xref: /openbmc/linux/drivers/ata/sata_mv.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sata_mv.c - Marvell SATA support
4  *
5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6  * Copyright 2005: EMC Corporation, all rights reserved.
7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
8  *
9  * Originally written by Brett Russ.
10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11  *
12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13  */
14 
15 /*
16  * sata_mv TODO list:
17  *
18  * --> Develop a low-power-consumption strategy, and implement it.
19  *
20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21  *
22  * --> [Experiment, Marvell value added] Is it possible to use target
23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24  *       creating LibATA target mode support would be very interesting.
25  *
26  *       Target mode, for those without docs, is the ability to directly
27  *       connect two SATA ports.
28  */
29 
30 /*
31  * 80x1-B2 errata PCI#11:
32  *
33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
34  * should be careful to insert those cards only onto PCI-X bus #0,
35  * and only in device slots 0..7, not higher.  The chips may not
36  * work correctly otherwise  (note: this is a pretty rare condition).
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62 
63 #define DRV_NAME	"sata_mv"
64 #define DRV_VERSION	"1.28"
65 
66 /*
67  * module options
68  */
69 
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75 
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 		 "IRQ coalescing I/O count threshold (0..255)");
80 
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 		 "IRQ coalescing time threshold in usecs");
85 
86 enum {
87 	/* BAR's are enumerated in terms of pci_resource_start() terms */
88 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91 
92 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94 
95 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99 
100 	MV_PCI_REG_BASE		= 0,
101 
102 	/*
103 	 * Per-chip ("all ports") interrupt coalescing feature.
104 	 * This is only for GEN_II / GEN_IIE hardware.
105 	 *
106 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 	 */
109 	COAL_REG_BASE		= 0x18000,
110 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112 
113 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115 
116 	/*
117 	 * Registers for the (unused here) transaction coalescing feature:
118 	 */
119 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121 
122 	SATAHC0_REG_BASE	= 0x20000,
123 	FLASH_CTL		= 0x1046c,
124 	GPIO_PORT_CTL		= 0x104f0,
125 	RESET_CFG		= 0x180d8,
126 
127 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131 
132 	MV_MAX_Q_DEPTH		= 32,
133 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134 
135 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 	 * CRPB needs alignment on a 256B boundary. Size == 256B
137 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 	 */
139 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141 	MV_MAX_SG_CT		= 256,
142 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143 
144 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 	MV_PORT_HC_SHIFT	= 2,
146 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149 
150 	/* Host Flags */
151 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152 
153 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154 
155 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156 
157 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159 
160 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161 
162 	CRQB_FLAG_READ		= (1 << 0),
163 	CRQB_TAG_SHIFT		= 1,
164 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167 	CRQB_CMD_ADDR_SHIFT	= 8,
168 	CRQB_CMD_CS		= (0x2 << 11),
169 	CRQB_CMD_LAST		= (1 << 15),
170 
171 	CRPB_FLAG_STATUS_SHIFT	= 8,
172 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174 
175 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176 
177 	/* PCI interface registers */
178 
179 	MV_PCI_COMMAND		= 0xc00,
180 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182 
183 	PCI_MAIN_CMD_STS	= 0xd30,
184 	STOP_PCI_MASTER		= (1 << 2),
185 	PCI_MASTER_EMPTY	= (1 << 3),
186 	GLOB_SFT_RST		= (1 << 4),
187 
188 	MV_PCI_MODE		= 0xd00,
189 	MV_PCI_MODE_MASK	= 0x30,
190 
191 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192 	MV_PCI_DISC_TIMER	= 0xd04,
193 	MV_PCI_MSI_TRIGGER	= 0xc38,
194 	MV_PCI_SERR_MASK	= 0xc28,
195 	MV_PCI_XBAR_TMOUT	= 0x1d04,
196 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199 	MV_PCI_ERR_COMMAND	= 0x1d50,
200 
201 	PCI_IRQ_CAUSE		= 0x1d58,
202 	PCI_IRQ_MASK		= 0x1d5c,
203 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204 
205 	PCIE_IRQ_CAUSE		= 0x1900,
206 	PCIE_IRQ_MASK		= 0x1910,
207 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208 
209 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220 	PCI_ERR			= (1 << 18),
221 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226 	GPIO_INT		= (1 << 22),
227 	SELF_INT		= (1 << 23),
228 	TWSI_INT		= (1 << 24),
229 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232 
233 	/* SATAHC registers */
234 	HC_CFG			= 0x00,
235 
236 	HC_IRQ_CAUSE		= 0x14,
237 	DMA_IRQ			= (1 << 0),	/* shift by port # */
238 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239 	DEV_IRQ			= (1 << 8),	/* shift by port # */
240 
241 	/*
242 	 * Per-HC (Host-Controller) interrupt coalescing feature.
243 	 * This is present on all chip generations.
244 	 *
245 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 	 */
248 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250 
251 	SOC_LED_CTRL		= 0x2c,
252 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254 						/*  with dev activity LED */
255 
256 	/* Shadow block registers */
257 	SHD_BLK			= 0x100,
258 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259 
260 	/* SATA registers */
261 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262 	SATA_ACTIVE		= 0x350,
263 	FIS_IRQ_CAUSE		= 0x364,
264 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265 
266 	LTMODE			= 0x30c,	/* requires read-after-write */
267 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268 
269 	PHY_MODE2		= 0x330,
270 	PHY_MODE3		= 0x310,
271 
272 	PHY_MODE4		= 0x314,	/* requires read-after-write */
273 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277 
278 	SATA_IFCTL		= 0x344,
279 	SATA_TESTCTL		= 0x348,
280 	SATA_IFSTAT		= 0x34c,
281 	VENDOR_UNIQUE_FIS	= 0x35c,
282 
283 	FISCFG			= 0x360,
284 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286 
287 	PHY_MODE9_GEN2		= 0x398,
288 	PHY_MODE9_GEN1		= 0x39c,
289 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290 
291 	MV5_PHY_MODE		= 0x74,
292 	MV5_LTMODE		= 0x30,
293 	MV5_PHY_CTL		= 0x0C,
294 	SATA_IFCFG		= 0x050,
295 	LP_PHY_CTL		= 0x058,
296 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301 
302 	MV_M2_PREAMP_MASK	= 0x7e0,
303 
304 	/* Port registers */
305 	EDMA_CFG		= 0,
306 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313 
314 	EDMA_ERR_IRQ_CAUSE	= 0x8,
315 	EDMA_ERR_IRQ_MASK	= 0xc,
316 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330 
331 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336 
337 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338 
339 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345 
346 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347 
348 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349 	EDMA_ERR_OVERRUN_5	= (1 << 5),
350 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351 
352 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353 				  EDMA_ERR_LNK_CTRL_RX_1 |
354 				  EDMA_ERR_LNK_CTRL_RX_3 |
355 				  EDMA_ERR_LNK_CTRL_TX,
356 
357 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358 				  EDMA_ERR_PRD_PAR |
359 				  EDMA_ERR_DEV_DCON |
360 				  EDMA_ERR_DEV_CON |
361 				  EDMA_ERR_SERR |
362 				  EDMA_ERR_SELF_DIS |
363 				  EDMA_ERR_CRQB_PAR |
364 				  EDMA_ERR_CRPB_PAR |
365 				  EDMA_ERR_INTRL_PAR |
366 				  EDMA_ERR_IORDY |
367 				  EDMA_ERR_LNK_CTRL_RX_2 |
368 				  EDMA_ERR_LNK_DATA_RX |
369 				  EDMA_ERR_LNK_DATA_TX |
370 				  EDMA_ERR_TRANS_PROTO,
371 
372 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373 				  EDMA_ERR_PRD_PAR |
374 				  EDMA_ERR_DEV_DCON |
375 				  EDMA_ERR_DEV_CON |
376 				  EDMA_ERR_OVERRUN_5 |
377 				  EDMA_ERR_UNDERRUN_5 |
378 				  EDMA_ERR_SELF_DIS_5 |
379 				  EDMA_ERR_CRQB_PAR |
380 				  EDMA_ERR_CRPB_PAR |
381 				  EDMA_ERR_INTRL_PAR |
382 				  EDMA_ERR_IORDY,
383 
384 	EDMA_REQ_Q_BASE_HI	= 0x10,
385 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386 
387 	EDMA_REQ_Q_OUT_PTR	= 0x18,
388 	EDMA_REQ_Q_PTR_SHIFT	= 5,
389 
390 	EDMA_RSP_Q_BASE_HI	= 0x1c,
391 	EDMA_RSP_Q_IN_PTR	= 0x20,
392 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393 	EDMA_RSP_Q_PTR_SHIFT	= 3,
394 
395 	EDMA_CMD		= 0x28,		/* EDMA command register */
396 	EDMA_EN			= (1 << 0),	/* enable EDMA */
397 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399 
400 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403 
404 	EDMA_IORDY_TMOUT	= 0x34,
405 	EDMA_ARB_CFG		= 0x38,
406 
407 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409 
410 	BMDMA_CMD		= 0x224,	/* bmdma command register */
411 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414 
415 	/* Host private flags (hp_flags) */
416 	MV_HP_FLAG_MSI		= (1 << 0),
417 	MV_HP_ERRATA_50XXB0	= (1 << 1),
418 	MV_HP_ERRATA_50XXB2	= (1 << 2),
419 	MV_HP_ERRATA_60X1B2	= (1 << 3),
420 	MV_HP_ERRATA_60X1C0	= (1 << 4),
421 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429 
430 	/* Port private flags (pp_flags) */
431 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436 };
437 
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443 
444 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446 
447 enum {
448 	/* DMA boundary 0xffff is required by the s/g splitting
449 	 * we need on /length/ in mv_fill-sg().
450 	 */
451 	MV_DMA_BOUNDARY		= 0xffffU,
452 
453 	/* mask of register bits containing lower 32 bits
454 	 * of EDMA request queue DMA address
455 	 */
456 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457 
458 	/* ditto, for response queue */
459 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460 };
461 
462 enum chip_type {
463 	chip_504x,
464 	chip_508x,
465 	chip_5080,
466 	chip_604x,
467 	chip_608x,
468 	chip_6042,
469 	chip_7042,
470 	chip_soc,
471 };
472 
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 	__le32			sg_addr;
476 	__le32			sg_addr_hi;
477 	__le16			ctrl_flags;
478 	__le16			ata_cmd[11];
479 };
480 
481 struct mv_crqb_iie {
482 	__le32			addr;
483 	__le32			addr_hi;
484 	__le32			flags;
485 	__le32			len;
486 	__le32			ata_cmd[4];
487 };
488 
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 	__le16			id;
492 	__le16			flags;
493 	__le32			tmstmp;
494 };
495 
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 	__le32			addr;
499 	__le32			flags_size;
500 	__le32			addr_hi;
501 	__le32			reserved;
502 };
503 
504 /*
505  * We keep a local cache of a few frequently accessed port
506  * registers here, to avoid having to read them (very slow)
507  * when switching between EDMA and non-EDMA modes.
508  */
509 struct mv_cached_regs {
510 	u32			fiscfg;
511 	u32			ltmode;
512 	u32			haltcond;
513 	u32			unknown_rsvd;
514 };
515 
516 struct mv_port_priv {
517 	struct mv_crqb		*crqb;
518 	dma_addr_t		crqb_dma;
519 	struct mv_crpb		*crpb;
520 	dma_addr_t		crpb_dma;
521 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523 
524 	unsigned int		req_idx;
525 	unsigned int		resp_idx;
526 
527 	u32			pp_flags;
528 	struct mv_cached_regs	cached;
529 	unsigned int		delayed_eh_pmp_map;
530 };
531 
532 struct mv_port_signal {
533 	u32			amps;
534 	u32			pre;
535 };
536 
537 struct mv_host_priv {
538 	u32			hp_flags;
539 	unsigned int 		board_idx;
540 	u32			main_irq_mask;
541 	struct mv_port_signal	signal[8];
542 	const struct mv_hw_ops	*ops;
543 	int			n_ports;
544 	void __iomem		*base;
545 	void __iomem		*main_irq_cause_addr;
546 	void __iomem		*main_irq_mask_addr;
547 	u32			irq_cause_offset;
548 	u32			irq_mask_offset;
549 	u32			unmask_all_irqs;
550 
551 	/*
552 	 * Needed on some devices that require their clocks to be enabled.
553 	 * These are optional: if the platform device does not have any
554 	 * clocks, they won't be used.  Also, if the underlying hardware
555 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 	 * all the clock operations become no-ops (see clk.h).
557 	 */
558 	struct clk		*clk;
559 	struct clk              **port_clks;
560 	/*
561 	 * Some devices have a SATA PHY which can be enabled/disabled
562 	 * in order to save power. These are optional: if the platform
563 	 * devices does not have any phy, they won't be used.
564 	 */
565 	struct phy		**port_phys;
566 	/*
567 	 * These consistent DMA memory pools give us guaranteed
568 	 * alignment for hardware-accessed data structures,
569 	 * and less memory waste in accomplishing the alignment.
570 	 */
571 	struct dma_pool		*crqb_pool;
572 	struct dma_pool		*crpb_pool;
573 	struct dma_pool		*sg_tbl_pool;
574 };
575 
576 struct mv_hw_ops {
577 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 			   unsigned int port);
579 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 			   void __iomem *mmio);
582 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 			unsigned int n_hc);
584 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587 
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 			unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603 
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			   unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 			   void __iomem *mmio);
609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 			unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613 
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 			   unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 			   void __iomem *mmio);
619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 			unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 				      void __iomem *mmio);
626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 				  void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 				      void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 				  void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 			     unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639 
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 				unsigned long deadline);
643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
644 				unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 					struct mv_port_priv *pp);
648 
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8   mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656 
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658  * because we have to allow room for worst case splitting of
659  * PRDs for 64K boundaries in mv_fill_sg().
660  */
661 #ifdef CONFIG_PCI
662 static struct scsi_host_template mv5_sht = {
663 	ATA_BASE_SHT(DRV_NAME),
664 	.sg_tablesize		= MV_MAX_SG_CT / 2,
665 	.dma_boundary		= MV_DMA_BOUNDARY,
666 };
667 #endif
668 static struct scsi_host_template mv6_sht = {
669 	ATA_NCQ_SHT(DRV_NAME),
670 	.can_queue		= MV_MAX_Q_DEPTH - 1,
671 	.sg_tablesize		= MV_MAX_SG_CT / 2,
672 	.dma_boundary		= MV_DMA_BOUNDARY,
673 };
674 
675 static struct ata_port_operations mv5_ops = {
676 	.inherits		= &ata_sff_port_ops,
677 
678 	.lost_interrupt		= ATA_OP_NULL,
679 
680 	.qc_defer		= mv_qc_defer,
681 	.qc_prep		= mv_qc_prep,
682 	.qc_issue		= mv_qc_issue,
683 
684 	.freeze			= mv_eh_freeze,
685 	.thaw			= mv_eh_thaw,
686 	.hardreset		= mv_hardreset,
687 
688 	.scr_read		= mv5_scr_read,
689 	.scr_write		= mv5_scr_write,
690 
691 	.port_start		= mv_port_start,
692 	.port_stop		= mv_port_stop,
693 };
694 
695 static struct ata_port_operations mv6_ops = {
696 	.inherits		= &ata_bmdma_port_ops,
697 
698 	.lost_interrupt		= ATA_OP_NULL,
699 
700 	.qc_defer		= mv_qc_defer,
701 	.qc_prep		= mv_qc_prep,
702 	.qc_issue		= mv_qc_issue,
703 
704 	.dev_config             = mv6_dev_config,
705 
706 	.freeze			= mv_eh_freeze,
707 	.thaw			= mv_eh_thaw,
708 	.hardreset		= mv_hardreset,
709 	.softreset		= mv_softreset,
710 	.pmp_hardreset		= mv_pmp_hardreset,
711 	.pmp_softreset		= mv_softreset,
712 	.error_handler		= mv_pmp_error_handler,
713 
714 	.scr_read		= mv_scr_read,
715 	.scr_write		= mv_scr_write,
716 
717 	.sff_check_status	= mv_sff_check_status,
718 	.sff_irq_clear		= mv_sff_irq_clear,
719 	.check_atapi_dma	= mv_check_atapi_dma,
720 	.bmdma_setup		= mv_bmdma_setup,
721 	.bmdma_start		= mv_bmdma_start,
722 	.bmdma_stop		= mv_bmdma_stop,
723 	.bmdma_status		= mv_bmdma_status,
724 
725 	.port_start		= mv_port_start,
726 	.port_stop		= mv_port_stop,
727 };
728 
729 static struct ata_port_operations mv_iie_ops = {
730 	.inherits		= &mv6_ops,
731 	.dev_config		= ATA_OP_NULL,
732 	.qc_prep		= mv_qc_prep_iie,
733 };
734 
735 static const struct ata_port_info mv_port_info[] = {
736 	{  /* chip_504x */
737 		.flags		= MV_GEN_I_FLAGS,
738 		.pio_mask	= ATA_PIO4,
739 		.udma_mask	= ATA_UDMA6,
740 		.port_ops	= &mv5_ops,
741 	},
742 	{  /* chip_508x */
743 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744 		.pio_mask	= ATA_PIO4,
745 		.udma_mask	= ATA_UDMA6,
746 		.port_ops	= &mv5_ops,
747 	},
748 	{  /* chip_5080 */
749 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
750 		.pio_mask	= ATA_PIO4,
751 		.udma_mask	= ATA_UDMA6,
752 		.port_ops	= &mv5_ops,
753 	},
754 	{  /* chip_604x */
755 		.flags		= MV_GEN_II_FLAGS,
756 		.pio_mask	= ATA_PIO4,
757 		.udma_mask	= ATA_UDMA6,
758 		.port_ops	= &mv6_ops,
759 	},
760 	{  /* chip_608x */
761 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
762 		.pio_mask	= ATA_PIO4,
763 		.udma_mask	= ATA_UDMA6,
764 		.port_ops	= &mv6_ops,
765 	},
766 	{  /* chip_6042 */
767 		.flags		= MV_GEN_IIE_FLAGS,
768 		.pio_mask	= ATA_PIO4,
769 		.udma_mask	= ATA_UDMA6,
770 		.port_ops	= &mv_iie_ops,
771 	},
772 	{  /* chip_7042 */
773 		.flags		= MV_GEN_IIE_FLAGS,
774 		.pio_mask	= ATA_PIO4,
775 		.udma_mask	= ATA_UDMA6,
776 		.port_ops	= &mv_iie_ops,
777 	},
778 	{  /* chip_soc */
779 		.flags		= MV_GEN_IIE_FLAGS,
780 		.pio_mask	= ATA_PIO4,
781 		.udma_mask	= ATA_UDMA6,
782 		.port_ops	= &mv_iie_ops,
783 	},
784 };
785 
786 static const struct pci_device_id mv_pci_tbl[] = {
787 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
788 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
789 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
790 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
791 	/* RocketRAID 1720/174x have different identifiers */
792 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
793 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
794 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
795 
796 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
797 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
798 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
799 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
800 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
801 
802 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
803 
804 	/* Adaptec 1430SA */
805 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
806 
807 	/* Marvell 7042 support */
808 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
809 
810 	/* Highpoint RocketRAID PCIe series */
811 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
812 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
813 
814 	{ }			/* terminate list */
815 };
816 
817 static const struct mv_hw_ops mv5xxx_ops = {
818 	.phy_errata		= mv5_phy_errata,
819 	.enable_leds		= mv5_enable_leds,
820 	.read_preamp		= mv5_read_preamp,
821 	.reset_hc		= mv5_reset_hc,
822 	.reset_flash		= mv5_reset_flash,
823 	.reset_bus		= mv5_reset_bus,
824 };
825 
826 static const struct mv_hw_ops mv6xxx_ops = {
827 	.phy_errata		= mv6_phy_errata,
828 	.enable_leds		= mv6_enable_leds,
829 	.read_preamp		= mv6_read_preamp,
830 	.reset_hc		= mv6_reset_hc,
831 	.reset_flash		= mv6_reset_flash,
832 	.reset_bus		= mv_reset_pci_bus,
833 };
834 
835 static const struct mv_hw_ops mv_soc_ops = {
836 	.phy_errata		= mv6_phy_errata,
837 	.enable_leds		= mv_soc_enable_leds,
838 	.read_preamp		= mv_soc_read_preamp,
839 	.reset_hc		= mv_soc_reset_hc,
840 	.reset_flash		= mv_soc_reset_flash,
841 	.reset_bus		= mv_soc_reset_bus,
842 };
843 
844 static const struct mv_hw_ops mv_soc_65n_ops = {
845 	.phy_errata		= mv_soc_65n_phy_errata,
846 	.enable_leds		= mv_soc_enable_leds,
847 	.reset_hc		= mv_soc_reset_hc,
848 	.reset_flash		= mv_soc_reset_flash,
849 	.reset_bus		= mv_soc_reset_bus,
850 };
851 
852 /*
853  * Functions
854  */
855 
856 static inline void writelfl(unsigned long data, void __iomem *addr)
857 {
858 	writel(data, addr);
859 	(void) readl(addr);	/* flush to avoid PCI posted write */
860 }
861 
862 static inline unsigned int mv_hc_from_port(unsigned int port)
863 {
864 	return port >> MV_PORT_HC_SHIFT;
865 }
866 
867 static inline unsigned int mv_hardport_from_port(unsigned int port)
868 {
869 	return port & MV_PORT_MASK;
870 }
871 
872 /*
873  * Consolidate some rather tricky bit shift calculations.
874  * This is hot-path stuff, so not a function.
875  * Simple code, with two return values, so macro rather than inline.
876  *
877  * port is the sole input, in range 0..7.
878  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
879  * hardport is the other output, in range 0..3.
880  *
881  * Note that port and hardport may be the same variable in some cases.
882  */
883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
884 {								\
885 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
886 	hardport = mv_hardport_from_port(port);			\
887 	shift   += hardport * 2;				\
888 }
889 
890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
891 {
892 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
893 }
894 
895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
896 						 unsigned int port)
897 {
898 	return mv_hc_base(base, mv_hc_from_port(port));
899 }
900 
901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
902 {
903 	return  mv_hc_base_from_port(base, port) +
904 		MV_SATAHC_ARBTR_REG_SZ +
905 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
906 }
907 
908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
909 {
910 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
911 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
912 
913 	return hc_mmio + ofs;
914 }
915 
916 static inline void __iomem *mv_host_base(struct ata_host *host)
917 {
918 	struct mv_host_priv *hpriv = host->private_data;
919 	return hpriv->base;
920 }
921 
922 static inline void __iomem *mv_ap_base(struct ata_port *ap)
923 {
924 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
925 }
926 
927 static inline int mv_get_hc_count(unsigned long port_flags)
928 {
929 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
930 }
931 
932 /**
933  *      mv_save_cached_regs - (re-)initialize cached port registers
934  *      @ap: the port whose registers we are caching
935  *
936  *	Initialize the local cache of port registers,
937  *	so that reading them over and over again can
938  *	be avoided on the hotter paths of this driver.
939  *	This saves a few microseconds each time we switch
940  *	to/from EDMA mode to perform (eg.) a drive cache flush.
941  */
942 static void mv_save_cached_regs(struct ata_port *ap)
943 {
944 	void __iomem *port_mmio = mv_ap_base(ap);
945 	struct mv_port_priv *pp = ap->private_data;
946 
947 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
948 	pp->cached.ltmode = readl(port_mmio + LTMODE);
949 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
950 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
951 }
952 
953 /**
954  *      mv_write_cached_reg - write to a cached port register
955  *      @addr: hardware address of the register
956  *      @old: pointer to cached value of the register
957  *      @new: new value for the register
958  *
959  *	Write a new value to a cached register,
960  *	but only if the value is different from before.
961  */
962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
963 {
964 	if (new != *old) {
965 		unsigned long laddr;
966 		*old = new;
967 		/*
968 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
969 		 * Read-after-write is needed to prevent generating 64-bit
970 		 * write cycles on the PCI bus for SATA interface registers
971 		 * at offsets ending in 0x4 or 0xc.
972 		 *
973 		 * Looks like a lot of fuss, but it avoids an unnecessary
974 		 * +1 usec read-after-write delay for unaffected registers.
975 		 */
976 		laddr = (unsigned long)addr & 0xffff;
977 		if (laddr >= 0x300 && laddr <= 0x33c) {
978 			laddr &= 0x000f;
979 			if (laddr == 0x4 || laddr == 0xc) {
980 				writelfl(new, addr); /* read after write */
981 				return;
982 			}
983 		}
984 		writel(new, addr); /* unaffected by the errata */
985 	}
986 }
987 
988 static void mv_set_edma_ptrs(void __iomem *port_mmio,
989 			     struct mv_host_priv *hpriv,
990 			     struct mv_port_priv *pp)
991 {
992 	u32 index;
993 
994 	/*
995 	 * initialize request queue
996 	 */
997 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
998 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
999 
1000 	WARN_ON(pp->crqb_dma & 0x3ff);
1001 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1002 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1003 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1004 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1005 
1006 	/*
1007 	 * initialize response queue
1008 	 */
1009 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1010 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1011 
1012 	WARN_ON(pp->crpb_dma & 0xff);
1013 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1014 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1015 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1016 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1017 }
1018 
1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1020 {
1021 	/*
1022 	 * When writing to the main_irq_mask in hardware,
1023 	 * we must ensure exclusivity between the interrupt coalescing bits
1024 	 * and the corresponding individual port DONE_IRQ bits.
1025 	 *
1026 	 * Note that this register is really an "IRQ enable" register,
1027 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1028 	 */
1029 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1030 		mask &= ~DONE_IRQ_0_3;
1031 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1032 		mask &= ~DONE_IRQ_4_7;
1033 	writelfl(mask, hpriv->main_irq_mask_addr);
1034 }
1035 
1036 static void mv_set_main_irq_mask(struct ata_host *host,
1037 				 u32 disable_bits, u32 enable_bits)
1038 {
1039 	struct mv_host_priv *hpriv = host->private_data;
1040 	u32 old_mask, new_mask;
1041 
1042 	old_mask = hpriv->main_irq_mask;
1043 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1044 	if (new_mask != old_mask) {
1045 		hpriv->main_irq_mask = new_mask;
1046 		mv_write_main_irq_mask(new_mask, hpriv);
1047 	}
1048 }
1049 
1050 static void mv_enable_port_irqs(struct ata_port *ap,
1051 				     unsigned int port_bits)
1052 {
1053 	unsigned int shift, hardport, port = ap->port_no;
1054 	u32 disable_bits, enable_bits;
1055 
1056 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1057 
1058 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1059 	enable_bits  = port_bits << shift;
1060 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1061 }
1062 
1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1064 					  void __iomem *port_mmio,
1065 					  unsigned int port_irqs)
1066 {
1067 	struct mv_host_priv *hpriv = ap->host->private_data;
1068 	int hardport = mv_hardport_from_port(ap->port_no);
1069 	void __iomem *hc_mmio = mv_hc_base_from_port(
1070 				mv_host_base(ap->host), ap->port_no);
1071 	u32 hc_irq_cause;
1072 
1073 	/* clear EDMA event indicators, if any */
1074 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1075 
1076 	/* clear pending irq events */
1077 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1078 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1079 
1080 	/* clear FIS IRQ Cause */
1081 	if (IS_GEN_IIE(hpriv))
1082 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1083 
1084 	mv_enable_port_irqs(ap, port_irqs);
1085 }
1086 
1087 static void mv_set_irq_coalescing(struct ata_host *host,
1088 				  unsigned int count, unsigned int usecs)
1089 {
1090 	struct mv_host_priv *hpriv = host->private_data;
1091 	void __iomem *mmio = hpriv->base, *hc_mmio;
1092 	u32 coal_enable = 0;
1093 	unsigned long flags;
1094 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1095 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1096 							ALL_PORTS_COAL_DONE;
1097 
1098 	/* Disable IRQ coalescing if either threshold is zero */
1099 	if (!usecs || !count) {
1100 		clks = count = 0;
1101 	} else {
1102 		/* Respect maximum limits of the hardware */
1103 		clks = usecs * COAL_CLOCKS_PER_USEC;
1104 		if (clks > MAX_COAL_TIME_THRESHOLD)
1105 			clks = MAX_COAL_TIME_THRESHOLD;
1106 		if (count > MAX_COAL_IO_COUNT)
1107 			count = MAX_COAL_IO_COUNT;
1108 	}
1109 
1110 	spin_lock_irqsave(&host->lock, flags);
1111 	mv_set_main_irq_mask(host, coal_disable, 0);
1112 
1113 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1114 		/*
1115 		 * GEN_II/GEN_IIE with dual host controllers:
1116 		 * one set of global thresholds for the entire chip.
1117 		 */
1118 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1119 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1120 		/* clear leftover coal IRQ bit */
1121 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1122 		if (count)
1123 			coal_enable = ALL_PORTS_COAL_DONE;
1124 		clks = count = 0; /* force clearing of regular regs below */
1125 	}
1126 
1127 	/*
1128 	 * All chips: independent thresholds for each HC on the chip.
1129 	 */
1130 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1131 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1132 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1133 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1134 	if (count)
1135 		coal_enable |= PORTS_0_3_COAL_DONE;
1136 	if (is_dual_hc) {
1137 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1138 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1139 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1140 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1141 		if (count)
1142 			coal_enable |= PORTS_4_7_COAL_DONE;
1143 	}
1144 
1145 	mv_set_main_irq_mask(host, 0, coal_enable);
1146 	spin_unlock_irqrestore(&host->lock, flags);
1147 }
1148 
1149 /*
1150  *      mv_start_edma - Enable eDMA engine
1151  *      @pp: port private data
1152  *
1153  *      Verify the local cache of the eDMA state is accurate with a
1154  *      WARN_ON.
1155  *
1156  *      LOCKING:
1157  *      Inherited from caller.
1158  */
1159 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1160 			 struct mv_port_priv *pp, u8 protocol)
1161 {
1162 	int want_ncq = (protocol == ATA_PROT_NCQ);
1163 
1164 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1165 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1166 		if (want_ncq != using_ncq)
1167 			mv_stop_edma(ap);
1168 	}
1169 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1170 		struct mv_host_priv *hpriv = ap->host->private_data;
1171 
1172 		mv_edma_cfg(ap, want_ncq, 1);
1173 
1174 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1175 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1176 
1177 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1178 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1179 	}
1180 }
1181 
1182 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1183 {
1184 	void __iomem *port_mmio = mv_ap_base(ap);
1185 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1186 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1187 	int i;
1188 
1189 	/*
1190 	 * Wait for the EDMA engine to finish transactions in progress.
1191 	 * No idea what a good "timeout" value might be, but measurements
1192 	 * indicate that it often requires hundreds of microseconds
1193 	 * with two drives in-use.  So we use the 15msec value above
1194 	 * as a rough guess at what even more drives might require.
1195 	 */
1196 	for (i = 0; i < timeout; ++i) {
1197 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1198 		if ((edma_stat & empty_idle) == empty_idle)
1199 			break;
1200 		udelay(per_loop);
1201 	}
1202 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1203 }
1204 
1205 /**
1206  *      mv_stop_edma_engine - Disable eDMA engine
1207  *      @port_mmio: io base address
1208  *
1209  *      LOCKING:
1210  *      Inherited from caller.
1211  */
1212 static int mv_stop_edma_engine(void __iomem *port_mmio)
1213 {
1214 	int i;
1215 
1216 	/* Disable eDMA.  The disable bit auto clears. */
1217 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1218 
1219 	/* Wait for the chip to confirm eDMA is off. */
1220 	for (i = 10000; i > 0; i--) {
1221 		u32 reg = readl(port_mmio + EDMA_CMD);
1222 		if (!(reg & EDMA_EN))
1223 			return 0;
1224 		udelay(10);
1225 	}
1226 	return -EIO;
1227 }
1228 
1229 static int mv_stop_edma(struct ata_port *ap)
1230 {
1231 	void __iomem *port_mmio = mv_ap_base(ap);
1232 	struct mv_port_priv *pp = ap->private_data;
1233 	int err = 0;
1234 
1235 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1236 		return 0;
1237 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1238 	mv_wait_for_edma_empty_idle(ap);
1239 	if (mv_stop_edma_engine(port_mmio)) {
1240 		ata_port_err(ap, "Unable to stop eDMA\n");
1241 		err = -EIO;
1242 	}
1243 	mv_edma_cfg(ap, 0, 0);
1244 	return err;
1245 }
1246 
1247 #ifdef ATA_DEBUG
1248 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1249 {
1250 	int b, w;
1251 	for (b = 0; b < bytes; ) {
1252 		DPRINTK("%p: ", start + b);
1253 		for (w = 0; b < bytes && w < 4; w++) {
1254 			printk("%08x ", readl(start + b));
1255 			b += sizeof(u32);
1256 		}
1257 		printk("\n");
1258 	}
1259 }
1260 #endif
1261 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1262 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1263 {
1264 #ifdef ATA_DEBUG
1265 	int b, w;
1266 	u32 dw;
1267 	for (b = 0; b < bytes; ) {
1268 		DPRINTK("%02x: ", b);
1269 		for (w = 0; b < bytes && w < 4; w++) {
1270 			(void) pci_read_config_dword(pdev, b, &dw);
1271 			printk("%08x ", dw);
1272 			b += sizeof(u32);
1273 		}
1274 		printk("\n");
1275 	}
1276 #endif
1277 }
1278 #endif
1279 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1280 			     struct pci_dev *pdev)
1281 {
1282 #ifdef ATA_DEBUG
1283 	void __iomem *hc_base = mv_hc_base(mmio_base,
1284 					   port >> MV_PORT_HC_SHIFT);
1285 	void __iomem *port_base;
1286 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1287 
1288 	if (0 > port) {
1289 		start_hc = start_port = 0;
1290 		num_ports = 8;		/* shld be benign for 4 port devs */
1291 		num_hcs = 2;
1292 	} else {
1293 		start_hc = port >> MV_PORT_HC_SHIFT;
1294 		start_port = port;
1295 		num_ports = num_hcs = 1;
1296 	}
1297 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1298 		num_ports > 1 ? num_ports - 1 : start_port);
1299 
1300 	if (NULL != pdev) {
1301 		DPRINTK("PCI config space regs:\n");
1302 		mv_dump_pci_cfg(pdev, 0x68);
1303 	}
1304 	DPRINTK("PCI regs:\n");
1305 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1306 	mv_dump_mem(mmio_base+0xd00, 0x34);
1307 	mv_dump_mem(mmio_base+0xf00, 0x4);
1308 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1309 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1310 		hc_base = mv_hc_base(mmio_base, hc);
1311 		DPRINTK("HC regs (HC %i):\n", hc);
1312 		mv_dump_mem(hc_base, 0x1c);
1313 	}
1314 	for (p = start_port; p < start_port + num_ports; p++) {
1315 		port_base = mv_port_base(mmio_base, p);
1316 		DPRINTK("EDMA regs (port %i):\n", p);
1317 		mv_dump_mem(port_base, 0x54);
1318 		DPRINTK("SATA regs (port %i):\n", p);
1319 		mv_dump_mem(port_base+0x300, 0x60);
1320 	}
1321 #endif
1322 }
1323 
1324 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1325 {
1326 	unsigned int ofs;
1327 
1328 	switch (sc_reg_in) {
1329 	case SCR_STATUS:
1330 	case SCR_CONTROL:
1331 	case SCR_ERROR:
1332 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1333 		break;
1334 	case SCR_ACTIVE:
1335 		ofs = SATA_ACTIVE;   /* active is not with the others */
1336 		break;
1337 	default:
1338 		ofs = 0xffffffffU;
1339 		break;
1340 	}
1341 	return ofs;
1342 }
1343 
1344 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1345 {
1346 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1347 
1348 	if (ofs != 0xffffffffU) {
1349 		*val = readl(mv_ap_base(link->ap) + ofs);
1350 		return 0;
1351 	} else
1352 		return -EINVAL;
1353 }
1354 
1355 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1356 {
1357 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1358 
1359 	if (ofs != 0xffffffffU) {
1360 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1361 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1362 		if (sc_reg_in == SCR_CONTROL) {
1363 			/*
1364 			 * Workaround for 88SX60x1 FEr SATA#26:
1365 			 *
1366 			 * COMRESETs have to take care not to accidentally
1367 			 * put the drive to sleep when writing SCR_CONTROL.
1368 			 * Setting bits 12..15 prevents this problem.
1369 			 *
1370 			 * So if we see an outbound COMMRESET, set those bits.
1371 			 * Ditto for the followup write that clears the reset.
1372 			 *
1373 			 * The proprietary driver does this for
1374 			 * all chip versions, and so do we.
1375 			 */
1376 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1377 				val |= 0xf000;
1378 
1379 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1380 				void __iomem *lp_phy_addr =
1381 					mv_ap_base(link->ap) + LP_PHY_CTL;
1382 				/*
1383 				 * Set PHY speed according to SControl speed.
1384 				 */
1385 				u32 lp_phy_val =
1386 					LP_PHY_CTL_PIN_PU_PLL |
1387 					LP_PHY_CTL_PIN_PU_RX  |
1388 					LP_PHY_CTL_PIN_PU_TX;
1389 
1390 				if ((val & 0xf0) != 0x10)
1391 					lp_phy_val |=
1392 						LP_PHY_CTL_GEN_TX_3G |
1393 						LP_PHY_CTL_GEN_RX_3G;
1394 
1395 				writelfl(lp_phy_val, lp_phy_addr);
1396 			}
1397 		}
1398 		writelfl(val, addr);
1399 		return 0;
1400 	} else
1401 		return -EINVAL;
1402 }
1403 
1404 static void mv6_dev_config(struct ata_device *adev)
1405 {
1406 	/*
1407 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1408 	 *
1409 	 * Gen-II does not support NCQ over a port multiplier
1410 	 *  (no FIS-based switching).
1411 	 */
1412 	if (adev->flags & ATA_DFLAG_NCQ) {
1413 		if (sata_pmp_attached(adev->link->ap)) {
1414 			adev->flags &= ~ATA_DFLAG_NCQ;
1415 			ata_dev_info(adev,
1416 				"NCQ disabled for command-based switching\n");
1417 		}
1418 	}
1419 }
1420 
1421 static int mv_qc_defer(struct ata_queued_cmd *qc)
1422 {
1423 	struct ata_link *link = qc->dev->link;
1424 	struct ata_port *ap = link->ap;
1425 	struct mv_port_priv *pp = ap->private_data;
1426 
1427 	/*
1428 	 * Don't allow new commands if we're in a delayed EH state
1429 	 * for NCQ and/or FIS-based switching.
1430 	 */
1431 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1432 		return ATA_DEFER_PORT;
1433 
1434 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1435 	 * can run concurrently.
1436 	 * set excl_link when we want to send a PIO command in DMA mode
1437 	 * or a non-NCQ command in NCQ mode.
1438 	 * When we receive a command from that link, and there are no
1439 	 * outstanding commands, mark a flag to clear excl_link and let
1440 	 * the command go through.
1441 	 */
1442 	if (unlikely(ap->excl_link)) {
1443 		if (link == ap->excl_link) {
1444 			if (ap->nr_active_links)
1445 				return ATA_DEFER_PORT;
1446 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1447 			return 0;
1448 		} else
1449 			return ATA_DEFER_PORT;
1450 	}
1451 
1452 	/*
1453 	 * If the port is completely idle, then allow the new qc.
1454 	 */
1455 	if (ap->nr_active_links == 0)
1456 		return 0;
1457 
1458 	/*
1459 	 * The port is operating in host queuing mode (EDMA) with NCQ
1460 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1461 	 * queueing multiple DMA commands but libata core currently
1462 	 * doesn't allow it.
1463 	 */
1464 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1465 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1466 		if (ata_is_ncq(qc->tf.protocol))
1467 			return 0;
1468 		else {
1469 			ap->excl_link = link;
1470 			return ATA_DEFER_PORT;
1471 		}
1472 	}
1473 
1474 	return ATA_DEFER_PORT;
1475 }
1476 
1477 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1478 {
1479 	struct mv_port_priv *pp = ap->private_data;
1480 	void __iomem *port_mmio;
1481 
1482 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1483 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1484 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1485 
1486 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1487 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1488 
1489 	if (want_fbs) {
1490 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1491 		ltmode = *old_ltmode | LTMODE_BIT8;
1492 		if (want_ncq)
1493 			haltcond &= ~EDMA_ERR_DEV;
1494 		else
1495 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1496 	} else {
1497 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1498 	}
1499 
1500 	port_mmio = mv_ap_base(ap);
1501 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1502 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1503 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1504 }
1505 
1506 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1507 {
1508 	struct mv_host_priv *hpriv = ap->host->private_data;
1509 	u32 old, new;
1510 
1511 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1512 	old = readl(hpriv->base + GPIO_PORT_CTL);
1513 	if (want_ncq)
1514 		new = old | (1 << 22);
1515 	else
1516 		new = old & ~(1 << 22);
1517 	if (new != old)
1518 		writel(new, hpriv->base + GPIO_PORT_CTL);
1519 }
1520 
1521 /*
1522  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1523  *	@ap: Port being initialized
1524  *
1525  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1526  *
1527  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1528  *	of basic DMA on the GEN_IIE versions of the chips.
1529  *
1530  *	This bit survives EDMA resets, and must be set for basic DMA
1531  *	to function, and should be cleared when EDMA is active.
1532  */
1533 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1534 {
1535 	struct mv_port_priv *pp = ap->private_data;
1536 	u32 new, *old = &pp->cached.unknown_rsvd;
1537 
1538 	if (enable_bmdma)
1539 		new = *old | 1;
1540 	else
1541 		new = *old & ~1;
1542 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1543 }
1544 
1545 /*
1546  * SOC chips have an issue whereby the HDD LEDs don't always blink
1547  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1548  * of the SOC takes care of it, generating a steady blink rate when
1549  * any drive on the chip is active.
1550  *
1551  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1552  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1553  *
1554  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1555  * LED operation works then, and provides better (more accurate) feedback.
1556  *
1557  * Note that this code assumes that an SOC never has more than one HC onboard.
1558  */
1559 static void mv_soc_led_blink_enable(struct ata_port *ap)
1560 {
1561 	struct ata_host *host = ap->host;
1562 	struct mv_host_priv *hpriv = host->private_data;
1563 	void __iomem *hc_mmio;
1564 	u32 led_ctrl;
1565 
1566 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1567 		return;
1568 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1569 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1570 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1571 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1572 }
1573 
1574 static void mv_soc_led_blink_disable(struct ata_port *ap)
1575 {
1576 	struct ata_host *host = ap->host;
1577 	struct mv_host_priv *hpriv = host->private_data;
1578 	void __iomem *hc_mmio;
1579 	u32 led_ctrl;
1580 	unsigned int port;
1581 
1582 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1583 		return;
1584 
1585 	/* disable led-blink only if no ports are using NCQ */
1586 	for (port = 0; port < hpriv->n_ports; port++) {
1587 		struct ata_port *this_ap = host->ports[port];
1588 		struct mv_port_priv *pp = this_ap->private_data;
1589 
1590 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1591 			return;
1592 	}
1593 
1594 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1595 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1596 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1597 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1598 }
1599 
1600 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1601 {
1602 	u32 cfg;
1603 	struct mv_port_priv *pp    = ap->private_data;
1604 	struct mv_host_priv *hpriv = ap->host->private_data;
1605 	void __iomem *port_mmio    = mv_ap_base(ap);
1606 
1607 	/* set up non-NCQ EDMA configuration */
1608 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1609 	pp->pp_flags &=
1610 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1611 
1612 	if (IS_GEN_I(hpriv))
1613 		cfg |= (1 << 8);	/* enab config burst size mask */
1614 
1615 	else if (IS_GEN_II(hpriv)) {
1616 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1617 		mv_60x1_errata_sata25(ap, want_ncq);
1618 
1619 	} else if (IS_GEN_IIE(hpriv)) {
1620 		int want_fbs = sata_pmp_attached(ap);
1621 		/*
1622 		 * Possible future enhancement:
1623 		 *
1624 		 * The chip can use FBS with non-NCQ, if we allow it,
1625 		 * But first we need to have the error handling in place
1626 		 * for this mode (datasheet section 7.3.15.4.2.3).
1627 		 * So disallow non-NCQ FBS for now.
1628 		 */
1629 		want_fbs &= want_ncq;
1630 
1631 		mv_config_fbs(ap, want_ncq, want_fbs);
1632 
1633 		if (want_fbs) {
1634 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1635 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1636 		}
1637 
1638 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1639 		if (want_edma) {
1640 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1641 			if (!IS_SOC(hpriv))
1642 				cfg |= (1 << 18); /* enab early completion */
1643 		}
1644 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1645 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1646 		mv_bmdma_enable_iie(ap, !want_edma);
1647 
1648 		if (IS_SOC(hpriv)) {
1649 			if (want_ncq)
1650 				mv_soc_led_blink_enable(ap);
1651 			else
1652 				mv_soc_led_blink_disable(ap);
1653 		}
1654 	}
1655 
1656 	if (want_ncq) {
1657 		cfg |= EDMA_CFG_NCQ;
1658 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1659 	}
1660 
1661 	writelfl(cfg, port_mmio + EDMA_CFG);
1662 }
1663 
1664 static void mv_port_free_dma_mem(struct ata_port *ap)
1665 {
1666 	struct mv_host_priv *hpriv = ap->host->private_data;
1667 	struct mv_port_priv *pp = ap->private_data;
1668 	int tag;
1669 
1670 	if (pp->crqb) {
1671 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1672 		pp->crqb = NULL;
1673 	}
1674 	if (pp->crpb) {
1675 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1676 		pp->crpb = NULL;
1677 	}
1678 	/*
1679 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1680 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1681 	 */
1682 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1683 		if (pp->sg_tbl[tag]) {
1684 			if (tag == 0 || !IS_GEN_I(hpriv))
1685 				dma_pool_free(hpriv->sg_tbl_pool,
1686 					      pp->sg_tbl[tag],
1687 					      pp->sg_tbl_dma[tag]);
1688 			pp->sg_tbl[tag] = NULL;
1689 		}
1690 	}
1691 }
1692 
1693 /**
1694  *      mv_port_start - Port specific init/start routine.
1695  *      @ap: ATA channel to manipulate
1696  *
1697  *      Allocate and point to DMA memory, init port private memory,
1698  *      zero indices.
1699  *
1700  *      LOCKING:
1701  *      Inherited from caller.
1702  */
1703 static int mv_port_start(struct ata_port *ap)
1704 {
1705 	struct device *dev = ap->host->dev;
1706 	struct mv_host_priv *hpriv = ap->host->private_data;
1707 	struct mv_port_priv *pp;
1708 	unsigned long flags;
1709 	int tag;
1710 
1711 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1712 	if (!pp)
1713 		return -ENOMEM;
1714 	ap->private_data = pp;
1715 
1716 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1717 	if (!pp->crqb)
1718 		return -ENOMEM;
1719 
1720 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1721 	if (!pp->crpb)
1722 		goto out_port_free_dma_mem;
1723 
1724 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1725 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1726 		ap->flags |= ATA_FLAG_AN;
1727 	/*
1728 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1729 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1730 	 */
1731 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1732 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1733 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1734 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1735 			if (!pp->sg_tbl[tag])
1736 				goto out_port_free_dma_mem;
1737 		} else {
1738 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1739 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1740 		}
1741 	}
1742 
1743 	spin_lock_irqsave(ap->lock, flags);
1744 	mv_save_cached_regs(ap);
1745 	mv_edma_cfg(ap, 0, 0);
1746 	spin_unlock_irqrestore(ap->lock, flags);
1747 
1748 	return 0;
1749 
1750 out_port_free_dma_mem:
1751 	mv_port_free_dma_mem(ap);
1752 	return -ENOMEM;
1753 }
1754 
1755 /**
1756  *      mv_port_stop - Port specific cleanup/stop routine.
1757  *      @ap: ATA channel to manipulate
1758  *
1759  *      Stop DMA, cleanup port memory.
1760  *
1761  *      LOCKING:
1762  *      This routine uses the host lock to protect the DMA stop.
1763  */
1764 static void mv_port_stop(struct ata_port *ap)
1765 {
1766 	unsigned long flags;
1767 
1768 	spin_lock_irqsave(ap->lock, flags);
1769 	mv_stop_edma(ap);
1770 	mv_enable_port_irqs(ap, 0);
1771 	spin_unlock_irqrestore(ap->lock, flags);
1772 	mv_port_free_dma_mem(ap);
1773 }
1774 
1775 /**
1776  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1777  *      @qc: queued command whose SG list to source from
1778  *
1779  *      Populate the SG list and mark the last entry.
1780  *
1781  *      LOCKING:
1782  *      Inherited from caller.
1783  */
1784 static void mv_fill_sg(struct ata_queued_cmd *qc)
1785 {
1786 	struct mv_port_priv *pp = qc->ap->private_data;
1787 	struct scatterlist *sg;
1788 	struct mv_sg *mv_sg, *last_sg = NULL;
1789 	unsigned int si;
1790 
1791 	mv_sg = pp->sg_tbl[qc->hw_tag];
1792 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1793 		dma_addr_t addr = sg_dma_address(sg);
1794 		u32 sg_len = sg_dma_len(sg);
1795 
1796 		while (sg_len) {
1797 			u32 offset = addr & 0xffff;
1798 			u32 len = sg_len;
1799 
1800 			if (offset + len > 0x10000)
1801 				len = 0x10000 - offset;
1802 
1803 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1804 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1805 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1806 			mv_sg->reserved = 0;
1807 
1808 			sg_len -= len;
1809 			addr += len;
1810 
1811 			last_sg = mv_sg;
1812 			mv_sg++;
1813 		}
1814 	}
1815 
1816 	if (likely(last_sg))
1817 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1818 	mb(); /* ensure data structure is visible to the chipset */
1819 }
1820 
1821 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1822 {
1823 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1824 		(last ? CRQB_CMD_LAST : 0);
1825 	*cmdw = cpu_to_le16(tmp);
1826 }
1827 
1828 /**
1829  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1830  *	@ap: Port associated with this ATA transaction.
1831  *
1832  *	We need this only for ATAPI bmdma transactions,
1833  *	as otherwise we experience spurious interrupts
1834  *	after libata-sff handles the bmdma interrupts.
1835  */
1836 static void mv_sff_irq_clear(struct ata_port *ap)
1837 {
1838 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1839 }
1840 
1841 /**
1842  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1843  *	@qc: queued command to check for chipset/DMA compatibility.
1844  *
1845  *	The bmdma engines cannot handle speculative data sizes
1846  *	(bytecount under/over flow).  So only allow DMA for
1847  *	data transfer commands with known data sizes.
1848  *
1849  *	LOCKING:
1850  *	Inherited from caller.
1851  */
1852 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1853 {
1854 	struct scsi_cmnd *scmd = qc->scsicmd;
1855 
1856 	if (scmd) {
1857 		switch (scmd->cmnd[0]) {
1858 		case READ_6:
1859 		case READ_10:
1860 		case READ_12:
1861 		case WRITE_6:
1862 		case WRITE_10:
1863 		case WRITE_12:
1864 		case GPCMD_READ_CD:
1865 		case GPCMD_SEND_DVD_STRUCTURE:
1866 		case GPCMD_SEND_CUE_SHEET:
1867 			return 0; /* DMA is safe */
1868 		}
1869 	}
1870 	return -EOPNOTSUPP; /* use PIO instead */
1871 }
1872 
1873 /**
1874  *	mv_bmdma_setup - Set up BMDMA transaction
1875  *	@qc: queued command to prepare DMA for.
1876  *
1877  *	LOCKING:
1878  *	Inherited from caller.
1879  */
1880 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1881 {
1882 	struct ata_port *ap = qc->ap;
1883 	void __iomem *port_mmio = mv_ap_base(ap);
1884 	struct mv_port_priv *pp = ap->private_data;
1885 
1886 	mv_fill_sg(qc);
1887 
1888 	/* clear all DMA cmd bits */
1889 	writel(0, port_mmio + BMDMA_CMD);
1890 
1891 	/* load PRD table addr. */
1892 	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1893 		port_mmio + BMDMA_PRD_HIGH);
1894 	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1895 		port_mmio + BMDMA_PRD_LOW);
1896 
1897 	/* issue r/w command */
1898 	ap->ops->sff_exec_command(ap, &qc->tf);
1899 }
1900 
1901 /**
1902  *	mv_bmdma_start - Start a BMDMA transaction
1903  *	@qc: queued command to start DMA on.
1904  *
1905  *	LOCKING:
1906  *	Inherited from caller.
1907  */
1908 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1909 {
1910 	struct ata_port *ap = qc->ap;
1911 	void __iomem *port_mmio = mv_ap_base(ap);
1912 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1913 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1914 
1915 	/* start host DMA transaction */
1916 	writelfl(cmd, port_mmio + BMDMA_CMD);
1917 }
1918 
1919 /**
1920  *	mv_bmdma_stop_ap - Stop BMDMA transfer
1921  *	@ap: port to stop
1922  *
1923  *	Clears the ATA_DMA_START flag in the bmdma control register
1924  *
1925  *	LOCKING:
1926  *	Inherited from caller.
1927  */
1928 static void mv_bmdma_stop_ap(struct ata_port *ap)
1929 {
1930 	void __iomem *port_mmio = mv_ap_base(ap);
1931 	u32 cmd;
1932 
1933 	/* clear start/stop bit */
1934 	cmd = readl(port_mmio + BMDMA_CMD);
1935 	if (cmd & ATA_DMA_START) {
1936 		cmd &= ~ATA_DMA_START;
1937 		writelfl(cmd, port_mmio + BMDMA_CMD);
1938 
1939 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1940 		ata_sff_dma_pause(ap);
1941 	}
1942 }
1943 
1944 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1945 {
1946 	mv_bmdma_stop_ap(qc->ap);
1947 }
1948 
1949 /**
1950  *	mv_bmdma_status - Read BMDMA status
1951  *	@ap: port for which to retrieve DMA status.
1952  *
1953  *	Read and return equivalent of the sff BMDMA status register.
1954  *
1955  *	LOCKING:
1956  *	Inherited from caller.
1957  */
1958 static u8 mv_bmdma_status(struct ata_port *ap)
1959 {
1960 	void __iomem *port_mmio = mv_ap_base(ap);
1961 	u32 reg, status;
1962 
1963 	/*
1964 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1965 	 * and the ATA_DMA_INTR bit doesn't exist.
1966 	 */
1967 	reg = readl(port_mmio + BMDMA_STATUS);
1968 	if (reg & ATA_DMA_ACTIVE)
1969 		status = ATA_DMA_ACTIVE;
1970 	else if (reg & ATA_DMA_ERR)
1971 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1972 	else {
1973 		/*
1974 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1975 		 * this does _not_ mean the device is "done".
1976 		 * So we should not yet be signalling ATA_DMA_INTR
1977 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1978 		 */
1979 		mv_bmdma_stop_ap(ap);
1980 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1981 			status = 0;
1982 		else
1983 			status = ATA_DMA_INTR;
1984 	}
1985 	return status;
1986 }
1987 
1988 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1989 {
1990 	struct ata_taskfile *tf = &qc->tf;
1991 	/*
1992 	 * Workaround for 88SX60x1 FEr SATA#24.
1993 	 *
1994 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1995 	 * Note that READs are unaffected.
1996 	 *
1997 	 * It's not clear if this errata really means "4K bytes",
1998 	 * or if it always happens for multi_count > 7
1999 	 * regardless of device sector_size.
2000 	 *
2001 	 * So, for safety, any write with multi_count > 7
2002 	 * gets converted here into a regular PIO write instead:
2003 	 */
2004 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2005 		if (qc->dev->multi_count > 7) {
2006 			switch (tf->command) {
2007 			case ATA_CMD_WRITE_MULTI:
2008 				tf->command = ATA_CMD_PIO_WRITE;
2009 				break;
2010 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2011 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2012 				fallthrough;
2013 			case ATA_CMD_WRITE_MULTI_EXT:
2014 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2015 				break;
2016 			}
2017 		}
2018 	}
2019 }
2020 
2021 /**
2022  *      mv_qc_prep - Host specific command preparation.
2023  *      @qc: queued command to prepare
2024  *
2025  *      This routine simply redirects to the general purpose routine
2026  *      if command is not DMA.  Else, it handles prep of the CRQB
2027  *      (command request block), does some sanity checking, and calls
2028  *      the SG load routine.
2029  *
2030  *      LOCKING:
2031  *      Inherited from caller.
2032  */
2033 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2034 {
2035 	struct ata_port *ap = qc->ap;
2036 	struct mv_port_priv *pp = ap->private_data;
2037 	__le16 *cw;
2038 	struct ata_taskfile *tf = &qc->tf;
2039 	u16 flags = 0;
2040 	unsigned in_index;
2041 
2042 	switch (tf->protocol) {
2043 	case ATA_PROT_DMA:
2044 		if (tf->command == ATA_CMD_DSM)
2045 			return AC_ERR_OK;
2046 		fallthrough;
2047 	case ATA_PROT_NCQ:
2048 		break;	/* continue below */
2049 	case ATA_PROT_PIO:
2050 		mv_rw_multi_errata_sata24(qc);
2051 		return AC_ERR_OK;
2052 	default:
2053 		return AC_ERR_OK;
2054 	}
2055 
2056 	/* Fill in command request block
2057 	 */
2058 	if (!(tf->flags & ATA_TFLAG_WRITE))
2059 		flags |= CRQB_FLAG_READ;
2060 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2061 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2062 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2063 
2064 	/* get current queue index from software */
2065 	in_index = pp->req_idx;
2066 
2067 	pp->crqb[in_index].sg_addr =
2068 		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2069 	pp->crqb[in_index].sg_addr_hi =
2070 		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2071 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2072 
2073 	cw = &pp->crqb[in_index].ata_cmd[0];
2074 
2075 	/* Sadly, the CRQB cannot accommodate all registers--there are
2076 	 * only 11 bytes...so we must pick and choose required
2077 	 * registers based on the command.  So, we drop feature and
2078 	 * hob_feature for [RW] DMA commands, but they are needed for
2079 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2080 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2081 	 */
2082 	switch (tf->command) {
2083 	case ATA_CMD_READ:
2084 	case ATA_CMD_READ_EXT:
2085 	case ATA_CMD_WRITE:
2086 	case ATA_CMD_WRITE_EXT:
2087 	case ATA_CMD_WRITE_FUA_EXT:
2088 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2089 		break;
2090 	case ATA_CMD_FPDMA_READ:
2091 	case ATA_CMD_FPDMA_WRITE:
2092 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2093 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2094 		break;
2095 	default:
2096 		/* The only other commands EDMA supports in non-queued and
2097 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2098 		 * of which are defined/used by Linux.  If we get here, this
2099 		 * driver needs work.
2100 		 */
2101 		ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2102 				tf->command);
2103 		return AC_ERR_INVALID;
2104 	}
2105 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2106 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2107 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2108 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2109 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2110 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2111 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2112 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2113 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2114 
2115 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2116 		return AC_ERR_OK;
2117 	mv_fill_sg(qc);
2118 
2119 	return AC_ERR_OK;
2120 }
2121 
2122 /**
2123  *      mv_qc_prep_iie - Host specific command preparation.
2124  *      @qc: queued command to prepare
2125  *
2126  *      This routine simply redirects to the general purpose routine
2127  *      if command is not DMA.  Else, it handles prep of the CRQB
2128  *      (command request block), does some sanity checking, and calls
2129  *      the SG load routine.
2130  *
2131  *      LOCKING:
2132  *      Inherited from caller.
2133  */
2134 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2135 {
2136 	struct ata_port *ap = qc->ap;
2137 	struct mv_port_priv *pp = ap->private_data;
2138 	struct mv_crqb_iie *crqb;
2139 	struct ata_taskfile *tf = &qc->tf;
2140 	unsigned in_index;
2141 	u32 flags = 0;
2142 
2143 	if ((tf->protocol != ATA_PROT_DMA) &&
2144 	    (tf->protocol != ATA_PROT_NCQ))
2145 		return AC_ERR_OK;
2146 	if (tf->command == ATA_CMD_DSM)
2147 		return AC_ERR_OK;  /* use bmdma for this */
2148 
2149 	/* Fill in Gen IIE command request block */
2150 	if (!(tf->flags & ATA_TFLAG_WRITE))
2151 		flags |= CRQB_FLAG_READ;
2152 
2153 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2154 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2155 	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2156 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2157 
2158 	/* get current queue index from software */
2159 	in_index = pp->req_idx;
2160 
2161 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2162 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2163 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2164 	crqb->flags = cpu_to_le32(flags);
2165 
2166 	crqb->ata_cmd[0] = cpu_to_le32(
2167 			(tf->command << 16) |
2168 			(tf->feature << 24)
2169 		);
2170 	crqb->ata_cmd[1] = cpu_to_le32(
2171 			(tf->lbal << 0) |
2172 			(tf->lbam << 8) |
2173 			(tf->lbah << 16) |
2174 			(tf->device << 24)
2175 		);
2176 	crqb->ata_cmd[2] = cpu_to_le32(
2177 			(tf->hob_lbal << 0) |
2178 			(tf->hob_lbam << 8) |
2179 			(tf->hob_lbah << 16) |
2180 			(tf->hob_feature << 24)
2181 		);
2182 	crqb->ata_cmd[3] = cpu_to_le32(
2183 			(tf->nsect << 0) |
2184 			(tf->hob_nsect << 8)
2185 		);
2186 
2187 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2188 		return AC_ERR_OK;
2189 	mv_fill_sg(qc);
2190 
2191 	return AC_ERR_OK;
2192 }
2193 
2194 /**
2195  *	mv_sff_check_status - fetch device status, if valid
2196  *	@ap: ATA port to fetch status from
2197  *
2198  *	When using command issue via mv_qc_issue_fis(),
2199  *	the initial ATA_BUSY state does not show up in the
2200  *	ATA status (shadow) register.  This can confuse libata!
2201  *
2202  *	So we have a hook here to fake ATA_BUSY for that situation,
2203  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2204  *
2205  *	The rest of the time, it simply returns the ATA status register.
2206  */
2207 static u8 mv_sff_check_status(struct ata_port *ap)
2208 {
2209 	u8 stat = ioread8(ap->ioaddr.status_addr);
2210 	struct mv_port_priv *pp = ap->private_data;
2211 
2212 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2213 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2214 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2215 		else
2216 			stat = ATA_BUSY;
2217 	}
2218 	return stat;
2219 }
2220 
2221 /**
2222  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2223  *	@ap: ATA port to send a FIS
2224  *	@fis: fis to be sent
2225  *	@nwords: number of 32-bit words in the fis
2226  */
2227 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2228 {
2229 	void __iomem *port_mmio = mv_ap_base(ap);
2230 	u32 ifctl, old_ifctl, ifstat;
2231 	int i, timeout = 200, final_word = nwords - 1;
2232 
2233 	/* Initiate FIS transmission mode */
2234 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2235 	ifctl = 0x100 | (old_ifctl & 0xf);
2236 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2237 
2238 	/* Send all words of the FIS except for the final word */
2239 	for (i = 0; i < final_word; ++i)
2240 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2241 
2242 	/* Flag end-of-transmission, and then send the final word */
2243 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2244 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2245 
2246 	/*
2247 	 * Wait for FIS transmission to complete.
2248 	 * This typically takes just a single iteration.
2249 	 */
2250 	do {
2251 		ifstat = readl(port_mmio + SATA_IFSTAT);
2252 	} while (!(ifstat & 0x1000) && --timeout);
2253 
2254 	/* Restore original port configuration */
2255 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2256 
2257 	/* See if it worked */
2258 	if ((ifstat & 0x3000) != 0x1000) {
2259 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2260 			      __func__, ifstat);
2261 		return AC_ERR_OTHER;
2262 	}
2263 	return 0;
2264 }
2265 
2266 /**
2267  *	mv_qc_issue_fis - Issue a command directly as a FIS
2268  *	@qc: queued command to start
2269  *
2270  *	Note that the ATA shadow registers are not updated
2271  *	after command issue, so the device will appear "READY"
2272  *	if polled, even while it is BUSY processing the command.
2273  *
2274  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2275  *
2276  *	Note: we don't get updated shadow regs on *completion*
2277  *	of non-data commands. So avoid sending them via this function,
2278  *	as they will appear to have completed immediately.
2279  *
2280  *	GEN_IIE has special registers that we could get the result tf from,
2281  *	but earlier chipsets do not.  For now, we ignore those registers.
2282  */
2283 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2284 {
2285 	struct ata_port *ap = qc->ap;
2286 	struct mv_port_priv *pp = ap->private_data;
2287 	struct ata_link *link = qc->dev->link;
2288 	u32 fis[5];
2289 	int err = 0;
2290 
2291 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2292 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2293 	if (err)
2294 		return err;
2295 
2296 	switch (qc->tf.protocol) {
2297 	case ATAPI_PROT_PIO:
2298 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2299 		fallthrough;
2300 	case ATAPI_PROT_NODATA:
2301 		ap->hsm_task_state = HSM_ST_FIRST;
2302 		break;
2303 	case ATA_PROT_PIO:
2304 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2305 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2306 			ap->hsm_task_state = HSM_ST_FIRST;
2307 		else
2308 			ap->hsm_task_state = HSM_ST;
2309 		break;
2310 	default:
2311 		ap->hsm_task_state = HSM_ST_LAST;
2312 		break;
2313 	}
2314 
2315 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2316 		ata_sff_queue_pio_task(link, 0);
2317 	return 0;
2318 }
2319 
2320 /**
2321  *      mv_qc_issue - Initiate a command to the host
2322  *      @qc: queued command to start
2323  *
2324  *      This routine simply redirects to the general purpose routine
2325  *      if command is not DMA.  Else, it sanity checks our local
2326  *      caches of the request producer/consumer indices then enables
2327  *      DMA and bumps the request producer index.
2328  *
2329  *      LOCKING:
2330  *      Inherited from caller.
2331  */
2332 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2333 {
2334 	static int limit_warnings = 10;
2335 	struct ata_port *ap = qc->ap;
2336 	void __iomem *port_mmio = mv_ap_base(ap);
2337 	struct mv_port_priv *pp = ap->private_data;
2338 	u32 in_index;
2339 	unsigned int port_irqs;
2340 
2341 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2342 
2343 	switch (qc->tf.protocol) {
2344 	case ATA_PROT_DMA:
2345 		if (qc->tf.command == ATA_CMD_DSM) {
2346 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2347 				return AC_ERR_OTHER;
2348 			break;  /* use bmdma for this */
2349 		}
2350 		fallthrough;
2351 	case ATA_PROT_NCQ:
2352 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2353 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2354 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2355 
2356 		/* Write the request in pointer to kick the EDMA to life */
2357 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2358 					port_mmio + EDMA_REQ_Q_IN_PTR);
2359 		return 0;
2360 
2361 	case ATA_PROT_PIO:
2362 		/*
2363 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2364 		 *
2365 		 * Someday, we might implement special polling workarounds
2366 		 * for these, but it all seems rather unnecessary since we
2367 		 * normally use only DMA for commands which transfer more
2368 		 * than a single block of data.
2369 		 *
2370 		 * Much of the time, this could just work regardless.
2371 		 * So for now, just log the incident, and allow the attempt.
2372 		 */
2373 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2374 			--limit_warnings;
2375 			ata_link_warn(qc->dev->link, DRV_NAME
2376 				      ": attempting PIO w/multiple DRQ: "
2377 				      "this may fail due to h/w errata\n");
2378 		}
2379 		fallthrough;
2380 	case ATA_PROT_NODATA:
2381 	case ATAPI_PROT_PIO:
2382 	case ATAPI_PROT_NODATA:
2383 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2384 			qc->tf.flags |= ATA_TFLAG_POLLING;
2385 		break;
2386 	}
2387 
2388 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2389 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2390 	else
2391 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2392 
2393 	/*
2394 	 * We're about to send a non-EDMA capable command to the
2395 	 * port.  Turn off EDMA so there won't be problems accessing
2396 	 * shadow block, etc registers.
2397 	 */
2398 	mv_stop_edma(ap);
2399 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2400 	mv_pmp_select(ap, qc->dev->link->pmp);
2401 
2402 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2403 		struct mv_host_priv *hpriv = ap->host->private_data;
2404 		/*
2405 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2406 		 *
2407 		 * After any NCQ error, the READ_LOG_EXT command
2408 		 * from libata-eh *must* use mv_qc_issue_fis().
2409 		 * Otherwise it might fail, due to chip errata.
2410 		 *
2411 		 * Rather than special-case it, we'll just *always*
2412 		 * use this method here for READ_LOG_EXT, making for
2413 		 * easier testing.
2414 		 */
2415 		if (IS_GEN_II(hpriv))
2416 			return mv_qc_issue_fis(qc);
2417 	}
2418 	return ata_bmdma_qc_issue(qc);
2419 }
2420 
2421 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2422 {
2423 	struct mv_port_priv *pp = ap->private_data;
2424 	struct ata_queued_cmd *qc;
2425 
2426 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2427 		return NULL;
2428 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2429 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2430 		return qc;
2431 	return NULL;
2432 }
2433 
2434 static void mv_pmp_error_handler(struct ata_port *ap)
2435 {
2436 	unsigned int pmp, pmp_map;
2437 	struct mv_port_priv *pp = ap->private_data;
2438 
2439 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2440 		/*
2441 		 * Perform NCQ error analysis on failed PMPs
2442 		 * before we freeze the port entirely.
2443 		 *
2444 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2445 		 */
2446 		pmp_map = pp->delayed_eh_pmp_map;
2447 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2448 		for (pmp = 0; pmp_map != 0; pmp++) {
2449 			unsigned int this_pmp = (1 << pmp);
2450 			if (pmp_map & this_pmp) {
2451 				struct ata_link *link = &ap->pmp_link[pmp];
2452 				pmp_map &= ~this_pmp;
2453 				ata_eh_analyze_ncq_error(link);
2454 			}
2455 		}
2456 		ata_port_freeze(ap);
2457 	}
2458 	sata_pmp_error_handler(ap);
2459 }
2460 
2461 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2462 {
2463 	void __iomem *port_mmio = mv_ap_base(ap);
2464 
2465 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2466 }
2467 
2468 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2469 {
2470 	unsigned int pmp;
2471 
2472 	/*
2473 	 * Initialize EH info for PMPs which saw device errors
2474 	 */
2475 	for (pmp = 0; pmp_map != 0; pmp++) {
2476 		unsigned int this_pmp = (1 << pmp);
2477 		if (pmp_map & this_pmp) {
2478 			struct ata_link *link = &ap->pmp_link[pmp];
2479 			struct ata_eh_info *ehi = &link->eh_info;
2480 
2481 			pmp_map &= ~this_pmp;
2482 			ata_ehi_clear_desc(ehi);
2483 			ata_ehi_push_desc(ehi, "dev err");
2484 			ehi->err_mask |= AC_ERR_DEV;
2485 			ehi->action |= ATA_EH_RESET;
2486 			ata_link_abort(link);
2487 		}
2488 	}
2489 }
2490 
2491 static int mv_req_q_empty(struct ata_port *ap)
2492 {
2493 	void __iomem *port_mmio = mv_ap_base(ap);
2494 	u32 in_ptr, out_ptr;
2495 
2496 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2497 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2498 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2499 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2500 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2501 }
2502 
2503 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2504 {
2505 	struct mv_port_priv *pp = ap->private_data;
2506 	int failed_links;
2507 	unsigned int old_map, new_map;
2508 
2509 	/*
2510 	 * Device error during FBS+NCQ operation:
2511 	 *
2512 	 * Set a port flag to prevent further I/O being enqueued.
2513 	 * Leave the EDMA running to drain outstanding commands from this port.
2514 	 * Perform the post-mortem/EH only when all responses are complete.
2515 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2516 	 */
2517 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2518 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2519 		pp->delayed_eh_pmp_map = 0;
2520 	}
2521 	old_map = pp->delayed_eh_pmp_map;
2522 	new_map = old_map | mv_get_err_pmp_map(ap);
2523 
2524 	if (old_map != new_map) {
2525 		pp->delayed_eh_pmp_map = new_map;
2526 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2527 	}
2528 	failed_links = hweight16(new_map);
2529 
2530 	ata_port_info(ap,
2531 		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2532 		      __func__, pp->delayed_eh_pmp_map,
2533 		      ap->qc_active, failed_links,
2534 		      ap->nr_active_links);
2535 
2536 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2537 		mv_process_crpb_entries(ap, pp);
2538 		mv_stop_edma(ap);
2539 		mv_eh_freeze(ap);
2540 		ata_port_info(ap, "%s: done\n", __func__);
2541 		return 1;	/* handled */
2542 	}
2543 	ata_port_info(ap, "%s: waiting\n", __func__);
2544 	return 1;	/* handled */
2545 }
2546 
2547 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2548 {
2549 	/*
2550 	 * Possible future enhancement:
2551 	 *
2552 	 * FBS+non-NCQ operation is not yet implemented.
2553 	 * See related notes in mv_edma_cfg().
2554 	 *
2555 	 * Device error during FBS+non-NCQ operation:
2556 	 *
2557 	 * We need to snapshot the shadow registers for each failed command.
2558 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2559 	 */
2560 	return 0;	/* not handled */
2561 }
2562 
2563 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2564 {
2565 	struct mv_port_priv *pp = ap->private_data;
2566 
2567 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2568 		return 0;	/* EDMA was not active: not handled */
2569 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2570 		return 0;	/* FBS was not active: not handled */
2571 
2572 	if (!(edma_err_cause & EDMA_ERR_DEV))
2573 		return 0;	/* non DEV error: not handled */
2574 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2575 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2576 		return 0;	/* other problems: not handled */
2577 
2578 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2579 		/*
2580 		 * EDMA should NOT have self-disabled for this case.
2581 		 * If it did, then something is wrong elsewhere,
2582 		 * and we cannot handle it here.
2583 		 */
2584 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2585 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2586 				      __func__, edma_err_cause, pp->pp_flags);
2587 			return 0; /* not handled */
2588 		}
2589 		return mv_handle_fbs_ncq_dev_err(ap);
2590 	} else {
2591 		/*
2592 		 * EDMA should have self-disabled for this case.
2593 		 * If it did not, then something is wrong elsewhere,
2594 		 * and we cannot handle it here.
2595 		 */
2596 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2597 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2598 				      __func__, edma_err_cause, pp->pp_flags);
2599 			return 0; /* not handled */
2600 		}
2601 		return mv_handle_fbs_non_ncq_dev_err(ap);
2602 	}
2603 	return 0;	/* not handled */
2604 }
2605 
2606 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2607 {
2608 	struct ata_eh_info *ehi = &ap->link.eh_info;
2609 	char *when = "idle";
2610 
2611 	ata_ehi_clear_desc(ehi);
2612 	if (edma_was_enabled) {
2613 		when = "EDMA enabled";
2614 	} else {
2615 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2616 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2617 			when = "polling";
2618 	}
2619 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2620 	ehi->err_mask |= AC_ERR_OTHER;
2621 	ehi->action   |= ATA_EH_RESET;
2622 	ata_port_freeze(ap);
2623 }
2624 
2625 /**
2626  *      mv_err_intr - Handle error interrupts on the port
2627  *      @ap: ATA channel to manipulate
2628  *
2629  *      Most cases require a full reset of the chip's state machine,
2630  *      which also performs a COMRESET.
2631  *      Also, if the port disabled DMA, update our cached copy to match.
2632  *
2633  *      LOCKING:
2634  *      Inherited from caller.
2635  */
2636 static void mv_err_intr(struct ata_port *ap)
2637 {
2638 	void __iomem *port_mmio = mv_ap_base(ap);
2639 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2640 	u32 fis_cause = 0;
2641 	struct mv_port_priv *pp = ap->private_data;
2642 	struct mv_host_priv *hpriv = ap->host->private_data;
2643 	unsigned int action = 0, err_mask = 0;
2644 	struct ata_eh_info *ehi = &ap->link.eh_info;
2645 	struct ata_queued_cmd *qc;
2646 	int abort = 0;
2647 
2648 	/*
2649 	 * Read and clear the SError and err_cause bits.
2650 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2651 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2652 	 */
2653 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2654 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2655 
2656 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2657 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2658 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2659 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2660 	}
2661 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2662 
2663 	if (edma_err_cause & EDMA_ERR_DEV) {
2664 		/*
2665 		 * Device errors during FIS-based switching operation
2666 		 * require special handling.
2667 		 */
2668 		if (mv_handle_dev_err(ap, edma_err_cause))
2669 			return;
2670 	}
2671 
2672 	qc = mv_get_active_qc(ap);
2673 	ata_ehi_clear_desc(ehi);
2674 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2675 			  edma_err_cause, pp->pp_flags);
2676 
2677 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2678 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2679 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2680 			u32 ec = edma_err_cause &
2681 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2682 			sata_async_notification(ap);
2683 			if (!ec)
2684 				return; /* Just an AN; no need for the nukes */
2685 			ata_ehi_push_desc(ehi, "SDB notify");
2686 		}
2687 	}
2688 	/*
2689 	 * All generations share these EDMA error cause bits:
2690 	 */
2691 	if (edma_err_cause & EDMA_ERR_DEV) {
2692 		err_mask |= AC_ERR_DEV;
2693 		action |= ATA_EH_RESET;
2694 		ata_ehi_push_desc(ehi, "dev error");
2695 	}
2696 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2697 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2698 			EDMA_ERR_INTRL_PAR)) {
2699 		err_mask |= AC_ERR_ATA_BUS;
2700 		action |= ATA_EH_RESET;
2701 		ata_ehi_push_desc(ehi, "parity error");
2702 	}
2703 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2704 		ata_ehi_hotplugged(ehi);
2705 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2706 			"dev disconnect" : "dev connect");
2707 		action |= ATA_EH_RESET;
2708 	}
2709 
2710 	/*
2711 	 * Gen-I has a different SELF_DIS bit,
2712 	 * different FREEZE bits, and no SERR bit:
2713 	 */
2714 	if (IS_GEN_I(hpriv)) {
2715 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2716 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2717 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2718 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2719 		}
2720 	} else {
2721 		eh_freeze_mask = EDMA_EH_FREEZE;
2722 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2723 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2724 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2725 		}
2726 		if (edma_err_cause & EDMA_ERR_SERR) {
2727 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2728 			err_mask |= AC_ERR_ATA_BUS;
2729 			action |= ATA_EH_RESET;
2730 		}
2731 	}
2732 
2733 	if (!err_mask) {
2734 		err_mask = AC_ERR_OTHER;
2735 		action |= ATA_EH_RESET;
2736 	}
2737 
2738 	ehi->serror |= serr;
2739 	ehi->action |= action;
2740 
2741 	if (qc)
2742 		qc->err_mask |= err_mask;
2743 	else
2744 		ehi->err_mask |= err_mask;
2745 
2746 	if (err_mask == AC_ERR_DEV) {
2747 		/*
2748 		 * Cannot do ata_port_freeze() here,
2749 		 * because it would kill PIO access,
2750 		 * which is needed for further diagnosis.
2751 		 */
2752 		mv_eh_freeze(ap);
2753 		abort = 1;
2754 	} else if (edma_err_cause & eh_freeze_mask) {
2755 		/*
2756 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2757 		 */
2758 		ata_port_freeze(ap);
2759 	} else {
2760 		abort = 1;
2761 	}
2762 
2763 	if (abort) {
2764 		if (qc)
2765 			ata_link_abort(qc->dev->link);
2766 		else
2767 			ata_port_abort(ap);
2768 	}
2769 }
2770 
2771 static bool mv_process_crpb_response(struct ata_port *ap,
2772 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2773 {
2774 	u8 ata_status;
2775 	u16 edma_status = le16_to_cpu(response->flags);
2776 
2777 	/*
2778 	 * edma_status from a response queue entry:
2779 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2780 	 *   MSB is saved ATA status from command completion.
2781 	 */
2782 	if (!ncq_enabled) {
2783 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2784 		if (err_cause) {
2785 			/*
2786 			 * Error will be seen/handled by
2787 			 * mv_err_intr().  So do nothing at all here.
2788 			 */
2789 			return false;
2790 		}
2791 	}
2792 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2793 	if (!ac_err_mask(ata_status))
2794 		return true;
2795 	/* else: leave it for mv_err_intr() */
2796 	return false;
2797 }
2798 
2799 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2800 {
2801 	void __iomem *port_mmio = mv_ap_base(ap);
2802 	struct mv_host_priv *hpriv = ap->host->private_data;
2803 	u32 in_index;
2804 	bool work_done = false;
2805 	u32 done_mask = 0;
2806 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2807 
2808 	/* Get the hardware queue position index */
2809 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2810 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2811 
2812 	/* Process new responses from since the last time we looked */
2813 	while (in_index != pp->resp_idx) {
2814 		unsigned int tag;
2815 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2816 
2817 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2818 
2819 		if (IS_GEN_I(hpriv)) {
2820 			/* 50xx: no NCQ, only one command active at a time */
2821 			tag = ap->link.active_tag;
2822 		} else {
2823 			/* Gen II/IIE: get command tag from CRPB entry */
2824 			tag = le16_to_cpu(response->id) & 0x1f;
2825 		}
2826 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2827 			done_mask |= 1 << tag;
2828 		work_done = true;
2829 	}
2830 
2831 	if (work_done) {
2832 		ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2833 
2834 		/* Update the software queue position index in hardware */
2835 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2836 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2837 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2838 	}
2839 }
2840 
2841 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2842 {
2843 	struct mv_port_priv *pp;
2844 	int edma_was_enabled;
2845 
2846 	/*
2847 	 * Grab a snapshot of the EDMA_EN flag setting,
2848 	 * so that we have a consistent view for this port,
2849 	 * even if something we call of our routines changes it.
2850 	 */
2851 	pp = ap->private_data;
2852 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2853 	/*
2854 	 * Process completed CRPB response(s) before other events.
2855 	 */
2856 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2857 		mv_process_crpb_entries(ap, pp);
2858 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2859 			mv_handle_fbs_ncq_dev_err(ap);
2860 	}
2861 	/*
2862 	 * Handle chip-reported errors, or continue on to handle PIO.
2863 	 */
2864 	if (unlikely(port_cause & ERR_IRQ)) {
2865 		mv_err_intr(ap);
2866 	} else if (!edma_was_enabled) {
2867 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2868 		if (qc)
2869 			ata_bmdma_port_intr(ap, qc);
2870 		else
2871 			mv_unexpected_intr(ap, edma_was_enabled);
2872 	}
2873 }
2874 
2875 /**
2876  *      mv_host_intr - Handle all interrupts on the given host controller
2877  *      @host: host specific structure
2878  *      @main_irq_cause: Main interrupt cause register for the chip.
2879  *
2880  *      LOCKING:
2881  *      Inherited from caller.
2882  */
2883 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2884 {
2885 	struct mv_host_priv *hpriv = host->private_data;
2886 	void __iomem *mmio = hpriv->base, *hc_mmio;
2887 	unsigned int handled = 0, port;
2888 
2889 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2890 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2891 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2892 
2893 	for (port = 0; port < hpriv->n_ports; port++) {
2894 		struct ata_port *ap = host->ports[port];
2895 		unsigned int p, shift, hardport, port_cause;
2896 
2897 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2898 		/*
2899 		 * Each hc within the host has its own hc_irq_cause register,
2900 		 * where the interrupting ports bits get ack'd.
2901 		 */
2902 		if (hardport == 0) {	/* first port on this hc ? */
2903 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2904 			u32 port_mask, ack_irqs;
2905 			/*
2906 			 * Skip this entire hc if nothing pending for any ports
2907 			 */
2908 			if (!hc_cause) {
2909 				port += MV_PORTS_PER_HC - 1;
2910 				continue;
2911 			}
2912 			/*
2913 			 * We don't need/want to read the hc_irq_cause register,
2914 			 * because doing so hurts performance, and
2915 			 * main_irq_cause already gives us everything we need.
2916 			 *
2917 			 * But we do have to *write* to the hc_irq_cause to ack
2918 			 * the ports that we are handling this time through.
2919 			 *
2920 			 * This requires that we create a bitmap for those
2921 			 * ports which interrupted us, and use that bitmap
2922 			 * to ack (only) those ports via hc_irq_cause.
2923 			 */
2924 			ack_irqs = 0;
2925 			if (hc_cause & PORTS_0_3_COAL_DONE)
2926 				ack_irqs = HC_COAL_IRQ;
2927 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2928 				if ((port + p) >= hpriv->n_ports)
2929 					break;
2930 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2931 				if (hc_cause & port_mask)
2932 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2933 			}
2934 			hc_mmio = mv_hc_base_from_port(mmio, port);
2935 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2936 			handled = 1;
2937 		}
2938 		/*
2939 		 * Handle interrupts signalled for this port:
2940 		 */
2941 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2942 		if (port_cause)
2943 			mv_port_intr(ap, port_cause);
2944 	}
2945 	return handled;
2946 }
2947 
2948 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2949 {
2950 	struct mv_host_priv *hpriv = host->private_data;
2951 	struct ata_port *ap;
2952 	struct ata_queued_cmd *qc;
2953 	struct ata_eh_info *ehi;
2954 	unsigned int i, err_mask, printed = 0;
2955 	u32 err_cause;
2956 
2957 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2958 
2959 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2960 
2961 	DPRINTK("All regs @ PCI error\n");
2962 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2963 
2964 	writelfl(0, mmio + hpriv->irq_cause_offset);
2965 
2966 	for (i = 0; i < host->n_ports; i++) {
2967 		ap = host->ports[i];
2968 		if (!ata_link_offline(&ap->link)) {
2969 			ehi = &ap->link.eh_info;
2970 			ata_ehi_clear_desc(ehi);
2971 			if (!printed++)
2972 				ata_ehi_push_desc(ehi,
2973 					"PCI err cause 0x%08x", err_cause);
2974 			err_mask = AC_ERR_HOST_BUS;
2975 			ehi->action = ATA_EH_RESET;
2976 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2977 			if (qc)
2978 				qc->err_mask |= err_mask;
2979 			else
2980 				ehi->err_mask |= err_mask;
2981 
2982 			ata_port_freeze(ap);
2983 		}
2984 	}
2985 	return 1;	/* handled */
2986 }
2987 
2988 /**
2989  *      mv_interrupt - Main interrupt event handler
2990  *      @irq: unused
2991  *      @dev_instance: private data; in this case the host structure
2992  *
2993  *      Read the read only register to determine if any host
2994  *      controllers have pending interrupts.  If so, call lower level
2995  *      routine to handle.  Also check for PCI errors which are only
2996  *      reported here.
2997  *
2998  *      LOCKING:
2999  *      This routine holds the host lock while processing pending
3000  *      interrupts.
3001  */
3002 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3003 {
3004 	struct ata_host *host = dev_instance;
3005 	struct mv_host_priv *hpriv = host->private_data;
3006 	unsigned int handled = 0;
3007 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3008 	u32 main_irq_cause, pending_irqs;
3009 
3010 	spin_lock(&host->lock);
3011 
3012 	/* for MSI:  block new interrupts while in here */
3013 	if (using_msi)
3014 		mv_write_main_irq_mask(0, hpriv);
3015 
3016 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3017 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3018 	/*
3019 	 * Deal with cases where we either have nothing pending, or have read
3020 	 * a bogus register value which can indicate HW removal or PCI fault.
3021 	 */
3022 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3023 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3024 			handled = mv_pci_error(host, hpriv->base);
3025 		else
3026 			handled = mv_host_intr(host, pending_irqs);
3027 	}
3028 
3029 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3030 	if (using_msi)
3031 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3032 
3033 	spin_unlock(&host->lock);
3034 
3035 	return IRQ_RETVAL(handled);
3036 }
3037 
3038 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3039 {
3040 	unsigned int ofs;
3041 
3042 	switch (sc_reg_in) {
3043 	case SCR_STATUS:
3044 	case SCR_ERROR:
3045 	case SCR_CONTROL:
3046 		ofs = sc_reg_in * sizeof(u32);
3047 		break;
3048 	default:
3049 		ofs = 0xffffffffU;
3050 		break;
3051 	}
3052 	return ofs;
3053 }
3054 
3055 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3056 {
3057 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3058 	void __iomem *mmio = hpriv->base;
3059 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3060 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3061 
3062 	if (ofs != 0xffffffffU) {
3063 		*val = readl(addr + ofs);
3064 		return 0;
3065 	} else
3066 		return -EINVAL;
3067 }
3068 
3069 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3070 {
3071 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3072 	void __iomem *mmio = hpriv->base;
3073 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3074 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3075 
3076 	if (ofs != 0xffffffffU) {
3077 		writelfl(val, addr + ofs);
3078 		return 0;
3079 	} else
3080 		return -EINVAL;
3081 }
3082 
3083 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3084 {
3085 	struct pci_dev *pdev = to_pci_dev(host->dev);
3086 	int early_5080;
3087 
3088 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3089 
3090 	if (!early_5080) {
3091 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3092 		tmp |= (1 << 0);
3093 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3094 	}
3095 
3096 	mv_reset_pci_bus(host, mmio);
3097 }
3098 
3099 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3100 {
3101 	writel(0x0fcfffff, mmio + FLASH_CTL);
3102 }
3103 
3104 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3105 			   void __iomem *mmio)
3106 {
3107 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3108 	u32 tmp;
3109 
3110 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3111 
3112 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3113 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3114 }
3115 
3116 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3117 {
3118 	u32 tmp;
3119 
3120 	writel(0, mmio + GPIO_PORT_CTL);
3121 
3122 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3123 
3124 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3125 	tmp |= ~(1 << 0);
3126 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3127 }
3128 
3129 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3130 			   unsigned int port)
3131 {
3132 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3133 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3134 	u32 tmp;
3135 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3136 
3137 	if (fix_apm_sq) {
3138 		tmp = readl(phy_mmio + MV5_LTMODE);
3139 		tmp |= (1 << 19);
3140 		writel(tmp, phy_mmio + MV5_LTMODE);
3141 
3142 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3143 		tmp &= ~0x3;
3144 		tmp |= 0x1;
3145 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3146 	}
3147 
3148 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3149 	tmp &= ~mask;
3150 	tmp |= hpriv->signal[port].pre;
3151 	tmp |= hpriv->signal[port].amps;
3152 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3153 }
3154 
3155 
3156 #undef ZERO
3157 #define ZERO(reg) writel(0, port_mmio + (reg))
3158 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3159 			     unsigned int port)
3160 {
3161 	void __iomem *port_mmio = mv_port_base(mmio, port);
3162 
3163 	mv_reset_channel(hpriv, mmio, port);
3164 
3165 	ZERO(0x028);	/* command */
3166 	writel(0x11f, port_mmio + EDMA_CFG);
3167 	ZERO(0x004);	/* timer */
3168 	ZERO(0x008);	/* irq err cause */
3169 	ZERO(0x00c);	/* irq err mask */
3170 	ZERO(0x010);	/* rq bah */
3171 	ZERO(0x014);	/* rq inp */
3172 	ZERO(0x018);	/* rq outp */
3173 	ZERO(0x01c);	/* respq bah */
3174 	ZERO(0x024);	/* respq outp */
3175 	ZERO(0x020);	/* respq inp */
3176 	ZERO(0x02c);	/* test control */
3177 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3178 }
3179 #undef ZERO
3180 
3181 #define ZERO(reg) writel(0, hc_mmio + (reg))
3182 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3183 			unsigned int hc)
3184 {
3185 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3186 	u32 tmp;
3187 
3188 	ZERO(0x00c);
3189 	ZERO(0x010);
3190 	ZERO(0x014);
3191 	ZERO(0x018);
3192 
3193 	tmp = readl(hc_mmio + 0x20);
3194 	tmp &= 0x1c1c1c1c;
3195 	tmp |= 0x03030303;
3196 	writel(tmp, hc_mmio + 0x20);
3197 }
3198 #undef ZERO
3199 
3200 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3201 			unsigned int n_hc)
3202 {
3203 	unsigned int hc, port;
3204 
3205 	for (hc = 0; hc < n_hc; hc++) {
3206 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3207 			mv5_reset_hc_port(hpriv, mmio,
3208 					  (hc * MV_PORTS_PER_HC) + port);
3209 
3210 		mv5_reset_one_hc(hpriv, mmio, hc);
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 #undef ZERO
3217 #define ZERO(reg) writel(0, mmio + (reg))
3218 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3219 {
3220 	struct mv_host_priv *hpriv = host->private_data;
3221 	u32 tmp;
3222 
3223 	tmp = readl(mmio + MV_PCI_MODE);
3224 	tmp &= 0xff00ffff;
3225 	writel(tmp, mmio + MV_PCI_MODE);
3226 
3227 	ZERO(MV_PCI_DISC_TIMER);
3228 	ZERO(MV_PCI_MSI_TRIGGER);
3229 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3230 	ZERO(MV_PCI_SERR_MASK);
3231 	ZERO(hpriv->irq_cause_offset);
3232 	ZERO(hpriv->irq_mask_offset);
3233 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3234 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3235 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3236 	ZERO(MV_PCI_ERR_COMMAND);
3237 }
3238 #undef ZERO
3239 
3240 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3241 {
3242 	u32 tmp;
3243 
3244 	mv5_reset_flash(hpriv, mmio);
3245 
3246 	tmp = readl(mmio + GPIO_PORT_CTL);
3247 	tmp &= 0x3;
3248 	tmp |= (1 << 5) | (1 << 6);
3249 	writel(tmp, mmio + GPIO_PORT_CTL);
3250 }
3251 
3252 /*
3253  *      mv6_reset_hc - Perform the 6xxx global soft reset
3254  *      @mmio: base address of the HBA
3255  *
3256  *      This routine only applies to 6xxx parts.
3257  *
3258  *      LOCKING:
3259  *      Inherited from caller.
3260  */
3261 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3262 			unsigned int n_hc)
3263 {
3264 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3265 	int i, rc = 0;
3266 	u32 t;
3267 
3268 	/* Following procedure defined in PCI "main command and status
3269 	 * register" table.
3270 	 */
3271 	t = readl(reg);
3272 	writel(t | STOP_PCI_MASTER, reg);
3273 
3274 	for (i = 0; i < 1000; i++) {
3275 		udelay(1);
3276 		t = readl(reg);
3277 		if (PCI_MASTER_EMPTY & t)
3278 			break;
3279 	}
3280 	if (!(PCI_MASTER_EMPTY & t)) {
3281 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3282 		rc = 1;
3283 		goto done;
3284 	}
3285 
3286 	/* set reset */
3287 	i = 5;
3288 	do {
3289 		writel(t | GLOB_SFT_RST, reg);
3290 		t = readl(reg);
3291 		udelay(1);
3292 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3293 
3294 	if (!(GLOB_SFT_RST & t)) {
3295 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3296 		rc = 1;
3297 		goto done;
3298 	}
3299 
3300 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3301 	i = 5;
3302 	do {
3303 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3304 		t = readl(reg);
3305 		udelay(1);
3306 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3307 
3308 	if (GLOB_SFT_RST & t) {
3309 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3310 		rc = 1;
3311 	}
3312 done:
3313 	return rc;
3314 }
3315 
3316 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3317 			   void __iomem *mmio)
3318 {
3319 	void __iomem *port_mmio;
3320 	u32 tmp;
3321 
3322 	tmp = readl(mmio + RESET_CFG);
3323 	if ((tmp & (1 << 0)) == 0) {
3324 		hpriv->signal[idx].amps = 0x7 << 8;
3325 		hpriv->signal[idx].pre = 0x1 << 5;
3326 		return;
3327 	}
3328 
3329 	port_mmio = mv_port_base(mmio, idx);
3330 	tmp = readl(port_mmio + PHY_MODE2);
3331 
3332 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3333 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3334 }
3335 
3336 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3337 {
3338 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3339 }
3340 
3341 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3342 			   unsigned int port)
3343 {
3344 	void __iomem *port_mmio = mv_port_base(mmio, port);
3345 
3346 	u32 hp_flags = hpriv->hp_flags;
3347 	int fix_phy_mode2 =
3348 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349 	int fix_phy_mode4 =
3350 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3351 	u32 m2, m3;
3352 
3353 	if (fix_phy_mode2) {
3354 		m2 = readl(port_mmio + PHY_MODE2);
3355 		m2 &= ~(1 << 16);
3356 		m2 |= (1 << 31);
3357 		writel(m2, port_mmio + PHY_MODE2);
3358 
3359 		udelay(200);
3360 
3361 		m2 = readl(port_mmio + PHY_MODE2);
3362 		m2 &= ~((1 << 16) | (1 << 31));
3363 		writel(m2, port_mmio + PHY_MODE2);
3364 
3365 		udelay(200);
3366 	}
3367 
3368 	/*
3369 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3370 	 * Achieves better receiver noise performance than the h/w default:
3371 	 */
3372 	m3 = readl(port_mmio + PHY_MODE3);
3373 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3374 
3375 	/* Guideline 88F5182 (GL# SATA-S11) */
3376 	if (IS_SOC(hpriv))
3377 		m3 &= ~0x1c;
3378 
3379 	if (fix_phy_mode4) {
3380 		u32 m4 = readl(port_mmio + PHY_MODE4);
3381 		/*
3382 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3383 		 * For earlier chipsets, force only the internal config field
3384 		 *  (workaround for errata FEr SATA#10 part 1).
3385 		 */
3386 		if (IS_GEN_IIE(hpriv))
3387 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3388 		else
3389 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3390 		writel(m4, port_mmio + PHY_MODE4);
3391 	}
3392 	/*
3393 	 * Workaround for 60x1-B2 errata SATA#13:
3394 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3395 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3396 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3397 	 */
3398 	writel(m3, port_mmio + PHY_MODE3);
3399 
3400 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3401 	m2 = readl(port_mmio + PHY_MODE2);
3402 
3403 	m2 &= ~MV_M2_PREAMP_MASK;
3404 	m2 |= hpriv->signal[port].amps;
3405 	m2 |= hpriv->signal[port].pre;
3406 	m2 &= ~(1 << 16);
3407 
3408 	/* according to mvSata 3.6.1, some IIE values are fixed */
3409 	if (IS_GEN_IIE(hpriv)) {
3410 		m2 &= ~0xC30FF01F;
3411 		m2 |= 0x0000900F;
3412 	}
3413 
3414 	writel(m2, port_mmio + PHY_MODE2);
3415 }
3416 
3417 /* TODO: use the generic LED interface to configure the SATA Presence */
3418 /* & Acitivy LEDs on the board */
3419 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3420 				      void __iomem *mmio)
3421 {
3422 	return;
3423 }
3424 
3425 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3426 			   void __iomem *mmio)
3427 {
3428 	void __iomem *port_mmio;
3429 	u32 tmp;
3430 
3431 	port_mmio = mv_port_base(mmio, idx);
3432 	tmp = readl(port_mmio + PHY_MODE2);
3433 
3434 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3435 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3436 }
3437 
3438 #undef ZERO
3439 #define ZERO(reg) writel(0, port_mmio + (reg))
3440 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3441 					void __iomem *mmio, unsigned int port)
3442 {
3443 	void __iomem *port_mmio = mv_port_base(mmio, port);
3444 
3445 	mv_reset_channel(hpriv, mmio, port);
3446 
3447 	ZERO(0x028);		/* command */
3448 	writel(0x101f, port_mmio + EDMA_CFG);
3449 	ZERO(0x004);		/* timer */
3450 	ZERO(0x008);		/* irq err cause */
3451 	ZERO(0x00c);		/* irq err mask */
3452 	ZERO(0x010);		/* rq bah */
3453 	ZERO(0x014);		/* rq inp */
3454 	ZERO(0x018);		/* rq outp */
3455 	ZERO(0x01c);		/* respq bah */
3456 	ZERO(0x024);		/* respq outp */
3457 	ZERO(0x020);		/* respq inp */
3458 	ZERO(0x02c);		/* test control */
3459 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3460 }
3461 
3462 #undef ZERO
3463 
3464 #define ZERO(reg) writel(0, hc_mmio + (reg))
3465 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3466 				       void __iomem *mmio)
3467 {
3468 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3469 
3470 	ZERO(0x00c);
3471 	ZERO(0x010);
3472 	ZERO(0x014);
3473 
3474 }
3475 
3476 #undef ZERO
3477 
3478 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3479 				  void __iomem *mmio, unsigned int n_hc)
3480 {
3481 	unsigned int port;
3482 
3483 	for (port = 0; port < hpriv->n_ports; port++)
3484 		mv_soc_reset_hc_port(hpriv, mmio, port);
3485 
3486 	mv_soc_reset_one_hc(hpriv, mmio);
3487 
3488 	return 0;
3489 }
3490 
3491 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3492 				      void __iomem *mmio)
3493 {
3494 	return;
3495 }
3496 
3497 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3498 {
3499 	return;
3500 }
3501 
3502 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3503 				  void __iomem *mmio, unsigned int port)
3504 {
3505 	void __iomem *port_mmio = mv_port_base(mmio, port);
3506 	u32	reg;
3507 
3508 	reg = readl(port_mmio + PHY_MODE3);
3509 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3510 	reg |= (0x1 << 27);
3511 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3512 	reg |= (0x1 << 29);
3513 	writel(reg, port_mmio + PHY_MODE3);
3514 
3515 	reg = readl(port_mmio + PHY_MODE4);
3516 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3517 	reg |= (0x1 << 16);
3518 	writel(reg, port_mmio + PHY_MODE4);
3519 
3520 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3521 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3522 	reg |= 0x8;
3523 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3524 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3525 
3526 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3527 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3528 	reg |= 0x8;
3529 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3530 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3531 }
3532 
3533 /*
3534  *	soc_is_65 - check if the soc is 65 nano device
3535  *
3536  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3537  *	register, this register should contain non-zero value and it exists only
3538  *	in the 65 nano devices, when reading it from older devices we get 0.
3539  */
3540 static bool soc_is_65n(struct mv_host_priv *hpriv)
3541 {
3542 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3543 
3544 	if (readl(port0_mmio + PHYCFG_OFS))
3545 		return true;
3546 	return false;
3547 }
3548 
3549 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3550 {
3551 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3552 
3553 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3554 	if (want_gen2i)
3555 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3556 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3557 }
3558 
3559 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3560 			     unsigned int port_no)
3561 {
3562 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3563 
3564 	/*
3565 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3566 	 * (but doesn't say what the problem might be).  So we first try
3567 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3568 	 */
3569 	mv_stop_edma_engine(port_mmio);
3570 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3571 
3572 	if (!IS_GEN_I(hpriv)) {
3573 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3574 		mv_setup_ifcfg(port_mmio, 1);
3575 	}
3576 	/*
3577 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3578 	 * link, and physical layers.  It resets all SATA interface registers
3579 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3580 	 */
3581 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3582 	udelay(25);	/* allow reset propagation */
3583 	writelfl(0, port_mmio + EDMA_CMD);
3584 
3585 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3586 
3587 	if (IS_GEN_I(hpriv))
3588 		usleep_range(500, 1000);
3589 }
3590 
3591 static void mv_pmp_select(struct ata_port *ap, int pmp)
3592 {
3593 	if (sata_pmp_supported(ap)) {
3594 		void __iomem *port_mmio = mv_ap_base(ap);
3595 		u32 reg = readl(port_mmio + SATA_IFCTL);
3596 		int old = reg & 0xf;
3597 
3598 		if (old != pmp) {
3599 			reg = (reg & ~0xf) | pmp;
3600 			writelfl(reg, port_mmio + SATA_IFCTL);
3601 		}
3602 	}
3603 }
3604 
3605 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3606 				unsigned long deadline)
3607 {
3608 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3609 	return sata_std_hardreset(link, class, deadline);
3610 }
3611 
3612 static int mv_softreset(struct ata_link *link, unsigned int *class,
3613 				unsigned long deadline)
3614 {
3615 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3616 	return ata_sff_softreset(link, class, deadline);
3617 }
3618 
3619 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3620 			unsigned long deadline)
3621 {
3622 	struct ata_port *ap = link->ap;
3623 	struct mv_host_priv *hpriv = ap->host->private_data;
3624 	struct mv_port_priv *pp = ap->private_data;
3625 	void __iomem *mmio = hpriv->base;
3626 	int rc, attempts = 0, extra = 0;
3627 	u32 sstatus;
3628 	bool online;
3629 
3630 	mv_reset_channel(hpriv, mmio, ap->port_no);
3631 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3632 	pp->pp_flags &=
3633 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3634 
3635 	/* Workaround for errata FEr SATA#10 (part 2) */
3636 	do {
3637 		const unsigned long *timing =
3638 				sata_ehc_deb_timing(&link->eh_context);
3639 
3640 		rc = sata_link_hardreset(link, timing, deadline + extra,
3641 					 &online, NULL);
3642 		rc = online ? -EAGAIN : rc;
3643 		if (rc)
3644 			return rc;
3645 		sata_scr_read(link, SCR_STATUS, &sstatus);
3646 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3647 			/* Force 1.5gb/s link speed and try again */
3648 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3649 			if (time_after(jiffies + HZ, deadline))
3650 				extra = HZ; /* only extend it once, max */
3651 		}
3652 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3653 	mv_save_cached_regs(ap);
3654 	mv_edma_cfg(ap, 0, 0);
3655 
3656 	return rc;
3657 }
3658 
3659 static void mv_eh_freeze(struct ata_port *ap)
3660 {
3661 	mv_stop_edma(ap);
3662 	mv_enable_port_irqs(ap, 0);
3663 }
3664 
3665 static void mv_eh_thaw(struct ata_port *ap)
3666 {
3667 	struct mv_host_priv *hpriv = ap->host->private_data;
3668 	unsigned int port = ap->port_no;
3669 	unsigned int hardport = mv_hardport_from_port(port);
3670 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3671 	void __iomem *port_mmio = mv_ap_base(ap);
3672 	u32 hc_irq_cause;
3673 
3674 	/* clear EDMA errors on this port */
3675 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3676 
3677 	/* clear pending irq events */
3678 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3679 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3680 
3681 	mv_enable_port_irqs(ap, ERR_IRQ);
3682 }
3683 
3684 /**
3685  *      mv_port_init - Perform some early initialization on a single port.
3686  *      @port: libata data structure storing shadow register addresses
3687  *      @port_mmio: base address of the port
3688  *
3689  *      Initialize shadow register mmio addresses, clear outstanding
3690  *      interrupts on the port, and unmask interrupts for the future
3691  *      start of the port.
3692  *
3693  *      LOCKING:
3694  *      Inherited from caller.
3695  */
3696 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3697 {
3698 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3699 
3700 	/* PIO related setup
3701 	 */
3702 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3703 	port->error_addr =
3704 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3705 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3706 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3707 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3708 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3709 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3710 	port->status_addr =
3711 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3712 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3713 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3714 
3715 	/* Clear any currently outstanding port interrupt conditions */
3716 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3717 	writelfl(readl(serr), serr);
3718 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3719 
3720 	/* unmask all non-transient EDMA error interrupts */
3721 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3722 
3723 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3724 		readl(port_mmio + EDMA_CFG),
3725 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3726 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3727 }
3728 
3729 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3730 {
3731 	struct mv_host_priv *hpriv = host->private_data;
3732 	void __iomem *mmio = hpriv->base;
3733 	u32 reg;
3734 
3735 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3736 		return 0;	/* not PCI-X capable */
3737 	reg = readl(mmio + MV_PCI_MODE);
3738 	if ((reg & MV_PCI_MODE_MASK) == 0)
3739 		return 0;	/* conventional PCI mode */
3740 	return 1;	/* chip is in PCI-X mode */
3741 }
3742 
3743 static int mv_pci_cut_through_okay(struct ata_host *host)
3744 {
3745 	struct mv_host_priv *hpriv = host->private_data;
3746 	void __iomem *mmio = hpriv->base;
3747 	u32 reg;
3748 
3749 	if (!mv_in_pcix_mode(host)) {
3750 		reg = readl(mmio + MV_PCI_COMMAND);
3751 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3752 			return 0; /* not okay */
3753 	}
3754 	return 1; /* okay */
3755 }
3756 
3757 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3758 {
3759 	struct mv_host_priv *hpriv = host->private_data;
3760 	void __iomem *mmio = hpriv->base;
3761 
3762 	/* workaround for 60x1-B2 errata PCI#7 */
3763 	if (mv_in_pcix_mode(host)) {
3764 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3765 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3766 	}
3767 }
3768 
3769 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3770 {
3771 	struct pci_dev *pdev = to_pci_dev(host->dev);
3772 	struct mv_host_priv *hpriv = host->private_data;
3773 	u32 hp_flags = hpriv->hp_flags;
3774 
3775 	switch (board_idx) {
3776 	case chip_5080:
3777 		hpriv->ops = &mv5xxx_ops;
3778 		hp_flags |= MV_HP_GEN_I;
3779 
3780 		switch (pdev->revision) {
3781 		case 0x1:
3782 			hp_flags |= MV_HP_ERRATA_50XXB0;
3783 			break;
3784 		case 0x3:
3785 			hp_flags |= MV_HP_ERRATA_50XXB2;
3786 			break;
3787 		default:
3788 			dev_warn(&pdev->dev,
3789 				 "Applying 50XXB2 workarounds to unknown rev\n");
3790 			hp_flags |= MV_HP_ERRATA_50XXB2;
3791 			break;
3792 		}
3793 		break;
3794 
3795 	case chip_504x:
3796 	case chip_508x:
3797 		hpriv->ops = &mv5xxx_ops;
3798 		hp_flags |= MV_HP_GEN_I;
3799 
3800 		switch (pdev->revision) {
3801 		case 0x0:
3802 			hp_flags |= MV_HP_ERRATA_50XXB0;
3803 			break;
3804 		case 0x3:
3805 			hp_flags |= MV_HP_ERRATA_50XXB2;
3806 			break;
3807 		default:
3808 			dev_warn(&pdev->dev,
3809 				 "Applying B2 workarounds to unknown rev\n");
3810 			hp_flags |= MV_HP_ERRATA_50XXB2;
3811 			break;
3812 		}
3813 		break;
3814 
3815 	case chip_604x:
3816 	case chip_608x:
3817 		hpriv->ops = &mv6xxx_ops;
3818 		hp_flags |= MV_HP_GEN_II;
3819 
3820 		switch (pdev->revision) {
3821 		case 0x7:
3822 			mv_60x1b2_errata_pci7(host);
3823 			hp_flags |= MV_HP_ERRATA_60X1B2;
3824 			break;
3825 		case 0x9:
3826 			hp_flags |= MV_HP_ERRATA_60X1C0;
3827 			break;
3828 		default:
3829 			dev_warn(&pdev->dev,
3830 				 "Applying B2 workarounds to unknown rev\n");
3831 			hp_flags |= MV_HP_ERRATA_60X1B2;
3832 			break;
3833 		}
3834 		break;
3835 
3836 	case chip_7042:
3837 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3838 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3839 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3840 		{
3841 			/*
3842 			 * Highpoint RocketRAID PCIe 23xx series cards:
3843 			 *
3844 			 * Unconfigured drives are treated as "Legacy"
3845 			 * by the BIOS, and it overwrites sector 8 with
3846 			 * a "Lgcy" metadata block prior to Linux boot.
3847 			 *
3848 			 * Configured drives (RAID or JBOD) leave sector 8
3849 			 * alone, but instead overwrite a high numbered
3850 			 * sector for the RAID metadata.  This sector can
3851 			 * be determined exactly, by truncating the physical
3852 			 * drive capacity to a nice even GB value.
3853 			 *
3854 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3855 			 *
3856 			 * Warn the user, lest they think we're just buggy.
3857 			 */
3858 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3859 				" BIOS CORRUPTS DATA on all attached drives,"
3860 				" regardless of if/how they are configured."
3861 				" BEWARE!\n");
3862 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3863 				" use sectors 8-9 on \"Legacy\" drives,"
3864 				" and avoid the final two gigabytes on"
3865 				" all RocketRAID BIOS initialized drives.\n");
3866 		}
3867 		fallthrough;
3868 	case chip_6042:
3869 		hpriv->ops = &mv6xxx_ops;
3870 		hp_flags |= MV_HP_GEN_IIE;
3871 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3872 			hp_flags |= MV_HP_CUT_THROUGH;
3873 
3874 		switch (pdev->revision) {
3875 		case 0x2: /* Rev.B0: the first/only public release */
3876 			hp_flags |= MV_HP_ERRATA_60X1C0;
3877 			break;
3878 		default:
3879 			dev_warn(&pdev->dev,
3880 				 "Applying 60X1C0 workarounds to unknown rev\n");
3881 			hp_flags |= MV_HP_ERRATA_60X1C0;
3882 			break;
3883 		}
3884 		break;
3885 	case chip_soc:
3886 		if (soc_is_65n(hpriv))
3887 			hpriv->ops = &mv_soc_65n_ops;
3888 		else
3889 			hpriv->ops = &mv_soc_ops;
3890 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3891 			MV_HP_ERRATA_60X1C0;
3892 		break;
3893 
3894 	default:
3895 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3896 		return 1;
3897 	}
3898 
3899 	hpriv->hp_flags = hp_flags;
3900 	if (hp_flags & MV_HP_PCIE) {
3901 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3902 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3903 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3904 	} else {
3905 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3906 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3907 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3908 	}
3909 
3910 	return 0;
3911 }
3912 
3913 /**
3914  *      mv_init_host - Perform some early initialization of the host.
3915  *	@host: ATA host to initialize
3916  *
3917  *      If possible, do an early global reset of the host.  Then do
3918  *      our port init and clear/unmask all/relevant host interrupts.
3919  *
3920  *      LOCKING:
3921  *      Inherited from caller.
3922  */
3923 static int mv_init_host(struct ata_host *host)
3924 {
3925 	int rc = 0, n_hc, port, hc;
3926 	struct mv_host_priv *hpriv = host->private_data;
3927 	void __iomem *mmio = hpriv->base;
3928 
3929 	rc = mv_chip_id(host, hpriv->board_idx);
3930 	if (rc)
3931 		goto done;
3932 
3933 	if (IS_SOC(hpriv)) {
3934 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3935 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3936 	} else {
3937 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3938 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3939 	}
3940 
3941 	/* initialize shadow irq mask with register's value */
3942 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3943 
3944 	/* global interrupt mask: 0 == mask everything */
3945 	mv_set_main_irq_mask(host, ~0, 0);
3946 
3947 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3948 
3949 	for (port = 0; port < host->n_ports; port++)
3950 		if (hpriv->ops->read_preamp)
3951 			hpriv->ops->read_preamp(hpriv, port, mmio);
3952 
3953 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3954 	if (rc)
3955 		goto done;
3956 
3957 	hpriv->ops->reset_flash(hpriv, mmio);
3958 	hpriv->ops->reset_bus(host, mmio);
3959 	hpriv->ops->enable_leds(hpriv, mmio);
3960 
3961 	for (port = 0; port < host->n_ports; port++) {
3962 		struct ata_port *ap = host->ports[port];
3963 		void __iomem *port_mmio = mv_port_base(mmio, port);
3964 
3965 		mv_port_init(&ap->ioaddr, port_mmio);
3966 	}
3967 
3968 	for (hc = 0; hc < n_hc; hc++) {
3969 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3970 
3971 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3972 			"(before clear)=0x%08x\n", hc,
3973 			readl(hc_mmio + HC_CFG),
3974 			readl(hc_mmio + HC_IRQ_CAUSE));
3975 
3976 		/* Clear any currently outstanding hc interrupt conditions */
3977 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3978 	}
3979 
3980 	if (!IS_SOC(hpriv)) {
3981 		/* Clear any currently outstanding host interrupt conditions */
3982 		writelfl(0, mmio + hpriv->irq_cause_offset);
3983 
3984 		/* and unmask interrupt generation for host regs */
3985 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3986 	}
3987 
3988 	/*
3989 	 * enable only global host interrupts for now.
3990 	 * The per-port interrupts get done later as ports are set up.
3991 	 */
3992 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3993 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3994 				    irq_coalescing_usecs);
3995 done:
3996 	return rc;
3997 }
3998 
3999 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4000 {
4001 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4002 							     MV_CRQB_Q_SZ, 0);
4003 	if (!hpriv->crqb_pool)
4004 		return -ENOMEM;
4005 
4006 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4007 							     MV_CRPB_Q_SZ, 0);
4008 	if (!hpriv->crpb_pool)
4009 		return -ENOMEM;
4010 
4011 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4012 							     MV_SG_TBL_SZ, 0);
4013 	if (!hpriv->sg_tbl_pool)
4014 		return -ENOMEM;
4015 
4016 	return 0;
4017 }
4018 
4019 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4020 				 const struct mbus_dram_target_info *dram)
4021 {
4022 	int i;
4023 
4024 	for (i = 0; i < 4; i++) {
4025 		writel(0, hpriv->base + WINDOW_CTRL(i));
4026 		writel(0, hpriv->base + WINDOW_BASE(i));
4027 	}
4028 
4029 	for (i = 0; i < dram->num_cs; i++) {
4030 		const struct mbus_dram_window *cs = dram->cs + i;
4031 
4032 		writel(((cs->size - 1) & 0xffff0000) |
4033 			(cs->mbus_attr << 8) |
4034 			(dram->mbus_dram_target_id << 4) | 1,
4035 			hpriv->base + WINDOW_CTRL(i));
4036 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4037 	}
4038 }
4039 
4040 /**
4041  *      mv_platform_probe - handle a positive probe of an soc Marvell
4042  *      host
4043  *      @pdev: platform device found
4044  *
4045  *      LOCKING:
4046  *      Inherited from caller.
4047  */
4048 static int mv_platform_probe(struct platform_device *pdev)
4049 {
4050 	const struct mv_sata_platform_data *mv_platform_data;
4051 	const struct mbus_dram_target_info *dram;
4052 	const struct ata_port_info *ppi[] =
4053 	    { &mv_port_info[chip_soc], NULL };
4054 	struct ata_host *host;
4055 	struct mv_host_priv *hpriv;
4056 	struct resource *res;
4057 	int n_ports = 0, irq = 0;
4058 	int rc;
4059 	int port;
4060 
4061 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4062 
4063 	/*
4064 	 * Simple resource validation ..
4065 	 */
4066 	if (unlikely(pdev->num_resources != 2)) {
4067 		dev_err(&pdev->dev, "invalid number of resources\n");
4068 		return -EINVAL;
4069 	}
4070 
4071 	/*
4072 	 * Get the register base first
4073 	 */
4074 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4075 	if (res == NULL)
4076 		return -EINVAL;
4077 
4078 	/* allocate host */
4079 	if (pdev->dev.of_node) {
4080 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4081 					   &n_ports);
4082 		if (rc) {
4083 			dev_err(&pdev->dev,
4084 				"error parsing nr-ports property: %d\n", rc);
4085 			return rc;
4086 		}
4087 
4088 		if (n_ports <= 0) {
4089 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4090 				n_ports);
4091 			return -EINVAL;
4092 		}
4093 
4094 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4095 	} else {
4096 		mv_platform_data = dev_get_platdata(&pdev->dev);
4097 		n_ports = mv_platform_data->n_ports;
4098 		irq = platform_get_irq(pdev, 0);
4099 	}
4100 	if (irq < 0)
4101 		return irq;
4102 	if (!irq)
4103 		return -EINVAL;
4104 
4105 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4106 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4107 
4108 	if (!host || !hpriv)
4109 		return -ENOMEM;
4110 	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4111 					n_ports, sizeof(struct clk *),
4112 					GFP_KERNEL);
4113 	if (!hpriv->port_clks)
4114 		return -ENOMEM;
4115 	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4116 					n_ports, sizeof(struct phy *),
4117 					GFP_KERNEL);
4118 	if (!hpriv->port_phys)
4119 		return -ENOMEM;
4120 	host->private_data = hpriv;
4121 	hpriv->board_idx = chip_soc;
4122 
4123 	host->iomap = NULL;
4124 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4125 				   resource_size(res));
4126 	if (!hpriv->base)
4127 		return -ENOMEM;
4128 
4129 	hpriv->base -= SATAHC0_REG_BASE;
4130 
4131 	hpriv->clk = clk_get(&pdev->dev, NULL);
4132 	if (IS_ERR(hpriv->clk))
4133 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4134 	else
4135 		clk_prepare_enable(hpriv->clk);
4136 
4137 	for (port = 0; port < n_ports; port++) {
4138 		char port_number[16];
4139 		sprintf(port_number, "%d", port);
4140 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4141 		if (!IS_ERR(hpriv->port_clks[port]))
4142 			clk_prepare_enable(hpriv->port_clks[port]);
4143 
4144 		sprintf(port_number, "port%d", port);
4145 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4146 							       port_number);
4147 		if (IS_ERR(hpriv->port_phys[port])) {
4148 			rc = PTR_ERR(hpriv->port_phys[port]);
4149 			hpriv->port_phys[port] = NULL;
4150 			if (rc != -EPROBE_DEFER)
4151 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4152 
4153 			/* Cleanup only the initialized ports */
4154 			hpriv->n_ports = port;
4155 			goto err;
4156 		} else
4157 			phy_power_on(hpriv->port_phys[port]);
4158 	}
4159 
4160 	/* All the ports have been initialized */
4161 	hpriv->n_ports = n_ports;
4162 
4163 	/*
4164 	 * (Re-)program MBUS remapping windows if we are asked to.
4165 	 */
4166 	dram = mv_mbus_dram_info();
4167 	if (dram)
4168 		mv_conf_mbus_windows(hpriv, dram);
4169 
4170 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4171 	if (rc)
4172 		goto err;
4173 
4174 	/*
4175 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4176 	 * updated in the LP_PHY_CTL register.
4177 	 */
4178 	if (pdev->dev.of_node &&
4179 		of_device_is_compatible(pdev->dev.of_node,
4180 					"marvell,armada-370-sata"))
4181 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4182 
4183 	/* initialize adapter */
4184 	rc = mv_init_host(host);
4185 	if (rc)
4186 		goto err;
4187 
4188 	dev_info(&pdev->dev, "slots %u ports %d\n",
4189 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4190 
4191 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4192 	if (!rc)
4193 		return 0;
4194 
4195 err:
4196 	if (!IS_ERR(hpriv->clk)) {
4197 		clk_disable_unprepare(hpriv->clk);
4198 		clk_put(hpriv->clk);
4199 	}
4200 	for (port = 0; port < hpriv->n_ports; port++) {
4201 		if (!IS_ERR(hpriv->port_clks[port])) {
4202 			clk_disable_unprepare(hpriv->port_clks[port]);
4203 			clk_put(hpriv->port_clks[port]);
4204 		}
4205 		phy_power_off(hpriv->port_phys[port]);
4206 	}
4207 
4208 	return rc;
4209 }
4210 
4211 /*
4212  *
4213  *      mv_platform_remove    -       unplug a platform interface
4214  *      @pdev: platform device
4215  *
4216  *      A platform bus SATA device has been unplugged. Perform the needed
4217  *      cleanup. Also called on module unload for any active devices.
4218  */
4219 static int mv_platform_remove(struct platform_device *pdev)
4220 {
4221 	struct ata_host *host = platform_get_drvdata(pdev);
4222 	struct mv_host_priv *hpriv = host->private_data;
4223 	int port;
4224 	ata_host_detach(host);
4225 
4226 	if (!IS_ERR(hpriv->clk)) {
4227 		clk_disable_unprepare(hpriv->clk);
4228 		clk_put(hpriv->clk);
4229 	}
4230 	for (port = 0; port < host->n_ports; port++) {
4231 		if (!IS_ERR(hpriv->port_clks[port])) {
4232 			clk_disable_unprepare(hpriv->port_clks[port]);
4233 			clk_put(hpriv->port_clks[port]);
4234 		}
4235 		phy_power_off(hpriv->port_phys[port]);
4236 	}
4237 	return 0;
4238 }
4239 
4240 #ifdef CONFIG_PM_SLEEP
4241 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4242 {
4243 	struct ata_host *host = platform_get_drvdata(pdev);
4244 	if (host)
4245 		return ata_host_suspend(host, state);
4246 	else
4247 		return 0;
4248 }
4249 
4250 static int mv_platform_resume(struct platform_device *pdev)
4251 {
4252 	struct ata_host *host = platform_get_drvdata(pdev);
4253 	const struct mbus_dram_target_info *dram;
4254 	int ret;
4255 
4256 	if (host) {
4257 		struct mv_host_priv *hpriv = host->private_data;
4258 
4259 		/*
4260 		 * (Re-)program MBUS remapping windows if we are asked to.
4261 		 */
4262 		dram = mv_mbus_dram_info();
4263 		if (dram)
4264 			mv_conf_mbus_windows(hpriv, dram);
4265 
4266 		/* initialize adapter */
4267 		ret = mv_init_host(host);
4268 		if (ret) {
4269 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4270 			return ret;
4271 		}
4272 		ata_host_resume(host);
4273 	}
4274 
4275 	return 0;
4276 }
4277 #else
4278 #define mv_platform_suspend NULL
4279 #define mv_platform_resume NULL
4280 #endif
4281 
4282 #ifdef CONFIG_OF
4283 static const struct of_device_id mv_sata_dt_ids[] = {
4284 	{ .compatible = "marvell,armada-370-sata", },
4285 	{ .compatible = "marvell,orion-sata", },
4286 	{},
4287 };
4288 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4289 #endif
4290 
4291 static struct platform_driver mv_platform_driver = {
4292 	.probe		= mv_platform_probe,
4293 	.remove		= mv_platform_remove,
4294 	.suspend	= mv_platform_suspend,
4295 	.resume		= mv_platform_resume,
4296 	.driver		= {
4297 		.name = DRV_NAME,
4298 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4299 	},
4300 };
4301 
4302 
4303 #ifdef CONFIG_PCI
4304 static int mv_pci_init_one(struct pci_dev *pdev,
4305 			   const struct pci_device_id *ent);
4306 #ifdef CONFIG_PM_SLEEP
4307 static int mv_pci_device_resume(struct pci_dev *pdev);
4308 #endif
4309 
4310 
4311 static struct pci_driver mv_pci_driver = {
4312 	.name			= DRV_NAME,
4313 	.id_table		= mv_pci_tbl,
4314 	.probe			= mv_pci_init_one,
4315 	.remove			= ata_pci_remove_one,
4316 #ifdef CONFIG_PM_SLEEP
4317 	.suspend		= ata_pci_device_suspend,
4318 	.resume			= mv_pci_device_resume,
4319 #endif
4320 
4321 };
4322 
4323 /**
4324  *      mv_print_info - Dump key info to kernel log for perusal.
4325  *      @host: ATA host to print info about
4326  *
4327  *      FIXME: complete this.
4328  *
4329  *      LOCKING:
4330  *      Inherited from caller.
4331  */
4332 static void mv_print_info(struct ata_host *host)
4333 {
4334 	struct pci_dev *pdev = to_pci_dev(host->dev);
4335 	struct mv_host_priv *hpriv = host->private_data;
4336 	u8 scc;
4337 	const char *scc_s, *gen;
4338 
4339 	/* Use this to determine the HW stepping of the chip so we know
4340 	 * what errata to workaround
4341 	 */
4342 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4343 	if (scc == 0)
4344 		scc_s = "SCSI";
4345 	else if (scc == 0x01)
4346 		scc_s = "RAID";
4347 	else
4348 		scc_s = "?";
4349 
4350 	if (IS_GEN_I(hpriv))
4351 		gen = "I";
4352 	else if (IS_GEN_II(hpriv))
4353 		gen = "II";
4354 	else if (IS_GEN_IIE(hpriv))
4355 		gen = "IIE";
4356 	else
4357 		gen = "?";
4358 
4359 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4360 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4361 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4362 }
4363 
4364 /**
4365  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4366  *      @pdev: PCI device found
4367  *      @ent: PCI device ID entry for the matched host
4368  *
4369  *      LOCKING:
4370  *      Inherited from caller.
4371  */
4372 static int mv_pci_init_one(struct pci_dev *pdev,
4373 			   const struct pci_device_id *ent)
4374 {
4375 	unsigned int board_idx = (unsigned int)ent->driver_data;
4376 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4377 	struct ata_host *host;
4378 	struct mv_host_priv *hpriv;
4379 	int n_ports, port, rc;
4380 
4381 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4382 
4383 	/* allocate host */
4384 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4385 
4386 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4387 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4388 	if (!host || !hpriv)
4389 		return -ENOMEM;
4390 	host->private_data = hpriv;
4391 	hpriv->n_ports = n_ports;
4392 	hpriv->board_idx = board_idx;
4393 
4394 	/* acquire resources */
4395 	rc = pcim_enable_device(pdev);
4396 	if (rc)
4397 		return rc;
4398 
4399 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4400 	if (rc == -EBUSY)
4401 		pcim_pin_device(pdev);
4402 	if (rc)
4403 		return rc;
4404 	host->iomap = pcim_iomap_table(pdev);
4405 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4406 
4407 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4408 	if (rc) {
4409 		dev_err(&pdev->dev, "DMA enable failed\n");
4410 		return rc;
4411 	}
4412 
4413 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4414 	if (rc)
4415 		return rc;
4416 
4417 	for (port = 0; port < host->n_ports; port++) {
4418 		struct ata_port *ap = host->ports[port];
4419 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4420 		unsigned int offset = port_mmio - hpriv->base;
4421 
4422 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4423 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4424 	}
4425 
4426 	/* initialize adapter */
4427 	rc = mv_init_host(host);
4428 	if (rc)
4429 		return rc;
4430 
4431 	/* Enable message-switched interrupts, if requested */
4432 	if (msi && pci_enable_msi(pdev) == 0)
4433 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4434 
4435 	mv_dump_pci_cfg(pdev, 0x68);
4436 	mv_print_info(host);
4437 
4438 	pci_set_master(pdev);
4439 	pci_try_set_mwi(pdev);
4440 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4441 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4442 }
4443 
4444 #ifdef CONFIG_PM_SLEEP
4445 static int mv_pci_device_resume(struct pci_dev *pdev)
4446 {
4447 	struct ata_host *host = pci_get_drvdata(pdev);
4448 	int rc;
4449 
4450 	rc = ata_pci_device_do_resume(pdev);
4451 	if (rc)
4452 		return rc;
4453 
4454 	/* initialize adapter */
4455 	rc = mv_init_host(host);
4456 	if (rc)
4457 		return rc;
4458 
4459 	ata_host_resume(host);
4460 
4461 	return 0;
4462 }
4463 #endif
4464 #endif
4465 
4466 static int __init mv_init(void)
4467 {
4468 	int rc = -ENODEV;
4469 #ifdef CONFIG_PCI
4470 	rc = pci_register_driver(&mv_pci_driver);
4471 	if (rc < 0)
4472 		return rc;
4473 #endif
4474 	rc = platform_driver_register(&mv_platform_driver);
4475 
4476 #ifdef CONFIG_PCI
4477 	if (rc < 0)
4478 		pci_unregister_driver(&mv_pci_driver);
4479 #endif
4480 	return rc;
4481 }
4482 
4483 static void __exit mv_exit(void)
4484 {
4485 #ifdef CONFIG_PCI
4486 	pci_unregister_driver(&mv_pci_driver);
4487 #endif
4488 	platform_driver_unregister(&mv_platform_driver);
4489 }
4490 
4491 MODULE_AUTHOR("Brett Russ");
4492 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4493 MODULE_LICENSE("GPL v2");
4494 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4495 MODULE_VERSION(DRV_VERSION);
4496 MODULE_ALIAS("platform:" DRV_NAME);
4497 
4498 module_init(mv_init);
4499 module_exit(mv_exit);
4500