xref: /openbmc/linux/drivers/ata/sata_mv.c (revision b627b4ed)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/platform_device.h>
63 #include <linux/ata_platform.h>
64 #include <linux/mbus.h>
65 #include <linux/bitops.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_cmnd.h>
68 #include <scsi/scsi_device.h>
69 #include <linux/libata.h>
70 
71 #define DRV_NAME	"sata_mv"
72 #define DRV_VERSION	"1.28"
73 
74 /*
75  * module options
76  */
77 
78 static int msi;
79 #ifdef CONFIG_PCI
80 module_param(msi, int, S_IRUGO);
81 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
82 #endif
83 
84 static int irq_coalescing_io_count;
85 module_param(irq_coalescing_io_count, int, S_IRUGO);
86 MODULE_PARM_DESC(irq_coalescing_io_count,
87 		 "IRQ coalescing I/O count threshold (0..255)");
88 
89 static int irq_coalescing_usecs;
90 module_param(irq_coalescing_usecs, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_usecs,
92 		 "IRQ coalescing time threshold in usecs");
93 
94 enum {
95 	/* BAR's are enumerated in terms of pci_resource_start() terms */
96 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
97 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
98 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
99 
100 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
101 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
102 
103 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
104 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
105 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
106 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
107 
108 	MV_PCI_REG_BASE		= 0,
109 
110 	/*
111 	 * Per-chip ("all ports") interrupt coalescing feature.
112 	 * This is only for GEN_II / GEN_IIE hardware.
113 	 *
114 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
115 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
116 	 */
117 	COAL_REG_BASE		= 0x18000,
118 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
119 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
120 
121 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
122 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
123 
124 	/*
125 	 * Registers for the (unused here) transaction coalescing feature:
126 	 */
127 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
128 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
129 
130 	SATAHC0_REG_BASE	= 0x20000,
131 	FLASH_CTL		= 0x1046c,
132 	GPIO_PORT_CTL		= 0x104f0,
133 	RESET_CFG		= 0x180d8,
134 
135 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
136 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
137 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
138 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
139 
140 	MV_MAX_Q_DEPTH		= 32,
141 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
142 
143 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
144 	 * CRPB needs alignment on a 256B boundary. Size == 256B
145 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
146 	 */
147 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
148 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
149 	MV_MAX_SG_CT		= 256,
150 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
151 
152 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
153 	MV_PORT_HC_SHIFT	= 2,
154 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
155 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
156 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
157 
158 	/* Host Flags */
159 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
160 
161 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
162 				  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
163 
164 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
165 
166 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
167 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
168 
169 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
170 
171 	CRQB_FLAG_READ		= (1 << 0),
172 	CRQB_TAG_SHIFT		= 1,
173 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
174 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
175 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
176 	CRQB_CMD_ADDR_SHIFT	= 8,
177 	CRQB_CMD_CS		= (0x2 << 11),
178 	CRQB_CMD_LAST		= (1 << 15),
179 
180 	CRPB_FLAG_STATUS_SHIFT	= 8,
181 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
182 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
183 
184 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
185 
186 	/* PCI interface registers */
187 
188 	MV_PCI_COMMAND		= 0xc00,
189 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
190 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
191 
192 	PCI_MAIN_CMD_STS	= 0xd30,
193 	STOP_PCI_MASTER		= (1 << 2),
194 	PCI_MASTER_EMPTY	= (1 << 3),
195 	GLOB_SFT_RST		= (1 << 4),
196 
197 	MV_PCI_MODE		= 0xd00,
198 	MV_PCI_MODE_MASK	= 0x30,
199 
200 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
201 	MV_PCI_DISC_TIMER	= 0xd04,
202 	MV_PCI_MSI_TRIGGER	= 0xc38,
203 	MV_PCI_SERR_MASK	= 0xc28,
204 	MV_PCI_XBAR_TMOUT	= 0x1d04,
205 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
206 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
207 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
208 	MV_PCI_ERR_COMMAND	= 0x1d50,
209 
210 	PCI_IRQ_CAUSE		= 0x1d58,
211 	PCI_IRQ_MASK		= 0x1d5c,
212 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
213 
214 	PCIE_IRQ_CAUSE		= 0x1900,
215 	PCIE_IRQ_MASK		= 0x1910,
216 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
217 
218 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
219 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
220 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
221 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
222 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
223 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
224 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
225 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
226 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
227 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
228 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
229 	PCI_ERR			= (1 << 18),
230 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
231 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
232 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
233 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
234 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
235 	GPIO_INT		= (1 << 22),
236 	SELF_INT		= (1 << 23),
237 	TWSI_INT		= (1 << 24),
238 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
239 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
240 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
241 
242 	/* SATAHC registers */
243 	HC_CFG			= 0x00,
244 
245 	HC_IRQ_CAUSE		= 0x14,
246 	DMA_IRQ			= (1 << 0),	/* shift by port # */
247 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
248 	DEV_IRQ			= (1 << 8),	/* shift by port # */
249 
250 	/*
251 	 * Per-HC (Host-Controller) interrupt coalescing feature.
252 	 * This is present on all chip generations.
253 	 *
254 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
255 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
256 	 */
257 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
258 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
259 
260 	SOC_LED_CTRL		= 0x2c,
261 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
262 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
263 						/*  with dev activity LED */
264 
265 	/* Shadow block registers */
266 	SHD_BLK			= 0x100,
267 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
268 
269 	/* SATA registers */
270 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
271 	SATA_ACTIVE		= 0x350,
272 	FIS_IRQ_CAUSE		= 0x364,
273 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
274 
275 	LTMODE			= 0x30c,	/* requires read-after-write */
276 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
277 
278 	PHY_MODE2		= 0x330,
279 	PHY_MODE3		= 0x310,
280 
281 	PHY_MODE4		= 0x314,	/* requires read-after-write */
282 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
283 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
284 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
285 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
286 
287 	SATA_IFCTL		= 0x344,
288 	SATA_TESTCTL		= 0x348,
289 	SATA_IFSTAT		= 0x34c,
290 	VENDOR_UNIQUE_FIS	= 0x35c,
291 
292 	FISCFG			= 0x360,
293 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
294 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
295 
296 	MV5_PHY_MODE		= 0x74,
297 	MV5_LTMODE		= 0x30,
298 	MV5_PHY_CTL		= 0x0C,
299 	SATA_IFCFG		= 0x050,
300 
301 	MV_M2_PREAMP_MASK	= 0x7e0,
302 
303 	/* Port registers */
304 	EDMA_CFG		= 0,
305 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
306 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
307 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
308 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
309 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
310 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
311 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
312 
313 	EDMA_ERR_IRQ_CAUSE	= 0x8,
314 	EDMA_ERR_IRQ_MASK	= 0xc,
315 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
316 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
317 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
318 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
319 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
320 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
321 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
322 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
323 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
324 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
325 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
326 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
327 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
328 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
329 
330 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
331 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
332 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
333 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
334 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
335 
336 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
337 
338 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
339 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
340 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
341 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
342 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
343 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
344 
345 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
346 
347 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
348 	EDMA_ERR_OVERRUN_5	= (1 << 5),
349 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
350 
351 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
352 				  EDMA_ERR_LNK_CTRL_RX_1 |
353 				  EDMA_ERR_LNK_CTRL_RX_3 |
354 				  EDMA_ERR_LNK_CTRL_TX,
355 
356 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
357 				  EDMA_ERR_PRD_PAR |
358 				  EDMA_ERR_DEV_DCON |
359 				  EDMA_ERR_DEV_CON |
360 				  EDMA_ERR_SERR |
361 				  EDMA_ERR_SELF_DIS |
362 				  EDMA_ERR_CRQB_PAR |
363 				  EDMA_ERR_CRPB_PAR |
364 				  EDMA_ERR_INTRL_PAR |
365 				  EDMA_ERR_IORDY |
366 				  EDMA_ERR_LNK_CTRL_RX_2 |
367 				  EDMA_ERR_LNK_DATA_RX |
368 				  EDMA_ERR_LNK_DATA_TX |
369 				  EDMA_ERR_TRANS_PROTO,
370 
371 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
372 				  EDMA_ERR_PRD_PAR |
373 				  EDMA_ERR_DEV_DCON |
374 				  EDMA_ERR_DEV_CON |
375 				  EDMA_ERR_OVERRUN_5 |
376 				  EDMA_ERR_UNDERRUN_5 |
377 				  EDMA_ERR_SELF_DIS_5 |
378 				  EDMA_ERR_CRQB_PAR |
379 				  EDMA_ERR_CRPB_PAR |
380 				  EDMA_ERR_INTRL_PAR |
381 				  EDMA_ERR_IORDY,
382 
383 	EDMA_REQ_Q_BASE_HI	= 0x10,
384 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
385 
386 	EDMA_REQ_Q_OUT_PTR	= 0x18,
387 	EDMA_REQ_Q_PTR_SHIFT	= 5,
388 
389 	EDMA_RSP_Q_BASE_HI	= 0x1c,
390 	EDMA_RSP_Q_IN_PTR	= 0x20,
391 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
392 	EDMA_RSP_Q_PTR_SHIFT	= 3,
393 
394 	EDMA_CMD		= 0x28,		/* EDMA command register */
395 	EDMA_EN			= (1 << 0),	/* enable EDMA */
396 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
397 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
398 
399 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
400 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
401 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
402 
403 	EDMA_IORDY_TMOUT	= 0x34,
404 	EDMA_ARB_CFG		= 0x38,
405 
406 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
407 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
408 
409 	BMDMA_CMD		= 0x224,	/* bmdma command register */
410 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
411 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
412 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
413 
414 	/* Host private flags (hp_flags) */
415 	MV_HP_FLAG_MSI		= (1 << 0),
416 	MV_HP_ERRATA_50XXB0	= (1 << 1),
417 	MV_HP_ERRATA_50XXB2	= (1 << 2),
418 	MV_HP_ERRATA_60X1B2	= (1 << 3),
419 	MV_HP_ERRATA_60X1C0	= (1 << 4),
420 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
421 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
422 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
423 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
424 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
425 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
426 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
427 
428 	/* Port private flags (pp_flags) */
429 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
430 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
431 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
432 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
433 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
434 };
435 
436 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
437 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
438 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
439 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
440 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
441 
442 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
443 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
444 
445 enum {
446 	/* DMA boundary 0xffff is required by the s/g splitting
447 	 * we need on /length/ in mv_fill-sg().
448 	 */
449 	MV_DMA_BOUNDARY		= 0xffffU,
450 
451 	/* mask of register bits containing lower 32 bits
452 	 * of EDMA request queue DMA address
453 	 */
454 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
455 
456 	/* ditto, for response queue */
457 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
458 };
459 
460 enum chip_type {
461 	chip_504x,
462 	chip_508x,
463 	chip_5080,
464 	chip_604x,
465 	chip_608x,
466 	chip_6042,
467 	chip_7042,
468 	chip_soc,
469 };
470 
471 /* Command ReQuest Block: 32B */
472 struct mv_crqb {
473 	__le32			sg_addr;
474 	__le32			sg_addr_hi;
475 	__le16			ctrl_flags;
476 	__le16			ata_cmd[11];
477 };
478 
479 struct mv_crqb_iie {
480 	__le32			addr;
481 	__le32			addr_hi;
482 	__le32			flags;
483 	__le32			len;
484 	__le32			ata_cmd[4];
485 };
486 
487 /* Command ResPonse Block: 8B */
488 struct mv_crpb {
489 	__le16			id;
490 	__le16			flags;
491 	__le32			tmstmp;
492 };
493 
494 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
495 struct mv_sg {
496 	__le32			addr;
497 	__le32			flags_size;
498 	__le32			addr_hi;
499 	__le32			reserved;
500 };
501 
502 /*
503  * We keep a local cache of a few frequently accessed port
504  * registers here, to avoid having to read them (very slow)
505  * when switching between EDMA and non-EDMA modes.
506  */
507 struct mv_cached_regs {
508 	u32			fiscfg;
509 	u32			ltmode;
510 	u32			haltcond;
511 	u32			unknown_rsvd;
512 };
513 
514 struct mv_port_priv {
515 	struct mv_crqb		*crqb;
516 	dma_addr_t		crqb_dma;
517 	struct mv_crpb		*crpb;
518 	dma_addr_t		crpb_dma;
519 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
520 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
521 
522 	unsigned int		req_idx;
523 	unsigned int		resp_idx;
524 
525 	u32			pp_flags;
526 	struct mv_cached_regs	cached;
527 	unsigned int		delayed_eh_pmp_map;
528 };
529 
530 struct mv_port_signal {
531 	u32			amps;
532 	u32			pre;
533 };
534 
535 struct mv_host_priv {
536 	u32			hp_flags;
537 	u32			main_irq_mask;
538 	struct mv_port_signal	signal[8];
539 	const struct mv_hw_ops	*ops;
540 	int			n_ports;
541 	void __iomem		*base;
542 	void __iomem		*main_irq_cause_addr;
543 	void __iomem		*main_irq_mask_addr;
544 	u32			irq_cause_offset;
545 	u32			irq_mask_offset;
546 	u32			unmask_all_irqs;
547 	/*
548 	 * These consistent DMA memory pools give us guaranteed
549 	 * alignment for hardware-accessed data structures,
550 	 * and less memory waste in accomplishing the alignment.
551 	 */
552 	struct dma_pool		*crqb_pool;
553 	struct dma_pool		*crpb_pool;
554 	struct dma_pool		*sg_tbl_pool;
555 };
556 
557 struct mv_hw_ops {
558 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
559 			   unsigned int port);
560 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
561 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
562 			   void __iomem *mmio);
563 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
564 			unsigned int n_hc);
565 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
566 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
567 };
568 
569 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
570 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
571 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
572 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
573 static int mv_port_start(struct ata_port *ap);
574 static void mv_port_stop(struct ata_port *ap);
575 static int mv_qc_defer(struct ata_queued_cmd *qc);
576 static void mv_qc_prep(struct ata_queued_cmd *qc);
577 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
578 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
579 static int mv_hardreset(struct ata_link *link, unsigned int *class,
580 			unsigned long deadline);
581 static void mv_eh_freeze(struct ata_port *ap);
582 static void mv_eh_thaw(struct ata_port *ap);
583 static void mv6_dev_config(struct ata_device *dev);
584 
585 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
586 			   unsigned int port);
587 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
588 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
589 			   void __iomem *mmio);
590 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
591 			unsigned int n_hc);
592 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
593 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
594 
595 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
596 			   unsigned int port);
597 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
598 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
599 			   void __iomem *mmio);
600 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
601 			unsigned int n_hc);
602 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
603 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
604 				      void __iomem *mmio);
605 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
606 				      void __iomem *mmio);
607 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
608 				  void __iomem *mmio, unsigned int n_hc);
609 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
610 				      void __iomem *mmio);
611 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
612 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
613 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
614 			     unsigned int port_no);
615 static int mv_stop_edma(struct ata_port *ap);
616 static int mv_stop_edma_engine(void __iomem *port_mmio);
617 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
618 
619 static void mv_pmp_select(struct ata_port *ap, int pmp);
620 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
621 				unsigned long deadline);
622 static int  mv_softreset(struct ata_link *link, unsigned int *class,
623 				unsigned long deadline);
624 static void mv_pmp_error_handler(struct ata_port *ap);
625 static void mv_process_crpb_entries(struct ata_port *ap,
626 					struct mv_port_priv *pp);
627 
628 static void mv_sff_irq_clear(struct ata_port *ap);
629 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
630 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
631 static void mv_bmdma_start(struct ata_queued_cmd *qc);
632 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
633 static u8   mv_bmdma_status(struct ata_port *ap);
634 static u8 mv_sff_check_status(struct ata_port *ap);
635 
636 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
637  * because we have to allow room for worst case splitting of
638  * PRDs for 64K boundaries in mv_fill_sg().
639  */
640 static struct scsi_host_template mv5_sht = {
641 	ATA_BASE_SHT(DRV_NAME),
642 	.sg_tablesize		= MV_MAX_SG_CT / 2,
643 	.dma_boundary		= MV_DMA_BOUNDARY,
644 };
645 
646 static struct scsi_host_template mv6_sht = {
647 	ATA_NCQ_SHT(DRV_NAME),
648 	.can_queue		= MV_MAX_Q_DEPTH - 1,
649 	.sg_tablesize		= MV_MAX_SG_CT / 2,
650 	.dma_boundary		= MV_DMA_BOUNDARY,
651 };
652 
653 static struct ata_port_operations mv5_ops = {
654 	.inherits		= &ata_sff_port_ops,
655 
656 	.lost_interrupt		= ATA_OP_NULL,
657 
658 	.qc_defer		= mv_qc_defer,
659 	.qc_prep		= mv_qc_prep,
660 	.qc_issue		= mv_qc_issue,
661 
662 	.freeze			= mv_eh_freeze,
663 	.thaw			= mv_eh_thaw,
664 	.hardreset		= mv_hardreset,
665 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
666 	.post_internal_cmd	= ATA_OP_NULL,
667 
668 	.scr_read		= mv5_scr_read,
669 	.scr_write		= mv5_scr_write,
670 
671 	.port_start		= mv_port_start,
672 	.port_stop		= mv_port_stop,
673 };
674 
675 static struct ata_port_operations mv6_ops = {
676 	.inherits		= &mv5_ops,
677 	.dev_config             = mv6_dev_config,
678 	.scr_read		= mv_scr_read,
679 	.scr_write		= mv_scr_write,
680 
681 	.pmp_hardreset		= mv_pmp_hardreset,
682 	.pmp_softreset		= mv_softreset,
683 	.softreset		= mv_softreset,
684 	.error_handler		= mv_pmp_error_handler,
685 
686 	.sff_check_status	= mv_sff_check_status,
687 	.sff_irq_clear		= mv_sff_irq_clear,
688 	.check_atapi_dma	= mv_check_atapi_dma,
689 	.bmdma_setup		= mv_bmdma_setup,
690 	.bmdma_start		= mv_bmdma_start,
691 	.bmdma_stop		= mv_bmdma_stop,
692 	.bmdma_status		= mv_bmdma_status,
693 };
694 
695 static struct ata_port_operations mv_iie_ops = {
696 	.inherits		= &mv6_ops,
697 	.dev_config		= ATA_OP_NULL,
698 	.qc_prep		= mv_qc_prep_iie,
699 };
700 
701 static const struct ata_port_info mv_port_info[] = {
702 	{  /* chip_504x */
703 		.flags		= MV_GEN_I_FLAGS,
704 		.pio_mask	= ATA_PIO4,
705 		.udma_mask	= ATA_UDMA6,
706 		.port_ops	= &mv5_ops,
707 	},
708 	{  /* chip_508x */
709 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
710 		.pio_mask	= ATA_PIO4,
711 		.udma_mask	= ATA_UDMA6,
712 		.port_ops	= &mv5_ops,
713 	},
714 	{  /* chip_5080 */
715 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
716 		.pio_mask	= ATA_PIO4,
717 		.udma_mask	= ATA_UDMA6,
718 		.port_ops	= &mv5_ops,
719 	},
720 	{  /* chip_604x */
721 		.flags		= MV_GEN_II_FLAGS,
722 		.pio_mask	= ATA_PIO4,
723 		.udma_mask	= ATA_UDMA6,
724 		.port_ops	= &mv6_ops,
725 	},
726 	{  /* chip_608x */
727 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
728 		.pio_mask	= ATA_PIO4,
729 		.udma_mask	= ATA_UDMA6,
730 		.port_ops	= &mv6_ops,
731 	},
732 	{  /* chip_6042 */
733 		.flags		= MV_GEN_IIE_FLAGS,
734 		.pio_mask	= ATA_PIO4,
735 		.udma_mask	= ATA_UDMA6,
736 		.port_ops	= &mv_iie_ops,
737 	},
738 	{  /* chip_7042 */
739 		.flags		= MV_GEN_IIE_FLAGS,
740 		.pio_mask	= ATA_PIO4,
741 		.udma_mask	= ATA_UDMA6,
742 		.port_ops	= &mv_iie_ops,
743 	},
744 	{  /* chip_soc */
745 		.flags		= MV_GEN_IIE_FLAGS,
746 		.pio_mask	= ATA_PIO4,
747 		.udma_mask	= ATA_UDMA6,
748 		.port_ops	= &mv_iie_ops,
749 	},
750 };
751 
752 static const struct pci_device_id mv_pci_tbl[] = {
753 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
754 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
755 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
756 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
757 	/* RocketRAID 1720/174x have different identifiers */
758 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
759 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
760 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
761 
762 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
763 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
764 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
765 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
766 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
767 
768 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
769 
770 	/* Adaptec 1430SA */
771 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
772 
773 	/* Marvell 7042 support */
774 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
775 
776 	/* Highpoint RocketRAID PCIe series */
777 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
778 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
779 
780 	{ }			/* terminate list */
781 };
782 
783 static const struct mv_hw_ops mv5xxx_ops = {
784 	.phy_errata		= mv5_phy_errata,
785 	.enable_leds		= mv5_enable_leds,
786 	.read_preamp		= mv5_read_preamp,
787 	.reset_hc		= mv5_reset_hc,
788 	.reset_flash		= mv5_reset_flash,
789 	.reset_bus		= mv5_reset_bus,
790 };
791 
792 static const struct mv_hw_ops mv6xxx_ops = {
793 	.phy_errata		= mv6_phy_errata,
794 	.enable_leds		= mv6_enable_leds,
795 	.read_preamp		= mv6_read_preamp,
796 	.reset_hc		= mv6_reset_hc,
797 	.reset_flash		= mv6_reset_flash,
798 	.reset_bus		= mv_reset_pci_bus,
799 };
800 
801 static const struct mv_hw_ops mv_soc_ops = {
802 	.phy_errata		= mv6_phy_errata,
803 	.enable_leds		= mv_soc_enable_leds,
804 	.read_preamp		= mv_soc_read_preamp,
805 	.reset_hc		= mv_soc_reset_hc,
806 	.reset_flash		= mv_soc_reset_flash,
807 	.reset_bus		= mv_soc_reset_bus,
808 };
809 
810 /*
811  * Functions
812  */
813 
814 static inline void writelfl(unsigned long data, void __iomem *addr)
815 {
816 	writel(data, addr);
817 	(void) readl(addr);	/* flush to avoid PCI posted write */
818 }
819 
820 static inline unsigned int mv_hc_from_port(unsigned int port)
821 {
822 	return port >> MV_PORT_HC_SHIFT;
823 }
824 
825 static inline unsigned int mv_hardport_from_port(unsigned int port)
826 {
827 	return port & MV_PORT_MASK;
828 }
829 
830 /*
831  * Consolidate some rather tricky bit shift calculations.
832  * This is hot-path stuff, so not a function.
833  * Simple code, with two return values, so macro rather than inline.
834  *
835  * port is the sole input, in range 0..7.
836  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
837  * hardport is the other output, in range 0..3.
838  *
839  * Note that port and hardport may be the same variable in some cases.
840  */
841 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
842 {								\
843 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
844 	hardport = mv_hardport_from_port(port);			\
845 	shift   += hardport * 2;				\
846 }
847 
848 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
849 {
850 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
851 }
852 
853 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
854 						 unsigned int port)
855 {
856 	return mv_hc_base(base, mv_hc_from_port(port));
857 }
858 
859 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
860 {
861 	return  mv_hc_base_from_port(base, port) +
862 		MV_SATAHC_ARBTR_REG_SZ +
863 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
864 }
865 
866 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
867 {
868 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
869 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
870 
871 	return hc_mmio + ofs;
872 }
873 
874 static inline void __iomem *mv_host_base(struct ata_host *host)
875 {
876 	struct mv_host_priv *hpriv = host->private_data;
877 	return hpriv->base;
878 }
879 
880 static inline void __iomem *mv_ap_base(struct ata_port *ap)
881 {
882 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
883 }
884 
885 static inline int mv_get_hc_count(unsigned long port_flags)
886 {
887 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
888 }
889 
890 /**
891  *      mv_save_cached_regs - (re-)initialize cached port registers
892  *      @ap: the port whose registers we are caching
893  *
894  *	Initialize the local cache of port registers,
895  *	so that reading them over and over again can
896  *	be avoided on the hotter paths of this driver.
897  *	This saves a few microseconds each time we switch
898  *	to/from EDMA mode to perform (eg.) a drive cache flush.
899  */
900 static void mv_save_cached_regs(struct ata_port *ap)
901 {
902 	void __iomem *port_mmio = mv_ap_base(ap);
903 	struct mv_port_priv *pp = ap->private_data;
904 
905 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
906 	pp->cached.ltmode = readl(port_mmio + LTMODE);
907 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
908 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
909 }
910 
911 /**
912  *      mv_write_cached_reg - write to a cached port register
913  *      @addr: hardware address of the register
914  *      @old: pointer to cached value of the register
915  *      @new: new value for the register
916  *
917  *	Write a new value to a cached register,
918  *	but only if the value is different from before.
919  */
920 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
921 {
922 	if (new != *old) {
923 		unsigned long laddr;
924 		*old = new;
925 		/*
926 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
927 		 * Read-after-write is needed to prevent generating 64-bit
928 		 * write cycles on the PCI bus for SATA interface registers
929 		 * at offsets ending in 0x4 or 0xc.
930 		 *
931 		 * Looks like a lot of fuss, but it avoids an unnecessary
932 		 * +1 usec read-after-write delay for unaffected registers.
933 		 */
934 		laddr = (long)addr & 0xffff;
935 		if (laddr >= 0x300 && laddr <= 0x33c) {
936 			laddr &= 0x000f;
937 			if (laddr == 0x4 || laddr == 0xc) {
938 				writelfl(new, addr); /* read after write */
939 				return;
940 			}
941 		}
942 		writel(new, addr); /* unaffected by the errata */
943 	}
944 }
945 
946 static void mv_set_edma_ptrs(void __iomem *port_mmio,
947 			     struct mv_host_priv *hpriv,
948 			     struct mv_port_priv *pp)
949 {
950 	u32 index;
951 
952 	/*
953 	 * initialize request queue
954 	 */
955 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
956 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
957 
958 	WARN_ON(pp->crqb_dma & 0x3ff);
959 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
960 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
961 		 port_mmio + EDMA_REQ_Q_IN_PTR);
962 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
963 
964 	/*
965 	 * initialize response queue
966 	 */
967 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
968 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
969 
970 	WARN_ON(pp->crpb_dma & 0xff);
971 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
972 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
973 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
974 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
975 }
976 
977 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
978 {
979 	/*
980 	 * When writing to the main_irq_mask in hardware,
981 	 * we must ensure exclusivity between the interrupt coalescing bits
982 	 * and the corresponding individual port DONE_IRQ bits.
983 	 *
984 	 * Note that this register is really an "IRQ enable" register,
985 	 * not an "IRQ mask" register as Marvell's naming might suggest.
986 	 */
987 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
988 		mask &= ~DONE_IRQ_0_3;
989 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
990 		mask &= ~DONE_IRQ_4_7;
991 	writelfl(mask, hpriv->main_irq_mask_addr);
992 }
993 
994 static void mv_set_main_irq_mask(struct ata_host *host,
995 				 u32 disable_bits, u32 enable_bits)
996 {
997 	struct mv_host_priv *hpriv = host->private_data;
998 	u32 old_mask, new_mask;
999 
1000 	old_mask = hpriv->main_irq_mask;
1001 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1002 	if (new_mask != old_mask) {
1003 		hpriv->main_irq_mask = new_mask;
1004 		mv_write_main_irq_mask(new_mask, hpriv);
1005 	}
1006 }
1007 
1008 static void mv_enable_port_irqs(struct ata_port *ap,
1009 				     unsigned int port_bits)
1010 {
1011 	unsigned int shift, hardport, port = ap->port_no;
1012 	u32 disable_bits, enable_bits;
1013 
1014 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1015 
1016 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1017 	enable_bits  = port_bits << shift;
1018 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1019 }
1020 
1021 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1022 					  void __iomem *port_mmio,
1023 					  unsigned int port_irqs)
1024 {
1025 	struct mv_host_priv *hpriv = ap->host->private_data;
1026 	int hardport = mv_hardport_from_port(ap->port_no);
1027 	void __iomem *hc_mmio = mv_hc_base_from_port(
1028 				mv_host_base(ap->host), ap->port_no);
1029 	u32 hc_irq_cause;
1030 
1031 	/* clear EDMA event indicators, if any */
1032 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1033 
1034 	/* clear pending irq events */
1035 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1036 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1037 
1038 	/* clear FIS IRQ Cause */
1039 	if (IS_GEN_IIE(hpriv))
1040 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1041 
1042 	mv_enable_port_irqs(ap, port_irqs);
1043 }
1044 
1045 static void mv_set_irq_coalescing(struct ata_host *host,
1046 				  unsigned int count, unsigned int usecs)
1047 {
1048 	struct mv_host_priv *hpriv = host->private_data;
1049 	void __iomem *mmio = hpriv->base, *hc_mmio;
1050 	u32 coal_enable = 0;
1051 	unsigned long flags;
1052 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1053 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1054 							ALL_PORTS_COAL_DONE;
1055 
1056 	/* Disable IRQ coalescing if either threshold is zero */
1057 	if (!usecs || !count) {
1058 		clks = count = 0;
1059 	} else {
1060 		/* Respect maximum limits of the hardware */
1061 		clks = usecs * COAL_CLOCKS_PER_USEC;
1062 		if (clks > MAX_COAL_TIME_THRESHOLD)
1063 			clks = MAX_COAL_TIME_THRESHOLD;
1064 		if (count > MAX_COAL_IO_COUNT)
1065 			count = MAX_COAL_IO_COUNT;
1066 	}
1067 
1068 	spin_lock_irqsave(&host->lock, flags);
1069 	mv_set_main_irq_mask(host, coal_disable, 0);
1070 
1071 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1072 		/*
1073 		 * GEN_II/GEN_IIE with dual host controllers:
1074 		 * one set of global thresholds for the entire chip.
1075 		 */
1076 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1077 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1078 		/* clear leftover coal IRQ bit */
1079 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1080 		if (count)
1081 			coal_enable = ALL_PORTS_COAL_DONE;
1082 		clks = count = 0; /* force clearing of regular regs below */
1083 	}
1084 
1085 	/*
1086 	 * All chips: independent thresholds for each HC on the chip.
1087 	 */
1088 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1089 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1090 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1091 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1092 	if (count)
1093 		coal_enable |= PORTS_0_3_COAL_DONE;
1094 	if (is_dual_hc) {
1095 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1096 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1097 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1098 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1099 		if (count)
1100 			coal_enable |= PORTS_4_7_COAL_DONE;
1101 	}
1102 
1103 	mv_set_main_irq_mask(host, 0, coal_enable);
1104 	spin_unlock_irqrestore(&host->lock, flags);
1105 }
1106 
1107 /**
1108  *      mv_start_edma - Enable eDMA engine
1109  *      @base: port base address
1110  *      @pp: port private data
1111  *
1112  *      Verify the local cache of the eDMA state is accurate with a
1113  *      WARN_ON.
1114  *
1115  *      LOCKING:
1116  *      Inherited from caller.
1117  */
1118 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1119 			 struct mv_port_priv *pp, u8 protocol)
1120 {
1121 	int want_ncq = (protocol == ATA_PROT_NCQ);
1122 
1123 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1124 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1125 		if (want_ncq != using_ncq)
1126 			mv_stop_edma(ap);
1127 	}
1128 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1129 		struct mv_host_priv *hpriv = ap->host->private_data;
1130 
1131 		mv_edma_cfg(ap, want_ncq, 1);
1132 
1133 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1134 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1135 
1136 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1137 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1138 	}
1139 }
1140 
1141 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1142 {
1143 	void __iomem *port_mmio = mv_ap_base(ap);
1144 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1145 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1146 	int i;
1147 
1148 	/*
1149 	 * Wait for the EDMA engine to finish transactions in progress.
1150 	 * No idea what a good "timeout" value might be, but measurements
1151 	 * indicate that it often requires hundreds of microseconds
1152 	 * with two drives in-use.  So we use the 15msec value above
1153 	 * as a rough guess at what even more drives might require.
1154 	 */
1155 	for (i = 0; i < timeout; ++i) {
1156 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1157 		if ((edma_stat & empty_idle) == empty_idle)
1158 			break;
1159 		udelay(per_loop);
1160 	}
1161 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1162 }
1163 
1164 /**
1165  *      mv_stop_edma_engine - Disable eDMA engine
1166  *      @port_mmio: io base address
1167  *
1168  *      LOCKING:
1169  *      Inherited from caller.
1170  */
1171 static int mv_stop_edma_engine(void __iomem *port_mmio)
1172 {
1173 	int i;
1174 
1175 	/* Disable eDMA.  The disable bit auto clears. */
1176 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1177 
1178 	/* Wait for the chip to confirm eDMA is off. */
1179 	for (i = 10000; i > 0; i--) {
1180 		u32 reg = readl(port_mmio + EDMA_CMD);
1181 		if (!(reg & EDMA_EN))
1182 			return 0;
1183 		udelay(10);
1184 	}
1185 	return -EIO;
1186 }
1187 
1188 static int mv_stop_edma(struct ata_port *ap)
1189 {
1190 	void __iomem *port_mmio = mv_ap_base(ap);
1191 	struct mv_port_priv *pp = ap->private_data;
1192 	int err = 0;
1193 
1194 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1195 		return 0;
1196 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1197 	mv_wait_for_edma_empty_idle(ap);
1198 	if (mv_stop_edma_engine(port_mmio)) {
1199 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1200 		err = -EIO;
1201 	}
1202 	mv_edma_cfg(ap, 0, 0);
1203 	return err;
1204 }
1205 
1206 #ifdef ATA_DEBUG
1207 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1208 {
1209 	int b, w;
1210 	for (b = 0; b < bytes; ) {
1211 		DPRINTK("%p: ", start + b);
1212 		for (w = 0; b < bytes && w < 4; w++) {
1213 			printk("%08x ", readl(start + b));
1214 			b += sizeof(u32);
1215 		}
1216 		printk("\n");
1217 	}
1218 }
1219 #endif
1220 
1221 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1222 {
1223 #ifdef ATA_DEBUG
1224 	int b, w;
1225 	u32 dw;
1226 	for (b = 0; b < bytes; ) {
1227 		DPRINTK("%02x: ", b);
1228 		for (w = 0; b < bytes && w < 4; w++) {
1229 			(void) pci_read_config_dword(pdev, b, &dw);
1230 			printk("%08x ", dw);
1231 			b += sizeof(u32);
1232 		}
1233 		printk("\n");
1234 	}
1235 #endif
1236 }
1237 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1238 			     struct pci_dev *pdev)
1239 {
1240 #ifdef ATA_DEBUG
1241 	void __iomem *hc_base = mv_hc_base(mmio_base,
1242 					   port >> MV_PORT_HC_SHIFT);
1243 	void __iomem *port_base;
1244 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1245 
1246 	if (0 > port) {
1247 		start_hc = start_port = 0;
1248 		num_ports = 8;		/* shld be benign for 4 port devs */
1249 		num_hcs = 2;
1250 	} else {
1251 		start_hc = port >> MV_PORT_HC_SHIFT;
1252 		start_port = port;
1253 		num_ports = num_hcs = 1;
1254 	}
1255 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1256 		num_ports > 1 ? num_ports - 1 : start_port);
1257 
1258 	if (NULL != pdev) {
1259 		DPRINTK("PCI config space regs:\n");
1260 		mv_dump_pci_cfg(pdev, 0x68);
1261 	}
1262 	DPRINTK("PCI regs:\n");
1263 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1264 	mv_dump_mem(mmio_base+0xd00, 0x34);
1265 	mv_dump_mem(mmio_base+0xf00, 0x4);
1266 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1267 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1268 		hc_base = mv_hc_base(mmio_base, hc);
1269 		DPRINTK("HC regs (HC %i):\n", hc);
1270 		mv_dump_mem(hc_base, 0x1c);
1271 	}
1272 	for (p = start_port; p < start_port + num_ports; p++) {
1273 		port_base = mv_port_base(mmio_base, p);
1274 		DPRINTK("EDMA regs (port %i):\n", p);
1275 		mv_dump_mem(port_base, 0x54);
1276 		DPRINTK("SATA regs (port %i):\n", p);
1277 		mv_dump_mem(port_base+0x300, 0x60);
1278 	}
1279 #endif
1280 }
1281 
1282 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1283 {
1284 	unsigned int ofs;
1285 
1286 	switch (sc_reg_in) {
1287 	case SCR_STATUS:
1288 	case SCR_CONTROL:
1289 	case SCR_ERROR:
1290 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1291 		break;
1292 	case SCR_ACTIVE:
1293 		ofs = SATA_ACTIVE;   /* active is not with the others */
1294 		break;
1295 	default:
1296 		ofs = 0xffffffffU;
1297 		break;
1298 	}
1299 	return ofs;
1300 }
1301 
1302 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1303 {
1304 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1305 
1306 	if (ofs != 0xffffffffU) {
1307 		*val = readl(mv_ap_base(link->ap) + ofs);
1308 		return 0;
1309 	} else
1310 		return -EINVAL;
1311 }
1312 
1313 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1314 {
1315 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1316 
1317 	if (ofs != 0xffffffffU) {
1318 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1319 		if (sc_reg_in == SCR_CONTROL) {
1320 			/*
1321 			 * Workaround for 88SX60x1 FEr SATA#26:
1322 			 *
1323 			 * COMRESETs have to take care not to accidently
1324 			 * put the drive to sleep when writing SCR_CONTROL.
1325 			 * Setting bits 12..15 prevents this problem.
1326 			 *
1327 			 * So if we see an outbound COMMRESET, set those bits.
1328 			 * Ditto for the followup write that clears the reset.
1329 			 *
1330 			 * The proprietary driver does this for
1331 			 * all chip versions, and so do we.
1332 			 */
1333 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1334 				val |= 0xf000;
1335 		}
1336 		writelfl(val, addr);
1337 		return 0;
1338 	} else
1339 		return -EINVAL;
1340 }
1341 
1342 static void mv6_dev_config(struct ata_device *adev)
1343 {
1344 	/*
1345 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1346 	 *
1347 	 * Gen-II does not support NCQ over a port multiplier
1348 	 *  (no FIS-based switching).
1349 	 */
1350 	if (adev->flags & ATA_DFLAG_NCQ) {
1351 		if (sata_pmp_attached(adev->link->ap)) {
1352 			adev->flags &= ~ATA_DFLAG_NCQ;
1353 			ata_dev_printk(adev, KERN_INFO,
1354 				"NCQ disabled for command-based switching\n");
1355 		}
1356 	}
1357 }
1358 
1359 static int mv_qc_defer(struct ata_queued_cmd *qc)
1360 {
1361 	struct ata_link *link = qc->dev->link;
1362 	struct ata_port *ap = link->ap;
1363 	struct mv_port_priv *pp = ap->private_data;
1364 
1365 	/*
1366 	 * Don't allow new commands if we're in a delayed EH state
1367 	 * for NCQ and/or FIS-based switching.
1368 	 */
1369 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1370 		return ATA_DEFER_PORT;
1371 	/*
1372 	 * If the port is completely idle, then allow the new qc.
1373 	 */
1374 	if (ap->nr_active_links == 0)
1375 		return 0;
1376 
1377 	/*
1378 	 * The port is operating in host queuing mode (EDMA) with NCQ
1379 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1380 	 * queueing multiple DMA commands but libata core currently
1381 	 * doesn't allow it.
1382 	 */
1383 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1384 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1385 		return 0;
1386 
1387 	return ATA_DEFER_PORT;
1388 }
1389 
1390 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1391 {
1392 	struct mv_port_priv *pp = ap->private_data;
1393 	void __iomem *port_mmio;
1394 
1395 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1396 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1397 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1398 
1399 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1400 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1401 
1402 	if (want_fbs) {
1403 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1404 		ltmode = *old_ltmode | LTMODE_BIT8;
1405 		if (want_ncq)
1406 			haltcond &= ~EDMA_ERR_DEV;
1407 		else
1408 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1409 	} else {
1410 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1411 	}
1412 
1413 	port_mmio = mv_ap_base(ap);
1414 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1415 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1416 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1417 }
1418 
1419 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1420 {
1421 	struct mv_host_priv *hpriv = ap->host->private_data;
1422 	u32 old, new;
1423 
1424 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1425 	old = readl(hpriv->base + GPIO_PORT_CTL);
1426 	if (want_ncq)
1427 		new = old | (1 << 22);
1428 	else
1429 		new = old & ~(1 << 22);
1430 	if (new != old)
1431 		writel(new, hpriv->base + GPIO_PORT_CTL);
1432 }
1433 
1434 /**
1435  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1436  *	@ap: Port being initialized
1437  *
1438  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1439  *
1440  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1441  *	of basic DMA on the GEN_IIE versions of the chips.
1442  *
1443  *	This bit survives EDMA resets, and must be set for basic DMA
1444  *	to function, and should be cleared when EDMA is active.
1445  */
1446 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1447 {
1448 	struct mv_port_priv *pp = ap->private_data;
1449 	u32 new, *old = &pp->cached.unknown_rsvd;
1450 
1451 	if (enable_bmdma)
1452 		new = *old | 1;
1453 	else
1454 		new = *old & ~1;
1455 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1456 }
1457 
1458 /*
1459  * SOC chips have an issue whereby the HDD LEDs don't always blink
1460  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1461  * of the SOC takes care of it, generating a steady blink rate when
1462  * any drive on the chip is active.
1463  *
1464  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1465  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1466  *
1467  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1468  * LED operation works then, and provides better (more accurate) feedback.
1469  *
1470  * Note that this code assumes that an SOC never has more than one HC onboard.
1471  */
1472 static void mv_soc_led_blink_enable(struct ata_port *ap)
1473 {
1474 	struct ata_host *host = ap->host;
1475 	struct mv_host_priv *hpriv = host->private_data;
1476 	void __iomem *hc_mmio;
1477 	u32 led_ctrl;
1478 
1479 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1480 		return;
1481 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1482 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1483 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1484 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1485 }
1486 
1487 static void mv_soc_led_blink_disable(struct ata_port *ap)
1488 {
1489 	struct ata_host *host = ap->host;
1490 	struct mv_host_priv *hpriv = host->private_data;
1491 	void __iomem *hc_mmio;
1492 	u32 led_ctrl;
1493 	unsigned int port;
1494 
1495 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1496 		return;
1497 
1498 	/* disable led-blink only if no ports are using NCQ */
1499 	for (port = 0; port < hpriv->n_ports; port++) {
1500 		struct ata_port *this_ap = host->ports[port];
1501 		struct mv_port_priv *pp = this_ap->private_data;
1502 
1503 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1504 			return;
1505 	}
1506 
1507 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1508 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1509 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1510 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1511 }
1512 
1513 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1514 {
1515 	u32 cfg;
1516 	struct mv_port_priv *pp    = ap->private_data;
1517 	struct mv_host_priv *hpriv = ap->host->private_data;
1518 	void __iomem *port_mmio    = mv_ap_base(ap);
1519 
1520 	/* set up non-NCQ EDMA configuration */
1521 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1522 	pp->pp_flags &=
1523 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1524 
1525 	if (IS_GEN_I(hpriv))
1526 		cfg |= (1 << 8);	/* enab config burst size mask */
1527 
1528 	else if (IS_GEN_II(hpriv)) {
1529 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1530 		mv_60x1_errata_sata25(ap, want_ncq);
1531 
1532 	} else if (IS_GEN_IIE(hpriv)) {
1533 		int want_fbs = sata_pmp_attached(ap);
1534 		/*
1535 		 * Possible future enhancement:
1536 		 *
1537 		 * The chip can use FBS with non-NCQ, if we allow it,
1538 		 * But first we need to have the error handling in place
1539 		 * for this mode (datasheet section 7.3.15.4.2.3).
1540 		 * So disallow non-NCQ FBS for now.
1541 		 */
1542 		want_fbs &= want_ncq;
1543 
1544 		mv_config_fbs(ap, want_ncq, want_fbs);
1545 
1546 		if (want_fbs) {
1547 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1548 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1549 		}
1550 
1551 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1552 		if (want_edma) {
1553 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1554 			if (!IS_SOC(hpriv))
1555 				cfg |= (1 << 18); /* enab early completion */
1556 		}
1557 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1558 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1559 		mv_bmdma_enable_iie(ap, !want_edma);
1560 
1561 		if (IS_SOC(hpriv)) {
1562 			if (want_ncq)
1563 				mv_soc_led_blink_enable(ap);
1564 			else
1565 				mv_soc_led_blink_disable(ap);
1566 		}
1567 	}
1568 
1569 	if (want_ncq) {
1570 		cfg |= EDMA_CFG_NCQ;
1571 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1572 	}
1573 
1574 	writelfl(cfg, port_mmio + EDMA_CFG);
1575 }
1576 
1577 static void mv_port_free_dma_mem(struct ata_port *ap)
1578 {
1579 	struct mv_host_priv *hpriv = ap->host->private_data;
1580 	struct mv_port_priv *pp = ap->private_data;
1581 	int tag;
1582 
1583 	if (pp->crqb) {
1584 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1585 		pp->crqb = NULL;
1586 	}
1587 	if (pp->crpb) {
1588 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1589 		pp->crpb = NULL;
1590 	}
1591 	/*
1592 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1593 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1594 	 */
1595 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1596 		if (pp->sg_tbl[tag]) {
1597 			if (tag == 0 || !IS_GEN_I(hpriv))
1598 				dma_pool_free(hpriv->sg_tbl_pool,
1599 					      pp->sg_tbl[tag],
1600 					      pp->sg_tbl_dma[tag]);
1601 			pp->sg_tbl[tag] = NULL;
1602 		}
1603 	}
1604 }
1605 
1606 /**
1607  *      mv_port_start - Port specific init/start routine.
1608  *      @ap: ATA channel to manipulate
1609  *
1610  *      Allocate and point to DMA memory, init port private memory,
1611  *      zero indices.
1612  *
1613  *      LOCKING:
1614  *      Inherited from caller.
1615  */
1616 static int mv_port_start(struct ata_port *ap)
1617 {
1618 	struct device *dev = ap->host->dev;
1619 	struct mv_host_priv *hpriv = ap->host->private_data;
1620 	struct mv_port_priv *pp;
1621 	unsigned long flags;
1622 	int tag;
1623 
1624 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1625 	if (!pp)
1626 		return -ENOMEM;
1627 	ap->private_data = pp;
1628 
1629 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1630 	if (!pp->crqb)
1631 		return -ENOMEM;
1632 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1633 
1634 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1635 	if (!pp->crpb)
1636 		goto out_port_free_dma_mem;
1637 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1638 
1639 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1640 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1641 		ap->flags |= ATA_FLAG_AN;
1642 	/*
1643 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1644 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1645 	 */
1646 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1647 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1648 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1649 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1650 			if (!pp->sg_tbl[tag])
1651 				goto out_port_free_dma_mem;
1652 		} else {
1653 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1654 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1655 		}
1656 	}
1657 
1658 	spin_lock_irqsave(ap->lock, flags);
1659 	mv_save_cached_regs(ap);
1660 	mv_edma_cfg(ap, 0, 0);
1661 	spin_unlock_irqrestore(ap->lock, flags);
1662 
1663 	return 0;
1664 
1665 out_port_free_dma_mem:
1666 	mv_port_free_dma_mem(ap);
1667 	return -ENOMEM;
1668 }
1669 
1670 /**
1671  *      mv_port_stop - Port specific cleanup/stop routine.
1672  *      @ap: ATA channel to manipulate
1673  *
1674  *      Stop DMA, cleanup port memory.
1675  *
1676  *      LOCKING:
1677  *      This routine uses the host lock to protect the DMA stop.
1678  */
1679 static void mv_port_stop(struct ata_port *ap)
1680 {
1681 	unsigned long flags;
1682 
1683 	spin_lock_irqsave(ap->lock, flags);
1684 	mv_stop_edma(ap);
1685 	mv_enable_port_irqs(ap, 0);
1686 	spin_unlock_irqrestore(ap->lock, flags);
1687 	mv_port_free_dma_mem(ap);
1688 }
1689 
1690 /**
1691  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1692  *      @qc: queued command whose SG list to source from
1693  *
1694  *      Populate the SG list and mark the last entry.
1695  *
1696  *      LOCKING:
1697  *      Inherited from caller.
1698  */
1699 static void mv_fill_sg(struct ata_queued_cmd *qc)
1700 {
1701 	struct mv_port_priv *pp = qc->ap->private_data;
1702 	struct scatterlist *sg;
1703 	struct mv_sg *mv_sg, *last_sg = NULL;
1704 	unsigned int si;
1705 
1706 	mv_sg = pp->sg_tbl[qc->tag];
1707 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1708 		dma_addr_t addr = sg_dma_address(sg);
1709 		u32 sg_len = sg_dma_len(sg);
1710 
1711 		while (sg_len) {
1712 			u32 offset = addr & 0xffff;
1713 			u32 len = sg_len;
1714 
1715 			if (offset + len > 0x10000)
1716 				len = 0x10000 - offset;
1717 
1718 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1719 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1720 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1721 			mv_sg->reserved = 0;
1722 
1723 			sg_len -= len;
1724 			addr += len;
1725 
1726 			last_sg = mv_sg;
1727 			mv_sg++;
1728 		}
1729 	}
1730 
1731 	if (likely(last_sg))
1732 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1733 	mb(); /* ensure data structure is visible to the chipset */
1734 }
1735 
1736 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1737 {
1738 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1739 		(last ? CRQB_CMD_LAST : 0);
1740 	*cmdw = cpu_to_le16(tmp);
1741 }
1742 
1743 /**
1744  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1745  *	@ap: Port associated with this ATA transaction.
1746  *
1747  *	We need this only for ATAPI bmdma transactions,
1748  *	as otherwise we experience spurious interrupts
1749  *	after libata-sff handles the bmdma interrupts.
1750  */
1751 static void mv_sff_irq_clear(struct ata_port *ap)
1752 {
1753 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1754 }
1755 
1756 /**
1757  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1758  *	@qc: queued command to check for chipset/DMA compatibility.
1759  *
1760  *	The bmdma engines cannot handle speculative data sizes
1761  *	(bytecount under/over flow).  So only allow DMA for
1762  *	data transfer commands with known data sizes.
1763  *
1764  *	LOCKING:
1765  *	Inherited from caller.
1766  */
1767 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1768 {
1769 	struct scsi_cmnd *scmd = qc->scsicmd;
1770 
1771 	if (scmd) {
1772 		switch (scmd->cmnd[0]) {
1773 		case READ_6:
1774 		case READ_10:
1775 		case READ_12:
1776 		case WRITE_6:
1777 		case WRITE_10:
1778 		case WRITE_12:
1779 		case GPCMD_READ_CD:
1780 		case GPCMD_SEND_DVD_STRUCTURE:
1781 		case GPCMD_SEND_CUE_SHEET:
1782 			return 0; /* DMA is safe */
1783 		}
1784 	}
1785 	return -EOPNOTSUPP; /* use PIO instead */
1786 }
1787 
1788 /**
1789  *	mv_bmdma_setup - Set up BMDMA transaction
1790  *	@qc: queued command to prepare DMA for.
1791  *
1792  *	LOCKING:
1793  *	Inherited from caller.
1794  */
1795 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1796 {
1797 	struct ata_port *ap = qc->ap;
1798 	void __iomem *port_mmio = mv_ap_base(ap);
1799 	struct mv_port_priv *pp = ap->private_data;
1800 
1801 	mv_fill_sg(qc);
1802 
1803 	/* clear all DMA cmd bits */
1804 	writel(0, port_mmio + BMDMA_CMD);
1805 
1806 	/* load PRD table addr. */
1807 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1808 		port_mmio + BMDMA_PRD_HIGH);
1809 	writelfl(pp->sg_tbl_dma[qc->tag],
1810 		port_mmio + BMDMA_PRD_LOW);
1811 
1812 	/* issue r/w command */
1813 	ap->ops->sff_exec_command(ap, &qc->tf);
1814 }
1815 
1816 /**
1817  *	mv_bmdma_start - Start a BMDMA transaction
1818  *	@qc: queued command to start DMA on.
1819  *
1820  *	LOCKING:
1821  *	Inherited from caller.
1822  */
1823 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1824 {
1825 	struct ata_port *ap = qc->ap;
1826 	void __iomem *port_mmio = mv_ap_base(ap);
1827 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1828 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1829 
1830 	/* start host DMA transaction */
1831 	writelfl(cmd, port_mmio + BMDMA_CMD);
1832 }
1833 
1834 /**
1835  *	mv_bmdma_stop - Stop BMDMA transfer
1836  *	@qc: queued command to stop DMA on.
1837  *
1838  *	Clears the ATA_DMA_START flag in the bmdma control register
1839  *
1840  *	LOCKING:
1841  *	Inherited from caller.
1842  */
1843 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1844 {
1845 	struct ata_port *ap = qc->ap;
1846 	void __iomem *port_mmio = mv_ap_base(ap);
1847 	u32 cmd;
1848 
1849 	/* clear start/stop bit */
1850 	cmd = readl(port_mmio + BMDMA_CMD);
1851 	cmd &= ~ATA_DMA_START;
1852 	writelfl(cmd, port_mmio + BMDMA_CMD);
1853 
1854 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1855 	ata_sff_dma_pause(ap);
1856 }
1857 
1858 /**
1859  *	mv_bmdma_status - Read BMDMA status
1860  *	@ap: port for which to retrieve DMA status.
1861  *
1862  *	Read and return equivalent of the sff BMDMA status register.
1863  *
1864  *	LOCKING:
1865  *	Inherited from caller.
1866  */
1867 static u8 mv_bmdma_status(struct ata_port *ap)
1868 {
1869 	void __iomem *port_mmio = mv_ap_base(ap);
1870 	u32 reg, status;
1871 
1872 	/*
1873 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1874 	 * and the ATA_DMA_INTR bit doesn't exist.
1875 	 */
1876 	reg = readl(port_mmio + BMDMA_STATUS);
1877 	if (reg & ATA_DMA_ACTIVE)
1878 		status = ATA_DMA_ACTIVE;
1879 	else
1880 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1881 	return status;
1882 }
1883 
1884 /**
1885  *      mv_qc_prep - Host specific command preparation.
1886  *      @qc: queued command to prepare
1887  *
1888  *      This routine simply redirects to the general purpose routine
1889  *      if command is not DMA.  Else, it handles prep of the CRQB
1890  *      (command request block), does some sanity checking, and calls
1891  *      the SG load routine.
1892  *
1893  *      LOCKING:
1894  *      Inherited from caller.
1895  */
1896 static void mv_qc_prep(struct ata_queued_cmd *qc)
1897 {
1898 	struct ata_port *ap = qc->ap;
1899 	struct mv_port_priv *pp = ap->private_data;
1900 	__le16 *cw;
1901 	struct ata_taskfile *tf;
1902 	u16 flags = 0;
1903 	unsigned in_index;
1904 
1905 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1906 	    (qc->tf.protocol != ATA_PROT_NCQ))
1907 		return;
1908 
1909 	/* Fill in command request block
1910 	 */
1911 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1912 		flags |= CRQB_FLAG_READ;
1913 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1914 	flags |= qc->tag << CRQB_TAG_SHIFT;
1915 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1916 
1917 	/* get current queue index from software */
1918 	in_index = pp->req_idx;
1919 
1920 	pp->crqb[in_index].sg_addr =
1921 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1922 	pp->crqb[in_index].sg_addr_hi =
1923 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1924 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1925 
1926 	cw = &pp->crqb[in_index].ata_cmd[0];
1927 	tf = &qc->tf;
1928 
1929 	/* Sadly, the CRQB cannot accomodate all registers--there are
1930 	 * only 11 bytes...so we must pick and choose required
1931 	 * registers based on the command.  So, we drop feature and
1932 	 * hob_feature for [RW] DMA commands, but they are needed for
1933 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
1934 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1935 	 */
1936 	switch (tf->command) {
1937 	case ATA_CMD_READ:
1938 	case ATA_CMD_READ_EXT:
1939 	case ATA_CMD_WRITE:
1940 	case ATA_CMD_WRITE_EXT:
1941 	case ATA_CMD_WRITE_FUA_EXT:
1942 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1943 		break;
1944 	case ATA_CMD_FPDMA_READ:
1945 	case ATA_CMD_FPDMA_WRITE:
1946 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1947 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1948 		break;
1949 	default:
1950 		/* The only other commands EDMA supports in non-queued and
1951 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1952 		 * of which are defined/used by Linux.  If we get here, this
1953 		 * driver needs work.
1954 		 *
1955 		 * FIXME: modify libata to give qc_prep a return value and
1956 		 * return error here.
1957 		 */
1958 		BUG_ON(tf->command);
1959 		break;
1960 	}
1961 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1962 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1963 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1964 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1965 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1966 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1967 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1968 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1969 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1970 
1971 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1972 		return;
1973 	mv_fill_sg(qc);
1974 }
1975 
1976 /**
1977  *      mv_qc_prep_iie - Host specific command preparation.
1978  *      @qc: queued command to prepare
1979  *
1980  *      This routine simply redirects to the general purpose routine
1981  *      if command is not DMA.  Else, it handles prep of the CRQB
1982  *      (command request block), does some sanity checking, and calls
1983  *      the SG load routine.
1984  *
1985  *      LOCKING:
1986  *      Inherited from caller.
1987  */
1988 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1989 {
1990 	struct ata_port *ap = qc->ap;
1991 	struct mv_port_priv *pp = ap->private_data;
1992 	struct mv_crqb_iie *crqb;
1993 	struct ata_taskfile *tf;
1994 	unsigned in_index;
1995 	u32 flags = 0;
1996 
1997 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1998 	    (qc->tf.protocol != ATA_PROT_NCQ))
1999 		return;
2000 
2001 	/* Fill in Gen IIE command request block */
2002 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
2003 		flags |= CRQB_FLAG_READ;
2004 
2005 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2006 	flags |= qc->tag << CRQB_TAG_SHIFT;
2007 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2008 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2009 
2010 	/* get current queue index from software */
2011 	in_index = pp->req_idx;
2012 
2013 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2014 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2015 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2016 	crqb->flags = cpu_to_le32(flags);
2017 
2018 	tf = &qc->tf;
2019 	crqb->ata_cmd[0] = cpu_to_le32(
2020 			(tf->command << 16) |
2021 			(tf->feature << 24)
2022 		);
2023 	crqb->ata_cmd[1] = cpu_to_le32(
2024 			(tf->lbal << 0) |
2025 			(tf->lbam << 8) |
2026 			(tf->lbah << 16) |
2027 			(tf->device << 24)
2028 		);
2029 	crqb->ata_cmd[2] = cpu_to_le32(
2030 			(tf->hob_lbal << 0) |
2031 			(tf->hob_lbam << 8) |
2032 			(tf->hob_lbah << 16) |
2033 			(tf->hob_feature << 24)
2034 		);
2035 	crqb->ata_cmd[3] = cpu_to_le32(
2036 			(tf->nsect << 0) |
2037 			(tf->hob_nsect << 8)
2038 		);
2039 
2040 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2041 		return;
2042 	mv_fill_sg(qc);
2043 }
2044 
2045 /**
2046  *	mv_sff_check_status - fetch device status, if valid
2047  *	@ap: ATA port to fetch status from
2048  *
2049  *	When using command issue via mv_qc_issue_fis(),
2050  *	the initial ATA_BUSY state does not show up in the
2051  *	ATA status (shadow) register.  This can confuse libata!
2052  *
2053  *	So we have a hook here to fake ATA_BUSY for that situation,
2054  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2055  *
2056  *	The rest of the time, it simply returns the ATA status register.
2057  */
2058 static u8 mv_sff_check_status(struct ata_port *ap)
2059 {
2060 	u8 stat = ioread8(ap->ioaddr.status_addr);
2061 	struct mv_port_priv *pp = ap->private_data;
2062 
2063 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2064 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2065 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2066 		else
2067 			stat = ATA_BUSY;
2068 	}
2069 	return stat;
2070 }
2071 
2072 /**
2073  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2074  *	@fis: fis to be sent
2075  *	@nwords: number of 32-bit words in the fis
2076  */
2077 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2078 {
2079 	void __iomem *port_mmio = mv_ap_base(ap);
2080 	u32 ifctl, old_ifctl, ifstat;
2081 	int i, timeout = 200, final_word = nwords - 1;
2082 
2083 	/* Initiate FIS transmission mode */
2084 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2085 	ifctl = 0x100 | (old_ifctl & 0xf);
2086 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2087 
2088 	/* Send all words of the FIS except for the final word */
2089 	for (i = 0; i < final_word; ++i)
2090 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2091 
2092 	/* Flag end-of-transmission, and then send the final word */
2093 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2094 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2095 
2096 	/*
2097 	 * Wait for FIS transmission to complete.
2098 	 * This typically takes just a single iteration.
2099 	 */
2100 	do {
2101 		ifstat = readl(port_mmio + SATA_IFSTAT);
2102 	} while (!(ifstat & 0x1000) && --timeout);
2103 
2104 	/* Restore original port configuration */
2105 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2106 
2107 	/* See if it worked */
2108 	if ((ifstat & 0x3000) != 0x1000) {
2109 		ata_port_printk(ap, KERN_WARNING,
2110 				"%s transmission error, ifstat=%08x\n",
2111 				__func__, ifstat);
2112 		return AC_ERR_OTHER;
2113 	}
2114 	return 0;
2115 }
2116 
2117 /**
2118  *	mv_qc_issue_fis - Issue a command directly as a FIS
2119  *	@qc: queued command to start
2120  *
2121  *	Note that the ATA shadow registers are not updated
2122  *	after command issue, so the device will appear "READY"
2123  *	if polled, even while it is BUSY processing the command.
2124  *
2125  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2126  *
2127  *	Note: we don't get updated shadow regs on *completion*
2128  *	of non-data commands. So avoid sending them via this function,
2129  *	as they will appear to have completed immediately.
2130  *
2131  *	GEN_IIE has special registers that we could get the result tf from,
2132  *	but earlier chipsets do not.  For now, we ignore those registers.
2133  */
2134 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2135 {
2136 	struct ata_port *ap = qc->ap;
2137 	struct mv_port_priv *pp = ap->private_data;
2138 	struct ata_link *link = qc->dev->link;
2139 	u32 fis[5];
2140 	int err = 0;
2141 
2142 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2143 	err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
2144 	if (err)
2145 		return err;
2146 
2147 	switch (qc->tf.protocol) {
2148 	case ATAPI_PROT_PIO:
2149 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2150 		/* fall through */
2151 	case ATAPI_PROT_NODATA:
2152 		ap->hsm_task_state = HSM_ST_FIRST;
2153 		break;
2154 	case ATA_PROT_PIO:
2155 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2156 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2157 			ap->hsm_task_state = HSM_ST_FIRST;
2158 		else
2159 			ap->hsm_task_state = HSM_ST;
2160 		break;
2161 	default:
2162 		ap->hsm_task_state = HSM_ST_LAST;
2163 		break;
2164 	}
2165 
2166 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2167 		ata_pio_queue_task(ap, qc, 0);
2168 	return 0;
2169 }
2170 
2171 /**
2172  *      mv_qc_issue - Initiate a command to the host
2173  *      @qc: queued command to start
2174  *
2175  *      This routine simply redirects to the general purpose routine
2176  *      if command is not DMA.  Else, it sanity checks our local
2177  *      caches of the request producer/consumer indices then enables
2178  *      DMA and bumps the request producer index.
2179  *
2180  *      LOCKING:
2181  *      Inherited from caller.
2182  */
2183 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2184 {
2185 	static int limit_warnings = 10;
2186 	struct ata_port *ap = qc->ap;
2187 	void __iomem *port_mmio = mv_ap_base(ap);
2188 	struct mv_port_priv *pp = ap->private_data;
2189 	u32 in_index;
2190 	unsigned int port_irqs;
2191 
2192 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2193 
2194 	switch (qc->tf.protocol) {
2195 	case ATA_PROT_DMA:
2196 	case ATA_PROT_NCQ:
2197 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2198 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2199 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2200 
2201 		/* Write the request in pointer to kick the EDMA to life */
2202 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2203 					port_mmio + EDMA_REQ_Q_IN_PTR);
2204 		return 0;
2205 
2206 	case ATA_PROT_PIO:
2207 		/*
2208 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2209 		 *
2210 		 * Someday, we might implement special polling workarounds
2211 		 * for these, but it all seems rather unnecessary since we
2212 		 * normally use only DMA for commands which transfer more
2213 		 * than a single block of data.
2214 		 *
2215 		 * Much of the time, this could just work regardless.
2216 		 * So for now, just log the incident, and allow the attempt.
2217 		 */
2218 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2219 			--limit_warnings;
2220 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2221 					": attempting PIO w/multiple DRQ: "
2222 					"this may fail due to h/w errata\n");
2223 		}
2224 		/* drop through */
2225 	case ATA_PROT_NODATA:
2226 	case ATAPI_PROT_PIO:
2227 	case ATAPI_PROT_NODATA:
2228 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2229 			qc->tf.flags |= ATA_TFLAG_POLLING;
2230 		break;
2231 	}
2232 
2233 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2234 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2235 	else
2236 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2237 
2238 	/*
2239 	 * We're about to send a non-EDMA capable command to the
2240 	 * port.  Turn off EDMA so there won't be problems accessing
2241 	 * shadow block, etc registers.
2242 	 */
2243 	mv_stop_edma(ap);
2244 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2245 	mv_pmp_select(ap, qc->dev->link->pmp);
2246 
2247 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2248 		struct mv_host_priv *hpriv = ap->host->private_data;
2249 		/*
2250 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2251 		 *
2252 		 * After any NCQ error, the READ_LOG_EXT command
2253 		 * from libata-eh *must* use mv_qc_issue_fis().
2254 		 * Otherwise it might fail, due to chip errata.
2255 		 *
2256 		 * Rather than special-case it, we'll just *always*
2257 		 * use this method here for READ_LOG_EXT, making for
2258 		 * easier testing.
2259 		 */
2260 		if (IS_GEN_II(hpriv))
2261 			return mv_qc_issue_fis(qc);
2262 	}
2263 	return ata_sff_qc_issue(qc);
2264 }
2265 
2266 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2267 {
2268 	struct mv_port_priv *pp = ap->private_data;
2269 	struct ata_queued_cmd *qc;
2270 
2271 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2272 		return NULL;
2273 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2274 	if (qc) {
2275 		if (qc->tf.flags & ATA_TFLAG_POLLING)
2276 			qc = NULL;
2277 		else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2278 			qc = NULL;
2279 	}
2280 	return qc;
2281 }
2282 
2283 static void mv_pmp_error_handler(struct ata_port *ap)
2284 {
2285 	unsigned int pmp, pmp_map;
2286 	struct mv_port_priv *pp = ap->private_data;
2287 
2288 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2289 		/*
2290 		 * Perform NCQ error analysis on failed PMPs
2291 		 * before we freeze the port entirely.
2292 		 *
2293 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2294 		 */
2295 		pmp_map = pp->delayed_eh_pmp_map;
2296 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2297 		for (pmp = 0; pmp_map != 0; pmp++) {
2298 			unsigned int this_pmp = (1 << pmp);
2299 			if (pmp_map & this_pmp) {
2300 				struct ata_link *link = &ap->pmp_link[pmp];
2301 				pmp_map &= ~this_pmp;
2302 				ata_eh_analyze_ncq_error(link);
2303 			}
2304 		}
2305 		ata_port_freeze(ap);
2306 	}
2307 	sata_pmp_error_handler(ap);
2308 }
2309 
2310 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2311 {
2312 	void __iomem *port_mmio = mv_ap_base(ap);
2313 
2314 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2315 }
2316 
2317 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2318 {
2319 	struct ata_eh_info *ehi;
2320 	unsigned int pmp;
2321 
2322 	/*
2323 	 * Initialize EH info for PMPs which saw device errors
2324 	 */
2325 	ehi = &ap->link.eh_info;
2326 	for (pmp = 0; pmp_map != 0; pmp++) {
2327 		unsigned int this_pmp = (1 << pmp);
2328 		if (pmp_map & this_pmp) {
2329 			struct ata_link *link = &ap->pmp_link[pmp];
2330 
2331 			pmp_map &= ~this_pmp;
2332 			ehi = &link->eh_info;
2333 			ata_ehi_clear_desc(ehi);
2334 			ata_ehi_push_desc(ehi, "dev err");
2335 			ehi->err_mask |= AC_ERR_DEV;
2336 			ehi->action |= ATA_EH_RESET;
2337 			ata_link_abort(link);
2338 		}
2339 	}
2340 }
2341 
2342 static int mv_req_q_empty(struct ata_port *ap)
2343 {
2344 	void __iomem *port_mmio = mv_ap_base(ap);
2345 	u32 in_ptr, out_ptr;
2346 
2347 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2348 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2349 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2350 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2351 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2352 }
2353 
2354 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2355 {
2356 	struct mv_port_priv *pp = ap->private_data;
2357 	int failed_links;
2358 	unsigned int old_map, new_map;
2359 
2360 	/*
2361 	 * Device error during FBS+NCQ operation:
2362 	 *
2363 	 * Set a port flag to prevent further I/O being enqueued.
2364 	 * Leave the EDMA running to drain outstanding commands from this port.
2365 	 * Perform the post-mortem/EH only when all responses are complete.
2366 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2367 	 */
2368 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2369 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2370 		pp->delayed_eh_pmp_map = 0;
2371 	}
2372 	old_map = pp->delayed_eh_pmp_map;
2373 	new_map = old_map | mv_get_err_pmp_map(ap);
2374 
2375 	if (old_map != new_map) {
2376 		pp->delayed_eh_pmp_map = new_map;
2377 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2378 	}
2379 	failed_links = hweight16(new_map);
2380 
2381 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2382 			"failed_links=%d nr_active_links=%d\n",
2383 			__func__, pp->delayed_eh_pmp_map,
2384 			ap->qc_active, failed_links,
2385 			ap->nr_active_links);
2386 
2387 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2388 		mv_process_crpb_entries(ap, pp);
2389 		mv_stop_edma(ap);
2390 		mv_eh_freeze(ap);
2391 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2392 		return 1;	/* handled */
2393 	}
2394 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2395 	return 1;	/* handled */
2396 }
2397 
2398 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2399 {
2400 	/*
2401 	 * Possible future enhancement:
2402 	 *
2403 	 * FBS+non-NCQ operation is not yet implemented.
2404 	 * See related notes in mv_edma_cfg().
2405 	 *
2406 	 * Device error during FBS+non-NCQ operation:
2407 	 *
2408 	 * We need to snapshot the shadow registers for each failed command.
2409 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2410 	 */
2411 	return 0;	/* not handled */
2412 }
2413 
2414 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2415 {
2416 	struct mv_port_priv *pp = ap->private_data;
2417 
2418 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2419 		return 0;	/* EDMA was not active: not handled */
2420 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2421 		return 0;	/* FBS was not active: not handled */
2422 
2423 	if (!(edma_err_cause & EDMA_ERR_DEV))
2424 		return 0;	/* non DEV error: not handled */
2425 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2426 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2427 		return 0;	/* other problems: not handled */
2428 
2429 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2430 		/*
2431 		 * EDMA should NOT have self-disabled for this case.
2432 		 * If it did, then something is wrong elsewhere,
2433 		 * and we cannot handle it here.
2434 		 */
2435 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2436 			ata_port_printk(ap, KERN_WARNING,
2437 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2438 				__func__, edma_err_cause, pp->pp_flags);
2439 			return 0; /* not handled */
2440 		}
2441 		return mv_handle_fbs_ncq_dev_err(ap);
2442 	} else {
2443 		/*
2444 		 * EDMA should have self-disabled for this case.
2445 		 * If it did not, then something is wrong elsewhere,
2446 		 * and we cannot handle it here.
2447 		 */
2448 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2449 			ata_port_printk(ap, KERN_WARNING,
2450 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2451 				__func__, edma_err_cause, pp->pp_flags);
2452 			return 0; /* not handled */
2453 		}
2454 		return mv_handle_fbs_non_ncq_dev_err(ap);
2455 	}
2456 	return 0;	/* not handled */
2457 }
2458 
2459 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2460 {
2461 	struct ata_eh_info *ehi = &ap->link.eh_info;
2462 	char *when = "idle";
2463 
2464 	ata_ehi_clear_desc(ehi);
2465 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2466 		when = "disabled";
2467 	} else if (edma_was_enabled) {
2468 		when = "EDMA enabled";
2469 	} else {
2470 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2471 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2472 			when = "polling";
2473 	}
2474 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2475 	ehi->err_mask |= AC_ERR_OTHER;
2476 	ehi->action   |= ATA_EH_RESET;
2477 	ata_port_freeze(ap);
2478 }
2479 
2480 /**
2481  *      mv_err_intr - Handle error interrupts on the port
2482  *      @ap: ATA channel to manipulate
2483  *
2484  *      Most cases require a full reset of the chip's state machine,
2485  *      which also performs a COMRESET.
2486  *      Also, if the port disabled DMA, update our cached copy to match.
2487  *
2488  *      LOCKING:
2489  *      Inherited from caller.
2490  */
2491 static void mv_err_intr(struct ata_port *ap)
2492 {
2493 	void __iomem *port_mmio = mv_ap_base(ap);
2494 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2495 	u32 fis_cause = 0;
2496 	struct mv_port_priv *pp = ap->private_data;
2497 	struct mv_host_priv *hpriv = ap->host->private_data;
2498 	unsigned int action = 0, err_mask = 0;
2499 	struct ata_eh_info *ehi = &ap->link.eh_info;
2500 	struct ata_queued_cmd *qc;
2501 	int abort = 0;
2502 
2503 	/*
2504 	 * Read and clear the SError and err_cause bits.
2505 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2506 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2507 	 */
2508 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2509 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2510 
2511 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2512 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2513 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2514 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2515 	}
2516 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2517 
2518 	if (edma_err_cause & EDMA_ERR_DEV) {
2519 		/*
2520 		 * Device errors during FIS-based switching operation
2521 		 * require special handling.
2522 		 */
2523 		if (mv_handle_dev_err(ap, edma_err_cause))
2524 			return;
2525 	}
2526 
2527 	qc = mv_get_active_qc(ap);
2528 	ata_ehi_clear_desc(ehi);
2529 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2530 			  edma_err_cause, pp->pp_flags);
2531 
2532 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2533 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2534 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2535 			u32 ec = edma_err_cause &
2536 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2537 			sata_async_notification(ap);
2538 			if (!ec)
2539 				return; /* Just an AN; no need for the nukes */
2540 			ata_ehi_push_desc(ehi, "SDB notify");
2541 		}
2542 	}
2543 	/*
2544 	 * All generations share these EDMA error cause bits:
2545 	 */
2546 	if (edma_err_cause & EDMA_ERR_DEV) {
2547 		err_mask |= AC_ERR_DEV;
2548 		action |= ATA_EH_RESET;
2549 		ata_ehi_push_desc(ehi, "dev error");
2550 	}
2551 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2552 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2553 			EDMA_ERR_INTRL_PAR)) {
2554 		err_mask |= AC_ERR_ATA_BUS;
2555 		action |= ATA_EH_RESET;
2556 		ata_ehi_push_desc(ehi, "parity error");
2557 	}
2558 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2559 		ata_ehi_hotplugged(ehi);
2560 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2561 			"dev disconnect" : "dev connect");
2562 		action |= ATA_EH_RESET;
2563 	}
2564 
2565 	/*
2566 	 * Gen-I has a different SELF_DIS bit,
2567 	 * different FREEZE bits, and no SERR bit:
2568 	 */
2569 	if (IS_GEN_I(hpriv)) {
2570 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2571 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2572 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2573 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2574 		}
2575 	} else {
2576 		eh_freeze_mask = EDMA_EH_FREEZE;
2577 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2578 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2579 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2580 		}
2581 		if (edma_err_cause & EDMA_ERR_SERR) {
2582 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2583 			err_mask |= AC_ERR_ATA_BUS;
2584 			action |= ATA_EH_RESET;
2585 		}
2586 	}
2587 
2588 	if (!err_mask) {
2589 		err_mask = AC_ERR_OTHER;
2590 		action |= ATA_EH_RESET;
2591 	}
2592 
2593 	ehi->serror |= serr;
2594 	ehi->action |= action;
2595 
2596 	if (qc)
2597 		qc->err_mask |= err_mask;
2598 	else
2599 		ehi->err_mask |= err_mask;
2600 
2601 	if (err_mask == AC_ERR_DEV) {
2602 		/*
2603 		 * Cannot do ata_port_freeze() here,
2604 		 * because it would kill PIO access,
2605 		 * which is needed for further diagnosis.
2606 		 */
2607 		mv_eh_freeze(ap);
2608 		abort = 1;
2609 	} else if (edma_err_cause & eh_freeze_mask) {
2610 		/*
2611 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2612 		 */
2613 		ata_port_freeze(ap);
2614 	} else {
2615 		abort = 1;
2616 	}
2617 
2618 	if (abort) {
2619 		if (qc)
2620 			ata_link_abort(qc->dev->link);
2621 		else
2622 			ata_port_abort(ap);
2623 	}
2624 }
2625 
2626 static void mv_process_crpb_response(struct ata_port *ap,
2627 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2628 {
2629 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2630 
2631 	if (qc) {
2632 		u8 ata_status;
2633 		u16 edma_status = le16_to_cpu(response->flags);
2634 		/*
2635 		 * edma_status from a response queue entry:
2636 		 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2637 		 *   MSB is saved ATA status from command completion.
2638 		 */
2639 		if (!ncq_enabled) {
2640 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2641 			if (err_cause) {
2642 				/*
2643 				 * Error will be seen/handled by mv_err_intr().
2644 				 * So do nothing at all here.
2645 				 */
2646 				return;
2647 			}
2648 		}
2649 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2650 		if (!ac_err_mask(ata_status))
2651 			ata_qc_complete(qc);
2652 		/* else: leave it for mv_err_intr() */
2653 	} else {
2654 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2655 				__func__, tag);
2656 	}
2657 }
2658 
2659 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2660 {
2661 	void __iomem *port_mmio = mv_ap_base(ap);
2662 	struct mv_host_priv *hpriv = ap->host->private_data;
2663 	u32 in_index;
2664 	bool work_done = false;
2665 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2666 
2667 	/* Get the hardware queue position index */
2668 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2669 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2670 
2671 	/* Process new responses from since the last time we looked */
2672 	while (in_index != pp->resp_idx) {
2673 		unsigned int tag;
2674 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2675 
2676 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2677 
2678 		if (IS_GEN_I(hpriv)) {
2679 			/* 50xx: no NCQ, only one command active at a time */
2680 			tag = ap->link.active_tag;
2681 		} else {
2682 			/* Gen II/IIE: get command tag from CRPB entry */
2683 			tag = le16_to_cpu(response->id) & 0x1f;
2684 		}
2685 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2686 		work_done = true;
2687 	}
2688 
2689 	/* Update the software queue position index in hardware */
2690 	if (work_done)
2691 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2692 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2693 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2694 }
2695 
2696 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2697 {
2698 	struct mv_port_priv *pp;
2699 	int edma_was_enabled;
2700 
2701 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2702 		mv_unexpected_intr(ap, 0);
2703 		return;
2704 	}
2705 	/*
2706 	 * Grab a snapshot of the EDMA_EN flag setting,
2707 	 * so that we have a consistent view for this port,
2708 	 * even if something we call of our routines changes it.
2709 	 */
2710 	pp = ap->private_data;
2711 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2712 	/*
2713 	 * Process completed CRPB response(s) before other events.
2714 	 */
2715 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2716 		mv_process_crpb_entries(ap, pp);
2717 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2718 			mv_handle_fbs_ncq_dev_err(ap);
2719 	}
2720 	/*
2721 	 * Handle chip-reported errors, or continue on to handle PIO.
2722 	 */
2723 	if (unlikely(port_cause & ERR_IRQ)) {
2724 		mv_err_intr(ap);
2725 	} else if (!edma_was_enabled) {
2726 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2727 		if (qc)
2728 			ata_sff_host_intr(ap, qc);
2729 		else
2730 			mv_unexpected_intr(ap, edma_was_enabled);
2731 	}
2732 }
2733 
2734 /**
2735  *      mv_host_intr - Handle all interrupts on the given host controller
2736  *      @host: host specific structure
2737  *      @main_irq_cause: Main interrupt cause register for the chip.
2738  *
2739  *      LOCKING:
2740  *      Inherited from caller.
2741  */
2742 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2743 {
2744 	struct mv_host_priv *hpriv = host->private_data;
2745 	void __iomem *mmio = hpriv->base, *hc_mmio;
2746 	unsigned int handled = 0, port;
2747 
2748 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2749 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2750 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2751 
2752 	for (port = 0; port < hpriv->n_ports; port++) {
2753 		struct ata_port *ap = host->ports[port];
2754 		unsigned int p, shift, hardport, port_cause;
2755 
2756 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2757 		/*
2758 		 * Each hc within the host has its own hc_irq_cause register,
2759 		 * where the interrupting ports bits get ack'd.
2760 		 */
2761 		if (hardport == 0) {	/* first port on this hc ? */
2762 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2763 			u32 port_mask, ack_irqs;
2764 			/*
2765 			 * Skip this entire hc if nothing pending for any ports
2766 			 */
2767 			if (!hc_cause) {
2768 				port += MV_PORTS_PER_HC - 1;
2769 				continue;
2770 			}
2771 			/*
2772 			 * We don't need/want to read the hc_irq_cause register,
2773 			 * because doing so hurts performance, and
2774 			 * main_irq_cause already gives us everything we need.
2775 			 *
2776 			 * But we do have to *write* to the hc_irq_cause to ack
2777 			 * the ports that we are handling this time through.
2778 			 *
2779 			 * This requires that we create a bitmap for those
2780 			 * ports which interrupted us, and use that bitmap
2781 			 * to ack (only) those ports via hc_irq_cause.
2782 			 */
2783 			ack_irqs = 0;
2784 			if (hc_cause & PORTS_0_3_COAL_DONE)
2785 				ack_irqs = HC_COAL_IRQ;
2786 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2787 				if ((port + p) >= hpriv->n_ports)
2788 					break;
2789 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2790 				if (hc_cause & port_mask)
2791 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2792 			}
2793 			hc_mmio = mv_hc_base_from_port(mmio, port);
2794 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2795 			handled = 1;
2796 		}
2797 		/*
2798 		 * Handle interrupts signalled for this port:
2799 		 */
2800 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2801 		if (port_cause)
2802 			mv_port_intr(ap, port_cause);
2803 	}
2804 	return handled;
2805 }
2806 
2807 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2808 {
2809 	struct mv_host_priv *hpriv = host->private_data;
2810 	struct ata_port *ap;
2811 	struct ata_queued_cmd *qc;
2812 	struct ata_eh_info *ehi;
2813 	unsigned int i, err_mask, printed = 0;
2814 	u32 err_cause;
2815 
2816 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2817 
2818 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2819 		   err_cause);
2820 
2821 	DPRINTK("All regs @ PCI error\n");
2822 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2823 
2824 	writelfl(0, mmio + hpriv->irq_cause_offset);
2825 
2826 	for (i = 0; i < host->n_ports; i++) {
2827 		ap = host->ports[i];
2828 		if (!ata_link_offline(&ap->link)) {
2829 			ehi = &ap->link.eh_info;
2830 			ata_ehi_clear_desc(ehi);
2831 			if (!printed++)
2832 				ata_ehi_push_desc(ehi,
2833 					"PCI err cause 0x%08x", err_cause);
2834 			err_mask = AC_ERR_HOST_BUS;
2835 			ehi->action = ATA_EH_RESET;
2836 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2837 			if (qc)
2838 				qc->err_mask |= err_mask;
2839 			else
2840 				ehi->err_mask |= err_mask;
2841 
2842 			ata_port_freeze(ap);
2843 		}
2844 	}
2845 	return 1;	/* handled */
2846 }
2847 
2848 /**
2849  *      mv_interrupt - Main interrupt event handler
2850  *      @irq: unused
2851  *      @dev_instance: private data; in this case the host structure
2852  *
2853  *      Read the read only register to determine if any host
2854  *      controllers have pending interrupts.  If so, call lower level
2855  *      routine to handle.  Also check for PCI errors which are only
2856  *      reported here.
2857  *
2858  *      LOCKING:
2859  *      This routine holds the host lock while processing pending
2860  *      interrupts.
2861  */
2862 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2863 {
2864 	struct ata_host *host = dev_instance;
2865 	struct mv_host_priv *hpriv = host->private_data;
2866 	unsigned int handled = 0;
2867 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2868 	u32 main_irq_cause, pending_irqs;
2869 
2870 	spin_lock(&host->lock);
2871 
2872 	/* for MSI:  block new interrupts while in here */
2873 	if (using_msi)
2874 		mv_write_main_irq_mask(0, hpriv);
2875 
2876 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2877 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2878 	/*
2879 	 * Deal with cases where we either have nothing pending, or have read
2880 	 * a bogus register value which can indicate HW removal or PCI fault.
2881 	 */
2882 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2883 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2884 			handled = mv_pci_error(host, hpriv->base);
2885 		else
2886 			handled = mv_host_intr(host, pending_irqs);
2887 	}
2888 
2889 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2890 	if (using_msi)
2891 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2892 
2893 	spin_unlock(&host->lock);
2894 
2895 	return IRQ_RETVAL(handled);
2896 }
2897 
2898 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2899 {
2900 	unsigned int ofs;
2901 
2902 	switch (sc_reg_in) {
2903 	case SCR_STATUS:
2904 	case SCR_ERROR:
2905 	case SCR_CONTROL:
2906 		ofs = sc_reg_in * sizeof(u32);
2907 		break;
2908 	default:
2909 		ofs = 0xffffffffU;
2910 		break;
2911 	}
2912 	return ofs;
2913 }
2914 
2915 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2916 {
2917 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2918 	void __iomem *mmio = hpriv->base;
2919 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2920 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2921 
2922 	if (ofs != 0xffffffffU) {
2923 		*val = readl(addr + ofs);
2924 		return 0;
2925 	} else
2926 		return -EINVAL;
2927 }
2928 
2929 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2930 {
2931 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2932 	void __iomem *mmio = hpriv->base;
2933 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2934 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2935 
2936 	if (ofs != 0xffffffffU) {
2937 		writelfl(val, addr + ofs);
2938 		return 0;
2939 	} else
2940 		return -EINVAL;
2941 }
2942 
2943 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2944 {
2945 	struct pci_dev *pdev = to_pci_dev(host->dev);
2946 	int early_5080;
2947 
2948 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2949 
2950 	if (!early_5080) {
2951 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2952 		tmp |= (1 << 0);
2953 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2954 	}
2955 
2956 	mv_reset_pci_bus(host, mmio);
2957 }
2958 
2959 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2960 {
2961 	writel(0x0fcfffff, mmio + FLASH_CTL);
2962 }
2963 
2964 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2965 			   void __iomem *mmio)
2966 {
2967 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2968 	u32 tmp;
2969 
2970 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2971 
2972 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2973 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2974 }
2975 
2976 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2977 {
2978 	u32 tmp;
2979 
2980 	writel(0, mmio + GPIO_PORT_CTL);
2981 
2982 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2983 
2984 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2985 	tmp |= ~(1 << 0);
2986 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2987 }
2988 
2989 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2990 			   unsigned int port)
2991 {
2992 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2993 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2994 	u32 tmp;
2995 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2996 
2997 	if (fix_apm_sq) {
2998 		tmp = readl(phy_mmio + MV5_LTMODE);
2999 		tmp |= (1 << 19);
3000 		writel(tmp, phy_mmio + MV5_LTMODE);
3001 
3002 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3003 		tmp &= ~0x3;
3004 		tmp |= 0x1;
3005 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3006 	}
3007 
3008 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3009 	tmp &= ~mask;
3010 	tmp |= hpriv->signal[port].pre;
3011 	tmp |= hpriv->signal[port].amps;
3012 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3013 }
3014 
3015 
3016 #undef ZERO
3017 #define ZERO(reg) writel(0, port_mmio + (reg))
3018 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3019 			     unsigned int port)
3020 {
3021 	void __iomem *port_mmio = mv_port_base(mmio, port);
3022 
3023 	mv_reset_channel(hpriv, mmio, port);
3024 
3025 	ZERO(0x028);	/* command */
3026 	writel(0x11f, port_mmio + EDMA_CFG);
3027 	ZERO(0x004);	/* timer */
3028 	ZERO(0x008);	/* irq err cause */
3029 	ZERO(0x00c);	/* irq err mask */
3030 	ZERO(0x010);	/* rq bah */
3031 	ZERO(0x014);	/* rq inp */
3032 	ZERO(0x018);	/* rq outp */
3033 	ZERO(0x01c);	/* respq bah */
3034 	ZERO(0x024);	/* respq outp */
3035 	ZERO(0x020);	/* respq inp */
3036 	ZERO(0x02c);	/* test control */
3037 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3038 }
3039 #undef ZERO
3040 
3041 #define ZERO(reg) writel(0, hc_mmio + (reg))
3042 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3043 			unsigned int hc)
3044 {
3045 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3046 	u32 tmp;
3047 
3048 	ZERO(0x00c);
3049 	ZERO(0x010);
3050 	ZERO(0x014);
3051 	ZERO(0x018);
3052 
3053 	tmp = readl(hc_mmio + 0x20);
3054 	tmp &= 0x1c1c1c1c;
3055 	tmp |= 0x03030303;
3056 	writel(tmp, hc_mmio + 0x20);
3057 }
3058 #undef ZERO
3059 
3060 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3061 			unsigned int n_hc)
3062 {
3063 	unsigned int hc, port;
3064 
3065 	for (hc = 0; hc < n_hc; hc++) {
3066 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3067 			mv5_reset_hc_port(hpriv, mmio,
3068 					  (hc * MV_PORTS_PER_HC) + port);
3069 
3070 		mv5_reset_one_hc(hpriv, mmio, hc);
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 #undef ZERO
3077 #define ZERO(reg) writel(0, mmio + (reg))
3078 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3079 {
3080 	struct mv_host_priv *hpriv = host->private_data;
3081 	u32 tmp;
3082 
3083 	tmp = readl(mmio + MV_PCI_MODE);
3084 	tmp &= 0xff00ffff;
3085 	writel(tmp, mmio + MV_PCI_MODE);
3086 
3087 	ZERO(MV_PCI_DISC_TIMER);
3088 	ZERO(MV_PCI_MSI_TRIGGER);
3089 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3090 	ZERO(MV_PCI_SERR_MASK);
3091 	ZERO(hpriv->irq_cause_offset);
3092 	ZERO(hpriv->irq_mask_offset);
3093 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3094 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3095 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3096 	ZERO(MV_PCI_ERR_COMMAND);
3097 }
3098 #undef ZERO
3099 
3100 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3101 {
3102 	u32 tmp;
3103 
3104 	mv5_reset_flash(hpriv, mmio);
3105 
3106 	tmp = readl(mmio + GPIO_PORT_CTL);
3107 	tmp &= 0x3;
3108 	tmp |= (1 << 5) | (1 << 6);
3109 	writel(tmp, mmio + GPIO_PORT_CTL);
3110 }
3111 
3112 /**
3113  *      mv6_reset_hc - Perform the 6xxx global soft reset
3114  *      @mmio: base address of the HBA
3115  *
3116  *      This routine only applies to 6xxx parts.
3117  *
3118  *      LOCKING:
3119  *      Inherited from caller.
3120  */
3121 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3122 			unsigned int n_hc)
3123 {
3124 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3125 	int i, rc = 0;
3126 	u32 t;
3127 
3128 	/* Following procedure defined in PCI "main command and status
3129 	 * register" table.
3130 	 */
3131 	t = readl(reg);
3132 	writel(t | STOP_PCI_MASTER, reg);
3133 
3134 	for (i = 0; i < 1000; i++) {
3135 		udelay(1);
3136 		t = readl(reg);
3137 		if (PCI_MASTER_EMPTY & t)
3138 			break;
3139 	}
3140 	if (!(PCI_MASTER_EMPTY & t)) {
3141 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3142 		rc = 1;
3143 		goto done;
3144 	}
3145 
3146 	/* set reset */
3147 	i = 5;
3148 	do {
3149 		writel(t | GLOB_SFT_RST, reg);
3150 		t = readl(reg);
3151 		udelay(1);
3152 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3153 
3154 	if (!(GLOB_SFT_RST & t)) {
3155 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3156 		rc = 1;
3157 		goto done;
3158 	}
3159 
3160 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3161 	i = 5;
3162 	do {
3163 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3164 		t = readl(reg);
3165 		udelay(1);
3166 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3167 
3168 	if (GLOB_SFT_RST & t) {
3169 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3170 		rc = 1;
3171 	}
3172 done:
3173 	return rc;
3174 }
3175 
3176 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3177 			   void __iomem *mmio)
3178 {
3179 	void __iomem *port_mmio;
3180 	u32 tmp;
3181 
3182 	tmp = readl(mmio + RESET_CFG);
3183 	if ((tmp & (1 << 0)) == 0) {
3184 		hpriv->signal[idx].amps = 0x7 << 8;
3185 		hpriv->signal[idx].pre = 0x1 << 5;
3186 		return;
3187 	}
3188 
3189 	port_mmio = mv_port_base(mmio, idx);
3190 	tmp = readl(port_mmio + PHY_MODE2);
3191 
3192 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3193 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3194 }
3195 
3196 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3197 {
3198 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3199 }
3200 
3201 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3202 			   unsigned int port)
3203 {
3204 	void __iomem *port_mmio = mv_port_base(mmio, port);
3205 
3206 	u32 hp_flags = hpriv->hp_flags;
3207 	int fix_phy_mode2 =
3208 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3209 	int fix_phy_mode4 =
3210 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3211 	u32 m2, m3;
3212 
3213 	if (fix_phy_mode2) {
3214 		m2 = readl(port_mmio + PHY_MODE2);
3215 		m2 &= ~(1 << 16);
3216 		m2 |= (1 << 31);
3217 		writel(m2, port_mmio + PHY_MODE2);
3218 
3219 		udelay(200);
3220 
3221 		m2 = readl(port_mmio + PHY_MODE2);
3222 		m2 &= ~((1 << 16) | (1 << 31));
3223 		writel(m2, port_mmio + PHY_MODE2);
3224 
3225 		udelay(200);
3226 	}
3227 
3228 	/*
3229 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3230 	 * Achieves better receiver noise performance than the h/w default:
3231 	 */
3232 	m3 = readl(port_mmio + PHY_MODE3);
3233 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3234 
3235 	/* Guideline 88F5182 (GL# SATA-S11) */
3236 	if (IS_SOC(hpriv))
3237 		m3 &= ~0x1c;
3238 
3239 	if (fix_phy_mode4) {
3240 		u32 m4 = readl(port_mmio + PHY_MODE4);
3241 		/*
3242 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3243 		 * For earlier chipsets, force only the internal config field
3244 		 *  (workaround for errata FEr SATA#10 part 1).
3245 		 */
3246 		if (IS_GEN_IIE(hpriv))
3247 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3248 		else
3249 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3250 		writel(m4, port_mmio + PHY_MODE4);
3251 	}
3252 	/*
3253 	 * Workaround for 60x1-B2 errata SATA#13:
3254 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3255 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3256 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3257 	 */
3258 	writel(m3, port_mmio + PHY_MODE3);
3259 
3260 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3261 	m2 = readl(port_mmio + PHY_MODE2);
3262 
3263 	m2 &= ~MV_M2_PREAMP_MASK;
3264 	m2 |= hpriv->signal[port].amps;
3265 	m2 |= hpriv->signal[port].pre;
3266 	m2 &= ~(1 << 16);
3267 
3268 	/* according to mvSata 3.6.1, some IIE values are fixed */
3269 	if (IS_GEN_IIE(hpriv)) {
3270 		m2 &= ~0xC30FF01F;
3271 		m2 |= 0x0000900F;
3272 	}
3273 
3274 	writel(m2, port_mmio + PHY_MODE2);
3275 }
3276 
3277 /* TODO: use the generic LED interface to configure the SATA Presence */
3278 /* & Acitivy LEDs on the board */
3279 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3280 				      void __iomem *mmio)
3281 {
3282 	return;
3283 }
3284 
3285 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3286 			   void __iomem *mmio)
3287 {
3288 	void __iomem *port_mmio;
3289 	u32 tmp;
3290 
3291 	port_mmio = mv_port_base(mmio, idx);
3292 	tmp = readl(port_mmio + PHY_MODE2);
3293 
3294 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3295 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3296 }
3297 
3298 #undef ZERO
3299 #define ZERO(reg) writel(0, port_mmio + (reg))
3300 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3301 					void __iomem *mmio, unsigned int port)
3302 {
3303 	void __iomem *port_mmio = mv_port_base(mmio, port);
3304 
3305 	mv_reset_channel(hpriv, mmio, port);
3306 
3307 	ZERO(0x028);		/* command */
3308 	writel(0x101f, port_mmio + EDMA_CFG);
3309 	ZERO(0x004);		/* timer */
3310 	ZERO(0x008);		/* irq err cause */
3311 	ZERO(0x00c);		/* irq err mask */
3312 	ZERO(0x010);		/* rq bah */
3313 	ZERO(0x014);		/* rq inp */
3314 	ZERO(0x018);		/* rq outp */
3315 	ZERO(0x01c);		/* respq bah */
3316 	ZERO(0x024);		/* respq outp */
3317 	ZERO(0x020);		/* respq inp */
3318 	ZERO(0x02c);		/* test control */
3319 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3320 }
3321 
3322 #undef ZERO
3323 
3324 #define ZERO(reg) writel(0, hc_mmio + (reg))
3325 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3326 				       void __iomem *mmio)
3327 {
3328 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3329 
3330 	ZERO(0x00c);
3331 	ZERO(0x010);
3332 	ZERO(0x014);
3333 
3334 }
3335 
3336 #undef ZERO
3337 
3338 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3339 				  void __iomem *mmio, unsigned int n_hc)
3340 {
3341 	unsigned int port;
3342 
3343 	for (port = 0; port < hpriv->n_ports; port++)
3344 		mv_soc_reset_hc_port(hpriv, mmio, port);
3345 
3346 	mv_soc_reset_one_hc(hpriv, mmio);
3347 
3348 	return 0;
3349 }
3350 
3351 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3352 				      void __iomem *mmio)
3353 {
3354 	return;
3355 }
3356 
3357 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3358 {
3359 	return;
3360 }
3361 
3362 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3363 {
3364 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3365 
3366 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3367 	if (want_gen2i)
3368 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3369 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3370 }
3371 
3372 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3373 			     unsigned int port_no)
3374 {
3375 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3376 
3377 	/*
3378 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3379 	 * (but doesn't say what the problem might be).  So we first try
3380 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3381 	 */
3382 	mv_stop_edma_engine(port_mmio);
3383 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3384 
3385 	if (!IS_GEN_I(hpriv)) {
3386 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3387 		mv_setup_ifcfg(port_mmio, 1);
3388 	}
3389 	/*
3390 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3391 	 * link, and physical layers.  It resets all SATA interface registers
3392 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3393 	 */
3394 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3395 	udelay(25);	/* allow reset propagation */
3396 	writelfl(0, port_mmio + EDMA_CMD);
3397 
3398 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3399 
3400 	if (IS_GEN_I(hpriv))
3401 		mdelay(1);
3402 }
3403 
3404 static void mv_pmp_select(struct ata_port *ap, int pmp)
3405 {
3406 	if (sata_pmp_supported(ap)) {
3407 		void __iomem *port_mmio = mv_ap_base(ap);
3408 		u32 reg = readl(port_mmio + SATA_IFCTL);
3409 		int old = reg & 0xf;
3410 
3411 		if (old != pmp) {
3412 			reg = (reg & ~0xf) | pmp;
3413 			writelfl(reg, port_mmio + SATA_IFCTL);
3414 		}
3415 	}
3416 }
3417 
3418 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3419 				unsigned long deadline)
3420 {
3421 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3422 	return sata_std_hardreset(link, class, deadline);
3423 }
3424 
3425 static int mv_softreset(struct ata_link *link, unsigned int *class,
3426 				unsigned long deadline)
3427 {
3428 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3429 	return ata_sff_softreset(link, class, deadline);
3430 }
3431 
3432 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3433 			unsigned long deadline)
3434 {
3435 	struct ata_port *ap = link->ap;
3436 	struct mv_host_priv *hpriv = ap->host->private_data;
3437 	struct mv_port_priv *pp = ap->private_data;
3438 	void __iomem *mmio = hpriv->base;
3439 	int rc, attempts = 0, extra = 0;
3440 	u32 sstatus;
3441 	bool online;
3442 
3443 	mv_reset_channel(hpriv, mmio, ap->port_no);
3444 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3445 	pp->pp_flags &=
3446 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3447 
3448 	/* Workaround for errata FEr SATA#10 (part 2) */
3449 	do {
3450 		const unsigned long *timing =
3451 				sata_ehc_deb_timing(&link->eh_context);
3452 
3453 		rc = sata_link_hardreset(link, timing, deadline + extra,
3454 					 &online, NULL);
3455 		rc = online ? -EAGAIN : rc;
3456 		if (rc)
3457 			return rc;
3458 		sata_scr_read(link, SCR_STATUS, &sstatus);
3459 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3460 			/* Force 1.5gb/s link speed and try again */
3461 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3462 			if (time_after(jiffies + HZ, deadline))
3463 				extra = HZ; /* only extend it once, max */
3464 		}
3465 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3466 	mv_save_cached_regs(ap);
3467 	mv_edma_cfg(ap, 0, 0);
3468 
3469 	return rc;
3470 }
3471 
3472 static void mv_eh_freeze(struct ata_port *ap)
3473 {
3474 	mv_stop_edma(ap);
3475 	mv_enable_port_irqs(ap, 0);
3476 }
3477 
3478 static void mv_eh_thaw(struct ata_port *ap)
3479 {
3480 	struct mv_host_priv *hpriv = ap->host->private_data;
3481 	unsigned int port = ap->port_no;
3482 	unsigned int hardport = mv_hardport_from_port(port);
3483 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3484 	void __iomem *port_mmio = mv_ap_base(ap);
3485 	u32 hc_irq_cause;
3486 
3487 	/* clear EDMA errors on this port */
3488 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3489 
3490 	/* clear pending irq events */
3491 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3492 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3493 
3494 	mv_enable_port_irqs(ap, ERR_IRQ);
3495 }
3496 
3497 /**
3498  *      mv_port_init - Perform some early initialization on a single port.
3499  *      @port: libata data structure storing shadow register addresses
3500  *      @port_mmio: base address of the port
3501  *
3502  *      Initialize shadow register mmio addresses, clear outstanding
3503  *      interrupts on the port, and unmask interrupts for the future
3504  *      start of the port.
3505  *
3506  *      LOCKING:
3507  *      Inherited from caller.
3508  */
3509 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3510 {
3511 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3512 
3513 	/* PIO related setup
3514 	 */
3515 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3516 	port->error_addr =
3517 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3518 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3519 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3520 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3521 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3522 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3523 	port->status_addr =
3524 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3525 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3526 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3527 
3528 	/* unused: */
3529 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
3530 
3531 	/* Clear any currently outstanding port interrupt conditions */
3532 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3533 	writelfl(readl(serr), serr);
3534 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3535 
3536 	/* unmask all non-transient EDMA error interrupts */
3537 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3538 
3539 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3540 		readl(port_mmio + EDMA_CFG),
3541 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3542 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3543 }
3544 
3545 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3546 {
3547 	struct mv_host_priv *hpriv = host->private_data;
3548 	void __iomem *mmio = hpriv->base;
3549 	u32 reg;
3550 
3551 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3552 		return 0;	/* not PCI-X capable */
3553 	reg = readl(mmio + MV_PCI_MODE);
3554 	if ((reg & MV_PCI_MODE_MASK) == 0)
3555 		return 0;	/* conventional PCI mode */
3556 	return 1;	/* chip is in PCI-X mode */
3557 }
3558 
3559 static int mv_pci_cut_through_okay(struct ata_host *host)
3560 {
3561 	struct mv_host_priv *hpriv = host->private_data;
3562 	void __iomem *mmio = hpriv->base;
3563 	u32 reg;
3564 
3565 	if (!mv_in_pcix_mode(host)) {
3566 		reg = readl(mmio + MV_PCI_COMMAND);
3567 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3568 			return 0; /* not okay */
3569 	}
3570 	return 1; /* okay */
3571 }
3572 
3573 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3574 {
3575 	struct mv_host_priv *hpriv = host->private_data;
3576 	void __iomem *mmio = hpriv->base;
3577 
3578 	/* workaround for 60x1-B2 errata PCI#7 */
3579 	if (mv_in_pcix_mode(host)) {
3580 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3581 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3582 	}
3583 }
3584 
3585 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3586 {
3587 	struct pci_dev *pdev = to_pci_dev(host->dev);
3588 	struct mv_host_priv *hpriv = host->private_data;
3589 	u32 hp_flags = hpriv->hp_flags;
3590 
3591 	switch (board_idx) {
3592 	case chip_5080:
3593 		hpriv->ops = &mv5xxx_ops;
3594 		hp_flags |= MV_HP_GEN_I;
3595 
3596 		switch (pdev->revision) {
3597 		case 0x1:
3598 			hp_flags |= MV_HP_ERRATA_50XXB0;
3599 			break;
3600 		case 0x3:
3601 			hp_flags |= MV_HP_ERRATA_50XXB2;
3602 			break;
3603 		default:
3604 			dev_printk(KERN_WARNING, &pdev->dev,
3605 			   "Applying 50XXB2 workarounds to unknown rev\n");
3606 			hp_flags |= MV_HP_ERRATA_50XXB2;
3607 			break;
3608 		}
3609 		break;
3610 
3611 	case chip_504x:
3612 	case chip_508x:
3613 		hpriv->ops = &mv5xxx_ops;
3614 		hp_flags |= MV_HP_GEN_I;
3615 
3616 		switch (pdev->revision) {
3617 		case 0x0:
3618 			hp_flags |= MV_HP_ERRATA_50XXB0;
3619 			break;
3620 		case 0x3:
3621 			hp_flags |= MV_HP_ERRATA_50XXB2;
3622 			break;
3623 		default:
3624 			dev_printk(KERN_WARNING, &pdev->dev,
3625 			   "Applying B2 workarounds to unknown rev\n");
3626 			hp_flags |= MV_HP_ERRATA_50XXB2;
3627 			break;
3628 		}
3629 		break;
3630 
3631 	case chip_604x:
3632 	case chip_608x:
3633 		hpriv->ops = &mv6xxx_ops;
3634 		hp_flags |= MV_HP_GEN_II;
3635 
3636 		switch (pdev->revision) {
3637 		case 0x7:
3638 			mv_60x1b2_errata_pci7(host);
3639 			hp_flags |= MV_HP_ERRATA_60X1B2;
3640 			break;
3641 		case 0x9:
3642 			hp_flags |= MV_HP_ERRATA_60X1C0;
3643 			break;
3644 		default:
3645 			dev_printk(KERN_WARNING, &pdev->dev,
3646 				   "Applying B2 workarounds to unknown rev\n");
3647 			hp_flags |= MV_HP_ERRATA_60X1B2;
3648 			break;
3649 		}
3650 		break;
3651 
3652 	case chip_7042:
3653 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3654 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3655 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3656 		{
3657 			/*
3658 			 * Highpoint RocketRAID PCIe 23xx series cards:
3659 			 *
3660 			 * Unconfigured drives are treated as "Legacy"
3661 			 * by the BIOS, and it overwrites sector 8 with
3662 			 * a "Lgcy" metadata block prior to Linux boot.
3663 			 *
3664 			 * Configured drives (RAID or JBOD) leave sector 8
3665 			 * alone, but instead overwrite a high numbered
3666 			 * sector for the RAID metadata.  This sector can
3667 			 * be determined exactly, by truncating the physical
3668 			 * drive capacity to a nice even GB value.
3669 			 *
3670 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3671 			 *
3672 			 * Warn the user, lest they think we're just buggy.
3673 			 */
3674 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3675 				" BIOS CORRUPTS DATA on all attached drives,"
3676 				" regardless of if/how they are configured."
3677 				" BEWARE!\n");
3678 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3679 				" use sectors 8-9 on \"Legacy\" drives,"
3680 				" and avoid the final two gigabytes on"
3681 				" all RocketRAID BIOS initialized drives.\n");
3682 		}
3683 		/* drop through */
3684 	case chip_6042:
3685 		hpriv->ops = &mv6xxx_ops;
3686 		hp_flags |= MV_HP_GEN_IIE;
3687 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3688 			hp_flags |= MV_HP_CUT_THROUGH;
3689 
3690 		switch (pdev->revision) {
3691 		case 0x2: /* Rev.B0: the first/only public release */
3692 			hp_flags |= MV_HP_ERRATA_60X1C0;
3693 			break;
3694 		default:
3695 			dev_printk(KERN_WARNING, &pdev->dev,
3696 			   "Applying 60X1C0 workarounds to unknown rev\n");
3697 			hp_flags |= MV_HP_ERRATA_60X1C0;
3698 			break;
3699 		}
3700 		break;
3701 	case chip_soc:
3702 		hpriv->ops = &mv_soc_ops;
3703 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3704 			MV_HP_ERRATA_60X1C0;
3705 		break;
3706 
3707 	default:
3708 		dev_printk(KERN_ERR, host->dev,
3709 			   "BUG: invalid board index %u\n", board_idx);
3710 		return 1;
3711 	}
3712 
3713 	hpriv->hp_flags = hp_flags;
3714 	if (hp_flags & MV_HP_PCIE) {
3715 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3716 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3717 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3718 	} else {
3719 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3720 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3721 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3722 	}
3723 
3724 	return 0;
3725 }
3726 
3727 /**
3728  *      mv_init_host - Perform some early initialization of the host.
3729  *	@host: ATA host to initialize
3730  *      @board_idx: controller index
3731  *
3732  *      If possible, do an early global reset of the host.  Then do
3733  *      our port init and clear/unmask all/relevant host interrupts.
3734  *
3735  *      LOCKING:
3736  *      Inherited from caller.
3737  */
3738 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3739 {
3740 	int rc = 0, n_hc, port, hc;
3741 	struct mv_host_priv *hpriv = host->private_data;
3742 	void __iomem *mmio = hpriv->base;
3743 
3744 	rc = mv_chip_id(host, board_idx);
3745 	if (rc)
3746 		goto done;
3747 
3748 	if (IS_SOC(hpriv)) {
3749 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3750 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3751 	} else {
3752 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3753 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3754 	}
3755 
3756 	/* initialize shadow irq mask with register's value */
3757 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3758 
3759 	/* global interrupt mask: 0 == mask everything */
3760 	mv_set_main_irq_mask(host, ~0, 0);
3761 
3762 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3763 
3764 	for (port = 0; port < host->n_ports; port++)
3765 		hpriv->ops->read_preamp(hpriv, port, mmio);
3766 
3767 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3768 	if (rc)
3769 		goto done;
3770 
3771 	hpriv->ops->reset_flash(hpriv, mmio);
3772 	hpriv->ops->reset_bus(host, mmio);
3773 	hpriv->ops->enable_leds(hpriv, mmio);
3774 
3775 	for (port = 0; port < host->n_ports; port++) {
3776 		struct ata_port *ap = host->ports[port];
3777 		void __iomem *port_mmio = mv_port_base(mmio, port);
3778 
3779 		mv_port_init(&ap->ioaddr, port_mmio);
3780 
3781 #ifdef CONFIG_PCI
3782 		if (!IS_SOC(hpriv)) {
3783 			unsigned int offset = port_mmio - mmio;
3784 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3785 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3786 		}
3787 #endif
3788 	}
3789 
3790 	for (hc = 0; hc < n_hc; hc++) {
3791 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3792 
3793 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3794 			"(before clear)=0x%08x\n", hc,
3795 			readl(hc_mmio + HC_CFG),
3796 			readl(hc_mmio + HC_IRQ_CAUSE));
3797 
3798 		/* Clear any currently outstanding hc interrupt conditions */
3799 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3800 	}
3801 
3802 	if (!IS_SOC(hpriv)) {
3803 		/* Clear any currently outstanding host interrupt conditions */
3804 		writelfl(0, mmio + hpriv->irq_cause_offset);
3805 
3806 		/* and unmask interrupt generation for host regs */
3807 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3808 	}
3809 
3810 	/*
3811 	 * enable only global host interrupts for now.
3812 	 * The per-port interrupts get done later as ports are set up.
3813 	 */
3814 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3815 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3816 				    irq_coalescing_usecs);
3817 done:
3818 	return rc;
3819 }
3820 
3821 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3822 {
3823 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3824 							     MV_CRQB_Q_SZ, 0);
3825 	if (!hpriv->crqb_pool)
3826 		return -ENOMEM;
3827 
3828 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3829 							     MV_CRPB_Q_SZ, 0);
3830 	if (!hpriv->crpb_pool)
3831 		return -ENOMEM;
3832 
3833 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3834 							     MV_SG_TBL_SZ, 0);
3835 	if (!hpriv->sg_tbl_pool)
3836 		return -ENOMEM;
3837 
3838 	return 0;
3839 }
3840 
3841 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3842 				 struct mbus_dram_target_info *dram)
3843 {
3844 	int i;
3845 
3846 	for (i = 0; i < 4; i++) {
3847 		writel(0, hpriv->base + WINDOW_CTRL(i));
3848 		writel(0, hpriv->base + WINDOW_BASE(i));
3849 	}
3850 
3851 	for (i = 0; i < dram->num_cs; i++) {
3852 		struct mbus_dram_window *cs = dram->cs + i;
3853 
3854 		writel(((cs->size - 1) & 0xffff0000) |
3855 			(cs->mbus_attr << 8) |
3856 			(dram->mbus_dram_target_id << 4) | 1,
3857 			hpriv->base + WINDOW_CTRL(i));
3858 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3859 	}
3860 }
3861 
3862 /**
3863  *      mv_platform_probe - handle a positive probe of an soc Marvell
3864  *      host
3865  *      @pdev: platform device found
3866  *
3867  *      LOCKING:
3868  *      Inherited from caller.
3869  */
3870 static int mv_platform_probe(struct platform_device *pdev)
3871 {
3872 	static int printed_version;
3873 	const struct mv_sata_platform_data *mv_platform_data;
3874 	const struct ata_port_info *ppi[] =
3875 	    { &mv_port_info[chip_soc], NULL };
3876 	struct ata_host *host;
3877 	struct mv_host_priv *hpriv;
3878 	struct resource *res;
3879 	int n_ports, rc;
3880 
3881 	if (!printed_version++)
3882 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3883 
3884 	/*
3885 	 * Simple resource validation ..
3886 	 */
3887 	if (unlikely(pdev->num_resources != 2)) {
3888 		dev_err(&pdev->dev, "invalid number of resources\n");
3889 		return -EINVAL;
3890 	}
3891 
3892 	/*
3893 	 * Get the register base first
3894 	 */
3895 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3896 	if (res == NULL)
3897 		return -EINVAL;
3898 
3899 	/* allocate host */
3900 	mv_platform_data = pdev->dev.platform_data;
3901 	n_ports = mv_platform_data->n_ports;
3902 
3903 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3904 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3905 
3906 	if (!host || !hpriv)
3907 		return -ENOMEM;
3908 	host->private_data = hpriv;
3909 	hpriv->n_ports = n_ports;
3910 
3911 	host->iomap = NULL;
3912 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3913 				   res->end - res->start + 1);
3914 	hpriv->base -= SATAHC0_REG_BASE;
3915 
3916 	/*
3917 	 * (Re-)program MBUS remapping windows if we are asked to.
3918 	 */
3919 	if (mv_platform_data->dram != NULL)
3920 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3921 
3922 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3923 	if (rc)
3924 		return rc;
3925 
3926 	/* initialize adapter */
3927 	rc = mv_init_host(host, chip_soc);
3928 	if (rc)
3929 		return rc;
3930 
3931 	dev_printk(KERN_INFO, &pdev->dev,
3932 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3933 		   host->n_ports);
3934 
3935 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3936 				 IRQF_SHARED, &mv6_sht);
3937 }
3938 
3939 /*
3940  *
3941  *      mv_platform_remove    -       unplug a platform interface
3942  *      @pdev: platform device
3943  *
3944  *      A platform bus SATA device has been unplugged. Perform the needed
3945  *      cleanup. Also called on module unload for any active devices.
3946  */
3947 static int __devexit mv_platform_remove(struct platform_device *pdev)
3948 {
3949 	struct device *dev = &pdev->dev;
3950 	struct ata_host *host = dev_get_drvdata(dev);
3951 
3952 	ata_host_detach(host);
3953 	return 0;
3954 }
3955 
3956 static struct platform_driver mv_platform_driver = {
3957 	.probe			= mv_platform_probe,
3958 	.remove			= __devexit_p(mv_platform_remove),
3959 	.driver			= {
3960 				   .name = DRV_NAME,
3961 				   .owner = THIS_MODULE,
3962 				  },
3963 };
3964 
3965 
3966 #ifdef CONFIG_PCI
3967 static int mv_pci_init_one(struct pci_dev *pdev,
3968 			   const struct pci_device_id *ent);
3969 
3970 
3971 static struct pci_driver mv_pci_driver = {
3972 	.name			= DRV_NAME,
3973 	.id_table		= mv_pci_tbl,
3974 	.probe			= mv_pci_init_one,
3975 	.remove			= ata_pci_remove_one,
3976 };
3977 
3978 /* move to PCI layer or libata core? */
3979 static int pci_go_64(struct pci_dev *pdev)
3980 {
3981 	int rc;
3982 
3983 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3984 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3985 		if (rc) {
3986 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3987 			if (rc) {
3988 				dev_printk(KERN_ERR, &pdev->dev,
3989 					   "64-bit DMA enable failed\n");
3990 				return rc;
3991 			}
3992 		}
3993 	} else {
3994 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3995 		if (rc) {
3996 			dev_printk(KERN_ERR, &pdev->dev,
3997 				   "32-bit DMA enable failed\n");
3998 			return rc;
3999 		}
4000 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4001 		if (rc) {
4002 			dev_printk(KERN_ERR, &pdev->dev,
4003 				   "32-bit consistent DMA enable failed\n");
4004 			return rc;
4005 		}
4006 	}
4007 
4008 	return rc;
4009 }
4010 
4011 /**
4012  *      mv_print_info - Dump key info to kernel log for perusal.
4013  *      @host: ATA host to print info about
4014  *
4015  *      FIXME: complete this.
4016  *
4017  *      LOCKING:
4018  *      Inherited from caller.
4019  */
4020 static void mv_print_info(struct ata_host *host)
4021 {
4022 	struct pci_dev *pdev = to_pci_dev(host->dev);
4023 	struct mv_host_priv *hpriv = host->private_data;
4024 	u8 scc;
4025 	const char *scc_s, *gen;
4026 
4027 	/* Use this to determine the HW stepping of the chip so we know
4028 	 * what errata to workaround
4029 	 */
4030 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4031 	if (scc == 0)
4032 		scc_s = "SCSI";
4033 	else if (scc == 0x01)
4034 		scc_s = "RAID";
4035 	else
4036 		scc_s = "?";
4037 
4038 	if (IS_GEN_I(hpriv))
4039 		gen = "I";
4040 	else if (IS_GEN_II(hpriv))
4041 		gen = "II";
4042 	else if (IS_GEN_IIE(hpriv))
4043 		gen = "IIE";
4044 	else
4045 		gen = "?";
4046 
4047 	dev_printk(KERN_INFO, &pdev->dev,
4048 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4049 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4050 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4051 }
4052 
4053 /**
4054  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4055  *      @pdev: PCI device found
4056  *      @ent: PCI device ID entry for the matched host
4057  *
4058  *      LOCKING:
4059  *      Inherited from caller.
4060  */
4061 static int mv_pci_init_one(struct pci_dev *pdev,
4062 			   const struct pci_device_id *ent)
4063 {
4064 	static int printed_version;
4065 	unsigned int board_idx = (unsigned int)ent->driver_data;
4066 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4067 	struct ata_host *host;
4068 	struct mv_host_priv *hpriv;
4069 	int n_ports, rc;
4070 
4071 	if (!printed_version++)
4072 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4073 
4074 	/* allocate host */
4075 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4076 
4077 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4078 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4079 	if (!host || !hpriv)
4080 		return -ENOMEM;
4081 	host->private_data = hpriv;
4082 	hpriv->n_ports = n_ports;
4083 
4084 	/* acquire resources */
4085 	rc = pcim_enable_device(pdev);
4086 	if (rc)
4087 		return rc;
4088 
4089 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4090 	if (rc == -EBUSY)
4091 		pcim_pin_device(pdev);
4092 	if (rc)
4093 		return rc;
4094 	host->iomap = pcim_iomap_table(pdev);
4095 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4096 
4097 	rc = pci_go_64(pdev);
4098 	if (rc)
4099 		return rc;
4100 
4101 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4102 	if (rc)
4103 		return rc;
4104 
4105 	/* initialize adapter */
4106 	rc = mv_init_host(host, board_idx);
4107 	if (rc)
4108 		return rc;
4109 
4110 	/* Enable message-switched interrupts, if requested */
4111 	if (msi && pci_enable_msi(pdev) == 0)
4112 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4113 
4114 	mv_dump_pci_cfg(pdev, 0x68);
4115 	mv_print_info(host);
4116 
4117 	pci_set_master(pdev);
4118 	pci_try_set_mwi(pdev);
4119 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4120 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4121 }
4122 #endif
4123 
4124 static int mv_platform_probe(struct platform_device *pdev);
4125 static int __devexit mv_platform_remove(struct platform_device *pdev);
4126 
4127 static int __init mv_init(void)
4128 {
4129 	int rc = -ENODEV;
4130 #ifdef CONFIG_PCI
4131 	rc = pci_register_driver(&mv_pci_driver);
4132 	if (rc < 0)
4133 		return rc;
4134 #endif
4135 	rc = platform_driver_register(&mv_platform_driver);
4136 
4137 #ifdef CONFIG_PCI
4138 	if (rc < 0)
4139 		pci_unregister_driver(&mv_pci_driver);
4140 #endif
4141 	return rc;
4142 }
4143 
4144 static void __exit mv_exit(void)
4145 {
4146 #ifdef CONFIG_PCI
4147 	pci_unregister_driver(&mv_pci_driver);
4148 #endif
4149 	platform_driver_unregister(&mv_platform_driver);
4150 }
4151 
4152 MODULE_AUTHOR("Brett Russ");
4153 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4154 MODULE_LICENSE("GPL");
4155 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4156 MODULE_VERSION(DRV_VERSION);
4157 MODULE_ALIAS("platform:" DRV_NAME);
4158 
4159 module_init(mv_init);
4160 module_exit(mv_exit);
4161