1 /* 2 * sata_nv.c - NVIDIA nForce SATA 3 * 4 * Copyright 2004 NVIDIA Corp. All rights reserved. 5 * Copyright 2004 Andrew Chew 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; see the file COPYING. If not, write to 20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * 23 * libata documentation is available via 'make {ps|pdf}docs', 24 * as Documentation/DocBook/libata.* 25 * 26 * No hardware documentation available outside of NVIDIA. 27 * This driver programs the NVIDIA SATA controller in a similar 28 * fashion as with other PCI IDE BMDMA controllers, with a few 29 * NV-specific details such as register offsets, SATA phy location, 30 * hotplug info, etc. 31 * 32 * CK804/MCP04 controllers support an alternate programming interface 33 * similar to the ADMA specification (with some modifications). 34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still 35 * sent through the legacy interface. 36 * 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <linux/libata.h> 50 51 #define DRV_NAME "sata_nv" 52 #define DRV_VERSION "3.5" 53 54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL 55 56 enum { 57 NV_MMIO_BAR = 5, 58 59 NV_PORTS = 2, 60 NV_PIO_MASK = 0x1f, 61 NV_MWDMA_MASK = 0x07, 62 NV_UDMA_MASK = 0x7f, 63 NV_PORT0_SCR_REG_OFFSET = 0x00, 64 NV_PORT1_SCR_REG_OFFSET = 0x40, 65 66 /* INT_STATUS/ENABLE */ 67 NV_INT_STATUS = 0x10, 68 NV_INT_ENABLE = 0x11, 69 NV_INT_STATUS_CK804 = 0x440, 70 NV_INT_ENABLE_CK804 = 0x441, 71 72 /* INT_STATUS/ENABLE bits */ 73 NV_INT_DEV = 0x01, 74 NV_INT_PM = 0x02, 75 NV_INT_ADDED = 0x04, 76 NV_INT_REMOVED = 0x08, 77 78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */ 79 80 NV_INT_ALL = 0x0f, 81 NV_INT_MASK = NV_INT_DEV | 82 NV_INT_ADDED | NV_INT_REMOVED, 83 84 /* INT_CONFIG */ 85 NV_INT_CONFIG = 0x12, 86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI 87 88 // For PCI config register 20 89 NV_MCP_SATA_CFG_20 = 0x50, 90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04, 91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17), 92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16), 93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14), 94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12), 95 96 NV_ADMA_MAX_CPBS = 32, 97 NV_ADMA_CPB_SZ = 128, 98 NV_ADMA_APRD_SZ = 16, 99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) / 100 NV_ADMA_APRD_SZ, 101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5, 102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ, 103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS * 104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ), 105 106 /* BAR5 offset to ADMA general registers */ 107 NV_ADMA_GEN = 0x400, 108 NV_ADMA_GEN_CTL = 0x00, 109 NV_ADMA_NOTIFIER_CLEAR = 0x30, 110 111 /* BAR5 offset to ADMA ports */ 112 NV_ADMA_PORT = 0x480, 113 114 /* size of ADMA port register space */ 115 NV_ADMA_PORT_SIZE = 0x100, 116 117 /* ADMA port registers */ 118 NV_ADMA_CTL = 0x40, 119 NV_ADMA_CPB_COUNT = 0x42, 120 NV_ADMA_NEXT_CPB_IDX = 0x43, 121 NV_ADMA_STAT = 0x44, 122 NV_ADMA_CPB_BASE_LOW = 0x48, 123 NV_ADMA_CPB_BASE_HIGH = 0x4C, 124 NV_ADMA_APPEND = 0x50, 125 NV_ADMA_NOTIFIER = 0x68, 126 NV_ADMA_NOTIFIER_ERROR = 0x6C, 127 128 /* NV_ADMA_CTL register bits */ 129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0), 130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5), 131 NV_ADMA_CTL_GO = (1 << 7), 132 NV_ADMA_CTL_AIEN = (1 << 8), 133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11), 134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12), 135 136 /* CPB response flag bits */ 137 NV_CPB_RESP_DONE = (1 << 0), 138 NV_CPB_RESP_ATA_ERR = (1 << 3), 139 NV_CPB_RESP_CMD_ERR = (1 << 4), 140 NV_CPB_RESP_CPB_ERR = (1 << 7), 141 142 /* CPB control flag bits */ 143 NV_CPB_CTL_CPB_VALID = (1 << 0), 144 NV_CPB_CTL_QUEUE = (1 << 1), 145 NV_CPB_CTL_APRD_VALID = (1 << 2), 146 NV_CPB_CTL_IEN = (1 << 3), 147 NV_CPB_CTL_FPDMA = (1 << 4), 148 149 /* APRD flags */ 150 NV_APRD_WRITE = (1 << 1), 151 NV_APRD_END = (1 << 2), 152 NV_APRD_CONT = (1 << 3), 153 154 /* NV_ADMA_STAT flags */ 155 NV_ADMA_STAT_TIMEOUT = (1 << 0), 156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1), 157 NV_ADMA_STAT_HOTPLUG = (1 << 2), 158 NV_ADMA_STAT_CPBERR = (1 << 4), 159 NV_ADMA_STAT_SERROR = (1 << 5), 160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6), 161 NV_ADMA_STAT_IDLE = (1 << 8), 162 NV_ADMA_STAT_LEGACY = (1 << 9), 163 NV_ADMA_STAT_STOPPED = (1 << 10), 164 NV_ADMA_STAT_DONE = (1 << 12), 165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR | 166 NV_ADMA_STAT_TIMEOUT, 167 168 /* port flags */ 169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0), 170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1), 171 172 /* MCP55 reg offset */ 173 NV_CTL_MCP55 = 0x400, 174 NV_INT_STATUS_MCP55 = 0x440, 175 NV_INT_ENABLE_MCP55 = 0x444, 176 NV_NCQ_REG_MCP55 = 0x448, 177 178 /* MCP55 */ 179 NV_INT_ALL_MCP55 = 0xffff, 180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */ 181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd, 182 183 /* SWNCQ ENABLE BITS*/ 184 NV_CTL_PRI_SWNCQ = 0x02, 185 NV_CTL_SEC_SWNCQ = 0x04, 186 187 /* SW NCQ status bits*/ 188 NV_SWNCQ_IRQ_DEV = (1 << 0), 189 NV_SWNCQ_IRQ_PM = (1 << 1), 190 NV_SWNCQ_IRQ_ADDED = (1 << 2), 191 NV_SWNCQ_IRQ_REMOVED = (1 << 3), 192 193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4), 194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5), 195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6), 196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7), 197 198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED | 199 NV_SWNCQ_IRQ_REMOVED, 200 201 }; 202 203 /* ADMA Physical Region Descriptor - one SG segment */ 204 struct nv_adma_prd { 205 __le64 addr; 206 __le32 len; 207 u8 flags; 208 u8 packet_len; 209 __le16 reserved; 210 }; 211 212 enum nv_adma_regbits { 213 CMDEND = (1 << 15), /* end of command list */ 214 WNB = (1 << 14), /* wait-not-BSY */ 215 IGN = (1 << 13), /* ignore this entry */ 216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */ 217 DA2 = (1 << (2 + 8)), 218 DA1 = (1 << (1 + 8)), 219 DA0 = (1 << (0 + 8)), 220 }; 221 222 /* ADMA Command Parameter Block 223 The first 5 SG segments are stored inside the Command Parameter Block itself. 224 If there are more than 5 segments the remainder are stored in a separate 225 memory area indicated by next_aprd. */ 226 struct nv_adma_cpb { 227 u8 resp_flags; /* 0 */ 228 u8 reserved1; /* 1 */ 229 u8 ctl_flags; /* 2 */ 230 /* len is length of taskfile in 64 bit words */ 231 u8 len; /* 3 */ 232 u8 tag; /* 4 */ 233 u8 next_cpb_idx; /* 5 */ 234 __le16 reserved2; /* 6-7 */ 235 __le16 tf[12]; /* 8-31 */ 236 struct nv_adma_prd aprd[5]; /* 32-111 */ 237 __le64 next_aprd; /* 112-119 */ 238 __le64 reserved3; /* 120-127 */ 239 }; 240 241 242 struct nv_adma_port_priv { 243 struct nv_adma_cpb *cpb; 244 dma_addr_t cpb_dma; 245 struct nv_adma_prd *aprd; 246 dma_addr_t aprd_dma; 247 void __iomem *ctl_block; 248 void __iomem *gen_block; 249 void __iomem *notifier_clear_block; 250 u64 adma_dma_mask; 251 u8 flags; 252 int last_issue_ncq; 253 }; 254 255 struct nv_host_priv { 256 unsigned long type; 257 }; 258 259 struct defer_queue { 260 u32 defer_bits; 261 unsigned int head; 262 unsigned int tail; 263 unsigned int tag[ATA_MAX_QUEUE]; 264 }; 265 266 enum ncq_saw_flag_list { 267 ncq_saw_d2h = (1U << 0), 268 ncq_saw_dmas = (1U << 1), 269 ncq_saw_sdb = (1U << 2), 270 ncq_saw_backout = (1U << 3), 271 }; 272 273 struct nv_swncq_port_priv { 274 struct ata_prd *prd; /* our SG list */ 275 dma_addr_t prd_dma; /* and its DMA mapping */ 276 void __iomem *sactive_block; 277 void __iomem *irq_block; 278 void __iomem *tag_block; 279 u32 qc_active; 280 281 unsigned int last_issue_tag; 282 283 /* fifo circular queue to store deferral command */ 284 struct defer_queue defer_queue; 285 286 /* for NCQ interrupt analysis */ 287 u32 dhfis_bits; 288 u32 dmafis_bits; 289 u32 sdbfis_bits; 290 291 unsigned int ncq_flags; 292 }; 293 294 295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT))))) 296 297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 298 #ifdef CONFIG_PM 299 static int nv_pci_device_resume(struct pci_dev *pdev); 300 #endif 301 static void nv_ck804_host_stop(struct ata_host *host); 302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance); 303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance); 304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance); 305 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val); 306 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val); 307 308 static void nv_nf2_freeze(struct ata_port *ap); 309 static void nv_nf2_thaw(struct ata_port *ap); 310 static void nv_ck804_freeze(struct ata_port *ap); 311 static void nv_ck804_thaw(struct ata_port *ap); 312 static int nv_hardreset(struct ata_link *link, unsigned int *class, 313 unsigned long deadline); 314 static int nv_adma_slave_config(struct scsi_device *sdev); 315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc); 316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc); 317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc); 318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance); 319 static void nv_adma_irq_clear(struct ata_port *ap); 320 static int nv_adma_port_start(struct ata_port *ap); 321 static void nv_adma_port_stop(struct ata_port *ap); 322 #ifdef CONFIG_PM 323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg); 324 static int nv_adma_port_resume(struct ata_port *ap); 325 #endif 326 static void nv_adma_freeze(struct ata_port *ap); 327 static void nv_adma_thaw(struct ata_port *ap); 328 static void nv_adma_error_handler(struct ata_port *ap); 329 static void nv_adma_host_stop(struct ata_host *host); 330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc); 331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf); 332 333 static void nv_mcp55_thaw(struct ata_port *ap); 334 static void nv_mcp55_freeze(struct ata_port *ap); 335 static void nv_swncq_error_handler(struct ata_port *ap); 336 static int nv_swncq_slave_config(struct scsi_device *sdev); 337 static int nv_swncq_port_start(struct ata_port *ap); 338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc); 339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc); 340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc); 341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis); 342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance); 343 #ifdef CONFIG_PM 344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg); 345 static int nv_swncq_port_resume(struct ata_port *ap); 346 #endif 347 348 enum nv_host_type 349 { 350 GENERIC, 351 NFORCE2, 352 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */ 353 CK804, 354 ADMA, 355 SWNCQ, 356 }; 357 358 static const struct pci_device_id nv_pci_tbl[] = { 359 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 }, 360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 }, 361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 }, 362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 }, 363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 }, 364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 }, 365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 }, 366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), SWNCQ }, 367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), SWNCQ }, 368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), SWNCQ }, 369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), SWNCQ }, 370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC }, 371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC }, 372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC }, 373 374 { } /* terminate list */ 375 }; 376 377 static struct pci_driver nv_pci_driver = { 378 .name = DRV_NAME, 379 .id_table = nv_pci_tbl, 380 .probe = nv_init_one, 381 #ifdef CONFIG_PM 382 .suspend = ata_pci_device_suspend, 383 .resume = nv_pci_device_resume, 384 #endif 385 .remove = ata_pci_remove_one, 386 }; 387 388 static struct scsi_host_template nv_sht = { 389 ATA_BMDMA_SHT(DRV_NAME), 390 }; 391 392 static struct scsi_host_template nv_adma_sht = { 393 ATA_NCQ_SHT(DRV_NAME), 394 .can_queue = NV_ADMA_MAX_CPBS, 395 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN, 396 .dma_boundary = NV_ADMA_DMA_BOUNDARY, 397 .slave_configure = nv_adma_slave_config, 398 }; 399 400 static struct scsi_host_template nv_swncq_sht = { 401 ATA_NCQ_SHT(DRV_NAME), 402 .can_queue = ATA_MAX_QUEUE, 403 .sg_tablesize = LIBATA_MAX_PRD, 404 .dma_boundary = ATA_DMA_BOUNDARY, 405 .slave_configure = nv_swncq_slave_config, 406 }; 407 408 static struct ata_port_operations nv_generic_ops = { 409 .inherits = &ata_bmdma_port_ops, 410 .hardreset = nv_hardreset, 411 .scr_read = nv_scr_read, 412 .scr_write = nv_scr_write, 413 }; 414 415 static struct ata_port_operations nv_nf2_ops = { 416 .inherits = &nv_generic_ops, 417 .freeze = nv_nf2_freeze, 418 .thaw = nv_nf2_thaw, 419 }; 420 421 static struct ata_port_operations nv_ck804_ops = { 422 .inherits = &nv_generic_ops, 423 .freeze = nv_ck804_freeze, 424 .thaw = nv_ck804_thaw, 425 .host_stop = nv_ck804_host_stop, 426 }; 427 428 static struct ata_port_operations nv_adma_ops = { 429 .inherits = &nv_generic_ops, 430 431 .check_atapi_dma = nv_adma_check_atapi_dma, 432 .sff_tf_read = nv_adma_tf_read, 433 .qc_defer = ata_std_qc_defer, 434 .qc_prep = nv_adma_qc_prep, 435 .qc_issue = nv_adma_qc_issue, 436 .sff_irq_clear = nv_adma_irq_clear, 437 438 .freeze = nv_adma_freeze, 439 .thaw = nv_adma_thaw, 440 .error_handler = nv_adma_error_handler, 441 .post_internal_cmd = nv_adma_post_internal_cmd, 442 443 .port_start = nv_adma_port_start, 444 .port_stop = nv_adma_port_stop, 445 #ifdef CONFIG_PM 446 .port_suspend = nv_adma_port_suspend, 447 .port_resume = nv_adma_port_resume, 448 #endif 449 .host_stop = nv_adma_host_stop, 450 }; 451 452 static struct ata_port_operations nv_swncq_ops = { 453 .inherits = &nv_generic_ops, 454 455 .qc_defer = ata_std_qc_defer, 456 .qc_prep = nv_swncq_qc_prep, 457 .qc_issue = nv_swncq_qc_issue, 458 459 .freeze = nv_mcp55_freeze, 460 .thaw = nv_mcp55_thaw, 461 .error_handler = nv_swncq_error_handler, 462 463 #ifdef CONFIG_PM 464 .port_suspend = nv_swncq_port_suspend, 465 .port_resume = nv_swncq_port_resume, 466 #endif 467 .port_start = nv_swncq_port_start, 468 }; 469 470 struct nv_pi_priv { 471 irq_handler_t irq_handler; 472 struct scsi_host_template *sht; 473 }; 474 475 #define NV_PI_PRIV(_irq_handler, _sht) \ 476 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht } 477 478 static const struct ata_port_info nv_port_info[] = { 479 /* generic */ 480 { 481 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 482 .pio_mask = NV_PIO_MASK, 483 .mwdma_mask = NV_MWDMA_MASK, 484 .udma_mask = NV_UDMA_MASK, 485 .port_ops = &nv_generic_ops, 486 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht), 487 }, 488 /* nforce2/3 */ 489 { 490 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 491 .pio_mask = NV_PIO_MASK, 492 .mwdma_mask = NV_MWDMA_MASK, 493 .udma_mask = NV_UDMA_MASK, 494 .port_ops = &nv_nf2_ops, 495 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht), 496 }, 497 /* ck804 */ 498 { 499 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY, 500 .pio_mask = NV_PIO_MASK, 501 .mwdma_mask = NV_MWDMA_MASK, 502 .udma_mask = NV_UDMA_MASK, 503 .port_ops = &nv_ck804_ops, 504 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht), 505 }, 506 /* ADMA */ 507 { 508 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 509 ATA_FLAG_MMIO | ATA_FLAG_NCQ, 510 .pio_mask = NV_PIO_MASK, 511 .mwdma_mask = NV_MWDMA_MASK, 512 .udma_mask = NV_UDMA_MASK, 513 .port_ops = &nv_adma_ops, 514 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht), 515 }, 516 /* SWNCQ */ 517 { 518 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 519 ATA_FLAG_NCQ, 520 .pio_mask = NV_PIO_MASK, 521 .mwdma_mask = NV_MWDMA_MASK, 522 .udma_mask = NV_UDMA_MASK, 523 .port_ops = &nv_swncq_ops, 524 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht), 525 }, 526 }; 527 528 MODULE_AUTHOR("NVIDIA"); 529 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller"); 530 MODULE_LICENSE("GPL"); 531 MODULE_DEVICE_TABLE(pci, nv_pci_tbl); 532 MODULE_VERSION(DRV_VERSION); 533 534 static int adma_enabled; 535 static int swncq_enabled = 1; 536 537 static void nv_adma_register_mode(struct ata_port *ap) 538 { 539 struct nv_adma_port_priv *pp = ap->private_data; 540 void __iomem *mmio = pp->ctl_block; 541 u16 tmp, status; 542 int count = 0; 543 544 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 545 return; 546 547 status = readw(mmio + NV_ADMA_STAT); 548 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) { 549 ndelay(50); 550 status = readw(mmio + NV_ADMA_STAT); 551 count++; 552 } 553 if (count == 20) 554 ata_port_printk(ap, KERN_WARNING, 555 "timeout waiting for ADMA IDLE, stat=0x%hx\n", 556 status); 557 558 tmp = readw(mmio + NV_ADMA_CTL); 559 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 560 561 count = 0; 562 status = readw(mmio + NV_ADMA_STAT); 563 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) { 564 ndelay(50); 565 status = readw(mmio + NV_ADMA_STAT); 566 count++; 567 } 568 if (count == 20) 569 ata_port_printk(ap, KERN_WARNING, 570 "timeout waiting for ADMA LEGACY, stat=0x%hx\n", 571 status); 572 573 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 574 } 575 576 static void nv_adma_mode(struct ata_port *ap) 577 { 578 struct nv_adma_port_priv *pp = ap->private_data; 579 void __iomem *mmio = pp->ctl_block; 580 u16 tmp, status; 581 int count = 0; 582 583 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) 584 return; 585 586 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 587 588 tmp = readw(mmio + NV_ADMA_CTL); 589 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL); 590 591 status = readw(mmio + NV_ADMA_STAT); 592 while (((status & NV_ADMA_STAT_LEGACY) || 593 !(status & NV_ADMA_STAT_IDLE)) && count < 20) { 594 ndelay(50); 595 status = readw(mmio + NV_ADMA_STAT); 596 count++; 597 } 598 if (count == 20) 599 ata_port_printk(ap, KERN_WARNING, 600 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n", 601 status); 602 603 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE; 604 } 605 606 static int nv_adma_slave_config(struct scsi_device *sdev) 607 { 608 struct ata_port *ap = ata_shost_to_port(sdev->host); 609 struct nv_adma_port_priv *pp = ap->private_data; 610 struct nv_adma_port_priv *port0, *port1; 611 struct scsi_device *sdev0, *sdev1; 612 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 613 unsigned long segment_boundary, flags; 614 unsigned short sg_tablesize; 615 int rc; 616 int adma_enable; 617 u32 current_reg, new_reg, config_mask; 618 619 rc = ata_scsi_slave_config(sdev); 620 621 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 622 /* Not a proper libata device, ignore */ 623 return rc; 624 625 spin_lock_irqsave(ap->lock, flags); 626 627 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) { 628 /* 629 * NVIDIA reports that ADMA mode does not support ATAPI commands. 630 * Therefore ATAPI commands are sent through the legacy interface. 631 * However, the legacy interface only supports 32-bit DMA. 632 * Restrict DMA parameters as required by the legacy interface 633 * when an ATAPI device is connected. 634 */ 635 segment_boundary = ATA_DMA_BOUNDARY; 636 /* Subtract 1 since an extra entry may be needed for padding, see 637 libata-scsi.c */ 638 sg_tablesize = LIBATA_MAX_PRD - 1; 639 640 /* Since the legacy DMA engine is in use, we need to disable ADMA 641 on the port. */ 642 adma_enable = 0; 643 nv_adma_register_mode(ap); 644 } else { 645 segment_boundary = NV_ADMA_DMA_BOUNDARY; 646 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN; 647 adma_enable = 1; 648 } 649 650 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, ¤t_reg); 651 652 if (ap->port_no == 1) 653 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN | 654 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 655 else 656 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN | 657 NV_MCP_SATA_CFG_20_PORT0_PWB_EN; 658 659 if (adma_enable) { 660 new_reg = current_reg | config_mask; 661 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE; 662 } else { 663 new_reg = current_reg & ~config_mask; 664 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE; 665 } 666 667 if (current_reg != new_reg) 668 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg); 669 670 port0 = ap->host->ports[0]->private_data; 671 port1 = ap->host->ports[1]->private_data; 672 sdev0 = ap->host->ports[0]->link.device[0].sdev; 673 sdev1 = ap->host->ports[1]->link.device[0].sdev; 674 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 675 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) { 676 /** We have to set the DMA mask to 32-bit if either port is in 677 ATAPI mode, since they are on the same PCI device which is 678 used for DMA mapping. If we set the mask we also need to set 679 the bounce limit on both ports to ensure that the block 680 layer doesn't feed addresses that cause DMA mapping to 681 choke. If either SCSI device is not allocated yet, it's OK 682 since that port will discover its correct setting when it 683 does get allocated. 684 Note: Setting 32-bit mask should not fail. */ 685 if (sdev0) 686 blk_queue_bounce_limit(sdev0->request_queue, 687 ATA_DMA_MASK); 688 if (sdev1) 689 blk_queue_bounce_limit(sdev1->request_queue, 690 ATA_DMA_MASK); 691 692 pci_set_dma_mask(pdev, ATA_DMA_MASK); 693 } else { 694 /** This shouldn't fail as it was set to this value before */ 695 pci_set_dma_mask(pdev, pp->adma_dma_mask); 696 if (sdev0) 697 blk_queue_bounce_limit(sdev0->request_queue, 698 pp->adma_dma_mask); 699 if (sdev1) 700 blk_queue_bounce_limit(sdev1->request_queue, 701 pp->adma_dma_mask); 702 } 703 704 blk_queue_segment_boundary(sdev->request_queue, segment_boundary); 705 blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize); 706 ata_port_printk(ap, KERN_INFO, 707 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n", 708 (unsigned long long)*ap->host->dev->dma_mask, 709 segment_boundary, sg_tablesize); 710 711 spin_unlock_irqrestore(ap->lock, flags); 712 713 return rc; 714 } 715 716 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc) 717 { 718 struct nv_adma_port_priv *pp = qc->ap->private_data; 719 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE); 720 } 721 722 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 723 { 724 /* Other than when internal or pass-through commands are executed, 725 the only time this function will be called in ADMA mode will be 726 if a command fails. In the failure case we don't care about going 727 into register mode with ADMA commands pending, as the commands will 728 all shortly be aborted anyway. We assume that NCQ commands are not 729 issued via passthrough, which is the only way that switching into 730 ADMA mode could abort outstanding commands. */ 731 nv_adma_register_mode(ap); 732 733 ata_sff_tf_read(ap, tf); 734 } 735 736 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb) 737 { 738 unsigned int idx = 0; 739 740 if (tf->flags & ATA_TFLAG_ISADDR) { 741 if (tf->flags & ATA_TFLAG_LBA48) { 742 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB); 743 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect); 744 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal); 745 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam); 746 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah); 747 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature); 748 } else 749 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB); 750 751 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect); 752 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal); 753 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam); 754 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah); 755 } 756 757 if (tf->flags & ATA_TFLAG_DEVICE) 758 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device); 759 760 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND); 761 762 while (idx < 12) 763 cpb[idx++] = cpu_to_le16(IGN); 764 765 return idx; 766 } 767 768 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err) 769 { 770 struct nv_adma_port_priv *pp = ap->private_data; 771 u8 flags = pp->cpb[cpb_num].resp_flags; 772 773 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags); 774 775 if (unlikely((force_err || 776 flags & (NV_CPB_RESP_ATA_ERR | 777 NV_CPB_RESP_CMD_ERR | 778 NV_CPB_RESP_CPB_ERR)))) { 779 struct ata_eh_info *ehi = &ap->link.eh_info; 780 int freeze = 0; 781 782 ata_ehi_clear_desc(ehi); 783 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags); 784 if (flags & NV_CPB_RESP_ATA_ERR) { 785 ata_ehi_push_desc(ehi, "ATA error"); 786 ehi->err_mask |= AC_ERR_DEV; 787 } else if (flags & NV_CPB_RESP_CMD_ERR) { 788 ata_ehi_push_desc(ehi, "CMD error"); 789 ehi->err_mask |= AC_ERR_DEV; 790 } else if (flags & NV_CPB_RESP_CPB_ERR) { 791 ata_ehi_push_desc(ehi, "CPB error"); 792 ehi->err_mask |= AC_ERR_SYSTEM; 793 freeze = 1; 794 } else { 795 /* notifier error, but no error in CPB flags? */ 796 ata_ehi_push_desc(ehi, "unknown"); 797 ehi->err_mask |= AC_ERR_OTHER; 798 freeze = 1; 799 } 800 /* Kill all commands. EH will determine what actually failed. */ 801 if (freeze) 802 ata_port_freeze(ap); 803 else 804 ata_port_abort(ap); 805 return 1; 806 } 807 808 if (likely(flags & NV_CPB_RESP_DONE)) { 809 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num); 810 VPRINTK("CPB flags done, flags=0x%x\n", flags); 811 if (likely(qc)) { 812 DPRINTK("Completing qc from tag %d\n", cpb_num); 813 ata_qc_complete(qc); 814 } else { 815 struct ata_eh_info *ehi = &ap->link.eh_info; 816 /* Notifier bits set without a command may indicate the drive 817 is misbehaving. Raise host state machine violation on this 818 condition. */ 819 ata_port_printk(ap, KERN_ERR, 820 "notifier for tag %d with no cmd?\n", 821 cpb_num); 822 ehi->err_mask |= AC_ERR_HSM; 823 ehi->action |= ATA_EH_RESET; 824 ata_port_freeze(ap); 825 return 1; 826 } 827 } 828 return 0; 829 } 830 831 static int nv_host_intr(struct ata_port *ap, u8 irq_stat) 832 { 833 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 834 835 /* freeze if hotplugged */ 836 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) { 837 ata_port_freeze(ap); 838 return 1; 839 } 840 841 /* bail out if not our interrupt */ 842 if (!(irq_stat & NV_INT_DEV)) 843 return 0; 844 845 /* DEV interrupt w/ no active qc? */ 846 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 847 ata_sff_check_status(ap); 848 return 1; 849 } 850 851 /* handle interrupt */ 852 return ata_sff_host_intr(ap, qc); 853 } 854 855 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) 856 { 857 struct ata_host *host = dev_instance; 858 int i, handled = 0; 859 u32 notifier_clears[2]; 860 861 spin_lock(&host->lock); 862 863 for (i = 0; i < host->n_ports; i++) { 864 struct ata_port *ap = host->ports[i]; 865 notifier_clears[i] = 0; 866 867 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 868 struct nv_adma_port_priv *pp = ap->private_data; 869 void __iomem *mmio = pp->ctl_block; 870 u16 status; 871 u32 gen_ctl; 872 u32 notifier, notifier_error; 873 874 /* if ADMA is disabled, use standard ata interrupt handler */ 875 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 876 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 877 >> (NV_INT_PORT_SHIFT * i); 878 handled += nv_host_intr(ap, irq_stat); 879 continue; 880 } 881 882 /* if in ATA register mode, check for standard interrupts */ 883 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) { 884 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804) 885 >> (NV_INT_PORT_SHIFT * i); 886 if (ata_tag_valid(ap->link.active_tag)) 887 /** NV_INT_DEV indication seems unreliable at times 888 at least in ADMA mode. Force it on always when a 889 command is active, to prevent losing interrupts. */ 890 irq_stat |= NV_INT_DEV; 891 handled += nv_host_intr(ap, irq_stat); 892 } 893 894 notifier = readl(mmio + NV_ADMA_NOTIFIER); 895 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 896 notifier_clears[i] = notifier | notifier_error; 897 898 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 899 900 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier && 901 !notifier_error) 902 /* Nothing to do */ 903 continue; 904 905 status = readw(mmio + NV_ADMA_STAT); 906 907 /* Clear status. Ensure the controller sees the clearing before we start 908 looking at any of the CPB statuses, so that any CPB completions after 909 this point in the handler will raise another interrupt. */ 910 writew(status, mmio + NV_ADMA_STAT); 911 readw(mmio + NV_ADMA_STAT); /* flush posted write */ 912 rmb(); 913 914 handled++; /* irq handled if we got here */ 915 916 /* freeze if hotplugged or controller error */ 917 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG | 918 NV_ADMA_STAT_HOTUNPLUG | 919 NV_ADMA_STAT_TIMEOUT | 920 NV_ADMA_STAT_SERROR))) { 921 struct ata_eh_info *ehi = &ap->link.eh_info; 922 923 ata_ehi_clear_desc(ehi); 924 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status); 925 if (status & NV_ADMA_STAT_TIMEOUT) { 926 ehi->err_mask |= AC_ERR_SYSTEM; 927 ata_ehi_push_desc(ehi, "timeout"); 928 } else if (status & NV_ADMA_STAT_HOTPLUG) { 929 ata_ehi_hotplugged(ehi); 930 ata_ehi_push_desc(ehi, "hotplug"); 931 } else if (status & NV_ADMA_STAT_HOTUNPLUG) { 932 ata_ehi_hotplugged(ehi); 933 ata_ehi_push_desc(ehi, "hot unplug"); 934 } else if (status & NV_ADMA_STAT_SERROR) { 935 /* let libata analyze SError and figure out the cause */ 936 ata_ehi_push_desc(ehi, "SError"); 937 } else 938 ata_ehi_push_desc(ehi, "unknown"); 939 ata_port_freeze(ap); 940 continue; 941 } 942 943 if (status & (NV_ADMA_STAT_DONE | 944 NV_ADMA_STAT_CPBERR | 945 NV_ADMA_STAT_CMD_COMPLETE)) { 946 u32 check_commands = notifier_clears[i]; 947 int pos, error = 0; 948 949 if (status & NV_ADMA_STAT_CPBERR) { 950 /* Check all active commands */ 951 if (ata_tag_valid(ap->link.active_tag)) 952 check_commands = 1 << 953 ap->link.active_tag; 954 else 955 check_commands = ap-> 956 link.sactive; 957 } 958 959 /** Check CPBs for completed commands */ 960 while ((pos = ffs(check_commands)) && !error) { 961 pos--; 962 error = nv_adma_check_cpb(ap, pos, 963 notifier_error & (1 << pos)); 964 check_commands &= ~(1 << pos); 965 } 966 } 967 } 968 } 969 970 if (notifier_clears[0] || notifier_clears[1]) { 971 /* Note: Both notifier clear registers must be written 972 if either is set, even if one is zero, according to NVIDIA. */ 973 struct nv_adma_port_priv *pp = host->ports[0]->private_data; 974 writel(notifier_clears[0], pp->notifier_clear_block); 975 pp = host->ports[1]->private_data; 976 writel(notifier_clears[1], pp->notifier_clear_block); 977 } 978 979 spin_unlock(&host->lock); 980 981 return IRQ_RETVAL(handled); 982 } 983 984 static void nv_adma_freeze(struct ata_port *ap) 985 { 986 struct nv_adma_port_priv *pp = ap->private_data; 987 void __iomem *mmio = pp->ctl_block; 988 u16 tmp; 989 990 nv_ck804_freeze(ap); 991 992 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 993 return; 994 995 /* clear any outstanding CK804 notifications */ 996 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 997 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 998 999 /* Disable interrupt */ 1000 tmp = readw(mmio + NV_ADMA_CTL); 1001 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1002 mmio + NV_ADMA_CTL); 1003 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1004 } 1005 1006 static void nv_adma_thaw(struct ata_port *ap) 1007 { 1008 struct nv_adma_port_priv *pp = ap->private_data; 1009 void __iomem *mmio = pp->ctl_block; 1010 u16 tmp; 1011 1012 nv_ck804_thaw(ap); 1013 1014 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 1015 return; 1016 1017 /* Enable interrupt */ 1018 tmp = readw(mmio + NV_ADMA_CTL); 1019 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN), 1020 mmio + NV_ADMA_CTL); 1021 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1022 } 1023 1024 static void nv_adma_irq_clear(struct ata_port *ap) 1025 { 1026 struct nv_adma_port_priv *pp = ap->private_data; 1027 void __iomem *mmio = pp->ctl_block; 1028 u32 notifier_clears[2]; 1029 1030 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) { 1031 ata_sff_irq_clear(ap); 1032 return; 1033 } 1034 1035 /* clear any outstanding CK804 notifications */ 1036 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT), 1037 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1038 1039 /* clear ADMA status */ 1040 writew(0xffff, mmio + NV_ADMA_STAT); 1041 1042 /* clear notifiers - note both ports need to be written with 1043 something even though we are only clearing on one */ 1044 if (ap->port_no == 0) { 1045 notifier_clears[0] = 0xFFFFFFFF; 1046 notifier_clears[1] = 0; 1047 } else { 1048 notifier_clears[0] = 0; 1049 notifier_clears[1] = 0xFFFFFFFF; 1050 } 1051 pp = ap->host->ports[0]->private_data; 1052 writel(notifier_clears[0], pp->notifier_clear_block); 1053 pp = ap->host->ports[1]->private_data; 1054 writel(notifier_clears[1], pp->notifier_clear_block); 1055 } 1056 1057 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc) 1058 { 1059 struct nv_adma_port_priv *pp = qc->ap->private_data; 1060 1061 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) 1062 ata_sff_post_internal_cmd(qc); 1063 } 1064 1065 static int nv_adma_port_start(struct ata_port *ap) 1066 { 1067 struct device *dev = ap->host->dev; 1068 struct nv_adma_port_priv *pp; 1069 int rc; 1070 void *mem; 1071 dma_addr_t mem_dma; 1072 void __iomem *mmio; 1073 struct pci_dev *pdev = to_pci_dev(dev); 1074 u16 tmp; 1075 1076 VPRINTK("ENTER\n"); 1077 1078 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and 1079 pad buffers */ 1080 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1081 if (rc) 1082 return rc; 1083 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 1084 if (rc) 1085 return rc; 1086 1087 rc = ata_port_start(ap); 1088 if (rc) 1089 return rc; 1090 1091 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1092 if (!pp) 1093 return -ENOMEM; 1094 1095 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT + 1096 ap->port_no * NV_ADMA_PORT_SIZE; 1097 pp->ctl_block = mmio; 1098 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN; 1099 pp->notifier_clear_block = pp->gen_block + 1100 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no); 1101 1102 /* Now that the legacy PRD and padding buffer are allocated we can 1103 safely raise the DMA mask to allocate the CPB/APRD table. 1104 These are allowed to fail since we store the value that ends up 1105 being used to set as the bounce limit in slave_config later if 1106 needed. */ 1107 pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 1108 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 1109 pp->adma_dma_mask = *dev->dma_mask; 1110 1111 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ, 1112 &mem_dma, GFP_KERNEL); 1113 if (!mem) 1114 return -ENOMEM; 1115 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ); 1116 1117 /* 1118 * First item in chunk of DMA memory: 1119 * 128-byte command parameter block (CPB) 1120 * one for each command tag 1121 */ 1122 pp->cpb = mem; 1123 pp->cpb_dma = mem_dma; 1124 1125 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1126 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1127 1128 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1129 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ; 1130 1131 /* 1132 * Second item: block of ADMA_SGTBL_LEN s/g entries 1133 */ 1134 pp->aprd = mem; 1135 pp->aprd_dma = mem_dma; 1136 1137 ap->private_data = pp; 1138 1139 /* clear any outstanding interrupt conditions */ 1140 writew(0xffff, mmio + NV_ADMA_STAT); 1141 1142 /* initialize port variables */ 1143 pp->flags = NV_ADMA_PORT_REGISTER_MODE; 1144 1145 /* clear CPB fetch count */ 1146 writew(0, mmio + NV_ADMA_CPB_COUNT); 1147 1148 /* clear GO for register mode, enable interrupt */ 1149 tmp = readw(mmio + NV_ADMA_CTL); 1150 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1151 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1152 1153 tmp = readw(mmio + NV_ADMA_CTL); 1154 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1155 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1156 udelay(1); 1157 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1158 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1159 1160 return 0; 1161 } 1162 1163 static void nv_adma_port_stop(struct ata_port *ap) 1164 { 1165 struct nv_adma_port_priv *pp = ap->private_data; 1166 void __iomem *mmio = pp->ctl_block; 1167 1168 VPRINTK("ENTER\n"); 1169 writew(0, mmio + NV_ADMA_CTL); 1170 } 1171 1172 #ifdef CONFIG_PM 1173 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg) 1174 { 1175 struct nv_adma_port_priv *pp = ap->private_data; 1176 void __iomem *mmio = pp->ctl_block; 1177 1178 /* Go to register mode - clears GO */ 1179 nv_adma_register_mode(ap); 1180 1181 /* clear CPB fetch count */ 1182 writew(0, mmio + NV_ADMA_CPB_COUNT); 1183 1184 /* disable interrupt, shut down port */ 1185 writew(0, mmio + NV_ADMA_CTL); 1186 1187 return 0; 1188 } 1189 1190 static int nv_adma_port_resume(struct ata_port *ap) 1191 { 1192 struct nv_adma_port_priv *pp = ap->private_data; 1193 void __iomem *mmio = pp->ctl_block; 1194 u16 tmp; 1195 1196 /* set CPB block location */ 1197 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW); 1198 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH); 1199 1200 /* clear any outstanding interrupt conditions */ 1201 writew(0xffff, mmio + NV_ADMA_STAT); 1202 1203 /* initialize port variables */ 1204 pp->flags |= NV_ADMA_PORT_REGISTER_MODE; 1205 1206 /* clear CPB fetch count */ 1207 writew(0, mmio + NV_ADMA_CPB_COUNT); 1208 1209 /* clear GO for register mode, enable interrupt */ 1210 tmp = readw(mmio + NV_ADMA_CTL); 1211 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN | 1212 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL); 1213 1214 tmp = readw(mmio + NV_ADMA_CTL); 1215 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1216 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1217 udelay(1); 1218 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1219 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1220 1221 return 0; 1222 } 1223 #endif 1224 1225 static void nv_adma_setup_port(struct ata_port *ap) 1226 { 1227 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1228 struct ata_ioports *ioport = &ap->ioaddr; 1229 1230 VPRINTK("ENTER\n"); 1231 1232 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE; 1233 1234 ioport->cmd_addr = mmio; 1235 ioport->data_addr = mmio + (ATA_REG_DATA * 4); 1236 ioport->error_addr = 1237 ioport->feature_addr = mmio + (ATA_REG_ERR * 4); 1238 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4); 1239 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4); 1240 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4); 1241 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4); 1242 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4); 1243 ioport->status_addr = 1244 ioport->command_addr = mmio + (ATA_REG_STATUS * 4); 1245 ioport->altstatus_addr = 1246 ioport->ctl_addr = mmio + 0x20; 1247 } 1248 1249 static int nv_adma_host_init(struct ata_host *host) 1250 { 1251 struct pci_dev *pdev = to_pci_dev(host->dev); 1252 unsigned int i; 1253 u32 tmp32; 1254 1255 VPRINTK("ENTER\n"); 1256 1257 /* enable ADMA on the ports */ 1258 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 1259 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN | 1260 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 1261 NV_MCP_SATA_CFG_20_PORT1_EN | 1262 NV_MCP_SATA_CFG_20_PORT1_PWB_EN; 1263 1264 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 1265 1266 for (i = 0; i < host->n_ports; i++) 1267 nv_adma_setup_port(host->ports[i]); 1268 1269 return 0; 1270 } 1271 1272 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc, 1273 struct scatterlist *sg, 1274 int idx, 1275 struct nv_adma_prd *aprd) 1276 { 1277 u8 flags = 0; 1278 if (qc->tf.flags & ATA_TFLAG_WRITE) 1279 flags |= NV_APRD_WRITE; 1280 if (idx == qc->n_elem - 1) 1281 flags |= NV_APRD_END; 1282 else if (idx != 4) 1283 flags |= NV_APRD_CONT; 1284 1285 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg))); 1286 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */ 1287 aprd->flags = flags; 1288 aprd->packet_len = 0; 1289 } 1290 1291 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb) 1292 { 1293 struct nv_adma_port_priv *pp = qc->ap->private_data; 1294 struct nv_adma_prd *aprd; 1295 struct scatterlist *sg; 1296 unsigned int si; 1297 1298 VPRINTK("ENTER\n"); 1299 1300 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1301 aprd = (si < 5) ? &cpb->aprd[si] : 1302 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)]; 1303 nv_adma_fill_aprd(qc, sg, si, aprd); 1304 } 1305 if (si > 5) 1306 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag))); 1307 else 1308 cpb->next_aprd = cpu_to_le64(0); 1309 } 1310 1311 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc) 1312 { 1313 struct nv_adma_port_priv *pp = qc->ap->private_data; 1314 1315 /* ADMA engine can only be used for non-ATAPI DMA commands, 1316 or interrupt-driven no-data commands. */ 1317 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) || 1318 (qc->tf.flags & ATA_TFLAG_POLLING)) 1319 return 1; 1320 1321 if ((qc->flags & ATA_QCFLAG_DMAMAP) || 1322 (qc->tf.protocol == ATA_PROT_NODATA)) 1323 return 0; 1324 1325 return 1; 1326 } 1327 1328 static void nv_adma_qc_prep(struct ata_queued_cmd *qc) 1329 { 1330 struct nv_adma_port_priv *pp = qc->ap->private_data; 1331 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag]; 1332 u8 ctl_flags = NV_CPB_CTL_CPB_VALID | 1333 NV_CPB_CTL_IEN; 1334 1335 if (nv_adma_use_reg_mode(qc)) { 1336 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1337 (qc->flags & ATA_QCFLAG_DMAMAP)); 1338 nv_adma_register_mode(qc->ap); 1339 ata_sff_qc_prep(qc); 1340 return; 1341 } 1342 1343 cpb->resp_flags = NV_CPB_RESP_DONE; 1344 wmb(); 1345 cpb->ctl_flags = 0; 1346 wmb(); 1347 1348 cpb->len = 3; 1349 cpb->tag = qc->tag; 1350 cpb->next_cpb_idx = 0; 1351 1352 /* turn on NCQ flags for NCQ commands */ 1353 if (qc->tf.protocol == ATA_PROT_NCQ) 1354 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA; 1355 1356 VPRINTK("qc->flags = 0x%lx\n", qc->flags); 1357 1358 nv_adma_tf_to_cpb(&qc->tf, cpb->tf); 1359 1360 if (qc->flags & ATA_QCFLAG_DMAMAP) { 1361 nv_adma_fill_sg(qc, cpb); 1362 ctl_flags |= NV_CPB_CTL_APRD_VALID; 1363 } else 1364 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5); 1365 1366 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID 1367 until we are finished filling in all of the contents */ 1368 wmb(); 1369 cpb->ctl_flags = ctl_flags; 1370 wmb(); 1371 cpb->resp_flags = 0; 1372 } 1373 1374 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc) 1375 { 1376 struct nv_adma_port_priv *pp = qc->ap->private_data; 1377 void __iomem *mmio = pp->ctl_block; 1378 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ); 1379 1380 VPRINTK("ENTER\n"); 1381 1382 /* We can't handle result taskfile with NCQ commands, since 1383 retrieving the taskfile switches us out of ADMA mode and would abort 1384 existing commands. */ 1385 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ && 1386 (qc->flags & ATA_QCFLAG_RESULT_TF))) { 1387 ata_dev_printk(qc->dev, KERN_ERR, 1388 "NCQ w/ RESULT_TF not allowed\n"); 1389 return AC_ERR_SYSTEM; 1390 } 1391 1392 if (nv_adma_use_reg_mode(qc)) { 1393 /* use ATA register mode */ 1394 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags); 1395 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) && 1396 (qc->flags & ATA_QCFLAG_DMAMAP)); 1397 nv_adma_register_mode(qc->ap); 1398 return ata_sff_qc_issue(qc); 1399 } else 1400 nv_adma_mode(qc->ap); 1401 1402 /* write append register, command tag in lower 8 bits 1403 and (number of cpbs to append -1) in top 8 bits */ 1404 wmb(); 1405 1406 if (curr_ncq != pp->last_issue_ncq) { 1407 /* Seems to need some delay before switching between NCQ and 1408 non-NCQ commands, else we get command timeouts and such. */ 1409 udelay(20); 1410 pp->last_issue_ncq = curr_ncq; 1411 } 1412 1413 writew(qc->tag, mmio + NV_ADMA_APPEND); 1414 1415 DPRINTK("Issued tag %u\n", qc->tag); 1416 1417 return 0; 1418 } 1419 1420 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance) 1421 { 1422 struct ata_host *host = dev_instance; 1423 unsigned int i; 1424 unsigned int handled = 0; 1425 unsigned long flags; 1426 1427 spin_lock_irqsave(&host->lock, flags); 1428 1429 for (i = 0; i < host->n_ports; i++) { 1430 struct ata_port *ap; 1431 1432 ap = host->ports[i]; 1433 if (ap && 1434 !(ap->flags & ATA_FLAG_DISABLED)) { 1435 struct ata_queued_cmd *qc; 1436 1437 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1438 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 1439 handled += ata_sff_host_intr(ap, qc); 1440 else 1441 // No request pending? Clear interrupt status 1442 // anyway, in case there's one pending. 1443 ap->ops->sff_check_status(ap); 1444 } 1445 1446 } 1447 1448 spin_unlock_irqrestore(&host->lock, flags); 1449 1450 return IRQ_RETVAL(handled); 1451 } 1452 1453 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat) 1454 { 1455 int i, handled = 0; 1456 1457 for (i = 0; i < host->n_ports; i++) { 1458 struct ata_port *ap = host->ports[i]; 1459 1460 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) 1461 handled += nv_host_intr(ap, irq_stat); 1462 1463 irq_stat >>= NV_INT_PORT_SHIFT; 1464 } 1465 1466 return IRQ_RETVAL(handled); 1467 } 1468 1469 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance) 1470 { 1471 struct ata_host *host = dev_instance; 1472 u8 irq_stat; 1473 irqreturn_t ret; 1474 1475 spin_lock(&host->lock); 1476 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS); 1477 ret = nv_do_interrupt(host, irq_stat); 1478 spin_unlock(&host->lock); 1479 1480 return ret; 1481 } 1482 1483 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance) 1484 { 1485 struct ata_host *host = dev_instance; 1486 u8 irq_stat; 1487 irqreturn_t ret; 1488 1489 spin_lock(&host->lock); 1490 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804); 1491 ret = nv_do_interrupt(host, irq_stat); 1492 spin_unlock(&host->lock); 1493 1494 return ret; 1495 } 1496 1497 static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val) 1498 { 1499 if (sc_reg > SCR_CONTROL) 1500 return -EINVAL; 1501 1502 *val = ioread32(ap->ioaddr.scr_addr + (sc_reg * 4)); 1503 return 0; 1504 } 1505 1506 static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val) 1507 { 1508 if (sc_reg > SCR_CONTROL) 1509 return -EINVAL; 1510 1511 iowrite32(val, ap->ioaddr.scr_addr + (sc_reg * 4)); 1512 return 0; 1513 } 1514 1515 static void nv_nf2_freeze(struct ata_port *ap) 1516 { 1517 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1518 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1519 u8 mask; 1520 1521 mask = ioread8(scr_addr + NV_INT_ENABLE); 1522 mask &= ~(NV_INT_ALL << shift); 1523 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1524 } 1525 1526 static void nv_nf2_thaw(struct ata_port *ap) 1527 { 1528 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr; 1529 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1530 u8 mask; 1531 1532 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS); 1533 1534 mask = ioread8(scr_addr + NV_INT_ENABLE); 1535 mask |= (NV_INT_MASK << shift); 1536 iowrite8(mask, scr_addr + NV_INT_ENABLE); 1537 } 1538 1539 static void nv_ck804_freeze(struct ata_port *ap) 1540 { 1541 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1542 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1543 u8 mask; 1544 1545 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1546 mask &= ~(NV_INT_ALL << shift); 1547 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1548 } 1549 1550 static void nv_ck804_thaw(struct ata_port *ap) 1551 { 1552 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1553 int shift = ap->port_no * NV_INT_PORT_SHIFT; 1554 u8 mask; 1555 1556 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804); 1557 1558 mask = readb(mmio_base + NV_INT_ENABLE_CK804); 1559 mask |= (NV_INT_MASK << shift); 1560 writeb(mask, mmio_base + NV_INT_ENABLE_CK804); 1561 } 1562 1563 static void nv_mcp55_freeze(struct ata_port *ap) 1564 { 1565 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1566 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1567 u32 mask; 1568 1569 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1570 1571 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1572 mask &= ~(NV_INT_ALL_MCP55 << shift); 1573 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1574 ata_sff_freeze(ap); 1575 } 1576 1577 static void nv_mcp55_thaw(struct ata_port *ap) 1578 { 1579 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR]; 1580 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55; 1581 u32 mask; 1582 1583 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55); 1584 1585 mask = readl(mmio_base + NV_INT_ENABLE_MCP55); 1586 mask |= (NV_INT_MASK_MCP55 << shift); 1587 writel(mask, mmio_base + NV_INT_ENABLE_MCP55); 1588 ata_sff_thaw(ap); 1589 } 1590 1591 static int nv_hardreset(struct ata_link *link, unsigned int *class, 1592 unsigned long deadline) 1593 { 1594 int rc; 1595 1596 /* SATA hardreset fails to retrieve proper device signature on 1597 * some controllers. Request follow up SRST. For more info, 1598 * see http://bugzilla.kernel.org/show_bug.cgi?id=3352 1599 */ 1600 rc = sata_sff_hardreset(link, class, deadline); 1601 if (rc) 1602 return rc; 1603 return -EAGAIN; 1604 } 1605 1606 static void nv_adma_error_handler(struct ata_port *ap) 1607 { 1608 struct nv_adma_port_priv *pp = ap->private_data; 1609 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) { 1610 void __iomem *mmio = pp->ctl_block; 1611 int i; 1612 u16 tmp; 1613 1614 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) { 1615 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER); 1616 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR); 1617 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL); 1618 u32 status = readw(mmio + NV_ADMA_STAT); 1619 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT); 1620 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX); 1621 1622 ata_port_printk(ap, KERN_ERR, 1623 "EH in ADMA mode, notifier 0x%X " 1624 "notifier_error 0x%X gen_ctl 0x%X status 0x%X " 1625 "next cpb count 0x%X next cpb idx 0x%x\n", 1626 notifier, notifier_error, gen_ctl, status, 1627 cpb_count, next_cpb_idx); 1628 1629 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) { 1630 struct nv_adma_cpb *cpb = &pp->cpb[i]; 1631 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) || 1632 ap->link.sactive & (1 << i)) 1633 ata_port_printk(ap, KERN_ERR, 1634 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n", 1635 i, cpb->ctl_flags, cpb->resp_flags); 1636 } 1637 } 1638 1639 /* Push us back into port register mode for error handling. */ 1640 nv_adma_register_mode(ap); 1641 1642 /* Mark all of the CPBs as invalid to prevent them from 1643 being executed */ 1644 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) 1645 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID; 1646 1647 /* clear CPB fetch count */ 1648 writew(0, mmio + NV_ADMA_CPB_COUNT); 1649 1650 /* Reset channel */ 1651 tmp = readw(mmio + NV_ADMA_CTL); 1652 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1653 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1654 udelay(1); 1655 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL); 1656 readw(mmio + NV_ADMA_CTL); /* flush posted write */ 1657 } 1658 1659 ata_sff_error_handler(ap); 1660 } 1661 1662 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc) 1663 { 1664 struct nv_swncq_port_priv *pp = ap->private_data; 1665 struct defer_queue *dq = &pp->defer_queue; 1666 1667 /* queue is full */ 1668 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE); 1669 dq->defer_bits |= (1 << qc->tag); 1670 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag; 1671 } 1672 1673 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap) 1674 { 1675 struct nv_swncq_port_priv *pp = ap->private_data; 1676 struct defer_queue *dq = &pp->defer_queue; 1677 unsigned int tag; 1678 1679 if (dq->head == dq->tail) /* null queue */ 1680 return NULL; 1681 1682 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)]; 1683 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON; 1684 WARN_ON(!(dq->defer_bits & (1 << tag))); 1685 dq->defer_bits &= ~(1 << tag); 1686 1687 return ata_qc_from_tag(ap, tag); 1688 } 1689 1690 static void nv_swncq_fis_reinit(struct ata_port *ap) 1691 { 1692 struct nv_swncq_port_priv *pp = ap->private_data; 1693 1694 pp->dhfis_bits = 0; 1695 pp->dmafis_bits = 0; 1696 pp->sdbfis_bits = 0; 1697 pp->ncq_flags = 0; 1698 } 1699 1700 static void nv_swncq_pp_reinit(struct ata_port *ap) 1701 { 1702 struct nv_swncq_port_priv *pp = ap->private_data; 1703 struct defer_queue *dq = &pp->defer_queue; 1704 1705 dq->head = 0; 1706 dq->tail = 0; 1707 dq->defer_bits = 0; 1708 pp->qc_active = 0; 1709 pp->last_issue_tag = ATA_TAG_POISON; 1710 nv_swncq_fis_reinit(ap); 1711 } 1712 1713 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis) 1714 { 1715 struct nv_swncq_port_priv *pp = ap->private_data; 1716 1717 writew(fis, pp->irq_block); 1718 } 1719 1720 static void __ata_bmdma_stop(struct ata_port *ap) 1721 { 1722 struct ata_queued_cmd qc; 1723 1724 qc.ap = ap; 1725 ata_bmdma_stop(&qc); 1726 } 1727 1728 static void nv_swncq_ncq_stop(struct ata_port *ap) 1729 { 1730 struct nv_swncq_port_priv *pp = ap->private_data; 1731 unsigned int i; 1732 u32 sactive; 1733 u32 done_mask; 1734 1735 ata_port_printk(ap, KERN_ERR, 1736 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n", 1737 ap->qc_active, ap->link.sactive); 1738 ata_port_printk(ap, KERN_ERR, 1739 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n " 1740 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n", 1741 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag, 1742 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits); 1743 1744 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n", 1745 ap->ops->sff_check_status(ap), 1746 ioread8(ap->ioaddr.error_addr)); 1747 1748 sactive = readl(pp->sactive_block); 1749 done_mask = pp->qc_active ^ sactive; 1750 1751 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n"); 1752 for (i = 0; i < ATA_MAX_QUEUE; i++) { 1753 u8 err = 0; 1754 if (pp->qc_active & (1 << i)) 1755 err = 0; 1756 else if (done_mask & (1 << i)) 1757 err = 1; 1758 else 1759 continue; 1760 1761 ata_port_printk(ap, KERN_ERR, 1762 "tag 0x%x: %01x %01x %01x %01x %s\n", i, 1763 (pp->dhfis_bits >> i) & 0x1, 1764 (pp->dmafis_bits >> i) & 0x1, 1765 (pp->sdbfis_bits >> i) & 0x1, 1766 (sactive >> i) & 0x1, 1767 (err ? "error! tag doesn't exit" : " ")); 1768 } 1769 1770 nv_swncq_pp_reinit(ap); 1771 ap->ops->sff_irq_clear(ap); 1772 __ata_bmdma_stop(ap); 1773 nv_swncq_irq_clear(ap, 0xffff); 1774 } 1775 1776 static void nv_swncq_error_handler(struct ata_port *ap) 1777 { 1778 struct ata_eh_context *ehc = &ap->link.eh_context; 1779 1780 if (ap->link.sactive) { 1781 nv_swncq_ncq_stop(ap); 1782 ehc->i.action |= ATA_EH_RESET; 1783 } 1784 1785 ata_sff_error_handler(ap); 1786 } 1787 1788 #ifdef CONFIG_PM 1789 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg) 1790 { 1791 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1792 u32 tmp; 1793 1794 /* clear irq */ 1795 writel(~0, mmio + NV_INT_STATUS_MCP55); 1796 1797 /* disable irq */ 1798 writel(0, mmio + NV_INT_ENABLE_MCP55); 1799 1800 /* disable swncq */ 1801 tmp = readl(mmio + NV_CTL_MCP55); 1802 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ); 1803 writel(tmp, mmio + NV_CTL_MCP55); 1804 1805 return 0; 1806 } 1807 1808 static int nv_swncq_port_resume(struct ata_port *ap) 1809 { 1810 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1811 u32 tmp; 1812 1813 /* clear irq */ 1814 writel(~0, mmio + NV_INT_STATUS_MCP55); 1815 1816 /* enable irq */ 1817 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1818 1819 /* enable swncq */ 1820 tmp = readl(mmio + NV_CTL_MCP55); 1821 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1822 1823 return 0; 1824 } 1825 #endif 1826 1827 static void nv_swncq_host_init(struct ata_host *host) 1828 { 1829 u32 tmp; 1830 void __iomem *mmio = host->iomap[NV_MMIO_BAR]; 1831 struct pci_dev *pdev = to_pci_dev(host->dev); 1832 u8 regval; 1833 1834 /* disable ECO 398 */ 1835 pci_read_config_byte(pdev, 0x7f, ®val); 1836 regval &= ~(1 << 7); 1837 pci_write_config_byte(pdev, 0x7f, regval); 1838 1839 /* enable swncq */ 1840 tmp = readl(mmio + NV_CTL_MCP55); 1841 VPRINTK("HOST_CTL:0x%X\n", tmp); 1842 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55); 1843 1844 /* enable irq intr */ 1845 tmp = readl(mmio + NV_INT_ENABLE_MCP55); 1846 VPRINTK("HOST_ENABLE:0x%X\n", tmp); 1847 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55); 1848 1849 /* clear port irq */ 1850 writel(~0x0, mmio + NV_INT_STATUS_MCP55); 1851 } 1852 1853 static int nv_swncq_slave_config(struct scsi_device *sdev) 1854 { 1855 struct ata_port *ap = ata_shost_to_port(sdev->host); 1856 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 1857 struct ata_device *dev; 1858 int rc; 1859 u8 rev; 1860 u8 check_maxtor = 0; 1861 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 1862 1863 rc = ata_scsi_slave_config(sdev); 1864 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun) 1865 /* Not a proper libata device, ignore */ 1866 return rc; 1867 1868 dev = &ap->link.device[sdev->id]; 1869 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI) 1870 return rc; 1871 1872 /* if MCP51 and Maxtor, then disable ncq */ 1873 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA || 1874 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2) 1875 check_maxtor = 1; 1876 1877 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */ 1878 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA || 1879 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) { 1880 pci_read_config_byte(pdev, 0x8, &rev); 1881 if (rev <= 0xa2) 1882 check_maxtor = 1; 1883 } 1884 1885 if (!check_maxtor) 1886 return rc; 1887 1888 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 1889 1890 if (strncmp(model_num, "Maxtor", 6) == 0) { 1891 ata_scsi_change_queue_depth(sdev, 1); 1892 ata_dev_printk(dev, KERN_NOTICE, 1893 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth); 1894 } 1895 1896 return rc; 1897 } 1898 1899 static int nv_swncq_port_start(struct ata_port *ap) 1900 { 1901 struct device *dev = ap->host->dev; 1902 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR]; 1903 struct nv_swncq_port_priv *pp; 1904 int rc; 1905 1906 rc = ata_port_start(ap); 1907 if (rc) 1908 return rc; 1909 1910 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1911 if (!pp) 1912 return -ENOMEM; 1913 1914 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE, 1915 &pp->prd_dma, GFP_KERNEL); 1916 if (!pp->prd) 1917 return -ENOMEM; 1918 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE); 1919 1920 ap->private_data = pp; 1921 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE; 1922 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2; 1923 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2; 1924 1925 return 0; 1926 } 1927 1928 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc) 1929 { 1930 if (qc->tf.protocol != ATA_PROT_NCQ) { 1931 ata_sff_qc_prep(qc); 1932 return; 1933 } 1934 1935 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 1936 return; 1937 1938 nv_swncq_fill_sg(qc); 1939 } 1940 1941 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc) 1942 { 1943 struct ata_port *ap = qc->ap; 1944 struct scatterlist *sg; 1945 struct nv_swncq_port_priv *pp = ap->private_data; 1946 struct ata_prd *prd; 1947 unsigned int si, idx; 1948 1949 prd = pp->prd + ATA_MAX_PRD * qc->tag; 1950 1951 idx = 0; 1952 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1953 u32 addr, offset; 1954 u32 sg_len, len; 1955 1956 addr = (u32)sg_dma_address(sg); 1957 sg_len = sg_dma_len(sg); 1958 1959 while (sg_len) { 1960 offset = addr & 0xffff; 1961 len = sg_len; 1962 if ((offset + sg_len) > 0x10000) 1963 len = 0x10000 - offset; 1964 1965 prd[idx].addr = cpu_to_le32(addr); 1966 prd[idx].flags_len = cpu_to_le32(len & 0xffff); 1967 1968 idx++; 1969 sg_len -= len; 1970 addr += len; 1971 } 1972 } 1973 1974 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 1975 } 1976 1977 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap, 1978 struct ata_queued_cmd *qc) 1979 { 1980 struct nv_swncq_port_priv *pp = ap->private_data; 1981 1982 if (qc == NULL) 1983 return 0; 1984 1985 DPRINTK("Enter\n"); 1986 1987 writel((1 << qc->tag), pp->sactive_block); 1988 pp->last_issue_tag = qc->tag; 1989 pp->dhfis_bits &= ~(1 << qc->tag); 1990 pp->dmafis_bits &= ~(1 << qc->tag); 1991 pp->qc_active |= (0x1 << qc->tag); 1992 1993 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1994 ap->ops->sff_exec_command(ap, &qc->tf); 1995 1996 DPRINTK("Issued tag %u\n", qc->tag); 1997 1998 return 0; 1999 } 2000 2001 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc) 2002 { 2003 struct ata_port *ap = qc->ap; 2004 struct nv_swncq_port_priv *pp = ap->private_data; 2005 2006 if (qc->tf.protocol != ATA_PROT_NCQ) 2007 return ata_sff_qc_issue(qc); 2008 2009 DPRINTK("Enter\n"); 2010 2011 if (!pp->qc_active) 2012 nv_swncq_issue_atacmd(ap, qc); 2013 else 2014 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */ 2015 2016 return 0; 2017 } 2018 2019 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis) 2020 { 2021 u32 serror; 2022 struct ata_eh_info *ehi = &ap->link.eh_info; 2023 2024 ata_ehi_clear_desc(ehi); 2025 2026 /* AHCI needs SError cleared; otherwise, it might lock up */ 2027 sata_scr_read(&ap->link, SCR_ERROR, &serror); 2028 sata_scr_write(&ap->link, SCR_ERROR, serror); 2029 2030 /* analyze @irq_stat */ 2031 if (fis & NV_SWNCQ_IRQ_ADDED) 2032 ata_ehi_push_desc(ehi, "hot plug"); 2033 else if (fis & NV_SWNCQ_IRQ_REMOVED) 2034 ata_ehi_push_desc(ehi, "hot unplug"); 2035 2036 ata_ehi_hotplugged(ehi); 2037 2038 /* okay, let's hand over to EH */ 2039 ehi->serror |= serror; 2040 2041 ata_port_freeze(ap); 2042 } 2043 2044 static int nv_swncq_sdbfis(struct ata_port *ap) 2045 { 2046 struct ata_queued_cmd *qc; 2047 struct nv_swncq_port_priv *pp = ap->private_data; 2048 struct ata_eh_info *ehi = &ap->link.eh_info; 2049 u32 sactive; 2050 int nr_done = 0; 2051 u32 done_mask; 2052 int i; 2053 u8 host_stat; 2054 u8 lack_dhfis = 0; 2055 2056 host_stat = ap->ops->bmdma_status(ap); 2057 if (unlikely(host_stat & ATA_DMA_ERR)) { 2058 /* error when transfering data to/from memory */ 2059 ata_ehi_clear_desc(ehi); 2060 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2061 ehi->err_mask |= AC_ERR_HOST_BUS; 2062 ehi->action |= ATA_EH_RESET; 2063 return -EINVAL; 2064 } 2065 2066 ap->ops->sff_irq_clear(ap); 2067 __ata_bmdma_stop(ap); 2068 2069 sactive = readl(pp->sactive_block); 2070 done_mask = pp->qc_active ^ sactive; 2071 2072 if (unlikely(done_mask & sactive)) { 2073 ata_ehi_clear_desc(ehi); 2074 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition" 2075 "(%08x->%08x)", pp->qc_active, sactive); 2076 ehi->err_mask |= AC_ERR_HSM; 2077 ehi->action |= ATA_EH_RESET; 2078 return -EINVAL; 2079 } 2080 for (i = 0; i < ATA_MAX_QUEUE; i++) { 2081 if (!(done_mask & (1 << i))) 2082 continue; 2083 2084 qc = ata_qc_from_tag(ap, i); 2085 if (qc) { 2086 ata_qc_complete(qc); 2087 pp->qc_active &= ~(1 << i); 2088 pp->dhfis_bits &= ~(1 << i); 2089 pp->dmafis_bits &= ~(1 << i); 2090 pp->sdbfis_bits |= (1 << i); 2091 nr_done++; 2092 } 2093 } 2094 2095 if (!ap->qc_active) { 2096 DPRINTK("over\n"); 2097 nv_swncq_pp_reinit(ap); 2098 return nr_done; 2099 } 2100 2101 if (pp->qc_active & pp->dhfis_bits) 2102 return nr_done; 2103 2104 if ((pp->ncq_flags & ncq_saw_backout) || 2105 (pp->qc_active ^ pp->dhfis_bits)) 2106 /* if the controller cann't get a device to host register FIS, 2107 * The driver needs to reissue the new command. 2108 */ 2109 lack_dhfis = 1; 2110 2111 DPRINTK("id 0x%x QC: qc_active 0x%x," 2112 "SWNCQ:qc_active 0x%X defer_bits %X " 2113 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n", 2114 ap->print_id, ap->qc_active, pp->qc_active, 2115 pp->defer_queue.defer_bits, pp->dhfis_bits, 2116 pp->dmafis_bits, pp->last_issue_tag); 2117 2118 nv_swncq_fis_reinit(ap); 2119 2120 if (lack_dhfis) { 2121 qc = ata_qc_from_tag(ap, pp->last_issue_tag); 2122 nv_swncq_issue_atacmd(ap, qc); 2123 return nr_done; 2124 } 2125 2126 if (pp->defer_queue.defer_bits) { 2127 /* send deferral queue command */ 2128 qc = nv_swncq_qc_from_dq(ap); 2129 WARN_ON(qc == NULL); 2130 nv_swncq_issue_atacmd(ap, qc); 2131 } 2132 2133 return nr_done; 2134 } 2135 2136 static inline u32 nv_swncq_tag(struct ata_port *ap) 2137 { 2138 struct nv_swncq_port_priv *pp = ap->private_data; 2139 u32 tag; 2140 2141 tag = readb(pp->tag_block) >> 2; 2142 return (tag & 0x1f); 2143 } 2144 2145 static int nv_swncq_dmafis(struct ata_port *ap) 2146 { 2147 struct ata_queued_cmd *qc; 2148 unsigned int rw; 2149 u8 dmactl; 2150 u32 tag; 2151 struct nv_swncq_port_priv *pp = ap->private_data; 2152 2153 __ata_bmdma_stop(ap); 2154 tag = nv_swncq_tag(ap); 2155 2156 DPRINTK("dma setup tag 0x%x\n", tag); 2157 qc = ata_qc_from_tag(ap, tag); 2158 2159 if (unlikely(!qc)) 2160 return 0; 2161 2162 rw = qc->tf.flags & ATA_TFLAG_WRITE; 2163 2164 /* load PRD table addr. */ 2165 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag, 2166 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2167 2168 /* specify data direction, triple-check start bit is clear */ 2169 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2170 dmactl &= ~ATA_DMA_WR; 2171 if (!rw) 2172 dmactl |= ATA_DMA_WR; 2173 2174 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2175 2176 return 1; 2177 } 2178 2179 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) 2180 { 2181 struct nv_swncq_port_priv *pp = ap->private_data; 2182 struct ata_queued_cmd *qc; 2183 struct ata_eh_info *ehi = &ap->link.eh_info; 2184 u32 serror; 2185 u8 ata_stat; 2186 int rc = 0; 2187 2188 ata_stat = ap->ops->sff_check_status(ap); 2189 nv_swncq_irq_clear(ap, fis); 2190 if (!fis) 2191 return; 2192 2193 if (ap->pflags & ATA_PFLAG_FROZEN) 2194 return; 2195 2196 if (fis & NV_SWNCQ_IRQ_HOTPLUG) { 2197 nv_swncq_hotplug(ap, fis); 2198 return; 2199 } 2200 2201 if (!pp->qc_active) 2202 return; 2203 2204 if (ap->ops->scr_read(ap, SCR_ERROR, &serror)) 2205 return; 2206 ap->ops->scr_write(ap, SCR_ERROR, serror); 2207 2208 if (ata_stat & ATA_ERR) { 2209 ata_ehi_clear_desc(ehi); 2210 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis); 2211 ehi->err_mask |= AC_ERR_DEV; 2212 ehi->serror |= serror; 2213 ehi->action |= ATA_EH_RESET; 2214 ata_port_freeze(ap); 2215 return; 2216 } 2217 2218 if (fis & NV_SWNCQ_IRQ_BACKOUT) { 2219 /* If the IRQ is backout, driver must issue 2220 * the new command again some time later. 2221 */ 2222 pp->ncq_flags |= ncq_saw_backout; 2223 } 2224 2225 if (fis & NV_SWNCQ_IRQ_SDBFIS) { 2226 pp->ncq_flags |= ncq_saw_sdb; 2227 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X " 2228 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n", 2229 ap->print_id, pp->qc_active, pp->dhfis_bits, 2230 pp->dmafis_bits, readl(pp->sactive_block)); 2231 rc = nv_swncq_sdbfis(ap); 2232 if (rc < 0) 2233 goto irq_error; 2234 } 2235 2236 if (fis & NV_SWNCQ_IRQ_DHREGFIS) { 2237 /* The interrupt indicates the new command 2238 * was transmitted correctly to the drive. 2239 */ 2240 pp->dhfis_bits |= (0x1 << pp->last_issue_tag); 2241 pp->ncq_flags |= ncq_saw_d2h; 2242 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) { 2243 ata_ehi_push_desc(ehi, "illegal fis transaction"); 2244 ehi->err_mask |= AC_ERR_HSM; 2245 ehi->action |= ATA_EH_RESET; 2246 goto irq_error; 2247 } 2248 2249 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) && 2250 !(pp->ncq_flags & ncq_saw_dmas)) { 2251 ata_stat = ap->ops->sff_check_status(ap); 2252 if (ata_stat & ATA_BUSY) 2253 goto irq_exit; 2254 2255 if (pp->defer_queue.defer_bits) { 2256 DPRINTK("send next command\n"); 2257 qc = nv_swncq_qc_from_dq(ap); 2258 nv_swncq_issue_atacmd(ap, qc); 2259 } 2260 } 2261 } 2262 2263 if (fis & NV_SWNCQ_IRQ_DMASETUP) { 2264 /* program the dma controller with appropriate PRD buffers 2265 * and start the DMA transfer for requested command. 2266 */ 2267 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); 2268 pp->ncq_flags |= ncq_saw_dmas; 2269 rc = nv_swncq_dmafis(ap); 2270 } 2271 2272 irq_exit: 2273 return; 2274 irq_error: 2275 ata_ehi_push_desc(ehi, "fis:0x%x", fis); 2276 ata_port_freeze(ap); 2277 return; 2278 } 2279 2280 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance) 2281 { 2282 struct ata_host *host = dev_instance; 2283 unsigned int i; 2284 unsigned int handled = 0; 2285 unsigned long flags; 2286 u32 irq_stat; 2287 2288 spin_lock_irqsave(&host->lock, flags); 2289 2290 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55); 2291 2292 for (i = 0; i < host->n_ports; i++) { 2293 struct ata_port *ap = host->ports[i]; 2294 2295 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) { 2296 if (ap->link.sactive) { 2297 nv_swncq_host_interrupt(ap, (u16)irq_stat); 2298 handled = 1; 2299 } else { 2300 if (irq_stat) /* reserve Hotplug */ 2301 nv_swncq_irq_clear(ap, 0xfff0); 2302 2303 handled += nv_host_intr(ap, (u8)irq_stat); 2304 } 2305 } 2306 irq_stat >>= NV_INT_PORT_SHIFT_MCP55; 2307 } 2308 2309 spin_unlock_irqrestore(&host->lock, flags); 2310 2311 return IRQ_RETVAL(handled); 2312 } 2313 2314 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2315 { 2316 static int printed_version; 2317 const struct ata_port_info *ppi[] = { NULL, NULL }; 2318 struct nv_pi_priv *ipriv; 2319 struct ata_host *host; 2320 struct nv_host_priv *hpriv; 2321 int rc; 2322 u32 bar; 2323 void __iomem *base; 2324 unsigned long type = ent->driver_data; 2325 2326 // Make sure this is a SATA controller by counting the number of bars 2327 // (NVIDIA SATA controllers will always have six bars). Otherwise, 2328 // it's an IDE controller and we ignore it. 2329 for (bar = 0; bar < 6; bar++) 2330 if (pci_resource_start(pdev, bar) == 0) 2331 return -ENODEV; 2332 2333 if (!printed_version++) 2334 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); 2335 2336 rc = pcim_enable_device(pdev); 2337 if (rc) 2338 return rc; 2339 2340 /* determine type and allocate host */ 2341 if (type == CK804 && adma_enabled) { 2342 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n"); 2343 type = ADMA; 2344 } 2345 2346 if (type == SWNCQ) { 2347 if (swncq_enabled) 2348 dev_printk(KERN_NOTICE, &pdev->dev, 2349 "Using SWNCQ mode\n"); 2350 else 2351 type = GENERIC; 2352 } 2353 2354 ppi[0] = &nv_port_info[type]; 2355 ipriv = ppi[0]->private_data; 2356 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2357 if (rc) 2358 return rc; 2359 2360 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 2361 if (!hpriv) 2362 return -ENOMEM; 2363 hpriv->type = type; 2364 host->private_data = hpriv; 2365 2366 /* request and iomap NV_MMIO_BAR */ 2367 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME); 2368 if (rc) 2369 return rc; 2370 2371 /* configure SCR access */ 2372 base = host->iomap[NV_MMIO_BAR]; 2373 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET; 2374 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET; 2375 2376 /* enable SATA space for CK804 */ 2377 if (type >= CK804) { 2378 u8 regval; 2379 2380 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2381 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2382 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2383 } 2384 2385 /* init ADMA */ 2386 if (type == ADMA) { 2387 rc = nv_adma_host_init(host); 2388 if (rc) 2389 return rc; 2390 } else if (type == SWNCQ) 2391 nv_swncq_host_init(host); 2392 2393 pci_set_master(pdev); 2394 return ata_host_activate(host, pdev->irq, ipriv->irq_handler, 2395 IRQF_SHARED, ipriv->sht); 2396 } 2397 2398 #ifdef CONFIG_PM 2399 static int nv_pci_device_resume(struct pci_dev *pdev) 2400 { 2401 struct ata_host *host = dev_get_drvdata(&pdev->dev); 2402 struct nv_host_priv *hpriv = host->private_data; 2403 int rc; 2404 2405 rc = ata_pci_device_do_resume(pdev); 2406 if (rc) 2407 return rc; 2408 2409 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) { 2410 if (hpriv->type >= CK804) { 2411 u8 regval; 2412 2413 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2414 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2415 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2416 } 2417 if (hpriv->type == ADMA) { 2418 u32 tmp32; 2419 struct nv_adma_port_priv *pp; 2420 /* enable/disable ADMA on the ports appropriately */ 2421 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2422 2423 pp = host->ports[0]->private_data; 2424 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2425 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2426 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2427 else 2428 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN | 2429 NV_MCP_SATA_CFG_20_PORT0_PWB_EN); 2430 pp = host->ports[1]->private_data; 2431 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) 2432 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN | 2433 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2434 else 2435 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN | 2436 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2437 2438 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2439 } 2440 } 2441 2442 ata_host_resume(host); 2443 2444 return 0; 2445 } 2446 #endif 2447 2448 static void nv_ck804_host_stop(struct ata_host *host) 2449 { 2450 struct pci_dev *pdev = to_pci_dev(host->dev); 2451 u8 regval; 2452 2453 /* disable SATA space for CK804 */ 2454 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, ®val); 2455 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN; 2456 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval); 2457 } 2458 2459 static void nv_adma_host_stop(struct ata_host *host) 2460 { 2461 struct pci_dev *pdev = to_pci_dev(host->dev); 2462 u32 tmp32; 2463 2464 /* disable ADMA on the ports */ 2465 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32); 2466 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN | 2467 NV_MCP_SATA_CFG_20_PORT0_PWB_EN | 2468 NV_MCP_SATA_CFG_20_PORT1_EN | 2469 NV_MCP_SATA_CFG_20_PORT1_PWB_EN); 2470 2471 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32); 2472 2473 nv_ck804_host_stop(host); 2474 } 2475 2476 static int __init nv_init(void) 2477 { 2478 return pci_register_driver(&nv_pci_driver); 2479 } 2480 2481 static void __exit nv_exit(void) 2482 { 2483 pci_unregister_driver(&nv_pci_driver); 2484 } 2485 2486 module_init(nv_init); 2487 module_exit(nv_exit); 2488 module_param_named(adma, adma_enabled, bool, 0444); 2489 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: true)"); 2490 module_param_named(swncq, swncq_enabled, bool, 0444); 2491 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)"); 2492 2493