1 /* 2 * sata_nv.c - NVIDIA nForce SATA 3 * 4 * Copyright 2004 NVIDIA Corp. All rights reserved. 5 * Copyright 2004 Andrew Chew 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; see the file COPYING. If not, write to 20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * 23 * libata documentation is available via 'make {ps|pdf}docs', 24 * as Documentation/DocBook/libata.* 25 * 26 * No hardware documentation available outside of NVIDIA. 27 * This driver programs the NVIDIA SATA controller in a similar 28 * fashion as with other PCI IDE BMDMA controllers, with a few 29 * NV-specific details such as register offsets, SATA phy location, 30 * hotplug info, etc. 31 * 32 * CK804/MCP04 controllers support an alternate programming interface 33 * similar to the ADMA specification (with some modifications). 34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still 35 * sent through the legacy interface. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <linux/libata.h> 50 51 #define DRV_NAME "sata_nv" 52 #define DRV_VERSION "3.5" 53 54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL 55 56 enum { 57 NV_MMIO_BAR = 5, 58 59 NV_PORTS = 2, 60 NV_PIO_MASK = 0x1f, 61 NV_MWDMA_MASK = 0x07, 62 NV_UDMA_MASK = 0x7f, 63 NV_PORT0_SCR_REG_OFFSET = 0x00, 64 NV_PORT1_SCR_REG_OFFSET = 0x40, 65 66 /* INT_STATUS/ENABLE */ 67 NV_INT_STATUS = 0x10, 68 NV_INT_ENABLE = 0x11, 69 NV_INT_STATUS_CK804 = 0x440, 70 NV_INT_ENABLE_CK804 = 0x441, 71 72 /* INT_STATUS/ENABLE bits */ 73 NV_INT_DEV = 0x01, 74 NV_INT_PM = 0x02, 75 NV_INT_ADDED = 0x04, 76 NV_INT_REMOVED = 0x08, 77 78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */ 79 80 NV_INT_ALL = 0x0f, 81 NV_INT_MASK = NV_INT_DEV | 82 NV_INT_ADDED | NV_INT_REMOVED, 83 84 /* INT_CONFIG */ 85 NV_INT_CONFIG = 0x12, 86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI 87 88 // For PCI config register 20 89 NV_MCP_SATA_CFG_20 = 0x50, 90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04, 91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17), 92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16), 93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14), 94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12), 95 96 NV_ADMA_MAX_CPBS = 32, 97 NV_ADMA_CPB_SZ = 128, 98 NV_ADMA_APRD_SZ = 16, 99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) / 100 NV_ADMA_APRD_SZ, 101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5, 102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ, 103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS * 104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ), 105 106 /* BAR5 offset to ADMA general registers */ 107 NV_ADMA_GEN = 0x400, 108 NV_ADMA_GEN_CTL = 0x00, 109 NV_ADMA_NOTIFIER_CLEAR = 0x30, 110 111 /* BAR5 offset to ADMA ports */ 112 NV_ADMA_PORT = 0x480, 113 114 /* size of ADMA port register space */ 115 NV_ADMA_PORT_SIZE = 0x100, 116 117 /* ADMA port registers */ 118 NV_ADMA_CTL = 0x40, 119 NV_ADMA_CPB_COUNT = 0x42, 120 NV_ADMA_NEXT_CPB_IDX = 0x43, 121 NV_ADMA_STAT = 0x44, 122 NV_ADMA_CPB_BASE_LOW = 0x48, 123 NV_ADMA_CPB_BASE_HIGH = 0x4C, 124 NV_ADMA_APPEND = 0x50, 125 NV_ADMA_NOTIFIER = 0x68, 126 NV_ADMA_NOTIFIER_ERROR = 0x6C, 127 128 /* NV_ADMA_CTL register bits */ 129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0), 130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5), 131 NV_ADMA_CTL_GO = (1 << 7), 132 NV_ADMA_CTL_AIEN = (1 << 8), 133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11), 134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12), 135 136 /* CPB response flag bits */ 137 NV_CPB_RESP_DONE = (1 << 0), 138 NV_CPB_RESP_ATA_ERR = (1 << 3), 139 NV_CPB_RESP_CMD_ERR = (1 << 4), 140 NV_CPB_RESP_CPB_ERR = (1 << 7), 141 142 /* CPB control flag bits */ 143 NV_CPB_CTL_CPB_VALID = (1 << 0), 144 NV_CPB_CTL_QUEUE = (1 << 1), 145 NV_CPB_CTL_APRD_VALID = (1 << 2), 146 NV_CPB_CTL_IEN = (1 << 3), 147 NV_CPB_CTL_FPDMA = (1 << 4), 148 149 /* APRD flags */ 150 NV_APRD_WRITE = (1 << 1), 151 NV_APRD_END = (1 << 2), 152 NV_APRD_CONT = (1 << 3), 153 154 /* NV_ADMA_STAT flags */ 155 NV_ADMA_STAT_TIMEOUT = (1 << 0), 156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1), 157 NV_ADMA_STAT_HOTPLUG = (1 << 2), 158 NV_ADMA_STAT_CPBERR = (1 << 4), 159 NV_ADMA_STAT_SERROR = (1 << 5), 160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6), 161 NV_ADMA_STAT_IDLE = (1 << 8), 162 NV_ADMA_STAT_LEGACY = (1 << 9), 163 NV_ADMA_STAT_STOPPED = (1 << 10), 164 NV_ADMA_STAT_DONE = (1 << 12), 165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR | 166 NV_ADMA_STAT_TIMEOUT, 167 168 /* port flags */ 169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0), 170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1), 171 172 /* MCP55 reg offset */ 173 NV_CTL_MCP55 = 0x400, 174 NV_INT_STATUS_MCP55 = 0x440, 175 NV_INT_ENABLE_MCP55 = 0x444, 176 NV_NCQ_REG_MCP55 = 0x448, 177 178 /* MCP55 */ 179 NV_INT_ALL_MCP55 = 0xffff, 180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */ 181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd, 182 183 /* SWNCQ ENABLE BITS*/ 184 NV_CTL_PRI_SWNCQ = 0x02, 185 NV_CTL_SEC_SWNCQ = 0x04, 186 187 /* SW NCQ status bits*/ 188 NV_SWNCQ_IRQ_DEV = (1 << 0), 189 NV_SWNCQ_IRQ_PM = (1 << 1), 190 NV_SWNCQ_IRQ_ADDED = (1 << 2), 191 NV_SWNCQ_IRQ_REMOVED = (1 << 3), 192 193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4), 194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5), 195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6), 196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7), 197 198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED | 199 NV_SWNCQ_IRQ_REMOVED, 200 201 }; 202 203 /* ADMA Physical Region Descriptor - one SG segment */ 204 struct nv_adma_prd { 205 __le64 addr; 206 __le32 len; 207 u8 flags; 208 u8 packet_len; 209 __le16 reserved; 210 }; 211 212 enum nv_adma_regbits { 213 CMDEND = (1 << 15), /* end of command list */ 214 WNB = (1 << 14), /* wait-not-BSY */ 215 IGN = (1 << 13), /* ignore this entry */ 216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */ 217 DA2 = (1 << (2 + 8)), 218 DA1 = (1 << (1 + 8)), 219 DA0 = (1 << (0 + 8)), 220 }; 221 222 /* ADMA Command Parameter Block 223 The first 5 SG segments are stored inside the Command Parameter Block itself. 224 If there are more than 5 segments the remainder are stored in a separate 225 memory area indicated by next_aprd. */ 226 struct nv_adma_cpb { 227 u8 resp_flags; /* 0 */ 228 u8 reserved1; /* 1 */ 229 u8 ctl_flags; /* 2 */ 230 /* len is length of taskfile in 64 bit words */ 231 u8 len; /* 3 */ 232 u8 tag; /* 4 */ 233 u8 next_cpb_idx; /* 5 */ 234 __le16 reserved2; /* 6-7 */ 235 __le16 tf[12]; /* 8-31 */ 236 struct nv_adma_prd aprd[5]; /* 32-111 */ 237 __le64 next_aprd; /* 112-119 */ 238 __le64 reserved3; /* 120-127 */ 239 }; 240 241 242 struct nv_adma_port_priv { 243 struct nv_adma_cpb *cpb; 244 dma_addr_t cpb_dma; 245 struct nv_adma_prd *aprd; 246 dma_addr_t aprd_dma; 247 void __iomem *ctl_block; 248 void __iomem *gen_block; 249 void __iomem *notifier_clear_block; 250 u8 flags; 251 int last_issue_ncq; 252 }; 253 254 struct nv_host_priv { 255 unsigned long type; 256 }; 257 258 struct defer_queue { 259 u32 defer_bits; 260 unsigned int head; 261 unsigned int tail; 262 unsigned int tag[ATA_MAX_QUEUE]; 263 }; 264 265 enum ncq_saw_flag_list { 266 ncq_saw_d2h = (1U << 0), 267 ncq_saw_dmas = (1U << 1), 268 ncq_saw_sdb = (1U << 2), 269 ncq_saw_backout = (1U << 3), 270 }; 271 272 struct nv_swncq_port_priv { 273 struct ata_prd *prd; /* our SG list */ 274 dma_addr_t prd_dma; /* and its DMA mapping */ 275 void __iomem *sactive_block; 276 void __iomem *irq_block; 277 void __iomem *tag_block; 278 u32 qc_active; 279 280 unsigned int last_issue_tag; 281 282 /* fifo circular queue to store deferral command */ 283 struct defer_queue defer_queue; 284 285 /* for NCQ interrupt analysis */ 286 u32 dhfis_bits; 287 u32 dmafis_bits; 288 u32 sdbfis_bits; 289 290 unsigned int ncq_flags; 291 }; 292 293 294 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT))))) 295 296 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 297 #ifdef CONFIG_PM 298 static int nv_pci_device_resume(struct pci_dev *pdev); 299 #endif 300 static void nv_ck804_host_stop(struct ata_host *host); 301 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance); 302 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance); 303 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance); 304 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val); 305 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val); 306 307 static void nv_nf2_freeze(struct ata_port *ap); 308 static void nv_nf2_thaw(struct ata_port *ap); 309 static void nv_ck804_freeze(struct ata_port *ap); 310 static void nv_ck804_thaw(struct ata_port *ap); 311 static void nv_error_handler(struct ata_port *ap); 312 static int nv_adma_slave_config(struct scsi_device *sdev); 313 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc); 314 static void nv_adma_qc_prep(struct ata_queued_cmd *qc); 315 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc); 316 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance); 317 static void nv_adma_irq_clear(struct ata_port *ap); 318 static int nv_adma_port_start(struct ata_port *ap); 319 static void nv_adma_port_stop(struct ata_port *ap); 320 #ifdef CONFIG_PM 321 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg); 322 static int nv_adma_port_resume(struct ata_port *ap); 323 #endif 324 static void nv_adma_freeze(struct ata_port *ap); 325 static void nv_adma_thaw(struct ata_port *ap); 326 static void nv_adma_error_handler(struct ata_port *ap); 327 static void nv_adma_host_stop(struct ata_host *host); 328 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc); 329 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf); 330 331 static void nv_mcp55_thaw(struct ata_port *ap); 332 static void nv_mcp55_freeze(struct ata_port *ap); 333 static void nv_swncq_error_handler(struct ata_port *ap); 334 static int nv_swncq_slave_config(struct scsi_device *sdev); 335 static int nv_swncq_port_start(struct ata_port *ap); 336 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc); 337 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc); 338 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc); 339 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis); 340 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance); 341 #ifdef CONFIG_PM 342 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg); 343 static int nv_swncq_port_resume(struct ata_port *ap); 344 #endif 345 346 enum nv_host_type 347 { 348 GENERIC, 349 NFORCE2, 350 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */ 351 CK804, 352 ADMA, 353 SWNCQ, 354 }; 355 356 static const struct pci_device_id nv_pci_tbl[] = { 357 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 }, 358 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 }, 359 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 }, 360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 }, 361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 }, 362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 }, 363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 }, 364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), SWNCQ }, 365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), SWNCQ }, 366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), SWNCQ }, 367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), SWNCQ }, 368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC }, 369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC }, 370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC }, 371 372 { } /* terminate list */ 373 }; 374 375 static struct pci_driver nv_pci_driver = { 376 .name = DRV_NAME, 377 .id_table = nv_pci_tbl, 378 .probe = nv_init_one, 379 #ifdef CONFIG_PM 380 .suspend = ata_pci_device_suspend, 381 .resume = nv_pci_device_resume, 382 #endif 383 .remove = ata_pci_remove_one, 384 }; 385 386 static struct scsi_host_template nv_sht = { 387 .module = THIS_MODULE, 388 .name = DRV_NAME, 389 .ioctl = ata_scsi_ioctl, 390 .queuecommand = ata_scsi_queuecmd, 391 .can_queue = ATA_DEF_QUEUE, 392 .this_id = ATA_SHT_THIS_ID, 393 .sg_tablesize = LIBATA_MAX_PRD, 394 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 395 .emulated = ATA_SHT_EMULATED, 396 .use_clustering = ATA_SHT_USE_CLUSTERING, 397 .proc_name = DRV_NAME, 398 .dma_boundary = ATA_DMA_BOUNDARY, 399 .slave_configure = ata_scsi_slave_config, 400 .slave_destroy = ata_scsi_slave_destroy, 401 .bios_param = ata_std_bios_param, 402 }; 403 404 static struct scsi_host_template nv_adma_sht = { 405 .module = THIS_MODULE, 406 .name = DRV_NAME, 407 .ioctl = ata_scsi_ioctl, 408 .queuecommand = ata_scsi_queuecmd, 409 .change_queue_depth = ata_scsi_change_queue_depth, 410 .can_queue = NV_ADMA_MAX_CPBS, 411 .this_id = ATA_SHT_THIS_ID, 412 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN, 413 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 414 .emulated = ATA_SHT_EMULATED, 415 .use_clustering = ATA_SHT_USE_CLUSTERING, 416 .proc_name = DRV_NAME, 417 .dma_boundary = NV_ADMA_DMA_BOUNDARY, 418 .slave_configure = nv_adma_slave_config, 419 .slave_destroy = ata_scsi_slave_destroy, 420 .bios_param = ata_std_bios_param, 421 }; 422 423 static struct scsi_host_template nv_swncq_sht = { 424 .module = THIS_MODULE, 425 .name = DRV_NAME, 426 .ioctl = ata_scsi_ioctl, 427 .queuecommand = ata_scsi_queuecmd, 428 .change_queue_depth = ata_scsi_change_queue_depth, 429 .can_queue = ATA_MAX_QUEUE, 430 .this_id = ATA_SHT_THIS_ID, 431 .sg_tablesize = LIBATA_MAX_PRD, 432 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 433 .emulated = ATA_SHT_EMULATED, 434 .use_clustering = ATA_SHT_USE_CLUSTERING, 435 .proc_name = DRV_NAME, 436 .dma_boundary = ATA_DMA_BOUNDARY, 437 .slave_configure = nv_swncq_slave_config, 438 .slave_destroy = ata_scsi_slave_destroy, 439 .bios_param = ata_std_bios_param, 440 }; 441 442 static const struct ata_port_operations nv_generic_ops = { 443 .tf_load = ata_tf_load, 444 .tf_read = ata_tf_read, 445 .exec_command = ata_exec_command, 446 .check_status = ata_check_status, 447 .dev_select = ata_std_dev_select, 448 .bmdma_setup = ata_bmdma_setup, 449 .bmdma_start = ata_bmdma_start, 450 .bmdma_stop = ata_bmdma_stop, 451 .bmdma_status = ata_bmdma_status, 452 .qc_prep = ata_qc_prep, 453 .qc_issue = ata_qc_issue_prot, 454 .freeze = ata_bmdma_freeze, 455 .thaw = ata_bmdma_thaw, 456 .error_handler = nv_error_handler, 457 .post_internal_cmd = ata_bmdma_post_internal_cmd, 458 .data_xfer = ata_data_xfer, 459 .irq_clear = ata_bmdma_irq_clear, 460 .irq_on = ata_irq_on, 461 .scr_read = nv_scr_read, 462 .scr_write = nv_scr_write, 463 .port_start = ata_port_start, 464 }; 465 466 static const struct ata_port_operations nv_nf2_ops = { 467 .tf_load = ata_tf_load, 468 .tf_read = ata_tf_read, 469 .exec_command = ata_exec_command, 470 .check_status = ata_check_status, 471 .dev_select = ata_std_dev_select, 472 .bmdma_setup = ata_bmdma_setup, 473 .bmdma_start = ata_bmdma_start, 474 .bmdma_stop = ata_bmdma_stop, 475 .bmdma_status = ata_bmdma_status, 476 .qc_prep = ata_qc_prep, 477 .qc_issue = ata_qc_issue_prot, 478 .freeze = nv_nf2_freeze, 479 .thaw = nv_nf2_thaw, 480 .error_handler = nv_error_handler, 481 .post_internal_cmd = ata_bmdma_post_internal_cmd, 482 .data_xfer = ata_data_xfer, 483 .irq_clear = ata_bmdma_irq_clear, 484 .irq_on = ata_irq_on, 485 .scr_read = nv_scr_read, 486 .scr_write = nv_scr_write, 487 .port_start = ata_port_start, 488 }; 489 490 static const struct ata_port_operations nv_ck804_ops = { 491 .tf_load = ata_tf_load, 492 .tf_read = ata_tf_read, 493 .exec_command = ata_exec_command, 494 .check_status = ata_check_status, 495 .dev_select = ata_std_dev_select, 496 .bmdma_setup = ata_bmdma_setup, 497 .bmdma_start = ata_bmdma_start, 498 .bmdma_stop = ata_bmdma_stop, 499 .bmdma_status = ata_bmdma_status, 500 .qc_prep = ata_qc_prep, 501 .qc_issue = ata_qc_issue_prot, 502 .freeze = nv_ck804_freeze, 503 .thaw = nv_ck804_thaw, 504 .error_handler = nv_error_handler, 505 .post_internal_cmd = ata_bmdma_post_internal_cmd, 506 .data_xfer = ata_data_xfer, 507 .irq_clear = ata_bmdma_irq_clear, 508 .irq_on = ata_irq_on, 509 .scr_read = nv_scr_read, 510 .scr_write = nv_scr_write, 511 .port_start = ata_port_start, 512 .host_stop = nv_ck804_host_stop, 513 }; 514 515 static const struct ata_port_operations nv_adma_ops = { 516 .tf_load = ata_tf_load, 517 .tf_read = nv_adma_tf_read, 518 .check_atapi_dma = nv_adma_check_atapi_dma, 519 .exec_command = ata_exec_command, 520 .check_status = ata_check_status, 521 .dev_select = ata_std_dev_select, 522 .bmdma_setup = ata_bmdma_setup, 523 .bmdma_start = ata_bmdma_start, 524 .bmdma_stop = ata_bmdma_stop, 525 .bmdma_status = ata_bmdma_status, 526 .qc_defer = ata_std_qc_defer, 527 .qc_prep = nv_adma_qc_prep, 528 .qc_issue = nv_adma_qc_issue, 529 .freeze = nv_adma_freeze, 530 .thaw = nv_adma_thaw, 531 .error_handler = nv_adma_error_handler, 532 .post_internal_cmd = nv_adma_post_internal_cmd, 533 .data_xfer = ata_data_xfer, 534 .irq_clear = nv_adma_irq_clear, 535 .irq_on = ata_irq_on, 536 .scr_read = nv_scr_read, 537 .scr_write = nv_scr_write, 538 .port_start = nv_adma_port_start, 539 .port_stop = nv_adma_port_stop, 540 #ifdef CONFIG_PM 541 .port_suspend = nv_adma_port_suspend, 542 .port_resume = nv_adma_port_resume, 543 #endif 544 .host_stop = nv_adma_host_stop, 545 }; 546 547 static const struct ata_port_operations nv_swncq_ops = { 548 .tf_load = ata_tf_load, 549 .tf_read = ata_tf_read, 550 .exec_command = ata_exec_command, 551 .check_status = ata_check_status, 552 .dev_select = ata_std_dev_select, 553 .bmdma_setup = ata_bmdma_setup, 554 .bmdma_start = ata_bmdma_start, 555 .bmdma_stop = ata_bmdma_stop, 556 .bmdma_status = ata_bmdma_status, 557 .qc_defer = ata_std_qc_defer, 558 .qc_prep = nv_swncq_qc_prep, 559 .qc_issue = nv_swncq_qc_issue, 560 .freeze = nv_mcp55_freeze, 561 .thaw = nv_mcp55_thaw, 562 .error_handler = nv_swncq_error_handler, 563 .post_internal_cmd = ata_bmdma_post_internal_cmd, 564 .data_xfer = ata_data_xfer, 565 .irq_clear = ata_bmdma_irq_clear, 566 .irq_on = ata_irq_on, 567 .scr_read = nv_scr_read, 568 .scr_write = nv_scr_write, 569 #ifdef CONFIG_PM 570 .port_suspend = nv_swncq_port_suspend, 571 .port_resume = nv_swncq_port_resume, 572 #endif 573 .port_start = nv_swncq_port_start, 574 }; 575 576 static const struct ata_port_info nv_port_info[] = { 577 /* generic */ 578 { 579 .sht = &nv_sht, 580 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 581 .link_flags = ATA_LFLAG_HRST_TO_RESUME, 582 .pio_mask = NV_PIO_MASK, 583 .mwdma_mask = NV_MWDMA_MASK, 584 .udma_mask = NV_UDMA_MASK, 585 .port_ops = &nv_generic_ops, 586 .irq_handler = nv_generic_interrupt, 587 }, 588 /* nforce2/3 */ 589 { 590 .sht = &nv_sht, 591 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 592 .link_flags = ATA_LFLAG_HRST_TO_RESUME, 593 .pio_mask = NV_PIO_MASK, 594 .mwdma_mask = NV_MWDMA_MASK, 595 .udma_mask = NV_UDMA_MASK, 596 .port_ops = &nv_nf2_ops, 597 .irq_handler = nv_nf2_interrupt, 598 }, 599 /* ck804 */ 600 { 601 .sht = &nv_sht, 602 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 603 .link_flags = ATA_LFLAG_HRST_TO_RESUME, 604 .pio_mask = NV_PIO_MASK, 605 .mwdma_mask = NV_MWDMA_MASK, 606 .udma_mask = NV_UDMA_MASK, 607 .port_ops = &nv_ck804_ops, 608 .irq_handler = nv_ck804_interrupt, 609 }, 610 /* ADMA */ 611 { 612 .sht = &nv_adma_sht, 613 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 614 ATA_FLAG_MMIO | ATA_FLAG_NCQ, 615 .link_flags = ATA_LFLAG_HRST_TO_RESUME, 616 .pio_mask = NV_PIO_MASK, 617 .mwdma_mask = NV_MWDMA_MASK, 618 .udma_mask = NV_UDMA_MASK, 619 .port_ops = &nv_adma_ops, 620 .irq_handler = nv_adma_interrupt, 621 }, 622 /* SWNCQ */ 623 { 624 .sht = &nv_swncq_sht, 625 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 626 ATA_FLAG_NCQ, 627 .link_flags = ATA_LFLAG_HRST_TO_RESUME, 628 .pio_mask = NV_PIO_MASK, 629 .mwdma_mask = NV_MWDMA_MASK, 630 .udma_mask = NV_UDMA_MASK, 631 .port_ops = &nv_swncq_ops, 632 .irq_handler = nv_swncq_interrupt, 633 }, 634 }; 635 636 MODULE_AUTHOR("NVIDIA"); 637 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller"); 638 MODULE_LICENSE("GPL"); 639 MODULE_DEVICE_TABLE(pci, nv_pci_tbl); 640 MODULE_VERSION(DRV_VERSION); 641 642 static int adma_enabled = 1; 643 static int swncq_enabled; 644 645 static void nv_adma_register_mode(struct ata_port *ap) 646 { 647 struct nv_adma_port_priv *pp = ap->private_data; 648 void __iomem *mmio = pp->ctl_block; 649 u16 tmp, status; 650 int count = 0; 651 652 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 653 return; 654 655 status = readw(mmio + NV_ADMA_STAT); 656 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) { 657 ndelay(50); 658 status = readw(mmio + NV_ADMA_STAT); 659 count++; 660 } 661 if (count == 20) 662 ata_port_printk(ap, KERN_WARNING, 663 "timeout waiting for ADMA IDLE, stat=0x%hx\n", 664 status); 665 666 tmp = readw(mmio + NV_ADMA_CTL); 667 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 668 669 count = 0; 670 status = readw(mmio + NV_ADMA_STAT); 671 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) { 672 ndelay(50); 673 status = readw(mmio + NV_ADMA_STAT); 674 count++; 675 } 676 if (count == 20) 677 ata_port_printk(ap, KERN_WARNING, 678 "timeout waiting for ADMA LEGACY, stat=0x%hx\n", 679 status); 680 681 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 682 } 683 684 static void nv_adma_mode(struct ata_port *ap) 685 { 686 struct nv_adma_port_priv *pp = ap->private_data; 687 void __iomem *mmio = pp->ctl_block; 688 u16 tmp, status; 689 int count = 0; 690 691 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) 692 return; 693 694 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 695 696 tmp = readw(mmio + NV_ADMA_CTL); 697 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 698 699 status = readw(mmio + NV_ADMA_STAT); 700 while (((status & NV_ADMA_STAT_LEGACY) || 701 !(status & NV_ADMA_STAT_IDLE)) && count < 20) { 702 ndelay(50); 703 status = readw(mmio + NV_ADMA_STAT); 704 count++; 705 } 706 if (count == 20) 707 ata_port_printk(ap, KERN_WARNING, 708 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n", 709 status); 710 711 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE; 712 } 713 714 static int nv_adma_slave_config(struct scsi_device *sdev) 715 { 716 struct ata_port *ap = ata_shost_to_port(sdev->host); 717 struct nv_adma_port_priv *pp = ap->private_data; 718 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 719 u64 bounce_limit; 720 unsigned long segment_boundary; 721 unsigned short sg_tablesize; 722 int rc; 723 int adma_enable; 724 u32 current_reg, new_reg, config_mask; 725 726 rc = ata_scsi_slave_config(sdev); 727 728 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 729 /* Not a proper libata device, ignore */ 730 return rc; 731 732 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) { 733 /* 734 * NVIDIA reports that ADMA mode does not support ATAPI commands. 735 * Therefore ATAPI commands are sent through the legacy interface. 736 * However, the legacy interface only supports 32-bit DMA. 737 * Restrict DMA parameters as required by the legacy interface 738 * when an ATAPI device is connected. 739 */ 740 bounce_limit = ATA_DMA_MASK; 741 segment_boundary = ATA_DMA_BOUNDARY; 742 /* Subtract 1 since an extra entry may be needed for padding, see 743 libata-scsi.c */ 744 sg_tablesize = LIBATA_MAX_PRD - 1; 745 746 /* Since the legacy DMA engine is in use, we need to disable ADMA 747 on the port. */ 748 adma_enable = 0; 749 nv_adma_register_mode(ap); 750 } else { 751 bounce_limit = *ap->dev->dma_mask; 752 segment_boundary = NV_ADMA_DMA_BOUNDARY; 753 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN; 754 adma_enable = 1; 755 } 756 757 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, ¤t_reg); 758 759 if (ap->port_no == 1) 760 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN | 761 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 762 else 763 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN | 764 NV_MCP_SATA_CFG_20_PORT0_PWB_EN; 765 766 if (adma_enable) { 767 new_reg = current_reg | config_mask; 768 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE; 769 } else { 770 new_reg = current_reg & ~config_mask; 771 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE; 772 } 773 774 if (current_reg != new_reg) 775 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg); 776 777 blk_queue_bounce_limit(sdev->request_queue, bounce_limit); 778 blk_queue_segment_boundary(sdev->request_queue, segment_boundary); 779 blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize); 780 ata_port_printk(ap, KERN_INFO, 781 "bounce limit 0x%llX, segment boundary 0x%lX, hw segs %hu\n", 782 (unsigned long long)bounce_limit, segment_boundary, sg_tablesize); 783 return rc; 784 } 785 786 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc) 787 { 788 struct nv_adma_port_priv *pp = qc->ap->private_data; 789 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 790 } 791 792 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 793 { 794 /* Other than when internal or pass-through commands are executed, 795 the only time this function will be called in ADMA mode will be 796 if a command fails. In the failure case we don't care about going 797 into register mode with ADMA commands pending, as the commands will 798 all shortly be aborted anyway. We assume that NCQ commands are not 799 issued via passthrough, which is the only way that switching into 800 ADMA mode could abort outstanding commands. */ 801 nv_adma_register_mode(ap); 802 803 ata_tf_read(ap, tf); 804 } 805 806 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb) 807 { 808 unsigned int idx = 0; 809 810 if (tf->flags & ATA_TFLAG_ISADDR) { 811 if (tf->flags & ATA_TFLAG_LBA48) { 812 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB); 813 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect); 814 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal); 815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam); 816 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah); 817 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature); 818 } else 819 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB); 820 821 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect); 822 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal); 823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam); 824 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah); 825 } 826 827 if (tf->flags & ATA_TFLAG_DEVICE) 828 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device); 829 830 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND); 831 832 while (idx < 12) 833 cpb[idx++] = cpu_to_le16(IGN); 834 835 return idx; 836 } 837 838 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err) 839 { 840 struct nv_adma_port_priv *pp = ap->private_data; 841 u8 flags = pp->cpb[cpb_num].resp_flags; 842 843 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags); 844 845 if (unlikely((force_err || 846 flags & (NV_CPB_RESP_ATA_ERR | 847 NV_CPB_RESP_CMD_ERR | 848 NV_CPB_RESP_CPB_ERR)))) { 849 struct ata_eh_info *ehi = &ap->link.eh_info; 850 int freeze = 0; 851 852 ata_ehi_clear_desc(ehi); 853 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags); 854 if (flags & NV_CPB_RESP_ATA_ERR) { 855 ata_ehi_push_desc(ehi, "ATA error"); 856 ehi->err_mask |= AC_ERR_DEV; 857 } else if (flags & NV_CPB_RESP_CMD_ERR) { 858 ata_ehi_push_desc(ehi, "CMD error"); 859 ehi->err_mask |= AC_ERR_DEV; 860 } else if (flags & NV_CPB_RESP_CPB_ERR) { 861 ata_ehi_push_desc(ehi, "CPB error"); 862 ehi->err_mask |= AC_ERR_SYSTEM; 863 freeze = 1; 864 } else { 865 /* notifier error, but no error in CPB flags? */ 866 ata_ehi_push_desc(ehi, "unknown"); 867 ehi->err_mask |= AC_ERR_OTHER; 868 freeze = 1; 869 } 870 /* Kill all commands. EH will determine what actually failed. */ 871 if (freeze) 872 ata_port_freeze(ap); 873 else 874 ata_port_abort(ap); 875 return 1; 876 } 877 878 if (likely(flags & NV_CPB_RESP_DONE)) { 879 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num); 880 VPRINTK("CPB flags done, flags=0x%x\n", flags); 881 if (likely(qc)) { 882 DPRINTK("Completing qc from tag %d\n", cpb_num); 883 ata_qc_complete(qc); 884 } else { 885 struct ata_eh_info *ehi = &ap->link.eh_info; 886 /* Notifier bits set without a command may indicate the drive 887 is misbehaving. Raise host state machine violation on this 888 condition. */ 889 ata_port_printk(ap, KERN_ERR, 890 "notifier for tag %d with no cmd?\n", 891 cpb_num); 892 ehi->err_mask |= AC_ERR_HSM; 893 ehi->action |= ATA_EH_SOFTRESET; 894 ata_port_freeze(ap); 895 return 1; 896 } 897 } 898 return 0; 899 } 900 901 static int nv_host_intr(struct ata_port *ap, u8 irq_stat) 902 { 903 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 904 905 /* freeze if hotplugged */ 906 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) { 907 ata_port_freeze(ap); 908 return 1; 909 } 910 911 /* bail out if not our interrupt */ 912 if (!(irq_stat & NV_INT_DEV)) 913 return 0; 914 915 /* DEV interrupt w/ no active qc? */ 916 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 917 ata_check_status(ap); 918 return 1; 919 } 920 921 /* handle interrupt */ 922 return ata_host_intr(ap, qc); 923 } 924 925 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) 926 { 927 struct ata_host *host = dev_instance; 928 int i, handled = 0; 929 u32 notifier_clears[2]; 930 931 spin_lock(&host->lock); 932 933 for (i = 0; i < host->n_ports; i++) { 934 struct ata_port *ap = host->ports[i]; 935 notifier_clears[i] = 0; 936 937 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 938 struct nv_adma_port_priv *pp = ap->private_data; 939 void __iomem *mmio = pp->ctl_block; 940 u16 status; 941 u32 gen_ctl; 942 u32 notifier, notifier_error; 943 944 /* if ADMA is disabled, use standard ata interrupt handler */ 945 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 946 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 947 >> (NV_INT_PORT_SHIFT * i); 948 handled += nv_host_intr(ap, irq_stat); 949 continue; 950 } 951 952 /* if in ATA register mode, check for standard interrupts */ 953 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) { 954 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 955 >> (NV_INT_PORT_SHIFT * i); 956 if (ata_tag_valid(ap->link.active_tag)) 957 /** NV_INT_DEV indication seems unreliable at times 958 at least in ADMA mode. Force it on always when a 959 command is active, to prevent losing interrupts. */ 960 irq_stat |= NV_INT_DEV; 961 handled += nv_host_intr(ap, irq_stat); 962 } 963 964 notifier = readl(mmio + NV_ADMA_NOTIFIER); 965 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 966 notifier_clears[i] = notifier | notifier_error; 967 968 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 969 970 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier && 971 !notifier_error) 972 /* Nothing to do */ 973 continue; 974 975 status = readw(mmio + NV_ADMA_STAT); 976 977 /* Clear status. Ensure the controller sees the clearing before we start 978 looking at any of the CPB statuses, so that any CPB completions after 979 this point in the handler will raise another interrupt. */ 980 writew(status, mmio + NV_ADMA_STAT); 981 readw(mmio + NV_ADMA_STAT); /* flush posted write */ 982 rmb(); 983 984 handled++; /* irq handled if we got here */ 985 986 /* freeze if hotplugged or controller error */ 987 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG | 988 NV_ADMA_STAT_HOTUNPLUG | 989 NV_ADMA_STAT_TIMEOUT | 990 NV_ADMA_STAT_SERROR))) { 991 struct ata_eh_info *ehi = &ap->link.eh_info; 992 993 ata_ehi_clear_desc(ehi); 994 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status); 995 if (status & NV_ADMA_STAT_TIMEOUT) { 996 ehi->err_mask |= AC_ERR_SYSTEM; 997 ata_ehi_push_desc(ehi, "timeout"); 998 } else if (status & NV_ADMA_STAT_HOTPLUG) { 999 ata_ehi_hotplugged(ehi); 1000 ata_ehi_push_desc(ehi, "hotplug"); 1001 } else if (status & NV_ADMA_STAT_HOTUNPLUG) { 1002 ata_ehi_hotplugged(ehi); 1003 ata_ehi_push_desc(ehi, "hot unplug"); 1004 } else if (status & NV_ADMA_STAT_SERROR) { 1005 /* let libata analyze SError and figure out the cause */ 1006 ata_ehi_push_desc(ehi, "SError"); 1007 } else 1008 ata_ehi_push_desc(ehi, "unknown"); 1009 ata_port_freeze(ap); 1010 continue; 1011 } 1012 1013 if (status & (NV_ADMA_STAT_DONE | 1014 NV_ADMA_STAT_CPBERR | 1015 NV_ADMA_STAT_CMD_COMPLETE)) { 1016 u32 check_commands = notifier_clears[i]; 1017 int pos, error = 0; 1018 1019 if (status & NV_ADMA_STAT_CPBERR) { 1020 /* Check all active commands */ 1021 if (ata_tag_valid(ap->link.active_tag)) 1022 check_commands = 1 << 1023 ap->link.active_tag; 1024 else 1025 check_commands = ap-> 1026 link.sactive; 1027 } 1028 1029 /** Check CPBs for completed commands */ 1030 while ((pos = ffs(check_commands)) && !error) { 1031 pos--; 1032 error = nv_adma_check_cpb(ap, pos, 1033 notifier_error & (1 << pos)); 1034 check_commands &= ~(1 << pos); 1035 } 1036 } 1037 } 1038 } 1039 1040 if (notifier_clears[0] || notifier_clears[1]) { 1041 /* Note: Both notifier clear registers must be written 1042 if either is set, even if one is zero, according to NVIDIA. */ 1043 struct nv_adma_port_priv *pp = host->ports[0]->private_data; 1044 writel(notifier_clears[0], pp->notifier_clear_block); 1045 pp = host->ports[1]->private_data; 1046 writel(notifier_clears[1], pp->notifier_clear_block); 1047 } 1048 1049 spin_unlock(&host->lock); 1050 1051 return IRQ_RETVAL(handled); 1052 } 1053 1054 static void nv_adma_freeze(struct ata_port *ap) 1055 { 1056 struct nv_adma_port_priv *pp = ap->private_data; 1057 void __iomem *mmio = pp->ctl_block; 1058 u16 tmp; 1059 1060 nv_ck804_freeze(ap); 1061 1062 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1063 return; 1064 1065 /* clear any outstanding CK804 notifications */ 1066 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1067 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1068 1069 /* Disable interrupt */ 1070 tmp = readw(mmio + NV_ADMA_CTL); 1071 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1072 mmio + NV_ADMA_CTL); 1073 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1074 } 1075 1076 static void nv_adma_thaw(struct ata_port *ap) 1077 { 1078 struct nv_adma_port_priv *pp = ap->private_data; 1079 void __iomem *mmio = pp->ctl_block; 1080 u16 tmp; 1081 1082 nv_ck804_thaw(ap); 1083 1084 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1085 return; 1086 1087 /* Enable interrupt */ 1088 tmp = readw(mmio + NV_ADMA_CTL); 1089 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1090 mmio + NV_ADMA_CTL); 1091 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1092 } 1093 1094 static void nv_adma_irq_clear(struct ata_port *ap) 1095 { 1096 struct nv_adma_port_priv *pp = ap->private_data; 1097 void __iomem *mmio = pp->ctl_block; 1098 u32 notifier_clears[2]; 1099 1100 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 1101 ata_bmdma_irq_clear(ap); 1102 return; 1103 } 1104 1105 /* clear any outstanding CK804 notifications */ 1106 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1107 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1108 1109 /* clear ADMA status */ 1110 writew(0xffff, mmio + NV_ADMA_STAT); 1111 1112 /* clear notifiers - note both ports need to be written with 1113 something even though we are only clearing on one */ 1114 if (ap->port_no == 0) { 1115 notifier_clears[0] = 0xFFFFFFFF; 1116 notifier_clears[1] = 0; 1117 } else { 1118 notifier_clears[0] = 0; 1119 notifier_clears[1] = 0xFFFFFFFF; 1120 } 1121 pp = ap->host->ports[0]->private_data; 1122 writel(notifier_clears[0], pp->notifier_clear_block); 1123 pp = ap->host->ports[1]->private_data; 1124 writel(notifier_clears[1], pp->notifier_clear_block); 1125 } 1126 1127 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc) 1128 { 1129 struct nv_adma_port_priv *pp = qc->ap->private_data; 1130 1131 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 1132 ata_bmdma_post_internal_cmd(qc); 1133 } 1134 1135 static int nv_adma_port_start(struct ata_port *ap) 1136 { 1137 struct device *dev = ap->host->dev; 1138 struct nv_adma_port_priv *pp; 1139 int rc; 1140 void *mem; 1141 dma_addr_t mem_dma; 1142 void __iomem *mmio; 1143 u16 tmp; 1144 1145 VPRINTK("ENTER\n"); 1146 1147 rc = ata_port_start(ap); 1148 if (rc) 1149 return rc; 1150 1151 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1152 if (!pp) 1153 return -ENOMEM; 1154 1155 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT + 1156 ap->port_no * NV_ADMA_PORT_SIZE; 1157 pp->ctl_block = mmio; 1158 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN; 1159 pp->notifier_clear_block = pp->gen_block + 1160 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no); 1161 1162 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ, 1163 &mem_dma, GFP_KERNEL); 1164 if (!mem) 1165 return -ENOMEM; 1166 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ); 1167 1168 /* 1169 * First item in chunk of DMA memory: 1170 * 128-byte command parameter block (CPB) 1171 * one for each command tag 1172 */ 1173 pp->cpb = mem; 1174 pp->cpb_dma = mem_dma; 1175 1176 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1177 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1178 1179 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1180 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1181 1182 /* 1183 * Second item: block of ADMA_SGTBL_LEN s/g entries 1184 */ 1185 pp->aprd = mem; 1186 pp->aprd_dma = mem_dma; 1187 1188 ap->private_data = pp; 1189 1190 /* clear any outstanding interrupt conditions */ 1191 writew(0xffff, mmio + NV_ADMA_STAT); 1192 1193 /* initialize port variables */ 1194 pp->flags = NV_ADMA_PORT_REGISTER_MODE; 1195 1196 /* clear CPB fetch count */ 1197 writew(0, mmio + NV_ADMA_CPB_COUNT); 1198 1199 /* clear GO for register mode, enable interrupt */ 1200 tmp = readw(mmio + NV_ADMA_CTL); 1201 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1202 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1203 1204 tmp = readw(mmio + NV_ADMA_CTL); 1205 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1206 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1207 udelay(1); 1208 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1209 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1210 1211 return 0; 1212 } 1213 1214 static void nv_adma_port_stop(struct ata_port *ap) 1215 { 1216 struct nv_adma_port_priv *pp = ap->private_data; 1217 void __iomem *mmio = pp->ctl_block; 1218 1219 VPRINTK("ENTER\n"); 1220 writew(0, mmio + NV_ADMA_CTL); 1221 } 1222 1223 #ifdef CONFIG_PM 1224 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg) 1225 { 1226 struct nv_adma_port_priv *pp = ap->private_data; 1227 void __iomem *mmio = pp->ctl_block; 1228 1229 /* Go to register mode - clears GO */ 1230 nv_adma_register_mode(ap); 1231 1232 /* clear CPB fetch count */ 1233 writew(0, mmio + NV_ADMA_CPB_COUNT); 1234 1235 /* disable interrupt, shut down port */ 1236 writew(0, mmio + NV_ADMA_CTL); 1237 1238 return 0; 1239 } 1240 1241 static int nv_adma_port_resume(struct ata_port *ap) 1242 { 1243 struct nv_adma_port_priv *pp = ap->private_data; 1244 void __iomem *mmio = pp->ctl_block; 1245 u16 tmp; 1246 1247 /* set CPB block location */ 1248 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1249 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1250 1251 /* clear any outstanding interrupt conditions */ 1252 writew(0xffff, mmio + NV_ADMA_STAT); 1253 1254 /* initialize port variables */ 1255 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 1256 1257 /* clear CPB fetch count */ 1258 writew(0, mmio + NV_ADMA_CPB_COUNT); 1259 1260 /* clear GO for register mode, enable interrupt */ 1261 tmp = readw(mmio + NV_ADMA_CTL); 1262 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1263 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1264 1265 tmp = readw(mmio + NV_ADMA_CTL); 1266 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1267 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1268 udelay(1); 1269 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1270 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1271 1272 return 0; 1273 } 1274 #endif 1275 1276 static void nv_adma_setup_port(struct ata_port *ap) 1277 { 1278 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1279 struct ata_ioports *ioport = &ap->ioaddr; 1280 1281 VPRINTK("ENTER\n"); 1282 1283 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE; 1284 1285 ioport->cmd_addr = mmio; 1286 ioport->data_addr = mmio + (ATA_REG_DATA * 4); 1287 ioport->error_addr = 1288 ioport->feature_addr = mmio + (ATA_REG_ERR * 4); 1289 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4); 1290 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4); 1291 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4); 1292 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4); 1293 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4); 1294 ioport->status_addr = 1295 ioport->command_addr = mmio + (ATA_REG_STATUS * 4); 1296 ioport->altstatus_addr = 1297 ioport->ctl_addr = mmio + 0x20; 1298 } 1299 1300 static int nv_adma_host_init(struct ata_host *host) 1301 { 1302 struct pci_dev *pdev = to_pci_dev(host->dev); 1303 unsigned int i; 1304 u32 tmp32; 1305 1306 VPRINTK("ENTER\n"); 1307 1308 /* enable ADMA on the ports */ 1309 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 1310 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN | 1311 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 1312 NV_MCP_SATA_CFG_20_PORT1_EN | 1313 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 1314 1315 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 1316 1317 for (i = 0; i < host->n_ports; i++) 1318 nv_adma_setup_port(host->ports[i]); 1319 1320 return 0; 1321 } 1322 1323 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc, 1324 struct scatterlist *sg, 1325 int idx, 1326 struct nv_adma_prd *aprd) 1327 { 1328 u8 flags = 0; 1329 if (qc->tf.flags & ATA_TFLAG_WRITE) 1330 flags |= NV_APRD_WRITE; 1331 if (idx == qc->n_elem - 1) 1332 flags |= NV_APRD_END; 1333 else if (idx != 4) 1334 flags |= NV_APRD_CONT; 1335 1336 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg))); 1337 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */ 1338 aprd->flags = flags; 1339 aprd->packet_len = 0; 1340 } 1341 1342 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb) 1343 { 1344 struct nv_adma_port_priv *pp = qc->ap->private_data; 1345 struct nv_adma_prd *aprd; 1346 struct scatterlist *sg; 1347 unsigned int si; 1348 1349 VPRINTK("ENTER\n"); 1350 1351 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1352 aprd = (si < 5) ? &cpb->aprd[si] : 1353 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)]; 1354 nv_adma_fill_aprd(qc, sg, si, aprd); 1355 } 1356 if (si > 5) 1357 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag))); 1358 else 1359 cpb->next_aprd = cpu_to_le64(0); 1360 } 1361 1362 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc) 1363 { 1364 struct nv_adma_port_priv *pp = qc->ap->private_data; 1365 1366 /* ADMA engine can only be used for non-ATAPI DMA commands, 1367 or interrupt-driven no-data commands. */ 1368 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 1369 (qc->tf.flags & ATA_TFLAG_POLLING)) 1370 return 1; 1371 1372 if ((qc->flags & ATA_QCFLAG_DMAMAP) || 1373 (qc->tf.protocol == ATA_PROT_NODATA)) 1374 return 0; 1375 1376 return 1; 1377 } 1378 1379 static void nv_adma_qc_prep(struct ata_queued_cmd *qc) 1380 { 1381 struct nv_adma_port_priv *pp = qc->ap->private_data; 1382 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag]; 1383 u8 ctl_flags = NV_CPB_CTL_CPB_VALID | 1384 NV_CPB_CTL_IEN; 1385 1386 if (nv_adma_use_reg_mode(qc)) { 1387 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1388 (qc->flags & ATA_QCFLAG_DMAMAP)); 1389 nv_adma_register_mode(qc->ap); 1390 ata_qc_prep(qc); 1391 return; 1392 } 1393 1394 cpb->resp_flags = NV_CPB_RESP_DONE; 1395 wmb(); 1396 cpb->ctl_flags = 0; 1397 wmb(); 1398 1399 cpb->len = 3; 1400 cpb->tag = qc->tag; 1401 cpb->next_cpb_idx = 0; 1402 1403 /* turn on NCQ flags for NCQ commands */ 1404 if (qc->tf.protocol == ATA_PROT_NCQ) 1405 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA; 1406 1407 VPRINTK("qc->flags = 0x%lx\n", qc->flags); 1408 1409 nv_adma_tf_to_cpb(&qc->tf, cpb->tf); 1410 1411 if (qc->flags & ATA_QCFLAG_DMAMAP) { 1412 nv_adma_fill_sg(qc, cpb); 1413 ctl_flags |= NV_CPB_CTL_APRD_VALID; 1414 } else 1415 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5); 1416 1417 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID 1418 until we are finished filling in all of the contents */ 1419 wmb(); 1420 cpb->ctl_flags = ctl_flags; 1421 wmb(); 1422 cpb->resp_flags = 0; 1423 } 1424 1425 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc) 1426 { 1427 struct nv_adma_port_priv *pp = qc->ap->private_data; 1428 void __iomem *mmio = pp->ctl_block; 1429 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ); 1430 1431 VPRINTK("ENTER\n"); 1432 1433 /* We can't handle result taskfile with NCQ commands, since 1434 retrieving the taskfile switches us out of ADMA mode and would abort 1435 existing commands. */ 1436 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ && 1437 (qc->flags & ATA_QCFLAG_RESULT_TF))) { 1438 ata_dev_printk(qc->dev, KERN_ERR, 1439 "NCQ w/ RESULT_TF not allowed\n"); 1440 return AC_ERR_SYSTEM; 1441 } 1442 1443 if (nv_adma_use_reg_mode(qc)) { 1444 /* use ATA register mode */ 1445 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags); 1446 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1447 (qc->flags & ATA_QCFLAG_DMAMAP)); 1448 nv_adma_register_mode(qc->ap); 1449 return ata_qc_issue_prot(qc); 1450 } else 1451 nv_adma_mode(qc->ap); 1452 1453 /* write append register, command tag in lower 8 bits 1454 and (number of cpbs to append -1) in top 8 bits */ 1455 wmb(); 1456 1457 if (curr_ncq != pp->last_issue_ncq) { 1458 /* Seems to need some delay before switching between NCQ and 1459 non-NCQ commands, else we get command timeouts and such. */ 1460 udelay(20); 1461 pp->last_issue_ncq = curr_ncq; 1462 } 1463 1464 writew(qc->tag, mmio + NV_ADMA_APPEND); 1465 1466 DPRINTK("Issued tag %u\n", qc->tag); 1467 1468 return 0; 1469 } 1470 1471 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance) 1472 { 1473 struct ata_host *host = dev_instance; 1474 unsigned int i; 1475 unsigned int handled = 0; 1476 unsigned long flags; 1477 1478 spin_lock_irqsave(&host->lock, flags); 1479 1480 for (i = 0; i < host->n_ports; i++) { 1481 struct ata_port *ap; 1482 1483 ap = host->ports[i]; 1484 if (ap && 1485 !(ap->flags & ATA_FLAG_DISABLED)) { 1486 struct ata_queued_cmd *qc; 1487 1488 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1489 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 1490 handled += ata_host_intr(ap, qc); 1491 else 1492 // No request pending? Clear interrupt status 1493 // anyway, in case there's one pending. 1494 ap->ops->check_status(ap); 1495 } 1496 1497 } 1498 1499 spin_unlock_irqrestore(&host->lock, flags); 1500 1501 return IRQ_RETVAL(handled); 1502 } 1503 1504 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat) 1505 { 1506 int i, handled = 0; 1507 1508 for (i = 0; i < host->n_ports; i++) { 1509 struct ata_port *ap = host->ports[i]; 1510 1511 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) 1512 handled += nv_host_intr(ap, irq_stat); 1513 1514 irq_stat >>= NV_INT_PORT_SHIFT; 1515 } 1516 1517 return IRQ_RETVAL(handled); 1518 } 1519 1520 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance) 1521 { 1522 struct ata_host *host = dev_instance; 1523 u8 irq_stat; 1524 irqreturn_t ret; 1525 1526 spin_lock(&host->lock); 1527 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS); 1528 ret = nv_do_interrupt(host, irq_stat); 1529 spin_unlock(&host->lock); 1530 1531 return ret; 1532 } 1533 1534 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance) 1535 { 1536 struct ata_host *host = dev_instance; 1537 u8 irq_stat; 1538 irqreturn_t ret; 1539 1540 spin_lock(&host->lock); 1541 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1542 ret = nv_do_interrupt(host, irq_stat); 1543 spin_unlock(&host->lock); 1544 1545 return ret; 1546 } 1547 1548 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val) 1549 { 1550 if (sc_reg > SCR_CONTROL) 1551 return -EINVAL; 1552 1553 *val = ioread32(ap->ioaddr.scr_addr + (sc_reg * 4)); 1554 return 0; 1555 } 1556 1557 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val) 1558 { 1559 if (sc_reg > SCR_CONTROL) 1560 return -EINVAL; 1561 1562 iowrite32(val, ap->ioaddr.scr_addr + (sc_reg * 4)); 1563 return 0; 1564 } 1565 1566 static void nv_nf2_freeze(struct ata_port *ap) 1567 { 1568 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1569 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1570 u8 mask; 1571 1572 mask = ioread8(scr_addr + NV_INT_ENABLE); 1573 mask &= ~(NV_INT_ALL << shift); 1574 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1575 } 1576 1577 static void nv_nf2_thaw(struct ata_port *ap) 1578 { 1579 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1580 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1581 u8 mask; 1582 1583 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS); 1584 1585 mask = ioread8(scr_addr + NV_INT_ENABLE); 1586 mask |= (NV_INT_MASK << shift); 1587 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1588 } 1589 1590 static void nv_ck804_freeze(struct ata_port *ap) 1591 { 1592 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1593 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1594 u8 mask; 1595 1596 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1597 mask &= ~(NV_INT_ALL << shift); 1598 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1599 } 1600 1601 static void nv_ck804_thaw(struct ata_port *ap) 1602 { 1603 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1604 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1605 u8 mask; 1606 1607 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804); 1608 1609 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1610 mask |= (NV_INT_MASK << shift); 1611 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1612 } 1613 1614 static void nv_mcp55_freeze(struct ata_port *ap) 1615 { 1616 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1617 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1618 u32 mask; 1619 1620 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1621 1622 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1623 mask &= ~(NV_INT_ALL_MCP55 << shift); 1624 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1625 ata_bmdma_freeze(ap); 1626 } 1627 1628 static void nv_mcp55_thaw(struct ata_port *ap) 1629 { 1630 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1631 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1632 u32 mask; 1633 1634 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1635 1636 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1637 mask |= (NV_INT_MASK_MCP55 << shift); 1638 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1639 ata_bmdma_thaw(ap); 1640 } 1641 1642 static int nv_hardreset(struct ata_link *link, unsigned int *class, 1643 unsigned long deadline) 1644 { 1645 unsigned int dummy; 1646 1647 /* SATA hardreset fails to retrieve proper device signature on 1648 * some controllers. Don't classify on hardreset. For more 1649 * info, see http://bugzilla.kernel.org/show_bug.cgi?id=3352 1650 */ 1651 return sata_std_hardreset(link, &dummy, deadline); 1652 } 1653 1654 static void nv_error_handler(struct ata_port *ap) 1655 { 1656 ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, 1657 nv_hardreset, ata_std_postreset); 1658 } 1659 1660 static void nv_adma_error_handler(struct ata_port *ap) 1661 { 1662 struct nv_adma_port_priv *pp = ap->private_data; 1663 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) { 1664 void __iomem *mmio = pp->ctl_block; 1665 int i; 1666 u16 tmp; 1667 1668 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) { 1669 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER); 1670 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 1671 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 1672 u32 status = readw(mmio + NV_ADMA_STAT); 1673 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT); 1674 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX); 1675 1676 ata_port_printk(ap, KERN_ERR, 1677 "EH in ADMA mode, notifier 0x%X " 1678 "notifier_error 0x%X gen_ctl 0x%X status 0x%X " 1679 "next cpb count 0x%X next cpb idx 0x%x\n", 1680 notifier, notifier_error, gen_ctl, status, 1681 cpb_count, next_cpb_idx); 1682 1683 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) { 1684 struct nv_adma_cpb *cpb = &pp->cpb[i]; 1685 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) || 1686 ap->link.sactive & (1 << i)) 1687 ata_port_printk(ap, KERN_ERR, 1688 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n", 1689 i, cpb->ctl_flags, cpb->resp_flags); 1690 } 1691 } 1692 1693 /* Push us back into port register mode for error handling. */ 1694 nv_adma_register_mode(ap); 1695 1696 /* Mark all of the CPBs as invalid to prevent them from 1697 being executed */ 1698 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) 1699 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID; 1700 1701 /* clear CPB fetch count */ 1702 writew(0, mmio + NV_ADMA_CPB_COUNT); 1703 1704 /* Reset channel */ 1705 tmp = readw(mmio + NV_ADMA_CTL); 1706 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1707 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1708 udelay(1); 1709 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1710 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1711 } 1712 1713 ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, 1714 nv_hardreset, ata_std_postreset); 1715 } 1716 1717 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc) 1718 { 1719 struct nv_swncq_port_priv *pp = ap->private_data; 1720 struct defer_queue *dq = &pp->defer_queue; 1721 1722 /* queue is full */ 1723 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE); 1724 dq->defer_bits |= (1 << qc->tag); 1725 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag; 1726 } 1727 1728 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap) 1729 { 1730 struct nv_swncq_port_priv *pp = ap->private_data; 1731 struct defer_queue *dq = &pp->defer_queue; 1732 unsigned int tag; 1733 1734 if (dq->head == dq->tail) /* null queue */ 1735 return NULL; 1736 1737 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)]; 1738 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON; 1739 WARN_ON(!(dq->defer_bits & (1 << tag))); 1740 dq->defer_bits &= ~(1 << tag); 1741 1742 return ata_qc_from_tag(ap, tag); 1743 } 1744 1745 static void nv_swncq_fis_reinit(struct ata_port *ap) 1746 { 1747 struct nv_swncq_port_priv *pp = ap->private_data; 1748 1749 pp->dhfis_bits = 0; 1750 pp->dmafis_bits = 0; 1751 pp->sdbfis_bits = 0; 1752 pp->ncq_flags = 0; 1753 } 1754 1755 static void nv_swncq_pp_reinit(struct ata_port *ap) 1756 { 1757 struct nv_swncq_port_priv *pp = ap->private_data; 1758 struct defer_queue *dq = &pp->defer_queue; 1759 1760 dq->head = 0; 1761 dq->tail = 0; 1762 dq->defer_bits = 0; 1763 pp->qc_active = 0; 1764 pp->last_issue_tag = ATA_TAG_POISON; 1765 nv_swncq_fis_reinit(ap); 1766 } 1767 1768 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis) 1769 { 1770 struct nv_swncq_port_priv *pp = ap->private_data; 1771 1772 writew(fis, pp->irq_block); 1773 } 1774 1775 static void __ata_bmdma_stop(struct ata_port *ap) 1776 { 1777 struct ata_queued_cmd qc; 1778 1779 qc.ap = ap; 1780 ata_bmdma_stop(&qc); 1781 } 1782 1783 static void nv_swncq_ncq_stop(struct ata_port *ap) 1784 { 1785 struct nv_swncq_port_priv *pp = ap->private_data; 1786 unsigned int i; 1787 u32 sactive; 1788 u32 done_mask; 1789 1790 ata_port_printk(ap, KERN_ERR, 1791 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n", 1792 ap->qc_active, ap->link.sactive); 1793 ata_port_printk(ap, KERN_ERR, 1794 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n " 1795 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n", 1796 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag, 1797 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits); 1798 1799 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n", 1800 ap->ops->check_status(ap), 1801 ioread8(ap->ioaddr.error_addr)); 1802 1803 sactive = readl(pp->sactive_block); 1804 done_mask = pp->qc_active ^ sactive; 1805 1806 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n"); 1807 for (i = 0; i < ATA_MAX_QUEUE; i++) { 1808 u8 err = 0; 1809 if (pp->qc_active & (1 << i)) 1810 err = 0; 1811 else if (done_mask & (1 << i)) 1812 err = 1; 1813 else 1814 continue; 1815 1816 ata_port_printk(ap, KERN_ERR, 1817 "tag 0x%x: %01x %01x %01x %01x %s\n", i, 1818 (pp->dhfis_bits >> i) & 0x1, 1819 (pp->dmafis_bits >> i) & 0x1, 1820 (pp->sdbfis_bits >> i) & 0x1, 1821 (sactive >> i) & 0x1, 1822 (err ? "error! tag doesn't exit" : " ")); 1823 } 1824 1825 nv_swncq_pp_reinit(ap); 1826 ap->ops->irq_clear(ap); 1827 __ata_bmdma_stop(ap); 1828 nv_swncq_irq_clear(ap, 0xffff); 1829 } 1830 1831 static void nv_swncq_error_handler(struct ata_port *ap) 1832 { 1833 struct ata_eh_context *ehc = &ap->link.eh_context; 1834 1835 if (ap->link.sactive) { 1836 nv_swncq_ncq_stop(ap); 1837 ehc->i.action |= ATA_EH_HARDRESET; 1838 } 1839 1840 ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, 1841 nv_hardreset, ata_std_postreset); 1842 } 1843 1844 #ifdef CONFIG_PM 1845 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg) 1846 { 1847 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1848 u32 tmp; 1849 1850 /* clear irq */ 1851 writel(~0, mmio + NV_INT_STATUS_MCP55); 1852 1853 /* disable irq */ 1854 writel(0, mmio + NV_INT_ENABLE_MCP55); 1855 1856 /* disable swncq */ 1857 tmp = readl(mmio + NV_CTL_MCP55); 1858 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ); 1859 writel(tmp, mmio + NV_CTL_MCP55); 1860 1861 return 0; 1862 } 1863 1864 static int nv_swncq_port_resume(struct ata_port *ap) 1865 { 1866 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1867 u32 tmp; 1868 1869 /* clear irq */ 1870 writel(~0, mmio + NV_INT_STATUS_MCP55); 1871 1872 /* enable irq */ 1873 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1874 1875 /* enable swncq */ 1876 tmp = readl(mmio + NV_CTL_MCP55); 1877 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1878 1879 return 0; 1880 } 1881 #endif 1882 1883 static void nv_swncq_host_init(struct ata_host *host) 1884 { 1885 u32 tmp; 1886 void __iomem *mmio = host->iomap[NV_MMIO_BAR]; 1887 struct pci_dev *pdev = to_pci_dev(host->dev); 1888 u8 regval; 1889 1890 /* disable ECO 398 */ 1891 pci_read_config_byte(pdev, 0x7f, ®val); 1892 regval &= ~(1 << 7); 1893 pci_write_config_byte(pdev, 0x7f, regval); 1894 1895 /* enable swncq */ 1896 tmp = readl(mmio + NV_CTL_MCP55); 1897 VPRINTK("HOST_CTL:0x%X\n", tmp); 1898 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1899 1900 /* enable irq intr */ 1901 tmp = readl(mmio + NV_INT_ENABLE_MCP55); 1902 VPRINTK("HOST_ENABLE:0x%X\n", tmp); 1903 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1904 1905 /* clear port irq */ 1906 writel(~0x0, mmio + NV_INT_STATUS_MCP55); 1907 } 1908 1909 static int nv_swncq_slave_config(struct scsi_device *sdev) 1910 { 1911 struct ata_port *ap = ata_shost_to_port(sdev->host); 1912 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 1913 struct ata_device *dev; 1914 int rc; 1915 u8 rev; 1916 u8 check_maxtor = 0; 1917 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 1918 1919 rc = ata_scsi_slave_config(sdev); 1920 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 1921 /* Not a proper libata device, ignore */ 1922 return rc; 1923 1924 dev = &ap->link.device[sdev->id]; 1925 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI) 1926 return rc; 1927 1928 /* if MCP51 and Maxtor, then disable ncq */ 1929 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA || 1930 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2) 1931 check_maxtor = 1; 1932 1933 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */ 1934 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA || 1935 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) { 1936 pci_read_config_byte(pdev, 0x8, &rev); 1937 if (rev <= 0xa2) 1938 check_maxtor = 1; 1939 } 1940 1941 if (!check_maxtor) 1942 return rc; 1943 1944 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 1945 1946 if (strncmp(model_num, "Maxtor", 6) == 0) { 1947 ata_scsi_change_queue_depth(sdev, 1); 1948 ata_dev_printk(dev, KERN_NOTICE, 1949 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth); 1950 } 1951 1952 return rc; 1953 } 1954 1955 static int nv_swncq_port_start(struct ata_port *ap) 1956 { 1957 struct device *dev = ap->host->dev; 1958 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1959 struct nv_swncq_port_priv *pp; 1960 int rc; 1961 1962 rc = ata_port_start(ap); 1963 if (rc) 1964 return rc; 1965 1966 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1967 if (!pp) 1968 return -ENOMEM; 1969 1970 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE, 1971 &pp->prd_dma, GFP_KERNEL); 1972 if (!pp->prd) 1973 return -ENOMEM; 1974 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE); 1975 1976 ap->private_data = pp; 1977 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE; 1978 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2; 1979 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2; 1980 1981 return 0; 1982 } 1983 1984 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc) 1985 { 1986 if (qc->tf.protocol != ATA_PROT_NCQ) { 1987 ata_qc_prep(qc); 1988 return; 1989 } 1990 1991 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 1992 return; 1993 1994 nv_swncq_fill_sg(qc); 1995 } 1996 1997 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc) 1998 { 1999 struct ata_port *ap = qc->ap; 2000 struct scatterlist *sg; 2001 struct nv_swncq_port_priv *pp = ap->private_data; 2002 struct ata_prd *prd; 2003 unsigned int si, idx; 2004 2005 prd = pp->prd + ATA_MAX_PRD * qc->tag; 2006 2007 idx = 0; 2008 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2009 u32 addr, offset; 2010 u32 sg_len, len; 2011 2012 addr = (u32)sg_dma_address(sg); 2013 sg_len = sg_dma_len(sg); 2014 2015 while (sg_len) { 2016 offset = addr & 0xffff; 2017 len = sg_len; 2018 if ((offset + sg_len) > 0x10000) 2019 len = 0x10000 - offset; 2020 2021 prd[idx].addr = cpu_to_le32(addr); 2022 prd[idx].flags_len = cpu_to_le32(len & 0xffff); 2023 2024 idx++; 2025 sg_len -= len; 2026 addr += len; 2027 } 2028 } 2029 2030 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2031 } 2032 2033 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap, 2034 struct ata_queued_cmd *qc) 2035 { 2036 struct nv_swncq_port_priv *pp = ap->private_data; 2037 2038 if (qc == NULL) 2039 return 0; 2040 2041 DPRINTK("Enter\n"); 2042 2043 writel((1 << qc->tag), pp->sactive_block); 2044 pp->last_issue_tag = qc->tag; 2045 pp->dhfis_bits &= ~(1 << qc->tag); 2046 pp->dmafis_bits &= ~(1 << qc->tag); 2047 pp->qc_active |= (0x1 << qc->tag); 2048 2049 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ 2050 ap->ops->exec_command(ap, &qc->tf); 2051 2052 DPRINTK("Issued tag %u\n", qc->tag); 2053 2054 return 0; 2055 } 2056 2057 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc) 2058 { 2059 struct ata_port *ap = qc->ap; 2060 struct nv_swncq_port_priv *pp = ap->private_data; 2061 2062 if (qc->tf.protocol != ATA_PROT_NCQ) 2063 return ata_qc_issue_prot(qc); 2064 2065 DPRINTK("Enter\n"); 2066 2067 if (!pp->qc_active) 2068 nv_swncq_issue_atacmd(ap, qc); 2069 else 2070 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */ 2071 2072 return 0; 2073 } 2074 2075 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis) 2076 { 2077 u32 serror; 2078 struct ata_eh_info *ehi = &ap->link.eh_info; 2079 2080 ata_ehi_clear_desc(ehi); 2081 2082 /* AHCI needs SError cleared; otherwise, it might lock up */ 2083 sata_scr_read(&ap->link, SCR_ERROR, &serror); 2084 sata_scr_write(&ap->link, SCR_ERROR, serror); 2085 2086 /* analyze @irq_stat */ 2087 if (fis & NV_SWNCQ_IRQ_ADDED) 2088 ata_ehi_push_desc(ehi, "hot plug"); 2089 else if (fis & NV_SWNCQ_IRQ_REMOVED) 2090 ata_ehi_push_desc(ehi, "hot unplug"); 2091 2092 ata_ehi_hotplugged(ehi); 2093 2094 /* okay, let's hand over to EH */ 2095 ehi->serror |= serror; 2096 2097 ata_port_freeze(ap); 2098 } 2099 2100 static int nv_swncq_sdbfis(struct ata_port *ap) 2101 { 2102 struct ata_queued_cmd *qc; 2103 struct nv_swncq_port_priv *pp = ap->private_data; 2104 struct ata_eh_info *ehi = &ap->link.eh_info; 2105 u32 sactive; 2106 int nr_done = 0; 2107 u32 done_mask; 2108 int i; 2109 u8 host_stat; 2110 u8 lack_dhfis = 0; 2111 2112 host_stat = ap->ops->bmdma_status(ap); 2113 if (unlikely(host_stat & ATA_DMA_ERR)) { 2114 /* error when transfering data to/from memory */ 2115 ata_ehi_clear_desc(ehi); 2116 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2117 ehi->err_mask |= AC_ERR_HOST_BUS; 2118 ehi->action |= ATA_EH_SOFTRESET; 2119 return -EINVAL; 2120 } 2121 2122 ap->ops->irq_clear(ap); 2123 __ata_bmdma_stop(ap); 2124 2125 sactive = readl(pp->sactive_block); 2126 done_mask = pp->qc_active ^ sactive; 2127 2128 if (unlikely(done_mask & sactive)) { 2129 ata_ehi_clear_desc(ehi); 2130 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition" 2131 "(%08x->%08x)", pp->qc_active, sactive); 2132 ehi->err_mask |= AC_ERR_HSM; 2133 ehi->action |= ATA_EH_HARDRESET; 2134 return -EINVAL; 2135 } 2136 for (i = 0; i < ATA_MAX_QUEUE; i++) { 2137 if (!(done_mask & (1 << i))) 2138 continue; 2139 2140 qc = ata_qc_from_tag(ap, i); 2141 if (qc) { 2142 ata_qc_complete(qc); 2143 pp->qc_active &= ~(1 << i); 2144 pp->dhfis_bits &= ~(1 << i); 2145 pp->dmafis_bits &= ~(1 << i); 2146 pp->sdbfis_bits |= (1 << i); 2147 nr_done++; 2148 } 2149 } 2150 2151 if (!ap->qc_active) { 2152 DPRINTK("over\n"); 2153 nv_swncq_pp_reinit(ap); 2154 return nr_done; 2155 } 2156 2157 if (pp->qc_active & pp->dhfis_bits) 2158 return nr_done; 2159 2160 if ((pp->ncq_flags & ncq_saw_backout) || 2161 (pp->qc_active ^ pp->dhfis_bits)) 2162 /* if the controller cann't get a device to host register FIS, 2163 * The driver needs to reissue the new command. 2164 */ 2165 lack_dhfis = 1; 2166 2167 DPRINTK("id 0x%x QC: qc_active 0x%x," 2168 "SWNCQ:qc_active 0x%X defer_bits %X " 2169 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n", 2170 ap->print_id, ap->qc_active, pp->qc_active, 2171 pp->defer_queue.defer_bits, pp->dhfis_bits, 2172 pp->dmafis_bits, pp->last_issue_tag); 2173 2174 nv_swncq_fis_reinit(ap); 2175 2176 if (lack_dhfis) { 2177 qc = ata_qc_from_tag(ap, pp->last_issue_tag); 2178 nv_swncq_issue_atacmd(ap, qc); 2179 return nr_done; 2180 } 2181 2182 if (pp->defer_queue.defer_bits) { 2183 /* send deferral queue command */ 2184 qc = nv_swncq_qc_from_dq(ap); 2185 WARN_ON(qc == NULL); 2186 nv_swncq_issue_atacmd(ap, qc); 2187 } 2188 2189 return nr_done; 2190 } 2191 2192 static inline u32 nv_swncq_tag(struct ata_port *ap) 2193 { 2194 struct nv_swncq_port_priv *pp = ap->private_data; 2195 u32 tag; 2196 2197 tag = readb(pp->tag_block) >> 2; 2198 return (tag & 0x1f); 2199 } 2200 2201 static int nv_swncq_dmafis(struct ata_port *ap) 2202 { 2203 struct ata_queued_cmd *qc; 2204 unsigned int rw; 2205 u8 dmactl; 2206 u32 tag; 2207 struct nv_swncq_port_priv *pp = ap->private_data; 2208 2209 __ata_bmdma_stop(ap); 2210 tag = nv_swncq_tag(ap); 2211 2212 DPRINTK("dma setup tag 0x%x\n", tag); 2213 qc = ata_qc_from_tag(ap, tag); 2214 2215 if (unlikely(!qc)) 2216 return 0; 2217 2218 rw = qc->tf.flags & ATA_TFLAG_WRITE; 2219 2220 /* load PRD table addr. */ 2221 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag, 2222 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2223 2224 /* specify data direction, triple-check start bit is clear */ 2225 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2226 dmactl &= ~ATA_DMA_WR; 2227 if (!rw) 2228 dmactl |= ATA_DMA_WR; 2229 2230 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2231 2232 return 1; 2233 } 2234 2235 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) 2236 { 2237 struct nv_swncq_port_priv *pp = ap->private_data; 2238 struct ata_queued_cmd *qc; 2239 struct ata_eh_info *ehi = &ap->link.eh_info; 2240 u32 serror; 2241 u8 ata_stat; 2242 int rc = 0; 2243 2244 ata_stat = ap->ops->check_status(ap); 2245 nv_swncq_irq_clear(ap, fis); 2246 if (!fis) 2247 return; 2248 2249 if (ap->pflags & ATA_PFLAG_FROZEN) 2250 return; 2251 2252 if (fis & NV_SWNCQ_IRQ_HOTPLUG) { 2253 nv_swncq_hotplug(ap, fis); 2254 return; 2255 } 2256 2257 if (!pp->qc_active) 2258 return; 2259 2260 if (ap->ops->scr_read(ap, SCR_ERROR, &serror)) 2261 return; 2262 ap->ops->scr_write(ap, SCR_ERROR, serror); 2263 2264 if (ata_stat & ATA_ERR) { 2265 ata_ehi_clear_desc(ehi); 2266 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis); 2267 ehi->err_mask |= AC_ERR_DEV; 2268 ehi->serror |= serror; 2269 ehi->action |= ATA_EH_SOFTRESET; 2270 ata_port_freeze(ap); 2271 return; 2272 } 2273 2274 if (fis & NV_SWNCQ_IRQ_BACKOUT) { 2275 /* If the IRQ is backout, driver must issue 2276 * the new command again some time later. 2277 */ 2278 pp->ncq_flags |= ncq_saw_backout; 2279 } 2280 2281 if (fis & NV_SWNCQ_IRQ_SDBFIS) { 2282 pp->ncq_flags |= ncq_saw_sdb; 2283 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X " 2284 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n", 2285 ap->print_id, pp->qc_active, pp->dhfis_bits, 2286 pp->dmafis_bits, readl(pp->sactive_block)); 2287 rc = nv_swncq_sdbfis(ap); 2288 if (rc < 0) 2289 goto irq_error; 2290 } 2291 2292 if (fis & NV_SWNCQ_IRQ_DHREGFIS) { 2293 /* The interrupt indicates the new command 2294 * was transmitted correctly to the drive. 2295 */ 2296 pp->dhfis_bits |= (0x1 << pp->last_issue_tag); 2297 pp->ncq_flags |= ncq_saw_d2h; 2298 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) { 2299 ata_ehi_push_desc(ehi, "illegal fis transaction"); 2300 ehi->err_mask |= AC_ERR_HSM; 2301 ehi->action |= ATA_EH_HARDRESET; 2302 goto irq_error; 2303 } 2304 2305 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) && 2306 !(pp->ncq_flags & ncq_saw_dmas)) { 2307 ata_stat = ap->ops->check_status(ap); 2308 if (ata_stat & ATA_BUSY) 2309 goto irq_exit; 2310 2311 if (pp->defer_queue.defer_bits) { 2312 DPRINTK("send next command\n"); 2313 qc = nv_swncq_qc_from_dq(ap); 2314 nv_swncq_issue_atacmd(ap, qc); 2315 } 2316 } 2317 } 2318 2319 if (fis & NV_SWNCQ_IRQ_DMASETUP) { 2320 /* program the dma controller with appropriate PRD buffers 2321 * and start the DMA transfer for requested command. 2322 */ 2323 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); 2324 pp->ncq_flags |= ncq_saw_dmas; 2325 rc = nv_swncq_dmafis(ap); 2326 } 2327 2328 irq_exit: 2329 return; 2330 irq_error: 2331 ata_ehi_push_desc(ehi, "fis:0x%x", fis); 2332 ata_port_freeze(ap); 2333 return; 2334 } 2335 2336 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance) 2337 { 2338 struct ata_host *host = dev_instance; 2339 unsigned int i; 2340 unsigned int handled = 0; 2341 unsigned long flags; 2342 u32 irq_stat; 2343 2344 spin_lock_irqsave(&host->lock, flags); 2345 2346 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55); 2347 2348 for (i = 0; i < host->n_ports; i++) { 2349 struct ata_port *ap = host->ports[i]; 2350 2351 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 2352 if (ap->link.sactive) { 2353 nv_swncq_host_interrupt(ap, (u16)irq_stat); 2354 handled = 1; 2355 } else { 2356 if (irq_stat) /* reserve Hotplug */ 2357 nv_swncq_irq_clear(ap, 0xfff0); 2358 2359 handled += nv_host_intr(ap, (u8)irq_stat); 2360 } 2361 } 2362 irq_stat >>= NV_INT_PORT_SHIFT_MCP55; 2363 } 2364 2365 spin_unlock_irqrestore(&host->lock, flags); 2366 2367 return IRQ_RETVAL(handled); 2368 } 2369 2370 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2371 { 2372 static int printed_version; 2373 const struct ata_port_info *ppi[] = { NULL, NULL }; 2374 struct ata_host *host; 2375 struct nv_host_priv *hpriv; 2376 int rc; 2377 u32 bar; 2378 void __iomem *base; 2379 unsigned long type = ent->driver_data; 2380 2381 // Make sure this is a SATA controller by counting the number of bars 2382 // (NVIDIA SATA controllers will always have six bars). Otherwise, 2383 // it's an IDE controller and we ignore it. 2384 for (bar = 0; bar < 6; bar++) 2385 if (pci_resource_start(pdev, bar) == 0) 2386 return -ENODEV; 2387 2388 if (!printed_version++) 2389 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); 2390 2391 rc = pcim_enable_device(pdev); 2392 if (rc) 2393 return rc; 2394 2395 /* determine type and allocate host */ 2396 if (type == CK804 && adma_enabled) { 2397 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n"); 2398 type = ADMA; 2399 } 2400 2401 if (type == SWNCQ) { 2402 if (swncq_enabled) 2403 dev_printk(KERN_NOTICE, &pdev->dev, 2404 "Using SWNCQ mode\n"); 2405 else 2406 type = GENERIC; 2407 } 2408 2409 ppi[0] = &nv_port_info[type]; 2410 rc = ata_pci_prepare_sff_host(pdev, ppi, &host); 2411 if (rc) 2412 return rc; 2413 2414 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 2415 if (!hpriv) 2416 return -ENOMEM; 2417 hpriv->type = type; 2418 host->private_data = hpriv; 2419 2420 /* set 64bit dma masks, may fail */ 2421 if (type == ADMA) { 2422 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) 2423 pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 2424 } 2425 2426 /* request and iomap NV_MMIO_BAR */ 2427 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME); 2428 if (rc) 2429 return rc; 2430 2431 /* configure SCR access */ 2432 base = host->iomap[NV_MMIO_BAR]; 2433 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET; 2434 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET; 2435 2436 /* enable SATA space for CK804 */ 2437 if (type >= CK804) { 2438 u8 regval; 2439 2440 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2441 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2442 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2443 } 2444 2445 /* init ADMA */ 2446 if (type == ADMA) { 2447 rc = nv_adma_host_init(host); 2448 if (rc) 2449 return rc; 2450 } else if (type == SWNCQ) 2451 nv_swncq_host_init(host); 2452 2453 pci_set_master(pdev); 2454 return ata_host_activate(host, pdev->irq, ppi[0]->irq_handler, 2455 IRQF_SHARED, ppi[0]->sht); 2456 } 2457 2458 #ifdef CONFIG_PM 2459 static int nv_pci_device_resume(struct pci_dev *pdev) 2460 { 2461 struct ata_host *host = dev_get_drvdata(&pdev->dev); 2462 struct nv_host_priv *hpriv = host->private_data; 2463 int rc; 2464 2465 rc = ata_pci_device_do_resume(pdev); 2466 if (rc) 2467 return rc; 2468 2469 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) { 2470 if (hpriv->type >= CK804) { 2471 u8 regval; 2472 2473 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2474 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2475 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2476 } 2477 if (hpriv->type == ADMA) { 2478 u32 tmp32; 2479 struct nv_adma_port_priv *pp; 2480 /* enable/disable ADMA on the ports appropriately */ 2481 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2482 2483 pp = host->ports[0]->private_data; 2484 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2485 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2486 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2487 else 2488 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN | 2489 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2490 pp = host->ports[1]->private_data; 2491 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2492 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN | 2493 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2494 else 2495 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN | 2496 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2497 2498 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2499 } 2500 } 2501 2502 ata_host_resume(host); 2503 2504 return 0; 2505 } 2506 #endif 2507 2508 static void nv_ck804_host_stop(struct ata_host *host) 2509 { 2510 struct pci_dev *pdev = to_pci_dev(host->dev); 2511 u8 regval; 2512 2513 /* disable SATA space for CK804 */ 2514 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2515 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2516 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2517 } 2518 2519 static void nv_adma_host_stop(struct ata_host *host) 2520 { 2521 struct pci_dev *pdev = to_pci_dev(host->dev); 2522 u32 tmp32; 2523 2524 /* disable ADMA on the ports */ 2525 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2526 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2527 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 2528 NV_MCP_SATA_CFG_20_PORT1_EN | 2529 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2530 2531 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2532 2533 nv_ck804_host_stop(host); 2534 } 2535 2536 static int __init nv_init(void) 2537 { 2538 return pci_register_driver(&nv_pci_driver); 2539 } 2540 2541 static void __exit nv_exit(void) 2542 { 2543 pci_unregister_driver(&nv_pci_driver); 2544 } 2545 2546 module_init(nv_init); 2547 module_exit(nv_exit); 2548 module_param_named(adma, adma_enabled, bool, 0444); 2549 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: true)"); 2550 module_param_named(swncq, swncq_enabled, bool, 0444); 2551 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: false)"); 2552 2553