intr(ap, irq_stat); 927 continue; 928 } 929 930 /* if in ATA register mode, check for standard interrupts */ 931 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) { 932 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 933 >> (NV_INT_PORT_SHIFT * i); 934 if (ata_tag_valid(ap->link.active_tag)) 935 /** NV_INT_DEV indication seems unreliable 936 at times at least in ADMA mode. Force it 937 on always when a command is active, to 938 prevent losing interrupts. */ 939 irq_stat |= NV_INT_DEV; 940 handled += nv_host_intr(ap, irq_stat); 941 } 942 943 notifier = readl(mmio + NV_ADMA_NOTIFIER); 944 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 945 notifier_clears[i] = notifier | notifier_error; 946 947 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 948 949 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier && 950 !notifier_error) 951 /* Nothing to do */ 952 continue; 953 954 status = readw(mmio + NV_ADMA_STAT); 955 956 /* 957 * Clear status. Ensure the controller sees the 958 * clearing before we start looking at any of the CPB 959 * statuses, so that any CPB completions after this 960 * point in the handler will raise another interrupt. 961 */ 962 writew(status, mmio + NV_ADMA_STAT); 963 readw(mmio + NV_ADMA_STAT); /* flush posted write */ 964 rmb(); 965 966 handled++; /* irq handled if we got here */ 967 968 /* freeze if hotplugged or controller error */ 969 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG | 970 NV_ADMA_STAT_HOTUNPLUG | 971 NV_ADMA_STAT_TIMEOUT | 972 NV_ADMA_STAT_SERROR))) { 973 struct ata_eh_info *ehi = &ap->link.eh_info; 974 975 ata_ehi_clear_desc(ehi); 976 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status); 977 if (status & NV_ADMA_STAT_TIMEOUT) { 978 ehi->err_mask |= AC_ERR_SYSTEM; 979 ata_ehi_push_desc(ehi, "timeout"); 980 } else if (status & NV_ADMA_STAT_HOTPLUG) { 981 ata_ehi_hotplugged(ehi); 982 ata_ehi_push_desc(ehi, "hotplug"); 983 } else if (status & NV_ADMA_STAT_HOTUNPLUG) { 984 ata_ehi_hotplugged(ehi); 985 ata_ehi_push_desc(ehi, "hot unplug"); 986 } else if (status & NV_ADMA_STAT_SERROR) { 987 /* let EH analyze SError and figure out cause */ 988 ata_ehi_push_desc(ehi, "SError"); 989 } else 990 ata_ehi_push_desc(ehi, "unknown"); 991 ata_port_freeze(ap); 992 continue; 993 } 994 995 if (status & (NV_ADMA_STAT_DONE | 996 NV_ADMA_STAT_CPBERR | 997 NV_ADMA_STAT_CMD_COMPLETE)) { 998 u32 check_commands = notifier_clears[i]; 999 u32 done_mask = 0; 1000 int pos, rc; 1001 1002 if (status & NV_ADMA_STAT_CPBERR) { 1003 /* check all active commands */ 1004 if (ata_tag_valid(ap->link.active_tag)) 1005 check_commands = 1 << 1006 ap->link.active_tag; 1007 else 1008 check_commands = ap->link.sactive; 1009 } 1010 1011 /* check CPBs for completed commands */ 1012 while ((pos = ffs(check_commands))) { 1013 pos--; 1014 rc = nv_adma_check_cpb(ap, pos, 1015 notifier_error & (1 << pos)); 1016 if (rc > 0) 1017 done_mask |= 1 << pos; 1018 else if (unlikely(rc < 0)) 1019 check_commands = 0; 1020 check_commands &= ~(1 << pos); 1021 } 1022 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 1023 } 1024 } 1025 1026 if (notifier_clears[0] || notifier_clears[1]) { 1027 /* Note: Both notifier clear registers must be written 1028 if either is set, even if one is zero, according to NVIDIA. */ 1029 struct nv_adma_port_priv *pp = host->ports[0]->private_data; 1030 writel(notifier_clears[0], pp->notifier_clear_block); 1031 pp = host->ports[1]->private_data; 1032 writel(notifier_clears[1], pp->notifier_clear_block); 1033 } 1034 1035 spin_unlock(&host->lock); 1036 1037 return IRQ_RETVAL(handled); 1038 } 1039 1040 static void nv_adma_freeze(struct ata_port *ap) 1041 { 1042 struct nv_adma_port_priv *pp = ap->private_data; 1043 void __iomem *mmio = pp->ctl_block; 1044 u16 tmp; 1045 1046 nv_ck804_freeze(ap); 1047 1048 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1049 return; 1050 1051 /* clear any outstanding CK804 notifications */ 1052 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1053 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1054 1055 /* Disable interrupt */ 1056 tmp = readw(mmio + NV_ADMA_CTL); 1057 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1058 mmio + NV_ADMA_CTL); 1059 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1060 } 1061 1062 static void nv_adma_thaw(struct ata_port *ap) 1063 { 1064 struct nv_adma_port_priv *pp = ap->private_data; 1065 void __iomem *mmio = pp->ctl_block; 1066 u16 tmp; 1067 1068 nv_ck804_thaw(ap); 1069 1070 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1071 return; 1072 1073 /* Enable interrupt */ 1074 tmp = readw(mmio + NV_ADMA_CTL); 1075 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1076 mmio + NV_ADMA_CTL); 1077 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1078 } 1079 1080 static void nv_adma_irq_clear(struct ata_port *ap) 1081 { 1082 struct nv_adma_port_priv *pp = ap->private_data; 1083 void __iomem *mmio = pp->ctl_block; 1084 u32 notifier_clears[2]; 1085 1086 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 1087 ata_bmdma_irq_clear(ap); 1088 return; 1089 } 1090 1091 /* clear any outstanding CK804 notifications */ 1092 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1093 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1094 1095 /* clear ADMA status */ 1096 writew(0xffff, mmio + NV_ADMA_STAT); 1097 1098 /* clear notifiers - note both ports need to be written with 1099 something even though we are only clearing on one */ 1100 if (ap->port_no == 0) { 1101 notifier_clears[0] = 0xFFFFFFFF; 1102 notifier_clears[1] = 0; 1103 } else { 1104 notifier_clears[0] = 0; 1105 notifier_clears[1] = 0xFFFFFFFF; 1106 } 1107 pp = ap->host->ports[0]->private_data; 1108 writel(notifier_clears[0], pp->notifier_clear_block); 1109 pp = ap->host->ports[1]->private_data; 1110 writel(notifier_clears[1], pp->notifier_clear_block); 1111 } 1112 1113 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc) 1114 { 1115 struct nv_adma_port_priv *pp = qc->ap->private_data; 1116 1117 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 1118 ata_bmdma_post_internal_cmd(qc); 1119 } 1120 1121 static int nv_adma_port_start(struct ata_port *ap) 1122 { 1123 struct device *dev = ap->host->dev; 1124 struct nv_adma_port_priv *pp; 1125 int rc; 1126 void *mem; 1127 dma_addr_t mem_dma; 1128 void __iomem *mmio; 1129 struct pci_dev *pdev = to_pci_dev(dev); 1130 u16 tmp; 1131 1132 VPRINTK("ENTER\n"); 1133 1134 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and 1135 pad buffers */ 1136 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1137 if (rc) 1138 return rc; 1139 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 1140 if (rc) 1141 return rc; 1142 1143 /* we might fallback to bmdma, allocate bmdma resources */ 1144 rc = ata_bmdma_port_start(ap); 1145 if (rc) 1146 return rc; 1147 1148 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1149 if (!pp) 1150 return -ENOMEM; 1151 1152 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT + 1153 ap->port_no * NV_ADMA_PORT_SIZE; 1154 pp->ctl_block = mmio; 1155 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN; 1156 pp->notifier_clear_block = pp->gen_block + 1157 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no); 1158 1159 /* Now that the legacy PRD and padding buffer are allocated we can 1160 safely raise the DMA mask to allocate the CPB/APRD table. 1161 These are allowed to fail since we store the value that ends up 1162 being used to set as the bounce limit in slave_config later if 1163 needed. */ 1164 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 1165 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 1166 pp->adma_dma_mask = *dev->dma_mask; 1167 1168 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ, 1169 &mem_dma, GFP_KERNEL); 1170 if (!mem) 1171 return -ENOMEM; 1172 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ); 1173 1174 /* 1175 * First item in chunk of DMA memory: 1176 * 128-byte command parameter block (CPB) 1177 * one for each command tag 1178 */ 1179 pp->cpb = mem; 1180 pp->cpb_dma = mem_dma; 1181 1182 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1183 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1184 1185 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1186 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1187 1188 /* 1189 * Second item: block of ADMA_SGTBL_LEN s/g entries 1190 */ 1191 pp->aprd = mem; 1192 pp->aprd_dma = mem_dma; 1193 1194 ap->private_data = pp; 1195 1196 /* clear any outstanding interrupt conditions */ 1197 writew(0xffff, mmio + NV_ADMA_STAT); 1198 1199 /* initialize port variables */ 1200 pp->flags = NV_ADMA_PORT_REGISTER_MODE; 1201 1202 /* clear CPB fetch count */ 1203 writew(0, mmio + NV_ADMA_CPB_COUNT); 1204 1205 /* clear GO for register mode, enable interrupt */ 1206 tmp = readw(mmio + NV_ADMA_CTL); 1207 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1208 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1209 1210 tmp = readw(mmio + NV_ADMA_CTL); 1211 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1212 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1213 udelay(1); 1214 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1215 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1216 1217 return 0; 1218 } 1219 1220 static void nv_adma_port_stop(struct ata_port *ap) 1221 { 1222 struct nv_adma_port_priv *pp = ap->private_data; 1223 void __iomem *mmio = pp->ctl_block; 1224 1225 VPRINTK("ENTER\n"); 1226 writew(0, mmio + NV_ADMA_CTL); 1227 } 1228 1229 #ifdef CONFIG_PM 1230 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg) 1231 { 1232 struct nv_adma_port_priv *pp = ap->private_data; 1233 void __iomem *mmio = pp->ctl_block; 1234 1235 /* Go to register mode - clears GO */ 1236 nv_adma_register_mode(ap); 1237 1238 /* clear CPB fetch count */ 1239 writew(0, mmio + NV_ADMA_CPB_COUNT); 1240 1241 /* disable interrupt, shut down port */ 1242 writew(0, mmio + NV_ADMA_CTL); 1243 1244 return 0; 1245 } 1246 1247 static int nv_adma_port_resume(struct ata_port *ap) 1248 { 1249 struct nv_adma_port_priv *pp = ap->private_data; 1250 void __iomem *mmio = pp->ctl_block; 1251 u16 tmp; 1252 1253 /* set CPB block location */ 1254 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1255 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1256 1257 /* clear any outstanding interrupt conditions */ 1258 writew(0xffff, mmio + NV_ADMA_STAT); 1259 1260 /* initialize port variables */ 1261 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 1262 1263 /* clear CPB fetch count */ 1264 writew(0, mmio + NV_ADMA_CPB_COUNT); 1265 1266 /* clear GO for register mode, enable interrupt */ 1267 tmp = readw(mmio + NV_ADMA_CTL); 1268 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1269 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1270 1271 tmp = readw(mmio + NV_ADMA_CTL); 1272 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1273 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1274 udelay(1); 1275 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1276 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1277 1278 return 0; 1279 } 1280 #endif 1281 1282 static void nv_adma_setup_port(struct ata_port *ap) 1283 { 1284 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1285 struct ata_ioports *ioport = &ap->ioaddr; 1286 1287 VPRINTK("ENTER\n"); 1288 1289 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE; 1290 1291 ioport->cmd_addr = mmio; 1292 ioport->data_addr = mmio + (ATA_REG_DATA * 4); 1293 ioport->error_addr = 1294 ioport->feature_addr = mmio + (ATA_REG_ERR * 4); 1295 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4); 1296 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4); 1297 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4); 1298 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4); 1299 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4); 1300 ioport->status_addr = 1301 ioport->command_addr = mmio + (ATA_REG_STATUS * 4); 1302 ioport->altstatus_addr = 1303 ioport->ctl_addr = mmio + 0x20; 1304 } 1305 1306 static int nv_adma_host_init(struct ata_host *host) 1307 { 1308 struct pci_dev *pdev = to_pci_dev(host->dev); 1309 unsigned int i; 1310 u32 tmp32; 1311 1312 VPRINTK("ENTER\n"); 1313 1314 /* enable ADMA on the ports */ 1315 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 1316 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN | 1317 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 1318 NV_MCP_SATA_CFG_20_PORT1_EN | 1319 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 1320 1321 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 1322 1323 for (i = 0; i < host->n_ports; i++) 1324 nv_adma_setup_port(host->ports[i]); 1325 1326 return 0; 1327 } 1328 1329 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc, 1330 struct scatterlist *sg, 1331 int idx, 1332 struct nv_adma_prd *aprd) 1333 { 1334 u8 flags = 0; 1335 if (qc->tf.flags & ATA_TFLAG_WRITE) 1336 flags |= NV_APRD_WRITE; 1337 if (idx == qc->n_elem - 1) 1338 flags |= NV_APRD_END; 1339 else if (idx != 4) 1340 flags |= NV_APRD_CONT; 1341 1342 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg))); 1343 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */ 1344 aprd->flags = flags; 1345 aprd->packet_len = 0; 1346 } 1347 1348 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb) 1349 { 1350 struct nv_adma_port_priv *pp = qc->ap->private_data; 1351 struct nv_adma_prd *aprd; 1352 struct scatterlist *sg; 1353 unsigned int si; 1354 1355 VPRINTK("ENTER\n"); 1356 1357 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1358 aprd = (si < 5) ? &cpb->aprd[si] : 1359 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)]; 1360 nv_adma_fill_aprd(qc, sg, si, aprd); 1361 } 1362 if (si > 5) 1363 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag))); 1364 else 1365 cpb->next_aprd = cpu_to_le64(0); 1366 } 1367 1368 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc) 1369 { 1370 struct nv_adma_port_priv *pp = qc->ap->private_data; 1371 1372 /* ADMA engine can only be used for non-ATAPI DMA commands, 1373 or interrupt-driven no-data commands. */ 1374 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 1375 (qc->tf.flags & ATA_TFLAG_POLLING)) 1376 return 1; 1377 1378 if ((qc->flags & ATA_QCFLAG_DMAMAP) || 1379 (qc->tf.protocol == ATA_PROT_NODATA)) 1380 return 0; 1381 1382 return 1; 1383 } 1384 1385 static void nv_adma_qc_prep(struct ata_queued_cmd *qc) 1386 { 1387 struct nv_adma_port_priv *pp = qc->ap->private_data; 1388 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag]; 1389 u8 ctl_flags = NV_CPB_CTL_CPB_VALID | 1390 NV_CPB_CTL_IEN; 1391 1392 if (nv_adma_use_reg_mode(qc)) { 1393 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1394 (qc->flags & ATA_QCFLAG_DMAMAP)); 1395 nv_adma_register_mode(qc->ap); 1396 ata_bmdma_qc_prep(qc); 1397 return; 1398 } 1399 1400 cpb->resp_flags = NV_CPB_RESP_DONE; 1401 wmb(); 1402 cpb->ctl_flags = 0; 1403 wmb(); 1404 1405 cpb->len = 3; 1406 cpb->tag = qc->tag; 1407 cpb->next_cpb_idx = 0; 1408 1409 /* turn on NCQ flags for NCQ commands */ 1410 if (qc->tf.protocol == ATA_PROT_NCQ) 1411 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA; 1412 1413 VPRINTK("qc->flags = 0x%lx\n", qc->flags); 1414 1415 nv_adma_tf_to_cpb(&qc->tf, cpb->tf); 1416 1417 if (qc->flags & ATA_QCFLAG_DMAMAP) { 1418 nv_adma_fill_sg(qc, cpb); 1419 ctl_flags |= NV_CPB_CTL_APRD_VALID; 1420 } else 1421 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5); 1422 1423 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID 1424 until we are finished filling in all of the contents */ 1425 wmb(); 1426 cpb->ctl_flags = ctl_flags; 1427 wmb(); 1428 cpb->resp_flags = 0; 1429 } 1430 1431 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc) 1432 { 1433 struct nv_adma_port_priv *pp = qc->ap->private_data; 1434 void __iomem *mmio = pp->ctl_block; 1435 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ); 1436 1437 VPRINTK("ENTER\n"); 1438 1439 /* We can't handle result taskfile with NCQ commands, since 1440 retrieving the taskfile switches us out of ADMA mode and would abort 1441 existing commands. */ 1442 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ && 1443 (qc->flags & ATA_QCFLAG_RESULT_TF))) { 1444 ata_dev_err(qc->dev, "NCQ w/ RESULT_TF not allowed\n"); 1445 return AC_ERR_SYSTEM; 1446 } 1447 1448 if (nv_adma_use_reg_mode(qc)) { 1449 /* use ATA register mode */ 1450 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags); 1451 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1452 (qc->flags & ATA_QCFLAG_DMAMAP)); 1453 nv_adma_register_mode(qc->ap); 1454 return ata_bmdma_qc_issue(qc); 1455 } else 1456 nv_adma_mode(qc->ap); 1457 1458 /* write append register, command tag in lower 8 bits 1459 and (number of cpbs to append -1) in top 8 bits */ 1460 wmb(); 1461 1462 if (curr_ncq != pp->last_issue_ncq) { 1463 /* Seems to need some delay before switching between NCQ and 1464 non-NCQ commands, else we get command timeouts and such. */ 1465 udelay(20); 1466 pp->last_issue_ncq = curr_ncq; 1467 } 1468 1469 writew(qc->tag, mmio + NV_ADMA_APPEND); 1470 1471 DPRINTK("Issued tag %u\n", qc->tag); 1472 1473 return 0; 1474 } 1475 1476 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance) 1477 { 1478 struct ata_host *host = dev_instance; 1479 unsigned int i; 1480 unsigned int handled = 0; 1481 unsigned long flags; 1482 1483 spin_lock_irqsave(&host->lock, flags); 1484 1485 for (i = 0; i < host->n_ports; i++) { 1486 struct ata_port *ap = host->ports[i]; 1487 struct ata_queued_cmd *qc; 1488 1489 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1490 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) { 1491 handled += ata_bmdma_port_intr(ap, qc); 1492 } else { 1493 /* 1494 * No request pending? Clear interrupt status 1495 * anyway, in case there's one pending. 1496 */ 1497 ap->ops->sff_check_status(ap); 1498 } 1499 } 1500 1501 spin_unlock_irqrestore(&host->lock, flags); 1502 1503 return IRQ_RETVAL(handled); 1504 } 1505 1506 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat) 1507 { 1508 int i, handled = 0; 1509 1510 for (i = 0; i < host->n_ports; i++) { 1511 handled += nv_host_intr(host->ports[i], irq_stat); 1512 irq_stat >>= NV_INT_PORT_SHIFT; 1513 } 1514 1515 return IRQ_RETVAL(handled); 1516 } 1517 1518 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance) 1519 { 1520 struct ata_host *host = dev_instance; 1521 u8 irq_stat; 1522 irqreturn_t ret; 1523 1524 spin_lock(&host->lock); 1525 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS); 1526 ret = nv_do_interrupt(host, irq_stat); 1527 spin_unlock(&host->lock); 1528 1529 return ret; 1530 } 1531 1532 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance) 1533 { 1534 struct ata_host *host = dev_instance; 1535 u8 irq_stat; 1536 irqreturn_t ret; 1537 1538 spin_lock(&host->lock); 1539 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1540 ret = nv_do_interrupt(host, irq_stat); 1541 spin_unlock(&host->lock); 1542 1543 return ret; 1544 } 1545 1546 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) 1547 { 1548 if (sc_reg > SCR_CONTROL) 1549 return -EINVAL; 1550 1551 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1552 return 0; 1553 } 1554 1555 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) 1556 { 1557 if (sc_reg > SCR_CONTROL) 1558 return -EINVAL; 1559 1560 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1561 return 0; 1562 } 1563 1564 static int nv_hardreset(struct ata_link *link, unsigned int *class, 1565 unsigned long deadline) 1566 { 1567 struct ata_eh_context *ehc = &link->eh_context; 1568 1569 /* Do hardreset iff it's post-boot probing, please read the 1570 * comment above port ops for details. 1571 */ 1572 if (!(link->ap->pflags & ATA_PFLAG_LOADING) && 1573 !ata_dev_enabled(link->device)) 1574 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline, 1575 NULL, NULL); 1576 else { 1577 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1578 int rc; 1579 1580 if (!(ehc->i.flags & ATA_EHI_QUIET)) 1581 ata_link_info(link, 1582 "nv: skipping hardreset on occupied port\n"); 1583 1584 /* make sure the link is online */ 1585 rc = sata_link_resume(link, timing, deadline); 1586 /* whine about phy resume failure but proceed */ 1587 if (rc && rc != -EOPNOTSUPP) 1588 ata_link_warn(link, "failed to resume link (errno=%d)\n", 1589 rc); 1590 } 1591 1592 /* device signature acquisition is unreliable */ 1593 return -EAGAIN; 1594 } 1595 1596 static void nv_nf2_freeze(struct ata_port *ap) 1597 { 1598 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1599 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1600 u8 mask; 1601 1602 mask = ioread8(scr_addr + NV_INT_ENABLE); 1603 mask &= ~(NV_INT_ALL << shift); 1604 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1605 } 1606 1607 static void nv_nf2_thaw(struct ata_port *ap) 1608 { 1609 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1610 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1611 u8 mask; 1612 1613 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS); 1614 1615 mask = ioread8(scr_addr + NV_INT_ENABLE); 1616 mask |= (NV_INT_MASK << shift); 1617 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1618 } 1619 1620 static void nv_ck804_freeze(struct ata_port *ap) 1621 { 1622 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1623 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1624 u8 mask; 1625 1626 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1627 mask &= ~(NV_INT_ALL << shift); 1628 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1629 } 1630 1631 static void nv_ck804_thaw(struct ata_port *ap) 1632 { 1633 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1634 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1635 u8 mask; 1636 1637 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804); 1638 1639 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1640 mask |= (NV_INT_MASK << shift); 1641 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1642 } 1643 1644 static void nv_mcp55_freeze(struct ata_port *ap) 1645 { 1646 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1647 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1648 u32 mask; 1649 1650 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1651 1652 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1653 mask &= ~(NV_INT_ALL_MCP55 << shift); 1654 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1655 } 1656 1657 static void nv_mcp55_thaw(struct ata_port *ap) 1658 { 1659 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1660 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1661 u32 mask; 1662 1663 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1664 1665 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1666 mask |= (NV_INT_MASK_MCP55 << shift); 1667 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1668 } 1669 1670 static void nv_adma_error_handler(struct ata_port *ap) 1671 { 1672 struct nv_adma_port_priv *pp = ap->private_data; 1673 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) { 1674 void __iomem *mmio = pp->ctl_block; 1675 int i; 1676 u16 tmp; 1677 1678 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) { 1679 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER); 1680 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 1681 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 1682 u32 status = readw(mmio + NV_ADMA_STAT); 1683 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT); 1684 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX); 1685 1686 ata_port_err(ap, 1687 "EH in ADMA mode, notifier 0x%X " 1688 "notifier_error 0x%X gen_ctl 0x%X status 0x%X " 1689 "next cpb count 0x%X next cpb idx 0x%x\n", 1690 notifier, notifier_error, gen_ctl, status, 1691 cpb_count, next_cpb_idx); 1692 1693 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) { 1694 struct nv_adma_cpb *cpb = &pp->cpb[i]; 1695 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) || 1696 ap->link.sactive & (1 << i)) 1697 ata_port_err(ap, 1698 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n", 1699 i, cpb->ctl_flags, cpb->resp_flags); 1700 } 1701 } 1702 1703 /* Push us back into port register mode for error handling. */ 1704 nv_adma_register_mode(ap); 1705 1706 /* Mark all of the CPBs as invalid to prevent them from 1707 being executed */ 1708 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) 1709 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID; 1710 1711 /* clear CPB fetch count */ 1712 writew(0, mmio + NV_ADMA_CPB_COUNT); 1713 1714 /* Reset channel */ 1715 tmp = readw(mmio + NV_ADMA_CTL); 1716 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1717 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1718 udelay(1); 1719 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1720 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1721 } 1722 1723 ata_bmdma_error_handler(ap); 1724 } 1725 1726 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc) 1727 { 1728 struct nv_swncq_port_priv *pp = ap->private_data; 1729 struct defer_queue *dq = &pp->defer_queue; 1730 1731 /* queue is full */ 1732 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE); 1733 dq->defer_bits |= (1 << qc->tag); 1734 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag; 1735 } 1736 1737 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap) 1738 { 1739 struct nv_swncq_port_priv *pp = ap->private_data; 1740 struct defer_queue *dq = &pp->defer_queue; 1741 unsigned int tag; 1742 1743 if (dq->head == dq->tail) /* null queue */ 1744 return NULL; 1745 1746 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)]; 1747 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON; 1748 WARN_ON(!(dq->defer_bits & (1 << tag))); 1749 dq->defer_bits &= ~(1 << tag); 1750 1751 return ata_qc_from_tag(ap, tag); 1752 } 1753 1754 static void nv_swncq_fis_reinit(struct ata_port *ap) 1755 { 1756 struct nv_swncq_port_priv *pp = ap->private_data; 1757 1758 pp->dhfis_bits = 0; 1759 pp->dmafis_bits = 0; 1760 pp->sdbfis_bits = 0; 1761 pp->ncq_flags = 0; 1762 } 1763 1764 static void nv_swncq_pp_reinit(struct ata_port *ap) 1765 { 1766 struct nv_swncq_port_priv *pp = ap->private_data; 1767 struct defer_queue *dq = &pp->defer_queue; 1768 1769 dq->head = 0; 1770 dq->tail = 0; 1771 dq->defer_bits = 0; 1772 pp->qc_active = 0; 1773 pp->last_issue_tag = ATA_TAG_POISON; 1774 nv_swncq_fis_reinit(ap); 1775 } 1776 1777 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis) 1778 { 1779 struct nv_swncq_port_priv *pp = ap->private_data; 1780 1781 writew(fis, pp->irq_block); 1782 } 1783 1784 static void __ata_bmdma_stop(struct ata_port *ap) 1785 { 1786 struct ata_queued_cmd qc; 1787 1788 qc.ap = ap; 1789 ata_bmdma_stop(&qc); 1790 } 1791 1792 static void nv_swncq_ncq_stop(struct ata_port *ap) 1793 { 1794 struct nv_swncq_port_priv *pp = ap->private_data; 1795 unsigned int i; 1796 u32 sactive; 1797 u32 done_mask; 1798 1799 ata_port_err(ap, "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n", 1800 ap->qc_active, ap->link.sactive); 1801 ata_port_err(ap, 1802 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n " 1803 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n", 1804 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag, 1805 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits); 1806 1807 ata_port_err(ap, "ATA_REG 0x%X ERR_REG 0x%X\n", 1808 ap->ops->sff_check_status(ap), 1809 ioread8(ap->ioaddr.error_addr)); 1810 1811 sactive = readl(pp->sactive_block); 1812 done_mask = pp->qc_active ^ sactive; 1813 1814 ata_port_err(ap, "tag : dhfis dmafis sdbfis sactive\n"); 1815 for (i = 0; i < ATA_MAX_QUEUE; i++) { 1816 u8 err = 0; 1817 if (pp->qc_active & (1 << i)) 1818 err = 0; 1819 else if (done_mask & (1 << i)) 1820 err = 1; 1821 else 1822 continue; 1823 1824 ata_port_err(ap, 1825 "tag 0x%x: %01x %01x %01x %01x %s\n", i, 1826 (pp->dhfis_bits >> i) & 0x1, 1827 (pp->dmafis_bits >> i) & 0x1, 1828 (pp->sdbfis_bits >> i) & 0x1, 1829 (sactive >> i) & 0x1, 1830 (err ? "error! tag doesn't exit" : " ")); 1831 } 1832 1833 nv_swncq_pp_reinit(ap); 1834 ap->ops->sff_irq_clear(ap); 1835 __ata_bmdma_stop(ap); 1836 nv_swncq_irq_clear(ap, 0xffff); 1837 } 1838 1839 static void nv_swncq_error_handler(struct ata_port *ap) 1840 { 1841 struct ata_eh_context *ehc = &ap->link.eh_context; 1842 1843 if (ap->link.sactive) { 1844 nv_swncq_ncq_stop(ap); 1845 ehc->i.action |= ATA_EH_RESET; 1846 } 1847 1848 ata_bmdma_error_handler(ap); 1849 } 1850 1851 #ifdef CONFIG_PM 1852 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg) 1853 { 1854 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1855 u32 tmp; 1856 1857 /* clear irq */ 1858 writel(~0, mmio + NV_INT_STATUS_MCP55); 1859 1860 /* disable irq */ 1861 writel(0, mmio + NV_INT_ENABLE_MCP55); 1862 1863 /* disable swncq */ 1864 tmp = readl(mmio + NV_CTL_MCP55); 1865 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ); 1866 writel(tmp, mmio + NV_CTL_MCP55); 1867 1868 return 0; 1869 } 1870 1871 static int nv_swncq_port_resume(struct ata_port *ap) 1872 { 1873 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1874 u32 tmp; 1875 1876 /* clear irq */ 1877 writel(~0, mmio + NV_INT_STATUS_MCP55); 1878 1879 /* enable irq */ 1880 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1881 1882 /* enable swncq */ 1883 tmp = readl(mmio + NV_CTL_MCP55); 1884 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1885 1886 return 0; 1887 } 1888 #endif 1889 1890 static void nv_swncq_host_init(struct ata_host *host) 1891 { 1892 u32 tmp; 1893 void __iomem *mmio = host->iomap[NV_MMIO_BAR]; 1894 struct pci_dev *pdev = to_pci_dev(host->dev); 1895 u8 regval; 1896 1897 /* disable ECO 398 */ 1898 pci_read_config_byte(pdev, 0x7f, ®val); 1899 regval &= ~(1 << 7); 1900 pci_write_config_byte(pdev, 0x7f, regval); 1901 1902 /* enable swncq */ 1903 tmp = readl(mmio + NV_CTL_MCP55); 1904 VPRINTK("HOST_CTL:0x%X\n", tmp); 1905 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1906 1907 /* enable irq intr */ 1908 tmp = readl(mmio + NV_INT_ENABLE_MCP55); 1909 VPRINTK("HOST_ENABLE:0x%X\n", tmp); 1910 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1911 1912 /* clear port irq */ 1913 writel(~0x0, mmio + NV_INT_STATUS_MCP55); 1914 } 1915 1916 static int nv_swncq_slave_config(struct scsi_device *sdev) 1917 { 1918 struct ata_port *ap = ata_shost_to_port(sdev->host); 1919 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 1920 struct ata_device *dev; 1921 int rc; 1922 u8 rev; 1923 u8 check_maxtor = 0; 1924 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 1925 1926 rc = ata_scsi_slave_config(sdev); 1927 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 1928 /* Not a proper libata device, ignore */ 1929 return rc; 1930 1931 dev = &ap->link.device[sdev->id]; 1932 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI) 1933 return rc; 1934 1935 /* if MCP51 and Maxtor, then disable ncq */ 1936 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA || 1937 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2) 1938 check_maxtor = 1; 1939 1940 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */ 1941 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA || 1942 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) { 1943 pci_read_config_byte(pdev, 0x8, &rev); 1944 if (rev <= 0xa2) 1945 check_maxtor = 1; 1946 } 1947 1948 if (!check_maxtor) 1949 return rc; 1950 1951 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 1952 1953 if (strncmp(model_num, "Maxtor", 6) == 0) { 1954 ata_scsi_change_queue_depth(sdev, 1); 1955 ata_dev_notice(dev, "Disabling SWNCQ mode (depth %x)\n", 1956 sdev->queue_depth); 1957 } 1958 1959 return rc; 1960 } 1961 1962 static int nv_swncq_port_start(struct ata_port *ap) 1963 { 1964 struct device *dev = ap->host->dev; 1965 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1966 struct nv_swncq_port_priv *pp; 1967 int rc; 1968 1969 /* we might fallback to bmdma, allocate bmdma resources */ 1970 rc = ata_bmdma_port_start(ap); 1971 if (rc) 1972 return rc; 1973 1974 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1975 if (!pp) 1976 return -ENOMEM; 1977 1978 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE, 1979 &pp->prd_dma, GFP_KERNEL); 1980 if (!pp->prd) 1981 return -ENOMEM; 1982 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE); 1983 1984 ap->private_data = pp; 1985 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE; 1986 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2; 1987 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2; 1988 1989 return 0; 1990 } 1991 1992 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc) 1993 { 1994 if (qc->tf.protocol != ATA_PROT_NCQ) { 1995 ata_bmdma_qc_prep(qc); 1996 return; 1997 } 1998 1999 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2000 return; 2001 2002 nv_swncq_fill_sg(qc); 2003 } 2004 2005 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc) 2006 { 2007 struct ata_port *ap = qc->ap; 2008 struct scatterlist *sg; 2009 struct nv_swncq_port_priv *pp = ap->private_data; 2010 struct ata_bmdma_prd *prd; 2011 unsigned int si, idx; 2012 2013 prd = pp->prd + ATA_MAX_PRD * qc->tag; 2014 2015 idx = 0; 2016 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2017 u32 addr, offset; 2018 u32 sg_len, len; 2019 2020 addr = (u32)sg_dma_address(sg); 2021 sg_len = sg_dma_len(sg); 2022 2023 while (sg_len) { 2024 offset = addr & 0xffff; 2025 len = sg_len; 2026 if ((offset + sg_len) > 0x10000) 2027 len = 0x10000 - offset; 2028 2029 prd[idx].addr = cpu_to_le32(addr); 2030 prd[idx].flags_len = cpu_to_le32(len & 0xffff); 2031 2032 idx++; 2033 sg_len -= len; 2034 addr += len; 2035 } 2036 } 2037 2038 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2039 } 2040 2041 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap, 2042 struct ata_queued_cmd *qc) 2043 { 2044 struct nv_swncq_port_priv *pp = ap->private_data; 2045 2046 if (qc == NULL) 2047 return 0; 2048 2049 DPRINTK("Enter\n"); 2050 2051 writel((1 << qc->tag), pp->sactive_block); 2052 pp->last_issue_tag = qc->tag; 2053 pp->dhfis_bits &= ~(1 << qc->tag); 2054 pp->dmafis_bits &= ~(1 << qc->tag); 2055 pp->qc_active |= (0x1 << qc->tag); 2056 2057 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2058 ap->ops->sff_exec_command(ap, &qc->tf); 2059 2060 DPRINTK("Issued tag %u\n", qc->tag); 2061 2062 return 0; 2063 } 2064 2065 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc) 2066 { 2067 struct ata_port *ap = qc->ap; 2068 struct nv_swncq_port_priv *pp = ap->private_data; 2069 2070 if (qc->tf.protocol != ATA_PROT_NCQ) 2071 return ata_bmdma_qc_issue(qc); 2072 2073 DPRINTK("Enter\n"); 2074 2075 if (!pp->qc_active) 2076 nv_swncq_issue_atacmd(ap, qc); 2077 else 2078 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */ 2079 2080 return 0; 2081 } 2082 2083 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis) 2084 { 2085 u32 serror; 2086 struct ata_eh_info *ehi = &ap->link.eh_info; 2087 2088 ata_ehi_clear_desc(ehi); 2089 2090 /* AHCI needs SError cleared; otherwise, it might lock up */ 2091 sata_scr_read(&ap->link, SCR_ERROR, &serror); 2092 sata_scr_write(&ap->link, SCR_ERROR, serror); 2093 2094 /* analyze @irq_stat */ 2095 if (fis & NV_SWNCQ_IRQ_ADDED) 2096 ata_ehi_push_desc(ehi, "hot plug"); 2097 else if (fis & NV_SWNCQ_IRQ_REMOVED) 2098 ata_ehi_push_desc(ehi, "hot unplug"); 2099 2100 ata_ehi_hotplugged(ehi); 2101 2102 /* okay, let's hand over to EH */ 2103 ehi->serror |= serror; 2104 2105 ata_port_freeze(ap); 2106 } 2107 2108 static int nv_swncq_sdbfis(struct ata_port *ap) 2109 { 2110 struct ata_queued_cmd *qc; 2111 struct nv_swncq_port_priv *pp = ap->private_data; 2112 struct ata_eh_info *ehi = &ap->link.eh_info; 2113 u32 sactive; 2114 u32 done_mask; 2115 u8 host_stat; 2116 u8 lack_dhfis = 0; 2117 2118 host_stat = ap->ops->bmdma_status(ap); 2119 if (unlikely(host_stat & ATA_DMA_ERR)) { 2120 /* error when transferring data to/from memory */ 2121 ata_ehi_clear_desc(ehi); 2122 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2123 ehi->err_mask |= AC_ERR_HOST_BUS; 2124 ehi->action |= ATA_EH_RESET; 2125 return -EINVAL; 2126 } 2127 2128 ap->ops->sff_irq_clear(ap); 2129 __ata_bmdma_stop(ap); 2130 2131 sactive = readl(pp->sactive_block); 2132 done_mask = pp->qc_active ^ sactive; 2133 2134 pp->qc_active &= ~done_mask; 2135 pp->dhfis_bits &= ~done_mask; 2136 pp->dmafis_bits &= ~done_mask; 2137 pp->sdbfis_bits |= done_mask; 2138 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2139 2140 if (!ap->qc_active) { 2141 DPRINTK("over\n"); 2142 nv_swncq_pp_reinit(ap); 2143 return 0; 2144 } 2145 2146 if (pp->qc_active & pp->dhfis_bits) 2147 return 0; 2148 2149 if ((pp->ncq_flags & ncq_saw_backout) || 2150 (pp->qc_active ^ pp->dhfis_bits)) 2151 /* if the controller can't get a device to host register FIS, 2152 * The driver needs to reissue the new command. 2153 */ 2154 lack_dhfis = 1; 2155 2156 DPRINTK("id 0x%x QC: qc_active 0x%x," 2157 "SWNCQ:qc_active 0x%X defer_bits %X " 2158 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n", 2159 ap->print_id, ap->qc_active, pp->qc_active, 2160 pp->defer_queue.defer_bits, pp->dhfis_bits, 2161 pp->dmafis_bits, pp->last_issue_tag); 2162 2163 nv_swncq_fis_reinit(ap); 2164 2165 if (lack_dhfis) { 2166 qc = ata_qc_from_tag(ap, pp->last_issue_tag); 2167 nv_swncq_issue_atacmd(ap, qc); 2168 return 0; 2169 } 2170 2171 if (pp->defer_queue.defer_bits) { 2172 /* send deferral queue command */ 2173 qc = nv_swncq_qc_from_dq(ap); 2174 WARN_ON(qc == NULL); 2175 nv_swncq_issue_atacmd(ap, qc); 2176 } 2177 2178 return 0; 2179 } 2180 2181 static inline u32 nv_swncq_tag(struct ata_port *ap) 2182 { 2183 struct nv_swncq_port_priv *pp = ap->private_data; 2184 u32 tag; 2185 2186 tag = readb(pp->tag_block) >> 2; 2187 return (tag & 0x1f); 2188 } 2189 2190 static void nv_swncq_dmafis(struct ata_port *ap) 2191 { 2192 struct ata_queued_cmd *qc; 2193 unsigned int rw; 2194 u8 dmactl; 2195 u32 tag; 2196 struct nv_swncq_port_priv *pp = ap->private_data; 2197 2198 __ata_bmdma_stop(ap); 2199 tag = nv_swncq_tag(ap); 2200 2201 DPRINTK("dma setup tag 0x%x\n", tag); 2202 qc = ata_qc_from_tag(ap, tag); 2203 2204 if (unlikely(!qc)) 2205 return; 2206 2207 rw = qc->tf.flags & ATA_TFLAG_WRITE; 2208 2209 /* load PRD table addr. */ 2210 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag, 2211 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2212 2213 /* specify data direction, triple-check start bit is clear */ 2214 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2215 dmactl &= ~ATA_DMA_WR; 2216 if (!rw) 2217 dmactl |= ATA_DMA_WR; 2218 2219 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2220 } 2221 2222 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) 2223 { 2224 struct nv_swncq_port_priv *pp = ap->private_data; 2225 struct ata_queued_cmd *qc; 2226 struct ata_eh_info *ehi = &ap->link.eh_info; 2227 u32 serror; 2228 u8 ata_stat; 2229 2230 ata_stat = ap->ops->sff_check_status(ap); 2231 nv_swncq_irq_clear(ap, fis); 2232 if (!fis) 2233 return; 2234 2235 if (ap->pflags & ATA_PFLAG_FROZEN) 2236 return; 2237 2238 if (fis & NV_SWNCQ_IRQ_HOTPLUG) { 2239 nv_swncq_hotplug(ap, fis); 2240 return; 2241 } 2242 2243 if (!pp->qc_active) 2244 return; 2245 2246 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror)) 2247 return; 2248 ap->ops->scr_write(&ap->link, SCR_ERROR, serror); 2249 2250 if (ata_stat & ATA_ERR) { 2251 ata_ehi_clear_desc(ehi); 2252 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis); 2253 ehi->err_mask |= AC_ERR_DEV; 2254 ehi->serror |= serror; 2255 ehi->action |= ATA_EH_RESET; 2256 ata_port_freeze(ap); 2257 return; 2258 } 2259 2260 if (fis & NV_SWNCQ_IRQ_BACKOUT) { 2261 /* If the IRQ is backout, driver must issue 2262 * the new command again some time later. 2263 */ 2264 pp->ncq_flags |= ncq_saw_backout; 2265 } 2266 2267 if (fis & NV_SWNCQ_IRQ_SDBFIS) { 2268 pp->ncq_flags |= ncq_saw_sdb; 2269 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X " 2270 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n", 2271 ap->print_id, pp->qc_active, pp->dhfis_bits, 2272 pp->dmafis_bits, readl(pp->sactive_block)); 2273 if (nv_swncq_sdbfis(ap) < 0) 2274 goto irq_error; 2275 } 2276 2277 if (fis & NV_SWNCQ_IRQ_DHREGFIS) { 2278 /* The interrupt indicates the new command 2279 * was transmitted correctly to the drive. 2280 */ 2281 pp->dhfis_bits |= (0x1 << pp->last_issue_tag); 2282 pp->ncq_flags |= ncq_saw_d2h; 2283 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) { 2284 ata_ehi_push_desc(ehi, "illegal fis transaction"); 2285 ehi->err_mask |= AC_ERR_HSM; 2286 ehi->action |= ATA_EH_RESET; 2287 goto irq_error; 2288 } 2289 2290 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) && 2291 !(pp->ncq_flags & ncq_saw_dmas)) { 2292 ata_stat = ap->ops->sff_check_status(ap); 2293 if (ata_stat & ATA_BUSY) 2294 goto irq_exit; 2295 2296 if (pp->defer_queue.defer_bits) { 2297 DPRINTK("send next command\n"); 2298 qc = nv_swncq_qc_from_dq(ap); 2299 nv_swncq_issue_atacmd(ap, qc); 2300 } 2301 } 2302 } 2303 2304 if (fis & NV_SWNCQ_IRQ_DMASETUP) { 2305 /* program the dma controller with appropriate PRD buffers 2306 * and start the DMA transfer for requested command. 2307 */ 2308 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); 2309 pp->ncq_flags |= ncq_saw_dmas; 2310 nv_swncq_dmafis(ap); 2311 } 2312 2313 irq_exit: 2314 return; 2315 irq_error: 2316 ata_ehi_push_desc(ehi, "fis:0x%x", fis); 2317 ata_port_freeze(ap); 2318 return; 2319 } 2320 2321 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance) 2322 { 2323 struct ata_host *host = dev_instance; 2324 unsigned int i; 2325 unsigned int handled = 0; 2326 unsigned long flags; 2327 u32 irq_stat; 2328 2329 spin_lock_irqsave(&host->lock, flags); 2330 2331 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55); 2332 2333 for (i = 0; i < host->n_ports; i++) { 2334 struct ata_port *ap = host->ports[i]; 2335 2336 if (ap->link.sactive) { 2337 nv_swncq_host_interrupt(ap, (u16)irq_stat); 2338 handled = 1; 2339 } else { 2340 if (irq_stat) /* reserve Hotplug */ 2341 nv_swncq_irq_clear(ap, 0xfff0); 2342 2343 handled += nv_host_intr(ap, (u8)irq_stat); 2344 } 2345 irq_stat >>= NV_INT_PORT_SHIFT_MCP55; 2346 } 2347 2348 spin_unlock_irqrestore(&host->lock, flags); 2349 2350 return IRQ_RETVAL(handled); 2351 } 2352 2353 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2354 { 2355 const struct ata_port_info *ppi[] = { NULL, NULL }; 2356 struct nv_pi_priv *ipriv; 2357 struct ata_host *host; 2358 struct nv_host_priv *hpriv; 2359 int rc; 2360 u32 bar; 2361 void __iomem *base; 2362 unsigned long type = ent->driver_data; 2363 2364 // Make sure this is a SATA controller by counting the number of bars 2365 // (NVIDIA SATA controllers will always have six bars). Otherwise, 2366 // it's an IDE controller and we ignore it. 2367 for (bar = 0; bar < 6; bar++) 2368 if (pci_resource_start(pdev, bar) == 0) 2369 return -ENODEV; 2370 2371 ata_print_version_once(&pdev->dev, DRV_VERSION); 2372 2373 rc = pcim_enable_device(pdev); 2374 if (rc) 2375 return rc; 2376 2377 /* determine type and allocate host */ 2378 if (type == CK804 && adma_enabled) { 2379 dev_notice(&pdev->dev, "Using ADMA mode\n"); 2380 type = ADMA; 2381 } else if (type == MCP5x && swncq_enabled) { 2382 dev_notice(&pdev->dev, "Using SWNCQ mode\n"); 2383 type = SWNCQ; 2384 } 2385 2386 ppi[0] = &nv_port_info[type]; 2387 ipriv = ppi[0]->private_data; 2388 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2389 if (rc) 2390 return rc; 2391 2392 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 2393 if (!hpriv) 2394 return -ENOMEM; 2395 hpriv->type = type; 2396 host->private_data = hpriv; 2397 2398 /* request and iomap NV_MMIO_BAR */ 2399 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME); 2400 if (rc) 2401 return rc; 2402 2403 /* configure SCR access */ 2404 base = host->iomap[NV_MMIO_BAR]; 2405 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET; 2406 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET; 2407 2408 /* enable SATA space for CK804 */ 2409 if (type >= CK804) { 2410 u8 regval; 2411 2412 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2413 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2414 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2415 } 2416 2417 /* init ADMA */ 2418 if (type == ADMA) { 2419 rc = nv_adma_host_init(host); 2420 if (rc) 2421 return rc; 2422 } else if (type == SWNCQ) 2423 nv_swncq_host_init(host); 2424 2425 if (msi_enabled) { 2426 dev_notice(&pdev->dev, "Using MSI\n"); 2427 pci_enable_msi(pdev); 2428 } 2429 2430 pci_set_master(pdev); 2431 return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht); 2432 } 2433 2434 #ifdef CONFIG_PM_SLEEP 2435 static int nv_pci_device_resume(struct pci_dev *pdev) 2436 { 2437 struct ata_host *host = pci_get_drvdata(pdev); 2438 struct nv_host_priv *hpriv = host->private_data; 2439 int rc; 2440 2441 rc = ata_pci_device_do_resume(pdev); 2442 if (rc) 2443 return rc; 2444 2445 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) { 2446 if (hpriv->type >= CK804) { 2447 u8 regval; 2448 2449 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2450 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2451 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2452 } 2453 if (hpriv->type == ADMA) { 2454 u32 tmp32; 2455 struct nv_adma_port_priv *pp; 2456 /* enable/disable ADMA on the ports appropriately */ 2457 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2458 2459 pp = host->ports[0]->private_data; 2460 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2461 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2462 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2463 else 2464 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN | 2465 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2466 pp = host->ports[1]->private_data; 2467 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2468 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN | 2469 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2470 else 2471 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN | 2472 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2473 2474 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2475 } 2476 } 2477 2478 ata_host_resume(host); 2479 2480 return 0; 2481 } 2482 #endif 2483 2484 static void nv_ck804_host_stop(struct ata_host *host) 2485 { 2486 struct pci_dev *pdev = to_pci_dev(host->dev); 2487 u8 regval; 2488 2489 /* disable SATA space for CK804 */ 2490 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2491 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2492 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2493 } 2494 2495 static void nv_adma_host_stop(struct ata_host *host) 2496 { 2497 struct pci_dev *pdev = to_pci_dev(host->dev); 2498 u32 tmp32; 2499 2500 /* disable ADMA on the ports */ 2501 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2502 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2503 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 2504 NV_MCP_SATA_CFG_20_PORT1_EN | 2505 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2506 2507 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2508 2509 nv_ck804_host_stop(host); 2510 } 2511 2512 module_pci_driver(nv_pci_driver); 2513 2514 module_param_named(adma, adma_enabled, bool, 0444); 2515 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)"); 2516 module_param_named(swncq, swncq_enabled, bool, 0444); 2517 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)"); 2518 module_param_named(msi, msi_enabled, bool, 0444); 2519 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)"); 2520