1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sata_mv.c - Marvell SATA support 4 * 5 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 6 * Copyright 2005: EMC Corporation, all rights reserved. 7 * Copyright 2005 Red Hat, Inc. All rights reserved. 8 * 9 * Originally written by Brett Russ. 10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 11 * 12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 13 */ 14 15 /* 16 * sata_mv TODO list: 17 * 18 * --> Develop a low-power-consumption strategy, and implement it. 19 * 20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 21 * 22 * --> [Experiment, Marvell value added] Is it possible to use target 23 * mode to cross-connect two Linux boxes with Marvell cards? If so, 24 * creating LibATA target mode support would be very interesting. 25 * 26 * Target mode, for those without docs, is the ability to directly 27 * connect two SATA ports. 28 */ 29 30 /* 31 * 80x1-B2 errata PCI#11: 32 * 33 * Users of the 6041/6081 Rev.B2 chips (current is C0) 34 * should be careful to insert those cards only onto PCI-X bus #0, 35 * and only in device slots 0..7, not higher. The chips may not 36 * work correctly otherwise (note: this is a pretty rare condition). 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/dmapool.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/device.h> 49 #include <linux/clk.h> 50 #include <linux/phy/phy.h> 51 #include <linux/platform_device.h> 52 #include <linux/ata_platform.h> 53 #include <linux/mbus.h> 54 #include <linux/bitops.h> 55 #include <linux/gfp.h> 56 #include <linux/of.h> 57 #include <linux/of_irq.h> 58 #include <scsi/scsi_host.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_device.h> 61 #include <linux/libata.h> 62 63 #define DRV_NAME "sata_mv" 64 #define DRV_VERSION "1.28" 65 66 /* 67 * module options 68 */ 69 70 #ifdef CONFIG_PCI 71 static int msi; 72 module_param(msi, int, S_IRUGO); 73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 74 #endif 75 76 static int irq_coalescing_io_count; 77 module_param(irq_coalescing_io_count, int, S_IRUGO); 78 MODULE_PARM_DESC(irq_coalescing_io_count, 79 "IRQ coalescing I/O count threshold (0..255)"); 80 81 static int irq_coalescing_usecs; 82 module_param(irq_coalescing_usecs, int, S_IRUGO); 83 MODULE_PARM_DESC(irq_coalescing_usecs, 84 "IRQ coalescing time threshold in usecs"); 85 86 enum { 87 /* BAR's are enumerated in terms of pci_resource_start() terms */ 88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 89 MV_IO_BAR = 2, /* offset 0x18: IO space */ 90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 91 92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 94 95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 99 100 MV_PCI_REG_BASE = 0, 101 102 /* 103 * Per-chip ("all ports") interrupt coalescing feature. 104 * This is only for GEN_II / GEN_IIE hardware. 105 * 106 * Coalescing defers the interrupt until either the IO_THRESHOLD 107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 108 */ 109 COAL_REG_BASE = 0x18000, 110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 112 113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 115 116 /* 117 * Registers for the (unused here) transaction coalescing feature: 118 */ 119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 121 122 SATAHC0_REG_BASE = 0x20000, 123 FLASH_CTL = 0x1046c, 124 GPIO_PORT_CTL = 0x104f0, 125 RESET_CFG = 0x180d8, 126 127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 131 132 MV_MAX_Q_DEPTH = 32, 133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 134 135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 136 * CRPB needs alignment on a 256B boundary. Size == 256B 137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 138 */ 139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 141 MV_MAX_SG_CT = 256, 142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 143 144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 145 MV_PORT_HC_SHIFT = 2, 146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 149 150 /* Host Flags */ 151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 152 153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 154 155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 156 157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 159 160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 161 162 CRQB_FLAG_READ = (1 << 0), 163 CRQB_TAG_SHIFT = 1, 164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 167 CRQB_CMD_ADDR_SHIFT = 8, 168 CRQB_CMD_CS = (0x2 << 11), 169 CRQB_CMD_LAST = (1 << 15), 170 171 CRPB_FLAG_STATUS_SHIFT = 8, 172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 174 175 EPRD_FLAG_END_OF_TBL = (1 << 31), 176 177 /* PCI interface registers */ 178 179 MV_PCI_COMMAND = 0xc00, 180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 182 183 PCI_MAIN_CMD_STS = 0xd30, 184 STOP_PCI_MASTER = (1 << 2), 185 PCI_MASTER_EMPTY = (1 << 3), 186 GLOB_SFT_RST = (1 << 4), 187 188 MV_PCI_MODE = 0xd00, 189 MV_PCI_MODE_MASK = 0x30, 190 191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 192 MV_PCI_DISC_TIMER = 0xd04, 193 MV_PCI_MSI_TRIGGER = 0xc38, 194 MV_PCI_SERR_MASK = 0xc28, 195 MV_PCI_XBAR_TMOUT = 0x1d04, 196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 198 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 199 MV_PCI_ERR_COMMAND = 0x1d50, 200 201 PCI_IRQ_CAUSE = 0x1d58, 202 PCI_IRQ_MASK = 0x1d5c, 203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 204 205 PCIE_IRQ_CAUSE = 0x1900, 206 PCIE_IRQ_MASK = 0x1910, 207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 208 209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 211 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 213 SOC_HC_MAIN_IRQ_MASK = 0x20024, 214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 220 PCI_ERR = (1 << 18), 221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 226 GPIO_INT = (1 << 22), 227 SELF_INT = (1 << 23), 228 TWSI_INT = (1 << 24), 229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 232 233 /* SATAHC registers */ 234 HC_CFG = 0x00, 235 236 HC_IRQ_CAUSE = 0x14, 237 DMA_IRQ = (1 << 0), /* shift by port # */ 238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 239 DEV_IRQ = (1 << 8), /* shift by port # */ 240 241 /* 242 * Per-HC (Host-Controller) interrupt coalescing feature. 243 * This is present on all chip generations. 244 * 245 * Coalescing defers the interrupt until either the IO_THRESHOLD 246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 247 */ 248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 250 251 SOC_LED_CTRL = 0x2c, 252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 254 /* with dev activity LED */ 255 256 /* Shadow block registers */ 257 SHD_BLK = 0x100, 258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 259 260 /* SATA registers */ 261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 262 SATA_ACTIVE = 0x350, 263 FIS_IRQ_CAUSE = 0x364, 264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 265 266 LTMODE = 0x30c, /* requires read-after-write */ 267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 268 269 PHY_MODE2 = 0x330, 270 PHY_MODE3 = 0x310, 271 272 PHY_MODE4 = 0x314, /* requires read-after-write */ 273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 277 278 SATA_IFCTL = 0x344, 279 SATA_TESTCTL = 0x348, 280 SATA_IFSTAT = 0x34c, 281 VENDOR_UNIQUE_FIS = 0x35c, 282 283 FISCFG = 0x360, 284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 286 287 PHY_MODE9_GEN2 = 0x398, 288 PHY_MODE9_GEN1 = 0x39c, 289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 290 291 MV5_PHY_MODE = 0x74, 292 MV5_LTMODE = 0x30, 293 MV5_PHY_CTL = 0x0C, 294 SATA_IFCFG = 0x050, 295 LP_PHY_CTL = 0x058, 296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0), 297 LP_PHY_CTL_PIN_PU_RX = (1 << 1), 298 LP_PHY_CTL_PIN_PU_TX = (1 << 2), 299 LP_PHY_CTL_GEN_TX_3G = (1 << 5), 300 LP_PHY_CTL_GEN_RX_3G = (1 << 9), 301 302 MV_M2_PREAMP_MASK = 0x7e0, 303 304 /* Port registers */ 305 EDMA_CFG = 0, 306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 313 314 EDMA_ERR_IRQ_CAUSE = 0x8, 315 EDMA_ERR_IRQ_MASK = 0xc, 316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 318 EDMA_ERR_DEV = (1 << 2), /* device error */ 319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 330 331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 336 337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 338 339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 345 346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 347 348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 349 EDMA_ERR_OVERRUN_5 = (1 << 5), 350 EDMA_ERR_UNDERRUN_5 = (1 << 6), 351 352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 353 EDMA_ERR_LNK_CTRL_RX_1 | 354 EDMA_ERR_LNK_CTRL_RX_3 | 355 EDMA_ERR_LNK_CTRL_TX, 356 357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 358 EDMA_ERR_PRD_PAR | 359 EDMA_ERR_DEV_DCON | 360 EDMA_ERR_DEV_CON | 361 EDMA_ERR_SERR | 362 EDMA_ERR_SELF_DIS | 363 EDMA_ERR_CRQB_PAR | 364 EDMA_ERR_CRPB_PAR | 365 EDMA_ERR_INTRL_PAR | 366 EDMA_ERR_IORDY | 367 EDMA_ERR_LNK_CTRL_RX_2 | 368 EDMA_ERR_LNK_DATA_RX | 369 EDMA_ERR_LNK_DATA_TX | 370 EDMA_ERR_TRANS_PROTO, 371 372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 373 EDMA_ERR_PRD_PAR | 374 EDMA_ERR_DEV_DCON | 375 EDMA_ERR_DEV_CON | 376 EDMA_ERR_OVERRUN_5 | 377 EDMA_ERR_UNDERRUN_5 | 378 EDMA_ERR_SELF_DIS_5 | 379 EDMA_ERR_CRQB_PAR | 380 EDMA_ERR_CRPB_PAR | 381 EDMA_ERR_INTRL_PAR | 382 EDMA_ERR_IORDY, 383 384 EDMA_REQ_Q_BASE_HI = 0x10, 385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 386 387 EDMA_REQ_Q_OUT_PTR = 0x18, 388 EDMA_REQ_Q_PTR_SHIFT = 5, 389 390 EDMA_RSP_Q_BASE_HI = 0x1c, 391 EDMA_RSP_Q_IN_PTR = 0x20, 392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 393 EDMA_RSP_Q_PTR_SHIFT = 3, 394 395 EDMA_CMD = 0x28, /* EDMA command register */ 396 EDMA_EN = (1 << 0), /* enable EDMA */ 397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 399 400 EDMA_STATUS = 0x30, /* EDMA engine status */ 401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 403 404 EDMA_IORDY_TMOUT = 0x34, 405 EDMA_ARB_CFG = 0x38, 406 407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 409 410 BMDMA_CMD = 0x224, /* bmdma command register */ 411 BMDMA_STATUS = 0x228, /* bmdma status register */ 412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 414 415 /* Host private flags (hp_flags) */ 416 MV_HP_FLAG_MSI = (1 << 0), 417 MV_HP_ERRATA_50XXB0 = (1 << 1), 418 MV_HP_ERRATA_50XXB2 = (1 << 2), 419 MV_HP_ERRATA_60X1B2 = (1 << 3), 420 MV_HP_ERRATA_60X1C0 = (1 << 4), 421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */ 429 430 /* Port private flags (pp_flags) */ 431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 436 }; 437 438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 443 444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 446 447 enum { 448 /* DMA boundary 0xffff is required by the s/g splitting 449 * we need on /length/ in mv_fill-sg(). 450 */ 451 MV_DMA_BOUNDARY = 0xffffU, 452 453 /* mask of register bits containing lower 32 bits 454 * of EDMA request queue DMA address 455 */ 456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 457 458 /* ditto, for response queue */ 459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 460 }; 461 462 enum chip_type { 463 chip_504x, 464 chip_508x, 465 chip_5080, 466 chip_604x, 467 chip_608x, 468 chip_6042, 469 chip_7042, 470 chip_soc, 471 }; 472 473 /* Command ReQuest Block: 32B */ 474 struct mv_crqb { 475 __le32 sg_addr; 476 __le32 sg_addr_hi; 477 __le16 ctrl_flags; 478 __le16 ata_cmd[11]; 479 }; 480 481 struct mv_crqb_iie { 482 __le32 addr; 483 __le32 addr_hi; 484 __le32 flags; 485 __le32 len; 486 __le32 ata_cmd[4]; 487 }; 488 489 /* Command ResPonse Block: 8B */ 490 struct mv_crpb { 491 __le16 id; 492 __le16 flags; 493 __le32 tmstmp; 494 }; 495 496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 497 struct mv_sg { 498 __le32 addr; 499 __le32 flags_size; 500 __le32 addr_hi; 501 __le32 reserved; 502 }; 503 504 /* 505 * We keep a local cache of a few frequently accessed port 506 * registers here, to avoid having to read them (very slow) 507 * when switching between EDMA and non-EDMA modes. 508 */ 509 struct mv_cached_regs { 510 u32 fiscfg; 511 u32 ltmode; 512 u32 haltcond; 513 u32 unknown_rsvd; 514 }; 515 516 struct mv_port_priv { 517 struct mv_crqb *crqb; 518 dma_addr_t crqb_dma; 519 struct mv_crpb *crpb; 520 dma_addr_t crpb_dma; 521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 523 524 unsigned int req_idx; 525 unsigned int resp_idx; 526 527 u32 pp_flags; 528 struct mv_cached_regs cached; 529 unsigned int delayed_eh_pmp_map; 530 }; 531 532 struct mv_port_signal { 533 u32 amps; 534 u32 pre; 535 }; 536 537 struct mv_host_priv { 538 u32 hp_flags; 539 unsigned int board_idx; 540 u32 main_irq_mask; 541 struct mv_port_signal signal[8]; 542 const struct mv_hw_ops *ops; 543 int n_ports; 544 void __iomem *base; 545 void __iomem *main_irq_cause_addr; 546 void __iomem *main_irq_mask_addr; 547 u32 irq_cause_offset; 548 u32 irq_mask_offset; 549 u32 unmask_all_irqs; 550 551 /* 552 * Needed on some devices that require their clocks to be enabled. 553 * These are optional: if the platform device does not have any 554 * clocks, they won't be used. Also, if the underlying hardware 555 * does not support the common clock framework (CONFIG_HAVE_CLK=n), 556 * all the clock operations become no-ops (see clk.h). 557 */ 558 struct clk *clk; 559 struct clk **port_clks; 560 /* 561 * Some devices have a SATA PHY which can be enabled/disabled 562 * in order to save power. These are optional: if the platform 563 * devices does not have any phy, they won't be used. 564 */ 565 struct phy **port_phys; 566 /* 567 * These consistent DMA memory pools give us guaranteed 568 * alignment for hardware-accessed data structures, 569 * and less memory waste in accomplishing the alignment. 570 */ 571 struct dma_pool *crqb_pool; 572 struct dma_pool *crpb_pool; 573 struct dma_pool *sg_tbl_pool; 574 }; 575 576 struct mv_hw_ops { 577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 578 unsigned int port); 579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 581 void __iomem *mmio); 582 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 583 unsigned int n_hc); 584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 586 }; 587 588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 592 static int mv_port_start(struct ata_port *ap); 593 static void mv_port_stop(struct ata_port *ap); 594 static int mv_qc_defer(struct ata_queued_cmd *qc); 595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc); 596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc); 597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 598 static int mv_hardreset(struct ata_link *link, unsigned int *class, 599 unsigned long deadline); 600 static void mv_eh_freeze(struct ata_port *ap); 601 static void mv_eh_thaw(struct ata_port *ap); 602 static void mv6_dev_config(struct ata_device *dev); 603 604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 605 unsigned int port); 606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 608 void __iomem *mmio); 609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 610 unsigned int n_hc); 611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 613 614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 615 unsigned int port); 616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 618 void __iomem *mmio); 619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 620 unsigned int n_hc); 621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 623 void __iomem *mmio); 624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 625 void __iomem *mmio); 626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 627 void __iomem *mmio, unsigned int n_hc); 628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 629 void __iomem *mmio); 630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 632 void __iomem *mmio, unsigned int port); 633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 635 unsigned int port_no); 636 static int mv_stop_edma(struct ata_port *ap); 637 static int mv_stop_edma_engine(void __iomem *port_mmio); 638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 639 640 static void mv_pmp_select(struct ata_port *ap, int pmp); 641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 642 unsigned long deadline); 643 static int mv_softreset(struct ata_link *link, unsigned int *class, 644 unsigned long deadline); 645 static void mv_pmp_error_handler(struct ata_port *ap); 646 static void mv_process_crpb_entries(struct ata_port *ap, 647 struct mv_port_priv *pp); 648 649 static void mv_sff_irq_clear(struct ata_port *ap); 650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 651 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 652 static void mv_bmdma_start(struct ata_queued_cmd *qc); 653 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 654 static u8 mv_bmdma_status(struct ata_port *ap); 655 static u8 mv_sff_check_status(struct ata_port *ap); 656 657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 658 * because we have to allow room for worst case splitting of 659 * PRDs for 64K boundaries in mv_fill_sg(). 660 */ 661 #ifdef CONFIG_PCI 662 static struct scsi_host_template mv5_sht = { 663 ATA_BASE_SHT(DRV_NAME), 664 .sg_tablesize = MV_MAX_SG_CT / 2, 665 .dma_boundary = MV_DMA_BOUNDARY, 666 }; 667 #endif 668 static struct scsi_host_template mv6_sht = { 669 ATA_NCQ_SHT(DRV_NAME), 670 .can_queue = MV_MAX_Q_DEPTH - 1, 671 .sg_tablesize = MV_MAX_SG_CT / 2, 672 .dma_boundary = MV_DMA_BOUNDARY, 673 }; 674 675 static struct ata_port_operations mv5_ops = { 676 .inherits = &ata_sff_port_ops, 677 678 .lost_interrupt = ATA_OP_NULL, 679 680 .qc_defer = mv_qc_defer, 681 .qc_prep = mv_qc_prep, 682 .qc_issue = mv_qc_issue, 683 684 .freeze = mv_eh_freeze, 685 .thaw = mv_eh_thaw, 686 .hardreset = mv_hardreset, 687 688 .scr_read = mv5_scr_read, 689 .scr_write = mv5_scr_write, 690 691 .port_start = mv_port_start, 692 .port_stop = mv_port_stop, 693 }; 694 695 static struct ata_port_operations mv6_ops = { 696 .inherits = &ata_bmdma_port_ops, 697 698 .lost_interrupt = ATA_OP_NULL, 699 700 .qc_defer = mv_qc_defer, 701 .qc_prep = mv_qc_prep, 702 .qc_issue = mv_qc_issue, 703 704 .dev_config = mv6_dev_config, 705 706 .freeze = mv_eh_freeze, 707 .thaw = mv_eh_thaw, 708 .hardreset = mv_hardreset, 709 .softreset = mv_softreset, 710 .pmp_hardreset = mv_pmp_hardreset, 711 .pmp_softreset = mv_softreset, 712 .error_handler = mv_pmp_error_handler, 713 714 .scr_read = mv_scr_read, 715 .scr_write = mv_scr_write, 716 717 .sff_check_status = mv_sff_check_status, 718 .sff_irq_clear = mv_sff_irq_clear, 719 .check_atapi_dma = mv_check_atapi_dma, 720 .bmdma_setup = mv_bmdma_setup, 721 .bmdma_start = mv_bmdma_start, 722 .bmdma_stop = mv_bmdma_stop, 723 .bmdma_status = mv_bmdma_status, 724 725 .port_start = mv_port_start, 726 .port_stop = mv_port_stop, 727 }; 728 729 static struct ata_port_operations mv_iie_ops = { 730 .inherits = &mv6_ops, 731 .dev_config = ATA_OP_NULL, 732 .qc_prep = mv_qc_prep_iie, 733 }; 734 735 static const struct ata_port_info mv_port_info[] = { 736 { /* chip_504x */ 737 .flags = MV_GEN_I_FLAGS, 738 .pio_mask = ATA_PIO4, 739 .udma_mask = ATA_UDMA6, 740 .port_ops = &mv5_ops, 741 }, 742 { /* chip_508x */ 743 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 744 .pio_mask = ATA_PIO4, 745 .udma_mask = ATA_UDMA6, 746 .port_ops = &mv5_ops, 747 }, 748 { /* chip_5080 */ 749 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 750 .pio_mask = ATA_PIO4, 751 .udma_mask = ATA_UDMA6, 752 .port_ops = &mv5_ops, 753 }, 754 { /* chip_604x */ 755 .flags = MV_GEN_II_FLAGS, 756 .pio_mask = ATA_PIO4, 757 .udma_mask = ATA_UDMA6, 758 .port_ops = &mv6_ops, 759 }, 760 { /* chip_608x */ 761 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 762 .pio_mask = ATA_PIO4, 763 .udma_mask = ATA_UDMA6, 764 .port_ops = &mv6_ops, 765 }, 766 { /* chip_6042 */ 767 .flags = MV_GEN_IIE_FLAGS, 768 .pio_mask = ATA_PIO4, 769 .udma_mask = ATA_UDMA6, 770 .port_ops = &mv_iie_ops, 771 }, 772 { /* chip_7042 */ 773 .flags = MV_GEN_IIE_FLAGS, 774 .pio_mask = ATA_PIO4, 775 .udma_mask = ATA_UDMA6, 776 .port_ops = &mv_iie_ops, 777 }, 778 { /* chip_soc */ 779 .flags = MV_GEN_IIE_FLAGS, 780 .pio_mask = ATA_PIO4, 781 .udma_mask = ATA_UDMA6, 782 .port_ops = &mv_iie_ops, 783 }, 784 }; 785 786 static const struct pci_device_id mv_pci_tbl[] = { 787 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 788 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 789 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 790 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 791 /* RocketRAID 1720/174x have different identifiers */ 792 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 793 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 794 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 795 796 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 797 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 798 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 799 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 800 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 801 802 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 803 804 /* Adaptec 1430SA */ 805 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 806 807 /* Marvell 7042 support */ 808 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 809 810 /* Highpoint RocketRAID PCIe series */ 811 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 812 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 813 814 { } /* terminate list */ 815 }; 816 817 static const struct mv_hw_ops mv5xxx_ops = { 818 .phy_errata = mv5_phy_errata, 819 .enable_leds = mv5_enable_leds, 820 .read_preamp = mv5_read_preamp, 821 .reset_hc = mv5_reset_hc, 822 .reset_flash = mv5_reset_flash, 823 .reset_bus = mv5_reset_bus, 824 }; 825 826 static const struct mv_hw_ops mv6xxx_ops = { 827 .phy_errata = mv6_phy_errata, 828 .enable_leds = mv6_enable_leds, 829 .read_preamp = mv6_read_preamp, 830 .reset_hc = mv6_reset_hc, 831 .reset_flash = mv6_reset_flash, 832 .reset_bus = mv_reset_pci_bus, 833 }; 834 835 static const struct mv_hw_ops mv_soc_ops = { 836 .phy_errata = mv6_phy_errata, 837 .enable_leds = mv_soc_enable_leds, 838 .read_preamp = mv_soc_read_preamp, 839 .reset_hc = mv_soc_reset_hc, 840 .reset_flash = mv_soc_reset_flash, 841 .reset_bus = mv_soc_reset_bus, 842 }; 843 844 static const struct mv_hw_ops mv_soc_65n_ops = { 845 .phy_errata = mv_soc_65n_phy_errata, 846 .enable_leds = mv_soc_enable_leds, 847 .reset_hc = mv_soc_reset_hc, 848 .reset_flash = mv_soc_reset_flash, 849 .reset_bus = mv_soc_reset_bus, 850 }; 851 852 /* 853 * Functions 854 */ 855 856 static inline void writelfl(unsigned long data, void __iomem *addr) 857 { 858 writel(data, addr); 859 (void) readl(addr); /* flush to avoid PCI posted write */ 860 } 861 862 static inline unsigned int mv_hc_from_port(unsigned int port) 863 { 864 return port >> MV_PORT_HC_SHIFT; 865 } 866 867 static inline unsigned int mv_hardport_from_port(unsigned int port) 868 { 869 return port & MV_PORT_MASK; 870 } 871 872 /* 873 * Consolidate some rather tricky bit shift calculations. 874 * This is hot-path stuff, so not a function. 875 * Simple code, with two return values, so macro rather than inline. 876 * 877 * port is the sole input, in range 0..7. 878 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 879 * hardport is the other output, in range 0..3. 880 * 881 * Note that port and hardport may be the same variable in some cases. 882 */ 883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 884 { \ 885 shift = mv_hc_from_port(port) * HC_SHIFT; \ 886 hardport = mv_hardport_from_port(port); \ 887 shift += hardport * 2; \ 888 } 889 890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 891 { 892 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 893 } 894 895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 896 unsigned int port) 897 { 898 return mv_hc_base(base, mv_hc_from_port(port)); 899 } 900 901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 902 { 903 return mv_hc_base_from_port(base, port) + 904 MV_SATAHC_ARBTR_REG_SZ + 905 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 906 } 907 908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 909 { 910 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 911 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 912 913 return hc_mmio + ofs; 914 } 915 916 static inline void __iomem *mv_host_base(struct ata_host *host) 917 { 918 struct mv_host_priv *hpriv = host->private_data; 919 return hpriv->base; 920 } 921 922 static inline void __iomem *mv_ap_base(struct ata_port *ap) 923 { 924 return mv_port_base(mv_host_base(ap->host), ap->port_no); 925 } 926 927 static inline int mv_get_hc_count(unsigned long port_flags) 928 { 929 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 930 } 931 932 /** 933 * mv_save_cached_regs - (re-)initialize cached port registers 934 * @ap: the port whose registers we are caching 935 * 936 * Initialize the local cache of port registers, 937 * so that reading them over and over again can 938 * be avoided on the hotter paths of this driver. 939 * This saves a few microseconds each time we switch 940 * to/from EDMA mode to perform (eg.) a drive cache flush. 941 */ 942 static void mv_save_cached_regs(struct ata_port *ap) 943 { 944 void __iomem *port_mmio = mv_ap_base(ap); 945 struct mv_port_priv *pp = ap->private_data; 946 947 pp->cached.fiscfg = readl(port_mmio + FISCFG); 948 pp->cached.ltmode = readl(port_mmio + LTMODE); 949 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 950 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 951 } 952 953 /** 954 * mv_write_cached_reg - write to a cached port register 955 * @addr: hardware address of the register 956 * @old: pointer to cached value of the register 957 * @new: new value for the register 958 * 959 * Write a new value to a cached register, 960 * but only if the value is different from before. 961 */ 962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 963 { 964 if (new != *old) { 965 unsigned long laddr; 966 *old = new; 967 /* 968 * Workaround for 88SX60x1-B2 FEr SATA#13: 969 * Read-after-write is needed to prevent generating 64-bit 970 * write cycles on the PCI bus for SATA interface registers 971 * at offsets ending in 0x4 or 0xc. 972 * 973 * Looks like a lot of fuss, but it avoids an unnecessary 974 * +1 usec read-after-write delay for unaffected registers. 975 */ 976 laddr = (unsigned long)addr & 0xffff; 977 if (laddr >= 0x300 && laddr <= 0x33c) { 978 laddr &= 0x000f; 979 if (laddr == 0x4 || laddr == 0xc) { 980 writelfl(new, addr); /* read after write */ 981 return; 982 } 983 } 984 writel(new, addr); /* unaffected by the errata */ 985 } 986 } 987 988 static void mv_set_edma_ptrs(void __iomem *port_mmio, 989 struct mv_host_priv *hpriv, 990 struct mv_port_priv *pp) 991 { 992 u32 index; 993 994 /* 995 * initialize request queue 996 */ 997 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 998 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 999 1000 WARN_ON(pp->crqb_dma & 0x3ff); 1001 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 1002 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 1003 port_mmio + EDMA_REQ_Q_IN_PTR); 1004 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 1005 1006 /* 1007 * initialize response queue 1008 */ 1009 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1010 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1011 1012 WARN_ON(pp->crpb_dma & 0xff); 1013 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1014 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1015 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1016 port_mmio + EDMA_RSP_Q_OUT_PTR); 1017 } 1018 1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1020 { 1021 /* 1022 * When writing to the main_irq_mask in hardware, 1023 * we must ensure exclusivity between the interrupt coalescing bits 1024 * and the corresponding individual port DONE_IRQ bits. 1025 * 1026 * Note that this register is really an "IRQ enable" register, 1027 * not an "IRQ mask" register as Marvell's naming might suggest. 1028 */ 1029 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1030 mask &= ~DONE_IRQ_0_3; 1031 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1032 mask &= ~DONE_IRQ_4_7; 1033 writelfl(mask, hpriv->main_irq_mask_addr); 1034 } 1035 1036 static void mv_set_main_irq_mask(struct ata_host *host, 1037 u32 disable_bits, u32 enable_bits) 1038 { 1039 struct mv_host_priv *hpriv = host->private_data; 1040 u32 old_mask, new_mask; 1041 1042 old_mask = hpriv->main_irq_mask; 1043 new_mask = (old_mask & ~disable_bits) | enable_bits; 1044 if (new_mask != old_mask) { 1045 hpriv->main_irq_mask = new_mask; 1046 mv_write_main_irq_mask(new_mask, hpriv); 1047 } 1048 } 1049 1050 static void mv_enable_port_irqs(struct ata_port *ap, 1051 unsigned int port_bits) 1052 { 1053 unsigned int shift, hardport, port = ap->port_no; 1054 u32 disable_bits, enable_bits; 1055 1056 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1057 1058 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1059 enable_bits = port_bits << shift; 1060 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1061 } 1062 1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1064 void __iomem *port_mmio, 1065 unsigned int port_irqs) 1066 { 1067 struct mv_host_priv *hpriv = ap->host->private_data; 1068 int hardport = mv_hardport_from_port(ap->port_no); 1069 void __iomem *hc_mmio = mv_hc_base_from_port( 1070 mv_host_base(ap->host), ap->port_no); 1071 u32 hc_irq_cause; 1072 1073 /* clear EDMA event indicators, if any */ 1074 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1075 1076 /* clear pending irq events */ 1077 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1078 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1079 1080 /* clear FIS IRQ Cause */ 1081 if (IS_GEN_IIE(hpriv)) 1082 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1083 1084 mv_enable_port_irqs(ap, port_irqs); 1085 } 1086 1087 static void mv_set_irq_coalescing(struct ata_host *host, 1088 unsigned int count, unsigned int usecs) 1089 { 1090 struct mv_host_priv *hpriv = host->private_data; 1091 void __iomem *mmio = hpriv->base, *hc_mmio; 1092 u32 coal_enable = 0; 1093 unsigned long flags; 1094 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1095 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1096 ALL_PORTS_COAL_DONE; 1097 1098 /* Disable IRQ coalescing if either threshold is zero */ 1099 if (!usecs || !count) { 1100 clks = count = 0; 1101 } else { 1102 /* Respect maximum limits of the hardware */ 1103 clks = usecs * COAL_CLOCKS_PER_USEC; 1104 if (clks > MAX_COAL_TIME_THRESHOLD) 1105 clks = MAX_COAL_TIME_THRESHOLD; 1106 if (count > MAX_COAL_IO_COUNT) 1107 count = MAX_COAL_IO_COUNT; 1108 } 1109 1110 spin_lock_irqsave(&host->lock, flags); 1111 mv_set_main_irq_mask(host, coal_disable, 0); 1112 1113 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1114 /* 1115 * GEN_II/GEN_IIE with dual host controllers: 1116 * one set of global thresholds for the entire chip. 1117 */ 1118 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1119 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1120 /* clear leftover coal IRQ bit */ 1121 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1122 if (count) 1123 coal_enable = ALL_PORTS_COAL_DONE; 1124 clks = count = 0; /* force clearing of regular regs below */ 1125 } 1126 1127 /* 1128 * All chips: independent thresholds for each HC on the chip. 1129 */ 1130 hc_mmio = mv_hc_base_from_port(mmio, 0); 1131 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1132 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1133 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1134 if (count) 1135 coal_enable |= PORTS_0_3_COAL_DONE; 1136 if (is_dual_hc) { 1137 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1138 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1139 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1140 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1141 if (count) 1142 coal_enable |= PORTS_4_7_COAL_DONE; 1143 } 1144 1145 mv_set_main_irq_mask(host, 0, coal_enable); 1146 spin_unlock_irqrestore(&host->lock, flags); 1147 } 1148 1149 /** 1150 * mv_start_edma - Enable eDMA engine 1151 * @base: port base address 1152 * @pp: port private data 1153 * 1154 * Verify the local cache of the eDMA state is accurate with a 1155 * WARN_ON. 1156 * 1157 * LOCKING: 1158 * Inherited from caller. 1159 */ 1160 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1161 struct mv_port_priv *pp, u8 protocol) 1162 { 1163 int want_ncq = (protocol == ATA_PROT_NCQ); 1164 1165 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1166 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1167 if (want_ncq != using_ncq) 1168 mv_stop_edma(ap); 1169 } 1170 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1171 struct mv_host_priv *hpriv = ap->host->private_data; 1172 1173 mv_edma_cfg(ap, want_ncq, 1); 1174 1175 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1176 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1177 1178 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1179 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1180 } 1181 } 1182 1183 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1184 { 1185 void __iomem *port_mmio = mv_ap_base(ap); 1186 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1187 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1188 int i; 1189 1190 /* 1191 * Wait for the EDMA engine to finish transactions in progress. 1192 * No idea what a good "timeout" value might be, but measurements 1193 * indicate that it often requires hundreds of microseconds 1194 * with two drives in-use. So we use the 15msec value above 1195 * as a rough guess at what even more drives might require. 1196 */ 1197 for (i = 0; i < timeout; ++i) { 1198 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1199 if ((edma_stat & empty_idle) == empty_idle) 1200 break; 1201 udelay(per_loop); 1202 } 1203 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1204 } 1205 1206 /** 1207 * mv_stop_edma_engine - Disable eDMA engine 1208 * @port_mmio: io base address 1209 * 1210 * LOCKING: 1211 * Inherited from caller. 1212 */ 1213 static int mv_stop_edma_engine(void __iomem *port_mmio) 1214 { 1215 int i; 1216 1217 /* Disable eDMA. The disable bit auto clears. */ 1218 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1219 1220 /* Wait for the chip to confirm eDMA is off. */ 1221 for (i = 10000; i > 0; i--) { 1222 u32 reg = readl(port_mmio + EDMA_CMD); 1223 if (!(reg & EDMA_EN)) 1224 return 0; 1225 udelay(10); 1226 } 1227 return -EIO; 1228 } 1229 1230 static int mv_stop_edma(struct ata_port *ap) 1231 { 1232 void __iomem *port_mmio = mv_ap_base(ap); 1233 struct mv_port_priv *pp = ap->private_data; 1234 int err = 0; 1235 1236 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1237 return 0; 1238 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1239 mv_wait_for_edma_empty_idle(ap); 1240 if (mv_stop_edma_engine(port_mmio)) { 1241 ata_port_err(ap, "Unable to stop eDMA\n"); 1242 err = -EIO; 1243 } 1244 mv_edma_cfg(ap, 0, 0); 1245 return err; 1246 } 1247 1248 #ifdef ATA_DEBUG 1249 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1250 { 1251 int b, w; 1252 for (b = 0; b < bytes; ) { 1253 DPRINTK("%p: ", start + b); 1254 for (w = 0; b < bytes && w < 4; w++) { 1255 printk("%08x ", readl(start + b)); 1256 b += sizeof(u32); 1257 } 1258 printk("\n"); 1259 } 1260 } 1261 #endif 1262 #if defined(ATA_DEBUG) || defined(CONFIG_PCI) 1263 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1264 { 1265 #ifdef ATA_DEBUG 1266 int b, w; 1267 u32 dw; 1268 for (b = 0; b < bytes; ) { 1269 DPRINTK("%02x: ", b); 1270 for (w = 0; b < bytes && w < 4; w++) { 1271 (void) pci_read_config_dword(pdev, b, &dw); 1272 printk("%08x ", dw); 1273 b += sizeof(u32); 1274 } 1275 printk("\n"); 1276 } 1277 #endif 1278 } 1279 #endif 1280 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1281 struct pci_dev *pdev) 1282 { 1283 #ifdef ATA_DEBUG 1284 void __iomem *hc_base = mv_hc_base(mmio_base, 1285 port >> MV_PORT_HC_SHIFT); 1286 void __iomem *port_base; 1287 int start_port, num_ports, p, start_hc, num_hcs, hc; 1288 1289 if (0 > port) { 1290 start_hc = start_port = 0; 1291 num_ports = 8; /* shld be benign for 4 port devs */ 1292 num_hcs = 2; 1293 } else { 1294 start_hc = port >> MV_PORT_HC_SHIFT; 1295 start_port = port; 1296 num_ports = num_hcs = 1; 1297 } 1298 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1299 num_ports > 1 ? num_ports - 1 : start_port); 1300 1301 if (NULL != pdev) { 1302 DPRINTK("PCI config space regs:\n"); 1303 mv_dump_pci_cfg(pdev, 0x68); 1304 } 1305 DPRINTK("PCI regs:\n"); 1306 mv_dump_mem(mmio_base+0xc00, 0x3c); 1307 mv_dump_mem(mmio_base+0xd00, 0x34); 1308 mv_dump_mem(mmio_base+0xf00, 0x4); 1309 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1310 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1311 hc_base = mv_hc_base(mmio_base, hc); 1312 DPRINTK("HC regs (HC %i):\n", hc); 1313 mv_dump_mem(hc_base, 0x1c); 1314 } 1315 for (p = start_port; p < start_port + num_ports; p++) { 1316 port_base = mv_port_base(mmio_base, p); 1317 DPRINTK("EDMA regs (port %i):\n", p); 1318 mv_dump_mem(port_base, 0x54); 1319 DPRINTK("SATA regs (port %i):\n", p); 1320 mv_dump_mem(port_base+0x300, 0x60); 1321 } 1322 #endif 1323 } 1324 1325 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1326 { 1327 unsigned int ofs; 1328 1329 switch (sc_reg_in) { 1330 case SCR_STATUS: 1331 case SCR_CONTROL: 1332 case SCR_ERROR: 1333 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1334 break; 1335 case SCR_ACTIVE: 1336 ofs = SATA_ACTIVE; /* active is not with the others */ 1337 break; 1338 default: 1339 ofs = 0xffffffffU; 1340 break; 1341 } 1342 return ofs; 1343 } 1344 1345 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1346 { 1347 unsigned int ofs = mv_scr_offset(sc_reg_in); 1348 1349 if (ofs != 0xffffffffU) { 1350 *val = readl(mv_ap_base(link->ap) + ofs); 1351 return 0; 1352 } else 1353 return -EINVAL; 1354 } 1355 1356 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1357 { 1358 unsigned int ofs = mv_scr_offset(sc_reg_in); 1359 1360 if (ofs != 0xffffffffU) { 1361 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1362 struct mv_host_priv *hpriv = link->ap->host->private_data; 1363 if (sc_reg_in == SCR_CONTROL) { 1364 /* 1365 * Workaround for 88SX60x1 FEr SATA#26: 1366 * 1367 * COMRESETs have to take care not to accidentally 1368 * put the drive to sleep when writing SCR_CONTROL. 1369 * Setting bits 12..15 prevents this problem. 1370 * 1371 * So if we see an outbound COMMRESET, set those bits. 1372 * Ditto for the followup write that clears the reset. 1373 * 1374 * The proprietary driver does this for 1375 * all chip versions, and so do we. 1376 */ 1377 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1378 val |= 0xf000; 1379 1380 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) { 1381 void __iomem *lp_phy_addr = 1382 mv_ap_base(link->ap) + LP_PHY_CTL; 1383 /* 1384 * Set PHY speed according to SControl speed. 1385 */ 1386 u32 lp_phy_val = 1387 LP_PHY_CTL_PIN_PU_PLL | 1388 LP_PHY_CTL_PIN_PU_RX | 1389 LP_PHY_CTL_PIN_PU_TX; 1390 1391 if ((val & 0xf0) != 0x10) 1392 lp_phy_val |= 1393 LP_PHY_CTL_GEN_TX_3G | 1394 LP_PHY_CTL_GEN_RX_3G; 1395 1396 writelfl(lp_phy_val, lp_phy_addr); 1397 } 1398 } 1399 writelfl(val, addr); 1400 return 0; 1401 } else 1402 return -EINVAL; 1403 } 1404 1405 static void mv6_dev_config(struct ata_device *adev) 1406 { 1407 /* 1408 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1409 * 1410 * Gen-II does not support NCQ over a port multiplier 1411 * (no FIS-based switching). 1412 */ 1413 if (adev->flags & ATA_DFLAG_NCQ) { 1414 if (sata_pmp_attached(adev->link->ap)) { 1415 adev->flags &= ~ATA_DFLAG_NCQ; 1416 ata_dev_info(adev, 1417 "NCQ disabled for command-based switching\n"); 1418 } 1419 } 1420 } 1421 1422 static int mv_qc_defer(struct ata_queued_cmd *qc) 1423 { 1424 struct ata_link *link = qc->dev->link; 1425 struct ata_port *ap = link->ap; 1426 struct mv_port_priv *pp = ap->private_data; 1427 1428 /* 1429 * Don't allow new commands if we're in a delayed EH state 1430 * for NCQ and/or FIS-based switching. 1431 */ 1432 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1433 return ATA_DEFER_PORT; 1434 1435 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1436 * can run concurrently. 1437 * set excl_link when we want to send a PIO command in DMA mode 1438 * or a non-NCQ command in NCQ mode. 1439 * When we receive a command from that link, and there are no 1440 * outstanding commands, mark a flag to clear excl_link and let 1441 * the command go through. 1442 */ 1443 if (unlikely(ap->excl_link)) { 1444 if (link == ap->excl_link) { 1445 if (ap->nr_active_links) 1446 return ATA_DEFER_PORT; 1447 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1448 return 0; 1449 } else 1450 return ATA_DEFER_PORT; 1451 } 1452 1453 /* 1454 * If the port is completely idle, then allow the new qc. 1455 */ 1456 if (ap->nr_active_links == 0) 1457 return 0; 1458 1459 /* 1460 * The port is operating in host queuing mode (EDMA) with NCQ 1461 * enabled, allow multiple NCQ commands. EDMA also allows 1462 * queueing multiple DMA commands but libata core currently 1463 * doesn't allow it. 1464 */ 1465 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1466 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1467 if (ata_is_ncq(qc->tf.protocol)) 1468 return 0; 1469 else { 1470 ap->excl_link = link; 1471 return ATA_DEFER_PORT; 1472 } 1473 } 1474 1475 return ATA_DEFER_PORT; 1476 } 1477 1478 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1479 { 1480 struct mv_port_priv *pp = ap->private_data; 1481 void __iomem *port_mmio; 1482 1483 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1484 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1485 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1486 1487 ltmode = *old_ltmode & ~LTMODE_BIT8; 1488 haltcond = *old_haltcond | EDMA_ERR_DEV; 1489 1490 if (want_fbs) { 1491 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1492 ltmode = *old_ltmode | LTMODE_BIT8; 1493 if (want_ncq) 1494 haltcond &= ~EDMA_ERR_DEV; 1495 else 1496 fiscfg |= FISCFG_WAIT_DEV_ERR; 1497 } else { 1498 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1499 } 1500 1501 port_mmio = mv_ap_base(ap); 1502 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1503 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1504 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1505 } 1506 1507 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1508 { 1509 struct mv_host_priv *hpriv = ap->host->private_data; 1510 u32 old, new; 1511 1512 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1513 old = readl(hpriv->base + GPIO_PORT_CTL); 1514 if (want_ncq) 1515 new = old | (1 << 22); 1516 else 1517 new = old & ~(1 << 22); 1518 if (new != old) 1519 writel(new, hpriv->base + GPIO_PORT_CTL); 1520 } 1521 1522 /** 1523 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1524 * @ap: Port being initialized 1525 * 1526 * There are two DMA modes on these chips: basic DMA, and EDMA. 1527 * 1528 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1529 * of basic DMA on the GEN_IIE versions of the chips. 1530 * 1531 * This bit survives EDMA resets, and must be set for basic DMA 1532 * to function, and should be cleared when EDMA is active. 1533 */ 1534 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1535 { 1536 struct mv_port_priv *pp = ap->private_data; 1537 u32 new, *old = &pp->cached.unknown_rsvd; 1538 1539 if (enable_bmdma) 1540 new = *old | 1; 1541 else 1542 new = *old & ~1; 1543 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1544 } 1545 1546 /* 1547 * SOC chips have an issue whereby the HDD LEDs don't always blink 1548 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1549 * of the SOC takes care of it, generating a steady blink rate when 1550 * any drive on the chip is active. 1551 * 1552 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1553 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1554 * 1555 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1556 * LED operation works then, and provides better (more accurate) feedback. 1557 * 1558 * Note that this code assumes that an SOC never has more than one HC onboard. 1559 */ 1560 static void mv_soc_led_blink_enable(struct ata_port *ap) 1561 { 1562 struct ata_host *host = ap->host; 1563 struct mv_host_priv *hpriv = host->private_data; 1564 void __iomem *hc_mmio; 1565 u32 led_ctrl; 1566 1567 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1568 return; 1569 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1570 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1571 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1572 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1573 } 1574 1575 static void mv_soc_led_blink_disable(struct ata_port *ap) 1576 { 1577 struct ata_host *host = ap->host; 1578 struct mv_host_priv *hpriv = host->private_data; 1579 void __iomem *hc_mmio; 1580 u32 led_ctrl; 1581 unsigned int port; 1582 1583 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1584 return; 1585 1586 /* disable led-blink only if no ports are using NCQ */ 1587 for (port = 0; port < hpriv->n_ports; port++) { 1588 struct ata_port *this_ap = host->ports[port]; 1589 struct mv_port_priv *pp = this_ap->private_data; 1590 1591 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1592 return; 1593 } 1594 1595 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1596 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1597 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1598 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1599 } 1600 1601 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1602 { 1603 u32 cfg; 1604 struct mv_port_priv *pp = ap->private_data; 1605 struct mv_host_priv *hpriv = ap->host->private_data; 1606 void __iomem *port_mmio = mv_ap_base(ap); 1607 1608 /* set up non-NCQ EDMA configuration */ 1609 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1610 pp->pp_flags &= 1611 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1612 1613 if (IS_GEN_I(hpriv)) 1614 cfg |= (1 << 8); /* enab config burst size mask */ 1615 1616 else if (IS_GEN_II(hpriv)) { 1617 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1618 mv_60x1_errata_sata25(ap, want_ncq); 1619 1620 } else if (IS_GEN_IIE(hpriv)) { 1621 int want_fbs = sata_pmp_attached(ap); 1622 /* 1623 * Possible future enhancement: 1624 * 1625 * The chip can use FBS with non-NCQ, if we allow it, 1626 * But first we need to have the error handling in place 1627 * for this mode (datasheet section 7.3.15.4.2.3). 1628 * So disallow non-NCQ FBS for now. 1629 */ 1630 want_fbs &= want_ncq; 1631 1632 mv_config_fbs(ap, want_ncq, want_fbs); 1633 1634 if (want_fbs) { 1635 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1636 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1637 } 1638 1639 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1640 if (want_edma) { 1641 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1642 if (!IS_SOC(hpriv)) 1643 cfg |= (1 << 18); /* enab early completion */ 1644 } 1645 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1646 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1647 mv_bmdma_enable_iie(ap, !want_edma); 1648 1649 if (IS_SOC(hpriv)) { 1650 if (want_ncq) 1651 mv_soc_led_blink_enable(ap); 1652 else 1653 mv_soc_led_blink_disable(ap); 1654 } 1655 } 1656 1657 if (want_ncq) { 1658 cfg |= EDMA_CFG_NCQ; 1659 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1660 } 1661 1662 writelfl(cfg, port_mmio + EDMA_CFG); 1663 } 1664 1665 static void mv_port_free_dma_mem(struct ata_port *ap) 1666 { 1667 struct mv_host_priv *hpriv = ap->host->private_data; 1668 struct mv_port_priv *pp = ap->private_data; 1669 int tag; 1670 1671 if (pp->crqb) { 1672 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1673 pp->crqb = NULL; 1674 } 1675 if (pp->crpb) { 1676 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1677 pp->crpb = NULL; 1678 } 1679 /* 1680 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1681 * For later hardware, we have one unique sg_tbl per NCQ tag. 1682 */ 1683 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1684 if (pp->sg_tbl[tag]) { 1685 if (tag == 0 || !IS_GEN_I(hpriv)) 1686 dma_pool_free(hpriv->sg_tbl_pool, 1687 pp->sg_tbl[tag], 1688 pp->sg_tbl_dma[tag]); 1689 pp->sg_tbl[tag] = NULL; 1690 } 1691 } 1692 } 1693 1694 /** 1695 * mv_port_start - Port specific init/start routine. 1696 * @ap: ATA channel to manipulate 1697 * 1698 * Allocate and point to DMA memory, init port private memory, 1699 * zero indices. 1700 * 1701 * LOCKING: 1702 * Inherited from caller. 1703 */ 1704 static int mv_port_start(struct ata_port *ap) 1705 { 1706 struct device *dev = ap->host->dev; 1707 struct mv_host_priv *hpriv = ap->host->private_data; 1708 struct mv_port_priv *pp; 1709 unsigned long flags; 1710 int tag; 1711 1712 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1713 if (!pp) 1714 return -ENOMEM; 1715 ap->private_data = pp; 1716 1717 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1718 if (!pp->crqb) 1719 return -ENOMEM; 1720 1721 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1722 if (!pp->crpb) 1723 goto out_port_free_dma_mem; 1724 1725 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1726 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1727 ap->flags |= ATA_FLAG_AN; 1728 /* 1729 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1730 * For later hardware, we need one unique sg_tbl per NCQ tag. 1731 */ 1732 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1733 if (tag == 0 || !IS_GEN_I(hpriv)) { 1734 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1735 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1736 if (!pp->sg_tbl[tag]) 1737 goto out_port_free_dma_mem; 1738 } else { 1739 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1740 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1741 } 1742 } 1743 1744 spin_lock_irqsave(ap->lock, flags); 1745 mv_save_cached_regs(ap); 1746 mv_edma_cfg(ap, 0, 0); 1747 spin_unlock_irqrestore(ap->lock, flags); 1748 1749 return 0; 1750 1751 out_port_free_dma_mem: 1752 mv_port_free_dma_mem(ap); 1753 return -ENOMEM; 1754 } 1755 1756 /** 1757 * mv_port_stop - Port specific cleanup/stop routine. 1758 * @ap: ATA channel to manipulate 1759 * 1760 * Stop DMA, cleanup port memory. 1761 * 1762 * LOCKING: 1763 * This routine uses the host lock to protect the DMA stop. 1764 */ 1765 static void mv_port_stop(struct ata_port *ap) 1766 { 1767 unsigned long flags; 1768 1769 spin_lock_irqsave(ap->lock, flags); 1770 mv_stop_edma(ap); 1771 mv_enable_port_irqs(ap, 0); 1772 spin_unlock_irqrestore(ap->lock, flags); 1773 mv_port_free_dma_mem(ap); 1774 } 1775 1776 /** 1777 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1778 * @qc: queued command whose SG list to source from 1779 * 1780 * Populate the SG list and mark the last entry. 1781 * 1782 * LOCKING: 1783 * Inherited from caller. 1784 */ 1785 static void mv_fill_sg(struct ata_queued_cmd *qc) 1786 { 1787 struct mv_port_priv *pp = qc->ap->private_data; 1788 struct scatterlist *sg; 1789 struct mv_sg *mv_sg, *last_sg = NULL; 1790 unsigned int si; 1791 1792 mv_sg = pp->sg_tbl[qc->hw_tag]; 1793 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1794 dma_addr_t addr = sg_dma_address(sg); 1795 u32 sg_len = sg_dma_len(sg); 1796 1797 while (sg_len) { 1798 u32 offset = addr & 0xffff; 1799 u32 len = sg_len; 1800 1801 if (offset + len > 0x10000) 1802 len = 0x10000 - offset; 1803 1804 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1805 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1806 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1807 mv_sg->reserved = 0; 1808 1809 sg_len -= len; 1810 addr += len; 1811 1812 last_sg = mv_sg; 1813 mv_sg++; 1814 } 1815 } 1816 1817 if (likely(last_sg)) 1818 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1819 mb(); /* ensure data structure is visible to the chipset */ 1820 } 1821 1822 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1823 { 1824 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1825 (last ? CRQB_CMD_LAST : 0); 1826 *cmdw = cpu_to_le16(tmp); 1827 } 1828 1829 /** 1830 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1831 * @ap: Port associated with this ATA transaction. 1832 * 1833 * We need this only for ATAPI bmdma transactions, 1834 * as otherwise we experience spurious interrupts 1835 * after libata-sff handles the bmdma interrupts. 1836 */ 1837 static void mv_sff_irq_clear(struct ata_port *ap) 1838 { 1839 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1840 } 1841 1842 /** 1843 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1844 * @qc: queued command to check for chipset/DMA compatibility. 1845 * 1846 * The bmdma engines cannot handle speculative data sizes 1847 * (bytecount under/over flow). So only allow DMA for 1848 * data transfer commands with known data sizes. 1849 * 1850 * LOCKING: 1851 * Inherited from caller. 1852 */ 1853 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1854 { 1855 struct scsi_cmnd *scmd = qc->scsicmd; 1856 1857 if (scmd) { 1858 switch (scmd->cmnd[0]) { 1859 case READ_6: 1860 case READ_10: 1861 case READ_12: 1862 case WRITE_6: 1863 case WRITE_10: 1864 case WRITE_12: 1865 case GPCMD_READ_CD: 1866 case GPCMD_SEND_DVD_STRUCTURE: 1867 case GPCMD_SEND_CUE_SHEET: 1868 return 0; /* DMA is safe */ 1869 } 1870 } 1871 return -EOPNOTSUPP; /* use PIO instead */ 1872 } 1873 1874 /** 1875 * mv_bmdma_setup - Set up BMDMA transaction 1876 * @qc: queued command to prepare DMA for. 1877 * 1878 * LOCKING: 1879 * Inherited from caller. 1880 */ 1881 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1882 { 1883 struct ata_port *ap = qc->ap; 1884 void __iomem *port_mmio = mv_ap_base(ap); 1885 struct mv_port_priv *pp = ap->private_data; 1886 1887 mv_fill_sg(qc); 1888 1889 /* clear all DMA cmd bits */ 1890 writel(0, port_mmio + BMDMA_CMD); 1891 1892 /* load PRD table addr. */ 1893 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16, 1894 port_mmio + BMDMA_PRD_HIGH); 1895 writelfl(pp->sg_tbl_dma[qc->hw_tag], 1896 port_mmio + BMDMA_PRD_LOW); 1897 1898 /* issue r/w command */ 1899 ap->ops->sff_exec_command(ap, &qc->tf); 1900 } 1901 1902 /** 1903 * mv_bmdma_start - Start a BMDMA transaction 1904 * @qc: queued command to start DMA on. 1905 * 1906 * LOCKING: 1907 * Inherited from caller. 1908 */ 1909 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1910 { 1911 struct ata_port *ap = qc->ap; 1912 void __iomem *port_mmio = mv_ap_base(ap); 1913 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1914 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1915 1916 /* start host DMA transaction */ 1917 writelfl(cmd, port_mmio + BMDMA_CMD); 1918 } 1919 1920 /** 1921 * mv_bmdma_stop - Stop BMDMA transfer 1922 * @qc: queued command to stop DMA on. 1923 * 1924 * Clears the ATA_DMA_START flag in the bmdma control register 1925 * 1926 * LOCKING: 1927 * Inherited from caller. 1928 */ 1929 static void mv_bmdma_stop_ap(struct ata_port *ap) 1930 { 1931 void __iomem *port_mmio = mv_ap_base(ap); 1932 u32 cmd; 1933 1934 /* clear start/stop bit */ 1935 cmd = readl(port_mmio + BMDMA_CMD); 1936 if (cmd & ATA_DMA_START) { 1937 cmd &= ~ATA_DMA_START; 1938 writelfl(cmd, port_mmio + BMDMA_CMD); 1939 1940 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1941 ata_sff_dma_pause(ap); 1942 } 1943 } 1944 1945 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1946 { 1947 mv_bmdma_stop_ap(qc->ap); 1948 } 1949 1950 /** 1951 * mv_bmdma_status - Read BMDMA status 1952 * @ap: port for which to retrieve DMA status. 1953 * 1954 * Read and return equivalent of the sff BMDMA status register. 1955 * 1956 * LOCKING: 1957 * Inherited from caller. 1958 */ 1959 static u8 mv_bmdma_status(struct ata_port *ap) 1960 { 1961 void __iomem *port_mmio = mv_ap_base(ap); 1962 u32 reg, status; 1963 1964 /* 1965 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1966 * and the ATA_DMA_INTR bit doesn't exist. 1967 */ 1968 reg = readl(port_mmio + BMDMA_STATUS); 1969 if (reg & ATA_DMA_ACTIVE) 1970 status = ATA_DMA_ACTIVE; 1971 else if (reg & ATA_DMA_ERR) 1972 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1973 else { 1974 /* 1975 * Just because DMA_ACTIVE is 0 (DMA completed), 1976 * this does _not_ mean the device is "done". 1977 * So we should not yet be signalling ATA_DMA_INTR 1978 * in some cases. Eg. DSM/TRIM, and perhaps others. 1979 */ 1980 mv_bmdma_stop_ap(ap); 1981 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1982 status = 0; 1983 else 1984 status = ATA_DMA_INTR; 1985 } 1986 return status; 1987 } 1988 1989 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1990 { 1991 struct ata_taskfile *tf = &qc->tf; 1992 /* 1993 * Workaround for 88SX60x1 FEr SATA#24. 1994 * 1995 * Chip may corrupt WRITEs if multi_count >= 4kB. 1996 * Note that READs are unaffected. 1997 * 1998 * It's not clear if this errata really means "4K bytes", 1999 * or if it always happens for multi_count > 7 2000 * regardless of device sector_size. 2001 * 2002 * So, for safety, any write with multi_count > 7 2003 * gets converted here into a regular PIO write instead: 2004 */ 2005 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 2006 if (qc->dev->multi_count > 7) { 2007 switch (tf->command) { 2008 case ATA_CMD_WRITE_MULTI: 2009 tf->command = ATA_CMD_PIO_WRITE; 2010 break; 2011 case ATA_CMD_WRITE_MULTI_FUA_EXT: 2012 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 2013 /* fall through */ 2014 case ATA_CMD_WRITE_MULTI_EXT: 2015 tf->command = ATA_CMD_PIO_WRITE_EXT; 2016 break; 2017 } 2018 } 2019 } 2020 } 2021 2022 /** 2023 * mv_qc_prep - Host specific command preparation. 2024 * @qc: queued command to prepare 2025 * 2026 * This routine simply redirects to the general purpose routine 2027 * if command is not DMA. Else, it handles prep of the CRQB 2028 * (command request block), does some sanity checking, and calls 2029 * the SG load routine. 2030 * 2031 * LOCKING: 2032 * Inherited from caller. 2033 */ 2034 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc) 2035 { 2036 struct ata_port *ap = qc->ap; 2037 struct mv_port_priv *pp = ap->private_data; 2038 __le16 *cw; 2039 struct ata_taskfile *tf = &qc->tf; 2040 u16 flags = 0; 2041 unsigned in_index; 2042 2043 switch (tf->protocol) { 2044 case ATA_PROT_DMA: 2045 if (tf->command == ATA_CMD_DSM) 2046 return AC_ERR_OK; 2047 /* fall-thru */ 2048 case ATA_PROT_NCQ: 2049 break; /* continue below */ 2050 case ATA_PROT_PIO: 2051 mv_rw_multi_errata_sata24(qc); 2052 return AC_ERR_OK; 2053 default: 2054 return AC_ERR_OK; 2055 } 2056 2057 /* Fill in command request block 2058 */ 2059 if (!(tf->flags & ATA_TFLAG_WRITE)) 2060 flags |= CRQB_FLAG_READ; 2061 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag); 2062 flags |= qc->hw_tag << CRQB_TAG_SHIFT; 2063 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2064 2065 /* get current queue index from software */ 2066 in_index = pp->req_idx; 2067 2068 pp->crqb[in_index].sg_addr = 2069 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff); 2070 pp->crqb[in_index].sg_addr_hi = 2071 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16); 2072 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2073 2074 cw = &pp->crqb[in_index].ata_cmd[0]; 2075 2076 /* Sadly, the CRQB cannot accommodate all registers--there are 2077 * only 11 bytes...so we must pick and choose required 2078 * registers based on the command. So, we drop feature and 2079 * hob_feature for [RW] DMA commands, but they are needed for 2080 * NCQ. NCQ will drop hob_nsect, which is not needed there 2081 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2082 */ 2083 switch (tf->command) { 2084 case ATA_CMD_READ: 2085 case ATA_CMD_READ_EXT: 2086 case ATA_CMD_WRITE: 2087 case ATA_CMD_WRITE_EXT: 2088 case ATA_CMD_WRITE_FUA_EXT: 2089 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2090 break; 2091 case ATA_CMD_FPDMA_READ: 2092 case ATA_CMD_FPDMA_WRITE: 2093 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2094 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2095 break; 2096 default: 2097 /* The only other commands EDMA supports in non-queued and 2098 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2099 * of which are defined/used by Linux. If we get here, this 2100 * driver needs work. 2101 */ 2102 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__, 2103 tf->command); 2104 return AC_ERR_INVALID; 2105 } 2106 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2107 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2108 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2109 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2110 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2111 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2112 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2113 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2114 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2115 2116 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2117 return AC_ERR_OK; 2118 mv_fill_sg(qc); 2119 2120 return AC_ERR_OK; 2121 } 2122 2123 /** 2124 * mv_qc_prep_iie - Host specific command preparation. 2125 * @qc: queued command to prepare 2126 * 2127 * This routine simply redirects to the general purpose routine 2128 * if command is not DMA. Else, it handles prep of the CRQB 2129 * (command request block), does some sanity checking, and calls 2130 * the SG load routine. 2131 * 2132 * LOCKING: 2133 * Inherited from caller. 2134 */ 2135 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc) 2136 { 2137 struct ata_port *ap = qc->ap; 2138 struct mv_port_priv *pp = ap->private_data; 2139 struct mv_crqb_iie *crqb; 2140 struct ata_taskfile *tf = &qc->tf; 2141 unsigned in_index; 2142 u32 flags = 0; 2143 2144 if ((tf->protocol != ATA_PROT_DMA) && 2145 (tf->protocol != ATA_PROT_NCQ)) 2146 return AC_ERR_OK; 2147 if (tf->command == ATA_CMD_DSM) 2148 return AC_ERR_OK; /* use bmdma for this */ 2149 2150 /* Fill in Gen IIE command request block */ 2151 if (!(tf->flags & ATA_TFLAG_WRITE)) 2152 flags |= CRQB_FLAG_READ; 2153 2154 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag); 2155 flags |= qc->hw_tag << CRQB_TAG_SHIFT; 2156 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT; 2157 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2158 2159 /* get current queue index from software */ 2160 in_index = pp->req_idx; 2161 2162 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2163 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff); 2164 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16); 2165 crqb->flags = cpu_to_le32(flags); 2166 2167 crqb->ata_cmd[0] = cpu_to_le32( 2168 (tf->command << 16) | 2169 (tf->feature << 24) 2170 ); 2171 crqb->ata_cmd[1] = cpu_to_le32( 2172 (tf->lbal << 0) | 2173 (tf->lbam << 8) | 2174 (tf->lbah << 16) | 2175 (tf->device << 24) 2176 ); 2177 crqb->ata_cmd[2] = cpu_to_le32( 2178 (tf->hob_lbal << 0) | 2179 (tf->hob_lbam << 8) | 2180 (tf->hob_lbah << 16) | 2181 (tf->hob_feature << 24) 2182 ); 2183 crqb->ata_cmd[3] = cpu_to_le32( 2184 (tf->nsect << 0) | 2185 (tf->hob_nsect << 8) 2186 ); 2187 2188 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2189 return AC_ERR_OK; 2190 mv_fill_sg(qc); 2191 2192 return AC_ERR_OK; 2193 } 2194 2195 /** 2196 * mv_sff_check_status - fetch device status, if valid 2197 * @ap: ATA port to fetch status from 2198 * 2199 * When using command issue via mv_qc_issue_fis(), 2200 * the initial ATA_BUSY state does not show up in the 2201 * ATA status (shadow) register. This can confuse libata! 2202 * 2203 * So we have a hook here to fake ATA_BUSY for that situation, 2204 * until the first time a BUSY, DRQ, or ERR bit is seen. 2205 * 2206 * The rest of the time, it simply returns the ATA status register. 2207 */ 2208 static u8 mv_sff_check_status(struct ata_port *ap) 2209 { 2210 u8 stat = ioread8(ap->ioaddr.status_addr); 2211 struct mv_port_priv *pp = ap->private_data; 2212 2213 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2214 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2215 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2216 else 2217 stat = ATA_BUSY; 2218 } 2219 return stat; 2220 } 2221 2222 /** 2223 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2224 * @fis: fis to be sent 2225 * @nwords: number of 32-bit words in the fis 2226 */ 2227 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2228 { 2229 void __iomem *port_mmio = mv_ap_base(ap); 2230 u32 ifctl, old_ifctl, ifstat; 2231 int i, timeout = 200, final_word = nwords - 1; 2232 2233 /* Initiate FIS transmission mode */ 2234 old_ifctl = readl(port_mmio + SATA_IFCTL); 2235 ifctl = 0x100 | (old_ifctl & 0xf); 2236 writelfl(ifctl, port_mmio + SATA_IFCTL); 2237 2238 /* Send all words of the FIS except for the final word */ 2239 for (i = 0; i < final_word; ++i) 2240 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2241 2242 /* Flag end-of-transmission, and then send the final word */ 2243 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2244 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2245 2246 /* 2247 * Wait for FIS transmission to complete. 2248 * This typically takes just a single iteration. 2249 */ 2250 do { 2251 ifstat = readl(port_mmio + SATA_IFSTAT); 2252 } while (!(ifstat & 0x1000) && --timeout); 2253 2254 /* Restore original port configuration */ 2255 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2256 2257 /* See if it worked */ 2258 if ((ifstat & 0x3000) != 0x1000) { 2259 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2260 __func__, ifstat); 2261 return AC_ERR_OTHER; 2262 } 2263 return 0; 2264 } 2265 2266 /** 2267 * mv_qc_issue_fis - Issue a command directly as a FIS 2268 * @qc: queued command to start 2269 * 2270 * Note that the ATA shadow registers are not updated 2271 * after command issue, so the device will appear "READY" 2272 * if polled, even while it is BUSY processing the command. 2273 * 2274 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2275 * 2276 * Note: we don't get updated shadow regs on *completion* 2277 * of non-data commands. So avoid sending them via this function, 2278 * as they will appear to have completed immediately. 2279 * 2280 * GEN_IIE has special registers that we could get the result tf from, 2281 * but earlier chipsets do not. For now, we ignore those registers. 2282 */ 2283 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2284 { 2285 struct ata_port *ap = qc->ap; 2286 struct mv_port_priv *pp = ap->private_data; 2287 struct ata_link *link = qc->dev->link; 2288 u32 fis[5]; 2289 int err = 0; 2290 2291 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2292 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2293 if (err) 2294 return err; 2295 2296 switch (qc->tf.protocol) { 2297 case ATAPI_PROT_PIO: 2298 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2299 /* fall through */ 2300 case ATAPI_PROT_NODATA: 2301 ap->hsm_task_state = HSM_ST_FIRST; 2302 break; 2303 case ATA_PROT_PIO: 2304 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2305 if (qc->tf.flags & ATA_TFLAG_WRITE) 2306 ap->hsm_task_state = HSM_ST_FIRST; 2307 else 2308 ap->hsm_task_state = HSM_ST; 2309 break; 2310 default: 2311 ap->hsm_task_state = HSM_ST_LAST; 2312 break; 2313 } 2314 2315 if (qc->tf.flags & ATA_TFLAG_POLLING) 2316 ata_sff_queue_pio_task(link, 0); 2317 return 0; 2318 } 2319 2320 /** 2321 * mv_qc_issue - Initiate a command to the host 2322 * @qc: queued command to start 2323 * 2324 * This routine simply redirects to the general purpose routine 2325 * if command is not DMA. Else, it sanity checks our local 2326 * caches of the request producer/consumer indices then enables 2327 * DMA and bumps the request producer index. 2328 * 2329 * LOCKING: 2330 * Inherited from caller. 2331 */ 2332 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2333 { 2334 static int limit_warnings = 10; 2335 struct ata_port *ap = qc->ap; 2336 void __iomem *port_mmio = mv_ap_base(ap); 2337 struct mv_port_priv *pp = ap->private_data; 2338 u32 in_index; 2339 unsigned int port_irqs; 2340 2341 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2342 2343 switch (qc->tf.protocol) { 2344 case ATA_PROT_DMA: 2345 if (qc->tf.command == ATA_CMD_DSM) { 2346 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2347 return AC_ERR_OTHER; 2348 break; /* use bmdma for this */ 2349 } 2350 /* fall thru */ 2351 case ATA_PROT_NCQ: 2352 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2353 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2354 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2355 2356 /* Write the request in pointer to kick the EDMA to life */ 2357 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2358 port_mmio + EDMA_REQ_Q_IN_PTR); 2359 return 0; 2360 2361 case ATA_PROT_PIO: 2362 /* 2363 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2364 * 2365 * Someday, we might implement special polling workarounds 2366 * for these, but it all seems rather unnecessary since we 2367 * normally use only DMA for commands which transfer more 2368 * than a single block of data. 2369 * 2370 * Much of the time, this could just work regardless. 2371 * So for now, just log the incident, and allow the attempt. 2372 */ 2373 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2374 --limit_warnings; 2375 ata_link_warn(qc->dev->link, DRV_NAME 2376 ": attempting PIO w/multiple DRQ: " 2377 "this may fail due to h/w errata\n"); 2378 } 2379 /* fall through */ 2380 case ATA_PROT_NODATA: 2381 case ATAPI_PROT_PIO: 2382 case ATAPI_PROT_NODATA: 2383 if (ap->flags & ATA_FLAG_PIO_POLLING) 2384 qc->tf.flags |= ATA_TFLAG_POLLING; 2385 break; 2386 } 2387 2388 if (qc->tf.flags & ATA_TFLAG_POLLING) 2389 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2390 else 2391 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2392 2393 /* 2394 * We're about to send a non-EDMA capable command to the 2395 * port. Turn off EDMA so there won't be problems accessing 2396 * shadow block, etc registers. 2397 */ 2398 mv_stop_edma(ap); 2399 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2400 mv_pmp_select(ap, qc->dev->link->pmp); 2401 2402 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2403 struct mv_host_priv *hpriv = ap->host->private_data; 2404 /* 2405 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2406 * 2407 * After any NCQ error, the READ_LOG_EXT command 2408 * from libata-eh *must* use mv_qc_issue_fis(). 2409 * Otherwise it might fail, due to chip errata. 2410 * 2411 * Rather than special-case it, we'll just *always* 2412 * use this method here for READ_LOG_EXT, making for 2413 * easier testing. 2414 */ 2415 if (IS_GEN_II(hpriv)) 2416 return mv_qc_issue_fis(qc); 2417 } 2418 return ata_bmdma_qc_issue(qc); 2419 } 2420 2421 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2422 { 2423 struct mv_port_priv *pp = ap->private_data; 2424 struct ata_queued_cmd *qc; 2425 2426 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2427 return NULL; 2428 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2429 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2430 return qc; 2431 return NULL; 2432 } 2433 2434 static void mv_pmp_error_handler(struct ata_port *ap) 2435 { 2436 unsigned int pmp, pmp_map; 2437 struct mv_port_priv *pp = ap->private_data; 2438 2439 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2440 /* 2441 * Perform NCQ error analysis on failed PMPs 2442 * before we freeze the port entirely. 2443 * 2444 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2445 */ 2446 pmp_map = pp->delayed_eh_pmp_map; 2447 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2448 for (pmp = 0; pmp_map != 0; pmp++) { 2449 unsigned int this_pmp = (1 << pmp); 2450 if (pmp_map & this_pmp) { 2451 struct ata_link *link = &ap->pmp_link[pmp]; 2452 pmp_map &= ~this_pmp; 2453 ata_eh_analyze_ncq_error(link); 2454 } 2455 } 2456 ata_port_freeze(ap); 2457 } 2458 sata_pmp_error_handler(ap); 2459 } 2460 2461 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2462 { 2463 void __iomem *port_mmio = mv_ap_base(ap); 2464 2465 return readl(port_mmio + SATA_TESTCTL) >> 16; 2466 } 2467 2468 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2469 { 2470 unsigned int pmp; 2471 2472 /* 2473 * Initialize EH info for PMPs which saw device errors 2474 */ 2475 for (pmp = 0; pmp_map != 0; pmp++) { 2476 unsigned int this_pmp = (1 << pmp); 2477 if (pmp_map & this_pmp) { 2478 struct ata_link *link = &ap->pmp_link[pmp]; 2479 struct ata_eh_info *ehi = &link->eh_info; 2480 2481 pmp_map &= ~this_pmp; 2482 ata_ehi_clear_desc(ehi); 2483 ata_ehi_push_desc(ehi, "dev err"); 2484 ehi->err_mask |= AC_ERR_DEV; 2485 ehi->action |= ATA_EH_RESET; 2486 ata_link_abort(link); 2487 } 2488 } 2489 } 2490 2491 static int mv_req_q_empty(struct ata_port *ap) 2492 { 2493 void __iomem *port_mmio = mv_ap_base(ap); 2494 u32 in_ptr, out_ptr; 2495 2496 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2497 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2498 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2499 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2500 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2501 } 2502 2503 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2504 { 2505 struct mv_port_priv *pp = ap->private_data; 2506 int failed_links; 2507 unsigned int old_map, new_map; 2508 2509 /* 2510 * Device error during FBS+NCQ operation: 2511 * 2512 * Set a port flag to prevent further I/O being enqueued. 2513 * Leave the EDMA running to drain outstanding commands from this port. 2514 * Perform the post-mortem/EH only when all responses are complete. 2515 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2516 */ 2517 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2518 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2519 pp->delayed_eh_pmp_map = 0; 2520 } 2521 old_map = pp->delayed_eh_pmp_map; 2522 new_map = old_map | mv_get_err_pmp_map(ap); 2523 2524 if (old_map != new_map) { 2525 pp->delayed_eh_pmp_map = new_map; 2526 mv_pmp_eh_prep(ap, new_map & ~old_map); 2527 } 2528 failed_links = hweight16(new_map); 2529 2530 ata_port_info(ap, 2531 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n", 2532 __func__, pp->delayed_eh_pmp_map, 2533 ap->qc_active, failed_links, 2534 ap->nr_active_links); 2535 2536 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2537 mv_process_crpb_entries(ap, pp); 2538 mv_stop_edma(ap); 2539 mv_eh_freeze(ap); 2540 ata_port_info(ap, "%s: done\n", __func__); 2541 return 1; /* handled */ 2542 } 2543 ata_port_info(ap, "%s: waiting\n", __func__); 2544 return 1; /* handled */ 2545 } 2546 2547 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2548 { 2549 /* 2550 * Possible future enhancement: 2551 * 2552 * FBS+non-NCQ operation is not yet implemented. 2553 * See related notes in mv_edma_cfg(). 2554 * 2555 * Device error during FBS+non-NCQ operation: 2556 * 2557 * We need to snapshot the shadow registers for each failed command. 2558 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2559 */ 2560 return 0; /* not handled */ 2561 } 2562 2563 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2564 { 2565 struct mv_port_priv *pp = ap->private_data; 2566 2567 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2568 return 0; /* EDMA was not active: not handled */ 2569 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2570 return 0; /* FBS was not active: not handled */ 2571 2572 if (!(edma_err_cause & EDMA_ERR_DEV)) 2573 return 0; /* non DEV error: not handled */ 2574 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2575 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2576 return 0; /* other problems: not handled */ 2577 2578 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2579 /* 2580 * EDMA should NOT have self-disabled for this case. 2581 * If it did, then something is wrong elsewhere, 2582 * and we cannot handle it here. 2583 */ 2584 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2585 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2586 __func__, edma_err_cause, pp->pp_flags); 2587 return 0; /* not handled */ 2588 } 2589 return mv_handle_fbs_ncq_dev_err(ap); 2590 } else { 2591 /* 2592 * EDMA should have self-disabled for this case. 2593 * If it did not, then something is wrong elsewhere, 2594 * and we cannot handle it here. 2595 */ 2596 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2597 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2598 __func__, edma_err_cause, pp->pp_flags); 2599 return 0; /* not handled */ 2600 } 2601 return mv_handle_fbs_non_ncq_dev_err(ap); 2602 } 2603 return 0; /* not handled */ 2604 } 2605 2606 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2607 { 2608 struct ata_eh_info *ehi = &ap->link.eh_info; 2609 char *when = "idle"; 2610 2611 ata_ehi_clear_desc(ehi); 2612 if (edma_was_enabled) { 2613 when = "EDMA enabled"; 2614 } else { 2615 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2616 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2617 when = "polling"; 2618 } 2619 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2620 ehi->err_mask |= AC_ERR_OTHER; 2621 ehi->action |= ATA_EH_RESET; 2622 ata_port_freeze(ap); 2623 } 2624 2625 /** 2626 * mv_err_intr - Handle error interrupts on the port 2627 * @ap: ATA channel to manipulate 2628 * 2629 * Most cases require a full reset of the chip's state machine, 2630 * which also performs a COMRESET. 2631 * Also, if the port disabled DMA, update our cached copy to match. 2632 * 2633 * LOCKING: 2634 * Inherited from caller. 2635 */ 2636 static void mv_err_intr(struct ata_port *ap) 2637 { 2638 void __iomem *port_mmio = mv_ap_base(ap); 2639 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2640 u32 fis_cause = 0; 2641 struct mv_port_priv *pp = ap->private_data; 2642 struct mv_host_priv *hpriv = ap->host->private_data; 2643 unsigned int action = 0, err_mask = 0; 2644 struct ata_eh_info *ehi = &ap->link.eh_info; 2645 struct ata_queued_cmd *qc; 2646 int abort = 0; 2647 2648 /* 2649 * Read and clear the SError and err_cause bits. 2650 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2651 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2652 */ 2653 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2654 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2655 2656 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2657 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2658 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2659 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2660 } 2661 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2662 2663 if (edma_err_cause & EDMA_ERR_DEV) { 2664 /* 2665 * Device errors during FIS-based switching operation 2666 * require special handling. 2667 */ 2668 if (mv_handle_dev_err(ap, edma_err_cause)) 2669 return; 2670 } 2671 2672 qc = mv_get_active_qc(ap); 2673 ata_ehi_clear_desc(ehi); 2674 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2675 edma_err_cause, pp->pp_flags); 2676 2677 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2678 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2679 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2680 u32 ec = edma_err_cause & 2681 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2682 sata_async_notification(ap); 2683 if (!ec) 2684 return; /* Just an AN; no need for the nukes */ 2685 ata_ehi_push_desc(ehi, "SDB notify"); 2686 } 2687 } 2688 /* 2689 * All generations share these EDMA error cause bits: 2690 */ 2691 if (edma_err_cause & EDMA_ERR_DEV) { 2692 err_mask |= AC_ERR_DEV; 2693 action |= ATA_EH_RESET; 2694 ata_ehi_push_desc(ehi, "dev error"); 2695 } 2696 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2697 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2698 EDMA_ERR_INTRL_PAR)) { 2699 err_mask |= AC_ERR_ATA_BUS; 2700 action |= ATA_EH_RESET; 2701 ata_ehi_push_desc(ehi, "parity error"); 2702 } 2703 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2704 ata_ehi_hotplugged(ehi); 2705 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2706 "dev disconnect" : "dev connect"); 2707 action |= ATA_EH_RESET; 2708 } 2709 2710 /* 2711 * Gen-I has a different SELF_DIS bit, 2712 * different FREEZE bits, and no SERR bit: 2713 */ 2714 if (IS_GEN_I(hpriv)) { 2715 eh_freeze_mask = EDMA_EH_FREEZE_5; 2716 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2717 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2718 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2719 } 2720 } else { 2721 eh_freeze_mask = EDMA_EH_FREEZE; 2722 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2723 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2724 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2725 } 2726 if (edma_err_cause & EDMA_ERR_SERR) { 2727 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2728 err_mask |= AC_ERR_ATA_BUS; 2729 action |= ATA_EH_RESET; 2730 } 2731 } 2732 2733 if (!err_mask) { 2734 err_mask = AC_ERR_OTHER; 2735 action |= ATA_EH_RESET; 2736 } 2737 2738 ehi->serror |= serr; 2739 ehi->action |= action; 2740 2741 if (qc) 2742 qc->err_mask |= err_mask; 2743 else 2744 ehi->err_mask |= err_mask; 2745 2746 if (err_mask == AC_ERR_DEV) { 2747 /* 2748 * Cannot do ata_port_freeze() here, 2749 * because it would kill PIO access, 2750 * which is needed for further diagnosis. 2751 */ 2752 mv_eh_freeze(ap); 2753 abort = 1; 2754 } else if (edma_err_cause & eh_freeze_mask) { 2755 /* 2756 * Note to self: ata_port_freeze() calls ata_port_abort() 2757 */ 2758 ata_port_freeze(ap); 2759 } else { 2760 abort = 1; 2761 } 2762 2763 if (abort) { 2764 if (qc) 2765 ata_link_abort(qc->dev->link); 2766 else 2767 ata_port_abort(ap); 2768 } 2769 } 2770 2771 static bool mv_process_crpb_response(struct ata_port *ap, 2772 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2773 { 2774 u8 ata_status; 2775 u16 edma_status = le16_to_cpu(response->flags); 2776 2777 /* 2778 * edma_status from a response queue entry: 2779 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2780 * MSB is saved ATA status from command completion. 2781 */ 2782 if (!ncq_enabled) { 2783 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2784 if (err_cause) { 2785 /* 2786 * Error will be seen/handled by 2787 * mv_err_intr(). So do nothing at all here. 2788 */ 2789 return false; 2790 } 2791 } 2792 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2793 if (!ac_err_mask(ata_status)) 2794 return true; 2795 /* else: leave it for mv_err_intr() */ 2796 return false; 2797 } 2798 2799 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2800 { 2801 void __iomem *port_mmio = mv_ap_base(ap); 2802 struct mv_host_priv *hpriv = ap->host->private_data; 2803 u32 in_index; 2804 bool work_done = false; 2805 u32 done_mask = 0; 2806 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2807 2808 /* Get the hardware queue position index */ 2809 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2810 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2811 2812 /* Process new responses from since the last time we looked */ 2813 while (in_index != pp->resp_idx) { 2814 unsigned int tag; 2815 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2816 2817 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2818 2819 if (IS_GEN_I(hpriv)) { 2820 /* 50xx: no NCQ, only one command active at a time */ 2821 tag = ap->link.active_tag; 2822 } else { 2823 /* Gen II/IIE: get command tag from CRPB entry */ 2824 tag = le16_to_cpu(response->id) & 0x1f; 2825 } 2826 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2827 done_mask |= 1 << tag; 2828 work_done = true; 2829 } 2830 2831 if (work_done) { 2832 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2833 2834 /* Update the software queue position index in hardware */ 2835 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2836 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2837 port_mmio + EDMA_RSP_Q_OUT_PTR); 2838 } 2839 } 2840 2841 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2842 { 2843 struct mv_port_priv *pp; 2844 int edma_was_enabled; 2845 2846 /* 2847 * Grab a snapshot of the EDMA_EN flag setting, 2848 * so that we have a consistent view for this port, 2849 * even if something we call of our routines changes it. 2850 */ 2851 pp = ap->private_data; 2852 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2853 /* 2854 * Process completed CRPB response(s) before other events. 2855 */ 2856 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2857 mv_process_crpb_entries(ap, pp); 2858 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2859 mv_handle_fbs_ncq_dev_err(ap); 2860 } 2861 /* 2862 * Handle chip-reported errors, or continue on to handle PIO. 2863 */ 2864 if (unlikely(port_cause & ERR_IRQ)) { 2865 mv_err_intr(ap); 2866 } else if (!edma_was_enabled) { 2867 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2868 if (qc) 2869 ata_bmdma_port_intr(ap, qc); 2870 else 2871 mv_unexpected_intr(ap, edma_was_enabled); 2872 } 2873 } 2874 2875 /** 2876 * mv_host_intr - Handle all interrupts on the given host controller 2877 * @host: host specific structure 2878 * @main_irq_cause: Main interrupt cause register for the chip. 2879 * 2880 * LOCKING: 2881 * Inherited from caller. 2882 */ 2883 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2884 { 2885 struct mv_host_priv *hpriv = host->private_data; 2886 void __iomem *mmio = hpriv->base, *hc_mmio; 2887 unsigned int handled = 0, port; 2888 2889 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2890 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2891 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2892 2893 for (port = 0; port < hpriv->n_ports; port++) { 2894 struct ata_port *ap = host->ports[port]; 2895 unsigned int p, shift, hardport, port_cause; 2896 2897 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2898 /* 2899 * Each hc within the host has its own hc_irq_cause register, 2900 * where the interrupting ports bits get ack'd. 2901 */ 2902 if (hardport == 0) { /* first port on this hc ? */ 2903 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2904 u32 port_mask, ack_irqs; 2905 /* 2906 * Skip this entire hc if nothing pending for any ports 2907 */ 2908 if (!hc_cause) { 2909 port += MV_PORTS_PER_HC - 1; 2910 continue; 2911 } 2912 /* 2913 * We don't need/want to read the hc_irq_cause register, 2914 * because doing so hurts performance, and 2915 * main_irq_cause already gives us everything we need. 2916 * 2917 * But we do have to *write* to the hc_irq_cause to ack 2918 * the ports that we are handling this time through. 2919 * 2920 * This requires that we create a bitmap for those 2921 * ports which interrupted us, and use that bitmap 2922 * to ack (only) those ports via hc_irq_cause. 2923 */ 2924 ack_irqs = 0; 2925 if (hc_cause & PORTS_0_3_COAL_DONE) 2926 ack_irqs = HC_COAL_IRQ; 2927 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2928 if ((port + p) >= hpriv->n_ports) 2929 break; 2930 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2931 if (hc_cause & port_mask) 2932 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2933 } 2934 hc_mmio = mv_hc_base_from_port(mmio, port); 2935 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2936 handled = 1; 2937 } 2938 /* 2939 * Handle interrupts signalled for this port: 2940 */ 2941 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2942 if (port_cause) 2943 mv_port_intr(ap, port_cause); 2944 } 2945 return handled; 2946 } 2947 2948 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2949 { 2950 struct mv_host_priv *hpriv = host->private_data; 2951 struct ata_port *ap; 2952 struct ata_queued_cmd *qc; 2953 struct ata_eh_info *ehi; 2954 unsigned int i, err_mask, printed = 0; 2955 u32 err_cause; 2956 2957 err_cause = readl(mmio + hpriv->irq_cause_offset); 2958 2959 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2960 2961 DPRINTK("All regs @ PCI error\n"); 2962 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2963 2964 writelfl(0, mmio + hpriv->irq_cause_offset); 2965 2966 for (i = 0; i < host->n_ports; i++) { 2967 ap = host->ports[i]; 2968 if (!ata_link_offline(&ap->link)) { 2969 ehi = &ap->link.eh_info; 2970 ata_ehi_clear_desc(ehi); 2971 if (!printed++) 2972 ata_ehi_push_desc(ehi, 2973 "PCI err cause 0x%08x", err_cause); 2974 err_mask = AC_ERR_HOST_BUS; 2975 ehi->action = ATA_EH_RESET; 2976 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2977 if (qc) 2978 qc->err_mask |= err_mask; 2979 else 2980 ehi->err_mask |= err_mask; 2981 2982 ata_port_freeze(ap); 2983 } 2984 } 2985 return 1; /* handled */ 2986 } 2987 2988 /** 2989 * mv_interrupt - Main interrupt event handler 2990 * @irq: unused 2991 * @dev_instance: private data; in this case the host structure 2992 * 2993 * Read the read only register to determine if any host 2994 * controllers have pending interrupts. If so, call lower level 2995 * routine to handle. Also check for PCI errors which are only 2996 * reported here. 2997 * 2998 * LOCKING: 2999 * This routine holds the host lock while processing pending 3000 * interrupts. 3001 */ 3002 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 3003 { 3004 struct ata_host *host = dev_instance; 3005 struct mv_host_priv *hpriv = host->private_data; 3006 unsigned int handled = 0; 3007 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 3008 u32 main_irq_cause, pending_irqs; 3009 3010 spin_lock(&host->lock); 3011 3012 /* for MSI: block new interrupts while in here */ 3013 if (using_msi) 3014 mv_write_main_irq_mask(0, hpriv); 3015 3016 main_irq_cause = readl(hpriv->main_irq_cause_addr); 3017 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 3018 /* 3019 * Deal with cases where we either have nothing pending, or have read 3020 * a bogus register value which can indicate HW removal or PCI fault. 3021 */ 3022 if (pending_irqs && main_irq_cause != 0xffffffffU) { 3023 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 3024 handled = mv_pci_error(host, hpriv->base); 3025 else 3026 handled = mv_host_intr(host, pending_irqs); 3027 } 3028 3029 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3030 if (using_msi) 3031 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3032 3033 spin_unlock(&host->lock); 3034 3035 return IRQ_RETVAL(handled); 3036 } 3037 3038 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3039 { 3040 unsigned int ofs; 3041 3042 switch (sc_reg_in) { 3043 case SCR_STATUS: 3044 case SCR_ERROR: 3045 case SCR_CONTROL: 3046 ofs = sc_reg_in * sizeof(u32); 3047 break; 3048 default: 3049 ofs = 0xffffffffU; 3050 break; 3051 } 3052 return ofs; 3053 } 3054 3055 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3056 { 3057 struct mv_host_priv *hpriv = link->ap->host->private_data; 3058 void __iomem *mmio = hpriv->base; 3059 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3060 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3061 3062 if (ofs != 0xffffffffU) { 3063 *val = readl(addr + ofs); 3064 return 0; 3065 } else 3066 return -EINVAL; 3067 } 3068 3069 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3070 { 3071 struct mv_host_priv *hpriv = link->ap->host->private_data; 3072 void __iomem *mmio = hpriv->base; 3073 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3074 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3075 3076 if (ofs != 0xffffffffU) { 3077 writelfl(val, addr + ofs); 3078 return 0; 3079 } else 3080 return -EINVAL; 3081 } 3082 3083 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3084 { 3085 struct pci_dev *pdev = to_pci_dev(host->dev); 3086 int early_5080; 3087 3088 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3089 3090 if (!early_5080) { 3091 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3092 tmp |= (1 << 0); 3093 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3094 } 3095 3096 mv_reset_pci_bus(host, mmio); 3097 } 3098 3099 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3100 { 3101 writel(0x0fcfffff, mmio + FLASH_CTL); 3102 } 3103 3104 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3105 void __iomem *mmio) 3106 { 3107 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3108 u32 tmp; 3109 3110 tmp = readl(phy_mmio + MV5_PHY_MODE); 3111 3112 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3113 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3114 } 3115 3116 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3117 { 3118 u32 tmp; 3119 3120 writel(0, mmio + GPIO_PORT_CTL); 3121 3122 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3123 3124 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3125 tmp |= ~(1 << 0); 3126 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3127 } 3128 3129 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3130 unsigned int port) 3131 { 3132 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3133 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3134 u32 tmp; 3135 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3136 3137 if (fix_apm_sq) { 3138 tmp = readl(phy_mmio + MV5_LTMODE); 3139 tmp |= (1 << 19); 3140 writel(tmp, phy_mmio + MV5_LTMODE); 3141 3142 tmp = readl(phy_mmio + MV5_PHY_CTL); 3143 tmp &= ~0x3; 3144 tmp |= 0x1; 3145 writel(tmp, phy_mmio + MV5_PHY_CTL); 3146 } 3147 3148 tmp = readl(phy_mmio + MV5_PHY_MODE); 3149 tmp &= ~mask; 3150 tmp |= hpriv->signal[port].pre; 3151 tmp |= hpriv->signal[port].amps; 3152 writel(tmp, phy_mmio + MV5_PHY_MODE); 3153 } 3154 3155 3156 #undef ZERO 3157 #define ZERO(reg) writel(0, port_mmio + (reg)) 3158 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3159 unsigned int port) 3160 { 3161 void __iomem *port_mmio = mv_port_base(mmio, port); 3162 3163 mv_reset_channel(hpriv, mmio, port); 3164 3165 ZERO(0x028); /* command */ 3166 writel(0x11f, port_mmio + EDMA_CFG); 3167 ZERO(0x004); /* timer */ 3168 ZERO(0x008); /* irq err cause */ 3169 ZERO(0x00c); /* irq err mask */ 3170 ZERO(0x010); /* rq bah */ 3171 ZERO(0x014); /* rq inp */ 3172 ZERO(0x018); /* rq outp */ 3173 ZERO(0x01c); /* respq bah */ 3174 ZERO(0x024); /* respq outp */ 3175 ZERO(0x020); /* respq inp */ 3176 ZERO(0x02c); /* test control */ 3177 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3178 } 3179 #undef ZERO 3180 3181 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3182 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3183 unsigned int hc) 3184 { 3185 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3186 u32 tmp; 3187 3188 ZERO(0x00c); 3189 ZERO(0x010); 3190 ZERO(0x014); 3191 ZERO(0x018); 3192 3193 tmp = readl(hc_mmio + 0x20); 3194 tmp &= 0x1c1c1c1c; 3195 tmp |= 0x03030303; 3196 writel(tmp, hc_mmio + 0x20); 3197 } 3198 #undef ZERO 3199 3200 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3201 unsigned int n_hc) 3202 { 3203 unsigned int hc, port; 3204 3205 for (hc = 0; hc < n_hc; hc++) { 3206 for (port = 0; port < MV_PORTS_PER_HC; port++) 3207 mv5_reset_hc_port(hpriv, mmio, 3208 (hc * MV_PORTS_PER_HC) + port); 3209 3210 mv5_reset_one_hc(hpriv, mmio, hc); 3211 } 3212 3213 return 0; 3214 } 3215 3216 #undef ZERO 3217 #define ZERO(reg) writel(0, mmio + (reg)) 3218 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3219 { 3220 struct mv_host_priv *hpriv = host->private_data; 3221 u32 tmp; 3222 3223 tmp = readl(mmio + MV_PCI_MODE); 3224 tmp &= 0xff00ffff; 3225 writel(tmp, mmio + MV_PCI_MODE); 3226 3227 ZERO(MV_PCI_DISC_TIMER); 3228 ZERO(MV_PCI_MSI_TRIGGER); 3229 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3230 ZERO(MV_PCI_SERR_MASK); 3231 ZERO(hpriv->irq_cause_offset); 3232 ZERO(hpriv->irq_mask_offset); 3233 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3234 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3235 ZERO(MV_PCI_ERR_ATTRIBUTE); 3236 ZERO(MV_PCI_ERR_COMMAND); 3237 } 3238 #undef ZERO 3239 3240 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3241 { 3242 u32 tmp; 3243 3244 mv5_reset_flash(hpriv, mmio); 3245 3246 tmp = readl(mmio + GPIO_PORT_CTL); 3247 tmp &= 0x3; 3248 tmp |= (1 << 5) | (1 << 6); 3249 writel(tmp, mmio + GPIO_PORT_CTL); 3250 } 3251 3252 /** 3253 * mv6_reset_hc - Perform the 6xxx global soft reset 3254 * @mmio: base address of the HBA 3255 * 3256 * This routine only applies to 6xxx parts. 3257 * 3258 * LOCKING: 3259 * Inherited from caller. 3260 */ 3261 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3262 unsigned int n_hc) 3263 { 3264 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3265 int i, rc = 0; 3266 u32 t; 3267 3268 /* Following procedure defined in PCI "main command and status 3269 * register" table. 3270 */ 3271 t = readl(reg); 3272 writel(t | STOP_PCI_MASTER, reg); 3273 3274 for (i = 0; i < 1000; i++) { 3275 udelay(1); 3276 t = readl(reg); 3277 if (PCI_MASTER_EMPTY & t) 3278 break; 3279 } 3280 if (!(PCI_MASTER_EMPTY & t)) { 3281 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3282 rc = 1; 3283 goto done; 3284 } 3285 3286 /* set reset */ 3287 i = 5; 3288 do { 3289 writel(t | GLOB_SFT_RST, reg); 3290 t = readl(reg); 3291 udelay(1); 3292 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3293 3294 if (!(GLOB_SFT_RST & t)) { 3295 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3296 rc = 1; 3297 goto done; 3298 } 3299 3300 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3301 i = 5; 3302 do { 3303 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3304 t = readl(reg); 3305 udelay(1); 3306 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3307 3308 if (GLOB_SFT_RST & t) { 3309 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3310 rc = 1; 3311 } 3312 done: 3313 return rc; 3314 } 3315 3316 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3317 void __iomem *mmio) 3318 { 3319 void __iomem *port_mmio; 3320 u32 tmp; 3321 3322 tmp = readl(mmio + RESET_CFG); 3323 if ((tmp & (1 << 0)) == 0) { 3324 hpriv->signal[idx].amps = 0x7 << 8; 3325 hpriv->signal[idx].pre = 0x1 << 5; 3326 return; 3327 } 3328 3329 port_mmio = mv_port_base(mmio, idx); 3330 tmp = readl(port_mmio + PHY_MODE2); 3331 3332 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3333 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3334 } 3335 3336 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3337 { 3338 writel(0x00000060, mmio + GPIO_PORT_CTL); 3339 } 3340 3341 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3342 unsigned int port) 3343 { 3344 void __iomem *port_mmio = mv_port_base(mmio, port); 3345 3346 u32 hp_flags = hpriv->hp_flags; 3347 int fix_phy_mode2 = 3348 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3349 int fix_phy_mode4 = 3350 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3351 u32 m2, m3; 3352 3353 if (fix_phy_mode2) { 3354 m2 = readl(port_mmio + PHY_MODE2); 3355 m2 &= ~(1 << 16); 3356 m2 |= (1 << 31); 3357 writel(m2, port_mmio + PHY_MODE2); 3358 3359 udelay(200); 3360 3361 m2 = readl(port_mmio + PHY_MODE2); 3362 m2 &= ~((1 << 16) | (1 << 31)); 3363 writel(m2, port_mmio + PHY_MODE2); 3364 3365 udelay(200); 3366 } 3367 3368 /* 3369 * Gen-II/IIe PHY_MODE3 errata RM#2: 3370 * Achieves better receiver noise performance than the h/w default: 3371 */ 3372 m3 = readl(port_mmio + PHY_MODE3); 3373 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3374 3375 /* Guideline 88F5182 (GL# SATA-S11) */ 3376 if (IS_SOC(hpriv)) 3377 m3 &= ~0x1c; 3378 3379 if (fix_phy_mode4) { 3380 u32 m4 = readl(port_mmio + PHY_MODE4); 3381 /* 3382 * Enforce reserved-bit restrictions on GenIIe devices only. 3383 * For earlier chipsets, force only the internal config field 3384 * (workaround for errata FEr SATA#10 part 1). 3385 */ 3386 if (IS_GEN_IIE(hpriv)) 3387 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3388 else 3389 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3390 writel(m4, port_mmio + PHY_MODE4); 3391 } 3392 /* 3393 * Workaround for 60x1-B2 errata SATA#13: 3394 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3395 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3396 * Or ensure we use writelfl() when writing PHY_MODE4. 3397 */ 3398 writel(m3, port_mmio + PHY_MODE3); 3399 3400 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3401 m2 = readl(port_mmio + PHY_MODE2); 3402 3403 m2 &= ~MV_M2_PREAMP_MASK; 3404 m2 |= hpriv->signal[port].amps; 3405 m2 |= hpriv->signal[port].pre; 3406 m2 &= ~(1 << 16); 3407 3408 /* according to mvSata 3.6.1, some IIE values are fixed */ 3409 if (IS_GEN_IIE(hpriv)) { 3410 m2 &= ~0xC30FF01F; 3411 m2 |= 0x0000900F; 3412 } 3413 3414 writel(m2, port_mmio + PHY_MODE2); 3415 } 3416 3417 /* TODO: use the generic LED interface to configure the SATA Presence */ 3418 /* & Acitivy LEDs on the board */ 3419 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3420 void __iomem *mmio) 3421 { 3422 return; 3423 } 3424 3425 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3426 void __iomem *mmio) 3427 { 3428 void __iomem *port_mmio; 3429 u32 tmp; 3430 3431 port_mmio = mv_port_base(mmio, idx); 3432 tmp = readl(port_mmio + PHY_MODE2); 3433 3434 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3435 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3436 } 3437 3438 #undef ZERO 3439 #define ZERO(reg) writel(0, port_mmio + (reg)) 3440 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3441 void __iomem *mmio, unsigned int port) 3442 { 3443 void __iomem *port_mmio = mv_port_base(mmio, port); 3444 3445 mv_reset_channel(hpriv, mmio, port); 3446 3447 ZERO(0x028); /* command */ 3448 writel(0x101f, port_mmio + EDMA_CFG); 3449 ZERO(0x004); /* timer */ 3450 ZERO(0x008); /* irq err cause */ 3451 ZERO(0x00c); /* irq err mask */ 3452 ZERO(0x010); /* rq bah */ 3453 ZERO(0x014); /* rq inp */ 3454 ZERO(0x018); /* rq outp */ 3455 ZERO(0x01c); /* respq bah */ 3456 ZERO(0x024); /* respq outp */ 3457 ZERO(0x020); /* respq inp */ 3458 ZERO(0x02c); /* test control */ 3459 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3460 } 3461 3462 #undef ZERO 3463 3464 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3465 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3466 void __iomem *mmio) 3467 { 3468 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3469 3470 ZERO(0x00c); 3471 ZERO(0x010); 3472 ZERO(0x014); 3473 3474 } 3475 3476 #undef ZERO 3477 3478 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3479 void __iomem *mmio, unsigned int n_hc) 3480 { 3481 unsigned int port; 3482 3483 for (port = 0; port < hpriv->n_ports; port++) 3484 mv_soc_reset_hc_port(hpriv, mmio, port); 3485 3486 mv_soc_reset_one_hc(hpriv, mmio); 3487 3488 return 0; 3489 } 3490 3491 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3492 void __iomem *mmio) 3493 { 3494 return; 3495 } 3496 3497 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3498 { 3499 return; 3500 } 3501 3502 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3503 void __iomem *mmio, unsigned int port) 3504 { 3505 void __iomem *port_mmio = mv_port_base(mmio, port); 3506 u32 reg; 3507 3508 reg = readl(port_mmio + PHY_MODE3); 3509 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3510 reg |= (0x1 << 27); 3511 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3512 reg |= (0x1 << 29); 3513 writel(reg, port_mmio + PHY_MODE3); 3514 3515 reg = readl(port_mmio + PHY_MODE4); 3516 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3517 reg |= (0x1 << 16); 3518 writel(reg, port_mmio + PHY_MODE4); 3519 3520 reg = readl(port_mmio + PHY_MODE9_GEN2); 3521 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3522 reg |= 0x8; 3523 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3524 writel(reg, port_mmio + PHY_MODE9_GEN2); 3525 3526 reg = readl(port_mmio + PHY_MODE9_GEN1); 3527 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3528 reg |= 0x8; 3529 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3530 writel(reg, port_mmio + PHY_MODE9_GEN1); 3531 } 3532 3533 /** 3534 * soc_is_65 - check if the soc is 65 nano device 3535 * 3536 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3537 * register, this register should contain non-zero value and it exists only 3538 * in the 65 nano devices, when reading it from older devices we get 0. 3539 */ 3540 static bool soc_is_65n(struct mv_host_priv *hpriv) 3541 { 3542 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3543 3544 if (readl(port0_mmio + PHYCFG_OFS)) 3545 return true; 3546 return false; 3547 } 3548 3549 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3550 { 3551 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3552 3553 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3554 if (want_gen2i) 3555 ifcfg |= (1 << 7); /* enable gen2i speed */ 3556 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3557 } 3558 3559 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3560 unsigned int port_no) 3561 { 3562 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3563 3564 /* 3565 * The datasheet warns against setting EDMA_RESET when EDMA is active 3566 * (but doesn't say what the problem might be). So we first try 3567 * to disable the EDMA engine before doing the EDMA_RESET operation. 3568 */ 3569 mv_stop_edma_engine(port_mmio); 3570 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3571 3572 if (!IS_GEN_I(hpriv)) { 3573 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3574 mv_setup_ifcfg(port_mmio, 1); 3575 } 3576 /* 3577 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3578 * link, and physical layers. It resets all SATA interface registers 3579 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3580 */ 3581 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3582 udelay(25); /* allow reset propagation */ 3583 writelfl(0, port_mmio + EDMA_CMD); 3584 3585 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3586 3587 if (IS_GEN_I(hpriv)) 3588 usleep_range(500, 1000); 3589 } 3590 3591 static void mv_pmp_select(struct ata_port *ap, int pmp) 3592 { 3593 if (sata_pmp_supported(ap)) { 3594 void __iomem *port_mmio = mv_ap_base(ap); 3595 u32 reg = readl(port_mmio + SATA_IFCTL); 3596 int old = reg & 0xf; 3597 3598 if (old != pmp) { 3599 reg = (reg & ~0xf) | pmp; 3600 writelfl(reg, port_mmio + SATA_IFCTL); 3601 } 3602 } 3603 } 3604 3605 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3606 unsigned long deadline) 3607 { 3608 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3609 return sata_std_hardreset(link, class, deadline); 3610 } 3611 3612 static int mv_softreset(struct ata_link *link, unsigned int *class, 3613 unsigned long deadline) 3614 { 3615 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3616 return ata_sff_softreset(link, class, deadline); 3617 } 3618 3619 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3620 unsigned long deadline) 3621 { 3622 struct ata_port *ap = link->ap; 3623 struct mv_host_priv *hpriv = ap->host->private_data; 3624 struct mv_port_priv *pp = ap->private_data; 3625 void __iomem *mmio = hpriv->base; 3626 int rc, attempts = 0, extra = 0; 3627 u32 sstatus; 3628 bool online; 3629 3630 mv_reset_channel(hpriv, mmio, ap->port_no); 3631 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3632 pp->pp_flags &= 3633 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3634 3635 /* Workaround for errata FEr SATA#10 (part 2) */ 3636 do { 3637 const unsigned long *timing = 3638 sata_ehc_deb_timing(&link->eh_context); 3639 3640 rc = sata_link_hardreset(link, timing, deadline + extra, 3641 &online, NULL); 3642 rc = online ? -EAGAIN : rc; 3643 if (rc) 3644 return rc; 3645 sata_scr_read(link, SCR_STATUS, &sstatus); 3646 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3647 /* Force 1.5gb/s link speed and try again */ 3648 mv_setup_ifcfg(mv_ap_base(ap), 0); 3649 if (time_after(jiffies + HZ, deadline)) 3650 extra = HZ; /* only extend it once, max */ 3651 } 3652 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3653 mv_save_cached_regs(ap); 3654 mv_edma_cfg(ap, 0, 0); 3655 3656 return rc; 3657 } 3658 3659 static void mv_eh_freeze(struct ata_port *ap) 3660 { 3661 mv_stop_edma(ap); 3662 mv_enable_port_irqs(ap, 0); 3663 } 3664 3665 static void mv_eh_thaw(struct ata_port *ap) 3666 { 3667 struct mv_host_priv *hpriv = ap->host->private_data; 3668 unsigned int port = ap->port_no; 3669 unsigned int hardport = mv_hardport_from_port(port); 3670 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3671 void __iomem *port_mmio = mv_ap_base(ap); 3672 u32 hc_irq_cause; 3673 3674 /* clear EDMA errors on this port */ 3675 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3676 3677 /* clear pending irq events */ 3678 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3679 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3680 3681 mv_enable_port_irqs(ap, ERR_IRQ); 3682 } 3683 3684 /** 3685 * mv_port_init - Perform some early initialization on a single port. 3686 * @port: libata data structure storing shadow register addresses 3687 * @port_mmio: base address of the port 3688 * 3689 * Initialize shadow register mmio addresses, clear outstanding 3690 * interrupts on the port, and unmask interrupts for the future 3691 * start of the port. 3692 * 3693 * LOCKING: 3694 * Inherited from caller. 3695 */ 3696 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3697 { 3698 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3699 3700 /* PIO related setup 3701 */ 3702 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3703 port->error_addr = 3704 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3705 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3706 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3707 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3708 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3709 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3710 port->status_addr = 3711 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3712 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3713 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3714 3715 /* Clear any currently outstanding port interrupt conditions */ 3716 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3717 writelfl(readl(serr), serr); 3718 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3719 3720 /* unmask all non-transient EDMA error interrupts */ 3721 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3722 3723 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3724 readl(port_mmio + EDMA_CFG), 3725 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3726 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3727 } 3728 3729 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3730 { 3731 struct mv_host_priv *hpriv = host->private_data; 3732 void __iomem *mmio = hpriv->base; 3733 u32 reg; 3734 3735 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3736 return 0; /* not PCI-X capable */ 3737 reg = readl(mmio + MV_PCI_MODE); 3738 if ((reg & MV_PCI_MODE_MASK) == 0) 3739 return 0; /* conventional PCI mode */ 3740 return 1; /* chip is in PCI-X mode */ 3741 } 3742 3743 static int mv_pci_cut_through_okay(struct ata_host *host) 3744 { 3745 struct mv_host_priv *hpriv = host->private_data; 3746 void __iomem *mmio = hpriv->base; 3747 u32 reg; 3748 3749 if (!mv_in_pcix_mode(host)) { 3750 reg = readl(mmio + MV_PCI_COMMAND); 3751 if (reg & MV_PCI_COMMAND_MRDTRIG) 3752 return 0; /* not okay */ 3753 } 3754 return 1; /* okay */ 3755 } 3756 3757 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3758 { 3759 struct mv_host_priv *hpriv = host->private_data; 3760 void __iomem *mmio = hpriv->base; 3761 3762 /* workaround for 60x1-B2 errata PCI#7 */ 3763 if (mv_in_pcix_mode(host)) { 3764 u32 reg = readl(mmio + MV_PCI_COMMAND); 3765 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3766 } 3767 } 3768 3769 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3770 { 3771 struct pci_dev *pdev = to_pci_dev(host->dev); 3772 struct mv_host_priv *hpriv = host->private_data; 3773 u32 hp_flags = hpriv->hp_flags; 3774 3775 switch (board_idx) { 3776 case chip_5080: 3777 hpriv->ops = &mv5xxx_ops; 3778 hp_flags |= MV_HP_GEN_I; 3779 3780 switch (pdev->revision) { 3781 case 0x1: 3782 hp_flags |= MV_HP_ERRATA_50XXB0; 3783 break; 3784 case 0x3: 3785 hp_flags |= MV_HP_ERRATA_50XXB2; 3786 break; 3787 default: 3788 dev_warn(&pdev->dev, 3789 "Applying 50XXB2 workarounds to unknown rev\n"); 3790 hp_flags |= MV_HP_ERRATA_50XXB2; 3791 break; 3792 } 3793 break; 3794 3795 case chip_504x: 3796 case chip_508x: 3797 hpriv->ops = &mv5xxx_ops; 3798 hp_flags |= MV_HP_GEN_I; 3799 3800 switch (pdev->revision) { 3801 case 0x0: 3802 hp_flags |= MV_HP_ERRATA_50XXB0; 3803 break; 3804 case 0x3: 3805 hp_flags |= MV_HP_ERRATA_50XXB2; 3806 break; 3807 default: 3808 dev_warn(&pdev->dev, 3809 "Applying B2 workarounds to unknown rev\n"); 3810 hp_flags |= MV_HP_ERRATA_50XXB2; 3811 break; 3812 } 3813 break; 3814 3815 case chip_604x: 3816 case chip_608x: 3817 hpriv->ops = &mv6xxx_ops; 3818 hp_flags |= MV_HP_GEN_II; 3819 3820 switch (pdev->revision) { 3821 case 0x7: 3822 mv_60x1b2_errata_pci7(host); 3823 hp_flags |= MV_HP_ERRATA_60X1B2; 3824 break; 3825 case 0x9: 3826 hp_flags |= MV_HP_ERRATA_60X1C0; 3827 break; 3828 default: 3829 dev_warn(&pdev->dev, 3830 "Applying B2 workarounds to unknown rev\n"); 3831 hp_flags |= MV_HP_ERRATA_60X1B2; 3832 break; 3833 } 3834 break; 3835 3836 case chip_7042: 3837 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3838 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3839 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3840 { 3841 /* 3842 * Highpoint RocketRAID PCIe 23xx series cards: 3843 * 3844 * Unconfigured drives are treated as "Legacy" 3845 * by the BIOS, and it overwrites sector 8 with 3846 * a "Lgcy" metadata block prior to Linux boot. 3847 * 3848 * Configured drives (RAID or JBOD) leave sector 8 3849 * alone, but instead overwrite a high numbered 3850 * sector for the RAID metadata. This sector can 3851 * be determined exactly, by truncating the physical 3852 * drive capacity to a nice even GB value. 3853 * 3854 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3855 * 3856 * Warn the user, lest they think we're just buggy. 3857 */ 3858 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3859 " BIOS CORRUPTS DATA on all attached drives," 3860 " regardless of if/how they are configured." 3861 " BEWARE!\n"); 3862 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3863 " use sectors 8-9 on \"Legacy\" drives," 3864 " and avoid the final two gigabytes on" 3865 " all RocketRAID BIOS initialized drives.\n"); 3866 } 3867 /* fall through */ 3868 case chip_6042: 3869 hpriv->ops = &mv6xxx_ops; 3870 hp_flags |= MV_HP_GEN_IIE; 3871 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3872 hp_flags |= MV_HP_CUT_THROUGH; 3873 3874 switch (pdev->revision) { 3875 case 0x2: /* Rev.B0: the first/only public release */ 3876 hp_flags |= MV_HP_ERRATA_60X1C0; 3877 break; 3878 default: 3879 dev_warn(&pdev->dev, 3880 "Applying 60X1C0 workarounds to unknown rev\n"); 3881 hp_flags |= MV_HP_ERRATA_60X1C0; 3882 break; 3883 } 3884 break; 3885 case chip_soc: 3886 if (soc_is_65n(hpriv)) 3887 hpriv->ops = &mv_soc_65n_ops; 3888 else 3889 hpriv->ops = &mv_soc_ops; 3890 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3891 MV_HP_ERRATA_60X1C0; 3892 break; 3893 3894 default: 3895 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3896 return 1; 3897 } 3898 3899 hpriv->hp_flags = hp_flags; 3900 if (hp_flags & MV_HP_PCIE) { 3901 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3902 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3903 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3904 } else { 3905 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3906 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3907 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3908 } 3909 3910 return 0; 3911 } 3912 3913 /** 3914 * mv_init_host - Perform some early initialization of the host. 3915 * @host: ATA host to initialize 3916 * 3917 * If possible, do an early global reset of the host. Then do 3918 * our port init and clear/unmask all/relevant host interrupts. 3919 * 3920 * LOCKING: 3921 * Inherited from caller. 3922 */ 3923 static int mv_init_host(struct ata_host *host) 3924 { 3925 int rc = 0, n_hc, port, hc; 3926 struct mv_host_priv *hpriv = host->private_data; 3927 void __iomem *mmio = hpriv->base; 3928 3929 rc = mv_chip_id(host, hpriv->board_idx); 3930 if (rc) 3931 goto done; 3932 3933 if (IS_SOC(hpriv)) { 3934 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3935 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3936 } else { 3937 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3938 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3939 } 3940 3941 /* initialize shadow irq mask with register's value */ 3942 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3943 3944 /* global interrupt mask: 0 == mask everything */ 3945 mv_set_main_irq_mask(host, ~0, 0); 3946 3947 n_hc = mv_get_hc_count(host->ports[0]->flags); 3948 3949 for (port = 0; port < host->n_ports; port++) 3950 if (hpriv->ops->read_preamp) 3951 hpriv->ops->read_preamp(hpriv, port, mmio); 3952 3953 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3954 if (rc) 3955 goto done; 3956 3957 hpriv->ops->reset_flash(hpriv, mmio); 3958 hpriv->ops->reset_bus(host, mmio); 3959 hpriv->ops->enable_leds(hpriv, mmio); 3960 3961 for (port = 0; port < host->n_ports; port++) { 3962 struct ata_port *ap = host->ports[port]; 3963 void __iomem *port_mmio = mv_port_base(mmio, port); 3964 3965 mv_port_init(&ap->ioaddr, port_mmio); 3966 } 3967 3968 for (hc = 0; hc < n_hc; hc++) { 3969 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3970 3971 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3972 "(before clear)=0x%08x\n", hc, 3973 readl(hc_mmio + HC_CFG), 3974 readl(hc_mmio + HC_IRQ_CAUSE)); 3975 3976 /* Clear any currently outstanding hc interrupt conditions */ 3977 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3978 } 3979 3980 if (!IS_SOC(hpriv)) { 3981 /* Clear any currently outstanding host interrupt conditions */ 3982 writelfl(0, mmio + hpriv->irq_cause_offset); 3983 3984 /* and unmask interrupt generation for host regs */ 3985 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3986 } 3987 3988 /* 3989 * enable only global host interrupts for now. 3990 * The per-port interrupts get done later as ports are set up. 3991 */ 3992 mv_set_main_irq_mask(host, 0, PCI_ERR); 3993 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3994 irq_coalescing_usecs); 3995 done: 3996 return rc; 3997 } 3998 3999 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 4000 { 4001 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 4002 MV_CRQB_Q_SZ, 0); 4003 if (!hpriv->crqb_pool) 4004 return -ENOMEM; 4005 4006 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 4007 MV_CRPB_Q_SZ, 0); 4008 if (!hpriv->crpb_pool) 4009 return -ENOMEM; 4010 4011 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 4012 MV_SG_TBL_SZ, 0); 4013 if (!hpriv->sg_tbl_pool) 4014 return -ENOMEM; 4015 4016 return 0; 4017 } 4018 4019 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 4020 const struct mbus_dram_target_info *dram) 4021 { 4022 int i; 4023 4024 for (i = 0; i < 4; i++) { 4025 writel(0, hpriv->base + WINDOW_CTRL(i)); 4026 writel(0, hpriv->base + WINDOW_BASE(i)); 4027 } 4028 4029 for (i = 0; i < dram->num_cs; i++) { 4030 const struct mbus_dram_window *cs = dram->cs + i; 4031 4032 writel(((cs->size - 1) & 0xffff0000) | 4033 (cs->mbus_attr << 8) | 4034 (dram->mbus_dram_target_id << 4) | 1, 4035 hpriv->base + WINDOW_CTRL(i)); 4036 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4037 } 4038 } 4039 4040 /** 4041 * mv_platform_probe - handle a positive probe of an soc Marvell 4042 * host 4043 * @pdev: platform device found 4044 * 4045 * LOCKING: 4046 * Inherited from caller. 4047 */ 4048 static int mv_platform_probe(struct platform_device *pdev) 4049 { 4050 const struct mv_sata_platform_data *mv_platform_data; 4051 const struct mbus_dram_target_info *dram; 4052 const struct ata_port_info *ppi[] = 4053 { &mv_port_info[chip_soc], NULL }; 4054 struct ata_host *host; 4055 struct mv_host_priv *hpriv; 4056 struct resource *res; 4057 int n_ports = 0, irq = 0; 4058 int rc; 4059 int port; 4060 4061 ata_print_version_once(&pdev->dev, DRV_VERSION); 4062 4063 /* 4064 * Simple resource validation .. 4065 */ 4066 if (unlikely(pdev->num_resources != 2)) { 4067 dev_err(&pdev->dev, "invalid number of resources\n"); 4068 return -EINVAL; 4069 } 4070 4071 /* 4072 * Get the register base first 4073 */ 4074 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4075 if (res == NULL) 4076 return -EINVAL; 4077 4078 /* allocate host */ 4079 if (pdev->dev.of_node) { 4080 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports", 4081 &n_ports); 4082 if (rc) { 4083 dev_err(&pdev->dev, 4084 "error parsing nr-ports property: %d\n", rc); 4085 return rc; 4086 } 4087 4088 if (n_ports <= 0) { 4089 dev_err(&pdev->dev, "nr-ports must be positive: %d\n", 4090 n_ports); 4091 return -EINVAL; 4092 } 4093 4094 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 4095 } else { 4096 mv_platform_data = dev_get_platdata(&pdev->dev); 4097 n_ports = mv_platform_data->n_ports; 4098 irq = platform_get_irq(pdev, 0); 4099 } 4100 4101 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4102 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4103 4104 if (!host || !hpriv) 4105 return -ENOMEM; 4106 hpriv->port_clks = devm_kcalloc(&pdev->dev, 4107 n_ports, sizeof(struct clk *), 4108 GFP_KERNEL); 4109 if (!hpriv->port_clks) 4110 return -ENOMEM; 4111 hpriv->port_phys = devm_kcalloc(&pdev->dev, 4112 n_ports, sizeof(struct phy *), 4113 GFP_KERNEL); 4114 if (!hpriv->port_phys) 4115 return -ENOMEM; 4116 host->private_data = hpriv; 4117 hpriv->board_idx = chip_soc; 4118 4119 host->iomap = NULL; 4120 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4121 resource_size(res)); 4122 if (!hpriv->base) 4123 return -ENOMEM; 4124 4125 hpriv->base -= SATAHC0_REG_BASE; 4126 4127 hpriv->clk = clk_get(&pdev->dev, NULL); 4128 if (IS_ERR(hpriv->clk)) 4129 dev_notice(&pdev->dev, "cannot get optional clkdev\n"); 4130 else 4131 clk_prepare_enable(hpriv->clk); 4132 4133 for (port = 0; port < n_ports; port++) { 4134 char port_number[16]; 4135 sprintf(port_number, "%d", port); 4136 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); 4137 if (!IS_ERR(hpriv->port_clks[port])) 4138 clk_prepare_enable(hpriv->port_clks[port]); 4139 4140 sprintf(port_number, "port%d", port); 4141 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev, 4142 port_number); 4143 if (IS_ERR(hpriv->port_phys[port])) { 4144 rc = PTR_ERR(hpriv->port_phys[port]); 4145 hpriv->port_phys[port] = NULL; 4146 if (rc != -EPROBE_DEFER) 4147 dev_warn(&pdev->dev, "error getting phy %d", rc); 4148 4149 /* Cleanup only the initialized ports */ 4150 hpriv->n_ports = port; 4151 goto err; 4152 } else 4153 phy_power_on(hpriv->port_phys[port]); 4154 } 4155 4156 /* All the ports have been initialized */ 4157 hpriv->n_ports = n_ports; 4158 4159 /* 4160 * (Re-)program MBUS remapping windows if we are asked to. 4161 */ 4162 dram = mv_mbus_dram_info(); 4163 if (dram) 4164 mv_conf_mbus_windows(hpriv, dram); 4165 4166 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4167 if (rc) 4168 goto err; 4169 4170 /* 4171 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be 4172 * updated in the LP_PHY_CTL register. 4173 */ 4174 if (pdev->dev.of_node && 4175 of_device_is_compatible(pdev->dev.of_node, 4176 "marvell,armada-370-sata")) 4177 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL; 4178 4179 /* initialize adapter */ 4180 rc = mv_init_host(host); 4181 if (rc) 4182 goto err; 4183 4184 dev_info(&pdev->dev, "slots %u ports %d\n", 4185 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4186 4187 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); 4188 if (!rc) 4189 return 0; 4190 4191 err: 4192 if (!IS_ERR(hpriv->clk)) { 4193 clk_disable_unprepare(hpriv->clk); 4194 clk_put(hpriv->clk); 4195 } 4196 for (port = 0; port < hpriv->n_ports; port++) { 4197 if (!IS_ERR(hpriv->port_clks[port])) { 4198 clk_disable_unprepare(hpriv->port_clks[port]); 4199 clk_put(hpriv->port_clks[port]); 4200 } 4201 phy_power_off(hpriv->port_phys[port]); 4202 } 4203 4204 return rc; 4205 } 4206 4207 /* 4208 * 4209 * mv_platform_remove - unplug a platform interface 4210 * @pdev: platform device 4211 * 4212 * A platform bus SATA device has been unplugged. Perform the needed 4213 * cleanup. Also called on module unload for any active devices. 4214 */ 4215 static int mv_platform_remove(struct platform_device *pdev) 4216 { 4217 struct ata_host *host = platform_get_drvdata(pdev); 4218 struct mv_host_priv *hpriv = host->private_data; 4219 int port; 4220 ata_host_detach(host); 4221 4222 if (!IS_ERR(hpriv->clk)) { 4223 clk_disable_unprepare(hpriv->clk); 4224 clk_put(hpriv->clk); 4225 } 4226 for (port = 0; port < host->n_ports; port++) { 4227 if (!IS_ERR(hpriv->port_clks[port])) { 4228 clk_disable_unprepare(hpriv->port_clks[port]); 4229 clk_put(hpriv->port_clks[port]); 4230 } 4231 phy_power_off(hpriv->port_phys[port]); 4232 } 4233 return 0; 4234 } 4235 4236 #ifdef CONFIG_PM_SLEEP 4237 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4238 { 4239 struct ata_host *host = platform_get_drvdata(pdev); 4240 if (host) 4241 return ata_host_suspend(host, state); 4242 else 4243 return 0; 4244 } 4245 4246 static int mv_platform_resume(struct platform_device *pdev) 4247 { 4248 struct ata_host *host = platform_get_drvdata(pdev); 4249 const struct mbus_dram_target_info *dram; 4250 int ret; 4251 4252 if (host) { 4253 struct mv_host_priv *hpriv = host->private_data; 4254 4255 /* 4256 * (Re-)program MBUS remapping windows if we are asked to. 4257 */ 4258 dram = mv_mbus_dram_info(); 4259 if (dram) 4260 mv_conf_mbus_windows(hpriv, dram); 4261 4262 /* initialize adapter */ 4263 ret = mv_init_host(host); 4264 if (ret) { 4265 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4266 return ret; 4267 } 4268 ata_host_resume(host); 4269 } 4270 4271 return 0; 4272 } 4273 #else 4274 #define mv_platform_suspend NULL 4275 #define mv_platform_resume NULL 4276 #endif 4277 4278 #ifdef CONFIG_OF 4279 static const struct of_device_id mv_sata_dt_ids[] = { 4280 { .compatible = "marvell,armada-370-sata", }, 4281 { .compatible = "marvell,orion-sata", }, 4282 {}, 4283 }; 4284 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); 4285 #endif 4286 4287 static struct platform_driver mv_platform_driver = { 4288 .probe = mv_platform_probe, 4289 .remove = mv_platform_remove, 4290 .suspend = mv_platform_suspend, 4291 .resume = mv_platform_resume, 4292 .driver = { 4293 .name = DRV_NAME, 4294 .of_match_table = of_match_ptr(mv_sata_dt_ids), 4295 }, 4296 }; 4297 4298 4299 #ifdef CONFIG_PCI 4300 static int mv_pci_init_one(struct pci_dev *pdev, 4301 const struct pci_device_id *ent); 4302 #ifdef CONFIG_PM_SLEEP 4303 static int mv_pci_device_resume(struct pci_dev *pdev); 4304 #endif 4305 4306 4307 static struct pci_driver mv_pci_driver = { 4308 .name = DRV_NAME, 4309 .id_table = mv_pci_tbl, 4310 .probe = mv_pci_init_one, 4311 .remove = ata_pci_remove_one, 4312 #ifdef CONFIG_PM_SLEEP 4313 .suspend = ata_pci_device_suspend, 4314 .resume = mv_pci_device_resume, 4315 #endif 4316 4317 }; 4318 4319 /** 4320 * mv_print_info - Dump key info to kernel log for perusal. 4321 * @host: ATA host to print info about 4322 * 4323 * FIXME: complete this. 4324 * 4325 * LOCKING: 4326 * Inherited from caller. 4327 */ 4328 static void mv_print_info(struct ata_host *host) 4329 { 4330 struct pci_dev *pdev = to_pci_dev(host->dev); 4331 struct mv_host_priv *hpriv = host->private_data; 4332 u8 scc; 4333 const char *scc_s, *gen; 4334 4335 /* Use this to determine the HW stepping of the chip so we know 4336 * what errata to workaround 4337 */ 4338 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4339 if (scc == 0) 4340 scc_s = "SCSI"; 4341 else if (scc == 0x01) 4342 scc_s = "RAID"; 4343 else 4344 scc_s = "?"; 4345 4346 if (IS_GEN_I(hpriv)) 4347 gen = "I"; 4348 else if (IS_GEN_II(hpriv)) 4349 gen = "II"; 4350 else if (IS_GEN_IIE(hpriv)) 4351 gen = "IIE"; 4352 else 4353 gen = "?"; 4354 4355 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4356 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4357 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4358 } 4359 4360 /** 4361 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4362 * @pdev: PCI device found 4363 * @ent: PCI device ID entry for the matched host 4364 * 4365 * LOCKING: 4366 * Inherited from caller. 4367 */ 4368 static int mv_pci_init_one(struct pci_dev *pdev, 4369 const struct pci_device_id *ent) 4370 { 4371 unsigned int board_idx = (unsigned int)ent->driver_data; 4372 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4373 struct ata_host *host; 4374 struct mv_host_priv *hpriv; 4375 int n_ports, port, rc; 4376 4377 ata_print_version_once(&pdev->dev, DRV_VERSION); 4378 4379 /* allocate host */ 4380 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4381 4382 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4383 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4384 if (!host || !hpriv) 4385 return -ENOMEM; 4386 host->private_data = hpriv; 4387 hpriv->n_ports = n_ports; 4388 hpriv->board_idx = board_idx; 4389 4390 /* acquire resources */ 4391 rc = pcim_enable_device(pdev); 4392 if (rc) 4393 return rc; 4394 4395 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4396 if (rc == -EBUSY) 4397 pcim_pin_device(pdev); 4398 if (rc) 4399 return rc; 4400 host->iomap = pcim_iomap_table(pdev); 4401 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4402 4403 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4404 if (rc) { 4405 dev_err(&pdev->dev, "DMA enable failed\n"); 4406 return rc; 4407 } 4408 4409 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4410 if (rc) 4411 return rc; 4412 4413 for (port = 0; port < host->n_ports; port++) { 4414 struct ata_port *ap = host->ports[port]; 4415 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4416 unsigned int offset = port_mmio - hpriv->base; 4417 4418 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4419 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4420 } 4421 4422 /* initialize adapter */ 4423 rc = mv_init_host(host); 4424 if (rc) 4425 return rc; 4426 4427 /* Enable message-switched interrupts, if requested */ 4428 if (msi && pci_enable_msi(pdev) == 0) 4429 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4430 4431 mv_dump_pci_cfg(pdev, 0x68); 4432 mv_print_info(host); 4433 4434 pci_set_master(pdev); 4435 pci_try_set_mwi(pdev); 4436 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4437 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4438 } 4439 4440 #ifdef CONFIG_PM_SLEEP 4441 static int mv_pci_device_resume(struct pci_dev *pdev) 4442 { 4443 struct ata_host *host = pci_get_drvdata(pdev); 4444 int rc; 4445 4446 rc = ata_pci_device_do_resume(pdev); 4447 if (rc) 4448 return rc; 4449 4450 /* initialize adapter */ 4451 rc = mv_init_host(host); 4452 if (rc) 4453 return rc; 4454 4455 ata_host_resume(host); 4456 4457 return 0; 4458 } 4459 #endif 4460 #endif 4461 4462 static int __init mv_init(void) 4463 { 4464 int rc = -ENODEV; 4465 #ifdef CONFIG_PCI 4466 rc = pci_register_driver(&mv_pci_driver); 4467 if (rc < 0) 4468 return rc; 4469 #endif 4470 rc = platform_driver_register(&mv_platform_driver); 4471 4472 #ifdef CONFIG_PCI 4473 if (rc < 0) 4474 pci_unregister_driver(&mv_pci_driver); 4475 #endif 4476 return rc; 4477 } 4478 4479 static void __exit mv_exit(void) 4480 { 4481 #ifdef CONFIG_PCI 4482 pci_unregister_driver(&mv_pci_driver); 4483 #endif 4484 platform_driver_unregister(&mv_platform_driver); 4485 } 4486 4487 MODULE_AUTHOR("Brett Russ"); 4488 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4489 MODULE_LICENSE("GPL v2"); 4490 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4491 MODULE_VERSION(DRV_VERSION); 4492 MODULE_ALIAS("platform:" DRV_NAME); 4493 4494 module_init(mv_init); 4495 module_exit(mv_exit); 4496