xref: /openbmc/linux/drivers/ata/sata_nv.c (revision b34e08d5)
1 /*
2  *  sata_nv.c - NVIDIA nForce SATA
3  *
4  *  Copyright 2004 NVIDIA Corp.  All rights reserved.
5  *  Copyright 2004 Andrew Chew
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2, or (at your option)
11  *  any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; see the file COPYING.  If not, write to
20  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  *
23  *  libata documentation is available via 'make {ps|pdf}docs',
24  *  as Documentation/DocBook/libata.*
25  *
26  *  No hardware documentation available outside of NVIDIA.
27  *  This driver programs the NVIDIA SATA controller in a similar
28  *  fashion as with other PCI IDE BMDMA controllers, with a few
29  *  NV-specific details such as register offsets, SATA phy location,
30  *  hotplug info, etc.
31  *
32  *  CK804/MCP04 controllers support an alternate programming interface
33  *  similar to the ADMA specification (with some modifications).
34  *  This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35  *  sent through the legacy interface.
36  *
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/gfp.h>
42 #include <linux/pci.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <linux/libata.h>
50 
51 #define DRV_NAME			"sata_nv"
52 #define DRV_VERSION			"3.5"
53 
54 #define NV_ADMA_DMA_BOUNDARY		0xffffffffUL
55 
56 enum {
57 	NV_MMIO_BAR			= 5,
58 
59 	NV_PORTS			= 2,
60 	NV_PIO_MASK			= ATA_PIO4,
61 	NV_MWDMA_MASK			= ATA_MWDMA2,
62 	NV_UDMA_MASK			= ATA_UDMA6,
63 	NV_PORT0_SCR_REG_OFFSET		= 0x00,
64 	NV_PORT1_SCR_REG_OFFSET		= 0x40,
65 
66 	/* INT_STATUS/ENABLE */
67 	NV_INT_STATUS			= 0x10,
68 	NV_INT_ENABLE			= 0x11,
69 	NV_INT_STATUS_CK804		= 0x440,
70 	NV_INT_ENABLE_CK804		= 0x441,
71 
72 	/* INT_STATUS/ENABLE bits */
73 	NV_INT_DEV			= 0x01,
74 	NV_INT_PM			= 0x02,
75 	NV_INT_ADDED			= 0x04,
76 	NV_INT_REMOVED			= 0x08,
77 
78 	NV_INT_PORT_SHIFT		= 4,	/* each port occupies 4 bits */
79 
80 	NV_INT_ALL			= 0x0f,
81 	NV_INT_MASK			= NV_INT_DEV |
82 					  NV_INT_ADDED | NV_INT_REMOVED,
83 
84 	/* INT_CONFIG */
85 	NV_INT_CONFIG			= 0x12,
86 	NV_INT_CONFIG_METHD		= 0x01, // 0 = INT, 1 = SMI
87 
88 	// For PCI config register 20
89 	NV_MCP_SATA_CFG_20		= 0x50,
90 	NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
91 	NV_MCP_SATA_CFG_20_PORT0_EN	= (1 << 17),
92 	NV_MCP_SATA_CFG_20_PORT1_EN	= (1 << 16),
93 	NV_MCP_SATA_CFG_20_PORT0_PWB_EN	= (1 << 14),
94 	NV_MCP_SATA_CFG_20_PORT1_PWB_EN	= (1 << 12),
95 
96 	NV_ADMA_MAX_CPBS		= 32,
97 	NV_ADMA_CPB_SZ			= 128,
98 	NV_ADMA_APRD_SZ			= 16,
99 	NV_ADMA_SGTBL_LEN		= (1024 - NV_ADMA_CPB_SZ) /
100 					   NV_ADMA_APRD_SZ,
101 	NV_ADMA_SGTBL_TOTAL_LEN		= NV_ADMA_SGTBL_LEN + 5,
102 	NV_ADMA_SGTBL_SZ                = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
103 	NV_ADMA_PORT_PRIV_DMA_SZ        = NV_ADMA_MAX_CPBS *
104 					   (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
105 
106 	/* BAR5 offset to ADMA general registers */
107 	NV_ADMA_GEN			= 0x400,
108 	NV_ADMA_GEN_CTL			= 0x00,
109 	NV_ADMA_NOTIFIER_CLEAR		= 0x30,
110 
111 	/* BAR5 offset to ADMA ports */
112 	NV_ADMA_PORT			= 0x480,
113 
114 	/* size of ADMA port register space  */
115 	NV_ADMA_PORT_SIZE		= 0x100,
116 
117 	/* ADMA port registers */
118 	NV_ADMA_CTL			= 0x40,
119 	NV_ADMA_CPB_COUNT		= 0x42,
120 	NV_ADMA_NEXT_CPB_IDX		= 0x43,
121 	NV_ADMA_STAT			= 0x44,
122 	NV_ADMA_CPB_BASE_LOW		= 0x48,
123 	NV_ADMA_CPB_BASE_HIGH		= 0x4C,
124 	NV_ADMA_APPEND			= 0x50,
125 	NV_ADMA_NOTIFIER		= 0x68,
126 	NV_ADMA_NOTIFIER_ERROR		= 0x6C,
127 
128 	/* NV_ADMA_CTL register bits */
129 	NV_ADMA_CTL_HOTPLUG_IEN		= (1 << 0),
130 	NV_ADMA_CTL_CHANNEL_RESET	= (1 << 5),
131 	NV_ADMA_CTL_GO			= (1 << 7),
132 	NV_ADMA_CTL_AIEN		= (1 << 8),
133 	NV_ADMA_CTL_READ_NON_COHERENT	= (1 << 11),
134 	NV_ADMA_CTL_WRITE_NON_COHERENT	= (1 << 12),
135 
136 	/* CPB response flag bits */
137 	NV_CPB_RESP_DONE		= (1 << 0),
138 	NV_CPB_RESP_ATA_ERR		= (1 << 3),
139 	NV_CPB_RESP_CMD_ERR		= (1 << 4),
140 	NV_CPB_RESP_CPB_ERR		= (1 << 7),
141 
142 	/* CPB control flag bits */
143 	NV_CPB_CTL_CPB_VALID		= (1 << 0),
144 	NV_CPB_CTL_QUEUE		= (1 << 1),
145 	NV_CPB_CTL_APRD_VALID		= (1 << 2),
146 	NV_CPB_CTL_IEN			= (1 << 3),
147 	NV_CPB_CTL_FPDMA		= (1 << 4),
148 
149 	/* APRD flags */
150 	NV_APRD_WRITE			= (1 << 1),
151 	NV_APRD_END			= (1 << 2),
152 	NV_APRD_CONT			= (1 << 3),
153 
154 	/* NV_ADMA_STAT flags */
155 	NV_ADMA_STAT_TIMEOUT		= (1 << 0),
156 	NV_ADMA_STAT_HOTUNPLUG		= (1 << 1),
157 	NV_ADMA_STAT_HOTPLUG		= (1 << 2),
158 	NV_ADMA_STAT_CPBERR		= (1 << 4),
159 	NV_ADMA_STAT_SERROR		= (1 << 5),
160 	NV_ADMA_STAT_CMD_COMPLETE	= (1 << 6),
161 	NV_ADMA_STAT_IDLE		= (1 << 8),
162 	NV_ADMA_STAT_LEGACY		= (1 << 9),
163 	NV_ADMA_STAT_STOPPED		= (1 << 10),
164 	NV_ADMA_STAT_DONE		= (1 << 12),
165 	NV_ADMA_STAT_ERR		= NV_ADMA_STAT_CPBERR |
166 					  NV_ADMA_STAT_TIMEOUT,
167 
168 	/* port flags */
169 	NV_ADMA_PORT_REGISTER_MODE	= (1 << 0),
170 	NV_ADMA_ATAPI_SETUP_COMPLETE	= (1 << 1),
171 
172 	/* MCP55 reg offset */
173 	NV_CTL_MCP55			= 0x400,
174 	NV_INT_STATUS_MCP55		= 0x440,
175 	NV_INT_ENABLE_MCP55		= 0x444,
176 	NV_NCQ_REG_MCP55		= 0x448,
177 
178 	/* MCP55 */
179 	NV_INT_ALL_MCP55		= 0xffff,
180 	NV_INT_PORT_SHIFT_MCP55		= 16,	/* each port occupies 16 bits */
181 	NV_INT_MASK_MCP55		= NV_INT_ALL_MCP55 & 0xfffd,
182 
183 	/* SWNCQ ENABLE BITS*/
184 	NV_CTL_PRI_SWNCQ		= 0x02,
185 	NV_CTL_SEC_SWNCQ		= 0x04,
186 
187 	/* SW NCQ status bits*/
188 	NV_SWNCQ_IRQ_DEV		= (1 << 0),
189 	NV_SWNCQ_IRQ_PM			= (1 << 1),
190 	NV_SWNCQ_IRQ_ADDED		= (1 << 2),
191 	NV_SWNCQ_IRQ_REMOVED		= (1 << 3),
192 
193 	NV_SWNCQ_IRQ_BACKOUT		= (1 << 4),
194 	NV_SWNCQ_IRQ_SDBFIS		= (1 << 5),
195 	NV_SWNCQ_IRQ_DHREGFIS		= (1 << 6),
196 	NV_SWNCQ_IRQ_DMASETUP		= (1 << 7),
197 
198 	NV_SWNCQ_IRQ_HOTPLUG		= NV_SWNCQ_IRQ_ADDED |
199 					  NV_SWNCQ_IRQ_REMOVED,
200 
201 };
202 
203 /* ADMA Physical Region Descriptor - one SG segment */
204 struct nv_adma_prd {
205 	__le64			addr;
206 	__le32			len;
207 	u8			flags;
208 	u8			packet_len;
209 	__le16			reserved;
210 };
211 
212 enum nv_adma_regbits {
213 	CMDEND	= (1 << 15),		/* end of command list */
214 	WNB	= (1 << 14),		/* wait-not-BSY */
215 	IGN	= (1 << 13),		/* ignore this entry */
216 	CS1n	= (1 << (4 + 8)),	/* std. PATA signals follow... */
217 	DA2	= (1 << (2 + 8)),
218 	DA1	= (1 << (1 + 8)),
219 	DA0	= (1 << (0 + 8)),
220 };
221 
222 /* ADMA Command Parameter Block
223    The first 5 SG segments are stored inside the Command Parameter Block itself.
224    If there are more than 5 segments the remainder are stored in a separate
225    memory area indicated by next_aprd. */
226 struct nv_adma_cpb {
227 	u8			resp_flags;    /* 0 */
228 	u8			reserved1;     /* 1 */
229 	u8			ctl_flags;     /* 2 */
230 	/* len is length of taskfile in 64 bit words */
231 	u8			len;		/* 3  */
232 	u8			tag;           /* 4 */
233 	u8			next_cpb_idx;  /* 5 */
234 	__le16			reserved2;     /* 6-7 */
235 	__le16			tf[12];        /* 8-31 */
236 	struct nv_adma_prd	aprd[5];       /* 32-111 */
237 	__le64			next_aprd;     /* 112-119 */
238 	__le64			reserved3;     /* 120-127 */
239 };
240 
241 
242 struct nv_adma_port_priv {
243 	struct nv_adma_cpb	*cpb;
244 	dma_addr_t		cpb_dma;
245 	struct nv_adma_prd	*aprd;
246 	dma_addr_t		aprd_dma;
247 	void __iomem		*ctl_block;
248 	void __iomem		*gen_block;
249 	void __iomem		*notifier_clear_block;
250 	u64			adma_dma_mask;
251 	u8			flags;
252 	int			last_issue_ncq;
253 };
254 
255 struct nv_host_priv {
256 	unsigned long		type;
257 };
258 
259 struct defer_queue {
260 	u32		defer_bits;
261 	unsigned int	head;
262 	unsigned int	tail;
263 	unsigned int	tag[ATA_MAX_QUEUE];
264 };
265 
266 enum ncq_saw_flag_list {
267 	ncq_saw_d2h	= (1U << 0),
268 	ncq_saw_dmas	= (1U << 1),
269 	ncq_saw_sdb	= (1U << 2),
270 	ncq_saw_backout	= (1U << 3),
271 };
272 
273 struct nv_swncq_port_priv {
274 	struct ata_bmdma_prd *prd;	 /* our SG list */
275 	dma_addr_t	prd_dma; /* and its DMA mapping */
276 	void __iomem	*sactive_block;
277 	void __iomem	*irq_block;
278 	void __iomem	*tag_block;
279 	u32		qc_active;
280 
281 	unsigned int	last_issue_tag;
282 
283 	/* fifo circular queue to store deferral command */
284 	struct defer_queue defer_queue;
285 
286 	/* for NCQ interrupt analysis */
287 	u32		dhfis_bits;
288 	u32		dmafis_bits;
289 	u32		sdbfis_bits;
290 
291 	unsigned int	ncq_flags;
292 };
293 
294 
295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
296 
297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
298 #ifdef CONFIG_PM
299 static int nv_pci_device_resume(struct pci_dev *pdev);
300 #endif
301 static void nv_ck804_host_stop(struct ata_host *host);
302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
305 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
306 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
307 
308 static int nv_hardreset(struct ata_link *link, unsigned int *class,
309 			unsigned long deadline);
310 static void nv_nf2_freeze(struct ata_port *ap);
311 static void nv_nf2_thaw(struct ata_port *ap);
312 static void nv_ck804_freeze(struct ata_port *ap);
313 static void nv_ck804_thaw(struct ata_port *ap);
314 static int nv_adma_slave_config(struct scsi_device *sdev);
315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
319 static void nv_adma_irq_clear(struct ata_port *ap);
320 static int nv_adma_port_start(struct ata_port *ap);
321 static void nv_adma_port_stop(struct ata_port *ap);
322 #ifdef CONFIG_PM
323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
324 static int nv_adma_port_resume(struct ata_port *ap);
325 #endif
326 static void nv_adma_freeze(struct ata_port *ap);
327 static void nv_adma_thaw(struct ata_port *ap);
328 static void nv_adma_error_handler(struct ata_port *ap);
329 static void nv_adma_host_stop(struct ata_host *host);
330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
332 
333 static void nv_mcp55_thaw(struct ata_port *ap);
334 static void nv_mcp55_freeze(struct ata_port *ap);
335 static void nv_swncq_error_handler(struct ata_port *ap);
336 static int nv_swncq_slave_config(struct scsi_device *sdev);
337 static int nv_swncq_port_start(struct ata_port *ap);
338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
343 #ifdef CONFIG_PM
344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
345 static int nv_swncq_port_resume(struct ata_port *ap);
346 #endif
347 
348 enum nv_host_type
349 {
350 	GENERIC,
351 	NFORCE2,
352 	NFORCE3 = NFORCE2,	/* NF2 == NF3 as far as sata_nv is concerned */
353 	CK804,
354 	ADMA,
355 	MCP5x,
356 	SWNCQ,
357 };
358 
359 static const struct pci_device_id nv_pci_tbl[] = {
360 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
361 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
362 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
363 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
364 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
365 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
366 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
367 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
368 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
369 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
370 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
371 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
372 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
373 	{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
374 
375 	{ } /* terminate list */
376 };
377 
378 static struct pci_driver nv_pci_driver = {
379 	.name			= DRV_NAME,
380 	.id_table		= nv_pci_tbl,
381 	.probe			= nv_init_one,
382 #ifdef CONFIG_PM
383 	.suspend		= ata_pci_device_suspend,
384 	.resume			= nv_pci_device_resume,
385 #endif
386 	.remove			= ata_pci_remove_one,
387 };
388 
389 static struct scsi_host_template nv_sht = {
390 	ATA_BMDMA_SHT(DRV_NAME),
391 };
392 
393 static struct scsi_host_template nv_adma_sht = {
394 	ATA_NCQ_SHT(DRV_NAME),
395 	.can_queue		= NV_ADMA_MAX_CPBS,
396 	.sg_tablesize		= NV_ADMA_SGTBL_TOTAL_LEN,
397 	.dma_boundary		= NV_ADMA_DMA_BOUNDARY,
398 	.slave_configure	= nv_adma_slave_config,
399 };
400 
401 static struct scsi_host_template nv_swncq_sht = {
402 	ATA_NCQ_SHT(DRV_NAME),
403 	.can_queue		= ATA_MAX_QUEUE,
404 	.sg_tablesize		= LIBATA_MAX_PRD,
405 	.dma_boundary		= ATA_DMA_BOUNDARY,
406 	.slave_configure	= nv_swncq_slave_config,
407 };
408 
409 /*
410  * NV SATA controllers have various different problems with hardreset
411  * protocol depending on the specific controller and device.
412  *
413  * GENERIC:
414  *
415  *  bko11195 reports that link doesn't come online after hardreset on
416  *  generic nv's and there have been several other similar reports on
417  *  linux-ide.
418  *
419  *  bko12351#c23 reports that warmplug on MCP61 doesn't work with
420  *  softreset.
421  *
422  * NF2/3:
423  *
424  *  bko3352 reports nf2/3 controllers can't determine device signature
425  *  reliably after hardreset.  The following thread reports detection
426  *  failure on cold boot with the standard debouncing timing.
427  *
428  *  http://thread.gmane.org/gmane.linux.ide/34098
429  *
430  *  bko12176 reports that hardreset fails to bring up the link during
431  *  boot on nf2.
432  *
433  * CK804:
434  *
435  *  For initial probing after boot and hot plugging, hardreset mostly
436  *  works fine on CK804 but curiously, reprobing on the initial port
437  *  by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
438  *  FIS in somewhat undeterministic way.
439  *
440  * SWNCQ:
441  *
442  *  bko12351 reports that when SWNCQ is enabled, for hotplug to work,
443  *  hardreset should be used and hardreset can't report proper
444  *  signature, which suggests that mcp5x is closer to nf2 as long as
445  *  reset quirkiness is concerned.
446  *
447  *  bko12703 reports that boot probing fails for intel SSD with
448  *  hardreset.  Link fails to come online.  Softreset works fine.
449  *
450  * The failures are varied but the following patterns seem true for
451  * all flavors.
452  *
453  * - Softreset during boot always works.
454  *
455  * - Hardreset during boot sometimes fails to bring up the link on
456  *   certain comibnations and device signature acquisition is
457  *   unreliable.
458  *
459  * - Hardreset is often necessary after hotplug.
460  *
461  * So, preferring softreset for boot probing and error handling (as
462  * hardreset might bring down the link) but using hardreset for
463  * post-boot probing should work around the above issues in most
464  * cases.  Define nv_hardreset() which only kicks in for post-boot
465  * probing and use it for all variants.
466  */
467 static struct ata_port_operations nv_generic_ops = {
468 	.inherits		= &ata_bmdma_port_ops,
469 	.lost_interrupt		= ATA_OP_NULL,
470 	.scr_read		= nv_scr_read,
471 	.scr_write		= nv_scr_write,
472 	.hardreset		= nv_hardreset,
473 };
474 
475 static struct ata_port_operations nv_nf2_ops = {
476 	.inherits		= &nv_generic_ops,
477 	.freeze			= nv_nf2_freeze,
478 	.thaw			= nv_nf2_thaw,
479 };
480 
481 static struct ata_port_operations nv_ck804_ops = {
482 	.inherits		= &nv_generic_ops,
483 	.freeze			= nv_ck804_freeze,
484 	.thaw			= nv_ck804_thaw,
485 	.host_stop		= nv_ck804_host_stop,
486 };
487 
488 static struct ata_port_operations nv_adma_ops = {
489 	.inherits		= &nv_ck804_ops,
490 
491 	.check_atapi_dma	= nv_adma_check_atapi_dma,
492 	.sff_tf_read		= nv_adma_tf_read,
493 	.qc_defer		= ata_std_qc_defer,
494 	.qc_prep		= nv_adma_qc_prep,
495 	.qc_issue		= nv_adma_qc_issue,
496 	.sff_irq_clear		= nv_adma_irq_clear,
497 
498 	.freeze			= nv_adma_freeze,
499 	.thaw			= nv_adma_thaw,
500 	.error_handler		= nv_adma_error_handler,
501 	.post_internal_cmd	= nv_adma_post_internal_cmd,
502 
503 	.port_start		= nv_adma_port_start,
504 	.port_stop		= nv_adma_port_stop,
505 #ifdef CONFIG_PM
506 	.port_suspend		= nv_adma_port_suspend,
507 	.port_resume		= nv_adma_port_resume,
508 #endif
509 	.host_stop		= nv_adma_host_stop,
510 };
511 
512 static struct ata_port_operations nv_swncq_ops = {
513 	.inherits		= &nv_generic_ops,
514 
515 	.qc_defer		= ata_std_qc_defer,
516 	.qc_prep		= nv_swncq_qc_prep,
517 	.qc_issue		= nv_swncq_qc_issue,
518 
519 	.freeze			= nv_mcp55_freeze,
520 	.thaw			= nv_mcp55_thaw,
521 	.error_handler		= nv_swncq_error_handler,
522 
523 #ifdef CONFIG_PM
524 	.port_suspend		= nv_swncq_port_suspend,
525 	.port_resume		= nv_swncq_port_resume,
526 #endif
527 	.port_start		= nv_swncq_port_start,
528 };
529 
530 struct nv_pi_priv {
531 	irq_handler_t			irq_handler;
532 	struct scsi_host_template	*sht;
533 };
534 
535 #define NV_PI_PRIV(_irq_handler, _sht) \
536 	&(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
537 
538 static const struct ata_port_info nv_port_info[] = {
539 	/* generic */
540 	{
541 		.flags		= ATA_FLAG_SATA,
542 		.pio_mask	= NV_PIO_MASK,
543 		.mwdma_mask	= NV_MWDMA_MASK,
544 		.udma_mask	= NV_UDMA_MASK,
545 		.port_ops	= &nv_generic_ops,
546 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
547 	},
548 	/* nforce2/3 */
549 	{
550 		.flags		= ATA_FLAG_SATA,
551 		.pio_mask	= NV_PIO_MASK,
552 		.mwdma_mask	= NV_MWDMA_MASK,
553 		.udma_mask	= NV_UDMA_MASK,
554 		.port_ops	= &nv_nf2_ops,
555 		.private_data	= NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
556 	},
557 	/* ck804 */
558 	{
559 		.flags		= ATA_FLAG_SATA,
560 		.pio_mask	= NV_PIO_MASK,
561 		.mwdma_mask	= NV_MWDMA_MASK,
562 		.udma_mask	= NV_UDMA_MASK,
563 		.port_ops	= &nv_ck804_ops,
564 		.private_data	= NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
565 	},
566 	/* ADMA */
567 	{
568 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
569 		.pio_mask	= NV_PIO_MASK,
570 		.mwdma_mask	= NV_MWDMA_MASK,
571 		.udma_mask	= NV_UDMA_MASK,
572 		.port_ops	= &nv_adma_ops,
573 		.private_data	= NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
574 	},
575 	/* MCP5x */
576 	{
577 		.flags		= ATA_FLAG_SATA,
578 		.pio_mask	= NV_PIO_MASK,
579 		.mwdma_mask	= NV_MWDMA_MASK,
580 		.udma_mask	= NV_UDMA_MASK,
581 		.port_ops	= &nv_generic_ops,
582 		.private_data	= NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
583 	},
584 	/* SWNCQ */
585 	{
586 		.flags	        = ATA_FLAG_SATA | ATA_FLAG_NCQ,
587 		.pio_mask	= NV_PIO_MASK,
588 		.mwdma_mask	= NV_MWDMA_MASK,
589 		.udma_mask	= NV_UDMA_MASK,
590 		.port_ops	= &nv_swncq_ops,
591 		.private_data	= NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
592 	},
593 };
594 
595 MODULE_AUTHOR("NVIDIA");
596 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
597 MODULE_LICENSE("GPL");
598 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
599 MODULE_VERSION(DRV_VERSION);
600 
601 static bool adma_enabled;
602 static bool swncq_enabled = 1;
603 static bool msi_enabled;
604 
605 static void nv_adma_register_mode(struct ata_port *ap)
606 {
607 	struct nv_adma_port_priv *pp = ap->private_data;
608 	void __iomem *mmio = pp->ctl_block;
609 	u16 tmp, status;
610 	int count = 0;
611 
612 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
613 		return;
614 
615 	status = readw(mmio + NV_ADMA_STAT);
616 	while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
617 		ndelay(50);
618 		status = readw(mmio + NV_ADMA_STAT);
619 		count++;
620 	}
621 	if (count == 20)
622 		ata_port_warn(ap, "timeout waiting for ADMA IDLE, stat=0x%hx\n",
623 			      status);
624 
625 	tmp = readw(mmio + NV_ADMA_CTL);
626 	writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
627 
628 	count = 0;
629 	status = readw(mmio + NV_ADMA_STAT);
630 	while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
631 		ndelay(50);
632 		status = readw(mmio + NV_ADMA_STAT);
633 		count++;
634 	}
635 	if (count == 20)
636 		ata_port_warn(ap,
637 			      "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
638 			      status);
639 
640 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
641 }
642 
643 static void nv_adma_mode(struct ata_port *ap)
644 {
645 	struct nv_adma_port_priv *pp = ap->private_data;
646 	void __iomem *mmio = pp->ctl_block;
647 	u16 tmp, status;
648 	int count = 0;
649 
650 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
651 		return;
652 
653 	WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
654 
655 	tmp = readw(mmio + NV_ADMA_CTL);
656 	writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
657 
658 	status = readw(mmio + NV_ADMA_STAT);
659 	while (((status & NV_ADMA_STAT_LEGACY) ||
660 	      !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
661 		ndelay(50);
662 		status = readw(mmio + NV_ADMA_STAT);
663 		count++;
664 	}
665 	if (count == 20)
666 		ata_port_warn(ap,
667 			"timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
668 			status);
669 
670 	pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
671 }
672 
673 static int nv_adma_slave_config(struct scsi_device *sdev)
674 {
675 	struct ata_port *ap = ata_shost_to_port(sdev->host);
676 	struct nv_adma_port_priv *pp = ap->private_data;
677 	struct nv_adma_port_priv *port0, *port1;
678 	struct scsi_device *sdev0, *sdev1;
679 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
680 	unsigned long segment_boundary, flags;
681 	unsigned short sg_tablesize;
682 	int rc;
683 	int adma_enable;
684 	u32 current_reg, new_reg, config_mask;
685 
686 	rc = ata_scsi_slave_config(sdev);
687 
688 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
689 		/* Not a proper libata device, ignore */
690 		return rc;
691 
692 	spin_lock_irqsave(ap->lock, flags);
693 
694 	if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
695 		/*
696 		 * NVIDIA reports that ADMA mode does not support ATAPI commands.
697 		 * Therefore ATAPI commands are sent through the legacy interface.
698 		 * However, the legacy interface only supports 32-bit DMA.
699 		 * Restrict DMA parameters as required by the legacy interface
700 		 * when an ATAPI device is connected.
701 		 */
702 		segment_boundary = ATA_DMA_BOUNDARY;
703 		/* Subtract 1 since an extra entry may be needed for padding, see
704 		   libata-scsi.c */
705 		sg_tablesize = LIBATA_MAX_PRD - 1;
706 
707 		/* Since the legacy DMA engine is in use, we need to disable ADMA
708 		   on the port. */
709 		adma_enable = 0;
710 		nv_adma_register_mode(ap);
711 	} else {
712 		segment_boundary = NV_ADMA_DMA_BOUNDARY;
713 		sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
714 		adma_enable = 1;
715 	}
716 
717 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
718 
719 	if (ap->port_no == 1)
720 		config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
721 			      NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
722 	else
723 		config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
724 			      NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
725 
726 	if (adma_enable) {
727 		new_reg = current_reg | config_mask;
728 		pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
729 	} else {
730 		new_reg = current_reg & ~config_mask;
731 		pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
732 	}
733 
734 	if (current_reg != new_reg)
735 		pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
736 
737 	port0 = ap->host->ports[0]->private_data;
738 	port1 = ap->host->ports[1]->private_data;
739 	sdev0 = ap->host->ports[0]->link.device[0].sdev;
740 	sdev1 = ap->host->ports[1]->link.device[0].sdev;
741 	if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
742 	    (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
743 		/** We have to set the DMA mask to 32-bit if either port is in
744 		    ATAPI mode, since they are on the same PCI device which is
745 		    used for DMA mapping. If we set the mask we also need to set
746 		    the bounce limit on both ports to ensure that the block
747 		    layer doesn't feed addresses that cause DMA mapping to
748 		    choke. If either SCSI device is not allocated yet, it's OK
749 		    since that port will discover its correct setting when it
750 		    does get allocated.
751 		    Note: Setting 32-bit mask should not fail. */
752 		if (sdev0)
753 			blk_queue_bounce_limit(sdev0->request_queue,
754 					       ATA_DMA_MASK);
755 		if (sdev1)
756 			blk_queue_bounce_limit(sdev1->request_queue,
757 					       ATA_DMA_MASK);
758 
759 		pci_set_dma_mask(pdev, ATA_DMA_MASK);
760 	} else {
761 		/** This shouldn't fail as it was set to this value before */
762 		pci_set_dma_mask(pdev, pp->adma_dma_mask);
763 		if (sdev0)
764 			blk_queue_bounce_limit(sdev0->request_queue,
765 					       pp->adma_dma_mask);
766 		if (sdev1)
767 			blk_queue_bounce_limit(sdev1->request_queue,
768 					       pp->adma_dma_mask);
769 	}
770 
771 	blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
772 	blk_queue_max_segments(sdev->request_queue, sg_tablesize);
773 	ata_port_info(ap,
774 		      "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
775 		      (unsigned long long)*ap->host->dev->dma_mask,
776 		      segment_boundary, sg_tablesize);
777 
778 	spin_unlock_irqrestore(ap->lock, flags);
779 
780 	return rc;
781 }
782 
783 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
784 {
785 	struct nv_adma_port_priv *pp = qc->ap->private_data;
786 	return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
787 }
788 
789 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
790 {
791 	/* Other than when internal or pass-through commands are executed,
792 	   the only time this function will be called in ADMA mode will be
793 	   if a command fails. In the failure case we don't care about going
794 	   into register mode with ADMA commands pending, as the commands will
795 	   all shortly be aborted anyway. We assume that NCQ commands are not
796 	   issued via passthrough, which is the only way that switching into
797 	   ADMA mode could abort outstanding commands. */
798 	nv_adma_register_mode(ap);
799 
800 	ata_sff_tf_read(ap, tf);
801 }
802 
803 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
804 {
805 	unsigned int idx = 0;
806 
807 	if (tf->flags & ATA_TFLAG_ISADDR) {
808 		if (tf->flags & ATA_TFLAG_LBA48) {
809 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR   << 8) | tf->hob_feature | WNB);
810 			cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
811 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAL  << 8) | tf->hob_lbal);
812 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAM  << 8) | tf->hob_lbam);
813 			cpb[idx++] = cpu_to_le16((ATA_REG_LBAH  << 8) | tf->hob_lbah);
814 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature);
815 		} else
816 			cpb[idx++] = cpu_to_le16((ATA_REG_ERR    << 8) | tf->feature | WNB);
817 
818 		cpb[idx++] = cpu_to_le16((ATA_REG_NSECT  << 8) | tf->nsect);
819 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAL   << 8) | tf->lbal);
820 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAM   << 8) | tf->lbam);
821 		cpb[idx++] = cpu_to_le16((ATA_REG_LBAH   << 8) | tf->lbah);
822 	}
823 
824 	if (tf->flags & ATA_TFLAG_DEVICE)
825 		cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
826 
827 	cpb[idx++] = cpu_to_le16((ATA_REG_CMD    << 8) | tf->command | CMDEND);
828 
829 	while (idx < 12)
830 		cpb[idx++] = cpu_to_le16(IGN);
831 
832 	return idx;
833 }
834 
835 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
836 {
837 	struct nv_adma_port_priv *pp = ap->private_data;
838 	u8 flags = pp->cpb[cpb_num].resp_flags;
839 
840 	VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
841 
842 	if (unlikely((force_err ||
843 		     flags & (NV_CPB_RESP_ATA_ERR |
844 			      NV_CPB_RESP_CMD_ERR |
845 			      NV_CPB_RESP_CPB_ERR)))) {
846 		struct ata_eh_info *ehi = &ap->link.eh_info;
847 		int freeze = 0;
848 
849 		ata_ehi_clear_desc(ehi);
850 		__ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
851 		if (flags & NV_CPB_RESP_ATA_ERR) {
852 			ata_ehi_push_desc(ehi, "ATA error");
853 			ehi->err_mask |= AC_ERR_DEV;
854 		} else if (flags & NV_CPB_RESP_CMD_ERR) {
855 			ata_ehi_push_desc(ehi, "CMD error");
856 			ehi->err_mask |= AC_ERR_DEV;
857 		} else if (flags & NV_CPB_RESP_CPB_ERR) {
858 			ata_ehi_push_desc(ehi, "CPB error");
859 			ehi->err_mask |= AC_ERR_SYSTEM;
860 			freeze = 1;
861 		} else {
862 			/* notifier error, but no error in CPB flags? */
863 			ata_ehi_push_desc(ehi, "unknown");
864 			ehi->err_mask |= AC_ERR_OTHER;
865 			freeze = 1;
866 		}
867 		/* Kill all commands. EH will determine what actually failed. */
868 		if (freeze)
869 			ata_port_freeze(ap);
870 		else
871 			ata_port_abort(ap);
872 		return -1;
873 	}
874 
875 	if (likely(flags & NV_CPB_RESP_DONE))
876 		return 1;
877 	return 0;
878 }
879 
880 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
881 {
882 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
883 
884 	/* freeze if hotplugged */
885 	if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
886 		ata_port_freeze(ap);
887 		return 1;
888 	}
889 
890 	/* bail out if not our interrupt */
891 	if (!(irq_stat & NV_INT_DEV))
892 		return 0;
893 
894 	/* DEV interrupt w/ no active qc? */
895 	if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
896 		ata_sff_check_status(ap);
897 		return 1;
898 	}
899 
900 	/* handle interrupt */
901 	return ata_bmdma_port_intr(ap, qc);
902 }
903 
904 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
905 {
906 	struct ata_host *host = dev_instance;
907 	int i, handled = 0;
908 	u32 notifier_clears[2];
909 
910 	spin_lock(&host->lock);
911 
912 	for (i = 0; i < host->n_ports; i++) {
913 		struct ata_port *ap = host->ports[i];
914 		struct nv_adma_port_priv *pp = ap->private_data;
915 		void __iomem *mmio = pp->ctl_block;
916 		u16 status;
917 		u32 gen_ctl;
918 		u32 notifier, notifier_error;
919 
920 		notifier_clears[i] = 0;
921 
922 		/* if ADMA is disabled, use standard ata interrupt handler */
923 		if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
924 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
925 				>> (NV_INT_PORT_SHIFT * i);
926 			handled += nv_host_intr(ap, irq_stat);
927 			continue;
928 		}
929 
930 		/* if in ATA register mode, check for standard interrupts */
931 		if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
932 			u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
933 				>> (NV_INT_PORT_SHIFT * i);
934 			if (ata_tag_valid(ap->link.active_tag))
935 				/** NV_INT_DEV indication seems unreliable
936 				    at times at least in ADMA mode. Force it
937 				    on always when a command is active, to
938 				    prevent losing interrupts. */
939 				irq_stat |= NV_INT_DEV;
940 			handled += nv_host_intr(ap, irq_stat);
941 		}
942 
943 		notifier = readl(mmio + NV_ADMA_NOTIFIER);
944 		notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
945 		notifier_clears[i] = notifier | notifier_error;
946 
947 		gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
948 
949 		if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
950 		    !notifier_error)
951 			/* Nothing to do */
952 			continue;
953 
954 		status = readw(mmio + NV_ADMA_STAT);
955 
956 		/*
957 		 * Clear status. Ensure the controller sees the
958 		 * clearing before we start looking at any of the CPB
959 		 * statuses, so that any CPB completions after this
960 		 * point in the handler will raise another interrupt.
961 		 */
962 		writew(status, mmio + NV_ADMA_STAT);
963 		readw(mmio + NV_ADMA_STAT); /* flush posted write */
964 		rmb();
965 
966 		handled++; /* irq handled if we got here */
967 
968 		/* freeze if hotplugged or controller error */
969 		if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
970 				       NV_ADMA_STAT_HOTUNPLUG |
971 				       NV_ADMA_STAT_TIMEOUT |
972 				       NV_ADMA_STAT_SERROR))) {
973 			struct ata_eh_info *ehi = &ap->link.eh_info;
974 
975 			ata_ehi_clear_desc(ehi);
976 			__ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
977 			if (status & NV_ADMA_STAT_TIMEOUT) {
978 				ehi->err_mask |= AC_ERR_SYSTEM;
979 				ata_ehi_push_desc(ehi, "timeout");
980 			} else if (status & NV_ADMA_STAT_HOTPLUG) {
981 				ata_ehi_hotplugged(ehi);
982 				ata_ehi_push_desc(ehi, "hotplug");
983 			} else if (status & NV_ADMA_STAT_HOTUNPLUG) {
984 				ata_ehi_hotplugged(ehi);
985 				ata_ehi_push_desc(ehi, "hot unplug");
986 			} else if (status & NV_ADMA_STAT_SERROR) {
987 				/* let EH analyze SError and figure out cause */
988 				ata_ehi_push_desc(ehi, "SError");
989 			} else
990 				ata_ehi_push_desc(ehi, "unknown");
991 			ata_port_freeze(ap);
992 			continue;
993 		}
994 
995 		if (status & (NV_ADMA_STAT_DONE |
996 			      NV_ADMA_STAT_CPBERR |
997 			      NV_ADMA_STAT_CMD_COMPLETE)) {
998 			u32 check_commands = notifier_clears[i];
999 			u32 done_mask = 0;
1000 			int pos, rc;
1001 
1002 			if (status & NV_ADMA_STAT_CPBERR) {
1003 				/* check all active commands */
1004 				if (ata_tag_valid(ap->link.active_tag))
1005 					check_commands = 1 <<
1006 						ap->link.active_tag;
1007 				else
1008 					check_commands = ap->link.sactive;
1009 			}
1010 
1011 			/* check CPBs for completed commands */
1012 			while ((pos = ffs(check_commands))) {
1013 				pos--;
1014 				rc = nv_adma_check_cpb(ap, pos,
1015 						notifier_error & (1 << pos));
1016 				if (rc > 0)
1017 					done_mask |= 1 << pos;
1018 				else if (unlikely(rc < 0))
1019 					check_commands = 0;
1020 				check_commands &= ~(1 << pos);
1021 			}
1022 			ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
1023 		}
1024 	}
1025 
1026 	if (notifier_clears[0] || notifier_clears[1]) {
1027 		/* Note: Both notifier clear registers must be written
1028 		   if either is set, even if one is zero, according to NVIDIA. */
1029 		struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1030 		writel(notifier_clears[0], pp->notifier_clear_block);
1031 		pp = host->ports[1]->private_data;
1032 		writel(notifier_clears[1], pp->notifier_clear_block);
1033 	}
1034 
1035 	spin_unlock(&host->lock);
1036 
1037 	return IRQ_RETVAL(handled);
1038 }
1039 
1040 static void nv_adma_freeze(struct ata_port *ap)
1041 {
1042 	struct nv_adma_port_priv *pp = ap->private_data;
1043 	void __iomem *mmio = pp->ctl_block;
1044 	u16 tmp;
1045 
1046 	nv_ck804_freeze(ap);
1047 
1048 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1049 		return;
1050 
1051 	/* clear any outstanding CK804 notifications */
1052 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1053 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1054 
1055 	/* Disable interrupt */
1056 	tmp = readw(mmio + NV_ADMA_CTL);
1057 	writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1058 		mmio + NV_ADMA_CTL);
1059 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1060 }
1061 
1062 static void nv_adma_thaw(struct ata_port *ap)
1063 {
1064 	struct nv_adma_port_priv *pp = ap->private_data;
1065 	void __iomem *mmio = pp->ctl_block;
1066 	u16 tmp;
1067 
1068 	nv_ck804_thaw(ap);
1069 
1070 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1071 		return;
1072 
1073 	/* Enable interrupt */
1074 	tmp = readw(mmio + NV_ADMA_CTL);
1075 	writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1076 		mmio + NV_ADMA_CTL);
1077 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1078 }
1079 
1080 static void nv_adma_irq_clear(struct ata_port *ap)
1081 {
1082 	struct nv_adma_port_priv *pp = ap->private_data;
1083 	void __iomem *mmio = pp->ctl_block;
1084 	u32 notifier_clears[2];
1085 
1086 	if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1087 		ata_bmdma_irq_clear(ap);
1088 		return;
1089 	}
1090 
1091 	/* clear any outstanding CK804 notifications */
1092 	writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1093 		ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1094 
1095 	/* clear ADMA status */
1096 	writew(0xffff, mmio + NV_ADMA_STAT);
1097 
1098 	/* clear notifiers - note both ports need to be written with
1099 	   something even though we are only clearing on one */
1100 	if (ap->port_no == 0) {
1101 		notifier_clears[0] = 0xFFFFFFFF;
1102 		notifier_clears[1] = 0;
1103 	} else {
1104 		notifier_clears[0] = 0;
1105 		notifier_clears[1] = 0xFFFFFFFF;
1106 	}
1107 	pp = ap->host->ports[0]->private_data;
1108 	writel(notifier_clears[0], pp->notifier_clear_block);
1109 	pp = ap->host->ports[1]->private_data;
1110 	writel(notifier_clears[1], pp->notifier_clear_block);
1111 }
1112 
1113 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1114 {
1115 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1116 
1117 	if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1118 		ata_bmdma_post_internal_cmd(qc);
1119 }
1120 
1121 static int nv_adma_port_start(struct ata_port *ap)
1122 {
1123 	struct device *dev = ap->host->dev;
1124 	struct nv_adma_port_priv *pp;
1125 	int rc;
1126 	void *mem;
1127 	dma_addr_t mem_dma;
1128 	void __iomem *mmio;
1129 	struct pci_dev *pdev = to_pci_dev(dev);
1130 	u16 tmp;
1131 
1132 	VPRINTK("ENTER\n");
1133 
1134 	/* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1135 	   pad buffers */
1136 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1137 	if (rc)
1138 		return rc;
1139 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1140 	if (rc)
1141 		return rc;
1142 
1143 	/* we might fallback to bmdma, allocate bmdma resources */
1144 	rc = ata_bmdma_port_start(ap);
1145 	if (rc)
1146 		return rc;
1147 
1148 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1149 	if (!pp)
1150 		return -ENOMEM;
1151 
1152 	mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1153 	       ap->port_no * NV_ADMA_PORT_SIZE;
1154 	pp->ctl_block = mmio;
1155 	pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1156 	pp->notifier_clear_block = pp->gen_block +
1157 	       NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1158 
1159 	/* Now that the legacy PRD and padding buffer are allocated we can
1160 	   safely raise the DMA mask to allocate the CPB/APRD table.
1161 	   These are allowed to fail since we store the value that ends up
1162 	   being used to set as the bounce limit in slave_config later if
1163 	   needed. */
1164 	pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1165 	pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1166 	pp->adma_dma_mask = *dev->dma_mask;
1167 
1168 	mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1169 				  &mem_dma, GFP_KERNEL);
1170 	if (!mem)
1171 		return -ENOMEM;
1172 	memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1173 
1174 	/*
1175 	 * First item in chunk of DMA memory:
1176 	 * 128-byte command parameter block (CPB)
1177 	 * one for each command tag
1178 	 */
1179 	pp->cpb     = mem;
1180 	pp->cpb_dma = mem_dma;
1181 
1182 	writel(mem_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1183 	writel((mem_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1184 
1185 	mem     += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1186 	mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1187 
1188 	/*
1189 	 * Second item: block of ADMA_SGTBL_LEN s/g entries
1190 	 */
1191 	pp->aprd = mem;
1192 	pp->aprd_dma = mem_dma;
1193 
1194 	ap->private_data = pp;
1195 
1196 	/* clear any outstanding interrupt conditions */
1197 	writew(0xffff, mmio + NV_ADMA_STAT);
1198 
1199 	/* initialize port variables */
1200 	pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1201 
1202 	/* clear CPB fetch count */
1203 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1204 
1205 	/* clear GO for register mode, enable interrupt */
1206 	tmp = readw(mmio + NV_ADMA_CTL);
1207 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1208 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1209 
1210 	tmp = readw(mmio + NV_ADMA_CTL);
1211 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1212 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1213 	udelay(1);
1214 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1215 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1216 
1217 	return 0;
1218 }
1219 
1220 static void nv_adma_port_stop(struct ata_port *ap)
1221 {
1222 	struct nv_adma_port_priv *pp = ap->private_data;
1223 	void __iomem *mmio = pp->ctl_block;
1224 
1225 	VPRINTK("ENTER\n");
1226 	writew(0, mmio + NV_ADMA_CTL);
1227 }
1228 
1229 #ifdef CONFIG_PM
1230 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1231 {
1232 	struct nv_adma_port_priv *pp = ap->private_data;
1233 	void __iomem *mmio = pp->ctl_block;
1234 
1235 	/* Go to register mode - clears GO */
1236 	nv_adma_register_mode(ap);
1237 
1238 	/* clear CPB fetch count */
1239 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1240 
1241 	/* disable interrupt, shut down port */
1242 	writew(0, mmio + NV_ADMA_CTL);
1243 
1244 	return 0;
1245 }
1246 
1247 static int nv_adma_port_resume(struct ata_port *ap)
1248 {
1249 	struct nv_adma_port_priv *pp = ap->private_data;
1250 	void __iomem *mmio = pp->ctl_block;
1251 	u16 tmp;
1252 
1253 	/* set CPB block location */
1254 	writel(pp->cpb_dma & 0xFFFFFFFF, 	mmio + NV_ADMA_CPB_BASE_LOW);
1255 	writel((pp->cpb_dma >> 16) >> 16,	mmio + NV_ADMA_CPB_BASE_HIGH);
1256 
1257 	/* clear any outstanding interrupt conditions */
1258 	writew(0xffff, mmio + NV_ADMA_STAT);
1259 
1260 	/* initialize port variables */
1261 	pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1262 
1263 	/* clear CPB fetch count */
1264 	writew(0, mmio + NV_ADMA_CPB_COUNT);
1265 
1266 	/* clear GO for register mode, enable interrupt */
1267 	tmp = readw(mmio + NV_ADMA_CTL);
1268 	writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1269 		NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1270 
1271 	tmp = readw(mmio + NV_ADMA_CTL);
1272 	writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1273 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1274 	udelay(1);
1275 	writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1276 	readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1277 
1278 	return 0;
1279 }
1280 #endif
1281 
1282 static void nv_adma_setup_port(struct ata_port *ap)
1283 {
1284 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1285 	struct ata_ioports *ioport = &ap->ioaddr;
1286 
1287 	VPRINTK("ENTER\n");
1288 
1289 	mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1290 
1291 	ioport->cmd_addr	= mmio;
1292 	ioport->data_addr	= mmio + (ATA_REG_DATA * 4);
1293 	ioport->error_addr	=
1294 	ioport->feature_addr	= mmio + (ATA_REG_ERR * 4);
1295 	ioport->nsect_addr	= mmio + (ATA_REG_NSECT * 4);
1296 	ioport->lbal_addr	= mmio + (ATA_REG_LBAL * 4);
1297 	ioport->lbam_addr	= mmio + (ATA_REG_LBAM * 4);
1298 	ioport->lbah_addr	= mmio + (ATA_REG_LBAH * 4);
1299 	ioport->device_addr	= mmio + (ATA_REG_DEVICE * 4);
1300 	ioport->status_addr	=
1301 	ioport->command_addr	= mmio + (ATA_REG_STATUS * 4);
1302 	ioport->altstatus_addr	=
1303 	ioport->ctl_addr	= mmio + 0x20;
1304 }
1305 
1306 static int nv_adma_host_init(struct ata_host *host)
1307 {
1308 	struct pci_dev *pdev = to_pci_dev(host->dev);
1309 	unsigned int i;
1310 	u32 tmp32;
1311 
1312 	VPRINTK("ENTER\n");
1313 
1314 	/* enable ADMA on the ports */
1315 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1316 	tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1317 		 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1318 		 NV_MCP_SATA_CFG_20_PORT1_EN |
1319 		 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1320 
1321 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1322 
1323 	for (i = 0; i < host->n_ports; i++)
1324 		nv_adma_setup_port(host->ports[i]);
1325 
1326 	return 0;
1327 }
1328 
1329 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1330 			      struct scatterlist *sg,
1331 			      int idx,
1332 			      struct nv_adma_prd *aprd)
1333 {
1334 	u8 flags = 0;
1335 	if (qc->tf.flags & ATA_TFLAG_WRITE)
1336 		flags |= NV_APRD_WRITE;
1337 	if (idx == qc->n_elem - 1)
1338 		flags |= NV_APRD_END;
1339 	else if (idx != 4)
1340 		flags |= NV_APRD_CONT;
1341 
1342 	aprd->addr  = cpu_to_le64(((u64)sg_dma_address(sg)));
1343 	aprd->len   = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1344 	aprd->flags = flags;
1345 	aprd->packet_len = 0;
1346 }
1347 
1348 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1349 {
1350 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1351 	struct nv_adma_prd *aprd;
1352 	struct scatterlist *sg;
1353 	unsigned int si;
1354 
1355 	VPRINTK("ENTER\n");
1356 
1357 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1358 		aprd = (si < 5) ? &cpb->aprd[si] :
1359 			       &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1360 		nv_adma_fill_aprd(qc, sg, si, aprd);
1361 	}
1362 	if (si > 5)
1363 		cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1364 	else
1365 		cpb->next_aprd = cpu_to_le64(0);
1366 }
1367 
1368 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1369 {
1370 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1371 
1372 	/* ADMA engine can only be used for non-ATAPI DMA commands,
1373 	   or interrupt-driven no-data commands. */
1374 	if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1375 	   (qc->tf.flags & ATA_TFLAG_POLLING))
1376 		return 1;
1377 
1378 	if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1379 	   (qc->tf.protocol == ATA_PROT_NODATA))
1380 		return 0;
1381 
1382 	return 1;
1383 }
1384 
1385 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1386 {
1387 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1388 	struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1389 	u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1390 		       NV_CPB_CTL_IEN;
1391 
1392 	if (nv_adma_use_reg_mode(qc)) {
1393 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1394 			(qc->flags & ATA_QCFLAG_DMAMAP));
1395 		nv_adma_register_mode(qc->ap);
1396 		ata_bmdma_qc_prep(qc);
1397 		return;
1398 	}
1399 
1400 	cpb->resp_flags = NV_CPB_RESP_DONE;
1401 	wmb();
1402 	cpb->ctl_flags = 0;
1403 	wmb();
1404 
1405 	cpb->len		= 3;
1406 	cpb->tag		= qc->tag;
1407 	cpb->next_cpb_idx	= 0;
1408 
1409 	/* turn on NCQ flags for NCQ commands */
1410 	if (qc->tf.protocol == ATA_PROT_NCQ)
1411 		ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1412 
1413 	VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1414 
1415 	nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1416 
1417 	if (qc->flags & ATA_QCFLAG_DMAMAP) {
1418 		nv_adma_fill_sg(qc, cpb);
1419 		ctl_flags |= NV_CPB_CTL_APRD_VALID;
1420 	} else
1421 		memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1422 
1423 	/* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1424 	   until we are finished filling in all of the contents */
1425 	wmb();
1426 	cpb->ctl_flags = ctl_flags;
1427 	wmb();
1428 	cpb->resp_flags = 0;
1429 }
1430 
1431 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1432 {
1433 	struct nv_adma_port_priv *pp = qc->ap->private_data;
1434 	void __iomem *mmio = pp->ctl_block;
1435 	int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1436 
1437 	VPRINTK("ENTER\n");
1438 
1439 	/* We can't handle result taskfile with NCQ commands, since
1440 	   retrieving the taskfile switches us out of ADMA mode and would abort
1441 	   existing commands. */
1442 	if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1443 		     (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1444 		ata_dev_err(qc->dev, "NCQ w/ RESULT_TF not allowed\n");
1445 		return AC_ERR_SYSTEM;
1446 	}
1447 
1448 	if (nv_adma_use_reg_mode(qc)) {
1449 		/* use ATA register mode */
1450 		VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1451 		BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1452 			(qc->flags & ATA_QCFLAG_DMAMAP));
1453 		nv_adma_register_mode(qc->ap);
1454 		return ata_bmdma_qc_issue(qc);
1455 	} else
1456 		nv_adma_mode(qc->ap);
1457 
1458 	/* write append register, command tag in lower 8 bits
1459 	   and (number of cpbs to append -1) in top 8 bits */
1460 	wmb();
1461 
1462 	if (curr_ncq != pp->last_issue_ncq) {
1463 		/* Seems to need some delay before switching between NCQ and
1464 		   non-NCQ commands, else we get command timeouts and such. */
1465 		udelay(20);
1466 		pp->last_issue_ncq = curr_ncq;
1467 	}
1468 
1469 	writew(qc->tag, mmio + NV_ADMA_APPEND);
1470 
1471 	DPRINTK("Issued tag %u\n", qc->tag);
1472 
1473 	return 0;
1474 }
1475 
1476 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1477 {
1478 	struct ata_host *host = dev_instance;
1479 	unsigned int i;
1480 	unsigned int handled = 0;
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&host->lock, flags);
1484 
1485 	for (i = 0; i < host->n_ports; i++) {
1486 		struct ata_port *ap = host->ports[i];
1487 		struct ata_queued_cmd *qc;
1488 
1489 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1490 		if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
1491 			handled += ata_bmdma_port_intr(ap, qc);
1492 		} else {
1493 			/*
1494 			 * No request pending?  Clear interrupt status
1495 			 * anyway, in case there's one pending.
1496 			 */
1497 			ap->ops->sff_check_status(ap);
1498 		}
1499 	}
1500 
1501 	spin_unlock_irqrestore(&host->lock, flags);
1502 
1503 	return IRQ_RETVAL(handled);
1504 }
1505 
1506 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1507 {
1508 	int i, handled = 0;
1509 
1510 	for (i = 0; i < host->n_ports; i++) {
1511 		handled += nv_host_intr(host->ports[i], irq_stat);
1512 		irq_stat >>= NV_INT_PORT_SHIFT;
1513 	}
1514 
1515 	return IRQ_RETVAL(handled);
1516 }
1517 
1518 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1519 {
1520 	struct ata_host *host = dev_instance;
1521 	u8 irq_stat;
1522 	irqreturn_t ret;
1523 
1524 	spin_lock(&host->lock);
1525 	irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1526 	ret = nv_do_interrupt(host, irq_stat);
1527 	spin_unlock(&host->lock);
1528 
1529 	return ret;
1530 }
1531 
1532 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1533 {
1534 	struct ata_host *host = dev_instance;
1535 	u8 irq_stat;
1536 	irqreturn_t ret;
1537 
1538 	spin_lock(&host->lock);
1539 	irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1540 	ret = nv_do_interrupt(host, irq_stat);
1541 	spin_unlock(&host->lock);
1542 
1543 	return ret;
1544 }
1545 
1546 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1547 {
1548 	if (sc_reg > SCR_CONTROL)
1549 		return -EINVAL;
1550 
1551 	*val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1552 	return 0;
1553 }
1554 
1555 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1556 {
1557 	if (sc_reg > SCR_CONTROL)
1558 		return -EINVAL;
1559 
1560 	iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1561 	return 0;
1562 }
1563 
1564 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1565 			unsigned long deadline)
1566 {
1567 	struct ata_eh_context *ehc = &link->eh_context;
1568 
1569 	/* Do hardreset iff it's post-boot probing, please read the
1570 	 * comment above port ops for details.
1571 	 */
1572 	if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1573 	    !ata_dev_enabled(link->device))
1574 		sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1575 				    NULL, NULL);
1576 	else {
1577 		const unsigned long *timing = sata_ehc_deb_timing(ehc);
1578 		int rc;
1579 
1580 		if (!(ehc->i.flags & ATA_EHI_QUIET))
1581 			ata_link_info(link,
1582 				      "nv: skipping hardreset on occupied port\n");
1583 
1584 		/* make sure the link is online */
1585 		rc = sata_link_resume(link, timing, deadline);
1586 		/* whine about phy resume failure but proceed */
1587 		if (rc && rc != -EOPNOTSUPP)
1588 			ata_link_warn(link, "failed to resume link (errno=%d)\n",
1589 				      rc);
1590 	}
1591 
1592 	/* device signature acquisition is unreliable */
1593 	return -EAGAIN;
1594 }
1595 
1596 static void nv_nf2_freeze(struct ata_port *ap)
1597 {
1598 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1599 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1600 	u8 mask;
1601 
1602 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1603 	mask &= ~(NV_INT_ALL << shift);
1604 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1605 }
1606 
1607 static void nv_nf2_thaw(struct ata_port *ap)
1608 {
1609 	void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1610 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1611 	u8 mask;
1612 
1613 	iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1614 
1615 	mask = ioread8(scr_addr + NV_INT_ENABLE);
1616 	mask |= (NV_INT_MASK << shift);
1617 	iowrite8(mask, scr_addr + NV_INT_ENABLE);
1618 }
1619 
1620 static void nv_ck804_freeze(struct ata_port *ap)
1621 {
1622 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1623 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1624 	u8 mask;
1625 
1626 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1627 	mask &= ~(NV_INT_ALL << shift);
1628 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1629 }
1630 
1631 static void nv_ck804_thaw(struct ata_port *ap)
1632 {
1633 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1634 	int shift = ap->port_no * NV_INT_PORT_SHIFT;
1635 	u8 mask;
1636 
1637 	writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1638 
1639 	mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1640 	mask |= (NV_INT_MASK << shift);
1641 	writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1642 }
1643 
1644 static void nv_mcp55_freeze(struct ata_port *ap)
1645 {
1646 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1647 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1648 	u32 mask;
1649 
1650 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1651 
1652 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1653 	mask &= ~(NV_INT_ALL_MCP55 << shift);
1654 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1655 }
1656 
1657 static void nv_mcp55_thaw(struct ata_port *ap)
1658 {
1659 	void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1660 	int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1661 	u32 mask;
1662 
1663 	writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1664 
1665 	mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1666 	mask |= (NV_INT_MASK_MCP55 << shift);
1667 	writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1668 }
1669 
1670 static void nv_adma_error_handler(struct ata_port *ap)
1671 {
1672 	struct nv_adma_port_priv *pp = ap->private_data;
1673 	if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1674 		void __iomem *mmio = pp->ctl_block;
1675 		int i;
1676 		u16 tmp;
1677 
1678 		if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1679 			u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1680 			u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1681 			u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1682 			u32 status = readw(mmio + NV_ADMA_STAT);
1683 			u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1684 			u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1685 
1686 			ata_port_err(ap,
1687 				"EH in ADMA mode, notifier 0x%X "
1688 				"notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1689 				"next cpb count 0x%X next cpb idx 0x%x\n",
1690 				notifier, notifier_error, gen_ctl, status,
1691 				cpb_count, next_cpb_idx);
1692 
1693 			for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1694 				struct nv_adma_cpb *cpb = &pp->cpb[i];
1695 				if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1696 				    ap->link.sactive & (1 << i))
1697 					ata_port_err(ap,
1698 						"CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1699 						i, cpb->ctl_flags, cpb->resp_flags);
1700 			}
1701 		}
1702 
1703 		/* Push us back into port register mode for error handling. */
1704 		nv_adma_register_mode(ap);
1705 
1706 		/* Mark all of the CPBs as invalid to prevent them from
1707 		   being executed */
1708 		for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1709 			pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1710 
1711 		/* clear CPB fetch count */
1712 		writew(0, mmio + NV_ADMA_CPB_COUNT);
1713 
1714 		/* Reset channel */
1715 		tmp = readw(mmio + NV_ADMA_CTL);
1716 		writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1717 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1718 		udelay(1);
1719 		writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1720 		readw(mmio + NV_ADMA_CTL);	/* flush posted write */
1721 	}
1722 
1723 	ata_bmdma_error_handler(ap);
1724 }
1725 
1726 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1727 {
1728 	struct nv_swncq_port_priv *pp = ap->private_data;
1729 	struct defer_queue *dq = &pp->defer_queue;
1730 
1731 	/* queue is full */
1732 	WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1733 	dq->defer_bits |= (1 << qc->tag);
1734 	dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1735 }
1736 
1737 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1738 {
1739 	struct nv_swncq_port_priv *pp = ap->private_data;
1740 	struct defer_queue *dq = &pp->defer_queue;
1741 	unsigned int tag;
1742 
1743 	if (dq->head == dq->tail)	/* null queue */
1744 		return NULL;
1745 
1746 	tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1747 	dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1748 	WARN_ON(!(dq->defer_bits & (1 << tag)));
1749 	dq->defer_bits &= ~(1 << tag);
1750 
1751 	return ata_qc_from_tag(ap, tag);
1752 }
1753 
1754 static void nv_swncq_fis_reinit(struct ata_port *ap)
1755 {
1756 	struct nv_swncq_port_priv *pp = ap->private_data;
1757 
1758 	pp->dhfis_bits = 0;
1759 	pp->dmafis_bits = 0;
1760 	pp->sdbfis_bits = 0;
1761 	pp->ncq_flags = 0;
1762 }
1763 
1764 static void nv_swncq_pp_reinit(struct ata_port *ap)
1765 {
1766 	struct nv_swncq_port_priv *pp = ap->private_data;
1767 	struct defer_queue *dq = &pp->defer_queue;
1768 
1769 	dq->head = 0;
1770 	dq->tail = 0;
1771 	dq->defer_bits = 0;
1772 	pp->qc_active = 0;
1773 	pp->last_issue_tag = ATA_TAG_POISON;
1774 	nv_swncq_fis_reinit(ap);
1775 }
1776 
1777 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1778 {
1779 	struct nv_swncq_port_priv *pp = ap->private_data;
1780 
1781 	writew(fis, pp->irq_block);
1782 }
1783 
1784 static void __ata_bmdma_stop(struct ata_port *ap)
1785 {
1786 	struct ata_queued_cmd qc;
1787 
1788 	qc.ap = ap;
1789 	ata_bmdma_stop(&qc);
1790 }
1791 
1792 static void nv_swncq_ncq_stop(struct ata_port *ap)
1793 {
1794 	struct nv_swncq_port_priv *pp = ap->private_data;
1795 	unsigned int i;
1796 	u32 sactive;
1797 	u32 done_mask;
1798 
1799 	ata_port_err(ap, "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1800 		     ap->qc_active, ap->link.sactive);
1801 	ata_port_err(ap,
1802 		"SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n  "
1803 		"dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1804 		pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1805 		pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1806 
1807 	ata_port_err(ap, "ATA_REG 0x%X ERR_REG 0x%X\n",
1808 		     ap->ops->sff_check_status(ap),
1809 		     ioread8(ap->ioaddr.error_addr));
1810 
1811 	sactive = readl(pp->sactive_block);
1812 	done_mask = pp->qc_active ^ sactive;
1813 
1814 	ata_port_err(ap, "tag : dhfis dmafis sdbfis sactive\n");
1815 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
1816 		u8 err = 0;
1817 		if (pp->qc_active & (1 << i))
1818 			err = 0;
1819 		else if (done_mask & (1 << i))
1820 			err = 1;
1821 		else
1822 			continue;
1823 
1824 		ata_port_err(ap,
1825 			     "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1826 			     (pp->dhfis_bits >> i) & 0x1,
1827 			     (pp->dmafis_bits >> i) & 0x1,
1828 			     (pp->sdbfis_bits >> i) & 0x1,
1829 			     (sactive >> i) & 0x1,
1830 			     (err ? "error! tag doesn't exit" : " "));
1831 	}
1832 
1833 	nv_swncq_pp_reinit(ap);
1834 	ap->ops->sff_irq_clear(ap);
1835 	__ata_bmdma_stop(ap);
1836 	nv_swncq_irq_clear(ap, 0xffff);
1837 }
1838 
1839 static void nv_swncq_error_handler(struct ata_port *ap)
1840 {
1841 	struct ata_eh_context *ehc = &ap->link.eh_context;
1842 
1843 	if (ap->link.sactive) {
1844 		nv_swncq_ncq_stop(ap);
1845 		ehc->i.action |= ATA_EH_RESET;
1846 	}
1847 
1848 	ata_bmdma_error_handler(ap);
1849 }
1850 
1851 #ifdef CONFIG_PM
1852 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1853 {
1854 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1855 	u32 tmp;
1856 
1857 	/* clear irq */
1858 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1859 
1860 	/* disable irq */
1861 	writel(0, mmio + NV_INT_ENABLE_MCP55);
1862 
1863 	/* disable swncq */
1864 	tmp = readl(mmio + NV_CTL_MCP55);
1865 	tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1866 	writel(tmp, mmio + NV_CTL_MCP55);
1867 
1868 	return 0;
1869 }
1870 
1871 static int nv_swncq_port_resume(struct ata_port *ap)
1872 {
1873 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1874 	u32 tmp;
1875 
1876 	/* clear irq */
1877 	writel(~0, mmio + NV_INT_STATUS_MCP55);
1878 
1879 	/* enable irq */
1880 	writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1881 
1882 	/* enable swncq */
1883 	tmp = readl(mmio + NV_CTL_MCP55);
1884 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1885 
1886 	return 0;
1887 }
1888 #endif
1889 
1890 static void nv_swncq_host_init(struct ata_host *host)
1891 {
1892 	u32 tmp;
1893 	void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1894 	struct pci_dev *pdev = to_pci_dev(host->dev);
1895 	u8 regval;
1896 
1897 	/* disable  ECO 398 */
1898 	pci_read_config_byte(pdev, 0x7f, &regval);
1899 	regval &= ~(1 << 7);
1900 	pci_write_config_byte(pdev, 0x7f, regval);
1901 
1902 	/* enable swncq */
1903 	tmp = readl(mmio + NV_CTL_MCP55);
1904 	VPRINTK("HOST_CTL:0x%X\n", tmp);
1905 	writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1906 
1907 	/* enable irq intr */
1908 	tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1909 	VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1910 	writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1911 
1912 	/*  clear port irq */
1913 	writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1914 }
1915 
1916 static int nv_swncq_slave_config(struct scsi_device *sdev)
1917 {
1918 	struct ata_port *ap = ata_shost_to_port(sdev->host);
1919 	struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1920 	struct ata_device *dev;
1921 	int rc;
1922 	u8 rev;
1923 	u8 check_maxtor = 0;
1924 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
1925 
1926 	rc = ata_scsi_slave_config(sdev);
1927 	if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1928 		/* Not a proper libata device, ignore */
1929 		return rc;
1930 
1931 	dev = &ap->link.device[sdev->id];
1932 	if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1933 		return rc;
1934 
1935 	/* if MCP51 and Maxtor, then disable ncq */
1936 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1937 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1938 		check_maxtor = 1;
1939 
1940 	/* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1941 	if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1942 		pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1943 		pci_read_config_byte(pdev, 0x8, &rev);
1944 		if (rev <= 0xa2)
1945 			check_maxtor = 1;
1946 	}
1947 
1948 	if (!check_maxtor)
1949 		return rc;
1950 
1951 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1952 
1953 	if (strncmp(model_num, "Maxtor", 6) == 0) {
1954 		ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT);
1955 		ata_dev_notice(dev, "Disabling SWNCQ mode (depth %x)\n",
1956 			       sdev->queue_depth);
1957 	}
1958 
1959 	return rc;
1960 }
1961 
1962 static int nv_swncq_port_start(struct ata_port *ap)
1963 {
1964 	struct device *dev = ap->host->dev;
1965 	void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1966 	struct nv_swncq_port_priv *pp;
1967 	int rc;
1968 
1969 	/* we might fallback to bmdma, allocate bmdma resources */
1970 	rc = ata_bmdma_port_start(ap);
1971 	if (rc)
1972 		return rc;
1973 
1974 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1975 	if (!pp)
1976 		return -ENOMEM;
1977 
1978 	pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1979 				      &pp->prd_dma, GFP_KERNEL);
1980 	if (!pp->prd)
1981 		return -ENOMEM;
1982 	memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
1983 
1984 	ap->private_data = pp;
1985 	pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1986 	pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1987 	pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
1988 
1989 	return 0;
1990 }
1991 
1992 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
1993 {
1994 	if (qc->tf.protocol != ATA_PROT_NCQ) {
1995 		ata_bmdma_qc_prep(qc);
1996 		return;
1997 	}
1998 
1999 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2000 		return;
2001 
2002 	nv_swncq_fill_sg(qc);
2003 }
2004 
2005 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2006 {
2007 	struct ata_port *ap = qc->ap;
2008 	struct scatterlist *sg;
2009 	struct nv_swncq_port_priv *pp = ap->private_data;
2010 	struct ata_bmdma_prd *prd;
2011 	unsigned int si, idx;
2012 
2013 	prd = pp->prd + ATA_MAX_PRD * qc->tag;
2014 
2015 	idx = 0;
2016 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2017 		u32 addr, offset;
2018 		u32 sg_len, len;
2019 
2020 		addr = (u32)sg_dma_address(sg);
2021 		sg_len = sg_dma_len(sg);
2022 
2023 		while (sg_len) {
2024 			offset = addr & 0xffff;
2025 			len = sg_len;
2026 			if ((offset + sg_len) > 0x10000)
2027 				len = 0x10000 - offset;
2028 
2029 			prd[idx].addr = cpu_to_le32(addr);
2030 			prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2031 
2032 			idx++;
2033 			sg_len -= len;
2034 			addr += len;
2035 		}
2036 	}
2037 
2038 	prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2039 }
2040 
2041 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2042 					  struct ata_queued_cmd *qc)
2043 {
2044 	struct nv_swncq_port_priv *pp = ap->private_data;
2045 
2046 	if (qc == NULL)
2047 		return 0;
2048 
2049 	DPRINTK("Enter\n");
2050 
2051 	writel((1 << qc->tag), pp->sactive_block);
2052 	pp->last_issue_tag = qc->tag;
2053 	pp->dhfis_bits &= ~(1 << qc->tag);
2054 	pp->dmafis_bits &= ~(1 << qc->tag);
2055 	pp->qc_active |= (0x1 << qc->tag);
2056 
2057 	ap->ops->sff_tf_load(ap, &qc->tf);	 /* load tf registers */
2058 	ap->ops->sff_exec_command(ap, &qc->tf);
2059 
2060 	DPRINTK("Issued tag %u\n", qc->tag);
2061 
2062 	return 0;
2063 }
2064 
2065 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2066 {
2067 	struct ata_port *ap = qc->ap;
2068 	struct nv_swncq_port_priv *pp = ap->private_data;
2069 
2070 	if (qc->tf.protocol != ATA_PROT_NCQ)
2071 		return ata_bmdma_qc_issue(qc);
2072 
2073 	DPRINTK("Enter\n");
2074 
2075 	if (!pp->qc_active)
2076 		nv_swncq_issue_atacmd(ap, qc);
2077 	else
2078 		nv_swncq_qc_to_dq(ap, qc);	/* add qc to defer queue */
2079 
2080 	return 0;
2081 }
2082 
2083 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2084 {
2085 	u32 serror;
2086 	struct ata_eh_info *ehi = &ap->link.eh_info;
2087 
2088 	ata_ehi_clear_desc(ehi);
2089 
2090 	/* AHCI needs SError cleared; otherwise, it might lock up */
2091 	sata_scr_read(&ap->link, SCR_ERROR, &serror);
2092 	sata_scr_write(&ap->link, SCR_ERROR, serror);
2093 
2094 	/* analyze @irq_stat */
2095 	if (fis & NV_SWNCQ_IRQ_ADDED)
2096 		ata_ehi_push_desc(ehi, "hot plug");
2097 	else if (fis & NV_SWNCQ_IRQ_REMOVED)
2098 		ata_ehi_push_desc(ehi, "hot unplug");
2099 
2100 	ata_ehi_hotplugged(ehi);
2101 
2102 	/* okay, let's hand over to EH */
2103 	ehi->serror |= serror;
2104 
2105 	ata_port_freeze(ap);
2106 }
2107 
2108 static int nv_swncq_sdbfis(struct ata_port *ap)
2109 {
2110 	struct ata_queued_cmd *qc;
2111 	struct nv_swncq_port_priv *pp = ap->private_data;
2112 	struct ata_eh_info *ehi = &ap->link.eh_info;
2113 	u32 sactive;
2114 	u32 done_mask;
2115 	u8 host_stat;
2116 	u8 lack_dhfis = 0;
2117 
2118 	host_stat = ap->ops->bmdma_status(ap);
2119 	if (unlikely(host_stat & ATA_DMA_ERR)) {
2120 		/* error when transferring data to/from memory */
2121 		ata_ehi_clear_desc(ehi);
2122 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2123 		ehi->err_mask |= AC_ERR_HOST_BUS;
2124 		ehi->action |= ATA_EH_RESET;
2125 		return -EINVAL;
2126 	}
2127 
2128 	ap->ops->sff_irq_clear(ap);
2129 	__ata_bmdma_stop(ap);
2130 
2131 	sactive = readl(pp->sactive_block);
2132 	done_mask = pp->qc_active ^ sactive;
2133 
2134 	pp->qc_active &= ~done_mask;
2135 	pp->dhfis_bits &= ~done_mask;
2136 	pp->dmafis_bits &= ~done_mask;
2137 	pp->sdbfis_bits |= done_mask;
2138 	ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2139 
2140 	if (!ap->qc_active) {
2141 		DPRINTK("over\n");
2142 		nv_swncq_pp_reinit(ap);
2143 		return 0;
2144 	}
2145 
2146 	if (pp->qc_active & pp->dhfis_bits)
2147 		return 0;
2148 
2149 	if ((pp->ncq_flags & ncq_saw_backout) ||
2150 	    (pp->qc_active ^ pp->dhfis_bits))
2151 		/* if the controller can't get a device to host register FIS,
2152 		 * The driver needs to reissue the new command.
2153 		 */
2154 		lack_dhfis = 1;
2155 
2156 	DPRINTK("id 0x%x QC: qc_active 0x%x,"
2157 		"SWNCQ:qc_active 0x%X defer_bits %X "
2158 		"dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2159 		ap->print_id, ap->qc_active, pp->qc_active,
2160 		pp->defer_queue.defer_bits, pp->dhfis_bits,
2161 		pp->dmafis_bits, pp->last_issue_tag);
2162 
2163 	nv_swncq_fis_reinit(ap);
2164 
2165 	if (lack_dhfis) {
2166 		qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2167 		nv_swncq_issue_atacmd(ap, qc);
2168 		return 0;
2169 	}
2170 
2171 	if (pp->defer_queue.defer_bits) {
2172 		/* send deferral queue command */
2173 		qc = nv_swncq_qc_from_dq(ap);
2174 		WARN_ON(qc == NULL);
2175 		nv_swncq_issue_atacmd(ap, qc);
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 static inline u32 nv_swncq_tag(struct ata_port *ap)
2182 {
2183 	struct nv_swncq_port_priv *pp = ap->private_data;
2184 	u32 tag;
2185 
2186 	tag = readb(pp->tag_block) >> 2;
2187 	return (tag & 0x1f);
2188 }
2189 
2190 static void nv_swncq_dmafis(struct ata_port *ap)
2191 {
2192 	struct ata_queued_cmd *qc;
2193 	unsigned int rw;
2194 	u8 dmactl;
2195 	u32 tag;
2196 	struct nv_swncq_port_priv *pp = ap->private_data;
2197 
2198 	__ata_bmdma_stop(ap);
2199 	tag = nv_swncq_tag(ap);
2200 
2201 	DPRINTK("dma setup tag 0x%x\n", tag);
2202 	qc = ata_qc_from_tag(ap, tag);
2203 
2204 	if (unlikely(!qc))
2205 		return;
2206 
2207 	rw = qc->tf.flags & ATA_TFLAG_WRITE;
2208 
2209 	/* load PRD table addr. */
2210 	iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2211 		  ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2212 
2213 	/* specify data direction, triple-check start bit is clear */
2214 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2215 	dmactl &= ~ATA_DMA_WR;
2216 	if (!rw)
2217 		dmactl |= ATA_DMA_WR;
2218 
2219 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2220 }
2221 
2222 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2223 {
2224 	struct nv_swncq_port_priv *pp = ap->private_data;
2225 	struct ata_queued_cmd *qc;
2226 	struct ata_eh_info *ehi = &ap->link.eh_info;
2227 	u32 serror;
2228 	u8 ata_stat;
2229 
2230 	ata_stat = ap->ops->sff_check_status(ap);
2231 	nv_swncq_irq_clear(ap, fis);
2232 	if (!fis)
2233 		return;
2234 
2235 	if (ap->pflags & ATA_PFLAG_FROZEN)
2236 		return;
2237 
2238 	if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2239 		nv_swncq_hotplug(ap, fis);
2240 		return;
2241 	}
2242 
2243 	if (!pp->qc_active)
2244 		return;
2245 
2246 	if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2247 		return;
2248 	ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2249 
2250 	if (ata_stat & ATA_ERR) {
2251 		ata_ehi_clear_desc(ehi);
2252 		ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2253 		ehi->err_mask |= AC_ERR_DEV;
2254 		ehi->serror |= serror;
2255 		ehi->action |= ATA_EH_RESET;
2256 		ata_port_freeze(ap);
2257 		return;
2258 	}
2259 
2260 	if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2261 		/* If the IRQ is backout, driver must issue
2262 		 * the new command again some time later.
2263 		 */
2264 		pp->ncq_flags |= ncq_saw_backout;
2265 	}
2266 
2267 	if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2268 		pp->ncq_flags |= ncq_saw_sdb;
2269 		DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2270 			"dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2271 			ap->print_id, pp->qc_active, pp->dhfis_bits,
2272 			pp->dmafis_bits, readl(pp->sactive_block));
2273 		if (nv_swncq_sdbfis(ap) < 0)
2274 			goto irq_error;
2275 	}
2276 
2277 	if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2278 		/* The interrupt indicates the new command
2279 		 * was transmitted correctly to the drive.
2280 		 */
2281 		pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2282 		pp->ncq_flags |= ncq_saw_d2h;
2283 		if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2284 			ata_ehi_push_desc(ehi, "illegal fis transaction");
2285 			ehi->err_mask |= AC_ERR_HSM;
2286 			ehi->action |= ATA_EH_RESET;
2287 			goto irq_error;
2288 		}
2289 
2290 		if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2291 		    !(pp->ncq_flags & ncq_saw_dmas)) {
2292 			ata_stat = ap->ops->sff_check_status(ap);
2293 			if (ata_stat & ATA_BUSY)
2294 				goto irq_exit;
2295 
2296 			if (pp->defer_queue.defer_bits) {
2297 				DPRINTK("send next command\n");
2298 				qc = nv_swncq_qc_from_dq(ap);
2299 				nv_swncq_issue_atacmd(ap, qc);
2300 			}
2301 		}
2302 	}
2303 
2304 	if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2305 		/* program the dma controller with appropriate PRD buffers
2306 		 * and start the DMA transfer for requested command.
2307 		 */
2308 		pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2309 		pp->ncq_flags |= ncq_saw_dmas;
2310 		nv_swncq_dmafis(ap);
2311 	}
2312 
2313 irq_exit:
2314 	return;
2315 irq_error:
2316 	ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2317 	ata_port_freeze(ap);
2318 	return;
2319 }
2320 
2321 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2322 {
2323 	struct ata_host *host = dev_instance;
2324 	unsigned int i;
2325 	unsigned int handled = 0;
2326 	unsigned long flags;
2327 	u32 irq_stat;
2328 
2329 	spin_lock_irqsave(&host->lock, flags);
2330 
2331 	irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2332 
2333 	for (i = 0; i < host->n_ports; i++) {
2334 		struct ata_port *ap = host->ports[i];
2335 
2336 		if (ap->link.sactive) {
2337 			nv_swncq_host_interrupt(ap, (u16)irq_stat);
2338 			handled = 1;
2339 		} else {
2340 			if (irq_stat)	/* reserve Hotplug */
2341 				nv_swncq_irq_clear(ap, 0xfff0);
2342 
2343 			handled += nv_host_intr(ap, (u8)irq_stat);
2344 		}
2345 		irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2346 	}
2347 
2348 	spin_unlock_irqrestore(&host->lock, flags);
2349 
2350 	return IRQ_RETVAL(handled);
2351 }
2352 
2353 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2354 {
2355 	const struct ata_port_info *ppi[] = { NULL, NULL };
2356 	struct nv_pi_priv *ipriv;
2357 	struct ata_host *host;
2358 	struct nv_host_priv *hpriv;
2359 	int rc;
2360 	u32 bar;
2361 	void __iomem *base;
2362 	unsigned long type = ent->driver_data;
2363 
2364         // Make sure this is a SATA controller by counting the number of bars
2365         // (NVIDIA SATA controllers will always have six bars).  Otherwise,
2366         // it's an IDE controller and we ignore it.
2367 	for (bar = 0; bar < 6; bar++)
2368 		if (pci_resource_start(pdev, bar) == 0)
2369 			return -ENODEV;
2370 
2371 	ata_print_version_once(&pdev->dev, DRV_VERSION);
2372 
2373 	rc = pcim_enable_device(pdev);
2374 	if (rc)
2375 		return rc;
2376 
2377 	/* determine type and allocate host */
2378 	if (type == CK804 && adma_enabled) {
2379 		dev_notice(&pdev->dev, "Using ADMA mode\n");
2380 		type = ADMA;
2381 	} else if (type == MCP5x && swncq_enabled) {
2382 		dev_notice(&pdev->dev, "Using SWNCQ mode\n");
2383 		type = SWNCQ;
2384 	}
2385 
2386 	ppi[0] = &nv_port_info[type];
2387 	ipriv = ppi[0]->private_data;
2388 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2389 	if (rc)
2390 		return rc;
2391 
2392 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2393 	if (!hpriv)
2394 		return -ENOMEM;
2395 	hpriv->type = type;
2396 	host->private_data = hpriv;
2397 
2398 	/* request and iomap NV_MMIO_BAR */
2399 	rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2400 	if (rc)
2401 		return rc;
2402 
2403 	/* configure SCR access */
2404 	base = host->iomap[NV_MMIO_BAR];
2405 	host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2406 	host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2407 
2408 	/* enable SATA space for CK804 */
2409 	if (type >= CK804) {
2410 		u8 regval;
2411 
2412 		pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2413 		regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2414 		pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2415 	}
2416 
2417 	/* init ADMA */
2418 	if (type == ADMA) {
2419 		rc = nv_adma_host_init(host);
2420 		if (rc)
2421 			return rc;
2422 	} else if (type == SWNCQ)
2423 		nv_swncq_host_init(host);
2424 
2425 	if (msi_enabled) {
2426 		dev_notice(&pdev->dev, "Using MSI\n");
2427 		pci_enable_msi(pdev);
2428 	}
2429 
2430 	pci_set_master(pdev);
2431 	return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht);
2432 }
2433 
2434 #ifdef CONFIG_PM
2435 static int nv_pci_device_resume(struct pci_dev *pdev)
2436 {
2437 	struct ata_host *host = pci_get_drvdata(pdev);
2438 	struct nv_host_priv *hpriv = host->private_data;
2439 	int rc;
2440 
2441 	rc = ata_pci_device_do_resume(pdev);
2442 	if (rc)
2443 		return rc;
2444 
2445 	if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2446 		if (hpriv->type >= CK804) {
2447 			u8 regval;
2448 
2449 			pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2450 			regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2451 			pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2452 		}
2453 		if (hpriv->type == ADMA) {
2454 			u32 tmp32;
2455 			struct nv_adma_port_priv *pp;
2456 			/* enable/disable ADMA on the ports appropriately */
2457 			pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2458 
2459 			pp = host->ports[0]->private_data;
2460 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2461 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2462 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2463 			else
2464 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT0_EN |
2465 					   NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2466 			pp = host->ports[1]->private_data;
2467 			if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2468 				tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2469 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2470 			else
2471 				tmp32 |=  (NV_MCP_SATA_CFG_20_PORT1_EN |
2472 					   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2473 
2474 			pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2475 		}
2476 	}
2477 
2478 	ata_host_resume(host);
2479 
2480 	return 0;
2481 }
2482 #endif
2483 
2484 static void nv_ck804_host_stop(struct ata_host *host)
2485 {
2486 	struct pci_dev *pdev = to_pci_dev(host->dev);
2487 	u8 regval;
2488 
2489 	/* disable SATA space for CK804 */
2490 	pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2491 	regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2492 	pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2493 }
2494 
2495 static void nv_adma_host_stop(struct ata_host *host)
2496 {
2497 	struct pci_dev *pdev = to_pci_dev(host->dev);
2498 	u32 tmp32;
2499 
2500 	/* disable ADMA on the ports */
2501 	pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2502 	tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2503 		   NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2504 		   NV_MCP_SATA_CFG_20_PORT1_EN |
2505 		   NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2506 
2507 	pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2508 
2509 	nv_ck804_host_stop(host);
2510 }
2511 
2512 module_pci_driver(nv_pci_driver);
2513 
2514 module_param_named(adma, adma_enabled, bool, 0444);
2515 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2516 module_param_named(swncq, swncq_enabled, bool, 0444);
2517 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2518 module_param_named(msi, msi_enabled, bool, 0444);
2519 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");
2520