1 /* 2 * sata_nv.c - NVIDIA nForce SATA 3 * 4 * Copyright 2004 NVIDIA Corp. All rights reserved. 5 * Copyright 2004 Andrew Chew 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; see the file COPYING. If not, write to 20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * 23 * libata documentation is available via 'make {ps|pdf}docs', 24 * as Documentation/DocBook/libata.* 25 * 26 * No hardware documentation available outside of NVIDIA. 27 * This driver programs the NVIDIA SATA controller in a similar 28 * fashion as with other PCI IDE BMDMA controllers, with a few 29 * NV-specific details such as register offsets, SATA phy location, 30 * hotplug info, etc. 31 * 32 * CK804/MCP04 controllers support an alternate programming interface 33 * similar to the ADMA specification (with some modifications). 34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still 35 * sent through the legacy interface. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <linux/libata.h> 50 51 #define DRV_NAME "sata_nv" 52 #define DRV_VERSION "3.5" 53 54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL 55 56 enum { 57 NV_MMIO_BAR = 5, 58 59 NV_PORTS = 2, 60 NV_PIO_MASK = ATA_PIO4, 61 NV_MWDMA_MASK = ATA_MWDMA2, 62 NV_UDMA_MASK = ATA_UDMA6, 63 NV_PORT0_SCR_REG_OFFSET = 0x00, 64 NV_PORT1_SCR_REG_OFFSET = 0x40, 65 66 /* INT_STATUS/ENABLE */ 67 NV_INT_STATUS = 0x10, 68 NV_INT_ENABLE = 0x11, 69 NV_INT_STATUS_CK804 = 0x440, 70 NV_INT_ENABLE_CK804 = 0x441, 71 72 /* INT_STATUS/ENABLE bits */ 73 NV_INT_DEV = 0x01, 74 NV_INT_PM = 0x02, 75 NV_INT_ADDED = 0x04, 76 NV_INT_REMOVED = 0x08, 77 78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */ 79 80 NV_INT_ALL = 0x0f, 81 NV_INT_MASK = NV_INT_DEV | 82 NV_INT_ADDED | NV_INT_REMOVED, 83 84 /* INT_CONFIG */ 85 NV_INT_CONFIG = 0x12, 86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI 87 88 // For PCI config register 20 89 NV_MCP_SATA_CFG_20 = 0x50, 90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04, 91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17), 92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16), 93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14), 94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12), 95 96 NV_ADMA_MAX_CPBS = 32, 97 NV_ADMA_CPB_SZ = 128, 98 NV_ADMA_APRD_SZ = 16, 99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) / 100 NV_ADMA_APRD_SZ, 101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5, 102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ, 103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS * 104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ), 105 106 /* BAR5 offset to ADMA general registers */ 107 NV_ADMA_GEN = 0x400, 108 NV_ADMA_GEN_CTL = 0x00, 109 NV_ADMA_NOTIFIER_CLEAR = 0x30, 110 111 /* BAR5 offset to ADMA ports */ 112 NV_ADMA_PORT = 0x480, 113 114 /* size of ADMA port register space */ 115 NV_ADMA_PORT_SIZE = 0x100, 116 117 /* ADMA port registers */ 118 NV_ADMA_CTL = 0x40, 119 NV_ADMA_CPB_COUNT = 0x42, 120 NV_ADMA_NEXT_CPB_IDX = 0x43, 121 NV_ADMA_STAT = 0x44, 122 NV_ADMA_CPB_BASE_LOW = 0x48, 123 NV_ADMA_CPB_BASE_HIGH = 0x4C, 124 NV_ADMA_APPEND = 0x50, 125 NV_ADMA_NOTIFIER = 0x68, 126 NV_ADMA_NOTIFIER_ERROR = 0x6C, 127 128 /* NV_ADMA_CTL register bits */ 129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0), 130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5), 131 NV_ADMA_CTL_GO = (1 << 7), 132 NV_ADMA_CTL_AIEN = (1 << 8), 133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11), 134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12), 135 136 /* CPB response flag bits */ 137 NV_CPB_RESP_DONE = (1 << 0), 138 NV_CPB_RESP_ATA_ERR = (1 << 3), 139 NV_CPB_RESP_CMD_ERR = (1 << 4), 140 NV_CPB_RESP_CPB_ERR = (1 << 7), 141 142 /* CPB control flag bits */ 143 NV_CPB_CTL_CPB_VALID = (1 << 0), 144 NV_CPB_CTL_QUEUE = (1 << 1), 145 NV_CPB_CTL_APRD_VALID = (1 << 2), 146 NV_CPB_CTL_IEN = (1 << 3), 147 NV_CPB_CTL_FPDMA = (1 << 4), 148 149 /* APRD flags */ 150 NV_APRD_WRITE = (1 << 1), 151 NV_APRD_END = (1 << 2), 152 NV_APRD_CONT = (1 << 3), 153 154 /* NV_ADMA_STAT flags */ 155 NV_ADMA_STAT_TIMEOUT = (1 << 0), 156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1), 157 NV_ADMA_STAT_HOTPLUG = (1 << 2), 158 NV_ADMA_STAT_CPBERR = (1 << 4), 159 NV_ADMA_STAT_SERROR = (1 << 5), 160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6), 161 NV_ADMA_STAT_IDLE = (1 << 8), 162 NV_ADMA_STAT_LEGACY = (1 << 9), 163 NV_ADMA_STAT_STOPPED = (1 << 10), 164 NV_ADMA_STAT_DONE = (1 << 12), 165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR | 166 NV_ADMA_STAT_TIMEOUT, 167 168 /* port flags */ 169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0), 170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1), 171 172 /* MCP55 reg offset */ 173 NV_CTL_MCP55 = 0x400, 174 NV_INT_STATUS_MCP55 = 0x440, 175 NV_INT_ENABLE_MCP55 = 0x444, 176 NV_NCQ_REG_MCP55 = 0x448, 177 178 /* MCP55 */ 179 NV_INT_ALL_MCP55 = 0xffff, 180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */ 181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd, 182 183 /* SWNCQ ENABLE BITS*/ 184 NV_CTL_PRI_SWNCQ = 0x02, 185 NV_CTL_SEC_SWNCQ = 0x04, 186 187 /* SW NCQ status bits*/ 188 NV_SWNCQ_IRQ_DEV = (1 << 0), 189 NV_SWNCQ_IRQ_PM = (1 << 1), 190 NV_SWNCQ_IRQ_ADDED = (1 << 2), 191 NV_SWNCQ_IRQ_REMOVED = (1 << 3), 192 193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4), 194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5), 195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6), 196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7), 197 198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED | 199 NV_SWNCQ_IRQ_REMOVED, 200 201 }; 202 203 /* ADMA Physical Region Descriptor - one SG segment */ 204 struct nv_adma_prd { 205 __le64 addr; 206 __le32 len; 207 u8 flags; 208 u8 packet_len; 209 __le16 reserved; 210 }; 211 212 enum nv_adma_regbits { 213 CMDEND = (1 << 15), /* end of command list */ 214 WNB = (1 << 14), /* wait-not-BSY */ 215 IGN = (1 << 13), /* ignore this entry */ 216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */ 217 DA2 = (1 << (2 + 8)), 218 DA1 = (1 << (1 + 8)), 219 DA0 = (1 << (0 + 8)), 220 }; 221 222 /* ADMA Command Parameter Block 223 The first 5 SG segments are stored inside the Command Parameter Block itself. 224 If there are more than 5 segments the remainder are stored in a separate 225 memory area indicated by next_aprd. */ 226 struct nv_adma_cpb { 227 u8 resp_flags; /* 0 */ 228 u8 reserved1; /* 1 */ 229 u8 ctl_flags; /* 2 */ 230 /* len is length of taskfile in 64 bit words */ 231 u8 len; /* 3 */ 232 u8 tag; /* 4 */ 233 u8 next_cpb_idx; /* 5 */ 234 __le16 reserved2; /* 6-7 */ 235 __le16 tf[12]; /* 8-31 */ 236 struct nv_adma_prd aprd[5]; /* 32-111 */ 237 __le64 next_aprd; /* 112-119 */ 238 __le64 reserved3; /* 120-127 */ 239 }; 240 241 242 struct nv_adma_port_priv { 243 struct nv_adma_cpb *cpb; 244 dma_addr_t cpb_dma; 245 struct nv_adma_prd *aprd; 246 dma_addr_t aprd_dma; 247 void __iomem *ctl_block; 248 void __iomem *gen_block; 249 void __iomem *notifier_clear_block; 250 u64 adma_dma_mask; 251 u8 flags; 252 int last_issue_ncq; 253 }; 254 255 struct nv_host_priv { 256 unsigned long type; 257 }; 258 259 struct defer_queue { 260 u32 defer_bits; 261 unsigned int head; 262 unsigned int tail; 263 unsigned int tag[ATA_MAX_QUEUE]; 264 }; 265 266 enum ncq_saw_flag_list { 267 ncq_saw_d2h = (1U << 0), 268 ncq_saw_dmas = (1U << 1), 269 ncq_saw_sdb = (1U << 2), 270 ncq_saw_backout = (1U << 3), 271 }; 272 273 struct nv_swncq_port_priv { 274 struct ata_prd *prd; /* our SG list */ 275 dma_addr_t prd_dma; /* and its DMA mapping */ 276 void __iomem *sactive_block; 277 void __iomem *irq_block; 278 void __iomem *tag_block; 279 u32 qc_active; 280 281 unsigned int last_issue_tag; 282 283 /* fifo circular queue to store deferral command */ 284 struct defer_queue defer_queue; 285 286 /* for NCQ interrupt analysis */ 287 u32 dhfis_bits; 288 u32 dmafis_bits; 289 u32 sdbfis_bits; 290 291 unsigned int ncq_flags; 292 }; 293 294 295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT))))) 296 297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 298 #ifdef CONFIG_PM 299 static int nv_pci_device_resume(struct pci_dev *pdev); 300 #endif 301 static void nv_ck804_host_stop(struct ata_host *host); 302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance); 303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance); 304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance); 305 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val); 306 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val); 307 308 static int nv_hardreset(struct ata_link *link, unsigned int *class, 309 unsigned long deadline); 310 static void nv_nf2_freeze(struct ata_port *ap); 311 static void nv_nf2_thaw(struct ata_port *ap); 312 static void nv_ck804_freeze(struct ata_port *ap); 313 static void nv_ck804_thaw(struct ata_port *ap); 314 static int nv_adma_slave_config(struct scsi_device *sdev); 315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc); 316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc); 317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc); 318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance); 319 static void nv_adma_irq_clear(struct ata_port *ap); 320 static int nv_adma_port_start(struct ata_port *ap); 321 static void nv_adma_port_stop(struct ata_port *ap); 322 #ifdef CONFIG_PM 323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg); 324 static int nv_adma_port_resume(struct ata_port *ap); 325 #endif 326 static void nv_adma_freeze(struct ata_port *ap); 327 static void nv_adma_thaw(struct ata_port *ap); 328 static void nv_adma_error_handler(struct ata_port *ap); 329 static void nv_adma_host_stop(struct ata_host *host); 330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc); 331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf); 332 333 static void nv_mcp55_thaw(struct ata_port *ap); 334 static void nv_mcp55_freeze(struct ata_port *ap); 335 static void nv_swncq_error_handler(struct ata_port *ap); 336 static int nv_swncq_slave_config(struct scsi_device *sdev); 337 static int nv_swncq_port_start(struct ata_port *ap); 338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc); 339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc); 340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc); 341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis); 342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance); 343 #ifdef CONFIG_PM 344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg); 345 static int nv_swncq_port_resume(struct ata_port *ap); 346 #endif 347 348 enum nv_host_type 349 { 350 GENERIC, 351 NFORCE2, 352 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */ 353 CK804, 354 ADMA, 355 MCP5x, 356 SWNCQ, 357 }; 358 359 static const struct pci_device_id nv_pci_tbl[] = { 360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 }, 361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 }, 362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 }, 363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 }, 364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 }, 365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 }, 366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 }, 367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x }, 368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x }, 369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x }, 370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x }, 371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC }, 372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC }, 373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC }, 374 375 { } /* terminate list */ 376 }; 377 378 static struct pci_driver nv_pci_driver = { 379 .name = DRV_NAME, 380 .id_table = nv_pci_tbl, 381 .probe = nv_init_one, 382 #ifdef CONFIG_PM 383 .suspend = ata_pci_device_suspend, 384 .resume = nv_pci_device_resume, 385 #endif 386 .remove = ata_pci_remove_one, 387 }; 388 389 static struct scsi_host_template nv_sht = { 390 ATA_BMDMA_SHT(DRV_NAME), 391 }; 392 393 static struct scsi_host_template nv_adma_sht = { 394 ATA_NCQ_SHT(DRV_NAME), 395 .can_queue = NV_ADMA_MAX_CPBS, 396 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN, 397 .dma_boundary = NV_ADMA_DMA_BOUNDARY, 398 .slave_configure = nv_adma_slave_config, 399 }; 400 401 static struct scsi_host_template nv_swncq_sht = { 402 ATA_NCQ_SHT(DRV_NAME), 403 .can_queue = ATA_MAX_QUEUE, 404 .sg_tablesize = LIBATA_MAX_PRD, 405 .dma_boundary = ATA_DMA_BOUNDARY, 406 .slave_configure = nv_swncq_slave_config, 407 }; 408 409 /* 410 * NV SATA controllers have various different problems with hardreset 411 * protocol depending on the specific controller and device. 412 * 413 * GENERIC: 414 * 415 * bko11195 reports that link doesn't come online after hardreset on 416 * generic nv's and there have been several other similar reports on 417 * linux-ide. 418 * 419 * bko12351#c23 reports that warmplug on MCP61 doesn't work with 420 * softreset. 421 * 422 * NF2/3: 423 * 424 * bko3352 reports nf2/3 controllers can't determine device signature 425 * reliably after hardreset. The following thread reports detection 426 * failure on cold boot with the standard debouncing timing. 427 * 428 * http://thread.gmane.org/gmane.linux.ide/34098 429 * 430 * bko12176 reports that hardreset fails to bring up the link during 431 * boot on nf2. 432 * 433 * CK804: 434 * 435 * For initial probing after boot and hot plugging, hardreset mostly 436 * works fine on CK804 but curiously, reprobing on the initial port 437 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg 438 * FIS in somewhat undeterministic way. 439 * 440 * SWNCQ: 441 * 442 * bko12351 reports that when SWNCQ is enabled, for hotplug to work, 443 * hardreset should be used and hardreset can't report proper 444 * signature, which suggests that mcp5x is closer to nf2 as long as 445 * reset quirkiness is concerned. 446 * 447 * bko12703 reports that boot probing fails for intel SSD with 448 * hardreset. Link fails to come online. Softreset works fine. 449 * 450 * The failures are varied but the following patterns seem true for 451 * all flavors. 452 * 453 * - Softreset during boot always works. 454 * 455 * - Hardreset during boot sometimes fails to bring up the link on 456 * certain comibnations and device signature acquisition is 457 * unreliable. 458 * 459 * - Hardreset is often necessary after hotplug. 460 * 461 * So, preferring softreset for boot probing and error handling (as 462 * hardreset might bring down the link) but using hardreset for 463 * post-boot probing should work around the above issues in most 464 * cases. Define nv_hardreset() which only kicks in for post-boot 465 * probing and use it for all variants. 466 */ 467 static struct ata_port_operations nv_generic_ops = { 468 .inherits = &ata_bmdma_port_ops, 469 .lost_interrupt = ATA_OP_NULL, 470 .scr_read = nv_scr_read, 471 .scr_write = nv_scr_write, 472 .hardreset = nv_hardreset, 473 }; 474 475 static struct ata_port_operations nv_nf2_ops = { 476 .inherits = &nv_generic_ops, 477 .freeze = nv_nf2_freeze, 478 .thaw = nv_nf2_thaw, 479 }; 480 481 static struct ata_port_operations nv_ck804_ops = { 482 .inherits = &nv_generic_ops, 483 .freeze = nv_ck804_freeze, 484 .thaw = nv_ck804_thaw, 485 .host_stop = nv_ck804_host_stop, 486 }; 487 488 static struct ata_port_operations nv_adma_ops = { 489 .inherits = &nv_ck804_ops, 490 491 .check_atapi_dma = nv_adma_check_atapi_dma, 492 .sff_tf_read = nv_adma_tf_read, 493 .qc_defer = ata_std_qc_defer, 494 .qc_prep = nv_adma_qc_prep, 495 .qc_issue = nv_adma_qc_issue, 496 .sff_irq_clear = nv_adma_irq_clear, 497 498 .freeze = nv_adma_freeze, 499 .thaw = nv_adma_thaw, 500 .error_handler = nv_adma_error_handler, 501 .post_internal_cmd = nv_adma_post_internal_cmd, 502 503 .port_start = nv_adma_port_start, 504 .port_stop = nv_adma_port_stop, 505 #ifdef CONFIG_PM 506 .port_suspend = nv_adma_port_suspend, 507 .port_resume = nv_adma_port_resume, 508 #endif 509 .host_stop = nv_adma_host_stop, 510 }; 511 512 static struct ata_port_operations nv_swncq_ops = { 513 .inherits = &nv_generic_ops, 514 515 .qc_defer = ata_std_qc_defer, 516 .qc_prep = nv_swncq_qc_prep, 517 .qc_issue = nv_swncq_qc_issue, 518 519 .freeze = nv_mcp55_freeze, 520 .thaw = nv_mcp55_thaw, 521 .error_handler = nv_swncq_error_handler, 522 523 #ifdef CONFIG_PM 524 .port_suspend = nv_swncq_port_suspend, 525 .port_resume = nv_swncq_port_resume, 526 #endif 527 .port_start = nv_swncq_port_start, 528 }; 529 530 struct nv_pi_priv { 531 irq_handler_t irq_handler; 532 struct scsi_host_template *sht; 533 }; 534 535 #define NV_PI_PRIV(_irq_handler, _sht) \ 536 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht } 537 538 static const struct ata_port_info nv_port_info[] = { 539 /* generic */ 540 { 541 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 542 .pio_mask = NV_PIO_MASK, 543 .mwdma_mask = NV_MWDMA_MASK, 544 .udma_mask = NV_UDMA_MASK, 545 .port_ops = &nv_generic_ops, 546 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 547 }, 548 /* nforce2/3 */ 549 { 550 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 551 .pio_mask = NV_PIO_MASK, 552 .mwdma_mask = NV_MWDMA_MASK, 553 .udma_mask = NV_UDMA_MASK, 554 .port_ops = &nv_nf2_ops, 555 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht), 556 }, 557 /* ck804 */ 558 { 559 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 560 .pio_mask = NV_PIO_MASK, 561 .mwdma_mask = NV_MWDMA_MASK, 562 .udma_mask = NV_UDMA_MASK, 563 .port_ops = &nv_ck804_ops, 564 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht), 565 }, 566 /* ADMA */ 567 { 568 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 569 ATA_FLAG_MMIO | ATA_FLAG_NCQ, 570 .pio_mask = NV_PIO_MASK, 571 .mwdma_mask = NV_MWDMA_MASK, 572 .udma_mask = NV_UDMA_MASK, 573 .port_ops = &nv_adma_ops, 574 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht), 575 }, 576 /* MCP5x */ 577 { 578 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 579 .pio_mask = NV_PIO_MASK, 580 .mwdma_mask = NV_MWDMA_MASK, 581 .udma_mask = NV_UDMA_MASK, 582 .port_ops = &nv_generic_ops, 583 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 584 }, 585 /* SWNCQ */ 586 { 587 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 588 ATA_FLAG_NCQ, 589 .pio_mask = NV_PIO_MASK, 590 .mwdma_mask = NV_MWDMA_MASK, 591 .udma_mask = NV_UDMA_MASK, 592 .port_ops = &nv_swncq_ops, 593 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht), 594 }, 595 }; 596 597 MODULE_AUTHOR("NVIDIA"); 598 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller"); 599 MODULE_LICENSE("GPL"); 600 MODULE_DEVICE_TABLE(pci, nv_pci_tbl); 601 MODULE_VERSION(DRV_VERSION); 602 603 static int adma_enabled; 604 static int swncq_enabled = 1; 605 static int msi_enabled; 606 607 static void nv_adma_register_mode(struct ata_port *ap) 608 { 609 struct nv_adma_port_priv *pp = ap->private_data; 610 void __iomem *mmio = pp->ctl_block; 611 u16 tmp, status; 612 int count = 0; 613 614 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 615 return; 616 617 status = readw(mmio + NV_ADMA_STAT); 618 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) { 619 ndelay(50); 620 status = readw(mmio + NV_ADMA_STAT); 621 count++; 622 } 623 if (count == 20) 624 ata_port_printk(ap, KERN_WARNING, 625 "timeout waiting for ADMA IDLE, stat=0x%hx\n", 626 status); 627 628 tmp = readw(mmio + NV_ADMA_CTL); 629 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 630 631 count = 0; 632 status = readw(mmio + NV_ADMA_STAT); 633 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) { 634 ndelay(50); 635 status = readw(mmio + NV_ADMA_STAT); 636 count++; 637 } 638 if (count == 20) 639 ata_port_printk(ap, KERN_WARNING, 640 "timeout waiting for ADMA LEGACY, stat=0x%hx\n", 641 status); 642 643 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 644 } 645 646 static void nv_adma_mode(struct ata_port *ap) 647 { 648 struct nv_adma_port_priv *pp = ap->private_data; 649 void __iomem *mmio = pp->ctl_block; 650 u16 tmp, status; 651 int count = 0; 652 653 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) 654 return; 655 656 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 657 658 tmp = readw(mmio + NV_ADMA_CTL); 659 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 660 661 status = readw(mmio + NV_ADMA_STAT); 662 while (((status & NV_ADMA_STAT_LEGACY) || 663 !(status & NV_ADMA_STAT_IDLE)) && count < 20) { 664 ndelay(50); 665 status = readw(mmio + NV_ADMA_STAT); 666 count++; 667 } 668 if (count == 20) 669 ata_port_printk(ap, KERN_WARNING, 670 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n", 671 status); 672 673 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE; 674 } 675 676 static int nv_adma_slave_config(struct scsi_device *sdev) 677 { 678 struct ata_port *ap = ata_shost_to_port(sdev->host); 679 struct nv_adma_port_priv *pp = ap->private_data; 680 struct nv_adma_port_priv *port0, *port1; 681 struct scsi_device *sdev0, *sdev1; 682 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 683 unsigned long segment_boundary, flags; 684 unsigned short sg_tablesize; 685 int rc; 686 int adma_enable; 687 u32 current_reg, new_reg, config_mask; 688 689 rc = ata_scsi_slave_config(sdev); 690 691 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 692 /* Not a proper libata device, ignore */ 693 return rc; 694 695 spin_lock_irqsave(ap->lock, flags); 696 697 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) { 698 /* 699 * NVIDIA reports that ADMA mode does not support ATAPI commands. 700 * Therefore ATAPI commands are sent through the legacy interface. 701 * However, the legacy interface only supports 32-bit DMA. 702 * Restrict DMA parameters as required by the legacy interface 703 * when an ATAPI device is connected. 704 */ 705 segment_boundary = ATA_DMA_BOUNDARY; 706 /* Subtract 1 since an extra entry may be needed for padding, see 707 libata-scsi.c */ 708 sg_tablesize = LIBATA_MAX_PRD - 1; 709 710 /* Since the legacy DMA engine is in use, we need to disable ADMA 711 on the port. */ 712 adma_enable = 0; 713 nv_adma_register_mode(ap); 714 } else { 715 segment_boundary = NV_ADMA_DMA_BOUNDARY; 716 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN; 717 adma_enable = 1; 718 } 719 720 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, ¤t_reg); 721 722 if (ap->port_no == 1) 723 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN | 724 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 725 else 726 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN | 727 NV_MCP_SATA_CFG_20_PORT0_PWB_EN; 728 729 if (adma_enable) { 730 new_reg = current_reg | config_mask; 731 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE; 732 } else { 733 new_reg = current_reg & ~config_mask; 734 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE; 735 } 736 737 if (current_reg != new_reg) 738 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg); 739 740 port0 = ap->host->ports[0]->private_data; 741 port1 = ap->host->ports[1]->private_data; 742 sdev0 = ap->host->ports[0]->link.device[0].sdev; 743 sdev1 = ap->host->ports[1]->link.device[0].sdev; 744 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 745 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) { 746 /** We have to set the DMA mask to 32-bit if either port is in 747 ATAPI mode, since they are on the same PCI device which is 748 used for DMA mapping. If we set the mask we also need to set 749 the bounce limit on both ports to ensure that the block 750 layer doesn't feed addresses that cause DMA mapping to 751 choke. If either SCSI device is not allocated yet, it's OK 752 since that port will discover its correct setting when it 753 does get allocated. 754 Note: Setting 32-bit mask should not fail. */ 755 if (sdev0) 756 blk_queue_bounce_limit(sdev0->request_queue, 757 ATA_DMA_MASK); 758 if (sdev1) 759 blk_queue_bounce_limit(sdev1->request_queue, 760 ATA_DMA_MASK); 761 762 pci_set_dma_mask(pdev, ATA_DMA_MASK); 763 } else { 764 /** This shouldn't fail as it was set to this value before */ 765 pci_set_dma_mask(pdev, pp->adma_dma_mask); 766 if (sdev0) 767 blk_queue_bounce_limit(sdev0->request_queue, 768 pp->adma_dma_mask); 769 if (sdev1) 770 blk_queue_bounce_limit(sdev1->request_queue, 771 pp->adma_dma_mask); 772 } 773 774 blk_queue_segment_boundary(sdev->request_queue, segment_boundary); 775 blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize); 776 ata_port_printk(ap, KERN_INFO, 777 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n", 778 (unsigned long long)*ap->host->dev->dma_mask, 779 segment_boundary, sg_tablesize); 780 781 spin_unlock_irqrestore(ap->lock, flags); 782 783 return rc; 784 } 785 786 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc) 787 { 788 struct nv_adma_port_priv *pp = qc->ap->private_data; 789 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 790 } 791 792 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 793 { 794 /* Other than when internal or pass-through commands are executed, 795 the only time this function will be called in ADMA mode will be 796 if a command fails. In the failure case we don't care about going 797 into register mode with ADMA commands pending, as the commands will 798 all shortly be aborted anyway. We assume that NCQ commands are not 799 issued via passthrough, which is the only way that switching into 800 ADMA mode could abort outstanding commands. */ 801 nv_adma_register_mode(ap); 802 803 ata_sff_tf_read(ap, tf); 804 } 805 806 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb) 807 { 808 unsigned int idx = 0; 809 810 if (tf->flags & ATA_TFLAG_ISADDR) { 811 if (tf->flags & ATA_TFLAG_LBA48) { 812 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB); 813 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect); 814 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal); 815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam); 816 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah); 817 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature); 818 } else 819 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB); 820 821 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect); 822 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal); 823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam); 824 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah); 825 } 826 827 if (tf->flags & ATA_TFLAG_DEVICE) 828 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device); 829 830 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND); 831 832 while (idx < 12) 833 cpb[idx++] = cpu_to_le16(IGN); 834 835 return idx; 836 } 837 838 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err) 839 { 840 struct nv_adma_port_priv *pp = ap->private_data; 841 u8 flags = pp->cpb[cpb_num].resp_flags; 842 843 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags); 844 845 if (unlikely((force_err || 846 flags & (NV_CPB_RESP_ATA_ERR | 847 NV_CPB_RESP_CMD_ERR | 848 NV_CPB_RESP_CPB_ERR)))) { 849 struct ata_eh_info *ehi = &ap->link.eh_info; 850 int freeze = 0; 851 852 ata_ehi_clear_desc(ehi); 853 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags); 854 if (flags & NV_CPB_RESP_ATA_ERR) { 855 ata_ehi_push_desc(ehi, "ATA error"); 856 ehi->err_mask |= AC_ERR_DEV; 857 } else if (flags & NV_CPB_RESP_CMD_ERR) { 858 ata_ehi_push_desc(ehi, "CMD error"); 859 ehi->err_mask |= AC_ERR_DEV; 860 } else if (flags & NV_CPB_RESP_CPB_ERR) { 861 ata_ehi_push_desc(ehi, "CPB error"); 862 ehi->err_mask |= AC_ERR_SYSTEM; 863 freeze = 1; 864 } else { 865 /* notifier error, but no error in CPB flags? */ 866 ata_ehi_push_desc(ehi, "unknown"); 867 ehi->err_mask |= AC_ERR_OTHER; 868 freeze = 1; 869 } 870 /* Kill all commands. EH will determine what actually failed. */ 871 if (freeze) 872 ata_port_freeze(ap); 873 else 874 ata_port_abort(ap); 875 return 1; 876 } 877 878 if (likely(flags & NV_CPB_RESP_DONE)) { 879 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num); 880 VPRINTK("CPB flags done, flags=0x%x\n", flags); 881 if (likely(qc)) { 882 DPRINTK("Completing qc from tag %d\n", cpb_num); 883 ata_qc_complete(qc); 884 } else { 885 struct ata_eh_info *ehi = &ap->link.eh_info; 886 /* Notifier bits set without a command may indicate the drive 887 is misbehaving. Raise host state machine violation on this 888 condition. */ 889 ata_port_printk(ap, KERN_ERR, 890 "notifier for tag %d with no cmd?\n", 891 cpb_num); 892 ehi->err_mask |= AC_ERR_HSM; 893 ehi->action |= ATA_EH_RESET; 894 ata_port_freeze(ap); 895 return 1; 896 } 897 } 898 return 0; 899 } 900 901 static int nv_host_intr(struct ata_port *ap, u8 irq_stat) 902 { 903 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 904 905 /* freeze if hotplugged */ 906 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) { 907 ata_port_freeze(ap); 908 return 1; 909 } 910 911 /* bail out if not our interrupt */ 912 if (!(irq_stat & NV_INT_DEV)) 913 return 0; 914 915 /* DEV interrupt w/ no active qc? */ 916 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 917 ata_sff_check_status(ap); 918 return 1; 919 } 920 921 /* handle interrupt */ 922 return ata_sff_host_intr(ap, qc); 923 } 924 925 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) 926 { 927 struct ata_host *host = dev_instance; 928 int i, handled = 0; 929 u32 notifier_clears[2]; 930 931 spin_lock(&host->lock); 932 933 for (i = 0; i < host->n_ports; i++) { 934 struct ata_port *ap = host->ports[i]; 935 notifier_clears[i] = 0; 936 937 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 938 struct nv_adma_port_priv *pp = ap->private_data; 939 void __iomem *mmio = pp->ctl_block; 940 u16 status; 941 u32 gen_ctl; 942 u32 notifier, notifier_error; 943 944 /* if ADMA is disabled, use standard ata interrupt handler */ 945 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 946 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 947 >> (NV_INT_PORT_SHIFT * i); 948 handled += nv_host_intr(ap, irq_stat); 949 continue; 950 } 951 952 /* if in ATA register mode, check for standard interrupts */ 953 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) { 954 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 955 >> (NV_INT_PORT_SHIFT * i); 956 if (ata_tag_valid(ap->link.active_tag)) 957 /** NV_INT_DEV indication seems unreliable at times 958 at least in ADMA mode. Force it on always when a 959 command is active, to prevent losing interrupts. */ 960 irq_stat |= NV_INT_DEV; 961 handled += nv_host_intr(ap, irq_stat); 962 } 963 964 notifier = readl(mmio + NV_ADMA_NOTIFIER); 965 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 966 notifier_clears[i] = notifier | notifier_error; 967 968 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 969 970 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier && 971 !notifier_error) 972 /* Nothing to do */ 973 continue; 974 975 status = readw(mmio + NV_ADMA_STAT); 976 977 /* Clear status. Ensure the controller sees the clearing before we start 978 looking at any of the CPB statuses, so that any CPB completions after 979 this point in the handler will raise another interrupt. */ 980 writew(status, mmio + NV_ADMA_STAT); 981 readw(mmio + NV_ADMA_STAT); /* flush posted write */ 982 rmb(); 983 984 handled++; /* irq handled if we got here */ 985 986 /* freeze if hotplugged or controller error */ 987 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG | 988 NV_ADMA_STAT_HOTUNPLUG | 989 NV_ADMA_STAT_TIMEOUT | 990 NV_ADMA_STAT_SERROR))) { 991 struct ata_eh_info *ehi = &ap->link.eh_info; 992 993 ata_ehi_clear_desc(ehi); 994 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status); 995 if (status & NV_ADMA_STAT_TIMEOUT) { 996 ehi->err_mask |= AC_ERR_SYSTEM; 997 ata_ehi_push_desc(ehi, "timeout"); 998 } else if (status & NV_ADMA_STAT_HOTPLUG) { 999 ata_ehi_hotplugged(ehi); 1000 ata_ehi_push_desc(ehi, "hotplug"); 1001 } else if (status & NV_ADMA_STAT_HOTUNPLUG) { 1002 ata_ehi_hotplugged(ehi); 1003 ata_ehi_push_desc(ehi, "hot unplug"); 1004 } else if (status & NV_ADMA_STAT_SERROR) { 1005 /* let libata analyze SError and figure out the cause */ 1006 ata_ehi_push_desc(ehi, "SError"); 1007 } else 1008 ata_ehi_push_desc(ehi, "unknown"); 1009 ata_port_freeze(ap); 1010 continue; 1011 } 1012 1013 if (status & (NV_ADMA_STAT_DONE | 1014 NV_ADMA_STAT_CPBERR | 1015 NV_ADMA_STAT_CMD_COMPLETE)) { 1016 u32 check_commands = notifier_clears[i]; 1017 int pos, error = 0; 1018 1019 if (status & NV_ADMA_STAT_CPBERR) { 1020 /* Check all active commands */ 1021 if (ata_tag_valid(ap->link.active_tag)) 1022 check_commands = 1 << 1023 ap->link.active_tag; 1024 else 1025 check_commands = ap-> 1026 link.sactive; 1027 } 1028 1029 /** Check CPBs for completed commands */ 1030 while ((pos = ffs(check_commands)) && !error) { 1031 pos--; 1032 error = nv_adma_check_cpb(ap, pos, 1033 notifier_error & (1 << pos)); 1034 check_commands &= ~(1 << pos); 1035 } 1036 } 1037 } 1038 } 1039 1040 if (notifier_clears[0] || notifier_clears[1]) { 1041 /* Note: Both notifier clear registers must be written 1042 if either is set, even if one is zero, according to NVIDIA. */ 1043 struct nv_adma_port_priv *pp = host->ports[0]->private_data; 1044 writel(notifier_clears[0], pp->notifier_clear_block); 1045 pp = host->ports[1]->private_data; 1046 writel(notifier_clears[1], pp->notifier_clear_block); 1047 } 1048 1049 spin_unlock(&host->lock); 1050 1051 return IRQ_RETVAL(handled); 1052 } 1053 1054 static void nv_adma_freeze(struct ata_port *ap) 1055 { 1056 struct nv_adma_port_priv *pp = ap->private_data; 1057 void __iomem *mmio = pp->ctl_block; 1058 u16 tmp; 1059 1060 nv_ck804_freeze(ap); 1061 1062 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1063 return; 1064 1065 /* clear any outstanding CK804 notifications */ 1066 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1067 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1068 1069 /* Disable interrupt */ 1070 tmp = readw(mmio + NV_ADMA_CTL); 1071 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1072 mmio + NV_ADMA_CTL); 1073 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1074 } 1075 1076 static void nv_adma_thaw(struct ata_port *ap) 1077 { 1078 struct nv_adma_port_priv *pp = ap->private_data; 1079 void __iomem *mmio = pp->ctl_block; 1080 u16 tmp; 1081 1082 nv_ck804_thaw(ap); 1083 1084 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1085 return; 1086 1087 /* Enable interrupt */ 1088 tmp = readw(mmio + NV_ADMA_CTL); 1089 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1090 mmio + NV_ADMA_CTL); 1091 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1092 } 1093 1094 static void nv_adma_irq_clear(struct ata_port *ap) 1095 { 1096 struct nv_adma_port_priv *pp = ap->private_data; 1097 void __iomem *mmio = pp->ctl_block; 1098 u32 notifier_clears[2]; 1099 1100 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 1101 ata_sff_irq_clear(ap); 1102 return; 1103 } 1104 1105 /* clear any outstanding CK804 notifications */ 1106 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1107 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1108 1109 /* clear ADMA status */ 1110 writew(0xffff, mmio + NV_ADMA_STAT); 1111 1112 /* clear notifiers - note both ports need to be written with 1113 something even though we are only clearing on one */ 1114 if (ap->port_no == 0) { 1115 notifier_clears[0] = 0xFFFFFFFF; 1116 notifier_clears[1] = 0; 1117 } else { 1118 notifier_clears[0] = 0; 1119 notifier_clears[1] = 0xFFFFFFFF; 1120 } 1121 pp = ap->host->ports[0]->private_data; 1122 writel(notifier_clears[0], pp->notifier_clear_block); 1123 pp = ap->host->ports[1]->private_data; 1124 writel(notifier_clears[1], pp->notifier_clear_block); 1125 } 1126 1127 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc) 1128 { 1129 struct nv_adma_port_priv *pp = qc->ap->private_data; 1130 1131 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 1132 ata_sff_post_internal_cmd(qc); 1133 } 1134 1135 static int nv_adma_port_start(struct ata_port *ap) 1136 { 1137 struct device *dev = ap->host->dev; 1138 struct nv_adma_port_priv *pp; 1139 int rc; 1140 void *mem; 1141 dma_addr_t mem_dma; 1142 void __iomem *mmio; 1143 struct pci_dev *pdev = to_pci_dev(dev); 1144 u16 tmp; 1145 1146 VPRINTK("ENTER\n"); 1147 1148 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and 1149 pad buffers */ 1150 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1151 if (rc) 1152 return rc; 1153 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 1154 if (rc) 1155 return rc; 1156 1157 rc = ata_port_start(ap); 1158 if (rc) 1159 return rc; 1160 1161 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1162 if (!pp) 1163 return -ENOMEM; 1164 1165 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT + 1166 ap->port_no * NV_ADMA_PORT_SIZE; 1167 pp->ctl_block = mmio; 1168 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN; 1169 pp->notifier_clear_block = pp->gen_block + 1170 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no); 1171 1172 /* Now that the legacy PRD and padding buffer are allocated we can 1173 safely raise the DMA mask to allocate the CPB/APRD table. 1174 These are allowed to fail since we store the value that ends up 1175 being used to set as the bounce limit in slave_config later if 1176 needed. */ 1177 pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 1178 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 1179 pp->adma_dma_mask = *dev->dma_mask; 1180 1181 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ, 1182 &mem_dma, GFP_KERNEL); 1183 if (!mem) 1184 return -ENOMEM; 1185 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ); 1186 1187 /* 1188 * First item in chunk of DMA memory: 1189 * 128-byte command parameter block (CPB) 1190 * one for each command tag 1191 */ 1192 pp->cpb = mem; 1193 pp->cpb_dma = mem_dma; 1194 1195 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1196 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1197 1198 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1199 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1200 1201 /* 1202 * Second item: block of ADMA_SGTBL_LEN s/g entries 1203 */ 1204 pp->aprd = mem; 1205 pp->aprd_dma = mem_dma; 1206 1207 ap->private_data = pp; 1208 1209 /* clear any outstanding interrupt conditions */ 1210 writew(0xffff, mmio + NV_ADMA_STAT); 1211 1212 /* initialize port variables */ 1213 pp->flags = NV_ADMA_PORT_REGISTER_MODE; 1214 1215 /* clear CPB fetch count */ 1216 writew(0, mmio + NV_ADMA_CPB_COUNT); 1217 1218 /* clear GO for register mode, enable interrupt */ 1219 tmp = readw(mmio + NV_ADMA_CTL); 1220 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1221 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1222 1223 tmp = readw(mmio + NV_ADMA_CTL); 1224 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1225 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1226 udelay(1); 1227 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1228 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1229 1230 return 0; 1231 } 1232 1233 static void nv_adma_port_stop(struct ata_port *ap) 1234 { 1235 struct nv_adma_port_priv *pp = ap->private_data; 1236 void __iomem *mmio = pp->ctl_block; 1237 1238 VPRINTK("ENTER\n"); 1239 writew(0, mmio + NV_ADMA_CTL); 1240 } 1241 1242 #ifdef CONFIG_PM 1243 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg) 1244 { 1245 struct nv_adma_port_priv *pp = ap->private_data; 1246 void __iomem *mmio = pp->ctl_block; 1247 1248 /* Go to register mode - clears GO */ 1249 nv_adma_register_mode(ap); 1250 1251 /* clear CPB fetch count */ 1252 writew(0, mmio + NV_ADMA_CPB_COUNT); 1253 1254 /* disable interrupt, shut down port */ 1255 writew(0, mmio + NV_ADMA_CTL); 1256 1257 return 0; 1258 } 1259 1260 static int nv_adma_port_resume(struct ata_port *ap) 1261 { 1262 struct nv_adma_port_priv *pp = ap->private_data; 1263 void __iomem *mmio = pp->ctl_block; 1264 u16 tmp; 1265 1266 /* set CPB block location */ 1267 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1268 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1269 1270 /* clear any outstanding interrupt conditions */ 1271 writew(0xffff, mmio + NV_ADMA_STAT); 1272 1273 /* initialize port variables */ 1274 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 1275 1276 /* clear CPB fetch count */ 1277 writew(0, mmio + NV_ADMA_CPB_COUNT); 1278 1279 /* clear GO for register mode, enable interrupt */ 1280 tmp = readw(mmio + NV_ADMA_CTL); 1281 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1282 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1283 1284 tmp = readw(mmio + NV_ADMA_CTL); 1285 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1286 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1287 udelay(1); 1288 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1289 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1290 1291 return 0; 1292 } 1293 #endif 1294 1295 static void nv_adma_setup_port(struct ata_port *ap) 1296 { 1297 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1298 struct ata_ioports *ioport = &ap->ioaddr; 1299 1300 VPRINTK("ENTER\n"); 1301 1302 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE; 1303 1304 ioport->cmd_addr = mmio; 1305 ioport->data_addr = mmio + (ATA_REG_DATA * 4); 1306 ioport->error_addr = 1307 ioport->feature_addr = mmio + (ATA_REG_ERR * 4); 1308 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4); 1309 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4); 1310 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4); 1311 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4); 1312 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4); 1313 ioport->status_addr = 1314 ioport->command_addr = mmio + (ATA_REG_STATUS * 4); 1315 ioport->altstatus_addr = 1316 ioport->ctl_addr = mmio + 0x20; 1317 } 1318 1319 static int nv_adma_host_init(struct ata_host *host) 1320 { 1321 struct pci_dev *pdev = to_pci_dev(host->dev); 1322 unsigned int i; 1323 u32 tmp32; 1324 1325 VPRINTK("ENTER\n"); 1326 1327 /* enable ADMA on the ports */ 1328 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 1329 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN | 1330 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 1331 NV_MCP_SATA_CFG_20_PORT1_EN | 1332 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 1333 1334 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 1335 1336 for (i = 0; i < host->n_ports; i++) 1337 nv_adma_setup_port(host->ports[i]); 1338 1339 return 0; 1340 } 1341 1342 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc, 1343 struct scatterlist *sg, 1344 int idx, 1345 struct nv_adma_prd *aprd) 1346 { 1347 u8 flags = 0; 1348 if (qc->tf.flags & ATA_TFLAG_WRITE) 1349 flags |= NV_APRD_WRITE; 1350 if (idx == qc->n_elem - 1) 1351 flags |= NV_APRD_END; 1352 else if (idx != 4) 1353 flags |= NV_APRD_CONT; 1354 1355 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg))); 1356 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */ 1357 aprd->flags = flags; 1358 aprd->packet_len = 0; 1359 } 1360 1361 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb) 1362 { 1363 struct nv_adma_port_priv *pp = qc->ap->private_data; 1364 struct nv_adma_prd *aprd; 1365 struct scatterlist *sg; 1366 unsigned int si; 1367 1368 VPRINTK("ENTER\n"); 1369 1370 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1371 aprd = (si < 5) ? &cpb->aprd[si] : 1372 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)]; 1373 nv_adma_fill_aprd(qc, sg, si, aprd); 1374 } 1375 if (si > 5) 1376 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag))); 1377 else 1378 cpb->next_aprd = cpu_to_le64(0); 1379 } 1380 1381 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc) 1382 { 1383 struct nv_adma_port_priv *pp = qc->ap->private_data; 1384 1385 /* ADMA engine can only be used for non-ATAPI DMA commands, 1386 or interrupt-driven no-data commands. */ 1387 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 1388 (qc->tf.flags & ATA_TFLAG_POLLING)) 1389 return 1; 1390 1391 if ((qc->flags & ATA_QCFLAG_DMAMAP) || 1392 (qc->tf.protocol == ATA_PROT_NODATA)) 1393 return 0; 1394 1395 return 1; 1396 } 1397 1398 static void nv_adma_qc_prep(struct ata_queued_cmd *qc) 1399 { 1400 struct nv_adma_port_priv *pp = qc->ap->private_data; 1401 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag]; 1402 u8 ctl_flags = NV_CPB_CTL_CPB_VALID | 1403 NV_CPB_CTL_IEN; 1404 1405 if (nv_adma_use_reg_mode(qc)) { 1406 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1407 (qc->flags & ATA_QCFLAG_DMAMAP)); 1408 nv_adma_register_mode(qc->ap); 1409 ata_sff_qc_prep(qc); 1410 return; 1411 } 1412 1413 cpb->resp_flags = NV_CPB_RESP_DONE; 1414 wmb(); 1415 cpb->ctl_flags = 0; 1416 wmb(); 1417 1418 cpb->len = 3; 1419 cpb->tag = qc->tag; 1420 cpb->next_cpb_idx = 0; 1421 1422 /* turn on NCQ flags for NCQ commands */ 1423 if (qc->tf.protocol == ATA_PROT_NCQ) 1424 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA; 1425 1426 VPRINTK("qc->flags = 0x%lx\n", qc->flags); 1427 1428 nv_adma_tf_to_cpb(&qc->tf, cpb->tf); 1429 1430 if (qc->flags & ATA_QCFLAG_DMAMAP) { 1431 nv_adma_fill_sg(qc, cpb); 1432 ctl_flags |= NV_CPB_CTL_APRD_VALID; 1433 } else 1434 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5); 1435 1436 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID 1437 until we are finished filling in all of the contents */ 1438 wmb(); 1439 cpb->ctl_flags = ctl_flags; 1440 wmb(); 1441 cpb->resp_flags = 0; 1442 } 1443 1444 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc) 1445 { 1446 struct nv_adma_port_priv *pp = qc->ap->private_data; 1447 void __iomem *mmio = pp->ctl_block; 1448 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ); 1449 1450 VPRINTK("ENTER\n"); 1451 1452 /* We can't handle result taskfile with NCQ commands, since 1453 retrieving the taskfile switches us out of ADMA mode and would abort 1454 existing commands. */ 1455 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ && 1456 (qc->flags & ATA_QCFLAG_RESULT_TF))) { 1457 ata_dev_printk(qc->dev, KERN_ERR, 1458 "NCQ w/ RESULT_TF not allowed\n"); 1459 return AC_ERR_SYSTEM; 1460 } 1461 1462 if (nv_adma_use_reg_mode(qc)) { 1463 /* use ATA register mode */ 1464 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags); 1465 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1466 (qc->flags & ATA_QCFLAG_DMAMAP)); 1467 nv_adma_register_mode(qc->ap); 1468 return ata_sff_qc_issue(qc); 1469 } else 1470 nv_adma_mode(qc->ap); 1471 1472 /* write append register, command tag in lower 8 bits 1473 and (number of cpbs to append -1) in top 8 bits */ 1474 wmb(); 1475 1476 if (curr_ncq != pp->last_issue_ncq) { 1477 /* Seems to need some delay before switching between NCQ and 1478 non-NCQ commands, else we get command timeouts and such. */ 1479 udelay(20); 1480 pp->last_issue_ncq = curr_ncq; 1481 } 1482 1483 writew(qc->tag, mmio + NV_ADMA_APPEND); 1484 1485 DPRINTK("Issued tag %u\n", qc->tag); 1486 1487 return 0; 1488 } 1489 1490 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance) 1491 { 1492 struct ata_host *host = dev_instance; 1493 unsigned int i; 1494 unsigned int handled = 0; 1495 unsigned long flags; 1496 1497 spin_lock_irqsave(&host->lock, flags); 1498 1499 for (i = 0; i < host->n_ports; i++) { 1500 struct ata_port *ap; 1501 1502 ap = host->ports[i]; 1503 if (ap && 1504 !(ap->flags & ATA_FLAG_DISABLED)) { 1505 struct ata_queued_cmd *qc; 1506 1507 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1508 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 1509 handled += ata_sff_host_intr(ap, qc); 1510 else 1511 // No request pending? Clear interrupt status 1512 // anyway, in case there's one pending. 1513 ap->ops->sff_check_status(ap); 1514 } 1515 1516 } 1517 1518 spin_unlock_irqrestore(&host->lock, flags); 1519 1520 return IRQ_RETVAL(handled); 1521 } 1522 1523 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat) 1524 { 1525 int i, handled = 0; 1526 1527 for (i = 0; i < host->n_ports; i++) { 1528 struct ata_port *ap = host->ports[i]; 1529 1530 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) 1531 handled += nv_host_intr(ap, irq_stat); 1532 1533 irq_stat >>= NV_INT_PORT_SHIFT; 1534 } 1535 1536 return IRQ_RETVAL(handled); 1537 } 1538 1539 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance) 1540 { 1541 struct ata_host *host = dev_instance; 1542 u8 irq_stat; 1543 irqreturn_t ret; 1544 1545 spin_lock(&host->lock); 1546 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS); 1547 ret = nv_do_interrupt(host, irq_stat); 1548 spin_unlock(&host->lock); 1549 1550 return ret; 1551 } 1552 1553 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance) 1554 { 1555 struct ata_host *host = dev_instance; 1556 u8 irq_stat; 1557 irqreturn_t ret; 1558 1559 spin_lock(&host->lock); 1560 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1561 ret = nv_do_interrupt(host, irq_stat); 1562 spin_unlock(&host->lock); 1563 1564 return ret; 1565 } 1566 1567 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) 1568 { 1569 if (sc_reg > SCR_CONTROL) 1570 return -EINVAL; 1571 1572 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1573 return 0; 1574 } 1575 1576 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) 1577 { 1578 if (sc_reg > SCR_CONTROL) 1579 return -EINVAL; 1580 1581 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4)); 1582 return 0; 1583 } 1584 1585 static int nv_hardreset(struct ata_link *link, unsigned int *class, 1586 unsigned long deadline) 1587 { 1588 struct ata_eh_context *ehc = &link->eh_context; 1589 1590 /* Do hardreset iff it's post-boot probing, please read the 1591 * comment above port ops for details. 1592 */ 1593 if (!(link->ap->pflags & ATA_PFLAG_LOADING) && 1594 !ata_dev_enabled(link->device)) 1595 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline, 1596 NULL, NULL); 1597 else { 1598 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1599 int rc; 1600 1601 if (!(ehc->i.flags & ATA_EHI_QUIET)) 1602 ata_link_printk(link, KERN_INFO, "nv: skipping " 1603 "hardreset on occupied port\n"); 1604 1605 /* make sure the link is online */ 1606 rc = sata_link_resume(link, timing, deadline); 1607 /* whine about phy resume failure but proceed */ 1608 if (rc && rc != -EOPNOTSUPP) 1609 ata_link_printk(link, KERN_WARNING, "failed to resume " 1610 "link (errno=%d)\n", rc); 1611 } 1612 1613 /* device signature acquisition is unreliable */ 1614 return -EAGAIN; 1615 } 1616 1617 static void nv_nf2_freeze(struct ata_port *ap) 1618 { 1619 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1620 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1621 u8 mask; 1622 1623 mask = ioread8(scr_addr + NV_INT_ENABLE); 1624 mask &= ~(NV_INT_ALL << shift); 1625 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1626 } 1627 1628 static void nv_nf2_thaw(struct ata_port *ap) 1629 { 1630 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1631 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1632 u8 mask; 1633 1634 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS); 1635 1636 mask = ioread8(scr_addr + NV_INT_ENABLE); 1637 mask |= (NV_INT_MASK << shift); 1638 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1639 } 1640 1641 static void nv_ck804_freeze(struct ata_port *ap) 1642 { 1643 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1644 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1645 u8 mask; 1646 1647 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1648 mask &= ~(NV_INT_ALL << shift); 1649 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1650 } 1651 1652 static void nv_ck804_thaw(struct ata_port *ap) 1653 { 1654 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1655 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1656 u8 mask; 1657 1658 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804); 1659 1660 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1661 mask |= (NV_INT_MASK << shift); 1662 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1663 } 1664 1665 static void nv_mcp55_freeze(struct ata_port *ap) 1666 { 1667 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1668 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1669 u32 mask; 1670 1671 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1672 1673 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1674 mask &= ~(NV_INT_ALL_MCP55 << shift); 1675 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1676 ata_sff_freeze(ap); 1677 } 1678 1679 static void nv_mcp55_thaw(struct ata_port *ap) 1680 { 1681 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1682 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1683 u32 mask; 1684 1685 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1686 1687 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1688 mask |= (NV_INT_MASK_MCP55 << shift); 1689 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1690 ata_sff_thaw(ap); 1691 } 1692 1693 static void nv_adma_error_handler(struct ata_port *ap) 1694 { 1695 struct nv_adma_port_priv *pp = ap->private_data; 1696 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) { 1697 void __iomem *mmio = pp->ctl_block; 1698 int i; 1699 u16 tmp; 1700 1701 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) { 1702 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER); 1703 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 1704 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 1705 u32 status = readw(mmio + NV_ADMA_STAT); 1706 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT); 1707 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX); 1708 1709 ata_port_printk(ap, KERN_ERR, 1710 "EH in ADMA mode, notifier 0x%X " 1711 "notifier_error 0x%X gen_ctl 0x%X status 0x%X " 1712 "next cpb count 0x%X next cpb idx 0x%x\n", 1713 notifier, notifier_error, gen_ctl, status, 1714 cpb_count, next_cpb_idx); 1715 1716 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) { 1717 struct nv_adma_cpb *cpb = &pp->cpb[i]; 1718 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) || 1719 ap->link.sactive & (1 << i)) 1720 ata_port_printk(ap, KERN_ERR, 1721 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n", 1722 i, cpb->ctl_flags, cpb->resp_flags); 1723 } 1724 } 1725 1726 /* Push us back into port register mode for error handling. */ 1727 nv_adma_register_mode(ap); 1728 1729 /* Mark all of the CPBs as invalid to prevent them from 1730 being executed */ 1731 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) 1732 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID; 1733 1734 /* clear CPB fetch count */ 1735 writew(0, mmio + NV_ADMA_CPB_COUNT); 1736 1737 /* Reset channel */ 1738 tmp = readw(mmio + NV_ADMA_CTL); 1739 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1740 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1741 udelay(1); 1742 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1743 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1744 } 1745 1746 ata_sff_error_handler(ap); 1747 } 1748 1749 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc) 1750 { 1751 struct nv_swncq_port_priv *pp = ap->private_data; 1752 struct defer_queue *dq = &pp->defer_queue; 1753 1754 /* queue is full */ 1755 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE); 1756 dq->defer_bits |= (1 << qc->tag); 1757 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag; 1758 } 1759 1760 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap) 1761 { 1762 struct nv_swncq_port_priv *pp = ap->private_data; 1763 struct defer_queue *dq = &pp->defer_queue; 1764 unsigned int tag; 1765 1766 if (dq->head == dq->tail) /* null queue */ 1767 return NULL; 1768 1769 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)]; 1770 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON; 1771 WARN_ON(!(dq->defer_bits & (1 << tag))); 1772 dq->defer_bits &= ~(1 << tag); 1773 1774 return ata_qc_from_tag(ap, tag); 1775 } 1776 1777 static void nv_swncq_fis_reinit(struct ata_port *ap) 1778 { 1779 struct nv_swncq_port_priv *pp = ap->private_data; 1780 1781 pp->dhfis_bits = 0; 1782 pp->dmafis_bits = 0; 1783 pp->sdbfis_bits = 0; 1784 pp->ncq_flags = 0; 1785 } 1786 1787 static void nv_swncq_pp_reinit(struct ata_port *ap) 1788 { 1789 struct nv_swncq_port_priv *pp = ap->private_data; 1790 struct defer_queue *dq = &pp->defer_queue; 1791 1792 dq->head = 0; 1793 dq->tail = 0; 1794 dq->defer_bits = 0; 1795 pp->qc_active = 0; 1796 pp->last_issue_tag = ATA_TAG_POISON; 1797 nv_swncq_fis_reinit(ap); 1798 } 1799 1800 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis) 1801 { 1802 struct nv_swncq_port_priv *pp = ap->private_data; 1803 1804 writew(fis, pp->irq_block); 1805 } 1806 1807 static void __ata_bmdma_stop(struct ata_port *ap) 1808 { 1809 struct ata_queued_cmd qc; 1810 1811 qc.ap = ap; 1812 ata_bmdma_stop(&qc); 1813 } 1814 1815 static void nv_swncq_ncq_stop(struct ata_port *ap) 1816 { 1817 struct nv_swncq_port_priv *pp = ap->private_data; 1818 unsigned int i; 1819 u32 sactive; 1820 u32 done_mask; 1821 1822 ata_port_printk(ap, KERN_ERR, 1823 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n", 1824 ap->qc_active, ap->link.sactive); 1825 ata_port_printk(ap, KERN_ERR, 1826 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n " 1827 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n", 1828 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag, 1829 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits); 1830 1831 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n", 1832 ap->ops->sff_check_status(ap), 1833 ioread8(ap->ioaddr.error_addr)); 1834 1835 sactive = readl(pp->sactive_block); 1836 done_mask = pp->qc_active ^ sactive; 1837 1838 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n"); 1839 for (i = 0; i < ATA_MAX_QUEUE; i++) { 1840 u8 err = 0; 1841 if (pp->qc_active & (1 << i)) 1842 err = 0; 1843 else if (done_mask & (1 << i)) 1844 err = 1; 1845 else 1846 continue; 1847 1848 ata_port_printk(ap, KERN_ERR, 1849 "tag 0x%x: %01x %01x %01x %01x %s\n", i, 1850 (pp->dhfis_bits >> i) & 0x1, 1851 (pp->dmafis_bits >> i) & 0x1, 1852 (pp->sdbfis_bits >> i) & 0x1, 1853 (sactive >> i) & 0x1, 1854 (err ? "error! tag doesn't exit" : " ")); 1855 } 1856 1857 nv_swncq_pp_reinit(ap); 1858 ap->ops->sff_irq_clear(ap); 1859 __ata_bmdma_stop(ap); 1860 nv_swncq_irq_clear(ap, 0xffff); 1861 } 1862 1863 static void nv_swncq_error_handler(struct ata_port *ap) 1864 { 1865 struct ata_eh_context *ehc = &ap->link.eh_context; 1866 1867 if (ap->link.sactive) { 1868 nv_swncq_ncq_stop(ap); 1869 ehc->i.action |= ATA_EH_RESET; 1870 } 1871 1872 ata_sff_error_handler(ap); 1873 } 1874 1875 #ifdef CONFIG_PM 1876 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg) 1877 { 1878 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1879 u32 tmp; 1880 1881 /* clear irq */ 1882 writel(~0, mmio + NV_INT_STATUS_MCP55); 1883 1884 /* disable irq */ 1885 writel(0, mmio + NV_INT_ENABLE_MCP55); 1886 1887 /* disable swncq */ 1888 tmp = readl(mmio + NV_CTL_MCP55); 1889 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ); 1890 writel(tmp, mmio + NV_CTL_MCP55); 1891 1892 return 0; 1893 } 1894 1895 static int nv_swncq_port_resume(struct ata_port *ap) 1896 { 1897 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1898 u32 tmp; 1899 1900 /* clear irq */ 1901 writel(~0, mmio + NV_INT_STATUS_MCP55); 1902 1903 /* enable irq */ 1904 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1905 1906 /* enable swncq */ 1907 tmp = readl(mmio + NV_CTL_MCP55); 1908 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1909 1910 return 0; 1911 } 1912 #endif 1913 1914 static void nv_swncq_host_init(struct ata_host *host) 1915 { 1916 u32 tmp; 1917 void __iomem *mmio = host->iomap[NV_MMIO_BAR]; 1918 struct pci_dev *pdev = to_pci_dev(host->dev); 1919 u8 regval; 1920 1921 /* disable ECO 398 */ 1922 pci_read_config_byte(pdev, 0x7f, ®val); 1923 regval &= ~(1 << 7); 1924 pci_write_config_byte(pdev, 0x7f, regval); 1925 1926 /* enable swncq */ 1927 tmp = readl(mmio + NV_CTL_MCP55); 1928 VPRINTK("HOST_CTL:0x%X\n", tmp); 1929 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1930 1931 /* enable irq intr */ 1932 tmp = readl(mmio + NV_INT_ENABLE_MCP55); 1933 VPRINTK("HOST_ENABLE:0x%X\n", tmp); 1934 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1935 1936 /* clear port irq */ 1937 writel(~0x0, mmio + NV_INT_STATUS_MCP55); 1938 } 1939 1940 static int nv_swncq_slave_config(struct scsi_device *sdev) 1941 { 1942 struct ata_port *ap = ata_shost_to_port(sdev->host); 1943 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 1944 struct ata_device *dev; 1945 int rc; 1946 u8 rev; 1947 u8 check_maxtor = 0; 1948 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 1949 1950 rc = ata_scsi_slave_config(sdev); 1951 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 1952 /* Not a proper libata device, ignore */ 1953 return rc; 1954 1955 dev = &ap->link.device[sdev->id]; 1956 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI) 1957 return rc; 1958 1959 /* if MCP51 and Maxtor, then disable ncq */ 1960 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA || 1961 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2) 1962 check_maxtor = 1; 1963 1964 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */ 1965 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA || 1966 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) { 1967 pci_read_config_byte(pdev, 0x8, &rev); 1968 if (rev <= 0xa2) 1969 check_maxtor = 1; 1970 } 1971 1972 if (!check_maxtor) 1973 return rc; 1974 1975 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 1976 1977 if (strncmp(model_num, "Maxtor", 6) == 0) { 1978 ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT); 1979 ata_dev_printk(dev, KERN_NOTICE, 1980 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth); 1981 } 1982 1983 return rc; 1984 } 1985 1986 static int nv_swncq_port_start(struct ata_port *ap) 1987 { 1988 struct device *dev = ap->host->dev; 1989 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1990 struct nv_swncq_port_priv *pp; 1991 int rc; 1992 1993 rc = ata_port_start(ap); 1994 if (rc) 1995 return rc; 1996 1997 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1998 if (!pp) 1999 return -ENOMEM; 2000 2001 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE, 2002 &pp->prd_dma, GFP_KERNEL); 2003 if (!pp->prd) 2004 return -ENOMEM; 2005 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE); 2006 2007 ap->private_data = pp; 2008 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE; 2009 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2; 2010 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2; 2011 2012 return 0; 2013 } 2014 2015 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc) 2016 { 2017 if (qc->tf.protocol != ATA_PROT_NCQ) { 2018 ata_sff_qc_prep(qc); 2019 return; 2020 } 2021 2022 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2023 return; 2024 2025 nv_swncq_fill_sg(qc); 2026 } 2027 2028 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc) 2029 { 2030 struct ata_port *ap = qc->ap; 2031 struct scatterlist *sg; 2032 struct nv_swncq_port_priv *pp = ap->private_data; 2033 struct ata_prd *prd; 2034 unsigned int si, idx; 2035 2036 prd = pp->prd + ATA_MAX_PRD * qc->tag; 2037 2038 idx = 0; 2039 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2040 u32 addr, offset; 2041 u32 sg_len, len; 2042 2043 addr = (u32)sg_dma_address(sg); 2044 sg_len = sg_dma_len(sg); 2045 2046 while (sg_len) { 2047 offset = addr & 0xffff; 2048 len = sg_len; 2049 if ((offset + sg_len) > 0x10000) 2050 len = 0x10000 - offset; 2051 2052 prd[idx].addr = cpu_to_le32(addr); 2053 prd[idx].flags_len = cpu_to_le32(len & 0xffff); 2054 2055 idx++; 2056 sg_len -= len; 2057 addr += len; 2058 } 2059 } 2060 2061 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2062 } 2063 2064 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap, 2065 struct ata_queued_cmd *qc) 2066 { 2067 struct nv_swncq_port_priv *pp = ap->private_data; 2068 2069 if (qc == NULL) 2070 return 0; 2071 2072 DPRINTK("Enter\n"); 2073 2074 writel((1 << qc->tag), pp->sactive_block); 2075 pp->last_issue_tag = qc->tag; 2076 pp->dhfis_bits &= ~(1 << qc->tag); 2077 pp->dmafis_bits &= ~(1 << qc->tag); 2078 pp->qc_active |= (0x1 << qc->tag); 2079 2080 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2081 ap->ops->sff_exec_command(ap, &qc->tf); 2082 2083 DPRINTK("Issued tag %u\n", qc->tag); 2084 2085 return 0; 2086 } 2087 2088 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc) 2089 { 2090 struct ata_port *ap = qc->ap; 2091 struct nv_swncq_port_priv *pp = ap->private_data; 2092 2093 if (qc->tf.protocol != ATA_PROT_NCQ) 2094 return ata_sff_qc_issue(qc); 2095 2096 DPRINTK("Enter\n"); 2097 2098 if (!pp->qc_active) 2099 nv_swncq_issue_atacmd(ap, qc); 2100 else 2101 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */ 2102 2103 return 0; 2104 } 2105 2106 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis) 2107 { 2108 u32 serror; 2109 struct ata_eh_info *ehi = &ap->link.eh_info; 2110 2111 ata_ehi_clear_desc(ehi); 2112 2113 /* AHCI needs SError cleared; otherwise, it might lock up */ 2114 sata_scr_read(&ap->link, SCR_ERROR, &serror); 2115 sata_scr_write(&ap->link, SCR_ERROR, serror); 2116 2117 /* analyze @irq_stat */ 2118 if (fis & NV_SWNCQ_IRQ_ADDED) 2119 ata_ehi_push_desc(ehi, "hot plug"); 2120 else if (fis & NV_SWNCQ_IRQ_REMOVED) 2121 ata_ehi_push_desc(ehi, "hot unplug"); 2122 2123 ata_ehi_hotplugged(ehi); 2124 2125 /* okay, let's hand over to EH */ 2126 ehi->serror |= serror; 2127 2128 ata_port_freeze(ap); 2129 } 2130 2131 static int nv_swncq_sdbfis(struct ata_port *ap) 2132 { 2133 struct ata_queued_cmd *qc; 2134 struct nv_swncq_port_priv *pp = ap->private_data; 2135 struct ata_eh_info *ehi = &ap->link.eh_info; 2136 u32 sactive; 2137 int nr_done = 0; 2138 u32 done_mask; 2139 int i; 2140 u8 host_stat; 2141 u8 lack_dhfis = 0; 2142 2143 host_stat = ap->ops->bmdma_status(ap); 2144 if (unlikely(host_stat & ATA_DMA_ERR)) { 2145 /* error when transfering data to/from memory */ 2146 ata_ehi_clear_desc(ehi); 2147 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2148 ehi->err_mask |= AC_ERR_HOST_BUS; 2149 ehi->action |= ATA_EH_RESET; 2150 return -EINVAL; 2151 } 2152 2153 ap->ops->sff_irq_clear(ap); 2154 __ata_bmdma_stop(ap); 2155 2156 sactive = readl(pp->sactive_block); 2157 done_mask = pp->qc_active ^ sactive; 2158 2159 if (unlikely(done_mask & sactive)) { 2160 ata_ehi_clear_desc(ehi); 2161 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition" 2162 "(%08x->%08x)", pp->qc_active, sactive); 2163 ehi->err_mask |= AC_ERR_HSM; 2164 ehi->action |= ATA_EH_RESET; 2165 return -EINVAL; 2166 } 2167 for (i = 0; i < ATA_MAX_QUEUE; i++) { 2168 if (!(done_mask & (1 << i))) 2169 continue; 2170 2171 qc = ata_qc_from_tag(ap, i); 2172 if (qc) { 2173 ata_qc_complete(qc); 2174 pp->qc_active &= ~(1 << i); 2175 pp->dhfis_bits &= ~(1 << i); 2176 pp->dmafis_bits &= ~(1 << i); 2177 pp->sdbfis_bits |= (1 << i); 2178 nr_done++; 2179 } 2180 } 2181 2182 if (!ap->qc_active) { 2183 DPRINTK("over\n"); 2184 nv_swncq_pp_reinit(ap); 2185 return nr_done; 2186 } 2187 2188 if (pp->qc_active & pp->dhfis_bits) 2189 return nr_done; 2190 2191 if ((pp->ncq_flags & ncq_saw_backout) || 2192 (pp->qc_active ^ pp->dhfis_bits)) 2193 /* if the controller cann't get a device to host register FIS, 2194 * The driver needs to reissue the new command. 2195 */ 2196 lack_dhfis = 1; 2197 2198 DPRINTK("id 0x%x QC: qc_active 0x%x," 2199 "SWNCQ:qc_active 0x%X defer_bits %X " 2200 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n", 2201 ap->print_id, ap->qc_active, pp->qc_active, 2202 pp->defer_queue.defer_bits, pp->dhfis_bits, 2203 pp->dmafis_bits, pp->last_issue_tag); 2204 2205 nv_swncq_fis_reinit(ap); 2206 2207 if (lack_dhfis) { 2208 qc = ata_qc_from_tag(ap, pp->last_issue_tag); 2209 nv_swncq_issue_atacmd(ap, qc); 2210 return nr_done; 2211 } 2212 2213 if (pp->defer_queue.defer_bits) { 2214 /* send deferral queue command */ 2215 qc = nv_swncq_qc_from_dq(ap); 2216 WARN_ON(qc == NULL); 2217 nv_swncq_issue_atacmd(ap, qc); 2218 } 2219 2220 return nr_done; 2221 } 2222 2223 static inline u32 nv_swncq_tag(struct ata_port *ap) 2224 { 2225 struct nv_swncq_port_priv *pp = ap->private_data; 2226 u32 tag; 2227 2228 tag = readb(pp->tag_block) >> 2; 2229 return (tag & 0x1f); 2230 } 2231 2232 static int nv_swncq_dmafis(struct ata_port *ap) 2233 { 2234 struct ata_queued_cmd *qc; 2235 unsigned int rw; 2236 u8 dmactl; 2237 u32 tag; 2238 struct nv_swncq_port_priv *pp = ap->private_data; 2239 2240 __ata_bmdma_stop(ap); 2241 tag = nv_swncq_tag(ap); 2242 2243 DPRINTK("dma setup tag 0x%x\n", tag); 2244 qc = ata_qc_from_tag(ap, tag); 2245 2246 if (unlikely(!qc)) 2247 return 0; 2248 2249 rw = qc->tf.flags & ATA_TFLAG_WRITE; 2250 2251 /* load PRD table addr. */ 2252 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag, 2253 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2254 2255 /* specify data direction, triple-check start bit is clear */ 2256 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2257 dmactl &= ~ATA_DMA_WR; 2258 if (!rw) 2259 dmactl |= ATA_DMA_WR; 2260 2261 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2262 2263 return 1; 2264 } 2265 2266 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) 2267 { 2268 struct nv_swncq_port_priv *pp = ap->private_data; 2269 struct ata_queued_cmd *qc; 2270 struct ata_eh_info *ehi = &ap->link.eh_info; 2271 u32 serror; 2272 u8 ata_stat; 2273 int rc = 0; 2274 2275 ata_stat = ap->ops->sff_check_status(ap); 2276 nv_swncq_irq_clear(ap, fis); 2277 if (!fis) 2278 return; 2279 2280 if (ap->pflags & ATA_PFLAG_FROZEN) 2281 return; 2282 2283 if (fis & NV_SWNCQ_IRQ_HOTPLUG) { 2284 nv_swncq_hotplug(ap, fis); 2285 return; 2286 } 2287 2288 if (!pp->qc_active) 2289 return; 2290 2291 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror)) 2292 return; 2293 ap->ops->scr_write(&ap->link, SCR_ERROR, serror); 2294 2295 if (ata_stat & ATA_ERR) { 2296 ata_ehi_clear_desc(ehi); 2297 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis); 2298 ehi->err_mask |= AC_ERR_DEV; 2299 ehi->serror |= serror; 2300 ehi->action |= ATA_EH_RESET; 2301 ata_port_freeze(ap); 2302 return; 2303 } 2304 2305 if (fis & NV_SWNCQ_IRQ_BACKOUT) { 2306 /* If the IRQ is backout, driver must issue 2307 * the new command again some time later. 2308 */ 2309 pp->ncq_flags |= ncq_saw_backout; 2310 } 2311 2312 if (fis & NV_SWNCQ_IRQ_SDBFIS) { 2313 pp->ncq_flags |= ncq_saw_sdb; 2314 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X " 2315 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n", 2316 ap->print_id, pp->qc_active, pp->dhfis_bits, 2317 pp->dmafis_bits, readl(pp->sactive_block)); 2318 rc = nv_swncq_sdbfis(ap); 2319 if (rc < 0) 2320 goto irq_error; 2321 } 2322 2323 if (fis & NV_SWNCQ_IRQ_DHREGFIS) { 2324 /* The interrupt indicates the new command 2325 * was transmitted correctly to the drive. 2326 */ 2327 pp->dhfis_bits |= (0x1 << pp->last_issue_tag); 2328 pp->ncq_flags |= ncq_saw_d2h; 2329 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) { 2330 ata_ehi_push_desc(ehi, "illegal fis transaction"); 2331 ehi->err_mask |= AC_ERR_HSM; 2332 ehi->action |= ATA_EH_RESET; 2333 goto irq_error; 2334 } 2335 2336 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) && 2337 !(pp->ncq_flags & ncq_saw_dmas)) { 2338 ata_stat = ap->ops->sff_check_status(ap); 2339 if (ata_stat & ATA_BUSY) 2340 goto irq_exit; 2341 2342 if (pp->defer_queue.defer_bits) { 2343 DPRINTK("send next command\n"); 2344 qc = nv_swncq_qc_from_dq(ap); 2345 nv_swncq_issue_atacmd(ap, qc); 2346 } 2347 } 2348 } 2349 2350 if (fis & NV_SWNCQ_IRQ_DMASETUP) { 2351 /* program the dma controller with appropriate PRD buffers 2352 * and start the DMA transfer for requested command. 2353 */ 2354 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); 2355 pp->ncq_flags |= ncq_saw_dmas; 2356 rc = nv_swncq_dmafis(ap); 2357 } 2358 2359 irq_exit: 2360 return; 2361 irq_error: 2362 ata_ehi_push_desc(ehi, "fis:0x%x", fis); 2363 ata_port_freeze(ap); 2364 return; 2365 } 2366 2367 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance) 2368 { 2369 struct ata_host *host = dev_instance; 2370 unsigned int i; 2371 unsigned int handled = 0; 2372 unsigned long flags; 2373 u32 irq_stat; 2374 2375 spin_lock_irqsave(&host->lock, flags); 2376 2377 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55); 2378 2379 for (i = 0; i < host->n_ports; i++) { 2380 struct ata_port *ap = host->ports[i]; 2381 2382 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 2383 if (ap->link.sactive) { 2384 nv_swncq_host_interrupt(ap, (u16)irq_stat); 2385 handled = 1; 2386 } else { 2387 if (irq_stat) /* reserve Hotplug */ 2388 nv_swncq_irq_clear(ap, 0xfff0); 2389 2390 handled += nv_host_intr(ap, (u8)irq_stat); 2391 } 2392 } 2393 irq_stat >>= NV_INT_PORT_SHIFT_MCP55; 2394 } 2395 2396 spin_unlock_irqrestore(&host->lock, flags); 2397 2398 return IRQ_RETVAL(handled); 2399 } 2400 2401 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2402 { 2403 static int printed_version; 2404 const struct ata_port_info *ppi[] = { NULL, NULL }; 2405 struct nv_pi_priv *ipriv; 2406 struct ata_host *host; 2407 struct nv_host_priv *hpriv; 2408 int rc; 2409 u32 bar; 2410 void __iomem *base; 2411 unsigned long type = ent->driver_data; 2412 2413 // Make sure this is a SATA controller by counting the number of bars 2414 // (NVIDIA SATA controllers will always have six bars). Otherwise, 2415 // it's an IDE controller and we ignore it. 2416 for (bar = 0; bar < 6; bar++) 2417 if (pci_resource_start(pdev, bar) == 0) 2418 return -ENODEV; 2419 2420 if (!printed_version++) 2421 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); 2422 2423 rc = pcim_enable_device(pdev); 2424 if (rc) 2425 return rc; 2426 2427 /* determine type and allocate host */ 2428 if (type == CK804 && adma_enabled) { 2429 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n"); 2430 type = ADMA; 2431 } else if (type == MCP5x && swncq_enabled) { 2432 dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n"); 2433 type = SWNCQ; 2434 } 2435 2436 ppi[0] = &nv_port_info[type]; 2437 ipriv = ppi[0]->private_data; 2438 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2439 if (rc) 2440 return rc; 2441 2442 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 2443 if (!hpriv) 2444 return -ENOMEM; 2445 hpriv->type = type; 2446 host->private_data = hpriv; 2447 2448 /* request and iomap NV_MMIO_BAR */ 2449 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME); 2450 if (rc) 2451 return rc; 2452 2453 /* configure SCR access */ 2454 base = host->iomap[NV_MMIO_BAR]; 2455 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET; 2456 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET; 2457 2458 /* enable SATA space for CK804 */ 2459 if (type >= CK804) { 2460 u8 regval; 2461 2462 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2463 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2464 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2465 } 2466 2467 /* init ADMA */ 2468 if (type == ADMA) { 2469 rc = nv_adma_host_init(host); 2470 if (rc) 2471 return rc; 2472 } else if (type == SWNCQ) 2473 nv_swncq_host_init(host); 2474 2475 if (msi_enabled) { 2476 dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n"); 2477 pci_enable_msi(pdev); 2478 } 2479 2480 pci_set_master(pdev); 2481 return ata_host_activate(host, pdev->irq, ipriv->irq_handler, 2482 IRQF_SHARED, ipriv->sht); 2483 } 2484 2485 #ifdef CONFIG_PM 2486 static int nv_pci_device_resume(struct pci_dev *pdev) 2487 { 2488 struct ata_host *host = dev_get_drvdata(&pdev->dev); 2489 struct nv_host_priv *hpriv = host->private_data; 2490 int rc; 2491 2492 rc = ata_pci_device_do_resume(pdev); 2493 if (rc) 2494 return rc; 2495 2496 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) { 2497 if (hpriv->type >= CK804) { 2498 u8 regval; 2499 2500 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2501 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2502 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2503 } 2504 if (hpriv->type == ADMA) { 2505 u32 tmp32; 2506 struct nv_adma_port_priv *pp; 2507 /* enable/disable ADMA on the ports appropriately */ 2508 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2509 2510 pp = host->ports[0]->private_data; 2511 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2512 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2513 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2514 else 2515 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN | 2516 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2517 pp = host->ports[1]->private_data; 2518 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2519 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN | 2520 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2521 else 2522 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN | 2523 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2524 2525 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2526 } 2527 } 2528 2529 ata_host_resume(host); 2530 2531 return 0; 2532 } 2533 #endif 2534 2535 static void nv_ck804_host_stop(struct ata_host *host) 2536 { 2537 struct pci_dev *pdev = to_pci_dev(host->dev); 2538 u8 regval; 2539 2540 /* disable SATA space for CK804 */ 2541 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2542 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2543 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2544 } 2545 2546 static void nv_adma_host_stop(struct ata_host *host) 2547 { 2548 struct pci_dev *pdev = to_pci_dev(host->dev); 2549 u32 tmp32; 2550 2551 /* disable ADMA on the ports */ 2552 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2553 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2554 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 2555 NV_MCP_SATA_CFG_20_PORT1_EN | 2556 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2557 2558 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2559 2560 nv_ck804_host_stop(host); 2561 } 2562 2563 static int __init nv_init(void) 2564 { 2565 return pci_register_driver(&nv_pci_driver); 2566 } 2567 2568 static void __exit nv_exit(void) 2569 { 2570 pci_unregister_driver(&nv_pci_driver); 2571 } 2572 2573 module_init(nv_init); 2574 module_exit(nv_exit); 2575 module_param_named(adma, adma_enabled, bool, 0444); 2576 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)"); 2577 module_param_named(swncq, swncq_enabled, bool, 0444); 2578 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)"); 2579 module_param_named(msi, msi_enabled, bool, 0444); 2580 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)"); 2581 2582