xref: /openbmc/linux/drivers/ata/sata_mv.c (revision e8f6f3b4)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/phy/phy.h>
64 #include <linux/platform_device.h>
65 #include <linux/ata_platform.h>
66 #include <linux/mbus.h>
67 #include <linux/bitops.h>
68 #include <linux/gfp.h>
69 #include <linux/of.h>
70 #include <linux/of_irq.h>
71 #include <scsi/scsi_host.h>
72 #include <scsi/scsi_cmnd.h>
73 #include <scsi/scsi_device.h>
74 #include <linux/libata.h>
75 
76 #define DRV_NAME	"sata_mv"
77 #define DRV_VERSION	"1.28"
78 
79 /*
80  * module options
81  */
82 
83 #ifdef CONFIG_PCI
84 static int msi;
85 module_param(msi, int, S_IRUGO);
86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
87 #endif
88 
89 static int irq_coalescing_io_count;
90 module_param(irq_coalescing_io_count, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_io_count,
92 		 "IRQ coalescing I/O count threshold (0..255)");
93 
94 static int irq_coalescing_usecs;
95 module_param(irq_coalescing_usecs, int, S_IRUGO);
96 MODULE_PARM_DESC(irq_coalescing_usecs,
97 		 "IRQ coalescing time threshold in usecs");
98 
99 enum {
100 	/* BAR's are enumerated in terms of pci_resource_start() terms */
101 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
102 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
103 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
104 
105 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
106 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
107 
108 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
110 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
111 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
112 
113 	MV_PCI_REG_BASE		= 0,
114 
115 	/*
116 	 * Per-chip ("all ports") interrupt coalescing feature.
117 	 * This is only for GEN_II / GEN_IIE hardware.
118 	 *
119 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
120 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121 	 */
122 	COAL_REG_BASE		= 0x18000,
123 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
124 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
125 
126 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
127 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
128 
129 	/*
130 	 * Registers for the (unused here) transaction coalescing feature:
131 	 */
132 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
133 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
134 
135 	SATAHC0_REG_BASE	= 0x20000,
136 	FLASH_CTL		= 0x1046c,
137 	GPIO_PORT_CTL		= 0x104f0,
138 	RESET_CFG		= 0x180d8,
139 
140 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
141 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
142 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
143 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
144 
145 	MV_MAX_Q_DEPTH		= 32,
146 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
147 
148 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
149 	 * CRPB needs alignment on a 256B boundary. Size == 256B
150 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151 	 */
152 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
153 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
154 	MV_MAX_SG_CT		= 256,
155 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
156 
157 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158 	MV_PORT_HC_SHIFT	= 2,
159 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
160 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
162 
163 	/* Host Flags */
164 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
165 
166 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167 
168 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169 
170 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
171 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172 
173 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
174 
175 	CRQB_FLAG_READ		= (1 << 0),
176 	CRQB_TAG_SHIFT		= 1,
177 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
178 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
179 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
180 	CRQB_CMD_ADDR_SHIFT	= 8,
181 	CRQB_CMD_CS		= (0x2 << 11),
182 	CRQB_CMD_LAST		= (1 << 15),
183 
184 	CRPB_FLAG_STATUS_SHIFT	= 8,
185 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
186 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
187 
188 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
189 
190 	/* PCI interface registers */
191 
192 	MV_PCI_COMMAND		= 0xc00,
193 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
194 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
195 
196 	PCI_MAIN_CMD_STS	= 0xd30,
197 	STOP_PCI_MASTER		= (1 << 2),
198 	PCI_MASTER_EMPTY	= (1 << 3),
199 	GLOB_SFT_RST		= (1 << 4),
200 
201 	MV_PCI_MODE		= 0xd00,
202 	MV_PCI_MODE_MASK	= 0x30,
203 
204 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
205 	MV_PCI_DISC_TIMER	= 0xd04,
206 	MV_PCI_MSI_TRIGGER	= 0xc38,
207 	MV_PCI_SERR_MASK	= 0xc28,
208 	MV_PCI_XBAR_TMOUT	= 0x1d04,
209 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
210 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
211 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
212 	MV_PCI_ERR_COMMAND	= 0x1d50,
213 
214 	PCI_IRQ_CAUSE		= 0x1d58,
215 	PCI_IRQ_MASK		= 0x1d5c,
216 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
217 
218 	PCIE_IRQ_CAUSE		= 0x1900,
219 	PCIE_IRQ_MASK		= 0x1910,
220 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
221 
222 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
224 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
225 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
226 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
227 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
228 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
229 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
230 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
231 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
232 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
233 	PCI_ERR			= (1 << 18),
234 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
235 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
236 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
237 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
238 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
239 	GPIO_INT		= (1 << 22),
240 	SELF_INT		= (1 << 23),
241 	TWSI_INT		= (1 << 24),
242 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
243 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
244 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
245 
246 	/* SATAHC registers */
247 	HC_CFG			= 0x00,
248 
249 	HC_IRQ_CAUSE		= 0x14,
250 	DMA_IRQ			= (1 << 0),	/* shift by port # */
251 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
252 	DEV_IRQ			= (1 << 8),	/* shift by port # */
253 
254 	/*
255 	 * Per-HC (Host-Controller) interrupt coalescing feature.
256 	 * This is present on all chip generations.
257 	 *
258 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
259 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260 	 */
261 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
262 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
263 
264 	SOC_LED_CTRL		= 0x2c,
265 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
266 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
267 						/*  with dev activity LED */
268 
269 	/* Shadow block registers */
270 	SHD_BLK			= 0x100,
271 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
272 
273 	/* SATA registers */
274 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
275 	SATA_ACTIVE		= 0x350,
276 	FIS_IRQ_CAUSE		= 0x364,
277 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
278 
279 	LTMODE			= 0x30c,	/* requires read-after-write */
280 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
281 
282 	PHY_MODE2		= 0x330,
283 	PHY_MODE3		= 0x310,
284 
285 	PHY_MODE4		= 0x314,	/* requires read-after-write */
286 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
287 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
288 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
289 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
290 
291 	SATA_IFCTL		= 0x344,
292 	SATA_TESTCTL		= 0x348,
293 	SATA_IFSTAT		= 0x34c,
294 	VENDOR_UNIQUE_FIS	= 0x35c,
295 
296 	FISCFG			= 0x360,
297 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
298 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
299 
300 	PHY_MODE9_GEN2		= 0x398,
301 	PHY_MODE9_GEN1		= 0x39c,
302 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
303 
304 	MV5_PHY_MODE		= 0x74,
305 	MV5_LTMODE		= 0x30,
306 	MV5_PHY_CTL		= 0x0C,
307 	SATA_IFCFG		= 0x050,
308 	LP_PHY_CTL		= 0x058,
309 
310 	MV_M2_PREAMP_MASK	= 0x7e0,
311 
312 	/* Port registers */
313 	EDMA_CFG		= 0,
314 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
315 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
316 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
317 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
318 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
319 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
320 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
321 
322 	EDMA_ERR_IRQ_CAUSE	= 0x8,
323 	EDMA_ERR_IRQ_MASK	= 0xc,
324 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
325 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
326 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
327 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
328 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
329 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
330 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
331 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
332 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
333 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
334 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
335 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
336 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
337 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
338 
339 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
340 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
344 
345 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
346 
347 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
348 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
349 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
350 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
351 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
352 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
353 
354 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
355 
356 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
357 	EDMA_ERR_OVERRUN_5	= (1 << 5),
358 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
359 
360 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
361 				  EDMA_ERR_LNK_CTRL_RX_1 |
362 				  EDMA_ERR_LNK_CTRL_RX_3 |
363 				  EDMA_ERR_LNK_CTRL_TX,
364 
365 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
366 				  EDMA_ERR_PRD_PAR |
367 				  EDMA_ERR_DEV_DCON |
368 				  EDMA_ERR_DEV_CON |
369 				  EDMA_ERR_SERR |
370 				  EDMA_ERR_SELF_DIS |
371 				  EDMA_ERR_CRQB_PAR |
372 				  EDMA_ERR_CRPB_PAR |
373 				  EDMA_ERR_INTRL_PAR |
374 				  EDMA_ERR_IORDY |
375 				  EDMA_ERR_LNK_CTRL_RX_2 |
376 				  EDMA_ERR_LNK_DATA_RX |
377 				  EDMA_ERR_LNK_DATA_TX |
378 				  EDMA_ERR_TRANS_PROTO,
379 
380 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
381 				  EDMA_ERR_PRD_PAR |
382 				  EDMA_ERR_DEV_DCON |
383 				  EDMA_ERR_DEV_CON |
384 				  EDMA_ERR_OVERRUN_5 |
385 				  EDMA_ERR_UNDERRUN_5 |
386 				  EDMA_ERR_SELF_DIS_5 |
387 				  EDMA_ERR_CRQB_PAR |
388 				  EDMA_ERR_CRPB_PAR |
389 				  EDMA_ERR_INTRL_PAR |
390 				  EDMA_ERR_IORDY,
391 
392 	EDMA_REQ_Q_BASE_HI	= 0x10,
393 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
394 
395 	EDMA_REQ_Q_OUT_PTR	= 0x18,
396 	EDMA_REQ_Q_PTR_SHIFT	= 5,
397 
398 	EDMA_RSP_Q_BASE_HI	= 0x1c,
399 	EDMA_RSP_Q_IN_PTR	= 0x20,
400 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
401 	EDMA_RSP_Q_PTR_SHIFT	= 3,
402 
403 	EDMA_CMD		= 0x28,		/* EDMA command register */
404 	EDMA_EN			= (1 << 0),	/* enable EDMA */
405 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
406 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
407 
408 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
409 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
410 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
411 
412 	EDMA_IORDY_TMOUT	= 0x34,
413 	EDMA_ARB_CFG		= 0x38,
414 
415 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
416 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
417 
418 	BMDMA_CMD		= 0x224,	/* bmdma command register */
419 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
420 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
421 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
422 
423 	/* Host private flags (hp_flags) */
424 	MV_HP_FLAG_MSI		= (1 << 0),
425 	MV_HP_ERRATA_50XXB0	= (1 << 1),
426 	MV_HP_ERRATA_50XXB2	= (1 << 2),
427 	MV_HP_ERRATA_60X1B2	= (1 << 3),
428 	MV_HP_ERRATA_60X1C0	= (1 << 4),
429 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
430 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
431 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
432 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
433 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
434 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
435 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
436 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
437 
438 	/* Port private flags (pp_flags) */
439 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
440 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
441 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
442 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
443 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
444 };
445 
446 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
447 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
448 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
449 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
450 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
451 
452 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
453 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
454 
455 enum {
456 	/* DMA boundary 0xffff is required by the s/g splitting
457 	 * we need on /length/ in mv_fill-sg().
458 	 */
459 	MV_DMA_BOUNDARY		= 0xffffU,
460 
461 	/* mask of register bits containing lower 32 bits
462 	 * of EDMA request queue DMA address
463 	 */
464 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
465 
466 	/* ditto, for response queue */
467 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
468 };
469 
470 enum chip_type {
471 	chip_504x,
472 	chip_508x,
473 	chip_5080,
474 	chip_604x,
475 	chip_608x,
476 	chip_6042,
477 	chip_7042,
478 	chip_soc,
479 };
480 
481 /* Command ReQuest Block: 32B */
482 struct mv_crqb {
483 	__le32			sg_addr;
484 	__le32			sg_addr_hi;
485 	__le16			ctrl_flags;
486 	__le16			ata_cmd[11];
487 };
488 
489 struct mv_crqb_iie {
490 	__le32			addr;
491 	__le32			addr_hi;
492 	__le32			flags;
493 	__le32			len;
494 	__le32			ata_cmd[4];
495 };
496 
497 /* Command ResPonse Block: 8B */
498 struct mv_crpb {
499 	__le16			id;
500 	__le16			flags;
501 	__le32			tmstmp;
502 };
503 
504 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
505 struct mv_sg {
506 	__le32			addr;
507 	__le32			flags_size;
508 	__le32			addr_hi;
509 	__le32			reserved;
510 };
511 
512 /*
513  * We keep a local cache of a few frequently accessed port
514  * registers here, to avoid having to read them (very slow)
515  * when switching between EDMA and non-EDMA modes.
516  */
517 struct mv_cached_regs {
518 	u32			fiscfg;
519 	u32			ltmode;
520 	u32			haltcond;
521 	u32			unknown_rsvd;
522 };
523 
524 struct mv_port_priv {
525 	struct mv_crqb		*crqb;
526 	dma_addr_t		crqb_dma;
527 	struct mv_crpb		*crpb;
528 	dma_addr_t		crpb_dma;
529 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
530 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
531 
532 	unsigned int		req_idx;
533 	unsigned int		resp_idx;
534 
535 	u32			pp_flags;
536 	struct mv_cached_regs	cached;
537 	unsigned int		delayed_eh_pmp_map;
538 };
539 
540 struct mv_port_signal {
541 	u32			amps;
542 	u32			pre;
543 };
544 
545 struct mv_host_priv {
546 	u32			hp_flags;
547 	unsigned int 		board_idx;
548 	u32			main_irq_mask;
549 	struct mv_port_signal	signal[8];
550 	const struct mv_hw_ops	*ops;
551 	int			n_ports;
552 	void __iomem		*base;
553 	void __iomem		*main_irq_cause_addr;
554 	void __iomem		*main_irq_mask_addr;
555 	u32			irq_cause_offset;
556 	u32			irq_mask_offset;
557 	u32			unmask_all_irqs;
558 
559 	/*
560 	 * Needed on some devices that require their clocks to be enabled.
561 	 * These are optional: if the platform device does not have any
562 	 * clocks, they won't be used.  Also, if the underlying hardware
563 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
564 	 * all the clock operations become no-ops (see clk.h).
565 	 */
566 	struct clk		*clk;
567 	struct clk              **port_clks;
568 	/*
569 	 * Some devices have a SATA PHY which can be enabled/disabled
570 	 * in order to save power. These are optional: if the platform
571 	 * devices does not have any phy, they won't be used.
572 	 */
573 	struct phy		**port_phys;
574 	/*
575 	 * These consistent DMA memory pools give us guaranteed
576 	 * alignment for hardware-accessed data structures,
577 	 * and less memory waste in accomplishing the alignment.
578 	 */
579 	struct dma_pool		*crqb_pool;
580 	struct dma_pool		*crpb_pool;
581 	struct dma_pool		*sg_tbl_pool;
582 };
583 
584 struct mv_hw_ops {
585 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
586 			   unsigned int port);
587 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
588 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
589 			   void __iomem *mmio);
590 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
591 			unsigned int n_hc);
592 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
593 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
594 };
595 
596 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
597 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
598 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
599 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
600 static int mv_port_start(struct ata_port *ap);
601 static void mv_port_stop(struct ata_port *ap);
602 static int mv_qc_defer(struct ata_queued_cmd *qc);
603 static void mv_qc_prep(struct ata_queued_cmd *qc);
604 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
605 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
606 static int mv_hardreset(struct ata_link *link, unsigned int *class,
607 			unsigned long deadline);
608 static void mv_eh_freeze(struct ata_port *ap);
609 static void mv_eh_thaw(struct ata_port *ap);
610 static void mv6_dev_config(struct ata_device *dev);
611 
612 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
613 			   unsigned int port);
614 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
615 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
616 			   void __iomem *mmio);
617 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
618 			unsigned int n_hc);
619 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
620 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
621 
622 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
623 			   unsigned int port);
624 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
625 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
626 			   void __iomem *mmio);
627 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
628 			unsigned int n_hc);
629 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
630 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
631 				      void __iomem *mmio);
632 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
633 				      void __iomem *mmio);
634 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
635 				  void __iomem *mmio, unsigned int n_hc);
636 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
637 				      void __iomem *mmio);
638 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
639 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
640 				  void __iomem *mmio, unsigned int port);
641 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
642 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
643 			     unsigned int port_no);
644 static int mv_stop_edma(struct ata_port *ap);
645 static int mv_stop_edma_engine(void __iomem *port_mmio);
646 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
647 
648 static void mv_pmp_select(struct ata_port *ap, int pmp);
649 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
650 				unsigned long deadline);
651 static int  mv_softreset(struct ata_link *link, unsigned int *class,
652 				unsigned long deadline);
653 static void mv_pmp_error_handler(struct ata_port *ap);
654 static void mv_process_crpb_entries(struct ata_port *ap,
655 					struct mv_port_priv *pp);
656 
657 static void mv_sff_irq_clear(struct ata_port *ap);
658 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
659 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
660 static void mv_bmdma_start(struct ata_queued_cmd *qc);
661 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
662 static u8   mv_bmdma_status(struct ata_port *ap);
663 static u8 mv_sff_check_status(struct ata_port *ap);
664 
665 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
666  * because we have to allow room for worst case splitting of
667  * PRDs for 64K boundaries in mv_fill_sg().
668  */
669 #ifdef CONFIG_PCI
670 static struct scsi_host_template mv5_sht = {
671 	ATA_BASE_SHT(DRV_NAME),
672 	.sg_tablesize		= MV_MAX_SG_CT / 2,
673 	.dma_boundary		= MV_DMA_BOUNDARY,
674 };
675 #endif
676 static struct scsi_host_template mv6_sht = {
677 	ATA_NCQ_SHT(DRV_NAME),
678 	.can_queue		= MV_MAX_Q_DEPTH - 1,
679 	.sg_tablesize		= MV_MAX_SG_CT / 2,
680 	.dma_boundary		= MV_DMA_BOUNDARY,
681 };
682 
683 static struct ata_port_operations mv5_ops = {
684 	.inherits		= &ata_sff_port_ops,
685 
686 	.lost_interrupt		= ATA_OP_NULL,
687 
688 	.qc_defer		= mv_qc_defer,
689 	.qc_prep		= mv_qc_prep,
690 	.qc_issue		= mv_qc_issue,
691 
692 	.freeze			= mv_eh_freeze,
693 	.thaw			= mv_eh_thaw,
694 	.hardreset		= mv_hardreset,
695 
696 	.scr_read		= mv5_scr_read,
697 	.scr_write		= mv5_scr_write,
698 
699 	.port_start		= mv_port_start,
700 	.port_stop		= mv_port_stop,
701 };
702 
703 static struct ata_port_operations mv6_ops = {
704 	.inherits		= &ata_bmdma_port_ops,
705 
706 	.lost_interrupt		= ATA_OP_NULL,
707 
708 	.qc_defer		= mv_qc_defer,
709 	.qc_prep		= mv_qc_prep,
710 	.qc_issue		= mv_qc_issue,
711 
712 	.dev_config             = mv6_dev_config,
713 
714 	.freeze			= mv_eh_freeze,
715 	.thaw			= mv_eh_thaw,
716 	.hardreset		= mv_hardreset,
717 	.softreset		= mv_softreset,
718 	.pmp_hardreset		= mv_pmp_hardreset,
719 	.pmp_softreset		= mv_softreset,
720 	.error_handler		= mv_pmp_error_handler,
721 
722 	.scr_read		= mv_scr_read,
723 	.scr_write		= mv_scr_write,
724 
725 	.sff_check_status	= mv_sff_check_status,
726 	.sff_irq_clear		= mv_sff_irq_clear,
727 	.check_atapi_dma	= mv_check_atapi_dma,
728 	.bmdma_setup		= mv_bmdma_setup,
729 	.bmdma_start		= mv_bmdma_start,
730 	.bmdma_stop		= mv_bmdma_stop,
731 	.bmdma_status		= mv_bmdma_status,
732 
733 	.port_start		= mv_port_start,
734 	.port_stop		= mv_port_stop,
735 };
736 
737 static struct ata_port_operations mv_iie_ops = {
738 	.inherits		= &mv6_ops,
739 	.dev_config		= ATA_OP_NULL,
740 	.qc_prep		= mv_qc_prep_iie,
741 };
742 
743 static const struct ata_port_info mv_port_info[] = {
744 	{  /* chip_504x */
745 		.flags		= MV_GEN_I_FLAGS,
746 		.pio_mask	= ATA_PIO4,
747 		.udma_mask	= ATA_UDMA6,
748 		.port_ops	= &mv5_ops,
749 	},
750 	{  /* chip_508x */
751 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
752 		.pio_mask	= ATA_PIO4,
753 		.udma_mask	= ATA_UDMA6,
754 		.port_ops	= &mv5_ops,
755 	},
756 	{  /* chip_5080 */
757 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
758 		.pio_mask	= ATA_PIO4,
759 		.udma_mask	= ATA_UDMA6,
760 		.port_ops	= &mv5_ops,
761 	},
762 	{  /* chip_604x */
763 		.flags		= MV_GEN_II_FLAGS,
764 		.pio_mask	= ATA_PIO4,
765 		.udma_mask	= ATA_UDMA6,
766 		.port_ops	= &mv6_ops,
767 	},
768 	{  /* chip_608x */
769 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
770 		.pio_mask	= ATA_PIO4,
771 		.udma_mask	= ATA_UDMA6,
772 		.port_ops	= &mv6_ops,
773 	},
774 	{  /* chip_6042 */
775 		.flags		= MV_GEN_IIE_FLAGS,
776 		.pio_mask	= ATA_PIO4,
777 		.udma_mask	= ATA_UDMA6,
778 		.port_ops	= &mv_iie_ops,
779 	},
780 	{  /* chip_7042 */
781 		.flags		= MV_GEN_IIE_FLAGS,
782 		.pio_mask	= ATA_PIO4,
783 		.udma_mask	= ATA_UDMA6,
784 		.port_ops	= &mv_iie_ops,
785 	},
786 	{  /* chip_soc */
787 		.flags		= MV_GEN_IIE_FLAGS,
788 		.pio_mask	= ATA_PIO4,
789 		.udma_mask	= ATA_UDMA6,
790 		.port_ops	= &mv_iie_ops,
791 	},
792 };
793 
794 static const struct pci_device_id mv_pci_tbl[] = {
795 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
796 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
797 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
798 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
799 	/* RocketRAID 1720/174x have different identifiers */
800 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
801 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
802 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
803 
804 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
805 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
806 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
807 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
808 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
809 
810 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
811 
812 	/* Adaptec 1430SA */
813 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
814 
815 	/* Marvell 7042 support */
816 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
817 
818 	/* Highpoint RocketRAID PCIe series */
819 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
820 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
821 
822 	{ }			/* terminate list */
823 };
824 
825 static const struct mv_hw_ops mv5xxx_ops = {
826 	.phy_errata		= mv5_phy_errata,
827 	.enable_leds		= mv5_enable_leds,
828 	.read_preamp		= mv5_read_preamp,
829 	.reset_hc		= mv5_reset_hc,
830 	.reset_flash		= mv5_reset_flash,
831 	.reset_bus		= mv5_reset_bus,
832 };
833 
834 static const struct mv_hw_ops mv6xxx_ops = {
835 	.phy_errata		= mv6_phy_errata,
836 	.enable_leds		= mv6_enable_leds,
837 	.read_preamp		= mv6_read_preamp,
838 	.reset_hc		= mv6_reset_hc,
839 	.reset_flash		= mv6_reset_flash,
840 	.reset_bus		= mv_reset_pci_bus,
841 };
842 
843 static const struct mv_hw_ops mv_soc_ops = {
844 	.phy_errata		= mv6_phy_errata,
845 	.enable_leds		= mv_soc_enable_leds,
846 	.read_preamp		= mv_soc_read_preamp,
847 	.reset_hc		= mv_soc_reset_hc,
848 	.reset_flash		= mv_soc_reset_flash,
849 	.reset_bus		= mv_soc_reset_bus,
850 };
851 
852 static const struct mv_hw_ops mv_soc_65n_ops = {
853 	.phy_errata		= mv_soc_65n_phy_errata,
854 	.enable_leds		= mv_soc_enable_leds,
855 	.reset_hc		= mv_soc_reset_hc,
856 	.reset_flash		= mv_soc_reset_flash,
857 	.reset_bus		= mv_soc_reset_bus,
858 };
859 
860 /*
861  * Functions
862  */
863 
864 static inline void writelfl(unsigned long data, void __iomem *addr)
865 {
866 	writel(data, addr);
867 	(void) readl(addr);	/* flush to avoid PCI posted write */
868 }
869 
870 static inline unsigned int mv_hc_from_port(unsigned int port)
871 {
872 	return port >> MV_PORT_HC_SHIFT;
873 }
874 
875 static inline unsigned int mv_hardport_from_port(unsigned int port)
876 {
877 	return port & MV_PORT_MASK;
878 }
879 
880 /*
881  * Consolidate some rather tricky bit shift calculations.
882  * This is hot-path stuff, so not a function.
883  * Simple code, with two return values, so macro rather than inline.
884  *
885  * port is the sole input, in range 0..7.
886  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
887  * hardport is the other output, in range 0..3.
888  *
889  * Note that port and hardport may be the same variable in some cases.
890  */
891 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
892 {								\
893 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
894 	hardport = mv_hardport_from_port(port);			\
895 	shift   += hardport * 2;				\
896 }
897 
898 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
899 {
900 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
901 }
902 
903 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
904 						 unsigned int port)
905 {
906 	return mv_hc_base(base, mv_hc_from_port(port));
907 }
908 
909 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
910 {
911 	return  mv_hc_base_from_port(base, port) +
912 		MV_SATAHC_ARBTR_REG_SZ +
913 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
914 }
915 
916 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
917 {
918 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
919 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
920 
921 	return hc_mmio + ofs;
922 }
923 
924 static inline void __iomem *mv_host_base(struct ata_host *host)
925 {
926 	struct mv_host_priv *hpriv = host->private_data;
927 	return hpriv->base;
928 }
929 
930 static inline void __iomem *mv_ap_base(struct ata_port *ap)
931 {
932 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
933 }
934 
935 static inline int mv_get_hc_count(unsigned long port_flags)
936 {
937 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
938 }
939 
940 /**
941  *      mv_save_cached_regs - (re-)initialize cached port registers
942  *      @ap: the port whose registers we are caching
943  *
944  *	Initialize the local cache of port registers,
945  *	so that reading them over and over again can
946  *	be avoided on the hotter paths of this driver.
947  *	This saves a few microseconds each time we switch
948  *	to/from EDMA mode to perform (eg.) a drive cache flush.
949  */
950 static void mv_save_cached_regs(struct ata_port *ap)
951 {
952 	void __iomem *port_mmio = mv_ap_base(ap);
953 	struct mv_port_priv *pp = ap->private_data;
954 
955 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
956 	pp->cached.ltmode = readl(port_mmio + LTMODE);
957 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
958 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
959 }
960 
961 /**
962  *      mv_write_cached_reg - write to a cached port register
963  *      @addr: hardware address of the register
964  *      @old: pointer to cached value of the register
965  *      @new: new value for the register
966  *
967  *	Write a new value to a cached register,
968  *	but only if the value is different from before.
969  */
970 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
971 {
972 	if (new != *old) {
973 		unsigned long laddr;
974 		*old = new;
975 		/*
976 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
977 		 * Read-after-write is needed to prevent generating 64-bit
978 		 * write cycles on the PCI bus for SATA interface registers
979 		 * at offsets ending in 0x4 or 0xc.
980 		 *
981 		 * Looks like a lot of fuss, but it avoids an unnecessary
982 		 * +1 usec read-after-write delay for unaffected registers.
983 		 */
984 		laddr = (long)addr & 0xffff;
985 		if (laddr >= 0x300 && laddr <= 0x33c) {
986 			laddr &= 0x000f;
987 			if (laddr == 0x4 || laddr == 0xc) {
988 				writelfl(new, addr); /* read after write */
989 				return;
990 			}
991 		}
992 		writel(new, addr); /* unaffected by the errata */
993 	}
994 }
995 
996 static void mv_set_edma_ptrs(void __iomem *port_mmio,
997 			     struct mv_host_priv *hpriv,
998 			     struct mv_port_priv *pp)
999 {
1000 	u32 index;
1001 
1002 	/*
1003 	 * initialize request queue
1004 	 */
1005 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1006 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1007 
1008 	WARN_ON(pp->crqb_dma & 0x3ff);
1009 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1010 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1011 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1012 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1013 
1014 	/*
1015 	 * initialize response queue
1016 	 */
1017 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1018 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1019 
1020 	WARN_ON(pp->crpb_dma & 0xff);
1021 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1022 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1023 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1024 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1025 }
1026 
1027 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1028 {
1029 	/*
1030 	 * When writing to the main_irq_mask in hardware,
1031 	 * we must ensure exclusivity between the interrupt coalescing bits
1032 	 * and the corresponding individual port DONE_IRQ bits.
1033 	 *
1034 	 * Note that this register is really an "IRQ enable" register,
1035 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1036 	 */
1037 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1038 		mask &= ~DONE_IRQ_0_3;
1039 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1040 		mask &= ~DONE_IRQ_4_7;
1041 	writelfl(mask, hpriv->main_irq_mask_addr);
1042 }
1043 
1044 static void mv_set_main_irq_mask(struct ata_host *host,
1045 				 u32 disable_bits, u32 enable_bits)
1046 {
1047 	struct mv_host_priv *hpriv = host->private_data;
1048 	u32 old_mask, new_mask;
1049 
1050 	old_mask = hpriv->main_irq_mask;
1051 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1052 	if (new_mask != old_mask) {
1053 		hpriv->main_irq_mask = new_mask;
1054 		mv_write_main_irq_mask(new_mask, hpriv);
1055 	}
1056 }
1057 
1058 static void mv_enable_port_irqs(struct ata_port *ap,
1059 				     unsigned int port_bits)
1060 {
1061 	unsigned int shift, hardport, port = ap->port_no;
1062 	u32 disable_bits, enable_bits;
1063 
1064 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1065 
1066 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1067 	enable_bits  = port_bits << shift;
1068 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1069 }
1070 
1071 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1072 					  void __iomem *port_mmio,
1073 					  unsigned int port_irqs)
1074 {
1075 	struct mv_host_priv *hpriv = ap->host->private_data;
1076 	int hardport = mv_hardport_from_port(ap->port_no);
1077 	void __iomem *hc_mmio = mv_hc_base_from_port(
1078 				mv_host_base(ap->host), ap->port_no);
1079 	u32 hc_irq_cause;
1080 
1081 	/* clear EDMA event indicators, if any */
1082 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1083 
1084 	/* clear pending irq events */
1085 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1086 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1087 
1088 	/* clear FIS IRQ Cause */
1089 	if (IS_GEN_IIE(hpriv))
1090 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1091 
1092 	mv_enable_port_irqs(ap, port_irqs);
1093 }
1094 
1095 static void mv_set_irq_coalescing(struct ata_host *host,
1096 				  unsigned int count, unsigned int usecs)
1097 {
1098 	struct mv_host_priv *hpriv = host->private_data;
1099 	void __iomem *mmio = hpriv->base, *hc_mmio;
1100 	u32 coal_enable = 0;
1101 	unsigned long flags;
1102 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1103 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1104 							ALL_PORTS_COAL_DONE;
1105 
1106 	/* Disable IRQ coalescing if either threshold is zero */
1107 	if (!usecs || !count) {
1108 		clks = count = 0;
1109 	} else {
1110 		/* Respect maximum limits of the hardware */
1111 		clks = usecs * COAL_CLOCKS_PER_USEC;
1112 		if (clks > MAX_COAL_TIME_THRESHOLD)
1113 			clks = MAX_COAL_TIME_THRESHOLD;
1114 		if (count > MAX_COAL_IO_COUNT)
1115 			count = MAX_COAL_IO_COUNT;
1116 	}
1117 
1118 	spin_lock_irqsave(&host->lock, flags);
1119 	mv_set_main_irq_mask(host, coal_disable, 0);
1120 
1121 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1122 		/*
1123 		 * GEN_II/GEN_IIE with dual host controllers:
1124 		 * one set of global thresholds for the entire chip.
1125 		 */
1126 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1127 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1128 		/* clear leftover coal IRQ bit */
1129 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1130 		if (count)
1131 			coal_enable = ALL_PORTS_COAL_DONE;
1132 		clks = count = 0; /* force clearing of regular regs below */
1133 	}
1134 
1135 	/*
1136 	 * All chips: independent thresholds for each HC on the chip.
1137 	 */
1138 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1139 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1140 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1141 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1142 	if (count)
1143 		coal_enable |= PORTS_0_3_COAL_DONE;
1144 	if (is_dual_hc) {
1145 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1146 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1147 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1148 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1149 		if (count)
1150 			coal_enable |= PORTS_4_7_COAL_DONE;
1151 	}
1152 
1153 	mv_set_main_irq_mask(host, 0, coal_enable);
1154 	spin_unlock_irqrestore(&host->lock, flags);
1155 }
1156 
1157 /**
1158  *      mv_start_edma - Enable eDMA engine
1159  *      @base: port base address
1160  *      @pp: port private data
1161  *
1162  *      Verify the local cache of the eDMA state is accurate with a
1163  *      WARN_ON.
1164  *
1165  *      LOCKING:
1166  *      Inherited from caller.
1167  */
1168 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1169 			 struct mv_port_priv *pp, u8 protocol)
1170 {
1171 	int want_ncq = (protocol == ATA_PROT_NCQ);
1172 
1173 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1174 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1175 		if (want_ncq != using_ncq)
1176 			mv_stop_edma(ap);
1177 	}
1178 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1179 		struct mv_host_priv *hpriv = ap->host->private_data;
1180 
1181 		mv_edma_cfg(ap, want_ncq, 1);
1182 
1183 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1184 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1185 
1186 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1187 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1188 	}
1189 }
1190 
1191 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1192 {
1193 	void __iomem *port_mmio = mv_ap_base(ap);
1194 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1195 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1196 	int i;
1197 
1198 	/*
1199 	 * Wait for the EDMA engine to finish transactions in progress.
1200 	 * No idea what a good "timeout" value might be, but measurements
1201 	 * indicate that it often requires hundreds of microseconds
1202 	 * with two drives in-use.  So we use the 15msec value above
1203 	 * as a rough guess at what even more drives might require.
1204 	 */
1205 	for (i = 0; i < timeout; ++i) {
1206 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1207 		if ((edma_stat & empty_idle) == empty_idle)
1208 			break;
1209 		udelay(per_loop);
1210 	}
1211 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1212 }
1213 
1214 /**
1215  *      mv_stop_edma_engine - Disable eDMA engine
1216  *      @port_mmio: io base address
1217  *
1218  *      LOCKING:
1219  *      Inherited from caller.
1220  */
1221 static int mv_stop_edma_engine(void __iomem *port_mmio)
1222 {
1223 	int i;
1224 
1225 	/* Disable eDMA.  The disable bit auto clears. */
1226 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1227 
1228 	/* Wait for the chip to confirm eDMA is off. */
1229 	for (i = 10000; i > 0; i--) {
1230 		u32 reg = readl(port_mmio + EDMA_CMD);
1231 		if (!(reg & EDMA_EN))
1232 			return 0;
1233 		udelay(10);
1234 	}
1235 	return -EIO;
1236 }
1237 
1238 static int mv_stop_edma(struct ata_port *ap)
1239 {
1240 	void __iomem *port_mmio = mv_ap_base(ap);
1241 	struct mv_port_priv *pp = ap->private_data;
1242 	int err = 0;
1243 
1244 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1245 		return 0;
1246 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1247 	mv_wait_for_edma_empty_idle(ap);
1248 	if (mv_stop_edma_engine(port_mmio)) {
1249 		ata_port_err(ap, "Unable to stop eDMA\n");
1250 		err = -EIO;
1251 	}
1252 	mv_edma_cfg(ap, 0, 0);
1253 	return err;
1254 }
1255 
1256 #ifdef ATA_DEBUG
1257 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1258 {
1259 	int b, w;
1260 	for (b = 0; b < bytes; ) {
1261 		DPRINTK("%p: ", start + b);
1262 		for (w = 0; b < bytes && w < 4; w++) {
1263 			printk("%08x ", readl(start + b));
1264 			b += sizeof(u32);
1265 		}
1266 		printk("\n");
1267 	}
1268 }
1269 #endif
1270 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1271 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1272 {
1273 #ifdef ATA_DEBUG
1274 	int b, w;
1275 	u32 dw;
1276 	for (b = 0; b < bytes; ) {
1277 		DPRINTK("%02x: ", b);
1278 		for (w = 0; b < bytes && w < 4; w++) {
1279 			(void) pci_read_config_dword(pdev, b, &dw);
1280 			printk("%08x ", dw);
1281 			b += sizeof(u32);
1282 		}
1283 		printk("\n");
1284 	}
1285 #endif
1286 }
1287 #endif
1288 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1289 			     struct pci_dev *pdev)
1290 {
1291 #ifdef ATA_DEBUG
1292 	void __iomem *hc_base = mv_hc_base(mmio_base,
1293 					   port >> MV_PORT_HC_SHIFT);
1294 	void __iomem *port_base;
1295 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1296 
1297 	if (0 > port) {
1298 		start_hc = start_port = 0;
1299 		num_ports = 8;		/* shld be benign for 4 port devs */
1300 		num_hcs = 2;
1301 	} else {
1302 		start_hc = port >> MV_PORT_HC_SHIFT;
1303 		start_port = port;
1304 		num_ports = num_hcs = 1;
1305 	}
1306 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1307 		num_ports > 1 ? num_ports - 1 : start_port);
1308 
1309 	if (NULL != pdev) {
1310 		DPRINTK("PCI config space regs:\n");
1311 		mv_dump_pci_cfg(pdev, 0x68);
1312 	}
1313 	DPRINTK("PCI regs:\n");
1314 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1315 	mv_dump_mem(mmio_base+0xd00, 0x34);
1316 	mv_dump_mem(mmio_base+0xf00, 0x4);
1317 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1318 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1319 		hc_base = mv_hc_base(mmio_base, hc);
1320 		DPRINTK("HC regs (HC %i):\n", hc);
1321 		mv_dump_mem(hc_base, 0x1c);
1322 	}
1323 	for (p = start_port; p < start_port + num_ports; p++) {
1324 		port_base = mv_port_base(mmio_base, p);
1325 		DPRINTK("EDMA regs (port %i):\n", p);
1326 		mv_dump_mem(port_base, 0x54);
1327 		DPRINTK("SATA regs (port %i):\n", p);
1328 		mv_dump_mem(port_base+0x300, 0x60);
1329 	}
1330 #endif
1331 }
1332 
1333 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1334 {
1335 	unsigned int ofs;
1336 
1337 	switch (sc_reg_in) {
1338 	case SCR_STATUS:
1339 	case SCR_CONTROL:
1340 	case SCR_ERROR:
1341 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1342 		break;
1343 	case SCR_ACTIVE:
1344 		ofs = SATA_ACTIVE;   /* active is not with the others */
1345 		break;
1346 	default:
1347 		ofs = 0xffffffffU;
1348 		break;
1349 	}
1350 	return ofs;
1351 }
1352 
1353 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1354 {
1355 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1356 
1357 	if (ofs != 0xffffffffU) {
1358 		*val = readl(mv_ap_base(link->ap) + ofs);
1359 		return 0;
1360 	} else
1361 		return -EINVAL;
1362 }
1363 
1364 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1365 {
1366 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1367 
1368 	if (ofs != 0xffffffffU) {
1369 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1370 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1371 		if (sc_reg_in == SCR_CONTROL) {
1372 			/*
1373 			 * Workaround for 88SX60x1 FEr SATA#26:
1374 			 *
1375 			 * COMRESETs have to take care not to accidentally
1376 			 * put the drive to sleep when writing SCR_CONTROL.
1377 			 * Setting bits 12..15 prevents this problem.
1378 			 *
1379 			 * So if we see an outbound COMMRESET, set those bits.
1380 			 * Ditto for the followup write that clears the reset.
1381 			 *
1382 			 * The proprietary driver does this for
1383 			 * all chip versions, and so do we.
1384 			 */
1385 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1386 				val |= 0xf000;
1387 
1388 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1389 				void __iomem *lp_phy_addr =
1390 					mv_ap_base(link->ap) + LP_PHY_CTL;
1391 				/*
1392 				 * Set PHY speed according to SControl speed.
1393 				 */
1394 				if ((val & 0xf0) == 0x10)
1395 					writelfl(0x7, lp_phy_addr);
1396 				else
1397 					writelfl(0x227, lp_phy_addr);
1398 			}
1399 		}
1400 		writelfl(val, addr);
1401 		return 0;
1402 	} else
1403 		return -EINVAL;
1404 }
1405 
1406 static void mv6_dev_config(struct ata_device *adev)
1407 {
1408 	/*
1409 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1410 	 *
1411 	 * Gen-II does not support NCQ over a port multiplier
1412 	 *  (no FIS-based switching).
1413 	 */
1414 	if (adev->flags & ATA_DFLAG_NCQ) {
1415 		if (sata_pmp_attached(adev->link->ap)) {
1416 			adev->flags &= ~ATA_DFLAG_NCQ;
1417 			ata_dev_info(adev,
1418 				"NCQ disabled for command-based switching\n");
1419 		}
1420 	}
1421 }
1422 
1423 static int mv_qc_defer(struct ata_queued_cmd *qc)
1424 {
1425 	struct ata_link *link = qc->dev->link;
1426 	struct ata_port *ap = link->ap;
1427 	struct mv_port_priv *pp = ap->private_data;
1428 
1429 	/*
1430 	 * Don't allow new commands if we're in a delayed EH state
1431 	 * for NCQ and/or FIS-based switching.
1432 	 */
1433 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1434 		return ATA_DEFER_PORT;
1435 
1436 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1437 	 * can run concurrently.
1438 	 * set excl_link when we want to send a PIO command in DMA mode
1439 	 * or a non-NCQ command in NCQ mode.
1440 	 * When we receive a command from that link, and there are no
1441 	 * outstanding commands, mark a flag to clear excl_link and let
1442 	 * the command go through.
1443 	 */
1444 	if (unlikely(ap->excl_link)) {
1445 		if (link == ap->excl_link) {
1446 			if (ap->nr_active_links)
1447 				return ATA_DEFER_PORT;
1448 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1449 			return 0;
1450 		} else
1451 			return ATA_DEFER_PORT;
1452 	}
1453 
1454 	/*
1455 	 * If the port is completely idle, then allow the new qc.
1456 	 */
1457 	if (ap->nr_active_links == 0)
1458 		return 0;
1459 
1460 	/*
1461 	 * The port is operating in host queuing mode (EDMA) with NCQ
1462 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1463 	 * queueing multiple DMA commands but libata core currently
1464 	 * doesn't allow it.
1465 	 */
1466 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1467 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1468 		if (ata_is_ncq(qc->tf.protocol))
1469 			return 0;
1470 		else {
1471 			ap->excl_link = link;
1472 			return ATA_DEFER_PORT;
1473 		}
1474 	}
1475 
1476 	return ATA_DEFER_PORT;
1477 }
1478 
1479 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1480 {
1481 	struct mv_port_priv *pp = ap->private_data;
1482 	void __iomem *port_mmio;
1483 
1484 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1485 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1486 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1487 
1488 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1489 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1490 
1491 	if (want_fbs) {
1492 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1493 		ltmode = *old_ltmode | LTMODE_BIT8;
1494 		if (want_ncq)
1495 			haltcond &= ~EDMA_ERR_DEV;
1496 		else
1497 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1498 	} else {
1499 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1500 	}
1501 
1502 	port_mmio = mv_ap_base(ap);
1503 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1504 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1505 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1506 }
1507 
1508 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1509 {
1510 	struct mv_host_priv *hpriv = ap->host->private_data;
1511 	u32 old, new;
1512 
1513 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1514 	old = readl(hpriv->base + GPIO_PORT_CTL);
1515 	if (want_ncq)
1516 		new = old | (1 << 22);
1517 	else
1518 		new = old & ~(1 << 22);
1519 	if (new != old)
1520 		writel(new, hpriv->base + GPIO_PORT_CTL);
1521 }
1522 
1523 /**
1524  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1525  *	@ap: Port being initialized
1526  *
1527  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1528  *
1529  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1530  *	of basic DMA on the GEN_IIE versions of the chips.
1531  *
1532  *	This bit survives EDMA resets, and must be set for basic DMA
1533  *	to function, and should be cleared when EDMA is active.
1534  */
1535 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1536 {
1537 	struct mv_port_priv *pp = ap->private_data;
1538 	u32 new, *old = &pp->cached.unknown_rsvd;
1539 
1540 	if (enable_bmdma)
1541 		new = *old | 1;
1542 	else
1543 		new = *old & ~1;
1544 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1545 }
1546 
1547 /*
1548  * SOC chips have an issue whereby the HDD LEDs don't always blink
1549  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1550  * of the SOC takes care of it, generating a steady blink rate when
1551  * any drive on the chip is active.
1552  *
1553  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1554  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1555  *
1556  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1557  * LED operation works then, and provides better (more accurate) feedback.
1558  *
1559  * Note that this code assumes that an SOC never has more than one HC onboard.
1560  */
1561 static void mv_soc_led_blink_enable(struct ata_port *ap)
1562 {
1563 	struct ata_host *host = ap->host;
1564 	struct mv_host_priv *hpriv = host->private_data;
1565 	void __iomem *hc_mmio;
1566 	u32 led_ctrl;
1567 
1568 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1569 		return;
1570 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1571 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1572 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1573 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1574 }
1575 
1576 static void mv_soc_led_blink_disable(struct ata_port *ap)
1577 {
1578 	struct ata_host *host = ap->host;
1579 	struct mv_host_priv *hpriv = host->private_data;
1580 	void __iomem *hc_mmio;
1581 	u32 led_ctrl;
1582 	unsigned int port;
1583 
1584 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1585 		return;
1586 
1587 	/* disable led-blink only if no ports are using NCQ */
1588 	for (port = 0; port < hpriv->n_ports; port++) {
1589 		struct ata_port *this_ap = host->ports[port];
1590 		struct mv_port_priv *pp = this_ap->private_data;
1591 
1592 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1593 			return;
1594 	}
1595 
1596 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1597 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1598 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1599 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1600 }
1601 
1602 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1603 {
1604 	u32 cfg;
1605 	struct mv_port_priv *pp    = ap->private_data;
1606 	struct mv_host_priv *hpriv = ap->host->private_data;
1607 	void __iomem *port_mmio    = mv_ap_base(ap);
1608 
1609 	/* set up non-NCQ EDMA configuration */
1610 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1611 	pp->pp_flags &=
1612 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1613 
1614 	if (IS_GEN_I(hpriv))
1615 		cfg |= (1 << 8);	/* enab config burst size mask */
1616 
1617 	else if (IS_GEN_II(hpriv)) {
1618 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1619 		mv_60x1_errata_sata25(ap, want_ncq);
1620 
1621 	} else if (IS_GEN_IIE(hpriv)) {
1622 		int want_fbs = sata_pmp_attached(ap);
1623 		/*
1624 		 * Possible future enhancement:
1625 		 *
1626 		 * The chip can use FBS with non-NCQ, if we allow it,
1627 		 * But first we need to have the error handling in place
1628 		 * for this mode (datasheet section 7.3.15.4.2.3).
1629 		 * So disallow non-NCQ FBS for now.
1630 		 */
1631 		want_fbs &= want_ncq;
1632 
1633 		mv_config_fbs(ap, want_ncq, want_fbs);
1634 
1635 		if (want_fbs) {
1636 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1637 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1638 		}
1639 
1640 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1641 		if (want_edma) {
1642 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1643 			if (!IS_SOC(hpriv))
1644 				cfg |= (1 << 18); /* enab early completion */
1645 		}
1646 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1647 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1648 		mv_bmdma_enable_iie(ap, !want_edma);
1649 
1650 		if (IS_SOC(hpriv)) {
1651 			if (want_ncq)
1652 				mv_soc_led_blink_enable(ap);
1653 			else
1654 				mv_soc_led_blink_disable(ap);
1655 		}
1656 	}
1657 
1658 	if (want_ncq) {
1659 		cfg |= EDMA_CFG_NCQ;
1660 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1661 	}
1662 
1663 	writelfl(cfg, port_mmio + EDMA_CFG);
1664 }
1665 
1666 static void mv_port_free_dma_mem(struct ata_port *ap)
1667 {
1668 	struct mv_host_priv *hpriv = ap->host->private_data;
1669 	struct mv_port_priv *pp = ap->private_data;
1670 	int tag;
1671 
1672 	if (pp->crqb) {
1673 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1674 		pp->crqb = NULL;
1675 	}
1676 	if (pp->crpb) {
1677 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1678 		pp->crpb = NULL;
1679 	}
1680 	/*
1681 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1682 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1683 	 */
1684 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1685 		if (pp->sg_tbl[tag]) {
1686 			if (tag == 0 || !IS_GEN_I(hpriv))
1687 				dma_pool_free(hpriv->sg_tbl_pool,
1688 					      pp->sg_tbl[tag],
1689 					      pp->sg_tbl_dma[tag]);
1690 			pp->sg_tbl[tag] = NULL;
1691 		}
1692 	}
1693 }
1694 
1695 /**
1696  *      mv_port_start - Port specific init/start routine.
1697  *      @ap: ATA channel to manipulate
1698  *
1699  *      Allocate and point to DMA memory, init port private memory,
1700  *      zero indices.
1701  *
1702  *      LOCKING:
1703  *      Inherited from caller.
1704  */
1705 static int mv_port_start(struct ata_port *ap)
1706 {
1707 	struct device *dev = ap->host->dev;
1708 	struct mv_host_priv *hpriv = ap->host->private_data;
1709 	struct mv_port_priv *pp;
1710 	unsigned long flags;
1711 	int tag;
1712 
1713 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1714 	if (!pp)
1715 		return -ENOMEM;
1716 	ap->private_data = pp;
1717 
1718 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1719 	if (!pp->crqb)
1720 		return -ENOMEM;
1721 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1722 
1723 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1724 	if (!pp->crpb)
1725 		goto out_port_free_dma_mem;
1726 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1727 
1728 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730 		ap->flags |= ATA_FLAG_AN;
1731 	/*
1732 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1734 	 */
1735 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1737 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739 			if (!pp->sg_tbl[tag])
1740 				goto out_port_free_dma_mem;
1741 		} else {
1742 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1743 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744 		}
1745 	}
1746 
1747 	spin_lock_irqsave(ap->lock, flags);
1748 	mv_save_cached_regs(ap);
1749 	mv_edma_cfg(ap, 0, 0);
1750 	spin_unlock_irqrestore(ap->lock, flags);
1751 
1752 	return 0;
1753 
1754 out_port_free_dma_mem:
1755 	mv_port_free_dma_mem(ap);
1756 	return -ENOMEM;
1757 }
1758 
1759 /**
1760  *      mv_port_stop - Port specific cleanup/stop routine.
1761  *      @ap: ATA channel to manipulate
1762  *
1763  *      Stop DMA, cleanup port memory.
1764  *
1765  *      LOCKING:
1766  *      This routine uses the host lock to protect the DMA stop.
1767  */
1768 static void mv_port_stop(struct ata_port *ap)
1769 {
1770 	unsigned long flags;
1771 
1772 	spin_lock_irqsave(ap->lock, flags);
1773 	mv_stop_edma(ap);
1774 	mv_enable_port_irqs(ap, 0);
1775 	spin_unlock_irqrestore(ap->lock, flags);
1776 	mv_port_free_dma_mem(ap);
1777 }
1778 
1779 /**
1780  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781  *      @qc: queued command whose SG list to source from
1782  *
1783  *      Populate the SG list and mark the last entry.
1784  *
1785  *      LOCKING:
1786  *      Inherited from caller.
1787  */
1788 static void mv_fill_sg(struct ata_queued_cmd *qc)
1789 {
1790 	struct mv_port_priv *pp = qc->ap->private_data;
1791 	struct scatterlist *sg;
1792 	struct mv_sg *mv_sg, *last_sg = NULL;
1793 	unsigned int si;
1794 
1795 	mv_sg = pp->sg_tbl[qc->tag];
1796 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797 		dma_addr_t addr = sg_dma_address(sg);
1798 		u32 sg_len = sg_dma_len(sg);
1799 
1800 		while (sg_len) {
1801 			u32 offset = addr & 0xffff;
1802 			u32 len = sg_len;
1803 
1804 			if (offset + len > 0x10000)
1805 				len = 0x10000 - offset;
1806 
1807 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810 			mv_sg->reserved = 0;
1811 
1812 			sg_len -= len;
1813 			addr += len;
1814 
1815 			last_sg = mv_sg;
1816 			mv_sg++;
1817 		}
1818 	}
1819 
1820 	if (likely(last_sg))
1821 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822 	mb(); /* ensure data structure is visible to the chipset */
1823 }
1824 
1825 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826 {
1827 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828 		(last ? CRQB_CMD_LAST : 0);
1829 	*cmdw = cpu_to_le16(tmp);
1830 }
1831 
1832 /**
1833  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834  *	@ap: Port associated with this ATA transaction.
1835  *
1836  *	We need this only for ATAPI bmdma transactions,
1837  *	as otherwise we experience spurious interrupts
1838  *	after libata-sff handles the bmdma interrupts.
1839  */
1840 static void mv_sff_irq_clear(struct ata_port *ap)
1841 {
1842 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843 }
1844 
1845 /**
1846  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847  *	@qc: queued command to check for chipset/DMA compatibility.
1848  *
1849  *	The bmdma engines cannot handle speculative data sizes
1850  *	(bytecount under/over flow).  So only allow DMA for
1851  *	data transfer commands with known data sizes.
1852  *
1853  *	LOCKING:
1854  *	Inherited from caller.
1855  */
1856 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857 {
1858 	struct scsi_cmnd *scmd = qc->scsicmd;
1859 
1860 	if (scmd) {
1861 		switch (scmd->cmnd[0]) {
1862 		case READ_6:
1863 		case READ_10:
1864 		case READ_12:
1865 		case WRITE_6:
1866 		case WRITE_10:
1867 		case WRITE_12:
1868 		case GPCMD_READ_CD:
1869 		case GPCMD_SEND_DVD_STRUCTURE:
1870 		case GPCMD_SEND_CUE_SHEET:
1871 			return 0; /* DMA is safe */
1872 		}
1873 	}
1874 	return -EOPNOTSUPP; /* use PIO instead */
1875 }
1876 
1877 /**
1878  *	mv_bmdma_setup - Set up BMDMA transaction
1879  *	@qc: queued command to prepare DMA for.
1880  *
1881  *	LOCKING:
1882  *	Inherited from caller.
1883  */
1884 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885 {
1886 	struct ata_port *ap = qc->ap;
1887 	void __iomem *port_mmio = mv_ap_base(ap);
1888 	struct mv_port_priv *pp = ap->private_data;
1889 
1890 	mv_fill_sg(qc);
1891 
1892 	/* clear all DMA cmd bits */
1893 	writel(0, port_mmio + BMDMA_CMD);
1894 
1895 	/* load PRD table addr. */
1896 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1897 		port_mmio + BMDMA_PRD_HIGH);
1898 	writelfl(pp->sg_tbl_dma[qc->tag],
1899 		port_mmio + BMDMA_PRD_LOW);
1900 
1901 	/* issue r/w command */
1902 	ap->ops->sff_exec_command(ap, &qc->tf);
1903 }
1904 
1905 /**
1906  *	mv_bmdma_start - Start a BMDMA transaction
1907  *	@qc: queued command to start DMA on.
1908  *
1909  *	LOCKING:
1910  *	Inherited from caller.
1911  */
1912 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913 {
1914 	struct ata_port *ap = qc->ap;
1915 	void __iomem *port_mmio = mv_ap_base(ap);
1916 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918 
1919 	/* start host DMA transaction */
1920 	writelfl(cmd, port_mmio + BMDMA_CMD);
1921 }
1922 
1923 /**
1924  *	mv_bmdma_stop - Stop BMDMA transfer
1925  *	@qc: queued command to stop DMA on.
1926  *
1927  *	Clears the ATA_DMA_START flag in the bmdma control register
1928  *
1929  *	LOCKING:
1930  *	Inherited from caller.
1931  */
1932 static void mv_bmdma_stop_ap(struct ata_port *ap)
1933 {
1934 	void __iomem *port_mmio = mv_ap_base(ap);
1935 	u32 cmd;
1936 
1937 	/* clear start/stop bit */
1938 	cmd = readl(port_mmio + BMDMA_CMD);
1939 	if (cmd & ATA_DMA_START) {
1940 		cmd &= ~ATA_DMA_START;
1941 		writelfl(cmd, port_mmio + BMDMA_CMD);
1942 
1943 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 		ata_sff_dma_pause(ap);
1945 	}
1946 }
1947 
1948 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949 {
1950 	mv_bmdma_stop_ap(qc->ap);
1951 }
1952 
1953 /**
1954  *	mv_bmdma_status - Read BMDMA status
1955  *	@ap: port for which to retrieve DMA status.
1956  *
1957  *	Read and return equivalent of the sff BMDMA status register.
1958  *
1959  *	LOCKING:
1960  *	Inherited from caller.
1961  */
1962 static u8 mv_bmdma_status(struct ata_port *ap)
1963 {
1964 	void __iomem *port_mmio = mv_ap_base(ap);
1965 	u32 reg, status;
1966 
1967 	/*
1968 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 	 * and the ATA_DMA_INTR bit doesn't exist.
1970 	 */
1971 	reg = readl(port_mmio + BMDMA_STATUS);
1972 	if (reg & ATA_DMA_ACTIVE)
1973 		status = ATA_DMA_ACTIVE;
1974 	else if (reg & ATA_DMA_ERR)
1975 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976 	else {
1977 		/*
1978 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 		 * this does _not_ mean the device is "done".
1980 		 * So we should not yet be signalling ATA_DMA_INTR
1981 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1982 		 */
1983 		mv_bmdma_stop_ap(ap);
1984 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985 			status = 0;
1986 		else
1987 			status = ATA_DMA_INTR;
1988 	}
1989 	return status;
1990 }
1991 
1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993 {
1994 	struct ata_taskfile *tf = &qc->tf;
1995 	/*
1996 	 * Workaround for 88SX60x1 FEr SATA#24.
1997 	 *
1998 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 	 * Note that READs are unaffected.
2000 	 *
2001 	 * It's not clear if this errata really means "4K bytes",
2002 	 * or if it always happens for multi_count > 7
2003 	 * regardless of device sector_size.
2004 	 *
2005 	 * So, for safety, any write with multi_count > 7
2006 	 * gets converted here into a regular PIO write instead:
2007 	 */
2008 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009 		if (qc->dev->multi_count > 7) {
2010 			switch (tf->command) {
2011 			case ATA_CMD_WRITE_MULTI:
2012 				tf->command = ATA_CMD_PIO_WRITE;
2013 				break;
2014 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016 				/* fall through */
2017 			case ATA_CMD_WRITE_MULTI_EXT:
2018 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 				break;
2020 			}
2021 		}
2022 	}
2023 }
2024 
2025 /**
2026  *      mv_qc_prep - Host specific command preparation.
2027  *      @qc: queued command to prepare
2028  *
2029  *      This routine simply redirects to the general purpose routine
2030  *      if command is not DMA.  Else, it handles prep of the CRQB
2031  *      (command request block), does some sanity checking, and calls
2032  *      the SG load routine.
2033  *
2034  *      LOCKING:
2035  *      Inherited from caller.
2036  */
2037 static void mv_qc_prep(struct ata_queued_cmd *qc)
2038 {
2039 	struct ata_port *ap = qc->ap;
2040 	struct mv_port_priv *pp = ap->private_data;
2041 	__le16 *cw;
2042 	struct ata_taskfile *tf = &qc->tf;
2043 	u16 flags = 0;
2044 	unsigned in_index;
2045 
2046 	switch (tf->protocol) {
2047 	case ATA_PROT_DMA:
2048 		if (tf->command == ATA_CMD_DSM)
2049 			return;
2050 		/* fall-thru */
2051 	case ATA_PROT_NCQ:
2052 		break;	/* continue below */
2053 	case ATA_PROT_PIO:
2054 		mv_rw_multi_errata_sata24(qc);
2055 		return;
2056 	default:
2057 		return;
2058 	}
2059 
2060 	/* Fill in command request block
2061 	 */
2062 	if (!(tf->flags & ATA_TFLAG_WRITE))
2063 		flags |= CRQB_FLAG_READ;
2064 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2065 	flags |= qc->tag << CRQB_TAG_SHIFT;
2066 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067 
2068 	/* get current queue index from software */
2069 	in_index = pp->req_idx;
2070 
2071 	pp->crqb[in_index].sg_addr =
2072 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2073 	pp->crqb[in_index].sg_addr_hi =
2074 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2075 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076 
2077 	cw = &pp->crqb[in_index].ata_cmd[0];
2078 
2079 	/* Sadly, the CRQB cannot accommodate all registers--there are
2080 	 * only 11 bytes...so we must pick and choose required
2081 	 * registers based on the command.  So, we drop feature and
2082 	 * hob_feature for [RW] DMA commands, but they are needed for
2083 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2084 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085 	 */
2086 	switch (tf->command) {
2087 	case ATA_CMD_READ:
2088 	case ATA_CMD_READ_EXT:
2089 	case ATA_CMD_WRITE:
2090 	case ATA_CMD_WRITE_EXT:
2091 	case ATA_CMD_WRITE_FUA_EXT:
2092 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093 		break;
2094 	case ATA_CMD_FPDMA_READ:
2095 	case ATA_CMD_FPDMA_WRITE:
2096 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098 		break;
2099 	default:
2100 		/* The only other commands EDMA supports in non-queued and
2101 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 		 * of which are defined/used by Linux.  If we get here, this
2103 		 * driver needs work.
2104 		 *
2105 		 * FIXME: modify libata to give qc_prep a return value and
2106 		 * return error here.
2107 		 */
2108 		BUG_ON(tf->command);
2109 		break;
2110 	}
2111 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2112 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2113 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2114 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2115 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2116 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2117 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2118 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2119 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2120 
2121 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2122 		return;
2123 	mv_fill_sg(qc);
2124 }
2125 
2126 /**
2127  *      mv_qc_prep_iie - Host specific command preparation.
2128  *      @qc: queued command to prepare
2129  *
2130  *      This routine simply redirects to the general purpose routine
2131  *      if command is not DMA.  Else, it handles prep of the CRQB
2132  *      (command request block), does some sanity checking, and calls
2133  *      the SG load routine.
2134  *
2135  *      LOCKING:
2136  *      Inherited from caller.
2137  */
2138 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139 {
2140 	struct ata_port *ap = qc->ap;
2141 	struct mv_port_priv *pp = ap->private_data;
2142 	struct mv_crqb_iie *crqb;
2143 	struct ata_taskfile *tf = &qc->tf;
2144 	unsigned in_index;
2145 	u32 flags = 0;
2146 
2147 	if ((tf->protocol != ATA_PROT_DMA) &&
2148 	    (tf->protocol != ATA_PROT_NCQ))
2149 		return;
2150 	if (tf->command == ATA_CMD_DSM)
2151 		return;  /* use bmdma for this */
2152 
2153 	/* Fill in Gen IIE command request block */
2154 	if (!(tf->flags & ATA_TFLAG_WRITE))
2155 		flags |= CRQB_FLAG_READ;
2156 
2157 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2158 	flags |= qc->tag << CRQB_TAG_SHIFT;
2159 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2160 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161 
2162 	/* get current queue index from software */
2163 	in_index = pp->req_idx;
2164 
2165 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2167 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2168 	crqb->flags = cpu_to_le32(flags);
2169 
2170 	crqb->ata_cmd[0] = cpu_to_le32(
2171 			(tf->command << 16) |
2172 			(tf->feature << 24)
2173 		);
2174 	crqb->ata_cmd[1] = cpu_to_le32(
2175 			(tf->lbal << 0) |
2176 			(tf->lbam << 8) |
2177 			(tf->lbah << 16) |
2178 			(tf->device << 24)
2179 		);
2180 	crqb->ata_cmd[2] = cpu_to_le32(
2181 			(tf->hob_lbal << 0) |
2182 			(tf->hob_lbam << 8) |
2183 			(tf->hob_lbah << 16) |
2184 			(tf->hob_feature << 24)
2185 		);
2186 	crqb->ata_cmd[3] = cpu_to_le32(
2187 			(tf->nsect << 0) |
2188 			(tf->hob_nsect << 8)
2189 		);
2190 
2191 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192 		return;
2193 	mv_fill_sg(qc);
2194 }
2195 
2196 /**
2197  *	mv_sff_check_status - fetch device status, if valid
2198  *	@ap: ATA port to fetch status from
2199  *
2200  *	When using command issue via mv_qc_issue_fis(),
2201  *	the initial ATA_BUSY state does not show up in the
2202  *	ATA status (shadow) register.  This can confuse libata!
2203  *
2204  *	So we have a hook here to fake ATA_BUSY for that situation,
2205  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2206  *
2207  *	The rest of the time, it simply returns the ATA status register.
2208  */
2209 static u8 mv_sff_check_status(struct ata_port *ap)
2210 {
2211 	u8 stat = ioread8(ap->ioaddr.status_addr);
2212 	struct mv_port_priv *pp = ap->private_data;
2213 
2214 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2215 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2216 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2217 		else
2218 			stat = ATA_BUSY;
2219 	}
2220 	return stat;
2221 }
2222 
2223 /**
2224  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2225  *	@fis: fis to be sent
2226  *	@nwords: number of 32-bit words in the fis
2227  */
2228 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2229 {
2230 	void __iomem *port_mmio = mv_ap_base(ap);
2231 	u32 ifctl, old_ifctl, ifstat;
2232 	int i, timeout = 200, final_word = nwords - 1;
2233 
2234 	/* Initiate FIS transmission mode */
2235 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2236 	ifctl = 0x100 | (old_ifctl & 0xf);
2237 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2238 
2239 	/* Send all words of the FIS except for the final word */
2240 	for (i = 0; i < final_word; ++i)
2241 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2242 
2243 	/* Flag end-of-transmission, and then send the final word */
2244 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2245 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2246 
2247 	/*
2248 	 * Wait for FIS transmission to complete.
2249 	 * This typically takes just a single iteration.
2250 	 */
2251 	do {
2252 		ifstat = readl(port_mmio + SATA_IFSTAT);
2253 	} while (!(ifstat & 0x1000) && --timeout);
2254 
2255 	/* Restore original port configuration */
2256 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2257 
2258 	/* See if it worked */
2259 	if ((ifstat & 0x3000) != 0x1000) {
2260 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2261 			      __func__, ifstat);
2262 		return AC_ERR_OTHER;
2263 	}
2264 	return 0;
2265 }
2266 
2267 /**
2268  *	mv_qc_issue_fis - Issue a command directly as a FIS
2269  *	@qc: queued command to start
2270  *
2271  *	Note that the ATA shadow registers are not updated
2272  *	after command issue, so the device will appear "READY"
2273  *	if polled, even while it is BUSY processing the command.
2274  *
2275  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2276  *
2277  *	Note: we don't get updated shadow regs on *completion*
2278  *	of non-data commands. So avoid sending them via this function,
2279  *	as they will appear to have completed immediately.
2280  *
2281  *	GEN_IIE has special registers that we could get the result tf from,
2282  *	but earlier chipsets do not.  For now, we ignore those registers.
2283  */
2284 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2285 {
2286 	struct ata_port *ap = qc->ap;
2287 	struct mv_port_priv *pp = ap->private_data;
2288 	struct ata_link *link = qc->dev->link;
2289 	u32 fis[5];
2290 	int err = 0;
2291 
2292 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2293 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2294 	if (err)
2295 		return err;
2296 
2297 	switch (qc->tf.protocol) {
2298 	case ATAPI_PROT_PIO:
2299 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2300 		/* fall through */
2301 	case ATAPI_PROT_NODATA:
2302 		ap->hsm_task_state = HSM_ST_FIRST;
2303 		break;
2304 	case ATA_PROT_PIO:
2305 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2306 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2307 			ap->hsm_task_state = HSM_ST_FIRST;
2308 		else
2309 			ap->hsm_task_state = HSM_ST;
2310 		break;
2311 	default:
2312 		ap->hsm_task_state = HSM_ST_LAST;
2313 		break;
2314 	}
2315 
2316 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2317 		ata_sff_queue_pio_task(link, 0);
2318 	return 0;
2319 }
2320 
2321 /**
2322  *      mv_qc_issue - Initiate a command to the host
2323  *      @qc: queued command to start
2324  *
2325  *      This routine simply redirects to the general purpose routine
2326  *      if command is not DMA.  Else, it sanity checks our local
2327  *      caches of the request producer/consumer indices then enables
2328  *      DMA and bumps the request producer index.
2329  *
2330  *      LOCKING:
2331  *      Inherited from caller.
2332  */
2333 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2334 {
2335 	static int limit_warnings = 10;
2336 	struct ata_port *ap = qc->ap;
2337 	void __iomem *port_mmio = mv_ap_base(ap);
2338 	struct mv_port_priv *pp = ap->private_data;
2339 	u32 in_index;
2340 	unsigned int port_irqs;
2341 
2342 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2343 
2344 	switch (qc->tf.protocol) {
2345 	case ATA_PROT_DMA:
2346 		if (qc->tf.command == ATA_CMD_DSM) {
2347 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2348 				return AC_ERR_OTHER;
2349 			break;  /* use bmdma for this */
2350 		}
2351 		/* fall thru */
2352 	case ATA_PROT_NCQ:
2353 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2354 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2355 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2356 
2357 		/* Write the request in pointer to kick the EDMA to life */
2358 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2359 					port_mmio + EDMA_REQ_Q_IN_PTR);
2360 		return 0;
2361 
2362 	case ATA_PROT_PIO:
2363 		/*
2364 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2365 		 *
2366 		 * Someday, we might implement special polling workarounds
2367 		 * for these, but it all seems rather unnecessary since we
2368 		 * normally use only DMA for commands which transfer more
2369 		 * than a single block of data.
2370 		 *
2371 		 * Much of the time, this could just work regardless.
2372 		 * So for now, just log the incident, and allow the attempt.
2373 		 */
2374 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2375 			--limit_warnings;
2376 			ata_link_warn(qc->dev->link, DRV_NAME
2377 				      ": attempting PIO w/multiple DRQ: "
2378 				      "this may fail due to h/w errata\n");
2379 		}
2380 		/* drop through */
2381 	case ATA_PROT_NODATA:
2382 	case ATAPI_PROT_PIO:
2383 	case ATAPI_PROT_NODATA:
2384 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2385 			qc->tf.flags |= ATA_TFLAG_POLLING;
2386 		break;
2387 	}
2388 
2389 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2390 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2391 	else
2392 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2393 
2394 	/*
2395 	 * We're about to send a non-EDMA capable command to the
2396 	 * port.  Turn off EDMA so there won't be problems accessing
2397 	 * shadow block, etc registers.
2398 	 */
2399 	mv_stop_edma(ap);
2400 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2401 	mv_pmp_select(ap, qc->dev->link->pmp);
2402 
2403 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2404 		struct mv_host_priv *hpriv = ap->host->private_data;
2405 		/*
2406 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2407 		 *
2408 		 * After any NCQ error, the READ_LOG_EXT command
2409 		 * from libata-eh *must* use mv_qc_issue_fis().
2410 		 * Otherwise it might fail, due to chip errata.
2411 		 *
2412 		 * Rather than special-case it, we'll just *always*
2413 		 * use this method here for READ_LOG_EXT, making for
2414 		 * easier testing.
2415 		 */
2416 		if (IS_GEN_II(hpriv))
2417 			return mv_qc_issue_fis(qc);
2418 	}
2419 	return ata_bmdma_qc_issue(qc);
2420 }
2421 
2422 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2423 {
2424 	struct mv_port_priv *pp = ap->private_data;
2425 	struct ata_queued_cmd *qc;
2426 
2427 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2428 		return NULL;
2429 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2430 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2431 		return qc;
2432 	return NULL;
2433 }
2434 
2435 static void mv_pmp_error_handler(struct ata_port *ap)
2436 {
2437 	unsigned int pmp, pmp_map;
2438 	struct mv_port_priv *pp = ap->private_data;
2439 
2440 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2441 		/*
2442 		 * Perform NCQ error analysis on failed PMPs
2443 		 * before we freeze the port entirely.
2444 		 *
2445 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2446 		 */
2447 		pmp_map = pp->delayed_eh_pmp_map;
2448 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2449 		for (pmp = 0; pmp_map != 0; pmp++) {
2450 			unsigned int this_pmp = (1 << pmp);
2451 			if (pmp_map & this_pmp) {
2452 				struct ata_link *link = &ap->pmp_link[pmp];
2453 				pmp_map &= ~this_pmp;
2454 				ata_eh_analyze_ncq_error(link);
2455 			}
2456 		}
2457 		ata_port_freeze(ap);
2458 	}
2459 	sata_pmp_error_handler(ap);
2460 }
2461 
2462 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2463 {
2464 	void __iomem *port_mmio = mv_ap_base(ap);
2465 
2466 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2467 }
2468 
2469 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2470 {
2471 	struct ata_eh_info *ehi;
2472 	unsigned int pmp;
2473 
2474 	/*
2475 	 * Initialize EH info for PMPs which saw device errors
2476 	 */
2477 	ehi = &ap->link.eh_info;
2478 	for (pmp = 0; pmp_map != 0; pmp++) {
2479 		unsigned int this_pmp = (1 << pmp);
2480 		if (pmp_map & this_pmp) {
2481 			struct ata_link *link = &ap->pmp_link[pmp];
2482 
2483 			pmp_map &= ~this_pmp;
2484 			ehi = &link->eh_info;
2485 			ata_ehi_clear_desc(ehi);
2486 			ata_ehi_push_desc(ehi, "dev err");
2487 			ehi->err_mask |= AC_ERR_DEV;
2488 			ehi->action |= ATA_EH_RESET;
2489 			ata_link_abort(link);
2490 		}
2491 	}
2492 }
2493 
2494 static int mv_req_q_empty(struct ata_port *ap)
2495 {
2496 	void __iomem *port_mmio = mv_ap_base(ap);
2497 	u32 in_ptr, out_ptr;
2498 
2499 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2500 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2501 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2502 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2503 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2504 }
2505 
2506 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2507 {
2508 	struct mv_port_priv *pp = ap->private_data;
2509 	int failed_links;
2510 	unsigned int old_map, new_map;
2511 
2512 	/*
2513 	 * Device error during FBS+NCQ operation:
2514 	 *
2515 	 * Set a port flag to prevent further I/O being enqueued.
2516 	 * Leave the EDMA running to drain outstanding commands from this port.
2517 	 * Perform the post-mortem/EH only when all responses are complete.
2518 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2519 	 */
2520 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2521 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2522 		pp->delayed_eh_pmp_map = 0;
2523 	}
2524 	old_map = pp->delayed_eh_pmp_map;
2525 	new_map = old_map | mv_get_err_pmp_map(ap);
2526 
2527 	if (old_map != new_map) {
2528 		pp->delayed_eh_pmp_map = new_map;
2529 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2530 	}
2531 	failed_links = hweight16(new_map);
2532 
2533 	ata_port_info(ap,
2534 		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2535 		      __func__, pp->delayed_eh_pmp_map,
2536 		      ap->qc_active, failed_links,
2537 		      ap->nr_active_links);
2538 
2539 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2540 		mv_process_crpb_entries(ap, pp);
2541 		mv_stop_edma(ap);
2542 		mv_eh_freeze(ap);
2543 		ata_port_info(ap, "%s: done\n", __func__);
2544 		return 1;	/* handled */
2545 	}
2546 	ata_port_info(ap, "%s: waiting\n", __func__);
2547 	return 1;	/* handled */
2548 }
2549 
2550 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2551 {
2552 	/*
2553 	 * Possible future enhancement:
2554 	 *
2555 	 * FBS+non-NCQ operation is not yet implemented.
2556 	 * See related notes in mv_edma_cfg().
2557 	 *
2558 	 * Device error during FBS+non-NCQ operation:
2559 	 *
2560 	 * We need to snapshot the shadow registers for each failed command.
2561 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2562 	 */
2563 	return 0;	/* not handled */
2564 }
2565 
2566 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2567 {
2568 	struct mv_port_priv *pp = ap->private_data;
2569 
2570 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2571 		return 0;	/* EDMA was not active: not handled */
2572 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2573 		return 0;	/* FBS was not active: not handled */
2574 
2575 	if (!(edma_err_cause & EDMA_ERR_DEV))
2576 		return 0;	/* non DEV error: not handled */
2577 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2578 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2579 		return 0;	/* other problems: not handled */
2580 
2581 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2582 		/*
2583 		 * EDMA should NOT have self-disabled for this case.
2584 		 * If it did, then something is wrong elsewhere,
2585 		 * and we cannot handle it here.
2586 		 */
2587 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2588 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2589 				      __func__, edma_err_cause, pp->pp_flags);
2590 			return 0; /* not handled */
2591 		}
2592 		return mv_handle_fbs_ncq_dev_err(ap);
2593 	} else {
2594 		/*
2595 		 * EDMA should have self-disabled for this case.
2596 		 * If it did not, then something is wrong elsewhere,
2597 		 * and we cannot handle it here.
2598 		 */
2599 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2600 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601 				      __func__, edma_err_cause, pp->pp_flags);
2602 			return 0; /* not handled */
2603 		}
2604 		return mv_handle_fbs_non_ncq_dev_err(ap);
2605 	}
2606 	return 0;	/* not handled */
2607 }
2608 
2609 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2610 {
2611 	struct ata_eh_info *ehi = &ap->link.eh_info;
2612 	char *when = "idle";
2613 
2614 	ata_ehi_clear_desc(ehi);
2615 	if (edma_was_enabled) {
2616 		when = "EDMA enabled";
2617 	} else {
2618 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2619 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2620 			when = "polling";
2621 	}
2622 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2623 	ehi->err_mask |= AC_ERR_OTHER;
2624 	ehi->action   |= ATA_EH_RESET;
2625 	ata_port_freeze(ap);
2626 }
2627 
2628 /**
2629  *      mv_err_intr - Handle error interrupts on the port
2630  *      @ap: ATA channel to manipulate
2631  *
2632  *      Most cases require a full reset of the chip's state machine,
2633  *      which also performs a COMRESET.
2634  *      Also, if the port disabled DMA, update our cached copy to match.
2635  *
2636  *      LOCKING:
2637  *      Inherited from caller.
2638  */
2639 static void mv_err_intr(struct ata_port *ap)
2640 {
2641 	void __iomem *port_mmio = mv_ap_base(ap);
2642 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2643 	u32 fis_cause = 0;
2644 	struct mv_port_priv *pp = ap->private_data;
2645 	struct mv_host_priv *hpriv = ap->host->private_data;
2646 	unsigned int action = 0, err_mask = 0;
2647 	struct ata_eh_info *ehi = &ap->link.eh_info;
2648 	struct ata_queued_cmd *qc;
2649 	int abort = 0;
2650 
2651 	/*
2652 	 * Read and clear the SError and err_cause bits.
2653 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2654 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2655 	 */
2656 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2657 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2658 
2659 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2660 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2661 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2662 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2663 	}
2664 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2665 
2666 	if (edma_err_cause & EDMA_ERR_DEV) {
2667 		/*
2668 		 * Device errors during FIS-based switching operation
2669 		 * require special handling.
2670 		 */
2671 		if (mv_handle_dev_err(ap, edma_err_cause))
2672 			return;
2673 	}
2674 
2675 	qc = mv_get_active_qc(ap);
2676 	ata_ehi_clear_desc(ehi);
2677 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2678 			  edma_err_cause, pp->pp_flags);
2679 
2680 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2681 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2682 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2683 			u32 ec = edma_err_cause &
2684 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2685 			sata_async_notification(ap);
2686 			if (!ec)
2687 				return; /* Just an AN; no need for the nukes */
2688 			ata_ehi_push_desc(ehi, "SDB notify");
2689 		}
2690 	}
2691 	/*
2692 	 * All generations share these EDMA error cause bits:
2693 	 */
2694 	if (edma_err_cause & EDMA_ERR_DEV) {
2695 		err_mask |= AC_ERR_DEV;
2696 		action |= ATA_EH_RESET;
2697 		ata_ehi_push_desc(ehi, "dev error");
2698 	}
2699 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2700 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2701 			EDMA_ERR_INTRL_PAR)) {
2702 		err_mask |= AC_ERR_ATA_BUS;
2703 		action |= ATA_EH_RESET;
2704 		ata_ehi_push_desc(ehi, "parity error");
2705 	}
2706 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2707 		ata_ehi_hotplugged(ehi);
2708 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2709 			"dev disconnect" : "dev connect");
2710 		action |= ATA_EH_RESET;
2711 	}
2712 
2713 	/*
2714 	 * Gen-I has a different SELF_DIS bit,
2715 	 * different FREEZE bits, and no SERR bit:
2716 	 */
2717 	if (IS_GEN_I(hpriv)) {
2718 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2719 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2720 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2722 		}
2723 	} else {
2724 		eh_freeze_mask = EDMA_EH_FREEZE;
2725 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2726 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2727 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2728 		}
2729 		if (edma_err_cause & EDMA_ERR_SERR) {
2730 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2731 			err_mask |= AC_ERR_ATA_BUS;
2732 			action |= ATA_EH_RESET;
2733 		}
2734 	}
2735 
2736 	if (!err_mask) {
2737 		err_mask = AC_ERR_OTHER;
2738 		action |= ATA_EH_RESET;
2739 	}
2740 
2741 	ehi->serror |= serr;
2742 	ehi->action |= action;
2743 
2744 	if (qc)
2745 		qc->err_mask |= err_mask;
2746 	else
2747 		ehi->err_mask |= err_mask;
2748 
2749 	if (err_mask == AC_ERR_DEV) {
2750 		/*
2751 		 * Cannot do ata_port_freeze() here,
2752 		 * because it would kill PIO access,
2753 		 * which is needed for further diagnosis.
2754 		 */
2755 		mv_eh_freeze(ap);
2756 		abort = 1;
2757 	} else if (edma_err_cause & eh_freeze_mask) {
2758 		/*
2759 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2760 		 */
2761 		ata_port_freeze(ap);
2762 	} else {
2763 		abort = 1;
2764 	}
2765 
2766 	if (abort) {
2767 		if (qc)
2768 			ata_link_abort(qc->dev->link);
2769 		else
2770 			ata_port_abort(ap);
2771 	}
2772 }
2773 
2774 static bool mv_process_crpb_response(struct ata_port *ap,
2775 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2776 {
2777 	u8 ata_status;
2778 	u16 edma_status = le16_to_cpu(response->flags);
2779 
2780 	/*
2781 	 * edma_status from a response queue entry:
2782 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2783 	 *   MSB is saved ATA status from command completion.
2784 	 */
2785 	if (!ncq_enabled) {
2786 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2787 		if (err_cause) {
2788 			/*
2789 			 * Error will be seen/handled by
2790 			 * mv_err_intr().  So do nothing at all here.
2791 			 */
2792 			return false;
2793 		}
2794 	}
2795 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2796 	if (!ac_err_mask(ata_status))
2797 		return true;
2798 	/* else: leave it for mv_err_intr() */
2799 	return false;
2800 }
2801 
2802 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2803 {
2804 	void __iomem *port_mmio = mv_ap_base(ap);
2805 	struct mv_host_priv *hpriv = ap->host->private_data;
2806 	u32 in_index;
2807 	bool work_done = false;
2808 	u32 done_mask = 0;
2809 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2810 
2811 	/* Get the hardware queue position index */
2812 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2813 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2814 
2815 	/* Process new responses from since the last time we looked */
2816 	while (in_index != pp->resp_idx) {
2817 		unsigned int tag;
2818 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2819 
2820 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2821 
2822 		if (IS_GEN_I(hpriv)) {
2823 			/* 50xx: no NCQ, only one command active at a time */
2824 			tag = ap->link.active_tag;
2825 		} else {
2826 			/* Gen II/IIE: get command tag from CRPB entry */
2827 			tag = le16_to_cpu(response->id) & 0x1f;
2828 		}
2829 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2830 			done_mask |= 1 << tag;
2831 		work_done = true;
2832 	}
2833 
2834 	if (work_done) {
2835 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2836 
2837 		/* Update the software queue position index in hardware */
2838 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2839 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2840 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2841 	}
2842 }
2843 
2844 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2845 {
2846 	struct mv_port_priv *pp;
2847 	int edma_was_enabled;
2848 
2849 	/*
2850 	 * Grab a snapshot of the EDMA_EN flag setting,
2851 	 * so that we have a consistent view for this port,
2852 	 * even if something we call of our routines changes it.
2853 	 */
2854 	pp = ap->private_data;
2855 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2856 	/*
2857 	 * Process completed CRPB response(s) before other events.
2858 	 */
2859 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2860 		mv_process_crpb_entries(ap, pp);
2861 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2862 			mv_handle_fbs_ncq_dev_err(ap);
2863 	}
2864 	/*
2865 	 * Handle chip-reported errors, or continue on to handle PIO.
2866 	 */
2867 	if (unlikely(port_cause & ERR_IRQ)) {
2868 		mv_err_intr(ap);
2869 	} else if (!edma_was_enabled) {
2870 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2871 		if (qc)
2872 			ata_bmdma_port_intr(ap, qc);
2873 		else
2874 			mv_unexpected_intr(ap, edma_was_enabled);
2875 	}
2876 }
2877 
2878 /**
2879  *      mv_host_intr - Handle all interrupts on the given host controller
2880  *      @host: host specific structure
2881  *      @main_irq_cause: Main interrupt cause register for the chip.
2882  *
2883  *      LOCKING:
2884  *      Inherited from caller.
2885  */
2886 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2887 {
2888 	struct mv_host_priv *hpriv = host->private_data;
2889 	void __iomem *mmio = hpriv->base, *hc_mmio;
2890 	unsigned int handled = 0, port;
2891 
2892 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2893 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2894 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2895 
2896 	for (port = 0; port < hpriv->n_ports; port++) {
2897 		struct ata_port *ap = host->ports[port];
2898 		unsigned int p, shift, hardport, port_cause;
2899 
2900 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2901 		/*
2902 		 * Each hc within the host has its own hc_irq_cause register,
2903 		 * where the interrupting ports bits get ack'd.
2904 		 */
2905 		if (hardport == 0) {	/* first port on this hc ? */
2906 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2907 			u32 port_mask, ack_irqs;
2908 			/*
2909 			 * Skip this entire hc if nothing pending for any ports
2910 			 */
2911 			if (!hc_cause) {
2912 				port += MV_PORTS_PER_HC - 1;
2913 				continue;
2914 			}
2915 			/*
2916 			 * We don't need/want to read the hc_irq_cause register,
2917 			 * because doing so hurts performance, and
2918 			 * main_irq_cause already gives us everything we need.
2919 			 *
2920 			 * But we do have to *write* to the hc_irq_cause to ack
2921 			 * the ports that we are handling this time through.
2922 			 *
2923 			 * This requires that we create a bitmap for those
2924 			 * ports which interrupted us, and use that bitmap
2925 			 * to ack (only) those ports via hc_irq_cause.
2926 			 */
2927 			ack_irqs = 0;
2928 			if (hc_cause & PORTS_0_3_COAL_DONE)
2929 				ack_irqs = HC_COAL_IRQ;
2930 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2931 				if ((port + p) >= hpriv->n_ports)
2932 					break;
2933 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2934 				if (hc_cause & port_mask)
2935 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2936 			}
2937 			hc_mmio = mv_hc_base_from_port(mmio, port);
2938 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2939 			handled = 1;
2940 		}
2941 		/*
2942 		 * Handle interrupts signalled for this port:
2943 		 */
2944 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2945 		if (port_cause)
2946 			mv_port_intr(ap, port_cause);
2947 	}
2948 	return handled;
2949 }
2950 
2951 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2952 {
2953 	struct mv_host_priv *hpriv = host->private_data;
2954 	struct ata_port *ap;
2955 	struct ata_queued_cmd *qc;
2956 	struct ata_eh_info *ehi;
2957 	unsigned int i, err_mask, printed = 0;
2958 	u32 err_cause;
2959 
2960 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2961 
2962 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2963 
2964 	DPRINTK("All regs @ PCI error\n");
2965 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2966 
2967 	writelfl(0, mmio + hpriv->irq_cause_offset);
2968 
2969 	for (i = 0; i < host->n_ports; i++) {
2970 		ap = host->ports[i];
2971 		if (!ata_link_offline(&ap->link)) {
2972 			ehi = &ap->link.eh_info;
2973 			ata_ehi_clear_desc(ehi);
2974 			if (!printed++)
2975 				ata_ehi_push_desc(ehi,
2976 					"PCI err cause 0x%08x", err_cause);
2977 			err_mask = AC_ERR_HOST_BUS;
2978 			ehi->action = ATA_EH_RESET;
2979 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2980 			if (qc)
2981 				qc->err_mask |= err_mask;
2982 			else
2983 				ehi->err_mask |= err_mask;
2984 
2985 			ata_port_freeze(ap);
2986 		}
2987 	}
2988 	return 1;	/* handled */
2989 }
2990 
2991 /**
2992  *      mv_interrupt - Main interrupt event handler
2993  *      @irq: unused
2994  *      @dev_instance: private data; in this case the host structure
2995  *
2996  *      Read the read only register to determine if any host
2997  *      controllers have pending interrupts.  If so, call lower level
2998  *      routine to handle.  Also check for PCI errors which are only
2999  *      reported here.
3000  *
3001  *      LOCKING:
3002  *      This routine holds the host lock while processing pending
3003  *      interrupts.
3004  */
3005 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3006 {
3007 	struct ata_host *host = dev_instance;
3008 	struct mv_host_priv *hpriv = host->private_data;
3009 	unsigned int handled = 0;
3010 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3011 	u32 main_irq_cause, pending_irqs;
3012 
3013 	spin_lock(&host->lock);
3014 
3015 	/* for MSI:  block new interrupts while in here */
3016 	if (using_msi)
3017 		mv_write_main_irq_mask(0, hpriv);
3018 
3019 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3020 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3021 	/*
3022 	 * Deal with cases where we either have nothing pending, or have read
3023 	 * a bogus register value which can indicate HW removal or PCI fault.
3024 	 */
3025 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3026 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3027 			handled = mv_pci_error(host, hpriv->base);
3028 		else
3029 			handled = mv_host_intr(host, pending_irqs);
3030 	}
3031 
3032 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3033 	if (using_msi)
3034 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3035 
3036 	spin_unlock(&host->lock);
3037 
3038 	return IRQ_RETVAL(handled);
3039 }
3040 
3041 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3042 {
3043 	unsigned int ofs;
3044 
3045 	switch (sc_reg_in) {
3046 	case SCR_STATUS:
3047 	case SCR_ERROR:
3048 	case SCR_CONTROL:
3049 		ofs = sc_reg_in * sizeof(u32);
3050 		break;
3051 	default:
3052 		ofs = 0xffffffffU;
3053 		break;
3054 	}
3055 	return ofs;
3056 }
3057 
3058 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3059 {
3060 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3061 	void __iomem *mmio = hpriv->base;
3062 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3063 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3064 
3065 	if (ofs != 0xffffffffU) {
3066 		*val = readl(addr + ofs);
3067 		return 0;
3068 	} else
3069 		return -EINVAL;
3070 }
3071 
3072 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3073 {
3074 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3075 	void __iomem *mmio = hpriv->base;
3076 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3077 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3078 
3079 	if (ofs != 0xffffffffU) {
3080 		writelfl(val, addr + ofs);
3081 		return 0;
3082 	} else
3083 		return -EINVAL;
3084 }
3085 
3086 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3087 {
3088 	struct pci_dev *pdev = to_pci_dev(host->dev);
3089 	int early_5080;
3090 
3091 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3092 
3093 	if (!early_5080) {
3094 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3095 		tmp |= (1 << 0);
3096 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3097 	}
3098 
3099 	mv_reset_pci_bus(host, mmio);
3100 }
3101 
3102 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3103 {
3104 	writel(0x0fcfffff, mmio + FLASH_CTL);
3105 }
3106 
3107 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3108 			   void __iomem *mmio)
3109 {
3110 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3111 	u32 tmp;
3112 
3113 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3114 
3115 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3116 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3117 }
3118 
3119 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3120 {
3121 	u32 tmp;
3122 
3123 	writel(0, mmio + GPIO_PORT_CTL);
3124 
3125 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3126 
3127 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3128 	tmp |= ~(1 << 0);
3129 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3130 }
3131 
3132 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3133 			   unsigned int port)
3134 {
3135 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3136 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3137 	u32 tmp;
3138 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3139 
3140 	if (fix_apm_sq) {
3141 		tmp = readl(phy_mmio + MV5_LTMODE);
3142 		tmp |= (1 << 19);
3143 		writel(tmp, phy_mmio + MV5_LTMODE);
3144 
3145 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3146 		tmp &= ~0x3;
3147 		tmp |= 0x1;
3148 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3149 	}
3150 
3151 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3152 	tmp &= ~mask;
3153 	tmp |= hpriv->signal[port].pre;
3154 	tmp |= hpriv->signal[port].amps;
3155 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3156 }
3157 
3158 
3159 #undef ZERO
3160 #define ZERO(reg) writel(0, port_mmio + (reg))
3161 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3162 			     unsigned int port)
3163 {
3164 	void __iomem *port_mmio = mv_port_base(mmio, port);
3165 
3166 	mv_reset_channel(hpriv, mmio, port);
3167 
3168 	ZERO(0x028);	/* command */
3169 	writel(0x11f, port_mmio + EDMA_CFG);
3170 	ZERO(0x004);	/* timer */
3171 	ZERO(0x008);	/* irq err cause */
3172 	ZERO(0x00c);	/* irq err mask */
3173 	ZERO(0x010);	/* rq bah */
3174 	ZERO(0x014);	/* rq inp */
3175 	ZERO(0x018);	/* rq outp */
3176 	ZERO(0x01c);	/* respq bah */
3177 	ZERO(0x024);	/* respq outp */
3178 	ZERO(0x020);	/* respq inp */
3179 	ZERO(0x02c);	/* test control */
3180 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3181 }
3182 #undef ZERO
3183 
3184 #define ZERO(reg) writel(0, hc_mmio + (reg))
3185 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3186 			unsigned int hc)
3187 {
3188 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3189 	u32 tmp;
3190 
3191 	ZERO(0x00c);
3192 	ZERO(0x010);
3193 	ZERO(0x014);
3194 	ZERO(0x018);
3195 
3196 	tmp = readl(hc_mmio + 0x20);
3197 	tmp &= 0x1c1c1c1c;
3198 	tmp |= 0x03030303;
3199 	writel(tmp, hc_mmio + 0x20);
3200 }
3201 #undef ZERO
3202 
3203 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3204 			unsigned int n_hc)
3205 {
3206 	unsigned int hc, port;
3207 
3208 	for (hc = 0; hc < n_hc; hc++) {
3209 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3210 			mv5_reset_hc_port(hpriv, mmio,
3211 					  (hc * MV_PORTS_PER_HC) + port);
3212 
3213 		mv5_reset_one_hc(hpriv, mmio, hc);
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 #undef ZERO
3220 #define ZERO(reg) writel(0, mmio + (reg))
3221 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3222 {
3223 	struct mv_host_priv *hpriv = host->private_data;
3224 	u32 tmp;
3225 
3226 	tmp = readl(mmio + MV_PCI_MODE);
3227 	tmp &= 0xff00ffff;
3228 	writel(tmp, mmio + MV_PCI_MODE);
3229 
3230 	ZERO(MV_PCI_DISC_TIMER);
3231 	ZERO(MV_PCI_MSI_TRIGGER);
3232 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3233 	ZERO(MV_PCI_SERR_MASK);
3234 	ZERO(hpriv->irq_cause_offset);
3235 	ZERO(hpriv->irq_mask_offset);
3236 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3237 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3238 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3239 	ZERO(MV_PCI_ERR_COMMAND);
3240 }
3241 #undef ZERO
3242 
3243 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3244 {
3245 	u32 tmp;
3246 
3247 	mv5_reset_flash(hpriv, mmio);
3248 
3249 	tmp = readl(mmio + GPIO_PORT_CTL);
3250 	tmp &= 0x3;
3251 	tmp |= (1 << 5) | (1 << 6);
3252 	writel(tmp, mmio + GPIO_PORT_CTL);
3253 }
3254 
3255 /**
3256  *      mv6_reset_hc - Perform the 6xxx global soft reset
3257  *      @mmio: base address of the HBA
3258  *
3259  *      This routine only applies to 6xxx parts.
3260  *
3261  *      LOCKING:
3262  *      Inherited from caller.
3263  */
3264 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3265 			unsigned int n_hc)
3266 {
3267 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3268 	int i, rc = 0;
3269 	u32 t;
3270 
3271 	/* Following procedure defined in PCI "main command and status
3272 	 * register" table.
3273 	 */
3274 	t = readl(reg);
3275 	writel(t | STOP_PCI_MASTER, reg);
3276 
3277 	for (i = 0; i < 1000; i++) {
3278 		udelay(1);
3279 		t = readl(reg);
3280 		if (PCI_MASTER_EMPTY & t)
3281 			break;
3282 	}
3283 	if (!(PCI_MASTER_EMPTY & t)) {
3284 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3285 		rc = 1;
3286 		goto done;
3287 	}
3288 
3289 	/* set reset */
3290 	i = 5;
3291 	do {
3292 		writel(t | GLOB_SFT_RST, reg);
3293 		t = readl(reg);
3294 		udelay(1);
3295 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3296 
3297 	if (!(GLOB_SFT_RST & t)) {
3298 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3299 		rc = 1;
3300 		goto done;
3301 	}
3302 
3303 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3304 	i = 5;
3305 	do {
3306 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3307 		t = readl(reg);
3308 		udelay(1);
3309 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3310 
3311 	if (GLOB_SFT_RST & t) {
3312 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3313 		rc = 1;
3314 	}
3315 done:
3316 	return rc;
3317 }
3318 
3319 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3320 			   void __iomem *mmio)
3321 {
3322 	void __iomem *port_mmio;
3323 	u32 tmp;
3324 
3325 	tmp = readl(mmio + RESET_CFG);
3326 	if ((tmp & (1 << 0)) == 0) {
3327 		hpriv->signal[idx].amps = 0x7 << 8;
3328 		hpriv->signal[idx].pre = 0x1 << 5;
3329 		return;
3330 	}
3331 
3332 	port_mmio = mv_port_base(mmio, idx);
3333 	tmp = readl(port_mmio + PHY_MODE2);
3334 
3335 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3336 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3337 }
3338 
3339 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3340 {
3341 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3342 }
3343 
3344 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3345 			   unsigned int port)
3346 {
3347 	void __iomem *port_mmio = mv_port_base(mmio, port);
3348 
3349 	u32 hp_flags = hpriv->hp_flags;
3350 	int fix_phy_mode2 =
3351 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3352 	int fix_phy_mode4 =
3353 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3354 	u32 m2, m3;
3355 
3356 	if (fix_phy_mode2) {
3357 		m2 = readl(port_mmio + PHY_MODE2);
3358 		m2 &= ~(1 << 16);
3359 		m2 |= (1 << 31);
3360 		writel(m2, port_mmio + PHY_MODE2);
3361 
3362 		udelay(200);
3363 
3364 		m2 = readl(port_mmio + PHY_MODE2);
3365 		m2 &= ~((1 << 16) | (1 << 31));
3366 		writel(m2, port_mmio + PHY_MODE2);
3367 
3368 		udelay(200);
3369 	}
3370 
3371 	/*
3372 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3373 	 * Achieves better receiver noise performance than the h/w default:
3374 	 */
3375 	m3 = readl(port_mmio + PHY_MODE3);
3376 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3377 
3378 	/* Guideline 88F5182 (GL# SATA-S11) */
3379 	if (IS_SOC(hpriv))
3380 		m3 &= ~0x1c;
3381 
3382 	if (fix_phy_mode4) {
3383 		u32 m4 = readl(port_mmio + PHY_MODE4);
3384 		/*
3385 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3386 		 * For earlier chipsets, force only the internal config field
3387 		 *  (workaround for errata FEr SATA#10 part 1).
3388 		 */
3389 		if (IS_GEN_IIE(hpriv))
3390 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3391 		else
3392 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3393 		writel(m4, port_mmio + PHY_MODE4);
3394 	}
3395 	/*
3396 	 * Workaround for 60x1-B2 errata SATA#13:
3397 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3398 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3399 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3400 	 */
3401 	writel(m3, port_mmio + PHY_MODE3);
3402 
3403 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3404 	m2 = readl(port_mmio + PHY_MODE2);
3405 
3406 	m2 &= ~MV_M2_PREAMP_MASK;
3407 	m2 |= hpriv->signal[port].amps;
3408 	m2 |= hpriv->signal[port].pre;
3409 	m2 &= ~(1 << 16);
3410 
3411 	/* according to mvSata 3.6.1, some IIE values are fixed */
3412 	if (IS_GEN_IIE(hpriv)) {
3413 		m2 &= ~0xC30FF01F;
3414 		m2 |= 0x0000900F;
3415 	}
3416 
3417 	writel(m2, port_mmio + PHY_MODE2);
3418 }
3419 
3420 /* TODO: use the generic LED interface to configure the SATA Presence */
3421 /* & Acitivy LEDs on the board */
3422 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3423 				      void __iomem *mmio)
3424 {
3425 	return;
3426 }
3427 
3428 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3429 			   void __iomem *mmio)
3430 {
3431 	void __iomem *port_mmio;
3432 	u32 tmp;
3433 
3434 	port_mmio = mv_port_base(mmio, idx);
3435 	tmp = readl(port_mmio + PHY_MODE2);
3436 
3437 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3438 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3439 }
3440 
3441 #undef ZERO
3442 #define ZERO(reg) writel(0, port_mmio + (reg))
3443 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3444 					void __iomem *mmio, unsigned int port)
3445 {
3446 	void __iomem *port_mmio = mv_port_base(mmio, port);
3447 
3448 	mv_reset_channel(hpriv, mmio, port);
3449 
3450 	ZERO(0x028);		/* command */
3451 	writel(0x101f, port_mmio + EDMA_CFG);
3452 	ZERO(0x004);		/* timer */
3453 	ZERO(0x008);		/* irq err cause */
3454 	ZERO(0x00c);		/* irq err mask */
3455 	ZERO(0x010);		/* rq bah */
3456 	ZERO(0x014);		/* rq inp */
3457 	ZERO(0x018);		/* rq outp */
3458 	ZERO(0x01c);		/* respq bah */
3459 	ZERO(0x024);		/* respq outp */
3460 	ZERO(0x020);		/* respq inp */
3461 	ZERO(0x02c);		/* test control */
3462 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3463 }
3464 
3465 #undef ZERO
3466 
3467 #define ZERO(reg) writel(0, hc_mmio + (reg))
3468 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3469 				       void __iomem *mmio)
3470 {
3471 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3472 
3473 	ZERO(0x00c);
3474 	ZERO(0x010);
3475 	ZERO(0x014);
3476 
3477 }
3478 
3479 #undef ZERO
3480 
3481 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3482 				  void __iomem *mmio, unsigned int n_hc)
3483 {
3484 	unsigned int port;
3485 
3486 	for (port = 0; port < hpriv->n_ports; port++)
3487 		mv_soc_reset_hc_port(hpriv, mmio, port);
3488 
3489 	mv_soc_reset_one_hc(hpriv, mmio);
3490 
3491 	return 0;
3492 }
3493 
3494 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3495 				      void __iomem *mmio)
3496 {
3497 	return;
3498 }
3499 
3500 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3501 {
3502 	return;
3503 }
3504 
3505 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3506 				  void __iomem *mmio, unsigned int port)
3507 {
3508 	void __iomem *port_mmio = mv_port_base(mmio, port);
3509 	u32	reg;
3510 
3511 	reg = readl(port_mmio + PHY_MODE3);
3512 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3513 	reg |= (0x1 << 27);
3514 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3515 	reg |= (0x1 << 29);
3516 	writel(reg, port_mmio + PHY_MODE3);
3517 
3518 	reg = readl(port_mmio + PHY_MODE4);
3519 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3520 	reg |= (0x1 << 16);
3521 	writel(reg, port_mmio + PHY_MODE4);
3522 
3523 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3524 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3525 	reg |= 0x8;
3526 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3527 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3528 
3529 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3530 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3531 	reg |= 0x8;
3532 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3533 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3534 }
3535 
3536 /**
3537  *	soc_is_65 - check if the soc is 65 nano device
3538  *
3539  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3540  *	register, this register should contain non-zero value and it exists only
3541  *	in the 65 nano devices, when reading it from older devices we get 0.
3542  */
3543 static bool soc_is_65n(struct mv_host_priv *hpriv)
3544 {
3545 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3546 
3547 	if (readl(port0_mmio + PHYCFG_OFS))
3548 		return true;
3549 	return false;
3550 }
3551 
3552 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3553 {
3554 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3555 
3556 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3557 	if (want_gen2i)
3558 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3559 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3560 }
3561 
3562 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3563 			     unsigned int port_no)
3564 {
3565 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3566 
3567 	/*
3568 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3569 	 * (but doesn't say what the problem might be).  So we first try
3570 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3571 	 */
3572 	mv_stop_edma_engine(port_mmio);
3573 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3574 
3575 	if (!IS_GEN_I(hpriv)) {
3576 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3577 		mv_setup_ifcfg(port_mmio, 1);
3578 	}
3579 	/*
3580 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3581 	 * link, and physical layers.  It resets all SATA interface registers
3582 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3583 	 */
3584 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3585 	udelay(25);	/* allow reset propagation */
3586 	writelfl(0, port_mmio + EDMA_CMD);
3587 
3588 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3589 
3590 	if (IS_GEN_I(hpriv))
3591 		mdelay(1);
3592 }
3593 
3594 static void mv_pmp_select(struct ata_port *ap, int pmp)
3595 {
3596 	if (sata_pmp_supported(ap)) {
3597 		void __iomem *port_mmio = mv_ap_base(ap);
3598 		u32 reg = readl(port_mmio + SATA_IFCTL);
3599 		int old = reg & 0xf;
3600 
3601 		if (old != pmp) {
3602 			reg = (reg & ~0xf) | pmp;
3603 			writelfl(reg, port_mmio + SATA_IFCTL);
3604 		}
3605 	}
3606 }
3607 
3608 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3609 				unsigned long deadline)
3610 {
3611 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3612 	return sata_std_hardreset(link, class, deadline);
3613 }
3614 
3615 static int mv_softreset(struct ata_link *link, unsigned int *class,
3616 				unsigned long deadline)
3617 {
3618 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3619 	return ata_sff_softreset(link, class, deadline);
3620 }
3621 
3622 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3623 			unsigned long deadline)
3624 {
3625 	struct ata_port *ap = link->ap;
3626 	struct mv_host_priv *hpriv = ap->host->private_data;
3627 	struct mv_port_priv *pp = ap->private_data;
3628 	void __iomem *mmio = hpriv->base;
3629 	int rc, attempts = 0, extra = 0;
3630 	u32 sstatus;
3631 	bool online;
3632 
3633 	mv_reset_channel(hpriv, mmio, ap->port_no);
3634 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3635 	pp->pp_flags &=
3636 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3637 
3638 	/* Workaround for errata FEr SATA#10 (part 2) */
3639 	do {
3640 		const unsigned long *timing =
3641 				sata_ehc_deb_timing(&link->eh_context);
3642 
3643 		rc = sata_link_hardreset(link, timing, deadline + extra,
3644 					 &online, NULL);
3645 		rc = online ? -EAGAIN : rc;
3646 		if (rc)
3647 			return rc;
3648 		sata_scr_read(link, SCR_STATUS, &sstatus);
3649 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3650 			/* Force 1.5gb/s link speed and try again */
3651 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3652 			if (time_after(jiffies + HZ, deadline))
3653 				extra = HZ; /* only extend it once, max */
3654 		}
3655 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3656 	mv_save_cached_regs(ap);
3657 	mv_edma_cfg(ap, 0, 0);
3658 
3659 	return rc;
3660 }
3661 
3662 static void mv_eh_freeze(struct ata_port *ap)
3663 {
3664 	mv_stop_edma(ap);
3665 	mv_enable_port_irqs(ap, 0);
3666 }
3667 
3668 static void mv_eh_thaw(struct ata_port *ap)
3669 {
3670 	struct mv_host_priv *hpriv = ap->host->private_data;
3671 	unsigned int port = ap->port_no;
3672 	unsigned int hardport = mv_hardport_from_port(port);
3673 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3674 	void __iomem *port_mmio = mv_ap_base(ap);
3675 	u32 hc_irq_cause;
3676 
3677 	/* clear EDMA errors on this port */
3678 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3679 
3680 	/* clear pending irq events */
3681 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3682 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3683 
3684 	mv_enable_port_irqs(ap, ERR_IRQ);
3685 }
3686 
3687 /**
3688  *      mv_port_init - Perform some early initialization on a single port.
3689  *      @port: libata data structure storing shadow register addresses
3690  *      @port_mmio: base address of the port
3691  *
3692  *      Initialize shadow register mmio addresses, clear outstanding
3693  *      interrupts on the port, and unmask interrupts for the future
3694  *      start of the port.
3695  *
3696  *      LOCKING:
3697  *      Inherited from caller.
3698  */
3699 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3700 {
3701 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3702 
3703 	/* PIO related setup
3704 	 */
3705 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3706 	port->error_addr =
3707 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3708 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3709 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3710 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3711 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3712 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3713 	port->status_addr =
3714 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3715 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3716 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3717 
3718 	/* Clear any currently outstanding port interrupt conditions */
3719 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3720 	writelfl(readl(serr), serr);
3721 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3722 
3723 	/* unmask all non-transient EDMA error interrupts */
3724 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3725 
3726 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3727 		readl(port_mmio + EDMA_CFG),
3728 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3729 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3730 }
3731 
3732 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3733 {
3734 	struct mv_host_priv *hpriv = host->private_data;
3735 	void __iomem *mmio = hpriv->base;
3736 	u32 reg;
3737 
3738 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3739 		return 0;	/* not PCI-X capable */
3740 	reg = readl(mmio + MV_PCI_MODE);
3741 	if ((reg & MV_PCI_MODE_MASK) == 0)
3742 		return 0;	/* conventional PCI mode */
3743 	return 1;	/* chip is in PCI-X mode */
3744 }
3745 
3746 static int mv_pci_cut_through_okay(struct ata_host *host)
3747 {
3748 	struct mv_host_priv *hpriv = host->private_data;
3749 	void __iomem *mmio = hpriv->base;
3750 	u32 reg;
3751 
3752 	if (!mv_in_pcix_mode(host)) {
3753 		reg = readl(mmio + MV_PCI_COMMAND);
3754 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3755 			return 0; /* not okay */
3756 	}
3757 	return 1; /* okay */
3758 }
3759 
3760 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3761 {
3762 	struct mv_host_priv *hpriv = host->private_data;
3763 	void __iomem *mmio = hpriv->base;
3764 
3765 	/* workaround for 60x1-B2 errata PCI#7 */
3766 	if (mv_in_pcix_mode(host)) {
3767 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3768 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3769 	}
3770 }
3771 
3772 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3773 {
3774 	struct pci_dev *pdev = to_pci_dev(host->dev);
3775 	struct mv_host_priv *hpriv = host->private_data;
3776 	u32 hp_flags = hpriv->hp_flags;
3777 
3778 	switch (board_idx) {
3779 	case chip_5080:
3780 		hpriv->ops = &mv5xxx_ops;
3781 		hp_flags |= MV_HP_GEN_I;
3782 
3783 		switch (pdev->revision) {
3784 		case 0x1:
3785 			hp_flags |= MV_HP_ERRATA_50XXB0;
3786 			break;
3787 		case 0x3:
3788 			hp_flags |= MV_HP_ERRATA_50XXB2;
3789 			break;
3790 		default:
3791 			dev_warn(&pdev->dev,
3792 				 "Applying 50XXB2 workarounds to unknown rev\n");
3793 			hp_flags |= MV_HP_ERRATA_50XXB2;
3794 			break;
3795 		}
3796 		break;
3797 
3798 	case chip_504x:
3799 	case chip_508x:
3800 		hpriv->ops = &mv5xxx_ops;
3801 		hp_flags |= MV_HP_GEN_I;
3802 
3803 		switch (pdev->revision) {
3804 		case 0x0:
3805 			hp_flags |= MV_HP_ERRATA_50XXB0;
3806 			break;
3807 		case 0x3:
3808 			hp_flags |= MV_HP_ERRATA_50XXB2;
3809 			break;
3810 		default:
3811 			dev_warn(&pdev->dev,
3812 				 "Applying B2 workarounds to unknown rev\n");
3813 			hp_flags |= MV_HP_ERRATA_50XXB2;
3814 			break;
3815 		}
3816 		break;
3817 
3818 	case chip_604x:
3819 	case chip_608x:
3820 		hpriv->ops = &mv6xxx_ops;
3821 		hp_flags |= MV_HP_GEN_II;
3822 
3823 		switch (pdev->revision) {
3824 		case 0x7:
3825 			mv_60x1b2_errata_pci7(host);
3826 			hp_flags |= MV_HP_ERRATA_60X1B2;
3827 			break;
3828 		case 0x9:
3829 			hp_flags |= MV_HP_ERRATA_60X1C0;
3830 			break;
3831 		default:
3832 			dev_warn(&pdev->dev,
3833 				 "Applying B2 workarounds to unknown rev\n");
3834 			hp_flags |= MV_HP_ERRATA_60X1B2;
3835 			break;
3836 		}
3837 		break;
3838 
3839 	case chip_7042:
3840 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3841 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3842 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3843 		{
3844 			/*
3845 			 * Highpoint RocketRAID PCIe 23xx series cards:
3846 			 *
3847 			 * Unconfigured drives are treated as "Legacy"
3848 			 * by the BIOS, and it overwrites sector 8 with
3849 			 * a "Lgcy" metadata block prior to Linux boot.
3850 			 *
3851 			 * Configured drives (RAID or JBOD) leave sector 8
3852 			 * alone, but instead overwrite a high numbered
3853 			 * sector for the RAID metadata.  This sector can
3854 			 * be determined exactly, by truncating the physical
3855 			 * drive capacity to a nice even GB value.
3856 			 *
3857 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3858 			 *
3859 			 * Warn the user, lest they think we're just buggy.
3860 			 */
3861 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3862 				" BIOS CORRUPTS DATA on all attached drives,"
3863 				" regardless of if/how they are configured."
3864 				" BEWARE!\n");
3865 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3866 				" use sectors 8-9 on \"Legacy\" drives,"
3867 				" and avoid the final two gigabytes on"
3868 				" all RocketRAID BIOS initialized drives.\n");
3869 		}
3870 		/* drop through */
3871 	case chip_6042:
3872 		hpriv->ops = &mv6xxx_ops;
3873 		hp_flags |= MV_HP_GEN_IIE;
3874 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3875 			hp_flags |= MV_HP_CUT_THROUGH;
3876 
3877 		switch (pdev->revision) {
3878 		case 0x2: /* Rev.B0: the first/only public release */
3879 			hp_flags |= MV_HP_ERRATA_60X1C0;
3880 			break;
3881 		default:
3882 			dev_warn(&pdev->dev,
3883 				 "Applying 60X1C0 workarounds to unknown rev\n");
3884 			hp_flags |= MV_HP_ERRATA_60X1C0;
3885 			break;
3886 		}
3887 		break;
3888 	case chip_soc:
3889 		if (soc_is_65n(hpriv))
3890 			hpriv->ops = &mv_soc_65n_ops;
3891 		else
3892 			hpriv->ops = &mv_soc_ops;
3893 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3894 			MV_HP_ERRATA_60X1C0;
3895 		break;
3896 
3897 	default:
3898 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3899 		return 1;
3900 	}
3901 
3902 	hpriv->hp_flags = hp_flags;
3903 	if (hp_flags & MV_HP_PCIE) {
3904 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3905 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3906 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3907 	} else {
3908 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3909 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3910 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3911 	}
3912 
3913 	return 0;
3914 }
3915 
3916 /**
3917  *      mv_init_host - Perform some early initialization of the host.
3918  *	@host: ATA host to initialize
3919  *
3920  *      If possible, do an early global reset of the host.  Then do
3921  *      our port init and clear/unmask all/relevant host interrupts.
3922  *
3923  *      LOCKING:
3924  *      Inherited from caller.
3925  */
3926 static int mv_init_host(struct ata_host *host)
3927 {
3928 	int rc = 0, n_hc, port, hc;
3929 	struct mv_host_priv *hpriv = host->private_data;
3930 	void __iomem *mmio = hpriv->base;
3931 
3932 	rc = mv_chip_id(host, hpriv->board_idx);
3933 	if (rc)
3934 		goto done;
3935 
3936 	if (IS_SOC(hpriv)) {
3937 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3938 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3939 	} else {
3940 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3941 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3942 	}
3943 
3944 	/* initialize shadow irq mask with register's value */
3945 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3946 
3947 	/* global interrupt mask: 0 == mask everything */
3948 	mv_set_main_irq_mask(host, ~0, 0);
3949 
3950 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3951 
3952 	for (port = 0; port < host->n_ports; port++)
3953 		if (hpriv->ops->read_preamp)
3954 			hpriv->ops->read_preamp(hpriv, port, mmio);
3955 
3956 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3957 	if (rc)
3958 		goto done;
3959 
3960 	hpriv->ops->reset_flash(hpriv, mmio);
3961 	hpriv->ops->reset_bus(host, mmio);
3962 	hpriv->ops->enable_leds(hpriv, mmio);
3963 
3964 	for (port = 0; port < host->n_ports; port++) {
3965 		struct ata_port *ap = host->ports[port];
3966 		void __iomem *port_mmio = mv_port_base(mmio, port);
3967 
3968 		mv_port_init(&ap->ioaddr, port_mmio);
3969 	}
3970 
3971 	for (hc = 0; hc < n_hc; hc++) {
3972 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3973 
3974 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3975 			"(before clear)=0x%08x\n", hc,
3976 			readl(hc_mmio + HC_CFG),
3977 			readl(hc_mmio + HC_IRQ_CAUSE));
3978 
3979 		/* Clear any currently outstanding hc interrupt conditions */
3980 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3981 	}
3982 
3983 	if (!IS_SOC(hpriv)) {
3984 		/* Clear any currently outstanding host interrupt conditions */
3985 		writelfl(0, mmio + hpriv->irq_cause_offset);
3986 
3987 		/* and unmask interrupt generation for host regs */
3988 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3989 	}
3990 
3991 	/*
3992 	 * enable only global host interrupts for now.
3993 	 * The per-port interrupts get done later as ports are set up.
3994 	 */
3995 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3996 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3997 				    irq_coalescing_usecs);
3998 done:
3999 	return rc;
4000 }
4001 
4002 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4003 {
4004 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4005 							     MV_CRQB_Q_SZ, 0);
4006 	if (!hpriv->crqb_pool)
4007 		return -ENOMEM;
4008 
4009 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4010 							     MV_CRPB_Q_SZ, 0);
4011 	if (!hpriv->crpb_pool)
4012 		return -ENOMEM;
4013 
4014 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4015 							     MV_SG_TBL_SZ, 0);
4016 	if (!hpriv->sg_tbl_pool)
4017 		return -ENOMEM;
4018 
4019 	return 0;
4020 }
4021 
4022 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4023 				 const struct mbus_dram_target_info *dram)
4024 {
4025 	int i;
4026 
4027 	for (i = 0; i < 4; i++) {
4028 		writel(0, hpriv->base + WINDOW_CTRL(i));
4029 		writel(0, hpriv->base + WINDOW_BASE(i));
4030 	}
4031 
4032 	for (i = 0; i < dram->num_cs; i++) {
4033 		const struct mbus_dram_window *cs = dram->cs + i;
4034 
4035 		writel(((cs->size - 1) & 0xffff0000) |
4036 			(cs->mbus_attr << 8) |
4037 			(dram->mbus_dram_target_id << 4) | 1,
4038 			hpriv->base + WINDOW_CTRL(i));
4039 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4040 	}
4041 }
4042 
4043 /**
4044  *      mv_platform_probe - handle a positive probe of an soc Marvell
4045  *      host
4046  *      @pdev: platform device found
4047  *
4048  *      LOCKING:
4049  *      Inherited from caller.
4050  */
4051 static int mv_platform_probe(struct platform_device *pdev)
4052 {
4053 	const struct mv_sata_platform_data *mv_platform_data;
4054 	const struct mbus_dram_target_info *dram;
4055 	const struct ata_port_info *ppi[] =
4056 	    { &mv_port_info[chip_soc], NULL };
4057 	struct ata_host *host;
4058 	struct mv_host_priv *hpriv;
4059 	struct resource *res;
4060 	int n_ports = 0, irq = 0;
4061 	int rc;
4062 	int port;
4063 
4064 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4065 
4066 	/*
4067 	 * Simple resource validation ..
4068 	 */
4069 	if (unlikely(pdev->num_resources != 2)) {
4070 		dev_err(&pdev->dev, "invalid number of resources\n");
4071 		return -EINVAL;
4072 	}
4073 
4074 	/*
4075 	 * Get the register base first
4076 	 */
4077 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4078 	if (res == NULL)
4079 		return -EINVAL;
4080 
4081 	/* allocate host */
4082 	if (pdev->dev.of_node) {
4083 		of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4084 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4085 	} else {
4086 		mv_platform_data = dev_get_platdata(&pdev->dev);
4087 		n_ports = mv_platform_data->n_ports;
4088 		irq = platform_get_irq(pdev, 0);
4089 	}
4090 
4091 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4092 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4093 
4094 	if (!host || !hpriv)
4095 		return -ENOMEM;
4096 	hpriv->port_clks = devm_kzalloc(&pdev->dev,
4097 					sizeof(struct clk *) * n_ports,
4098 					GFP_KERNEL);
4099 	if (!hpriv->port_clks)
4100 		return -ENOMEM;
4101 	hpriv->port_phys = devm_kzalloc(&pdev->dev,
4102 					sizeof(struct phy *) * n_ports,
4103 					GFP_KERNEL);
4104 	if (!hpriv->port_phys)
4105 		return -ENOMEM;
4106 	host->private_data = hpriv;
4107 	hpriv->board_idx = chip_soc;
4108 
4109 	host->iomap = NULL;
4110 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4111 				   resource_size(res));
4112 	hpriv->base -= SATAHC0_REG_BASE;
4113 
4114 	hpriv->clk = clk_get(&pdev->dev, NULL);
4115 	if (IS_ERR(hpriv->clk))
4116 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4117 	else
4118 		clk_prepare_enable(hpriv->clk);
4119 
4120 	for (port = 0; port < n_ports; port++) {
4121 		char port_number[16];
4122 		sprintf(port_number, "%d", port);
4123 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4124 		if (!IS_ERR(hpriv->port_clks[port]))
4125 			clk_prepare_enable(hpriv->port_clks[port]);
4126 
4127 		sprintf(port_number, "port%d", port);
4128 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4129 							       port_number);
4130 		if (IS_ERR(hpriv->port_phys[port])) {
4131 			rc = PTR_ERR(hpriv->port_phys[port]);
4132 			hpriv->port_phys[port] = NULL;
4133 			if (rc != -EPROBE_DEFER)
4134 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4135 
4136 			/* Cleanup only the initialized ports */
4137 			hpriv->n_ports = port;
4138 			goto err;
4139 		} else
4140 			phy_power_on(hpriv->port_phys[port]);
4141 	}
4142 
4143 	/* All the ports have been initialized */
4144 	hpriv->n_ports = n_ports;
4145 
4146 	/*
4147 	 * (Re-)program MBUS remapping windows if we are asked to.
4148 	 */
4149 	dram = mv_mbus_dram_info();
4150 	if (dram)
4151 		mv_conf_mbus_windows(hpriv, dram);
4152 
4153 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4154 	if (rc)
4155 		goto err;
4156 
4157 	/*
4158 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4159 	 * updated in the LP_PHY_CTL register.
4160 	 */
4161 	if (pdev->dev.of_node &&
4162 		of_device_is_compatible(pdev->dev.of_node,
4163 					"marvell,armada-370-sata"))
4164 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4165 
4166 	/* initialize adapter */
4167 	rc = mv_init_host(host);
4168 	if (rc)
4169 		goto err;
4170 
4171 	dev_info(&pdev->dev, "slots %u ports %d\n",
4172 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4173 
4174 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4175 	if (!rc)
4176 		return 0;
4177 
4178 err:
4179 	if (!IS_ERR(hpriv->clk)) {
4180 		clk_disable_unprepare(hpriv->clk);
4181 		clk_put(hpriv->clk);
4182 	}
4183 	for (port = 0; port < hpriv->n_ports; port++) {
4184 		if (!IS_ERR(hpriv->port_clks[port])) {
4185 			clk_disable_unprepare(hpriv->port_clks[port]);
4186 			clk_put(hpriv->port_clks[port]);
4187 		}
4188 		if (hpriv->port_phys[port])
4189 			phy_power_off(hpriv->port_phys[port]);
4190 	}
4191 
4192 	return rc;
4193 }
4194 
4195 /*
4196  *
4197  *      mv_platform_remove    -       unplug a platform interface
4198  *      @pdev: platform device
4199  *
4200  *      A platform bus SATA device has been unplugged. Perform the needed
4201  *      cleanup. Also called on module unload for any active devices.
4202  */
4203 static int mv_platform_remove(struct platform_device *pdev)
4204 {
4205 	struct ata_host *host = platform_get_drvdata(pdev);
4206 	struct mv_host_priv *hpriv = host->private_data;
4207 	int port;
4208 	ata_host_detach(host);
4209 
4210 	if (!IS_ERR(hpriv->clk)) {
4211 		clk_disable_unprepare(hpriv->clk);
4212 		clk_put(hpriv->clk);
4213 	}
4214 	for (port = 0; port < host->n_ports; port++) {
4215 		if (!IS_ERR(hpriv->port_clks[port])) {
4216 			clk_disable_unprepare(hpriv->port_clks[port]);
4217 			clk_put(hpriv->port_clks[port]);
4218 		}
4219 		if (hpriv->port_phys[port])
4220 			phy_power_off(hpriv->port_phys[port]);
4221 	}
4222 	return 0;
4223 }
4224 
4225 #ifdef CONFIG_PM_SLEEP
4226 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4227 {
4228 	struct ata_host *host = platform_get_drvdata(pdev);
4229 	if (host)
4230 		return ata_host_suspend(host, state);
4231 	else
4232 		return 0;
4233 }
4234 
4235 static int mv_platform_resume(struct platform_device *pdev)
4236 {
4237 	struct ata_host *host = platform_get_drvdata(pdev);
4238 	const struct mbus_dram_target_info *dram;
4239 	int ret;
4240 
4241 	if (host) {
4242 		struct mv_host_priv *hpriv = host->private_data;
4243 
4244 		/*
4245 		 * (Re-)program MBUS remapping windows if we are asked to.
4246 		 */
4247 		dram = mv_mbus_dram_info();
4248 		if (dram)
4249 			mv_conf_mbus_windows(hpriv, dram);
4250 
4251 		/* initialize adapter */
4252 		ret = mv_init_host(host);
4253 		if (ret) {
4254 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4255 			return ret;
4256 		}
4257 		ata_host_resume(host);
4258 	}
4259 
4260 	return 0;
4261 }
4262 #else
4263 #define mv_platform_suspend NULL
4264 #define mv_platform_resume NULL
4265 #endif
4266 
4267 #ifdef CONFIG_OF
4268 static struct of_device_id mv_sata_dt_ids[] = {
4269 	{ .compatible = "marvell,armada-370-sata", },
4270 	{ .compatible = "marvell,orion-sata", },
4271 	{},
4272 };
4273 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4274 #endif
4275 
4276 static struct platform_driver mv_platform_driver = {
4277 	.probe		= mv_platform_probe,
4278 	.remove		= mv_platform_remove,
4279 	.suspend	= mv_platform_suspend,
4280 	.resume		= mv_platform_resume,
4281 	.driver		= {
4282 		.name = DRV_NAME,
4283 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4284 	},
4285 };
4286 
4287 
4288 #ifdef CONFIG_PCI
4289 static int mv_pci_init_one(struct pci_dev *pdev,
4290 			   const struct pci_device_id *ent);
4291 #ifdef CONFIG_PM_SLEEP
4292 static int mv_pci_device_resume(struct pci_dev *pdev);
4293 #endif
4294 
4295 
4296 static struct pci_driver mv_pci_driver = {
4297 	.name			= DRV_NAME,
4298 	.id_table		= mv_pci_tbl,
4299 	.probe			= mv_pci_init_one,
4300 	.remove			= ata_pci_remove_one,
4301 #ifdef CONFIG_PM_SLEEP
4302 	.suspend		= ata_pci_device_suspend,
4303 	.resume			= mv_pci_device_resume,
4304 #endif
4305 
4306 };
4307 
4308 /* move to PCI layer or libata core? */
4309 static int pci_go_64(struct pci_dev *pdev)
4310 {
4311 	int rc;
4312 
4313 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4314 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4315 		if (rc) {
4316 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4317 			if (rc) {
4318 				dev_err(&pdev->dev,
4319 					"64-bit DMA enable failed\n");
4320 				return rc;
4321 			}
4322 		}
4323 	} else {
4324 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4325 		if (rc) {
4326 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4327 			return rc;
4328 		}
4329 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4330 		if (rc) {
4331 			dev_err(&pdev->dev,
4332 				"32-bit consistent DMA enable failed\n");
4333 			return rc;
4334 		}
4335 	}
4336 
4337 	return rc;
4338 }
4339 
4340 /**
4341  *      mv_print_info - Dump key info to kernel log for perusal.
4342  *      @host: ATA host to print info about
4343  *
4344  *      FIXME: complete this.
4345  *
4346  *      LOCKING:
4347  *      Inherited from caller.
4348  */
4349 static void mv_print_info(struct ata_host *host)
4350 {
4351 	struct pci_dev *pdev = to_pci_dev(host->dev);
4352 	struct mv_host_priv *hpriv = host->private_data;
4353 	u8 scc;
4354 	const char *scc_s, *gen;
4355 
4356 	/* Use this to determine the HW stepping of the chip so we know
4357 	 * what errata to workaround
4358 	 */
4359 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4360 	if (scc == 0)
4361 		scc_s = "SCSI";
4362 	else if (scc == 0x01)
4363 		scc_s = "RAID";
4364 	else
4365 		scc_s = "?";
4366 
4367 	if (IS_GEN_I(hpriv))
4368 		gen = "I";
4369 	else if (IS_GEN_II(hpriv))
4370 		gen = "II";
4371 	else if (IS_GEN_IIE(hpriv))
4372 		gen = "IIE";
4373 	else
4374 		gen = "?";
4375 
4376 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4377 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4378 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4379 }
4380 
4381 /**
4382  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4383  *      @pdev: PCI device found
4384  *      @ent: PCI device ID entry for the matched host
4385  *
4386  *      LOCKING:
4387  *      Inherited from caller.
4388  */
4389 static int mv_pci_init_one(struct pci_dev *pdev,
4390 			   const struct pci_device_id *ent)
4391 {
4392 	unsigned int board_idx = (unsigned int)ent->driver_data;
4393 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4394 	struct ata_host *host;
4395 	struct mv_host_priv *hpriv;
4396 	int n_ports, port, rc;
4397 
4398 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4399 
4400 	/* allocate host */
4401 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4402 
4403 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4404 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4405 	if (!host || !hpriv)
4406 		return -ENOMEM;
4407 	host->private_data = hpriv;
4408 	hpriv->n_ports = n_ports;
4409 	hpriv->board_idx = board_idx;
4410 
4411 	/* acquire resources */
4412 	rc = pcim_enable_device(pdev);
4413 	if (rc)
4414 		return rc;
4415 
4416 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4417 	if (rc == -EBUSY)
4418 		pcim_pin_device(pdev);
4419 	if (rc)
4420 		return rc;
4421 	host->iomap = pcim_iomap_table(pdev);
4422 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4423 
4424 	rc = pci_go_64(pdev);
4425 	if (rc)
4426 		return rc;
4427 
4428 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4429 	if (rc)
4430 		return rc;
4431 
4432 	for (port = 0; port < host->n_ports; port++) {
4433 		struct ata_port *ap = host->ports[port];
4434 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4435 		unsigned int offset = port_mmio - hpriv->base;
4436 
4437 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4438 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4439 	}
4440 
4441 	/* initialize adapter */
4442 	rc = mv_init_host(host);
4443 	if (rc)
4444 		return rc;
4445 
4446 	/* Enable message-switched interrupts, if requested */
4447 	if (msi && pci_enable_msi(pdev) == 0)
4448 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4449 
4450 	mv_dump_pci_cfg(pdev, 0x68);
4451 	mv_print_info(host);
4452 
4453 	pci_set_master(pdev);
4454 	pci_try_set_mwi(pdev);
4455 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4456 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4457 }
4458 
4459 #ifdef CONFIG_PM_SLEEP
4460 static int mv_pci_device_resume(struct pci_dev *pdev)
4461 {
4462 	struct ata_host *host = pci_get_drvdata(pdev);
4463 	int rc;
4464 
4465 	rc = ata_pci_device_do_resume(pdev);
4466 	if (rc)
4467 		return rc;
4468 
4469 	/* initialize adapter */
4470 	rc = mv_init_host(host);
4471 	if (rc)
4472 		return rc;
4473 
4474 	ata_host_resume(host);
4475 
4476 	return 0;
4477 }
4478 #endif
4479 #endif
4480 
4481 static int __init mv_init(void)
4482 {
4483 	int rc = -ENODEV;
4484 #ifdef CONFIG_PCI
4485 	rc = pci_register_driver(&mv_pci_driver);
4486 	if (rc < 0)
4487 		return rc;
4488 #endif
4489 	rc = platform_driver_register(&mv_platform_driver);
4490 
4491 #ifdef CONFIG_PCI
4492 	if (rc < 0)
4493 		pci_unregister_driver(&mv_pci_driver);
4494 #endif
4495 	return rc;
4496 }
4497 
4498 static void __exit mv_exit(void)
4499 {
4500 #ifdef CONFIG_PCI
4501 	pci_unregister_driver(&mv_pci_driver);
4502 #endif
4503 	platform_driver_unregister(&mv_platform_driver);
4504 }
4505 
4506 MODULE_AUTHOR("Brett Russ");
4507 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4508 MODULE_LICENSE("GPL");
4509 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4510 MODULE_VERSION(DRV_VERSION);
4511 MODULE_ALIAS("platform:" DRV_NAME);
4512 
4513 module_init(mv_init);
4514 module_exit(mv_exit);
4515