1 /* 2 * sata_nv.c - NVIDIA nForce SATA 3 * 4 * Copyright 2004 NVIDIA Corp. All rights reserved. 5 * Copyright 2004 Andrew Chew 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; see the file COPYING. If not, write to 20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * 23 * libata documentation is available via 'make {ps|pdf}docs', 24 * as Documentation/DocBook/libata.* 25 * 26 * No hardware documentation available outside of NVIDIA. 27 * This driver programs the NVIDIA SATA controller in a similar 28 * fashion as with other PCI IDE BMDMA controllers, with a few 29 * NV-specific details such as register offsets, SATA phy location, 30 * hotplug info, etc. 31 * 32 * CK804/MCP04 controllers support an alternate programming interface 33 * similar to the ADMA specification (with some modifications). 34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still 35 * sent through the legacy interface. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/gfp.h> 42 #include <linux/pci.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/delay.h> 46 #include <linux/interrupt.h> 47 #include <linux/device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_device.h> 50 #include <linux/libata.h> 51 52 #define DRV_NAME "sata_nv" 53 #define DRV_VERSION "3.5" 54 55 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL 56 57 enum { 58 NV_MMIO_BAR = 5, 59 60 NV_PORTS = 2, 61 NV_PIO_MASK = ATA_PIO4, 62 NV_MWDMA_MASK = ATA_MWDMA2, 63 NV_UDMA_MASK = ATA_UDMA6, 64 NV_PORT0_SCR_REG_OFFSET = 0x00, 65 NV_PORT1_SCR_REG_OFFSET = 0x40, 66 67 /* INT_STATUS/ENABLE */ 68 NV_INT_STATUS = 0x10, 69 NV_INT_ENABLE = 0x11, 70 NV_INT_STATUS_CK804 = 0x440, 71 NV_INT_ENABLE_CK804 = 0x441, 72 73 /* INT_STATUS/ENABLE bits */ 74 NV_INT_DEV = 0x01, 75 NV_INT_PM = 0x02, 76 NV_INT_ADDED = 0x04, 77 NV_INT_REMOVED = 0x08, 78 79 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */ 80 81 NV_INT_ALL = 0x0f, 82 NV_INT_MASK = NV_INT_DEV | 83 NV_INT_ADDED | NV_INT_REMOVED, 84 85 /* INT_CONFIG */ 86 NV_INT_CONFIG = 0x12, 87 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI 88 89 // For PCI config register 20 90 NV_MCP_SATA_CFG_20 = 0x50, 91 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04, 92 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17), 93 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16), 94 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14), 95 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12), 96 97 NV_ADMA_MAX_CPBS = 32, 98 NV_ADMA_CPB_SZ = 128, 99 NV_ADMA_APRD_SZ = 16, 100 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) / 101 NV_ADMA_APRD_SZ, 102 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5, 103 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ, 104 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS * 105 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ), 106 107 /* BAR5 offset to ADMA general registers */ 108 NV_ADMA_GEN = 0x400, 109 NV_ADMA_GEN_CTL = 0x00, 110 NV_ADMA_NOTIFIER_CLEAR = 0x30, 111 112 /* BAR5 offset to ADMA ports */ 113 NV_ADMA_PORT = 0x480, 114 115 /* size of ADMA port register space */ 116 NV_ADMA_PORT_SIZE = 0x100, 117 118 /* ADMA port registers */ 119 NV_ADMA_CTL = 0x40, 120 NV_ADMA_CPB_COUNT = 0x42, 121 NV_ADMA_NEXT_CPB_IDX = 0x43, 122 NV_ADMA_STAT = 0x44, 123 NV_ADMA_CPB_BASE_LOW = 0x48, 124 NV_ADMA_CPB_BASE_HIGH = 0x4C, 125 NV_ADMA_APPEND = 0x50, 126 NV_ADMA_NOTIFIER = 0x68, 127 NV_ADMA_NOTIFIER_ERROR = 0x6C, 128 129 /* NV_ADMA_CTL register bits */ 130 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0), 131 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5), 132 NV_ADMA_CTL_GO = (1 << 7), 133 NV_ADMA_CTL_AIEN = (1 << 8), 134 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11), 135 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12), 136 137 /* CPB response flag bits */ 138 NV_CPB_RESP_DONE = (1 << 0), 139 NV_CPB_RESP_ATA_ERR = (1 << 3), 140 NV_CPB_RESP_CMD_ERR = (1 << 4), 141 NV_CPB_RESP_CPB_ERR = (1 << 7), 142 143 /* CPB control flag bits */ 144 NV_CPB_CTL_CPB_VALID = (1 << 0), 145 NV_CPB_CTL_QUEUE = (1 << 1), 146 NV_CPB_CTL_APRD_VALID = (1 << 2), 147 NV_CPB_CTL_IEN = (1 << 3), 148 NV_CPB_CTL_FPDMA = (1 << 4), 149 150 /* APRD flags */ 151 NV_APRD_WRITE = (1 << 1), 152 NV_APRD_END = (1 << 2), 153 NV_APRD_CONT = (1 << 3), 154 155 /* NV_ADMA_STAT flags */ 156 NV_ADMA_STAT_TIMEOUT = (1 << 0), 157 NV_ADMA_STAT_HOTUNPLUG = (1 << 1), 158 NV_ADMA_STAT_HOTPLUG = (1 << 2), 159 NV_ADMA_STAT_CPBERR = (1 << 4), 160 NV_ADMA_STAT_SERROR = (1 << 5), 161 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6), 162 NV_ADMA_STAT_IDLE = (1 << 8), 163 NV_ADMA_STAT_LEGACY = (1 << 9), 164 NV_ADMA_STAT_STOPPED = (1 << 10), 165 NV_ADMA_STAT_DONE = (1 << 12), 166 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR | 167 NV_ADMA_STAT_TIMEOUT, 168 169 /* port flags */ 170 NV_ADMA_PORT_REGISTER_MODE = (1 << 0), 171 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1), 172 173 /* MCP55 reg offset */ 174 NV_CTL_MCP55 = 0x400, 175 NV_INT_STATUS_MCP55 = 0x440, 176 NV_INT_ENABLE_MCP55 = 0x444, 177 NV_NCQ_REG_MCP55 = 0x448, 178 179 /* MCP55 */ 180 NV_INT_ALL_MCP55 = 0xffff, 181 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */ 182 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd, 183 184 /* SWNCQ ENABLE BITS*/ 185 NV_CTL_PRI_SWNCQ = 0x02, 186 NV_CTL_SEC_SWNCQ = 0x04, 187 188 /* SW NCQ status bits*/ 189 NV_SWNCQ_IRQ_DEV = (1 << 0), 190 NV_SWNCQ_IRQ_PM = (1 << 1), 191 NV_SWNCQ_IRQ_ADDED = (1 << 2), 192 NV_SWNCQ_IRQ_REMOVED = (1 << 3), 193 194 NV_SWNCQ_IRQ_BACKOUT = (1 << 4), 195 NV_SWNCQ_IRQ_SDBFIS = (1 << 5), 196 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6), 197 NV_SWNCQ_IRQ_DMASETUP = (1 << 7), 198 199 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED | 200 NV_SWNCQ_IRQ_REMOVED, 201 202 }; 203 204 /* ADMA Physical Region Descriptor - one SG segment */ 205 struct nv_adma_prd { 206 __le64 addr; 207 __le32 len; 208 u8 flags; 209 u8 packet_len; 210 __le16 reserved; 211 }; 212 213 enum nv_adma_regbits { 214 CMDEND = (1 << 15), /* end of command list */ 215 WNB = (1 << 14), /* wait-not-BSY */ 216 IGN = (1 << 13), /* ignore this entry */ 217 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */ 218 DA2 = (1 << (2 + 8)), 219 DA1 = (1 << (1 + 8)), 220 DA0 = (1 << (0 + 8)), 221 }; 222 223 /* ADMA Command Parameter Block 224 The first 5 SG segments are stored inside the Command Parameter Block itself. 225 If there are more than 5 segments the remainder are stored in a separate 226 memory area indicated by next_aprd. */ 227 struct nv_adma_cpb { 228 u8 resp_flags; /* 0 */ 229 u8 reserved1; /* 1 */ 230 u8 ctl_flags; /* 2 */ 231 /* len is length of taskfile in 64 bit words */ 232 u8 len; /* 3 */ 233 u8 tag; /* 4 */ 234 u8 next_cpb_idx; /* 5 */ 235 __le16 reserved2; /* 6-7 */ 236 __le16 tf[12]; /* 8-31 */ 237 struct nv_adma_prd aprd[5]; /* 32-111 */ 238 __le64 next_aprd; /* 112-119 */ 239 __le64 reserved3; /* 120-127 */ 240 }; 241 242 243 struct nv_adma_port_priv { 244 struct nv_adma_cpb *cpb; 245 dma_addr_t cpb_dma; 246 struct nv_adma_prd *aprd; 247 dma_addr_t aprd_dma; 248 void __iomem *ctl_block; 249 void __iomem *gen_block; 250 void __iomem *notifier_clear_block; 251 u64 adma_dma_mask; 252 u8 flags; 253 int last_issue_ncq; 254 }; 255 256 struct nv_host_priv { 257 unsigned long type; 258 }; 259 260 struct defer_queue { 261 u32 defer_bits; 262 unsigned int head; 263 unsigned int tail; 264 unsigned int tag[ATA_MAX_QUEUE]; 265 }; 266 267 enum ncq_saw_flag_list { 268 ncq_saw_d2h = (1U << 0), 269 ncq_saw_dmas = (1U << 1), 270 ncq_saw_sdb = (1U << 2), 271 ncq_saw_backout = (1U << 3), 272 }; 273 274 struct nv_swncq_port_priv { 275 struct ata_bmdma_prd *prd; /* our SG list */ 276 dma_addr_t prd_dma; /* and its DMA mapping */ 277 void __iomem *sactive_block; 278 void __iomem *irq_block; 279 void __iomem *tag_block; 280 u32 qc_active; 281 282 unsigned int last_issue_tag; 283 284 /* fifo circular queue to store deferral command */ 285 struct defer_queue defer_queue; 286 287 /* for NCQ interrupt analysis */ 288 u32 dhfis_bits; 289 u32 dmafis_bits; 290 u32 sdbfis_bits; 291 292 unsigned int ncq_flags; 293 }; 294 295 296 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT))))) 297 298 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 299 #ifdef CONFIG_PM 300 static int nv_pci_device_resume(struct pci_dev *pdev); 301 #endif 302 static void nv_ck804_host_stop(struct ata_host *host); 303 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance); 304 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance); 305 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance); 306 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val); 307 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val); 308 309 static int nv_hardreset(struct ata_link *link, unsigned int *class, 310 unsigned long deadline); 311 static void nv_nf2_freeze(struct ata_port *ap); 312 static void nv_nf2_thaw(struct ata_port *ap); 313 static void nv_ck804_freeze(struct ata_port *ap); 314 static void nv_ck804_thaw(struct ata_port *ap); 315 static int nv_adma_slave_config(struct scsi_device *sdev); 316 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc); 317 static void nv_adma_qc_prep(struct ata_queued_cmd *qc); 318 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc); 319 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance); 320 static void nv_adma_irq_clear(struct ata_port *ap); 321 static int nv_adma_port_start(struct ata_port *ap); 322 static void nv_adma_port_stop(struct ata_port *ap); 323 #ifdef CONFIG_PM 324 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg); 325 static int nv_adma_port_resume(struct ata_port *ap); 326 #endif 327 static void nv_adma_freeze(struct ata_port *ap); 328 static void nv_adma_thaw(struct ata_port *ap); 329 static void nv_adma_error_handler(struct ata_port *ap); 330 static void nv_adma_host_stop(struct ata_host *host); 331 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc); 332 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf); 333 334 static void nv_mcp55_thaw(struct ata_port *ap); 335 static void nv_mcp55_freeze(struct ata_port *ap); 336 static void nv_swncq_error_handler(struct ata_port *ap); 337 static int nv_swncq_slave_config(struct scsi_device *sdev); 338 static int nv_swncq_port_start(struct ata_port *ap); 339 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc); 340 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc); 341 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc); 342 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis); 343 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance); 344 #ifdef CONFIG_PM 345 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg); 346 static int nv_swncq_port_resume(struct ata_port *ap); 347 #endif 348 349 enum nv_host_type 350 { 351 GENERIC, 352 NFORCE2, 353 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */ 354 CK804, 355 ADMA, 356 MCP5x, 357 SWNCQ, 358 }; 359 360 static const struct pci_device_id nv_pci_tbl[] = { 361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 }, 362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 }, 363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 }, 364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 }, 365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 }, 366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 }, 367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 }, 368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x }, 369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x }, 370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x }, 371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x }, 372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC }, 373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC }, 374 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC }, 375 376 { } /* terminate list */ 377 }; 378 379 static struct pci_driver nv_pci_driver = { 380 .name = DRV_NAME, 381 .id_table = nv_pci_tbl, 382 .probe = nv_init_one, 383 #ifdef CONFIG_PM 384 .suspend = ata_pci_device_suspend, 385 .resume = nv_pci_device_resume, 386 #endif 387 .remove = ata_pci_remove_one, 388 }; 389 390 static struct scsi_host_template nv_sht = { 391 ATA_BMDMA_SHT(DRV_NAME), 392 }; 393 394 static struct scsi_host_template nv_adma_sht = { 395 ATA_NCQ_SHT(DRV_NAME), 396 .can_queue = NV_ADMA_MAX_CPBS, 397 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN, 398 .dma_boundary = NV_ADMA_DMA_BOUNDARY, 399 .slave_configure = nv_adma_slave_config, 400 }; 401 402 static struct scsi_host_template nv_swncq_sht = { 403 ATA_NCQ_SHT(DRV_NAME), 404 .can_queue = ATA_MAX_QUEUE, 405 .sg_tablesize = LIBATA_MAX_PRD, 406 .dma_boundary = ATA_DMA_BOUNDARY, 407 .slave_configure = nv_swncq_slave_config, 408 }; 409 410 /* 411 * NV SATA controllers have various different problems with hardreset 412 * protocol depending on the specific controller and device. 413 * 414 * GENERIC: 415 * 416 * bko11195 reports that link doesn't come online after hardreset on 417 * generic nv's and there have been several other similar reports on 418 * linux-ide. 419 * 420 * bko12351#c23 reports that warmplug on MCP61 doesn't work with 421 * softreset. 422 * 423 * NF2/3: 424 * 425 * bko3352 reports nf2/3 controllers can't determine device signature 426 * reliably after hardreset. The following thread reports detection 427 * failure on cold boot with the standard debouncing timing. 428 * 429 * http://thread.gmane.org/gmane.linux.ide/34098 430 * 431 * bko12176 reports that hardreset fails to bring up the link during 432 * boot on nf2. 433 * 434 * CK804: 435 * 436 * For initial probing after boot and hot plugging, hardreset mostly 437 * works fine on CK804 but curiously, reprobing on the initial port 438 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg 439 * FIS in somewhat undeterministic way. 440 * 441 * SWNCQ: 442 * 443 * bko12351 reports that when SWNCQ is enabled, for hotplug to work, 444 * hardreset should be used and hardreset can't report proper 445 * signature, which suggests that mcp5x is closer to nf2 as long as 446 * reset quirkiness is concerned. 447 * 448 * bko12703 reports that boot probing fails for intel SSD with 449 * hardreset. Link fails to come online. Softreset works fine. 450 * 451 * The failures are varied but the following patterns seem true for 452 * all flavors. 453 * 454 * - Softreset during boot always works. 455 * 456 * - Hardreset during boot sometimes fails to bring up the link on 457 * certain comibnations and device signature acquisition is 458 * unreliable. 459 * 460 * - Hardreset is often necessary after hotplug. 461 * 462 * So, preferring softreset for boot probing and error handling (as 463 * hardreset might bring down the link) but using hardreset for 464 * post-boot probing should work around the above issues in most 465 * cases. Define nv_hardreset() which only kicks in for post-boot 466 * probing and use it for all variants. 467 */ 468 static struct ata_port_operations nv_generic_ops = { 469 .inherits = &ata_bmdma_port_ops, 470 .lost_interrupt = ATA_OP_NULL, 471 .scr_read = nv_scr_read, 472 .scr_write = nv_scr_write, 473 .hardreset = nv_hardreset, 474 }; 475 476 static struct ata_port_operations nv_nf2_ops = { 477 .inherits = &nv_generic_ops, 478 .freeze = nv_nf2_freeze, 479 .thaw = nv_nf2_thaw, 480 }; 481 482 static struct ata_port_operations nv_ck804_ops = { 483 .inherits = &nv_generic_ops, 484 .freeze = nv_ck804_freeze, 485 .thaw = nv_ck804_thaw, 486 .host_stop = nv_ck804_host_stop, 487 }; 488 489 static struct ata_port_operations nv_adma_ops = { 490 .inherits = &nv_ck804_ops, 491 492 .check_atapi_dma = nv_adma_check_atapi_dma, 493 .sff_tf_read = nv_adma_tf_read, 494 .qc_defer = ata_std_qc_defer, 495 .qc_prep = nv_adma_qc_prep, 496 .qc_issue = nv_adma_qc_issue, 497 .sff_irq_clear = nv_adma_irq_clear, 498 499 .freeze = nv_adma_freeze, 500 .thaw = nv_adma_thaw, 501 .error_handler = nv_adma_error_handler, 502 .post_internal_cmd = nv_adma_post_internal_cmd, 503 504 .port_start = nv_adma_port_start, 505 .port_stop = nv_adma_port_stop, 506 #ifdef CONFIG_PM 507 .port_suspend = nv_adma_port_suspend, 508 .port_resume = nv_adma_port_resume, 509 #endif 510 .host_stop = nv_adma_host_stop, 511 }; 512 513 static struct ata_port_operations nv_swncq_ops = { 514 .inherits = &nv_generic_ops, 515 516 .qc_defer = ata_std_qc_defer, 517 .qc_prep = nv_swncq_qc_prep, 518 .qc_issue = nv_swncq_qc_issue, 519 520 .freeze = nv_mcp55_freeze, 521 .thaw = nv_mcp55_thaw, 522 .error_handler = nv_swncq_error_handler, 523 524 #ifdef CONFIG_PM 525 .port_suspend = nv_swncq_port_suspend, 526 .port_resume = nv_swncq_port_resume, 527 #endif 528 .port_start = nv_swncq_port_start, 529 }; 530 531 struct nv_pi_priv { 532 irq_handler_t irq_handler; 533 struct scsi_host_template *sht; 534 }; 535 536 #define NV_PI_PRIV(_irq_handler, _sht) \ 537 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht } 538 539 static const struct ata_port_info nv_port_info[] = { 540 /* generic */ 541 { 542 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 543 .pio_mask = NV_PIO_MASK, 544 .mwdma_mask = NV_MWDMA_MASK, 545 .udma_mask = NV_UDMA_MASK, 546 .port_ops = &nv_generic_ops, 547 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 548 }, 549 /* nforce2/3 */ 550 { 551 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 552 .pio_mask = NV_PIO_MASK, 553 .mwdma_mask = NV_MWDMA_MASK, 554 .udma_mask = NV_UDMA_MASK, 555 .port_ops = &nv_nf2_ops, 556 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht), 557 }, 558 /* ck804 */ 559 { 560 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 561 .pio_mask = NV_PIO_MASK, 562 .mwdma_mask = NV_MWDMA_MASK, 563 .udma_mask = NV_UDMA_MASK, 564 .port_ops = &nv_ck804_ops, 565 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht), 566 }, 567 /* ADMA */ 568 { 569 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 570 ATA_FLAG_MMIO | ATA_FLAG_NCQ, 571 .pio_mask = NV_PIO_MASK, 572 .mwdma_mask = NV_MWDMA_MASK, 573 .udma_mask = NV_UDMA_MASK, 574 .port_ops = &nv_adma_ops, 575 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht), 576 }, 577 /* MCP5x */ 578 { 579 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 580 .pio_mask = NV_PIO_MASK, 581 .mwdma_mask = NV_MWDMA_MASK, 582 .udma_mask = NV_UDMA_MASK, 583 .port_ops = &nv_generic_ops, 584 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 585 }, 586 /* SWNCQ */ 587 { 588 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 589 ATA_FLAG_NCQ, 590 .pio_mask = NV_PIO_MASK, 591 .mwdma_mask = NV_MWDMA_MASK, 592 .udma_mask = NV_UDMA_MASK, 593 .port_ops = &nv_swncq_ops, 594 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht), 595 }, 596 }; 597 598 MODULE_AUTHOR("NVIDIA"); 599 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller"); 600 MODULE_LICENSE("GPL"); 601 MODULE_DEVICE_TABLE(pci, nv_pci_tbl); 602 MODULE_VERSION(DRV_VERSION); 603 604 static int adma_enabled; 605 static int swncq_enabled = 1; 606 static int msi_enabled; 607 608 static void nv_adma_register_mode(struct ata_port *ap) 609 { 610 struct nv_adma_port_priv *pp = ap->private_data; 611 void __iomem *mmio = pp->ctl_block; 612 u16 tmp, status; 613 int count = 0; 614 615 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 616 return; 617 618 status = readw(mmio + NV_ADMA_STAT); 619 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) { 620 ndelay(50); 621 status = readw(mmio + NV_ADMA_STAT); 622 count++; 623 } 624 if (count == 20) 625 ata_port_printk(ap, KERN_WARNING, 626 "timeout waiting for ADMA IDLE, stat=0x%hx\n", 627 status); 628 629 tmp = readw(mmio + NV_ADMA_CTL); 630 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 631 632 count = 0; 633 status = readw(mmio + NV_ADMA_STAT); 634 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) { 635 ndelay(50); 636 status = readw(mmio + NV_ADMA_STAT); 637 count++; 638 } 639 if (count == 20) 640 ata_port_printk(ap, KERN_WARNING, 641 "timeout waiting for ADMA LEGACY, stat=0x%hx\n", 642 status); 643 644 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 645 } 646 647 static void nv_adma_mode(struct ata_port *ap) 648 { 649 struct nv_adma_port_priv *pp = ap->private_data; 650 void __iomem *mmio = pp->ctl_block; 651 u16 tmp, status; 652 int count = 0; 653 654 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) 655 return; 656 657 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 658 659 tmp = readw(mmio + NV_ADMA_CTL); 660 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 661 662 status = readw(mmio + NV_ADMA_STAT); 663 while (((status & NV_ADMA_STAT_LEGACY) || 664 !(status & NV_ADMA_STAT_IDLE)) && count < 20) { 665 ndelay(50); 666 status = readw(mmio + NV_ADMA_STAT); 667 count++; 668 } 669 if (count == 20) 670 ata_port_printk(ap, KERN_WARNING, 671 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n", 672 status); 673 674 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE; 675 } 676 677 static int nv_adma_slave_config(struct scsi_device *sdev) 678 { 679 struct ata_port *ap = ata_shost_to_port(sdev->host); 680 struct nv_adma_port_priv *pp = ap->private_data; 681 struct nv_adma_port_priv *port0, *port1; 682 struct scsi_device *sdev0, *sdev1; 683 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 684 unsigned long segment_boundary, flags; 685 unsigned short sg_tablesize; 686 int rc; 687 int adma_enable; 688 u32 current_reg, new_reg, config_mask; 689 690 rc = ata_scsi_slave_config(sdev); 691 692 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 693 /* Not a proper libata device, ignore */ 694 return rc; 695 696 spin_lock_irqsave(ap->lock, flags); 697 698 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) { 699 /* 700 * NVIDIA reports that ADMA mode does not support ATAPI commands. 701 * Therefore ATAPI commands are sent through the legacy interface. 702 * However, the legacy interface only supports 32-bit DMA. 703 * Restrict DMA parameters as required by the legacy interface 704 * when an ATAPI device is connected. 705 */ 706 segment_boundary = ATA_DMA_BOUNDARY; 707 /* Subtract 1 since an extra entry may be needed for padding, see 708 libata-scsi.c */ 709 sg_tablesize = LIBATA_MAX_PRD - 1; 710 711 /* Since the legacy DMA engine is in use, we need to disable ADMA 712 on the port. */ 713 adma_enable = 0; 714 nv_adma_register_mode(ap); 715 } else { 716 segment_boundary = NV_ADMA_DMA_BOUNDARY; 717 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN; 718 adma_enable = 1; 719 } 720 721 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, ¤t_reg); 722 723 if (ap->port_no == 1) 724 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN | 725 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 726 else 727 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN | 728 NV_MCP_SATA_CFG_20_PORT0_PWB_EN; 729 730 if (adma_enable) { 731 new_reg = current_reg | config_mask; 732 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE; 733 } else { 734 new_reg = current_reg & ~config_mask; 735 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE; 736 } 737 738 if (current_reg != new_reg) 739 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg); 740 741 port0 = ap->host->ports[0]->private_data; 742 port1 = ap->host->ports[1]->private_data; 743 sdev0 = ap->host->ports[0]->link.device[0].sdev; 744 sdev1 = ap->host->ports[1]->link.device[0].sdev; 745 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 746 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) { 747 /** We have to set the DMA mask to 32-bit if either port is in 748 ATAPI mode, since they are on the same PCI device which is 749 used for DMA mapping. If we set the mask we also need to set 750 the bounce limit on both ports to ensure that the block 751 layer doesn't feed addresses that cause DMA mapping to 752 choke. If either SCSI device is not allocated yet, it's OK 753 since that port will discover its correct setting when it 754 does get allocated. 755 Note: Setting 32-bit mask should not fail. */ 756 if (sdev0) 757 blk_queue_bounce_limit(sdev0->request_queue, 758 ATA_DMA_MASK); 759 if (sdev1) 760 blk_queue_bounce_limit(sdev1->request_queue, 761 ATA_DMA_MASK); 762 763 pci_set_dma_mask(pdev, ATA_DMA_MASK); 764 } else { 765 /** This shouldn't fail as it was set to this value before */ 766 pci_set_dma_mask(pdev, pp->adma_dma_mask); 767 if (sdev0) 768 blk_queue_bounce_limit(sdev0->request_queue, 769 pp->adma_dma_mask); 770 if (sdev1) 771 blk_queue_bounce_limit(sdev1->request_queue, 772 pp->adma_dma_mask); 773 } 774 775 blk_queue_segment_boundary(sdev->request_queue, segment_boundary); 776 blk_queue_max_segments(sdev->request_queue, sg_tablesize); 777 ata_port_printk(ap, KERN_INFO, 778 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n", 779 (unsigned long long)*ap->host->dev->dma_mask, 780 segment_boundary, sg_tablesize); 781 782 spin_unlock_irqrestore(ap->lock, flags); 783 784 return rc; 785 } 786 787 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc) 788 { 789 struct nv_adma_port_priv *pp = qc->ap->private_data; 790 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 791 } 792 793 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 794 { 795 /* Other than when internal or pass-through commands are executed, 796 the only time this function will be called in ADMA mode will be 797 if a command fails. In the failure case we don't care about going 798 into register mode with ADMA commands pending, as the commands will 799 all shortly be aborted anyway. We assume that NCQ commands are not 800 issued via passthrough, which is the only way that switching into 801 ADMA mode could abort outstanding commands. */ 802 nv_adma_register_mode(ap); 803 804 ata_sff_tf_read(ap, tf); 805 } 806 807 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb) 808 { 809 unsigned int idx = 0; 810 811 if (tf->flags & ATA_TFLAG_ISADDR) { 812 if (tf->flags & ATA_TFLAG_LBA48) { 813 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB); 814 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect); 815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal); 816 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam); 817 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah); 818 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature); 819 } else 820 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB); 821 822 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect); 823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal); 824 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam); 825 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah); 826 } 827 828 if (tf->flags & ATA_TFLAG_DEVICE) 829 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device); 830 831 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND); 832 833 while (idx < 12) 834 cpb[idx++] = cpu_to_le16(IGN); 835 836 return idx; 837 } 838 839 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err) 840 { 841 struct nv_adma_port_priv *pp = ap->private_data; 842 u8 flags = pp->cpb[cpb_num].resp_flags; 843 844 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags); 845 846 if (unlikely((force_err || 847 flags & (NV_CPB_RESP_ATA_ERR | 848 NV_CPB_RESP_CMD_ERR | 849 NV_CPB_RESP_CPB_ERR)))) { 850 struct ata_eh_info *ehi = &ap->link.eh_info; 851 int freeze = 0; 852 853 ata_ehi_clear_desc(ehi); 854 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags); 855 if (flags & NV_CPB_RESP_ATA_ERR) { 856 ata_ehi_push_desc(ehi, "ATA error"); 857 ehi->err_mask |= AC_ERR_DEV; 858 } else if (flags & NV_CPB_RESP_CMD_ERR) { 859 ata_ehi_push_desc(ehi, "CMD error"); 860 ehi->err_mask |= AC_ERR_DEV; 861 } else if (flags & NV_CPB_RESP_CPB_ERR) { 862 ata_ehi_push_desc(ehi, "CPB error"); 863 ehi->err_mask |= AC_ERR_SYSTEM; 864 freeze = 1; 865 } else { 866 /* notifier error, but no error in CPB flags? */ 867 ata_ehi_push_desc(ehi, "unknown"); 868 ehi->err_mask |= AC_ERR_OTHER; 869 freeze = 1; 870 } 871 /* Kill all commands. EH will determine what actually failed. */ 872 if (freeze) 873 ata_port_freeze(ap); 874 else 875 ata_port_abort(ap); 876 return -1; 877 } 878 879 if (likely(flags & NV_CPB_RESP_DONE)) 880 return 1; 881 return 0; 882 } 883 884 static int nv_host_intr(struct ata_port *ap, u8 irq_stat) 885 { 886 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 887 888 /* freeze if hotplugged */ 889 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) { 890 ata_port_freeze(ap); 891 return 1; 892 } 893 894 /* bail out if not our interrupt */ 895 if (!(irq_stat & NV_INT_DEV)) 896 return 0; 897 898 /* DEV interrupt w/ no active qc? */ 899 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 900 ata_sff_check_status(ap); 901 return 1; 902 } 903 904 /* handle interrupt */ 905 return ata_bmdma_port_intr(ap, qc); 906 } 907 908 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) 909 { 910 struct ata_host *host = dev_instance; 911 int i, handled = 0; 912 u32 notifier_clears[2]; 913 914 spin_lock(&host->lock); 915 916 for (i = 0; i < host->n_ports; i++) { 917 struct ata_port *ap = host->ports[i]; 918 struct nv_adma_port_priv *pp = ap->private_data; 919 void __iomem *mmio = pp->ctl_block; 920 u16 status; 921 u32 gen_ctl; 922 u32 notifier, notifier_error; 923 924 notifier_clears[i] = 0; 925 926 /* if ADMA is disabled, use standard ata interrupt handler */ 927 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 928 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 929 >> (NV_INT_PORT_SHIFT * i); 930 handled += nv_host_intr(ap, irq_stat); 931 continue; 932 } 933 934 /* if in ATA register mode, check for standard interrupts */ 935 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) { 936 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 937 >> (NV_INT_PORT_SHIFT * i); 938 if (ata_tag_valid(ap->link.active_tag)) 939 /** NV_INT_DEV indication seems unreliable 940 at times at least in ADMA mode. Force it 941 on always when a command is active, to 942 prevent losing interrupts. */ 943 irq_stat |= NV_INT_DEV; 944 handled += nv_host_intr(ap, irq_stat); 945 } 946 947 notifier = readl(mmio + NV_ADMA_NOTIFIER); 948 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 949 notifier_clears[i] = notifier | notifier_error; 950 951 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 952 953 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier && 954 !notifier_error) 955 /* Nothing to do */ 956 continue; 957 958 status = readw(mmio + NV_ADMA_STAT); 959 960 /* 961 * Clear status. Ensure the controller sees the 962 * clearing before we start looking at any of the CPB 963 * statuses, so that any CPB completions after this 964 * point in the handler will raise another interrupt. 965 */ 966 writew(status, mmio + NV_ADMA_STAT); 967 readw(mmio + NV_ADMA_STAT); /* flush posted write */ 968 rmb(); 969 970 handled++; /* irq handled if we got here */ 971 972 /* freeze if hotplugged or controller error */ 973 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG | 974 NV_ADMA_STAT_HOTUNPLUG | 975 NV_ADMA_STAT_TIMEOUT | 976 NV_ADMA_STAT_SERROR))) { 977 struct ata_eh_info *ehi = &ap->link.eh_info; 978 979 ata_ehi_clear_desc(ehi); 980 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status); 981 if (status & NV_ADMA_STAT_TIMEOUT) { 982 ehi->err_mask |= AC_ERR_SYSTEM; 983 ata_ehi_push_desc(ehi, "timeout"); 984 } else if (status & NV_ADMA_STAT_HOTPLUG) { 985 ata_ehi_hotplugged(ehi); 986 ata_ehi_push_desc(ehi, "hotplug"); 987 } else if (status & NV_ADMA_STAT_HOTUNPLUG) { 988 ata_ehi_hotplugged(ehi); 989 ata_ehi_push_desc(ehi, "hot unplug"); 990 } else if (status & NV_ADMA_STAT_SERROR) { 991 /* let EH analyze SError and figure out cause */ 992 ata_ehi_push_desc(ehi, "SError"); 993 } else 994 ata_ehi_push_desc(ehi, "unknown"); 995 ata_port_freeze(ap); 996 continue; 997 } 998 999 if (status & (NV_ADMA_STAT_DONE | 1000 NV_ADMA_STAT_CPBERR | 1001 NV_ADMA_STAT_CMD_COMPLETE)) { 1002 u32 check_commands = notifier_clears[i]; 1003 u32 done_mask = 0; 1004 int pos, rc; 1005 1006 if (status & NV_ADMA_STAT_CPBERR) { 1007 /* check all active commands */ 1008 if (ata_tag_valid(ap->link.active_tag)) 1009 check_commands = 1 << 1010 ap->link.active_tag; 1011 else 1012 check_commands = ap->link.sactive; 1013 } 1014 1015 /* check CPBs for completed commands */ 1016 while ((pos = ffs(check_commands))) { 1017 pos--; 1018 rc = nv_adma_check_cpb(ap, pos, 1019 notifier_error & (1 << pos)); 1020 if (rc > 0) 1021 done_mask |= 1 << pos; 1022 else if (unlikely(rc < 0)) 1023 check_commands = 0; 1024 check_commands &= ~(1 << pos); 1025 } 1026 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 1027 } 1028 } 1029 1030 if (notifier_clears[0] || notifier_clears[1]) { 1031 /* Note: Both notifier clear registers must be written 1032 if either is set, even if one is zero, according to NVIDIA. */ 1033 struct nv_adma_port_priv *pp = host->ports[0]->private_data; 1034 writel(notifier_clears[0], pp->notifier_clear_block); 1035 pp = host->ports[1]->private_data; 1036 writel(notifier_clears[1], pp->notifier_clear_block); 1037 } 1038 1039 spin_unlock(&host->lock); 1040 1041 return IRQ_RETVAL(handled); 1042 } 1043 1044 static void nv_adma_freeze(struct ata_port *ap) 1045 { 1046 struct nv_adma_port_priv *pp = ap->private_data; 1047 void __iomem *mmio = pp->ctl_block; 1048 u16 tmp; 1049 1050 nv_ck804_freeze(ap); 1051 1052 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1053 return; 1054 1055 /* clear any outstanding CK804 notifications */ 1056 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1057 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1058 1059 /* Disable interrupt */ 1060 tmp = readw(mmio + NV_ADMA_CTL); 1061 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1062 mmio + NV_ADMA_CTL); 1063 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1064 } 1065 1066 static void nv_adma_thaw(struct ata_port *ap) 1067 { 1068 struct nv_adma_port_priv *pp = ap->private_data; 1069 void __iomem *mmio = pp->ctl_block; 1070 u16 tmp; 1071 1072 nv_ck804_thaw(ap); 1073 1074 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1075 return; 1076 1077 /* Enable interrupt */ 1078 tmp = readw(mmio + NV_ADMA_CTL); 1079 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1080 mmio + NV_ADMA_CTL); 1081 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1082 } 1083 1084 static void nv_adma_irq_clear(struct ata_port *ap) 1085 { 1086 struct nv_adma_port_priv *pp = ap->private_data; 1087 void __iomem *mmio = pp->ctl_block; 1088 u32 notifier_clears[2]; 1089 1090 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 1091 ata_bmdma_irq_clear(ap); 1092 return; 1093 } 1094 1095 /* clear any outstanding CK804 notifications */ 1096 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1097 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1098 1099 /* clear ADMA status */ 1100 writew(0xffff, mmio + NV_ADMA_STAT); 1101 1102 /* clear notifiers - note both ports need to be written with 1103 something even though we are only clearing on one */ 1104 if (ap->port_no == 0) { 1105 notifier_clears[0] = 0xFFFFFFFF; 1106 notifier_clears[1] = 0; 1107 } else { 1108 notifier_clears[0] = 0; 1109 notifier_clears[1] = 0xFFFFFFFF; 1110 } 1111 pp = ap->host->ports[0]->private_data; 1112 writel(notifier_clears[0], pp->notifier_clear_block); 1113 pp = ap->host->ports[1]->private_data; 1114 writel(notifier_clears[1], pp->notifier_clear_block); 1115 } 1116 1117 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc) 1118 { 1119 struct nv_adma_port_priv *pp = qc->ap->private_data; 1120 1121 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 1122 ata_bmdma_post_internal_cmd(qc); 1123 } 1124 1125 static int nv_adma_port_start(struct ata_port *ap) 1126 { 1127 struct device *dev = ap->host->dev; 1128 struct nv_adma_port_priv *pp; 1129 int rc; 1130 void *mem; 1131 dma_addr_t mem_dma; 1132 void __iomem *mmio; 1133 struct pci_dev *pdev = to_pci_dev(dev); 1134 u16 tmp; 1135 1136 VPRINTK("ENTER\n"); 1137 1138 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and 1139 pad buffers */ 1140 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1141 if (rc) 1142 return rc; 1143 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 1144 if (rc) 1145 return rc; 1146 1147 /* we might fallback to bmdma, allocate bmdma resources */ 1148 rc = ata_bmdma_port_start(ap); 1149 if (rc) 1150 return rc; 1151 1152 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1153 if (!pp) 1154 return -ENOMEM; 1155 1156 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT + 1157 ap->port_no * NV_ADMA_PORT_SIZE; 1158 pp->ctl_block = mmio; 1159 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN; 1160 pp->notifier_clear_block = pp->gen_block + 1161 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no); 1162 1163 /* Now that the legacy PRD and padding buffer are allocated we can 1164 safely raise the DMA mask to allocate the CPB/APRD table. 1165 These are allowed to fail since we store the value that ends up 1166 being used to set as the bounce limit in slave_config later if 1167 needed. */ 1168 pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 1169 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 1170 pp->adma_dma_mask = *dev->dma_mask; 1171 1172 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ, 1173 &mem_dma, GFP_KERNEL); 1174 if (!mem) 1175 return -ENOMEM; 1176 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ); 1177 1178 /* 1179 * First item in chunk of DMA memory: 1180 * 128-byte command parameter block (CPB) 1181 * one for each command tag 1182 */ 1183 pp->cpb = mem; 1184 pp->cpb_dma = mem_dma; 1185 1186 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1187 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1188 1189 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1190 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1191 1192 /* 1193 * Second item: block of ADMA_SGTBL_LEN s/g entries 1194 */ 1195 pp->aprd = mem; 1196 pp->aprd_dma = mem_dma; 1197 1198 ap->private_data = pp; 1199 1200 /* clear any outstanding interrupt conditions */ 1201 writew(0xffff, mmio + NV_ADMA_STAT); 1202 1203 /* initialize port variables */ 1204 pp->flags = NV_ADMA_PORT_REGISTER_MODE; 1205 1206 /* clear CPB fetch count */ 1207 writew(0, mmio + NV_ADMA_CPB_COUNT); 1208 1209 /* clear GO for register mode, enable interrupt */ 1210 tmp = readw(mmio + NV_ADMA_CTL); 1211 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1212 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1213 1214 tmp = readw(mmio + NV_ADMA_CTL); 1215 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1216 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1217 udelay(1); 1218 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1219 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1220 1221 return 0; 1222 } 1223 1224 static void nv_adma_port_stop(struct ata_port *ap) 1225 { 1226 struct nv_adma_port_priv *pp = ap->private_data; 1227 void __iomem *mmio = pp->ctl_block; 1228 1229 VPRINTK("ENTER\n"); 1230 writew(0, mmio + NV_ADMA_CTL); 1231 } 1232 1233 #ifdef CONFIG_PM 1234 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg) 1235 { 1236 struct nv_adma_port_priv *pp = ap->private_data; 1237 void __iomem *mmio = pp->ctl_block; 1238 1239 /* Go to register mode - clears GO */ 1240 nv_adma_register_mode(ap); 1241 1242 /* clear CPB fetch count */ 1243 writew(0, mmio + NV_ADMA_CPB_COUNT); 1244 1245 /* disable interrupt, shut down port */ 1246 writew(0, mmio + NV_ADMA_CTL); 1247 1248 return 0; 1249 } 1250 1251 static int nv_adma_port_resume(struct ata_port *ap) 1252 { 1253 struct nv_adma_port_priv *pp = ap->private_data; 1254 void __iomem *mmio = pp->ctl_block; 1255 u16 tmp; 1256 1257 /* set CPB block location */ 1258 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1259 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1260 1261 /* clear any outstanding interrupt conditions */ 1262 writew(0xffff, mmio + NV_ADMA_STAT); 1263 1264 /* initialize port variables */ 1265 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 1266 1267 /* clear CPB fetch count */ 1268 writew(0, mmio + NV_ADMA_CPB_COUNT); 1269 1270 /* clear GO for register mode, enable interrupt */ 1271 tmp = readw(mmio + NV_ADMA_CTL); 1272 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1273 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1274 1275 tmp = readw(mmio + NV_ADMA_CTL); 1276 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1277 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1278 udelay(1); 1279 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1280 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1281 1282 return 0; 1283 } 1284 #endif 1285 1286 static void nv_adma_setup_port(struct ata_port *ap) 1287 { 1288 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1289 struct ata_ioports *ioport = &ap->ioaddr; 1290 1291 VPRINTK("ENTER\n"); 1292 1293 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE; 1294 1295 ioport->cmd_addr = mmio; 1296 ioport->data_addr = mmio + (ATA_REG_DATA * 4); 1297 ioport->error_addr = 1298 ioport->feature_addr = mmio + (ATA_REG_ERR * 4); 1299 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4); 1300 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4); 1301 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4); 1302 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4); 1303 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4); 1304 ioport->status_addr = 1305 ioport->command_addr = mmio + (ATA_REG_STATUS * 4); 1306 ioport->altstatus_addr = 1307 ioport->ctl_addr = mmio + 0x20; 1308 } 1309 1310 static int nv_adma_host_init(struct ata_host *host) 1311 { 1312 struct pci_dev *pdev = to_pci_dev(host->dev); 1313 unsigned int i; 1314 u32 tmp32; 1315 1316 VPRINTK("ENTER\n"); 1317 1318 /* enable ADMA on the ports */ 1319 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 1320 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN | 1321 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 1322 NV_MCP_SATA_CFG_20_PORT1_EN | 1323 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 1324 1325 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 1326 1327 for (i = 0; i < host->n_ports; i++) 1328 nv_adma_setup_port(host->ports[i]); 1329 1330 return 0; 1331 } 1332 1333 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc, 1334 struct scatterlist *sg, 1335 int idx, 1336 struct nv_adma_prd *aprd) 1337 { 1338 u8 flags = 0; 1339 if (qc->tf.flags & ATA_TFLAG_WRITE) 1340 flags |= NV_APRD_WRITE; 1341 if (idx == qc->n_elem - 1) 1342 flags |= NV_APRD_END; 1343 else if (idx != 4) 1344 flags |= NV_APRD_CONT; 1345 1346 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg))); 1347 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */ 1348 aprd->flags = flags; 1349 aprd->packet_len = 0; 1350 } 1351 1352 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb) 1353 { 1354 struct nv_adma_port_priv *pp = qc->ap->private_data; 1355 struct nv_adma_prd *aprd; 1356 struct scatterlist *sg; 1357 unsigned int si; 1358 1359 VPRINTK("ENTER\n"); 1360 1361 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1362 aprd = (si < 5) ? &cpb->aprd[si] : 1363 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)]; 1364 nv_adma_fill_aprd(qc, sg, si, aprd); 1365 } 1366 if (si > 5) 1367 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag))); 1368 else 1369 cpb->next_aprd = cpu_to_le64(0); 1370 } 1371 1372 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc) 1373 { 1374 struct nv_adma_port_priv *pp = qc->ap->private_data; 1375 1376 /* ADMA engine can only be used for non-ATAPI DMA commands, 1377 or interrupt-driven no-data commands. */ 1378 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 1379 (qc->tf.flags & ATA_TFLAG_POLLING)) 1380 return 1; 1381 1382 if ((qc->flags & ATA_QCFLAG_DMAMAP) || 1383 (qc->tf.protocol == ATA_PROT_NODATA)) 1384 return 0; 1385 1386 return 1; 1387 } 1388 1389 static void nv_adma_qc_prep(struct ata_queued_cmd *qc) 1390 { 1391 struct nv_adma_port_priv *pp = qc->ap->private_data; 1392 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag]; 1393 u8 ctl_flags = NV_CPB_CTL_CPB_VALID | 1394 NV_CPB_CTL_IEN; 1395 1396 if (nv_adma_use_reg_mode(qc)) { 1397 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1398 (qc->flags & ATA_QCFLAG_DMAMAP)); 1399 nv_adma_register_mode(qc->ap); 1400 ata_bmdma_qc_prep(qc); 1401 return; 1402 } 1403 1404 cpb->resp_flags = NV_CPB_RESP_DONE; 1405 wmb(); 1406 cpb->ctl_flags = 0; 1407 wmb(); 1408 1409 cpb->len = 3; 1410 cpb->tag = qc->tag; 1411 cpb->next_cpb_idx = 0; 1412 1413 /* turn on NCQ flags for NCQ commands */ 1414 if (qc->tf.protocol == ATA_PROT_NCQ) 1415 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA; 1416 1417 VPRINTK("qc->flags = 0x%lx\n", qc->flags); 1418 1419 nv_adma_tf_to_cpb(&qc->tf, cpb->tf); 1420 1421 if (qc->flags & ATA_QCFLAG_DMAMAP) { 1422 nv_adma_fill_sg(qc, cpb); 1423 ctl_flags |= NV_CPB_CTL_APRD_VALID; 1424 } else 1425 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5); 1426 1427 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID 1428 until we are finished filling in all of the contents */ 1429 wmb(); 1430 cpb->ctl_flags = ctl_flags; 1431 wmb(); 1432 cpb->resp_flags = 0; 1433 } 1434 1435 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc) 1436 { 1437 struct nv_adma_port_priv *pp = qc->ap->private_data; 1438 void __iomem *mmio = pp->ctl_block; 1439 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ); 1440 1441 VPRINTK("ENTER\n"); 1442 1443 /* We can't handle result taskfile with NCQ commands, since 1444 retrieving the taskfile switches us out of ADMA mode and would abort 1445 existing commands. */ 1446 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ && 1447 (qc->flags & ATA_QCFLAG_RESULT_TF))) { 1448 ata_dev_printk(qc->dev, KERN_ERR, 1449 "NCQ w/ RESULT_TF not allowed\n"); 1450 return AC_ERR_SYSTEM; 1451 } 1452 1453 if (nv_adma_use_reg_mode(qc)) { 1454 /* use ATA register mode */ 1455 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags); 1456 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1457 (qc->flags & ATA_QCFLAG_DMAMAP)); 1458 nv_adma_register_mode(qc->ap); 1459 return ata_bmdma_qc_issue(qc); 1460 } else 1461 nv_adma_mode(qc->ap); 1462 1463 /* write append register, command tag in lower 8 bits 1464 and (number of cpbs to append -1) in top 8 bits */ 1465 wmb(); 1466 1467 if (curr_ncq != pp->last_issue_ncq) { 1468 /* Seems to need some delay before switching between NCQ and 1469 non-NCQ commands, else we get command timeouts and such. */ 1470 udelay(20); 1471 pp->last_issue_ncq = curr_ncq; 1472 } 1473 1474 writew(qc->tag, mmio + NV_ADMA_APPEND); 1475 1476 DPRINTK("Issued tag %u\n", qc->tag); 1477 1478 return 0; 1479 } 1480 1481 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance) 1482 { 1483 struct ata_host *host = dev_instance; 1484 unsigned int i; 1485 unsigned int handled = 0; 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&host->lock, flags); 1489 1490 for (i = 0; i < host->n_ports; i++) { 1491 struct ata_port *ap = host->ports[i]; 1492 struct ata_queued_cmd *qc; 1493 1494 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1495 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) { 1496 handled += ata_bmdma_port_intr(ap, qc); 1497 } else { 1498 /* 1499 * No request pending? Clear interrupt status 1500 * anyway, in case there's one pending. 1501 */ 1502 ap->ops->sff_check_status(ap); 1503 } 1504 } 1505 1506 spin_unlock_irqrestore(&host->lock, flags); 1507 1508 return IRQ_RETVAL(handled); 1509 } 1510 1511 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat) 1512 { 1513 int i, handled = 0; 1514 1515 for (i = 0; i < host->n_ports; i++) { 1516 handled += nv_host_intr(host->ports[i], irq_stat); 1517 irq_stat >>= NV_INT_PORT_SHIFT; 1518 } 1519 1520 return IRQ_RETVAL(handled); 1521 } 1522 1523 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance) 1524 { 1525 struct ata_host *host = dev_instance; 1526 u8 irq_stat; 1527 irqreturn_t ret; 1528 1529 spin_lock(&host->lock); 1530 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS); 1531 ret = nv_do_interrupt(host, irq_stat); 1532 spin_unlock(&host->lock); 1533 1534 return ret; 1535 } 1536 1537 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance) 1538 { 1539 struct ata_host *host = dev_instance; 1540 u8 irq_stat; 1541 irqreturn_t ret; 1542 1543 spin_lock(&host->lock); 1544 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1545 ret = nv_do_interrupt(host, irq_stat); 1546 spin_unlock(&host->lock); 1547 1548 return ret; 1549 } 1550 1551 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) 1552 { 1553 if (sc_reg > SCR_CONTROL) 1554 return -EINVAL; 1555 1556 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1557 return 0; 1558 } 1559 1560 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) 1561 { 1562 if (sc_reg > SCR_CONTROL) 1563 return -EINVAL; 1564 1565 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1566 return 0; 1567 } 1568 1569 static int nv_hardreset(struct ata_link *link, unsigned int *class, 1570 unsigned long deadline) 1571 { 1572 struct ata_eh_context *ehc = &link->eh_context; 1573 1574 /* Do hardreset iff it's post-boot probing, please read the 1575 * comment above port ops for details. 1576 */ 1577 if (!(link->ap->pflags & ATA_PFLAG_LOADING) && 1578 !ata_dev_enabled(link->device)) 1579 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline, 1580 NULL, NULL); 1581 else { 1582 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1583 int rc; 1584 1585 if (!(ehc->i.flags & ATA_EHI_QUIET)) 1586 ata_link_printk(link, KERN_INFO, "nv: skipping " 1587 "hardreset on occupied port\n"); 1588 1589 /* make sure the link is online */ 1590 rc = sata_link_resume(link, timing, deadline); 1591 /* whine about phy resume failure but proceed */ 1592 if (rc && rc != -EOPNOTSUPP) 1593 ata_link_printk(link, KERN_WARNING, "failed to resume " 1594 "link (errno=%d)\n", rc); 1595 } 1596 1597 /* device signature acquisition is unreliable */ 1598 return -EAGAIN; 1599 } 1600 1601 static void nv_nf2_freeze(struct ata_port *ap) 1602 { 1603 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1604 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1605 u8 mask; 1606 1607 mask = ioread8(scr_addr + NV_INT_ENABLE); 1608 mask &= ~(NV_INT_ALL << shift); 1609 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1610 } 1611 1612 static void nv_nf2_thaw(struct ata_port *ap) 1613 { 1614 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1615 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1616 u8 mask; 1617 1618 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS); 1619 1620 mask = ioread8(scr_addr + NV_INT_ENABLE); 1621 mask |= (NV_INT_MASK << shift); 1622 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1623 } 1624 1625 static void nv_ck804_freeze(struct ata_port *ap) 1626 { 1627 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1628 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1629 u8 mask; 1630 1631 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1632 mask &= ~(NV_INT_ALL << shift); 1633 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1634 } 1635 1636 static void nv_ck804_thaw(struct ata_port *ap) 1637 { 1638 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1639 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1640 u8 mask; 1641 1642 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804); 1643 1644 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1645 mask |= (NV_INT_MASK << shift); 1646 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1647 } 1648 1649 static void nv_mcp55_freeze(struct ata_port *ap) 1650 { 1651 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1652 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1653 u32 mask; 1654 1655 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1656 1657 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1658 mask &= ~(NV_INT_ALL_MCP55 << shift); 1659 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1660 } 1661 1662 static void nv_mcp55_thaw(struct ata_port *ap) 1663 { 1664 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1665 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1666 u32 mask; 1667 1668 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1669 1670 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1671 mask |= (NV_INT_MASK_MCP55 << shift); 1672 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1673 } 1674 1675 static void nv_adma_error_handler(struct ata_port *ap) 1676 { 1677 struct nv_adma_port_priv *pp = ap->private_data; 1678 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) { 1679 void __iomem *mmio = pp->ctl_block; 1680 int i; 1681 u16 tmp; 1682 1683 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) { 1684 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER); 1685 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 1686 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 1687 u32 status = readw(mmio + NV_ADMA_STAT); 1688 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT); 1689 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX); 1690 1691 ata_port_printk(ap, KERN_ERR, 1692 "EH in ADMA mode, notifier 0x%X " 1693 "notifier_error 0x%X gen_ctl 0x%X status 0x%X " 1694 "next cpb count 0x%X next cpb idx 0x%x\n", 1695 notifier, notifier_error, gen_ctl, status, 1696 cpb_count, next_cpb_idx); 1697 1698 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) { 1699 struct nv_adma_cpb *cpb = &pp->cpb[i]; 1700 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) || 1701 ap->link.sactive & (1 << i)) 1702 ata_port_printk(ap, KERN_ERR, 1703 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n", 1704 i, cpb->ctl_flags, cpb->resp_flags); 1705 } 1706 } 1707 1708 /* Push us back into port register mode for error handling. */ 1709 nv_adma_register_mode(ap); 1710 1711 /* Mark all of the CPBs as invalid to prevent them from 1712 being executed */ 1713 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) 1714 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID; 1715 1716 /* clear CPB fetch count */ 1717 writew(0, mmio + NV_ADMA_CPB_COUNT); 1718 1719 /* Reset channel */ 1720 tmp = readw(mmio + NV_ADMA_CTL); 1721 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1722 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1723 udelay(1); 1724 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1725 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1726 } 1727 1728 ata_bmdma_error_handler(ap); 1729 } 1730 1731 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc) 1732 { 1733 struct nv_swncq_port_priv *pp = ap->private_data; 1734 struct defer_queue *dq = &pp->defer_queue; 1735 1736 /* queue is full */ 1737 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE); 1738 dq->defer_bits |= (1 << qc->tag); 1739 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag; 1740 } 1741 1742 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap) 1743 { 1744 struct nv_swncq_port_priv *pp = ap->private_data; 1745 struct defer_queue *dq = &pp->defer_queue; 1746 unsigned int tag; 1747 1748 if (dq->head == dq->tail) /* null queue */ 1749 return NULL; 1750 1751 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)]; 1752 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON; 1753 WARN_ON(!(dq->defer_bits & (1 << tag))); 1754 dq->defer_bits &= ~(1 << tag); 1755 1756 return ata_qc_from_tag(ap, tag); 1757 } 1758 1759 static void nv_swncq_fis_reinit(struct ata_port *ap) 1760 { 1761 struct nv_swncq_port_priv *pp = ap->private_data; 1762 1763 pp->dhfis_bits = 0; 1764 pp->dmafis_bits = 0; 1765 pp->sdbfis_bits = 0; 1766 pp->ncq_flags = 0; 1767 } 1768 1769 static void nv_swncq_pp_reinit(struct ata_port *ap) 1770 { 1771 struct nv_swncq_port_priv *pp = ap->private_data; 1772 struct defer_queue *dq = &pp->defer_queue; 1773 1774 dq->head = 0; 1775 dq->tail = 0; 1776 dq->defer_bits = 0; 1777 pp->qc_active = 0; 1778 pp->last_issue_tag = ATA_TAG_POISON; 1779 nv_swncq_fis_reinit(ap); 1780 } 1781 1782 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis) 1783 { 1784 struct nv_swncq_port_priv *pp = ap->private_data; 1785 1786 writew(fis, pp->irq_block); 1787 } 1788 1789 static void __ata_bmdma_stop(struct ata_port *ap) 1790 { 1791 struct ata_queued_cmd qc; 1792 1793 qc.ap = ap; 1794 ata_bmdma_stop(&qc); 1795 } 1796 1797 static void nv_swncq_ncq_stop(struct ata_port *ap) 1798 { 1799 struct nv_swncq_port_priv *pp = ap->private_data; 1800 unsigned int i; 1801 u32 sactive; 1802 u32 done_mask; 1803 1804 ata_port_printk(ap, KERN_ERR, 1805 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n", 1806 ap->qc_active, ap->link.sactive); 1807 ata_port_printk(ap, KERN_ERR, 1808 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n " 1809 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n", 1810 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag, 1811 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits); 1812 1813 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n", 1814 ap->ops->sff_check_status(ap), 1815 ioread8(ap->ioaddr.error_addr)); 1816 1817 sactive = readl(pp->sactive_block); 1818 done_mask = pp->qc_active ^ sactive; 1819 1820 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n"); 1821 for (i = 0; i < ATA_MAX_QUEUE; i++) { 1822 u8 err = 0; 1823 if (pp->qc_active & (1 << i)) 1824 err = 0; 1825 else if (done_mask & (1 << i)) 1826 err = 1; 1827 else 1828 continue; 1829 1830 ata_port_printk(ap, KERN_ERR, 1831 "tag 0x%x: %01x %01x %01x %01x %s\n", i, 1832 (pp->dhfis_bits >> i) & 0x1, 1833 (pp->dmafis_bits >> i) & 0x1, 1834 (pp->sdbfis_bits >> i) & 0x1, 1835 (sactive >> i) & 0x1, 1836 (err ? "error! tag doesn't exit" : " ")); 1837 } 1838 1839 nv_swncq_pp_reinit(ap); 1840 ap->ops->sff_irq_clear(ap); 1841 __ata_bmdma_stop(ap); 1842 nv_swncq_irq_clear(ap, 0xffff); 1843 } 1844 1845 static void nv_swncq_error_handler(struct ata_port *ap) 1846 { 1847 struct ata_eh_context *ehc = &ap->link.eh_context; 1848 1849 if (ap->link.sactive) { 1850 nv_swncq_ncq_stop(ap); 1851 ehc->i.action |= ATA_EH_RESET; 1852 } 1853 1854 ata_bmdma_error_handler(ap); 1855 } 1856 1857 #ifdef CONFIG_PM 1858 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg) 1859 { 1860 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1861 u32 tmp; 1862 1863 /* clear irq */ 1864 writel(~0, mmio + NV_INT_STATUS_MCP55); 1865 1866 /* disable irq */ 1867 writel(0, mmio + NV_INT_ENABLE_MCP55); 1868 1869 /* disable swncq */ 1870 tmp = readl(mmio + NV_CTL_MCP55); 1871 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ); 1872 writel(tmp, mmio + NV_CTL_MCP55); 1873 1874 return 0; 1875 } 1876 1877 static int nv_swncq_port_resume(struct ata_port *ap) 1878 { 1879 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1880 u32 tmp; 1881 1882 /* clear irq */ 1883 writel(~0, mmio + NV_INT_STATUS_MCP55); 1884 1885 /* enable irq */ 1886 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1887 1888 /* enable swncq */ 1889 tmp = readl(mmio + NV_CTL_MCP55); 1890 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1891 1892 return 0; 1893 } 1894 #endif 1895 1896 static void nv_swncq_host_init(struct ata_host *host) 1897 { 1898 u32 tmp; 1899 void __iomem *mmio = host->iomap[NV_MMIO_BAR]; 1900 struct pci_dev *pdev = to_pci_dev(host->dev); 1901 u8 regval; 1902 1903 /* disable ECO 398 */ 1904 pci_read_config_byte(pdev, 0x7f, ®val); 1905 regval &= ~(1 << 7); 1906 pci_write_config_byte(pdev, 0x7f, regval); 1907 1908 /* enable swncq */ 1909 tmp = readl(mmio + NV_CTL_MCP55); 1910 VPRINTK("HOST_CTL:0x%X\n", tmp); 1911 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1912 1913 /* enable irq intr */ 1914 tmp = readl(mmio + NV_INT_ENABLE_MCP55); 1915 VPRINTK("HOST_ENABLE:0x%X\n", tmp); 1916 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1917 1918 /* clear port irq */ 1919 writel(~0x0, mmio + NV_INT_STATUS_MCP55); 1920 } 1921 1922 static int nv_swncq_slave_config(struct scsi_device *sdev) 1923 { 1924 struct ata_port *ap = ata_shost_to_port(sdev->host); 1925 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 1926 struct ata_device *dev; 1927 int rc; 1928 u8 rev; 1929 u8 check_maxtor = 0; 1930 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 1931 1932 rc = ata_scsi_slave_config(sdev); 1933 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 1934 /* Not a proper libata device, ignore */ 1935 return rc; 1936 1937 dev = &ap->link.device[sdev->id]; 1938 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI) 1939 return rc; 1940 1941 /* if MCP51 and Maxtor, then disable ncq */ 1942 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA || 1943 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2) 1944 check_maxtor = 1; 1945 1946 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */ 1947 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA || 1948 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) { 1949 pci_read_config_byte(pdev, 0x8, &rev); 1950 if (rev <= 0xa2) 1951 check_maxtor = 1; 1952 } 1953 1954 if (!check_maxtor) 1955 return rc; 1956 1957 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 1958 1959 if (strncmp(model_num, "Maxtor", 6) == 0) { 1960 ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT); 1961 ata_dev_printk(dev, KERN_NOTICE, 1962 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth); 1963 } 1964 1965 return rc; 1966 } 1967 1968 static int nv_swncq_port_start(struct ata_port *ap) 1969 { 1970 struct device *dev = ap->host->dev; 1971 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1972 struct nv_swncq_port_priv *pp; 1973 int rc; 1974 1975 /* we might fallback to bmdma, allocate bmdma resources */ 1976 rc = ata_bmdma_port_start(ap); 1977 if (rc) 1978 return rc; 1979 1980 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1981 if (!pp) 1982 return -ENOMEM; 1983 1984 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE, 1985 &pp->prd_dma, GFP_KERNEL); 1986 if (!pp->prd) 1987 return -ENOMEM; 1988 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE); 1989 1990 ap->private_data = pp; 1991 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE; 1992 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2; 1993 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2; 1994 1995 return 0; 1996 } 1997 1998 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc) 1999 { 2000 if (qc->tf.protocol != ATA_PROT_NCQ) { 2001 ata_bmdma_qc_prep(qc); 2002 return; 2003 } 2004 2005 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2006 return; 2007 2008 nv_swncq_fill_sg(qc); 2009 } 2010 2011 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc) 2012 { 2013 struct ata_port *ap = qc->ap; 2014 struct scatterlist *sg; 2015 struct nv_swncq_port_priv *pp = ap->private_data; 2016 struct ata_bmdma_prd *prd; 2017 unsigned int si, idx; 2018 2019 prd = pp->prd + ATA_MAX_PRD * qc->tag; 2020 2021 idx = 0; 2022 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2023 u32 addr, offset; 2024 u32 sg_len, len; 2025 2026 addr = (u32)sg_dma_address(sg); 2027 sg_len = sg_dma_len(sg); 2028 2029 while (sg_len) { 2030 offset = addr & 0xffff; 2031 len = sg_len; 2032 if ((offset + sg_len) > 0x10000) 2033 len = 0x10000 - offset; 2034 2035 prd[idx].addr = cpu_to_le32(addr); 2036 prd[idx].flags_len = cpu_to_le32(len & 0xffff); 2037 2038 idx++; 2039 sg_len -= len; 2040 addr += len; 2041 } 2042 } 2043 2044 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2045 } 2046 2047 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap, 2048 struct ata_queued_cmd *qc) 2049 { 2050 struct nv_swncq_port_priv *pp = ap->private_data; 2051 2052 if (qc == NULL) 2053 return 0; 2054 2055 DPRINTK("Enter\n"); 2056 2057 writel((1 << qc->tag), pp->sactive_block); 2058 pp->last_issue_tag = qc->tag; 2059 pp->dhfis_bits &= ~(1 << qc->tag); 2060 pp->dmafis_bits &= ~(1 << qc->tag); 2061 pp->qc_active |= (0x1 << qc->tag); 2062 2063 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2064 ap->ops->sff_exec_command(ap, &qc->tf); 2065 2066 DPRINTK("Issued tag %u\n", qc->tag); 2067 2068 return 0; 2069 } 2070 2071 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc) 2072 { 2073 struct ata_port *ap = qc->ap; 2074 struct nv_swncq_port_priv *pp = ap->private_data; 2075 2076 if (qc->tf.protocol != ATA_PROT_NCQ) 2077 return ata_bmdma_qc_issue(qc); 2078 2079 DPRINTK("Enter\n"); 2080 2081 if (!pp->qc_active) 2082 nv_swncq_issue_atacmd(ap, qc); 2083 else 2084 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */ 2085 2086 return 0; 2087 } 2088 2089 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis) 2090 { 2091 u32 serror; 2092 struct ata_eh_info *ehi = &ap->link.eh_info; 2093 2094 ata_ehi_clear_desc(ehi); 2095 2096 /* AHCI needs SError cleared; otherwise, it might lock up */ 2097 sata_scr_read(&ap->link, SCR_ERROR, &serror); 2098 sata_scr_write(&ap->link, SCR_ERROR, serror); 2099 2100 /* analyze @irq_stat */ 2101 if (fis & NV_SWNCQ_IRQ_ADDED) 2102 ata_ehi_push_desc(ehi, "hot plug"); 2103 else if (fis & NV_SWNCQ_IRQ_REMOVED) 2104 ata_ehi_push_desc(ehi, "hot unplug"); 2105 2106 ata_ehi_hotplugged(ehi); 2107 2108 /* okay, let's hand over to EH */ 2109 ehi->serror |= serror; 2110 2111 ata_port_freeze(ap); 2112 } 2113 2114 static int nv_swncq_sdbfis(struct ata_port *ap) 2115 { 2116 struct ata_queued_cmd *qc; 2117 struct nv_swncq_port_priv *pp = ap->private_data; 2118 struct ata_eh_info *ehi = &ap->link.eh_info; 2119 u32 sactive; 2120 u32 done_mask; 2121 u8 host_stat; 2122 u8 lack_dhfis = 0; 2123 2124 host_stat = ap->ops->bmdma_status(ap); 2125 if (unlikely(host_stat & ATA_DMA_ERR)) { 2126 /* error when transfering data to/from memory */ 2127 ata_ehi_clear_desc(ehi); 2128 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2129 ehi->err_mask |= AC_ERR_HOST_BUS; 2130 ehi->action |= ATA_EH_RESET; 2131 return -EINVAL; 2132 } 2133 2134 ap->ops->sff_irq_clear(ap); 2135 __ata_bmdma_stop(ap); 2136 2137 sactive = readl(pp->sactive_block); 2138 done_mask = pp->qc_active ^ sactive; 2139 2140 pp->qc_active &= ~done_mask; 2141 pp->dhfis_bits &= ~done_mask; 2142 pp->dmafis_bits &= ~done_mask; 2143 pp->sdbfis_bits |= done_mask; 2144 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2145 2146 if (!ap->qc_active) { 2147 DPRINTK("over\n"); 2148 nv_swncq_pp_reinit(ap); 2149 return 0; 2150 } 2151 2152 if (pp->qc_active & pp->dhfis_bits) 2153 return 0; 2154 2155 if ((pp->ncq_flags & ncq_saw_backout) || 2156 (pp->qc_active ^ pp->dhfis_bits)) 2157 /* if the controller can't get a device to host register FIS, 2158 * The driver needs to reissue the new command. 2159 */ 2160 lack_dhfis = 1; 2161 2162 DPRINTK("id 0x%x QC: qc_active 0x%x," 2163 "SWNCQ:qc_active 0x%X defer_bits %X " 2164 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n", 2165 ap->print_id, ap->qc_active, pp->qc_active, 2166 pp->defer_queue.defer_bits, pp->dhfis_bits, 2167 pp->dmafis_bits, pp->last_issue_tag); 2168 2169 nv_swncq_fis_reinit(ap); 2170 2171 if (lack_dhfis) { 2172 qc = ata_qc_from_tag(ap, pp->last_issue_tag); 2173 nv_swncq_issue_atacmd(ap, qc); 2174 return 0; 2175 } 2176 2177 if (pp->defer_queue.defer_bits) { 2178 /* send deferral queue command */ 2179 qc = nv_swncq_qc_from_dq(ap); 2180 WARN_ON(qc == NULL); 2181 nv_swncq_issue_atacmd(ap, qc); 2182 } 2183 2184 return 0; 2185 } 2186 2187 static inline u32 nv_swncq_tag(struct ata_port *ap) 2188 { 2189 struct nv_swncq_port_priv *pp = ap->private_data; 2190 u32 tag; 2191 2192 tag = readb(pp->tag_block) >> 2; 2193 return (tag & 0x1f); 2194 } 2195 2196 static void nv_swncq_dmafis(struct ata_port *ap) 2197 { 2198 struct ata_queued_cmd *qc; 2199 unsigned int rw; 2200 u8 dmactl; 2201 u32 tag; 2202 struct nv_swncq_port_priv *pp = ap->private_data; 2203 2204 __ata_bmdma_stop(ap); 2205 tag = nv_swncq_tag(ap); 2206 2207 DPRINTK("dma setup tag 0x%x\n", tag); 2208 qc = ata_qc_from_tag(ap, tag); 2209 2210 if (unlikely(!qc)) 2211 return; 2212 2213 rw = qc->tf.flags & ATA_TFLAG_WRITE; 2214 2215 /* load PRD table addr. */ 2216 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag, 2217 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2218 2219 /* specify data direction, triple-check start bit is clear */ 2220 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2221 dmactl &= ~ATA_DMA_WR; 2222 if (!rw) 2223 dmactl |= ATA_DMA_WR; 2224 2225 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2226 } 2227 2228 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) 2229 { 2230 struct nv_swncq_port_priv *pp = ap->private_data; 2231 struct ata_queued_cmd *qc; 2232 struct ata_eh_info *ehi = &ap->link.eh_info; 2233 u32 serror; 2234 u8 ata_stat; 2235 2236 ata_stat = ap->ops->sff_check_status(ap); 2237 nv_swncq_irq_clear(ap, fis); 2238 if (!fis) 2239 return; 2240 2241 if (ap->pflags & ATA_PFLAG_FROZEN) 2242 return; 2243 2244 if (fis & NV_SWNCQ_IRQ_HOTPLUG) { 2245 nv_swncq_hotplug(ap, fis); 2246 return; 2247 } 2248 2249 if (!pp->qc_active) 2250 return; 2251 2252 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror)) 2253 return; 2254 ap->ops->scr_write(&ap->link, SCR_ERROR, serror); 2255 2256 if (ata_stat & ATA_ERR) { 2257 ata_ehi_clear_desc(ehi); 2258 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis); 2259 ehi->err_mask |= AC_ERR_DEV; 2260 ehi->serror |= serror; 2261 ehi->action |= ATA_EH_RESET; 2262 ata_port_freeze(ap); 2263 return; 2264 } 2265 2266 if (fis & NV_SWNCQ_IRQ_BACKOUT) { 2267 /* If the IRQ is backout, driver must issue 2268 * the new command again some time later. 2269 */ 2270 pp->ncq_flags |= ncq_saw_backout; 2271 } 2272 2273 if (fis & NV_SWNCQ_IRQ_SDBFIS) { 2274 pp->ncq_flags |= ncq_saw_sdb; 2275 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X " 2276 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n", 2277 ap->print_id, pp->qc_active, pp->dhfis_bits, 2278 pp->dmafis_bits, readl(pp->sactive_block)); 2279 if (nv_swncq_sdbfis(ap) < 0) 2280 goto irq_error; 2281 } 2282 2283 if (fis & NV_SWNCQ_IRQ_DHREGFIS) { 2284 /* The interrupt indicates the new command 2285 * was transmitted correctly to the drive. 2286 */ 2287 pp->dhfis_bits |= (0x1 << pp->last_issue_tag); 2288 pp->ncq_flags |= ncq_saw_d2h; 2289 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) { 2290 ata_ehi_push_desc(ehi, "illegal fis transaction"); 2291 ehi->err_mask |= AC_ERR_HSM; 2292 ehi->action |= ATA_EH_RESET; 2293 goto irq_error; 2294 } 2295 2296 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) && 2297 !(pp->ncq_flags & ncq_saw_dmas)) { 2298 ata_stat = ap->ops->sff_check_status(ap); 2299 if (ata_stat & ATA_BUSY) 2300 goto irq_exit; 2301 2302 if (pp->defer_queue.defer_bits) { 2303 DPRINTK("send next command\n"); 2304 qc = nv_swncq_qc_from_dq(ap); 2305 nv_swncq_issue_atacmd(ap, qc); 2306 } 2307 } 2308 } 2309 2310 if (fis & NV_SWNCQ_IRQ_DMASETUP) { 2311 /* program the dma controller with appropriate PRD buffers 2312 * and start the DMA transfer for requested command. 2313 */ 2314 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); 2315 pp->ncq_flags |= ncq_saw_dmas; 2316 nv_swncq_dmafis(ap); 2317 } 2318 2319 irq_exit: 2320 return; 2321 irq_error: 2322 ata_ehi_push_desc(ehi, "fis:0x%x", fis); 2323 ata_port_freeze(ap); 2324 return; 2325 } 2326 2327 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance) 2328 { 2329 struct ata_host *host = dev_instance; 2330 unsigned int i; 2331 unsigned int handled = 0; 2332 unsigned long flags; 2333 u32 irq_stat; 2334 2335 spin_lock_irqsave(&host->lock, flags); 2336 2337 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55); 2338 2339 for (i = 0; i < host->n_ports; i++) { 2340 struct ata_port *ap = host->ports[i]; 2341 2342 if (ap->link.sactive) { 2343 nv_swncq_host_interrupt(ap, (u16)irq_stat); 2344 handled = 1; 2345 } else { 2346 if (irq_stat) /* reserve Hotplug */ 2347 nv_swncq_irq_clear(ap, 0xfff0); 2348 2349 handled += nv_host_intr(ap, (u8)irq_stat); 2350 } 2351 irq_stat >>= NV_INT_PORT_SHIFT_MCP55; 2352 } 2353 2354 spin_unlock_irqrestore(&host->lock, flags); 2355 2356 return IRQ_RETVAL(handled); 2357 } 2358 2359 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2360 { 2361 static int printed_version; 2362 const struct ata_port_info *ppi[] = { NULL, NULL }; 2363 struct nv_pi_priv *ipriv; 2364 struct ata_host *host; 2365 struct nv_host_priv *hpriv; 2366 int rc; 2367 u32 bar; 2368 void __iomem *base; 2369 unsigned long type = ent->driver_data; 2370 2371 // Make sure this is a SATA controller by counting the number of bars 2372 // (NVIDIA SATA controllers will always have six bars). Otherwise, 2373 // it's an IDE controller and we ignore it. 2374 for (bar = 0; bar < 6; bar++) 2375 if (pci_resource_start(pdev, bar) == 0) 2376 return -ENODEV; 2377 2378 if (!printed_version++) 2379 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); 2380 2381 rc = pcim_enable_device(pdev); 2382 if (rc) 2383 return rc; 2384 2385 /* determine type and allocate host */ 2386 if (type == CK804 && adma_enabled) { 2387 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n"); 2388 type = ADMA; 2389 } else if (type == MCP5x && swncq_enabled) { 2390 dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n"); 2391 type = SWNCQ; 2392 } 2393 2394 ppi[0] = &nv_port_info[type]; 2395 ipriv = ppi[0]->private_data; 2396 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2397 if (rc) 2398 return rc; 2399 2400 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 2401 if (!hpriv) 2402 return -ENOMEM; 2403 hpriv->type = type; 2404 host->private_data = hpriv; 2405 2406 /* request and iomap NV_MMIO_BAR */ 2407 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME); 2408 if (rc) 2409 return rc; 2410 2411 /* configure SCR access */ 2412 base = host->iomap[NV_MMIO_BAR]; 2413 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET; 2414 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET; 2415 2416 /* enable SATA space for CK804 */ 2417 if (type >= CK804) { 2418 u8 regval; 2419 2420 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2421 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2422 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2423 } 2424 2425 /* init ADMA */ 2426 if (type == ADMA) { 2427 rc = nv_adma_host_init(host); 2428 if (rc) 2429 return rc; 2430 } else if (type == SWNCQ) 2431 nv_swncq_host_init(host); 2432 2433 if (msi_enabled) { 2434 dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n"); 2435 pci_enable_msi(pdev); 2436 } 2437 2438 pci_set_master(pdev); 2439 return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht); 2440 } 2441 2442 #ifdef CONFIG_PM 2443 static int nv_pci_device_resume(struct pci_dev *pdev) 2444 { 2445 struct ata_host *host = dev_get_drvdata(&pdev->dev); 2446 struct nv_host_priv *hpriv = host->private_data; 2447 int rc; 2448 2449 rc = ata_pci_device_do_resume(pdev); 2450 if (rc) 2451 return rc; 2452 2453 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) { 2454 if (hpriv->type >= CK804) { 2455 u8 regval; 2456 2457 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2458 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2459 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2460 } 2461 if (hpriv->type == ADMA) { 2462 u32 tmp32; 2463 struct nv_adma_port_priv *pp; 2464 /* enable/disable ADMA on the ports appropriately */ 2465 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2466 2467 pp = host->ports[0]->private_data; 2468 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2469 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2470 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2471 else 2472 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN | 2473 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2474 pp = host->ports[1]->private_data; 2475 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2476 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN | 2477 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2478 else 2479 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN | 2480 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2481 2482 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2483 } 2484 } 2485 2486 ata_host_resume(host); 2487 2488 return 0; 2489 } 2490 #endif 2491 2492 static void nv_ck804_host_stop(struct ata_host *host) 2493 { 2494 struct pci_dev *pdev = to_pci_dev(host->dev); 2495 u8 regval; 2496 2497 /* disable SATA space for CK804 */ 2498 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2499 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2500 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2501 } 2502 2503 static void nv_adma_host_stop(struct ata_host *host) 2504 { 2505 struct pci_dev *pdev = to_pci_dev(host->dev); 2506 u32 tmp32; 2507 2508 /* disable ADMA on the ports */ 2509 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2510 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2511 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 2512 NV_MCP_SATA_CFG_20_PORT1_EN | 2513 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2514 2515 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2516 2517 nv_ck804_host_stop(host); 2518 } 2519 2520 static int __init nv_init(void) 2521 { 2522 return pci_register_driver(&nv_pci_driver); 2523 } 2524 2525 static void __exit nv_exit(void) 2526 { 2527 pci_unregister_driver(&nv_pci_driver); 2528 } 2529 2530 module_init(nv_init); 2531 module_exit(nv_exit); 2532 module_param_named(adma, adma_enabled, bool, 0444); 2533 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)"); 2534 module_param_named(swncq, swncq_enabled, bool, 0444); 2535 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)"); 2536 module_param_named(msi, msi_enabled, bool, 0444); 2537 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)"); 2538 2539