xref: /openbmc/linux/drivers/ata/sata_mv.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sata_mv.c - Marvell SATA support
4  *
5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6  * Copyright 2005: EMC Corporation, all rights reserved.
7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
8  *
9  * Originally written by Brett Russ.
10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11  *
12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13  */
14 
15 /*
16  * sata_mv TODO list:
17  *
18  * --> Develop a low-power-consumption strategy, and implement it.
19  *
20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21  *
22  * --> [Experiment, Marvell value added] Is it possible to use target
23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24  *       creating LibATA target mode support would be very interesting.
25  *
26  *       Target mode, for those without docs, is the ability to directly
27  *       connect two SATA ports.
28  */
29 
30 /*
31  * 80x1-B2 errata PCI#11:
32  *
33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
34  * should be careful to insert those cards only onto PCI-X bus #0,
35  * and only in device slots 0..7, not higher.  The chips may not
36  * work correctly otherwise  (note: this is a pretty rare condition).
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62 
63 #define DRV_NAME	"sata_mv"
64 #define DRV_VERSION	"1.28"
65 
66 /*
67  * module options
68  */
69 
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75 
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 		 "IRQ coalescing I/O count threshold (0..255)");
80 
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 		 "IRQ coalescing time threshold in usecs");
85 
86 enum {
87 	/* BAR's are enumerated in terms of pci_resource_start() terms */
88 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91 
92 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94 
95 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99 
100 	MV_PCI_REG_BASE		= 0,
101 
102 	/*
103 	 * Per-chip ("all ports") interrupt coalescing feature.
104 	 * This is only for GEN_II / GEN_IIE hardware.
105 	 *
106 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 	 */
109 	COAL_REG_BASE		= 0x18000,
110 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112 
113 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115 
116 	/*
117 	 * Registers for the (unused here) transaction coalescing feature:
118 	 */
119 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121 
122 	SATAHC0_REG_BASE	= 0x20000,
123 	FLASH_CTL		= 0x1046c,
124 	GPIO_PORT_CTL		= 0x104f0,
125 	RESET_CFG		= 0x180d8,
126 
127 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131 
132 	MV_MAX_Q_DEPTH		= 32,
133 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134 
135 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 	 * CRPB needs alignment on a 256B boundary. Size == 256B
137 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 	 */
139 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141 	MV_MAX_SG_CT		= 256,
142 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143 
144 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 	MV_PORT_HC_SHIFT	= 2,
146 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149 
150 	/* Host Flags */
151 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152 
153 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154 
155 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156 
157 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159 
160 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161 
162 	CRQB_FLAG_READ		= (1 << 0),
163 	CRQB_TAG_SHIFT		= 1,
164 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167 	CRQB_CMD_ADDR_SHIFT	= 8,
168 	CRQB_CMD_CS		= (0x2 << 11),
169 	CRQB_CMD_LAST		= (1 << 15),
170 
171 	CRPB_FLAG_STATUS_SHIFT	= 8,
172 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174 
175 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176 
177 	/* PCI interface registers */
178 
179 	MV_PCI_COMMAND		= 0xc00,
180 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182 
183 	PCI_MAIN_CMD_STS	= 0xd30,
184 	STOP_PCI_MASTER		= (1 << 2),
185 	PCI_MASTER_EMPTY	= (1 << 3),
186 	GLOB_SFT_RST		= (1 << 4),
187 
188 	MV_PCI_MODE		= 0xd00,
189 	MV_PCI_MODE_MASK	= 0x30,
190 
191 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192 	MV_PCI_DISC_TIMER	= 0xd04,
193 	MV_PCI_MSI_TRIGGER	= 0xc38,
194 	MV_PCI_SERR_MASK	= 0xc28,
195 	MV_PCI_XBAR_TMOUT	= 0x1d04,
196 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199 	MV_PCI_ERR_COMMAND	= 0x1d50,
200 
201 	PCI_IRQ_CAUSE		= 0x1d58,
202 	PCI_IRQ_MASK		= 0x1d5c,
203 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204 
205 	PCIE_IRQ_CAUSE		= 0x1900,
206 	PCIE_IRQ_MASK		= 0x1910,
207 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208 
209 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220 	PCI_ERR			= (1 << 18),
221 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226 	GPIO_INT		= (1 << 22),
227 	SELF_INT		= (1 << 23),
228 	TWSI_INT		= (1 << 24),
229 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232 
233 	/* SATAHC registers */
234 	HC_CFG			= 0x00,
235 
236 	HC_IRQ_CAUSE		= 0x14,
237 	DMA_IRQ			= (1 << 0),	/* shift by port # */
238 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239 	DEV_IRQ			= (1 << 8),	/* shift by port # */
240 
241 	/*
242 	 * Per-HC (Host-Controller) interrupt coalescing feature.
243 	 * This is present on all chip generations.
244 	 *
245 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 	 */
248 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250 
251 	SOC_LED_CTRL		= 0x2c,
252 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254 						/*  with dev activity LED */
255 
256 	/* Shadow block registers */
257 	SHD_BLK			= 0x100,
258 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259 
260 	/* SATA registers */
261 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262 	SATA_ACTIVE		= 0x350,
263 	FIS_IRQ_CAUSE		= 0x364,
264 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265 
266 	LTMODE			= 0x30c,	/* requires read-after-write */
267 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268 
269 	PHY_MODE2		= 0x330,
270 	PHY_MODE3		= 0x310,
271 
272 	PHY_MODE4		= 0x314,	/* requires read-after-write */
273 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277 
278 	SATA_IFCTL		= 0x344,
279 	SATA_TESTCTL		= 0x348,
280 	SATA_IFSTAT		= 0x34c,
281 	VENDOR_UNIQUE_FIS	= 0x35c,
282 
283 	FISCFG			= 0x360,
284 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286 
287 	PHY_MODE9_GEN2		= 0x398,
288 	PHY_MODE9_GEN1		= 0x39c,
289 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290 
291 	MV5_PHY_MODE		= 0x74,
292 	MV5_LTMODE		= 0x30,
293 	MV5_PHY_CTL		= 0x0C,
294 	SATA_IFCFG		= 0x050,
295 	LP_PHY_CTL		= 0x058,
296 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301 
302 	MV_M2_PREAMP_MASK	= 0x7e0,
303 
304 	/* Port registers */
305 	EDMA_CFG		= 0,
306 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313 
314 	EDMA_ERR_IRQ_CAUSE	= 0x8,
315 	EDMA_ERR_IRQ_MASK	= 0xc,
316 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330 
331 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336 
337 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338 
339 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345 
346 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347 
348 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349 	EDMA_ERR_OVERRUN_5	= (1 << 5),
350 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351 
352 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353 				  EDMA_ERR_LNK_CTRL_RX_1 |
354 				  EDMA_ERR_LNK_CTRL_RX_3 |
355 				  EDMA_ERR_LNK_CTRL_TX,
356 
357 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358 				  EDMA_ERR_PRD_PAR |
359 				  EDMA_ERR_DEV_DCON |
360 				  EDMA_ERR_DEV_CON |
361 				  EDMA_ERR_SERR |
362 				  EDMA_ERR_SELF_DIS |
363 				  EDMA_ERR_CRQB_PAR |
364 				  EDMA_ERR_CRPB_PAR |
365 				  EDMA_ERR_INTRL_PAR |
366 				  EDMA_ERR_IORDY |
367 				  EDMA_ERR_LNK_CTRL_RX_2 |
368 				  EDMA_ERR_LNK_DATA_RX |
369 				  EDMA_ERR_LNK_DATA_TX |
370 				  EDMA_ERR_TRANS_PROTO,
371 
372 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373 				  EDMA_ERR_PRD_PAR |
374 				  EDMA_ERR_DEV_DCON |
375 				  EDMA_ERR_DEV_CON |
376 				  EDMA_ERR_OVERRUN_5 |
377 				  EDMA_ERR_UNDERRUN_5 |
378 				  EDMA_ERR_SELF_DIS_5 |
379 				  EDMA_ERR_CRQB_PAR |
380 				  EDMA_ERR_CRPB_PAR |
381 				  EDMA_ERR_INTRL_PAR |
382 				  EDMA_ERR_IORDY,
383 
384 	EDMA_REQ_Q_BASE_HI	= 0x10,
385 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386 
387 	EDMA_REQ_Q_OUT_PTR	= 0x18,
388 	EDMA_REQ_Q_PTR_SHIFT	= 5,
389 
390 	EDMA_RSP_Q_BASE_HI	= 0x1c,
391 	EDMA_RSP_Q_IN_PTR	= 0x20,
392 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393 	EDMA_RSP_Q_PTR_SHIFT	= 3,
394 
395 	EDMA_CMD		= 0x28,		/* EDMA command register */
396 	EDMA_EN			= (1 << 0),	/* enable EDMA */
397 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399 
400 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403 
404 	EDMA_IORDY_TMOUT	= 0x34,
405 	EDMA_ARB_CFG		= 0x38,
406 
407 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409 
410 	BMDMA_CMD		= 0x224,	/* bmdma command register */
411 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414 
415 	/* Host private flags (hp_flags) */
416 	MV_HP_FLAG_MSI		= (1 << 0),
417 	MV_HP_ERRATA_50XXB0	= (1 << 1),
418 	MV_HP_ERRATA_50XXB2	= (1 << 2),
419 	MV_HP_ERRATA_60X1B2	= (1 << 3),
420 	MV_HP_ERRATA_60X1C0	= (1 << 4),
421 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429 
430 	/* Port private flags (pp_flags) */
431 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436 };
437 
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443 
444 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446 
447 enum {
448 	/* DMA boundary 0xffff is required by the s/g splitting
449 	 * we need on /length/ in mv_fill-sg().
450 	 */
451 	MV_DMA_BOUNDARY		= 0xffffU,
452 
453 	/* mask of register bits containing lower 32 bits
454 	 * of EDMA request queue DMA address
455 	 */
456 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457 
458 	/* ditto, for response queue */
459 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460 };
461 
462 enum chip_type {
463 	chip_504x,
464 	chip_508x,
465 	chip_5080,
466 	chip_604x,
467 	chip_608x,
468 	chip_6042,
469 	chip_7042,
470 	chip_soc,
471 };
472 
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 	__le32			sg_addr;
476 	__le32			sg_addr_hi;
477 	__le16			ctrl_flags;
478 	__le16			ata_cmd[11];
479 };
480 
481 struct mv_crqb_iie {
482 	__le32			addr;
483 	__le32			addr_hi;
484 	__le32			flags;
485 	__le32			len;
486 	__le32			ata_cmd[4];
487 };
488 
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 	__le16			id;
492 	__le16			flags;
493 	__le32			tmstmp;
494 };
495 
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 	__le32			addr;
499 	__le32			flags_size;
500 	__le32			addr_hi;
501 	__le32			reserved;
502 };
503 
504 /*
505  * We keep a local cache of a few frequently accessed port
506  * registers here, to avoid having to read them (very slow)
507  * when switching between EDMA and non-EDMA modes.
508  */
509 struct mv_cached_regs {
510 	u32			fiscfg;
511 	u32			ltmode;
512 	u32			haltcond;
513 	u32			unknown_rsvd;
514 };
515 
516 struct mv_port_priv {
517 	struct mv_crqb		*crqb;
518 	dma_addr_t		crqb_dma;
519 	struct mv_crpb		*crpb;
520 	dma_addr_t		crpb_dma;
521 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523 
524 	unsigned int		req_idx;
525 	unsigned int		resp_idx;
526 
527 	u32			pp_flags;
528 	struct mv_cached_regs	cached;
529 	unsigned int		delayed_eh_pmp_map;
530 };
531 
532 struct mv_port_signal {
533 	u32			amps;
534 	u32			pre;
535 };
536 
537 struct mv_host_priv {
538 	u32			hp_flags;
539 	unsigned int 		board_idx;
540 	u32			main_irq_mask;
541 	struct mv_port_signal	signal[8];
542 	const struct mv_hw_ops	*ops;
543 	int			n_ports;
544 	void __iomem		*base;
545 	void __iomem		*main_irq_cause_addr;
546 	void __iomem		*main_irq_mask_addr;
547 	u32			irq_cause_offset;
548 	u32			irq_mask_offset;
549 	u32			unmask_all_irqs;
550 
551 	/*
552 	 * Needed on some devices that require their clocks to be enabled.
553 	 * These are optional: if the platform device does not have any
554 	 * clocks, they won't be used.  Also, if the underlying hardware
555 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 	 * all the clock operations become no-ops (see clk.h).
557 	 */
558 	struct clk		*clk;
559 	struct clk              **port_clks;
560 	/*
561 	 * Some devices have a SATA PHY which can be enabled/disabled
562 	 * in order to save power. These are optional: if the platform
563 	 * devices does not have any phy, they won't be used.
564 	 */
565 	struct phy		**port_phys;
566 	/*
567 	 * These consistent DMA memory pools give us guaranteed
568 	 * alignment for hardware-accessed data structures,
569 	 * and less memory waste in accomplishing the alignment.
570 	 */
571 	struct dma_pool		*crqb_pool;
572 	struct dma_pool		*crpb_pool;
573 	struct dma_pool		*sg_tbl_pool;
574 };
575 
576 struct mv_hw_ops {
577 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 			   unsigned int port);
579 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 			   void __iomem *mmio);
582 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 			unsigned int n_hc);
584 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587 
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static void mv_qc_prep(struct ata_queued_cmd *qc);
596 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 			unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603 
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			   unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 			   void __iomem *mmio);
609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 			unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613 
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 			   unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 			   void __iomem *mmio);
619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 			unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 				      void __iomem *mmio);
626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 				  void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 				      void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 				  void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 			     unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639 
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 				unsigned long deadline);
643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
644 				unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 					struct mv_port_priv *pp);
648 
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8   mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656 
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658  * because we have to allow room for worst case splitting of
659  * PRDs for 64K boundaries in mv_fill_sg().
660  */
661 #ifdef CONFIG_PCI
662 static struct scsi_host_template mv5_sht = {
663 	ATA_BASE_SHT(DRV_NAME),
664 	.sg_tablesize		= MV_MAX_SG_CT / 2,
665 	.dma_boundary		= MV_DMA_BOUNDARY,
666 };
667 #endif
668 static struct scsi_host_template mv6_sht = {
669 	ATA_NCQ_SHT(DRV_NAME),
670 	.can_queue		= MV_MAX_Q_DEPTH - 1,
671 	.sg_tablesize		= MV_MAX_SG_CT / 2,
672 	.dma_boundary		= MV_DMA_BOUNDARY,
673 };
674 
675 static struct ata_port_operations mv5_ops = {
676 	.inherits		= &ata_sff_port_ops,
677 
678 	.lost_interrupt		= ATA_OP_NULL,
679 
680 	.qc_defer		= mv_qc_defer,
681 	.qc_prep		= mv_qc_prep,
682 	.qc_issue		= mv_qc_issue,
683 
684 	.freeze			= mv_eh_freeze,
685 	.thaw			= mv_eh_thaw,
686 	.hardreset		= mv_hardreset,
687 
688 	.scr_read		= mv5_scr_read,
689 	.scr_write		= mv5_scr_write,
690 
691 	.port_start		= mv_port_start,
692 	.port_stop		= mv_port_stop,
693 };
694 
695 static struct ata_port_operations mv6_ops = {
696 	.inherits		= &ata_bmdma_port_ops,
697 
698 	.lost_interrupt		= ATA_OP_NULL,
699 
700 	.qc_defer		= mv_qc_defer,
701 	.qc_prep		= mv_qc_prep,
702 	.qc_issue		= mv_qc_issue,
703 
704 	.dev_config             = mv6_dev_config,
705 
706 	.freeze			= mv_eh_freeze,
707 	.thaw			= mv_eh_thaw,
708 	.hardreset		= mv_hardreset,
709 	.softreset		= mv_softreset,
710 	.pmp_hardreset		= mv_pmp_hardreset,
711 	.pmp_softreset		= mv_softreset,
712 	.error_handler		= mv_pmp_error_handler,
713 
714 	.scr_read		= mv_scr_read,
715 	.scr_write		= mv_scr_write,
716 
717 	.sff_check_status	= mv_sff_check_status,
718 	.sff_irq_clear		= mv_sff_irq_clear,
719 	.check_atapi_dma	= mv_check_atapi_dma,
720 	.bmdma_setup		= mv_bmdma_setup,
721 	.bmdma_start		= mv_bmdma_start,
722 	.bmdma_stop		= mv_bmdma_stop,
723 	.bmdma_status		= mv_bmdma_status,
724 
725 	.port_start		= mv_port_start,
726 	.port_stop		= mv_port_stop,
727 };
728 
729 static struct ata_port_operations mv_iie_ops = {
730 	.inherits		= &mv6_ops,
731 	.dev_config		= ATA_OP_NULL,
732 	.qc_prep		= mv_qc_prep_iie,
733 };
734 
735 static const struct ata_port_info mv_port_info[] = {
736 	{  /* chip_504x */
737 		.flags		= MV_GEN_I_FLAGS,
738 		.pio_mask	= ATA_PIO4,
739 		.udma_mask	= ATA_UDMA6,
740 		.port_ops	= &mv5_ops,
741 	},
742 	{  /* chip_508x */
743 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744 		.pio_mask	= ATA_PIO4,
745 		.udma_mask	= ATA_UDMA6,
746 		.port_ops	= &mv5_ops,
747 	},
748 	{  /* chip_5080 */
749 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
750 		.pio_mask	= ATA_PIO4,
751 		.udma_mask	= ATA_UDMA6,
752 		.port_ops	= &mv5_ops,
753 	},
754 	{  /* chip_604x */
755 		.flags		= MV_GEN_II_FLAGS,
756 		.pio_mask	= ATA_PIO4,
757 		.udma_mask	= ATA_UDMA6,
758 		.port_ops	= &mv6_ops,
759 	},
760 	{  /* chip_608x */
761 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
762 		.pio_mask	= ATA_PIO4,
763 		.udma_mask	= ATA_UDMA6,
764 		.port_ops	= &mv6_ops,
765 	},
766 	{  /* chip_6042 */
767 		.flags		= MV_GEN_IIE_FLAGS,
768 		.pio_mask	= ATA_PIO4,
769 		.udma_mask	= ATA_UDMA6,
770 		.port_ops	= &mv_iie_ops,
771 	},
772 	{  /* chip_7042 */
773 		.flags		= MV_GEN_IIE_FLAGS,
774 		.pio_mask	= ATA_PIO4,
775 		.udma_mask	= ATA_UDMA6,
776 		.port_ops	= &mv_iie_ops,
777 	},
778 	{  /* chip_soc */
779 		.flags		= MV_GEN_IIE_FLAGS,
780 		.pio_mask	= ATA_PIO4,
781 		.udma_mask	= ATA_UDMA6,
782 		.port_ops	= &mv_iie_ops,
783 	},
784 };
785 
786 static const struct pci_device_id mv_pci_tbl[] = {
787 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
788 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
789 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
790 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
791 	/* RocketRAID 1720/174x have different identifiers */
792 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
793 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
794 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
795 
796 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
797 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
798 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
799 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
800 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
801 
802 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
803 
804 	/* Adaptec 1430SA */
805 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
806 
807 	/* Marvell 7042 support */
808 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
809 
810 	/* Highpoint RocketRAID PCIe series */
811 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
812 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
813 
814 	{ }			/* terminate list */
815 };
816 
817 static const struct mv_hw_ops mv5xxx_ops = {
818 	.phy_errata		= mv5_phy_errata,
819 	.enable_leds		= mv5_enable_leds,
820 	.read_preamp		= mv5_read_preamp,
821 	.reset_hc		= mv5_reset_hc,
822 	.reset_flash		= mv5_reset_flash,
823 	.reset_bus		= mv5_reset_bus,
824 };
825 
826 static const struct mv_hw_ops mv6xxx_ops = {
827 	.phy_errata		= mv6_phy_errata,
828 	.enable_leds		= mv6_enable_leds,
829 	.read_preamp		= mv6_read_preamp,
830 	.reset_hc		= mv6_reset_hc,
831 	.reset_flash		= mv6_reset_flash,
832 	.reset_bus		= mv_reset_pci_bus,
833 };
834 
835 static const struct mv_hw_ops mv_soc_ops = {
836 	.phy_errata		= mv6_phy_errata,
837 	.enable_leds		= mv_soc_enable_leds,
838 	.read_preamp		= mv_soc_read_preamp,
839 	.reset_hc		= mv_soc_reset_hc,
840 	.reset_flash		= mv_soc_reset_flash,
841 	.reset_bus		= mv_soc_reset_bus,
842 };
843 
844 static const struct mv_hw_ops mv_soc_65n_ops = {
845 	.phy_errata		= mv_soc_65n_phy_errata,
846 	.enable_leds		= mv_soc_enable_leds,
847 	.reset_hc		= mv_soc_reset_hc,
848 	.reset_flash		= mv_soc_reset_flash,
849 	.reset_bus		= mv_soc_reset_bus,
850 };
851 
852 /*
853  * Functions
854  */
855 
856 static inline void writelfl(unsigned long data, void __iomem *addr)
857 {
858 	writel(data, addr);
859 	(void) readl(addr);	/* flush to avoid PCI posted write */
860 }
861 
862 static inline unsigned int mv_hc_from_port(unsigned int port)
863 {
864 	return port >> MV_PORT_HC_SHIFT;
865 }
866 
867 static inline unsigned int mv_hardport_from_port(unsigned int port)
868 {
869 	return port & MV_PORT_MASK;
870 }
871 
872 /*
873  * Consolidate some rather tricky bit shift calculations.
874  * This is hot-path stuff, so not a function.
875  * Simple code, with two return values, so macro rather than inline.
876  *
877  * port is the sole input, in range 0..7.
878  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
879  * hardport is the other output, in range 0..3.
880  *
881  * Note that port and hardport may be the same variable in some cases.
882  */
883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
884 {								\
885 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
886 	hardport = mv_hardport_from_port(port);			\
887 	shift   += hardport * 2;				\
888 }
889 
890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
891 {
892 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
893 }
894 
895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
896 						 unsigned int port)
897 {
898 	return mv_hc_base(base, mv_hc_from_port(port));
899 }
900 
901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
902 {
903 	return  mv_hc_base_from_port(base, port) +
904 		MV_SATAHC_ARBTR_REG_SZ +
905 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
906 }
907 
908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
909 {
910 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
911 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
912 
913 	return hc_mmio + ofs;
914 }
915 
916 static inline void __iomem *mv_host_base(struct ata_host *host)
917 {
918 	struct mv_host_priv *hpriv = host->private_data;
919 	return hpriv->base;
920 }
921 
922 static inline void __iomem *mv_ap_base(struct ata_port *ap)
923 {
924 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
925 }
926 
927 static inline int mv_get_hc_count(unsigned long port_flags)
928 {
929 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
930 }
931 
932 /**
933  *      mv_save_cached_regs - (re-)initialize cached port registers
934  *      @ap: the port whose registers we are caching
935  *
936  *	Initialize the local cache of port registers,
937  *	so that reading them over and over again can
938  *	be avoided on the hotter paths of this driver.
939  *	This saves a few microseconds each time we switch
940  *	to/from EDMA mode to perform (eg.) a drive cache flush.
941  */
942 static void mv_save_cached_regs(struct ata_port *ap)
943 {
944 	void __iomem *port_mmio = mv_ap_base(ap);
945 	struct mv_port_priv *pp = ap->private_data;
946 
947 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
948 	pp->cached.ltmode = readl(port_mmio + LTMODE);
949 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
950 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
951 }
952 
953 /**
954  *      mv_write_cached_reg - write to a cached port register
955  *      @addr: hardware address of the register
956  *      @old: pointer to cached value of the register
957  *      @new: new value for the register
958  *
959  *	Write a new value to a cached register,
960  *	but only if the value is different from before.
961  */
962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
963 {
964 	if (new != *old) {
965 		unsigned long laddr;
966 		*old = new;
967 		/*
968 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
969 		 * Read-after-write is needed to prevent generating 64-bit
970 		 * write cycles on the PCI bus for SATA interface registers
971 		 * at offsets ending in 0x4 or 0xc.
972 		 *
973 		 * Looks like a lot of fuss, but it avoids an unnecessary
974 		 * +1 usec read-after-write delay for unaffected registers.
975 		 */
976 		laddr = (unsigned long)addr & 0xffff;
977 		if (laddr >= 0x300 && laddr <= 0x33c) {
978 			laddr &= 0x000f;
979 			if (laddr == 0x4 || laddr == 0xc) {
980 				writelfl(new, addr); /* read after write */
981 				return;
982 			}
983 		}
984 		writel(new, addr); /* unaffected by the errata */
985 	}
986 }
987 
988 static void mv_set_edma_ptrs(void __iomem *port_mmio,
989 			     struct mv_host_priv *hpriv,
990 			     struct mv_port_priv *pp)
991 {
992 	u32 index;
993 
994 	/*
995 	 * initialize request queue
996 	 */
997 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
998 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
999 
1000 	WARN_ON(pp->crqb_dma & 0x3ff);
1001 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1002 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1003 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1004 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1005 
1006 	/*
1007 	 * initialize response queue
1008 	 */
1009 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1010 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1011 
1012 	WARN_ON(pp->crpb_dma & 0xff);
1013 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1014 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1015 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1016 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1017 }
1018 
1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1020 {
1021 	/*
1022 	 * When writing to the main_irq_mask in hardware,
1023 	 * we must ensure exclusivity between the interrupt coalescing bits
1024 	 * and the corresponding individual port DONE_IRQ bits.
1025 	 *
1026 	 * Note that this register is really an "IRQ enable" register,
1027 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1028 	 */
1029 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1030 		mask &= ~DONE_IRQ_0_3;
1031 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1032 		mask &= ~DONE_IRQ_4_7;
1033 	writelfl(mask, hpriv->main_irq_mask_addr);
1034 }
1035 
1036 static void mv_set_main_irq_mask(struct ata_host *host,
1037 				 u32 disable_bits, u32 enable_bits)
1038 {
1039 	struct mv_host_priv *hpriv = host->private_data;
1040 	u32 old_mask, new_mask;
1041 
1042 	old_mask = hpriv->main_irq_mask;
1043 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1044 	if (new_mask != old_mask) {
1045 		hpriv->main_irq_mask = new_mask;
1046 		mv_write_main_irq_mask(new_mask, hpriv);
1047 	}
1048 }
1049 
1050 static void mv_enable_port_irqs(struct ata_port *ap,
1051 				     unsigned int port_bits)
1052 {
1053 	unsigned int shift, hardport, port = ap->port_no;
1054 	u32 disable_bits, enable_bits;
1055 
1056 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1057 
1058 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1059 	enable_bits  = port_bits << shift;
1060 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1061 }
1062 
1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1064 					  void __iomem *port_mmio,
1065 					  unsigned int port_irqs)
1066 {
1067 	struct mv_host_priv *hpriv = ap->host->private_data;
1068 	int hardport = mv_hardport_from_port(ap->port_no);
1069 	void __iomem *hc_mmio = mv_hc_base_from_port(
1070 				mv_host_base(ap->host), ap->port_no);
1071 	u32 hc_irq_cause;
1072 
1073 	/* clear EDMA event indicators, if any */
1074 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1075 
1076 	/* clear pending irq events */
1077 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1078 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1079 
1080 	/* clear FIS IRQ Cause */
1081 	if (IS_GEN_IIE(hpriv))
1082 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1083 
1084 	mv_enable_port_irqs(ap, port_irqs);
1085 }
1086 
1087 static void mv_set_irq_coalescing(struct ata_host *host,
1088 				  unsigned int count, unsigned int usecs)
1089 {
1090 	struct mv_host_priv *hpriv = host->private_data;
1091 	void __iomem *mmio = hpriv->base, *hc_mmio;
1092 	u32 coal_enable = 0;
1093 	unsigned long flags;
1094 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1095 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1096 							ALL_PORTS_COAL_DONE;
1097 
1098 	/* Disable IRQ coalescing if either threshold is zero */
1099 	if (!usecs || !count) {
1100 		clks = count = 0;
1101 	} else {
1102 		/* Respect maximum limits of the hardware */
1103 		clks = usecs * COAL_CLOCKS_PER_USEC;
1104 		if (clks > MAX_COAL_TIME_THRESHOLD)
1105 			clks = MAX_COAL_TIME_THRESHOLD;
1106 		if (count > MAX_COAL_IO_COUNT)
1107 			count = MAX_COAL_IO_COUNT;
1108 	}
1109 
1110 	spin_lock_irqsave(&host->lock, flags);
1111 	mv_set_main_irq_mask(host, coal_disable, 0);
1112 
1113 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1114 		/*
1115 		 * GEN_II/GEN_IIE with dual host controllers:
1116 		 * one set of global thresholds for the entire chip.
1117 		 */
1118 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1119 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1120 		/* clear leftover coal IRQ bit */
1121 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1122 		if (count)
1123 			coal_enable = ALL_PORTS_COAL_DONE;
1124 		clks = count = 0; /* force clearing of regular regs below */
1125 	}
1126 
1127 	/*
1128 	 * All chips: independent thresholds for each HC on the chip.
1129 	 */
1130 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1131 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1132 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1133 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1134 	if (count)
1135 		coal_enable |= PORTS_0_3_COAL_DONE;
1136 	if (is_dual_hc) {
1137 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1138 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1139 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1140 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1141 		if (count)
1142 			coal_enable |= PORTS_4_7_COAL_DONE;
1143 	}
1144 
1145 	mv_set_main_irq_mask(host, 0, coal_enable);
1146 	spin_unlock_irqrestore(&host->lock, flags);
1147 }
1148 
1149 /**
1150  *      mv_start_edma - Enable eDMA engine
1151  *      @base: port base address
1152  *      @pp: port private data
1153  *
1154  *      Verify the local cache of the eDMA state is accurate with a
1155  *      WARN_ON.
1156  *
1157  *      LOCKING:
1158  *      Inherited from caller.
1159  */
1160 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1161 			 struct mv_port_priv *pp, u8 protocol)
1162 {
1163 	int want_ncq = (protocol == ATA_PROT_NCQ);
1164 
1165 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1166 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1167 		if (want_ncq != using_ncq)
1168 			mv_stop_edma(ap);
1169 	}
1170 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1171 		struct mv_host_priv *hpriv = ap->host->private_data;
1172 
1173 		mv_edma_cfg(ap, want_ncq, 1);
1174 
1175 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1176 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1177 
1178 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1179 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1180 	}
1181 }
1182 
1183 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1184 {
1185 	void __iomem *port_mmio = mv_ap_base(ap);
1186 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1187 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1188 	int i;
1189 
1190 	/*
1191 	 * Wait for the EDMA engine to finish transactions in progress.
1192 	 * No idea what a good "timeout" value might be, but measurements
1193 	 * indicate that it often requires hundreds of microseconds
1194 	 * with two drives in-use.  So we use the 15msec value above
1195 	 * as a rough guess at what even more drives might require.
1196 	 */
1197 	for (i = 0; i < timeout; ++i) {
1198 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1199 		if ((edma_stat & empty_idle) == empty_idle)
1200 			break;
1201 		udelay(per_loop);
1202 	}
1203 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1204 }
1205 
1206 /**
1207  *      mv_stop_edma_engine - Disable eDMA engine
1208  *      @port_mmio: io base address
1209  *
1210  *      LOCKING:
1211  *      Inherited from caller.
1212  */
1213 static int mv_stop_edma_engine(void __iomem *port_mmio)
1214 {
1215 	int i;
1216 
1217 	/* Disable eDMA.  The disable bit auto clears. */
1218 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1219 
1220 	/* Wait for the chip to confirm eDMA is off. */
1221 	for (i = 10000; i > 0; i--) {
1222 		u32 reg = readl(port_mmio + EDMA_CMD);
1223 		if (!(reg & EDMA_EN))
1224 			return 0;
1225 		udelay(10);
1226 	}
1227 	return -EIO;
1228 }
1229 
1230 static int mv_stop_edma(struct ata_port *ap)
1231 {
1232 	void __iomem *port_mmio = mv_ap_base(ap);
1233 	struct mv_port_priv *pp = ap->private_data;
1234 	int err = 0;
1235 
1236 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1237 		return 0;
1238 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1239 	mv_wait_for_edma_empty_idle(ap);
1240 	if (mv_stop_edma_engine(port_mmio)) {
1241 		ata_port_err(ap, "Unable to stop eDMA\n");
1242 		err = -EIO;
1243 	}
1244 	mv_edma_cfg(ap, 0, 0);
1245 	return err;
1246 }
1247 
1248 #ifdef ATA_DEBUG
1249 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1250 {
1251 	int b, w;
1252 	for (b = 0; b < bytes; ) {
1253 		DPRINTK("%p: ", start + b);
1254 		for (w = 0; b < bytes && w < 4; w++) {
1255 			printk("%08x ", readl(start + b));
1256 			b += sizeof(u32);
1257 		}
1258 		printk("\n");
1259 	}
1260 }
1261 #endif
1262 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1263 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1264 {
1265 #ifdef ATA_DEBUG
1266 	int b, w;
1267 	u32 dw;
1268 	for (b = 0; b < bytes; ) {
1269 		DPRINTK("%02x: ", b);
1270 		for (w = 0; b < bytes && w < 4; w++) {
1271 			(void) pci_read_config_dword(pdev, b, &dw);
1272 			printk("%08x ", dw);
1273 			b += sizeof(u32);
1274 		}
1275 		printk("\n");
1276 	}
1277 #endif
1278 }
1279 #endif
1280 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1281 			     struct pci_dev *pdev)
1282 {
1283 #ifdef ATA_DEBUG
1284 	void __iomem *hc_base = mv_hc_base(mmio_base,
1285 					   port >> MV_PORT_HC_SHIFT);
1286 	void __iomem *port_base;
1287 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1288 
1289 	if (0 > port) {
1290 		start_hc = start_port = 0;
1291 		num_ports = 8;		/* shld be benign for 4 port devs */
1292 		num_hcs = 2;
1293 	} else {
1294 		start_hc = port >> MV_PORT_HC_SHIFT;
1295 		start_port = port;
1296 		num_ports = num_hcs = 1;
1297 	}
1298 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1299 		num_ports > 1 ? num_ports - 1 : start_port);
1300 
1301 	if (NULL != pdev) {
1302 		DPRINTK("PCI config space regs:\n");
1303 		mv_dump_pci_cfg(pdev, 0x68);
1304 	}
1305 	DPRINTK("PCI regs:\n");
1306 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1307 	mv_dump_mem(mmio_base+0xd00, 0x34);
1308 	mv_dump_mem(mmio_base+0xf00, 0x4);
1309 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1310 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1311 		hc_base = mv_hc_base(mmio_base, hc);
1312 		DPRINTK("HC regs (HC %i):\n", hc);
1313 		mv_dump_mem(hc_base, 0x1c);
1314 	}
1315 	for (p = start_port; p < start_port + num_ports; p++) {
1316 		port_base = mv_port_base(mmio_base, p);
1317 		DPRINTK("EDMA regs (port %i):\n", p);
1318 		mv_dump_mem(port_base, 0x54);
1319 		DPRINTK("SATA regs (port %i):\n", p);
1320 		mv_dump_mem(port_base+0x300, 0x60);
1321 	}
1322 #endif
1323 }
1324 
1325 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1326 {
1327 	unsigned int ofs;
1328 
1329 	switch (sc_reg_in) {
1330 	case SCR_STATUS:
1331 	case SCR_CONTROL:
1332 	case SCR_ERROR:
1333 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1334 		break;
1335 	case SCR_ACTIVE:
1336 		ofs = SATA_ACTIVE;   /* active is not with the others */
1337 		break;
1338 	default:
1339 		ofs = 0xffffffffU;
1340 		break;
1341 	}
1342 	return ofs;
1343 }
1344 
1345 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1346 {
1347 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1348 
1349 	if (ofs != 0xffffffffU) {
1350 		*val = readl(mv_ap_base(link->ap) + ofs);
1351 		return 0;
1352 	} else
1353 		return -EINVAL;
1354 }
1355 
1356 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1357 {
1358 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1359 
1360 	if (ofs != 0xffffffffU) {
1361 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1362 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1363 		if (sc_reg_in == SCR_CONTROL) {
1364 			/*
1365 			 * Workaround for 88SX60x1 FEr SATA#26:
1366 			 *
1367 			 * COMRESETs have to take care not to accidentally
1368 			 * put the drive to sleep when writing SCR_CONTROL.
1369 			 * Setting bits 12..15 prevents this problem.
1370 			 *
1371 			 * So if we see an outbound COMMRESET, set those bits.
1372 			 * Ditto for the followup write that clears the reset.
1373 			 *
1374 			 * The proprietary driver does this for
1375 			 * all chip versions, and so do we.
1376 			 */
1377 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1378 				val |= 0xf000;
1379 
1380 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1381 				void __iomem *lp_phy_addr =
1382 					mv_ap_base(link->ap) + LP_PHY_CTL;
1383 				/*
1384 				 * Set PHY speed according to SControl speed.
1385 				 */
1386 				u32 lp_phy_val =
1387 					LP_PHY_CTL_PIN_PU_PLL |
1388 					LP_PHY_CTL_PIN_PU_RX  |
1389 					LP_PHY_CTL_PIN_PU_TX;
1390 
1391 				if ((val & 0xf0) != 0x10)
1392 					lp_phy_val |=
1393 						LP_PHY_CTL_GEN_TX_3G |
1394 						LP_PHY_CTL_GEN_RX_3G;
1395 
1396 				writelfl(lp_phy_val, lp_phy_addr);
1397 			}
1398 		}
1399 		writelfl(val, addr);
1400 		return 0;
1401 	} else
1402 		return -EINVAL;
1403 }
1404 
1405 static void mv6_dev_config(struct ata_device *adev)
1406 {
1407 	/*
1408 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1409 	 *
1410 	 * Gen-II does not support NCQ over a port multiplier
1411 	 *  (no FIS-based switching).
1412 	 */
1413 	if (adev->flags & ATA_DFLAG_NCQ) {
1414 		if (sata_pmp_attached(adev->link->ap)) {
1415 			adev->flags &= ~ATA_DFLAG_NCQ;
1416 			ata_dev_info(adev,
1417 				"NCQ disabled for command-based switching\n");
1418 		}
1419 	}
1420 }
1421 
1422 static int mv_qc_defer(struct ata_queued_cmd *qc)
1423 {
1424 	struct ata_link *link = qc->dev->link;
1425 	struct ata_port *ap = link->ap;
1426 	struct mv_port_priv *pp = ap->private_data;
1427 
1428 	/*
1429 	 * Don't allow new commands if we're in a delayed EH state
1430 	 * for NCQ and/or FIS-based switching.
1431 	 */
1432 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1433 		return ATA_DEFER_PORT;
1434 
1435 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1436 	 * can run concurrently.
1437 	 * set excl_link when we want to send a PIO command in DMA mode
1438 	 * or a non-NCQ command in NCQ mode.
1439 	 * When we receive a command from that link, and there are no
1440 	 * outstanding commands, mark a flag to clear excl_link and let
1441 	 * the command go through.
1442 	 */
1443 	if (unlikely(ap->excl_link)) {
1444 		if (link == ap->excl_link) {
1445 			if (ap->nr_active_links)
1446 				return ATA_DEFER_PORT;
1447 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1448 			return 0;
1449 		} else
1450 			return ATA_DEFER_PORT;
1451 	}
1452 
1453 	/*
1454 	 * If the port is completely idle, then allow the new qc.
1455 	 */
1456 	if (ap->nr_active_links == 0)
1457 		return 0;
1458 
1459 	/*
1460 	 * The port is operating in host queuing mode (EDMA) with NCQ
1461 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1462 	 * queueing multiple DMA commands but libata core currently
1463 	 * doesn't allow it.
1464 	 */
1465 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1466 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1467 		if (ata_is_ncq(qc->tf.protocol))
1468 			return 0;
1469 		else {
1470 			ap->excl_link = link;
1471 			return ATA_DEFER_PORT;
1472 		}
1473 	}
1474 
1475 	return ATA_DEFER_PORT;
1476 }
1477 
1478 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1479 {
1480 	struct mv_port_priv *pp = ap->private_data;
1481 	void __iomem *port_mmio;
1482 
1483 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1484 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1485 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1486 
1487 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1488 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1489 
1490 	if (want_fbs) {
1491 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1492 		ltmode = *old_ltmode | LTMODE_BIT8;
1493 		if (want_ncq)
1494 			haltcond &= ~EDMA_ERR_DEV;
1495 		else
1496 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1497 	} else {
1498 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1499 	}
1500 
1501 	port_mmio = mv_ap_base(ap);
1502 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1503 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1504 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1505 }
1506 
1507 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1508 {
1509 	struct mv_host_priv *hpriv = ap->host->private_data;
1510 	u32 old, new;
1511 
1512 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1513 	old = readl(hpriv->base + GPIO_PORT_CTL);
1514 	if (want_ncq)
1515 		new = old | (1 << 22);
1516 	else
1517 		new = old & ~(1 << 22);
1518 	if (new != old)
1519 		writel(new, hpriv->base + GPIO_PORT_CTL);
1520 }
1521 
1522 /**
1523  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1524  *	@ap: Port being initialized
1525  *
1526  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1527  *
1528  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1529  *	of basic DMA on the GEN_IIE versions of the chips.
1530  *
1531  *	This bit survives EDMA resets, and must be set for basic DMA
1532  *	to function, and should be cleared when EDMA is active.
1533  */
1534 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1535 {
1536 	struct mv_port_priv *pp = ap->private_data;
1537 	u32 new, *old = &pp->cached.unknown_rsvd;
1538 
1539 	if (enable_bmdma)
1540 		new = *old | 1;
1541 	else
1542 		new = *old & ~1;
1543 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1544 }
1545 
1546 /*
1547  * SOC chips have an issue whereby the HDD LEDs don't always blink
1548  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1549  * of the SOC takes care of it, generating a steady blink rate when
1550  * any drive on the chip is active.
1551  *
1552  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1553  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1554  *
1555  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1556  * LED operation works then, and provides better (more accurate) feedback.
1557  *
1558  * Note that this code assumes that an SOC never has more than one HC onboard.
1559  */
1560 static void mv_soc_led_blink_enable(struct ata_port *ap)
1561 {
1562 	struct ata_host *host = ap->host;
1563 	struct mv_host_priv *hpriv = host->private_data;
1564 	void __iomem *hc_mmio;
1565 	u32 led_ctrl;
1566 
1567 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1568 		return;
1569 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1570 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1573 }
1574 
1575 static void mv_soc_led_blink_disable(struct ata_port *ap)
1576 {
1577 	struct ata_host *host = ap->host;
1578 	struct mv_host_priv *hpriv = host->private_data;
1579 	void __iomem *hc_mmio;
1580 	u32 led_ctrl;
1581 	unsigned int port;
1582 
1583 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1584 		return;
1585 
1586 	/* disable led-blink only if no ports are using NCQ */
1587 	for (port = 0; port < hpriv->n_ports; port++) {
1588 		struct ata_port *this_ap = host->ports[port];
1589 		struct mv_port_priv *pp = this_ap->private_data;
1590 
1591 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1592 			return;
1593 	}
1594 
1595 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1596 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1597 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1598 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1599 }
1600 
1601 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1602 {
1603 	u32 cfg;
1604 	struct mv_port_priv *pp    = ap->private_data;
1605 	struct mv_host_priv *hpriv = ap->host->private_data;
1606 	void __iomem *port_mmio    = mv_ap_base(ap);
1607 
1608 	/* set up non-NCQ EDMA configuration */
1609 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1610 	pp->pp_flags &=
1611 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1612 
1613 	if (IS_GEN_I(hpriv))
1614 		cfg |= (1 << 8);	/* enab config burst size mask */
1615 
1616 	else if (IS_GEN_II(hpriv)) {
1617 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1618 		mv_60x1_errata_sata25(ap, want_ncq);
1619 
1620 	} else if (IS_GEN_IIE(hpriv)) {
1621 		int want_fbs = sata_pmp_attached(ap);
1622 		/*
1623 		 * Possible future enhancement:
1624 		 *
1625 		 * The chip can use FBS with non-NCQ, if we allow it,
1626 		 * But first we need to have the error handling in place
1627 		 * for this mode (datasheet section 7.3.15.4.2.3).
1628 		 * So disallow non-NCQ FBS for now.
1629 		 */
1630 		want_fbs &= want_ncq;
1631 
1632 		mv_config_fbs(ap, want_ncq, want_fbs);
1633 
1634 		if (want_fbs) {
1635 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1636 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1637 		}
1638 
1639 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1640 		if (want_edma) {
1641 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1642 			if (!IS_SOC(hpriv))
1643 				cfg |= (1 << 18); /* enab early completion */
1644 		}
1645 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1646 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1647 		mv_bmdma_enable_iie(ap, !want_edma);
1648 
1649 		if (IS_SOC(hpriv)) {
1650 			if (want_ncq)
1651 				mv_soc_led_blink_enable(ap);
1652 			else
1653 				mv_soc_led_blink_disable(ap);
1654 		}
1655 	}
1656 
1657 	if (want_ncq) {
1658 		cfg |= EDMA_CFG_NCQ;
1659 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1660 	}
1661 
1662 	writelfl(cfg, port_mmio + EDMA_CFG);
1663 }
1664 
1665 static void mv_port_free_dma_mem(struct ata_port *ap)
1666 {
1667 	struct mv_host_priv *hpriv = ap->host->private_data;
1668 	struct mv_port_priv *pp = ap->private_data;
1669 	int tag;
1670 
1671 	if (pp->crqb) {
1672 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1673 		pp->crqb = NULL;
1674 	}
1675 	if (pp->crpb) {
1676 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1677 		pp->crpb = NULL;
1678 	}
1679 	/*
1680 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1681 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1682 	 */
1683 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1684 		if (pp->sg_tbl[tag]) {
1685 			if (tag == 0 || !IS_GEN_I(hpriv))
1686 				dma_pool_free(hpriv->sg_tbl_pool,
1687 					      pp->sg_tbl[tag],
1688 					      pp->sg_tbl_dma[tag]);
1689 			pp->sg_tbl[tag] = NULL;
1690 		}
1691 	}
1692 }
1693 
1694 /**
1695  *      mv_port_start - Port specific init/start routine.
1696  *      @ap: ATA channel to manipulate
1697  *
1698  *      Allocate and point to DMA memory, init port private memory,
1699  *      zero indices.
1700  *
1701  *      LOCKING:
1702  *      Inherited from caller.
1703  */
1704 static int mv_port_start(struct ata_port *ap)
1705 {
1706 	struct device *dev = ap->host->dev;
1707 	struct mv_host_priv *hpriv = ap->host->private_data;
1708 	struct mv_port_priv *pp;
1709 	unsigned long flags;
1710 	int tag;
1711 
1712 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1713 	if (!pp)
1714 		return -ENOMEM;
1715 	ap->private_data = pp;
1716 
1717 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1718 	if (!pp->crqb)
1719 		return -ENOMEM;
1720 
1721 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1722 	if (!pp->crpb)
1723 		goto out_port_free_dma_mem;
1724 
1725 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1726 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1727 		ap->flags |= ATA_FLAG_AN;
1728 	/*
1729 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1730 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1731 	 */
1732 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1733 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1734 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1735 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1736 			if (!pp->sg_tbl[tag])
1737 				goto out_port_free_dma_mem;
1738 		} else {
1739 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1740 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1741 		}
1742 	}
1743 
1744 	spin_lock_irqsave(ap->lock, flags);
1745 	mv_save_cached_regs(ap);
1746 	mv_edma_cfg(ap, 0, 0);
1747 	spin_unlock_irqrestore(ap->lock, flags);
1748 
1749 	return 0;
1750 
1751 out_port_free_dma_mem:
1752 	mv_port_free_dma_mem(ap);
1753 	return -ENOMEM;
1754 }
1755 
1756 /**
1757  *      mv_port_stop - Port specific cleanup/stop routine.
1758  *      @ap: ATA channel to manipulate
1759  *
1760  *      Stop DMA, cleanup port memory.
1761  *
1762  *      LOCKING:
1763  *      This routine uses the host lock to protect the DMA stop.
1764  */
1765 static void mv_port_stop(struct ata_port *ap)
1766 {
1767 	unsigned long flags;
1768 
1769 	spin_lock_irqsave(ap->lock, flags);
1770 	mv_stop_edma(ap);
1771 	mv_enable_port_irqs(ap, 0);
1772 	spin_unlock_irqrestore(ap->lock, flags);
1773 	mv_port_free_dma_mem(ap);
1774 }
1775 
1776 /**
1777  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1778  *      @qc: queued command whose SG list to source from
1779  *
1780  *      Populate the SG list and mark the last entry.
1781  *
1782  *      LOCKING:
1783  *      Inherited from caller.
1784  */
1785 static void mv_fill_sg(struct ata_queued_cmd *qc)
1786 {
1787 	struct mv_port_priv *pp = qc->ap->private_data;
1788 	struct scatterlist *sg;
1789 	struct mv_sg *mv_sg, *last_sg = NULL;
1790 	unsigned int si;
1791 
1792 	mv_sg = pp->sg_tbl[qc->hw_tag];
1793 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1794 		dma_addr_t addr = sg_dma_address(sg);
1795 		u32 sg_len = sg_dma_len(sg);
1796 
1797 		while (sg_len) {
1798 			u32 offset = addr & 0xffff;
1799 			u32 len = sg_len;
1800 
1801 			if (offset + len > 0x10000)
1802 				len = 0x10000 - offset;
1803 
1804 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1805 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1806 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1807 			mv_sg->reserved = 0;
1808 
1809 			sg_len -= len;
1810 			addr += len;
1811 
1812 			last_sg = mv_sg;
1813 			mv_sg++;
1814 		}
1815 	}
1816 
1817 	if (likely(last_sg))
1818 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1819 	mb(); /* ensure data structure is visible to the chipset */
1820 }
1821 
1822 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1823 {
1824 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1825 		(last ? CRQB_CMD_LAST : 0);
1826 	*cmdw = cpu_to_le16(tmp);
1827 }
1828 
1829 /**
1830  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1831  *	@ap: Port associated with this ATA transaction.
1832  *
1833  *	We need this only for ATAPI bmdma transactions,
1834  *	as otherwise we experience spurious interrupts
1835  *	after libata-sff handles the bmdma interrupts.
1836  */
1837 static void mv_sff_irq_clear(struct ata_port *ap)
1838 {
1839 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1840 }
1841 
1842 /**
1843  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1844  *	@qc: queued command to check for chipset/DMA compatibility.
1845  *
1846  *	The bmdma engines cannot handle speculative data sizes
1847  *	(bytecount under/over flow).  So only allow DMA for
1848  *	data transfer commands with known data sizes.
1849  *
1850  *	LOCKING:
1851  *	Inherited from caller.
1852  */
1853 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1854 {
1855 	struct scsi_cmnd *scmd = qc->scsicmd;
1856 
1857 	if (scmd) {
1858 		switch (scmd->cmnd[0]) {
1859 		case READ_6:
1860 		case READ_10:
1861 		case READ_12:
1862 		case WRITE_6:
1863 		case WRITE_10:
1864 		case WRITE_12:
1865 		case GPCMD_READ_CD:
1866 		case GPCMD_SEND_DVD_STRUCTURE:
1867 		case GPCMD_SEND_CUE_SHEET:
1868 			return 0; /* DMA is safe */
1869 		}
1870 	}
1871 	return -EOPNOTSUPP; /* use PIO instead */
1872 }
1873 
1874 /**
1875  *	mv_bmdma_setup - Set up BMDMA transaction
1876  *	@qc: queued command to prepare DMA for.
1877  *
1878  *	LOCKING:
1879  *	Inherited from caller.
1880  */
1881 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1882 {
1883 	struct ata_port *ap = qc->ap;
1884 	void __iomem *port_mmio = mv_ap_base(ap);
1885 	struct mv_port_priv *pp = ap->private_data;
1886 
1887 	mv_fill_sg(qc);
1888 
1889 	/* clear all DMA cmd bits */
1890 	writel(0, port_mmio + BMDMA_CMD);
1891 
1892 	/* load PRD table addr. */
1893 	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1894 		port_mmio + BMDMA_PRD_HIGH);
1895 	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1896 		port_mmio + BMDMA_PRD_LOW);
1897 
1898 	/* issue r/w command */
1899 	ap->ops->sff_exec_command(ap, &qc->tf);
1900 }
1901 
1902 /**
1903  *	mv_bmdma_start - Start a BMDMA transaction
1904  *	@qc: queued command to start DMA on.
1905  *
1906  *	LOCKING:
1907  *	Inherited from caller.
1908  */
1909 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1910 {
1911 	struct ata_port *ap = qc->ap;
1912 	void __iomem *port_mmio = mv_ap_base(ap);
1913 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1914 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1915 
1916 	/* start host DMA transaction */
1917 	writelfl(cmd, port_mmio + BMDMA_CMD);
1918 }
1919 
1920 /**
1921  *	mv_bmdma_stop - Stop BMDMA transfer
1922  *	@qc: queued command to stop DMA on.
1923  *
1924  *	Clears the ATA_DMA_START flag in the bmdma control register
1925  *
1926  *	LOCKING:
1927  *	Inherited from caller.
1928  */
1929 static void mv_bmdma_stop_ap(struct ata_port *ap)
1930 {
1931 	void __iomem *port_mmio = mv_ap_base(ap);
1932 	u32 cmd;
1933 
1934 	/* clear start/stop bit */
1935 	cmd = readl(port_mmio + BMDMA_CMD);
1936 	if (cmd & ATA_DMA_START) {
1937 		cmd &= ~ATA_DMA_START;
1938 		writelfl(cmd, port_mmio + BMDMA_CMD);
1939 
1940 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1941 		ata_sff_dma_pause(ap);
1942 	}
1943 }
1944 
1945 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1946 {
1947 	mv_bmdma_stop_ap(qc->ap);
1948 }
1949 
1950 /**
1951  *	mv_bmdma_status - Read BMDMA status
1952  *	@ap: port for which to retrieve DMA status.
1953  *
1954  *	Read and return equivalent of the sff BMDMA status register.
1955  *
1956  *	LOCKING:
1957  *	Inherited from caller.
1958  */
1959 static u8 mv_bmdma_status(struct ata_port *ap)
1960 {
1961 	void __iomem *port_mmio = mv_ap_base(ap);
1962 	u32 reg, status;
1963 
1964 	/*
1965 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1966 	 * and the ATA_DMA_INTR bit doesn't exist.
1967 	 */
1968 	reg = readl(port_mmio + BMDMA_STATUS);
1969 	if (reg & ATA_DMA_ACTIVE)
1970 		status = ATA_DMA_ACTIVE;
1971 	else if (reg & ATA_DMA_ERR)
1972 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1973 	else {
1974 		/*
1975 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1976 		 * this does _not_ mean the device is "done".
1977 		 * So we should not yet be signalling ATA_DMA_INTR
1978 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1979 		 */
1980 		mv_bmdma_stop_ap(ap);
1981 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1982 			status = 0;
1983 		else
1984 			status = ATA_DMA_INTR;
1985 	}
1986 	return status;
1987 }
1988 
1989 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1990 {
1991 	struct ata_taskfile *tf = &qc->tf;
1992 	/*
1993 	 * Workaround for 88SX60x1 FEr SATA#24.
1994 	 *
1995 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1996 	 * Note that READs are unaffected.
1997 	 *
1998 	 * It's not clear if this errata really means "4K bytes",
1999 	 * or if it always happens for multi_count > 7
2000 	 * regardless of device sector_size.
2001 	 *
2002 	 * So, for safety, any write with multi_count > 7
2003 	 * gets converted here into a regular PIO write instead:
2004 	 */
2005 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2006 		if (qc->dev->multi_count > 7) {
2007 			switch (tf->command) {
2008 			case ATA_CMD_WRITE_MULTI:
2009 				tf->command = ATA_CMD_PIO_WRITE;
2010 				break;
2011 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2012 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2013 				/* fall through */
2014 			case ATA_CMD_WRITE_MULTI_EXT:
2015 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2016 				break;
2017 			}
2018 		}
2019 	}
2020 }
2021 
2022 /**
2023  *      mv_qc_prep - Host specific command preparation.
2024  *      @qc: queued command to prepare
2025  *
2026  *      This routine simply redirects to the general purpose routine
2027  *      if command is not DMA.  Else, it handles prep of the CRQB
2028  *      (command request block), does some sanity checking, and calls
2029  *      the SG load routine.
2030  *
2031  *      LOCKING:
2032  *      Inherited from caller.
2033  */
2034 static void mv_qc_prep(struct ata_queued_cmd *qc)
2035 {
2036 	struct ata_port *ap = qc->ap;
2037 	struct mv_port_priv *pp = ap->private_data;
2038 	__le16 *cw;
2039 	struct ata_taskfile *tf = &qc->tf;
2040 	u16 flags = 0;
2041 	unsigned in_index;
2042 
2043 	switch (tf->protocol) {
2044 	case ATA_PROT_DMA:
2045 		if (tf->command == ATA_CMD_DSM)
2046 			return;
2047 		/* fall-thru */
2048 	case ATA_PROT_NCQ:
2049 		break;	/* continue below */
2050 	case ATA_PROT_PIO:
2051 		mv_rw_multi_errata_sata24(qc);
2052 		return;
2053 	default:
2054 		return;
2055 	}
2056 
2057 	/* Fill in command request block
2058 	 */
2059 	if (!(tf->flags & ATA_TFLAG_WRITE))
2060 		flags |= CRQB_FLAG_READ;
2061 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2062 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2063 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2064 
2065 	/* get current queue index from software */
2066 	in_index = pp->req_idx;
2067 
2068 	pp->crqb[in_index].sg_addr =
2069 		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2070 	pp->crqb[in_index].sg_addr_hi =
2071 		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2072 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2073 
2074 	cw = &pp->crqb[in_index].ata_cmd[0];
2075 
2076 	/* Sadly, the CRQB cannot accommodate all registers--there are
2077 	 * only 11 bytes...so we must pick and choose required
2078 	 * registers based on the command.  So, we drop feature and
2079 	 * hob_feature for [RW] DMA commands, but they are needed for
2080 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2081 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2082 	 */
2083 	switch (tf->command) {
2084 	case ATA_CMD_READ:
2085 	case ATA_CMD_READ_EXT:
2086 	case ATA_CMD_WRITE:
2087 	case ATA_CMD_WRITE_EXT:
2088 	case ATA_CMD_WRITE_FUA_EXT:
2089 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2090 		break;
2091 	case ATA_CMD_FPDMA_READ:
2092 	case ATA_CMD_FPDMA_WRITE:
2093 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2094 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2095 		break;
2096 	default:
2097 		/* The only other commands EDMA supports in non-queued and
2098 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2099 		 * of which are defined/used by Linux.  If we get here, this
2100 		 * driver needs work.
2101 		 *
2102 		 * FIXME: modify libata to give qc_prep a return value and
2103 		 * return error here.
2104 		 */
2105 		BUG_ON(tf->command);
2106 		break;
2107 	}
2108 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2109 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2110 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2111 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2112 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2113 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2114 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2115 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2116 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2117 
2118 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2119 		return;
2120 	mv_fill_sg(qc);
2121 }
2122 
2123 /**
2124  *      mv_qc_prep_iie - Host specific command preparation.
2125  *      @qc: queued command to prepare
2126  *
2127  *      This routine simply redirects to the general purpose routine
2128  *      if command is not DMA.  Else, it handles prep of the CRQB
2129  *      (command request block), does some sanity checking, and calls
2130  *      the SG load routine.
2131  *
2132  *      LOCKING:
2133  *      Inherited from caller.
2134  */
2135 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2136 {
2137 	struct ata_port *ap = qc->ap;
2138 	struct mv_port_priv *pp = ap->private_data;
2139 	struct mv_crqb_iie *crqb;
2140 	struct ata_taskfile *tf = &qc->tf;
2141 	unsigned in_index;
2142 	u32 flags = 0;
2143 
2144 	if ((tf->protocol != ATA_PROT_DMA) &&
2145 	    (tf->protocol != ATA_PROT_NCQ))
2146 		return;
2147 	if (tf->command == ATA_CMD_DSM)
2148 		return;  /* use bmdma for this */
2149 
2150 	/* Fill in Gen IIE command request block */
2151 	if (!(tf->flags & ATA_TFLAG_WRITE))
2152 		flags |= CRQB_FLAG_READ;
2153 
2154 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2155 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2156 	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2157 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2158 
2159 	/* get current queue index from software */
2160 	in_index = pp->req_idx;
2161 
2162 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2163 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2164 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2165 	crqb->flags = cpu_to_le32(flags);
2166 
2167 	crqb->ata_cmd[0] = cpu_to_le32(
2168 			(tf->command << 16) |
2169 			(tf->feature << 24)
2170 		);
2171 	crqb->ata_cmd[1] = cpu_to_le32(
2172 			(tf->lbal << 0) |
2173 			(tf->lbam << 8) |
2174 			(tf->lbah << 16) |
2175 			(tf->device << 24)
2176 		);
2177 	crqb->ata_cmd[2] = cpu_to_le32(
2178 			(tf->hob_lbal << 0) |
2179 			(tf->hob_lbam << 8) |
2180 			(tf->hob_lbah << 16) |
2181 			(tf->hob_feature << 24)
2182 		);
2183 	crqb->ata_cmd[3] = cpu_to_le32(
2184 			(tf->nsect << 0) |
2185 			(tf->hob_nsect << 8)
2186 		);
2187 
2188 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2189 		return;
2190 	mv_fill_sg(qc);
2191 }
2192 
2193 /**
2194  *	mv_sff_check_status - fetch device status, if valid
2195  *	@ap: ATA port to fetch status from
2196  *
2197  *	When using command issue via mv_qc_issue_fis(),
2198  *	the initial ATA_BUSY state does not show up in the
2199  *	ATA status (shadow) register.  This can confuse libata!
2200  *
2201  *	So we have a hook here to fake ATA_BUSY for that situation,
2202  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2203  *
2204  *	The rest of the time, it simply returns the ATA status register.
2205  */
2206 static u8 mv_sff_check_status(struct ata_port *ap)
2207 {
2208 	u8 stat = ioread8(ap->ioaddr.status_addr);
2209 	struct mv_port_priv *pp = ap->private_data;
2210 
2211 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2212 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2213 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2214 		else
2215 			stat = ATA_BUSY;
2216 	}
2217 	return stat;
2218 }
2219 
2220 /**
2221  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2222  *	@fis: fis to be sent
2223  *	@nwords: number of 32-bit words in the fis
2224  */
2225 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2226 {
2227 	void __iomem *port_mmio = mv_ap_base(ap);
2228 	u32 ifctl, old_ifctl, ifstat;
2229 	int i, timeout = 200, final_word = nwords - 1;
2230 
2231 	/* Initiate FIS transmission mode */
2232 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2233 	ifctl = 0x100 | (old_ifctl & 0xf);
2234 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2235 
2236 	/* Send all words of the FIS except for the final word */
2237 	for (i = 0; i < final_word; ++i)
2238 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2239 
2240 	/* Flag end-of-transmission, and then send the final word */
2241 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2242 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2243 
2244 	/*
2245 	 * Wait for FIS transmission to complete.
2246 	 * This typically takes just a single iteration.
2247 	 */
2248 	do {
2249 		ifstat = readl(port_mmio + SATA_IFSTAT);
2250 	} while (!(ifstat & 0x1000) && --timeout);
2251 
2252 	/* Restore original port configuration */
2253 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2254 
2255 	/* See if it worked */
2256 	if ((ifstat & 0x3000) != 0x1000) {
2257 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2258 			      __func__, ifstat);
2259 		return AC_ERR_OTHER;
2260 	}
2261 	return 0;
2262 }
2263 
2264 /**
2265  *	mv_qc_issue_fis - Issue a command directly as a FIS
2266  *	@qc: queued command to start
2267  *
2268  *	Note that the ATA shadow registers are not updated
2269  *	after command issue, so the device will appear "READY"
2270  *	if polled, even while it is BUSY processing the command.
2271  *
2272  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2273  *
2274  *	Note: we don't get updated shadow regs on *completion*
2275  *	of non-data commands. So avoid sending them via this function,
2276  *	as they will appear to have completed immediately.
2277  *
2278  *	GEN_IIE has special registers that we could get the result tf from,
2279  *	but earlier chipsets do not.  For now, we ignore those registers.
2280  */
2281 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2282 {
2283 	struct ata_port *ap = qc->ap;
2284 	struct mv_port_priv *pp = ap->private_data;
2285 	struct ata_link *link = qc->dev->link;
2286 	u32 fis[5];
2287 	int err = 0;
2288 
2289 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2290 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2291 	if (err)
2292 		return err;
2293 
2294 	switch (qc->tf.protocol) {
2295 	case ATAPI_PROT_PIO:
2296 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2297 		/* fall through */
2298 	case ATAPI_PROT_NODATA:
2299 		ap->hsm_task_state = HSM_ST_FIRST;
2300 		break;
2301 	case ATA_PROT_PIO:
2302 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2303 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2304 			ap->hsm_task_state = HSM_ST_FIRST;
2305 		else
2306 			ap->hsm_task_state = HSM_ST;
2307 		break;
2308 	default:
2309 		ap->hsm_task_state = HSM_ST_LAST;
2310 		break;
2311 	}
2312 
2313 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2314 		ata_sff_queue_pio_task(link, 0);
2315 	return 0;
2316 }
2317 
2318 /**
2319  *      mv_qc_issue - Initiate a command to the host
2320  *      @qc: queued command to start
2321  *
2322  *      This routine simply redirects to the general purpose routine
2323  *      if command is not DMA.  Else, it sanity checks our local
2324  *      caches of the request producer/consumer indices then enables
2325  *      DMA and bumps the request producer index.
2326  *
2327  *      LOCKING:
2328  *      Inherited from caller.
2329  */
2330 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2331 {
2332 	static int limit_warnings = 10;
2333 	struct ata_port *ap = qc->ap;
2334 	void __iomem *port_mmio = mv_ap_base(ap);
2335 	struct mv_port_priv *pp = ap->private_data;
2336 	u32 in_index;
2337 	unsigned int port_irqs;
2338 
2339 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2340 
2341 	switch (qc->tf.protocol) {
2342 	case ATA_PROT_DMA:
2343 		if (qc->tf.command == ATA_CMD_DSM) {
2344 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2345 				return AC_ERR_OTHER;
2346 			break;  /* use bmdma for this */
2347 		}
2348 		/* fall thru */
2349 	case ATA_PROT_NCQ:
2350 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2351 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2352 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2353 
2354 		/* Write the request in pointer to kick the EDMA to life */
2355 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2356 					port_mmio + EDMA_REQ_Q_IN_PTR);
2357 		return 0;
2358 
2359 	case ATA_PROT_PIO:
2360 		/*
2361 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2362 		 *
2363 		 * Someday, we might implement special polling workarounds
2364 		 * for these, but it all seems rather unnecessary since we
2365 		 * normally use only DMA for commands which transfer more
2366 		 * than a single block of data.
2367 		 *
2368 		 * Much of the time, this could just work regardless.
2369 		 * So for now, just log the incident, and allow the attempt.
2370 		 */
2371 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2372 			--limit_warnings;
2373 			ata_link_warn(qc->dev->link, DRV_NAME
2374 				      ": attempting PIO w/multiple DRQ: "
2375 				      "this may fail due to h/w errata\n");
2376 		}
2377 		/* fall through */
2378 	case ATA_PROT_NODATA:
2379 	case ATAPI_PROT_PIO:
2380 	case ATAPI_PROT_NODATA:
2381 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2382 			qc->tf.flags |= ATA_TFLAG_POLLING;
2383 		break;
2384 	}
2385 
2386 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2387 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2388 	else
2389 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2390 
2391 	/*
2392 	 * We're about to send a non-EDMA capable command to the
2393 	 * port.  Turn off EDMA so there won't be problems accessing
2394 	 * shadow block, etc registers.
2395 	 */
2396 	mv_stop_edma(ap);
2397 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2398 	mv_pmp_select(ap, qc->dev->link->pmp);
2399 
2400 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2401 		struct mv_host_priv *hpriv = ap->host->private_data;
2402 		/*
2403 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2404 		 *
2405 		 * After any NCQ error, the READ_LOG_EXT command
2406 		 * from libata-eh *must* use mv_qc_issue_fis().
2407 		 * Otherwise it might fail, due to chip errata.
2408 		 *
2409 		 * Rather than special-case it, we'll just *always*
2410 		 * use this method here for READ_LOG_EXT, making for
2411 		 * easier testing.
2412 		 */
2413 		if (IS_GEN_II(hpriv))
2414 			return mv_qc_issue_fis(qc);
2415 	}
2416 	return ata_bmdma_qc_issue(qc);
2417 }
2418 
2419 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2420 {
2421 	struct mv_port_priv *pp = ap->private_data;
2422 	struct ata_queued_cmd *qc;
2423 
2424 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2425 		return NULL;
2426 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2427 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2428 		return qc;
2429 	return NULL;
2430 }
2431 
2432 static void mv_pmp_error_handler(struct ata_port *ap)
2433 {
2434 	unsigned int pmp, pmp_map;
2435 	struct mv_port_priv *pp = ap->private_data;
2436 
2437 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2438 		/*
2439 		 * Perform NCQ error analysis on failed PMPs
2440 		 * before we freeze the port entirely.
2441 		 *
2442 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2443 		 */
2444 		pmp_map = pp->delayed_eh_pmp_map;
2445 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2446 		for (pmp = 0; pmp_map != 0; pmp++) {
2447 			unsigned int this_pmp = (1 << pmp);
2448 			if (pmp_map & this_pmp) {
2449 				struct ata_link *link = &ap->pmp_link[pmp];
2450 				pmp_map &= ~this_pmp;
2451 				ata_eh_analyze_ncq_error(link);
2452 			}
2453 		}
2454 		ata_port_freeze(ap);
2455 	}
2456 	sata_pmp_error_handler(ap);
2457 }
2458 
2459 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2460 {
2461 	void __iomem *port_mmio = mv_ap_base(ap);
2462 
2463 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2464 }
2465 
2466 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2467 {
2468 	unsigned int pmp;
2469 
2470 	/*
2471 	 * Initialize EH info for PMPs which saw device errors
2472 	 */
2473 	for (pmp = 0; pmp_map != 0; pmp++) {
2474 		unsigned int this_pmp = (1 << pmp);
2475 		if (pmp_map & this_pmp) {
2476 			struct ata_link *link = &ap->pmp_link[pmp];
2477 			struct ata_eh_info *ehi = &link->eh_info;
2478 
2479 			pmp_map &= ~this_pmp;
2480 			ata_ehi_clear_desc(ehi);
2481 			ata_ehi_push_desc(ehi, "dev err");
2482 			ehi->err_mask |= AC_ERR_DEV;
2483 			ehi->action |= ATA_EH_RESET;
2484 			ata_link_abort(link);
2485 		}
2486 	}
2487 }
2488 
2489 static int mv_req_q_empty(struct ata_port *ap)
2490 {
2491 	void __iomem *port_mmio = mv_ap_base(ap);
2492 	u32 in_ptr, out_ptr;
2493 
2494 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2495 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2496 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2497 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2498 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2499 }
2500 
2501 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2502 {
2503 	struct mv_port_priv *pp = ap->private_data;
2504 	int failed_links;
2505 	unsigned int old_map, new_map;
2506 
2507 	/*
2508 	 * Device error during FBS+NCQ operation:
2509 	 *
2510 	 * Set a port flag to prevent further I/O being enqueued.
2511 	 * Leave the EDMA running to drain outstanding commands from this port.
2512 	 * Perform the post-mortem/EH only when all responses are complete.
2513 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2514 	 */
2515 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2516 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2517 		pp->delayed_eh_pmp_map = 0;
2518 	}
2519 	old_map = pp->delayed_eh_pmp_map;
2520 	new_map = old_map | mv_get_err_pmp_map(ap);
2521 
2522 	if (old_map != new_map) {
2523 		pp->delayed_eh_pmp_map = new_map;
2524 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2525 	}
2526 	failed_links = hweight16(new_map);
2527 
2528 	ata_port_info(ap,
2529 		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2530 		      __func__, pp->delayed_eh_pmp_map,
2531 		      ap->qc_active, failed_links,
2532 		      ap->nr_active_links);
2533 
2534 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2535 		mv_process_crpb_entries(ap, pp);
2536 		mv_stop_edma(ap);
2537 		mv_eh_freeze(ap);
2538 		ata_port_info(ap, "%s: done\n", __func__);
2539 		return 1;	/* handled */
2540 	}
2541 	ata_port_info(ap, "%s: waiting\n", __func__);
2542 	return 1;	/* handled */
2543 }
2544 
2545 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2546 {
2547 	/*
2548 	 * Possible future enhancement:
2549 	 *
2550 	 * FBS+non-NCQ operation is not yet implemented.
2551 	 * See related notes in mv_edma_cfg().
2552 	 *
2553 	 * Device error during FBS+non-NCQ operation:
2554 	 *
2555 	 * We need to snapshot the shadow registers for each failed command.
2556 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2557 	 */
2558 	return 0;	/* not handled */
2559 }
2560 
2561 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2562 {
2563 	struct mv_port_priv *pp = ap->private_data;
2564 
2565 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2566 		return 0;	/* EDMA was not active: not handled */
2567 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2568 		return 0;	/* FBS was not active: not handled */
2569 
2570 	if (!(edma_err_cause & EDMA_ERR_DEV))
2571 		return 0;	/* non DEV error: not handled */
2572 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2573 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2574 		return 0;	/* other problems: not handled */
2575 
2576 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2577 		/*
2578 		 * EDMA should NOT have self-disabled for this case.
2579 		 * If it did, then something is wrong elsewhere,
2580 		 * and we cannot handle it here.
2581 		 */
2582 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2583 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2584 				      __func__, edma_err_cause, pp->pp_flags);
2585 			return 0; /* not handled */
2586 		}
2587 		return mv_handle_fbs_ncq_dev_err(ap);
2588 	} else {
2589 		/*
2590 		 * EDMA should have self-disabled for this case.
2591 		 * If it did not, then something is wrong elsewhere,
2592 		 * and we cannot handle it here.
2593 		 */
2594 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2595 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2596 				      __func__, edma_err_cause, pp->pp_flags);
2597 			return 0; /* not handled */
2598 		}
2599 		return mv_handle_fbs_non_ncq_dev_err(ap);
2600 	}
2601 	return 0;	/* not handled */
2602 }
2603 
2604 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2605 {
2606 	struct ata_eh_info *ehi = &ap->link.eh_info;
2607 	char *when = "idle";
2608 
2609 	ata_ehi_clear_desc(ehi);
2610 	if (edma_was_enabled) {
2611 		when = "EDMA enabled";
2612 	} else {
2613 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2614 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2615 			when = "polling";
2616 	}
2617 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2618 	ehi->err_mask |= AC_ERR_OTHER;
2619 	ehi->action   |= ATA_EH_RESET;
2620 	ata_port_freeze(ap);
2621 }
2622 
2623 /**
2624  *      mv_err_intr - Handle error interrupts on the port
2625  *      @ap: ATA channel to manipulate
2626  *
2627  *      Most cases require a full reset of the chip's state machine,
2628  *      which also performs a COMRESET.
2629  *      Also, if the port disabled DMA, update our cached copy to match.
2630  *
2631  *      LOCKING:
2632  *      Inherited from caller.
2633  */
2634 static void mv_err_intr(struct ata_port *ap)
2635 {
2636 	void __iomem *port_mmio = mv_ap_base(ap);
2637 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2638 	u32 fis_cause = 0;
2639 	struct mv_port_priv *pp = ap->private_data;
2640 	struct mv_host_priv *hpriv = ap->host->private_data;
2641 	unsigned int action = 0, err_mask = 0;
2642 	struct ata_eh_info *ehi = &ap->link.eh_info;
2643 	struct ata_queued_cmd *qc;
2644 	int abort = 0;
2645 
2646 	/*
2647 	 * Read and clear the SError and err_cause bits.
2648 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2649 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2650 	 */
2651 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2652 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2653 
2654 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2655 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2656 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2657 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2658 	}
2659 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2660 
2661 	if (edma_err_cause & EDMA_ERR_DEV) {
2662 		/*
2663 		 * Device errors during FIS-based switching operation
2664 		 * require special handling.
2665 		 */
2666 		if (mv_handle_dev_err(ap, edma_err_cause))
2667 			return;
2668 	}
2669 
2670 	qc = mv_get_active_qc(ap);
2671 	ata_ehi_clear_desc(ehi);
2672 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2673 			  edma_err_cause, pp->pp_flags);
2674 
2675 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2676 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2677 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2678 			u32 ec = edma_err_cause &
2679 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2680 			sata_async_notification(ap);
2681 			if (!ec)
2682 				return; /* Just an AN; no need for the nukes */
2683 			ata_ehi_push_desc(ehi, "SDB notify");
2684 		}
2685 	}
2686 	/*
2687 	 * All generations share these EDMA error cause bits:
2688 	 */
2689 	if (edma_err_cause & EDMA_ERR_DEV) {
2690 		err_mask |= AC_ERR_DEV;
2691 		action |= ATA_EH_RESET;
2692 		ata_ehi_push_desc(ehi, "dev error");
2693 	}
2694 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2695 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2696 			EDMA_ERR_INTRL_PAR)) {
2697 		err_mask |= AC_ERR_ATA_BUS;
2698 		action |= ATA_EH_RESET;
2699 		ata_ehi_push_desc(ehi, "parity error");
2700 	}
2701 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2702 		ata_ehi_hotplugged(ehi);
2703 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2704 			"dev disconnect" : "dev connect");
2705 		action |= ATA_EH_RESET;
2706 	}
2707 
2708 	/*
2709 	 * Gen-I has a different SELF_DIS bit,
2710 	 * different FREEZE bits, and no SERR bit:
2711 	 */
2712 	if (IS_GEN_I(hpriv)) {
2713 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2714 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2715 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2716 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2717 		}
2718 	} else {
2719 		eh_freeze_mask = EDMA_EH_FREEZE;
2720 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2721 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2722 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2723 		}
2724 		if (edma_err_cause & EDMA_ERR_SERR) {
2725 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2726 			err_mask |= AC_ERR_ATA_BUS;
2727 			action |= ATA_EH_RESET;
2728 		}
2729 	}
2730 
2731 	if (!err_mask) {
2732 		err_mask = AC_ERR_OTHER;
2733 		action |= ATA_EH_RESET;
2734 	}
2735 
2736 	ehi->serror |= serr;
2737 	ehi->action |= action;
2738 
2739 	if (qc)
2740 		qc->err_mask |= err_mask;
2741 	else
2742 		ehi->err_mask |= err_mask;
2743 
2744 	if (err_mask == AC_ERR_DEV) {
2745 		/*
2746 		 * Cannot do ata_port_freeze() here,
2747 		 * because it would kill PIO access,
2748 		 * which is needed for further diagnosis.
2749 		 */
2750 		mv_eh_freeze(ap);
2751 		abort = 1;
2752 	} else if (edma_err_cause & eh_freeze_mask) {
2753 		/*
2754 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2755 		 */
2756 		ata_port_freeze(ap);
2757 	} else {
2758 		abort = 1;
2759 	}
2760 
2761 	if (abort) {
2762 		if (qc)
2763 			ata_link_abort(qc->dev->link);
2764 		else
2765 			ata_port_abort(ap);
2766 	}
2767 }
2768 
2769 static bool mv_process_crpb_response(struct ata_port *ap,
2770 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2771 {
2772 	u8 ata_status;
2773 	u16 edma_status = le16_to_cpu(response->flags);
2774 
2775 	/*
2776 	 * edma_status from a response queue entry:
2777 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2778 	 *   MSB is saved ATA status from command completion.
2779 	 */
2780 	if (!ncq_enabled) {
2781 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2782 		if (err_cause) {
2783 			/*
2784 			 * Error will be seen/handled by
2785 			 * mv_err_intr().  So do nothing at all here.
2786 			 */
2787 			return false;
2788 		}
2789 	}
2790 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2791 	if (!ac_err_mask(ata_status))
2792 		return true;
2793 	/* else: leave it for mv_err_intr() */
2794 	return false;
2795 }
2796 
2797 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2798 {
2799 	void __iomem *port_mmio = mv_ap_base(ap);
2800 	struct mv_host_priv *hpriv = ap->host->private_data;
2801 	u32 in_index;
2802 	bool work_done = false;
2803 	u32 done_mask = 0;
2804 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2805 
2806 	/* Get the hardware queue position index */
2807 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2808 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2809 
2810 	/* Process new responses from since the last time we looked */
2811 	while (in_index != pp->resp_idx) {
2812 		unsigned int tag;
2813 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2814 
2815 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2816 
2817 		if (IS_GEN_I(hpriv)) {
2818 			/* 50xx: no NCQ, only one command active at a time */
2819 			tag = ap->link.active_tag;
2820 		} else {
2821 			/* Gen II/IIE: get command tag from CRPB entry */
2822 			tag = le16_to_cpu(response->id) & 0x1f;
2823 		}
2824 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2825 			done_mask |= 1 << tag;
2826 		work_done = true;
2827 	}
2828 
2829 	if (work_done) {
2830 		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2831 
2832 		/* Update the software queue position index in hardware */
2833 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2834 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2835 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2836 	}
2837 }
2838 
2839 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2840 {
2841 	struct mv_port_priv *pp;
2842 	int edma_was_enabled;
2843 
2844 	/*
2845 	 * Grab a snapshot of the EDMA_EN flag setting,
2846 	 * so that we have a consistent view for this port,
2847 	 * even if something we call of our routines changes it.
2848 	 */
2849 	pp = ap->private_data;
2850 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2851 	/*
2852 	 * Process completed CRPB response(s) before other events.
2853 	 */
2854 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2855 		mv_process_crpb_entries(ap, pp);
2856 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2857 			mv_handle_fbs_ncq_dev_err(ap);
2858 	}
2859 	/*
2860 	 * Handle chip-reported errors, or continue on to handle PIO.
2861 	 */
2862 	if (unlikely(port_cause & ERR_IRQ)) {
2863 		mv_err_intr(ap);
2864 	} else if (!edma_was_enabled) {
2865 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2866 		if (qc)
2867 			ata_bmdma_port_intr(ap, qc);
2868 		else
2869 			mv_unexpected_intr(ap, edma_was_enabled);
2870 	}
2871 }
2872 
2873 /**
2874  *      mv_host_intr - Handle all interrupts on the given host controller
2875  *      @host: host specific structure
2876  *      @main_irq_cause: Main interrupt cause register for the chip.
2877  *
2878  *      LOCKING:
2879  *      Inherited from caller.
2880  */
2881 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2882 {
2883 	struct mv_host_priv *hpriv = host->private_data;
2884 	void __iomem *mmio = hpriv->base, *hc_mmio;
2885 	unsigned int handled = 0, port;
2886 
2887 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2888 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2889 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2890 
2891 	for (port = 0; port < hpriv->n_ports; port++) {
2892 		struct ata_port *ap = host->ports[port];
2893 		unsigned int p, shift, hardport, port_cause;
2894 
2895 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2896 		/*
2897 		 * Each hc within the host has its own hc_irq_cause register,
2898 		 * where the interrupting ports bits get ack'd.
2899 		 */
2900 		if (hardport == 0) {	/* first port on this hc ? */
2901 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2902 			u32 port_mask, ack_irqs;
2903 			/*
2904 			 * Skip this entire hc if nothing pending for any ports
2905 			 */
2906 			if (!hc_cause) {
2907 				port += MV_PORTS_PER_HC - 1;
2908 				continue;
2909 			}
2910 			/*
2911 			 * We don't need/want to read the hc_irq_cause register,
2912 			 * because doing so hurts performance, and
2913 			 * main_irq_cause already gives us everything we need.
2914 			 *
2915 			 * But we do have to *write* to the hc_irq_cause to ack
2916 			 * the ports that we are handling this time through.
2917 			 *
2918 			 * This requires that we create a bitmap for those
2919 			 * ports which interrupted us, and use that bitmap
2920 			 * to ack (only) those ports via hc_irq_cause.
2921 			 */
2922 			ack_irqs = 0;
2923 			if (hc_cause & PORTS_0_3_COAL_DONE)
2924 				ack_irqs = HC_COAL_IRQ;
2925 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2926 				if ((port + p) >= hpriv->n_ports)
2927 					break;
2928 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2929 				if (hc_cause & port_mask)
2930 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2931 			}
2932 			hc_mmio = mv_hc_base_from_port(mmio, port);
2933 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2934 			handled = 1;
2935 		}
2936 		/*
2937 		 * Handle interrupts signalled for this port:
2938 		 */
2939 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2940 		if (port_cause)
2941 			mv_port_intr(ap, port_cause);
2942 	}
2943 	return handled;
2944 }
2945 
2946 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2947 {
2948 	struct mv_host_priv *hpriv = host->private_data;
2949 	struct ata_port *ap;
2950 	struct ata_queued_cmd *qc;
2951 	struct ata_eh_info *ehi;
2952 	unsigned int i, err_mask, printed = 0;
2953 	u32 err_cause;
2954 
2955 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2956 
2957 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2958 
2959 	DPRINTK("All regs @ PCI error\n");
2960 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2961 
2962 	writelfl(0, mmio + hpriv->irq_cause_offset);
2963 
2964 	for (i = 0; i < host->n_ports; i++) {
2965 		ap = host->ports[i];
2966 		if (!ata_link_offline(&ap->link)) {
2967 			ehi = &ap->link.eh_info;
2968 			ata_ehi_clear_desc(ehi);
2969 			if (!printed++)
2970 				ata_ehi_push_desc(ehi,
2971 					"PCI err cause 0x%08x", err_cause);
2972 			err_mask = AC_ERR_HOST_BUS;
2973 			ehi->action = ATA_EH_RESET;
2974 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2975 			if (qc)
2976 				qc->err_mask |= err_mask;
2977 			else
2978 				ehi->err_mask |= err_mask;
2979 
2980 			ata_port_freeze(ap);
2981 		}
2982 	}
2983 	return 1;	/* handled */
2984 }
2985 
2986 /**
2987  *      mv_interrupt - Main interrupt event handler
2988  *      @irq: unused
2989  *      @dev_instance: private data; in this case the host structure
2990  *
2991  *      Read the read only register to determine if any host
2992  *      controllers have pending interrupts.  If so, call lower level
2993  *      routine to handle.  Also check for PCI errors which are only
2994  *      reported here.
2995  *
2996  *      LOCKING:
2997  *      This routine holds the host lock while processing pending
2998  *      interrupts.
2999  */
3000 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3001 {
3002 	struct ata_host *host = dev_instance;
3003 	struct mv_host_priv *hpriv = host->private_data;
3004 	unsigned int handled = 0;
3005 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3006 	u32 main_irq_cause, pending_irqs;
3007 
3008 	spin_lock(&host->lock);
3009 
3010 	/* for MSI:  block new interrupts while in here */
3011 	if (using_msi)
3012 		mv_write_main_irq_mask(0, hpriv);
3013 
3014 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3015 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3016 	/*
3017 	 * Deal with cases where we either have nothing pending, or have read
3018 	 * a bogus register value which can indicate HW removal or PCI fault.
3019 	 */
3020 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3021 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3022 			handled = mv_pci_error(host, hpriv->base);
3023 		else
3024 			handled = mv_host_intr(host, pending_irqs);
3025 	}
3026 
3027 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3028 	if (using_msi)
3029 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3030 
3031 	spin_unlock(&host->lock);
3032 
3033 	return IRQ_RETVAL(handled);
3034 }
3035 
3036 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3037 {
3038 	unsigned int ofs;
3039 
3040 	switch (sc_reg_in) {
3041 	case SCR_STATUS:
3042 	case SCR_ERROR:
3043 	case SCR_CONTROL:
3044 		ofs = sc_reg_in * sizeof(u32);
3045 		break;
3046 	default:
3047 		ofs = 0xffffffffU;
3048 		break;
3049 	}
3050 	return ofs;
3051 }
3052 
3053 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3054 {
3055 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3056 	void __iomem *mmio = hpriv->base;
3057 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3058 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3059 
3060 	if (ofs != 0xffffffffU) {
3061 		*val = readl(addr + ofs);
3062 		return 0;
3063 	} else
3064 		return -EINVAL;
3065 }
3066 
3067 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3068 {
3069 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3070 	void __iomem *mmio = hpriv->base;
3071 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3072 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3073 
3074 	if (ofs != 0xffffffffU) {
3075 		writelfl(val, addr + ofs);
3076 		return 0;
3077 	} else
3078 		return -EINVAL;
3079 }
3080 
3081 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3082 {
3083 	struct pci_dev *pdev = to_pci_dev(host->dev);
3084 	int early_5080;
3085 
3086 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3087 
3088 	if (!early_5080) {
3089 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3090 		tmp |= (1 << 0);
3091 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3092 	}
3093 
3094 	mv_reset_pci_bus(host, mmio);
3095 }
3096 
3097 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3098 {
3099 	writel(0x0fcfffff, mmio + FLASH_CTL);
3100 }
3101 
3102 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3103 			   void __iomem *mmio)
3104 {
3105 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3106 	u32 tmp;
3107 
3108 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3109 
3110 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3111 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3112 }
3113 
3114 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3115 {
3116 	u32 tmp;
3117 
3118 	writel(0, mmio + GPIO_PORT_CTL);
3119 
3120 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3121 
3122 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3123 	tmp |= ~(1 << 0);
3124 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3125 }
3126 
3127 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3128 			   unsigned int port)
3129 {
3130 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3131 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3132 	u32 tmp;
3133 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3134 
3135 	if (fix_apm_sq) {
3136 		tmp = readl(phy_mmio + MV5_LTMODE);
3137 		tmp |= (1 << 19);
3138 		writel(tmp, phy_mmio + MV5_LTMODE);
3139 
3140 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3141 		tmp &= ~0x3;
3142 		tmp |= 0x1;
3143 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3144 	}
3145 
3146 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3147 	tmp &= ~mask;
3148 	tmp |= hpriv->signal[port].pre;
3149 	tmp |= hpriv->signal[port].amps;
3150 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3151 }
3152 
3153 
3154 #undef ZERO
3155 #define ZERO(reg) writel(0, port_mmio + (reg))
3156 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3157 			     unsigned int port)
3158 {
3159 	void __iomem *port_mmio = mv_port_base(mmio, port);
3160 
3161 	mv_reset_channel(hpriv, mmio, port);
3162 
3163 	ZERO(0x028);	/* command */
3164 	writel(0x11f, port_mmio + EDMA_CFG);
3165 	ZERO(0x004);	/* timer */
3166 	ZERO(0x008);	/* irq err cause */
3167 	ZERO(0x00c);	/* irq err mask */
3168 	ZERO(0x010);	/* rq bah */
3169 	ZERO(0x014);	/* rq inp */
3170 	ZERO(0x018);	/* rq outp */
3171 	ZERO(0x01c);	/* respq bah */
3172 	ZERO(0x024);	/* respq outp */
3173 	ZERO(0x020);	/* respq inp */
3174 	ZERO(0x02c);	/* test control */
3175 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3176 }
3177 #undef ZERO
3178 
3179 #define ZERO(reg) writel(0, hc_mmio + (reg))
3180 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3181 			unsigned int hc)
3182 {
3183 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3184 	u32 tmp;
3185 
3186 	ZERO(0x00c);
3187 	ZERO(0x010);
3188 	ZERO(0x014);
3189 	ZERO(0x018);
3190 
3191 	tmp = readl(hc_mmio + 0x20);
3192 	tmp &= 0x1c1c1c1c;
3193 	tmp |= 0x03030303;
3194 	writel(tmp, hc_mmio + 0x20);
3195 }
3196 #undef ZERO
3197 
3198 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3199 			unsigned int n_hc)
3200 {
3201 	unsigned int hc, port;
3202 
3203 	for (hc = 0; hc < n_hc; hc++) {
3204 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3205 			mv5_reset_hc_port(hpriv, mmio,
3206 					  (hc * MV_PORTS_PER_HC) + port);
3207 
3208 		mv5_reset_one_hc(hpriv, mmio, hc);
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 #undef ZERO
3215 #define ZERO(reg) writel(0, mmio + (reg))
3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3217 {
3218 	struct mv_host_priv *hpriv = host->private_data;
3219 	u32 tmp;
3220 
3221 	tmp = readl(mmio + MV_PCI_MODE);
3222 	tmp &= 0xff00ffff;
3223 	writel(tmp, mmio + MV_PCI_MODE);
3224 
3225 	ZERO(MV_PCI_DISC_TIMER);
3226 	ZERO(MV_PCI_MSI_TRIGGER);
3227 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228 	ZERO(MV_PCI_SERR_MASK);
3229 	ZERO(hpriv->irq_cause_offset);
3230 	ZERO(hpriv->irq_mask_offset);
3231 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3234 	ZERO(MV_PCI_ERR_COMMAND);
3235 }
3236 #undef ZERO
3237 
3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3239 {
3240 	u32 tmp;
3241 
3242 	mv5_reset_flash(hpriv, mmio);
3243 
3244 	tmp = readl(mmio + GPIO_PORT_CTL);
3245 	tmp &= 0x3;
3246 	tmp |= (1 << 5) | (1 << 6);
3247 	writel(tmp, mmio + GPIO_PORT_CTL);
3248 }
3249 
3250 /**
3251  *      mv6_reset_hc - Perform the 6xxx global soft reset
3252  *      @mmio: base address of the HBA
3253  *
3254  *      This routine only applies to 6xxx parts.
3255  *
3256  *      LOCKING:
3257  *      Inherited from caller.
3258  */
3259 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3260 			unsigned int n_hc)
3261 {
3262 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3263 	int i, rc = 0;
3264 	u32 t;
3265 
3266 	/* Following procedure defined in PCI "main command and status
3267 	 * register" table.
3268 	 */
3269 	t = readl(reg);
3270 	writel(t | STOP_PCI_MASTER, reg);
3271 
3272 	for (i = 0; i < 1000; i++) {
3273 		udelay(1);
3274 		t = readl(reg);
3275 		if (PCI_MASTER_EMPTY & t)
3276 			break;
3277 	}
3278 	if (!(PCI_MASTER_EMPTY & t)) {
3279 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3280 		rc = 1;
3281 		goto done;
3282 	}
3283 
3284 	/* set reset */
3285 	i = 5;
3286 	do {
3287 		writel(t | GLOB_SFT_RST, reg);
3288 		t = readl(reg);
3289 		udelay(1);
3290 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3291 
3292 	if (!(GLOB_SFT_RST & t)) {
3293 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3294 		rc = 1;
3295 		goto done;
3296 	}
3297 
3298 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299 	i = 5;
3300 	do {
3301 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3302 		t = readl(reg);
3303 		udelay(1);
3304 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3305 
3306 	if (GLOB_SFT_RST & t) {
3307 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3308 		rc = 1;
3309 	}
3310 done:
3311 	return rc;
3312 }
3313 
3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3315 			   void __iomem *mmio)
3316 {
3317 	void __iomem *port_mmio;
3318 	u32 tmp;
3319 
3320 	tmp = readl(mmio + RESET_CFG);
3321 	if ((tmp & (1 << 0)) == 0) {
3322 		hpriv->signal[idx].amps = 0x7 << 8;
3323 		hpriv->signal[idx].pre = 0x1 << 5;
3324 		return;
3325 	}
3326 
3327 	port_mmio = mv_port_base(mmio, idx);
3328 	tmp = readl(port_mmio + PHY_MODE2);
3329 
3330 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3331 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3332 }
3333 
3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3335 {
3336 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3337 }
3338 
3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3340 			   unsigned int port)
3341 {
3342 	void __iomem *port_mmio = mv_port_base(mmio, port);
3343 
3344 	u32 hp_flags = hpriv->hp_flags;
3345 	int fix_phy_mode2 =
3346 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3347 	int fix_phy_mode4 =
3348 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349 	u32 m2, m3;
3350 
3351 	if (fix_phy_mode2) {
3352 		m2 = readl(port_mmio + PHY_MODE2);
3353 		m2 &= ~(1 << 16);
3354 		m2 |= (1 << 31);
3355 		writel(m2, port_mmio + PHY_MODE2);
3356 
3357 		udelay(200);
3358 
3359 		m2 = readl(port_mmio + PHY_MODE2);
3360 		m2 &= ~((1 << 16) | (1 << 31));
3361 		writel(m2, port_mmio + PHY_MODE2);
3362 
3363 		udelay(200);
3364 	}
3365 
3366 	/*
3367 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3368 	 * Achieves better receiver noise performance than the h/w default:
3369 	 */
3370 	m3 = readl(port_mmio + PHY_MODE3);
3371 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3372 
3373 	/* Guideline 88F5182 (GL# SATA-S11) */
3374 	if (IS_SOC(hpriv))
3375 		m3 &= ~0x1c;
3376 
3377 	if (fix_phy_mode4) {
3378 		u32 m4 = readl(port_mmio + PHY_MODE4);
3379 		/*
3380 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3381 		 * For earlier chipsets, force only the internal config field
3382 		 *  (workaround for errata FEr SATA#10 part 1).
3383 		 */
3384 		if (IS_GEN_IIE(hpriv))
3385 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3386 		else
3387 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388 		writel(m4, port_mmio + PHY_MODE4);
3389 	}
3390 	/*
3391 	 * Workaround for 60x1-B2 errata SATA#13:
3392 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3395 	 */
3396 	writel(m3, port_mmio + PHY_MODE3);
3397 
3398 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3399 	m2 = readl(port_mmio + PHY_MODE2);
3400 
3401 	m2 &= ~MV_M2_PREAMP_MASK;
3402 	m2 |= hpriv->signal[port].amps;
3403 	m2 |= hpriv->signal[port].pre;
3404 	m2 &= ~(1 << 16);
3405 
3406 	/* according to mvSata 3.6.1, some IIE values are fixed */
3407 	if (IS_GEN_IIE(hpriv)) {
3408 		m2 &= ~0xC30FF01F;
3409 		m2 |= 0x0000900F;
3410 	}
3411 
3412 	writel(m2, port_mmio + PHY_MODE2);
3413 }
3414 
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3418 				      void __iomem *mmio)
3419 {
3420 	return;
3421 }
3422 
3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3424 			   void __iomem *mmio)
3425 {
3426 	void __iomem *port_mmio;
3427 	u32 tmp;
3428 
3429 	port_mmio = mv_port_base(mmio, idx);
3430 	tmp = readl(port_mmio + PHY_MODE2);
3431 
3432 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3433 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3434 }
3435 
3436 #undef ZERO
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439 					void __iomem *mmio, unsigned int port)
3440 {
3441 	void __iomem *port_mmio = mv_port_base(mmio, port);
3442 
3443 	mv_reset_channel(hpriv, mmio, port);
3444 
3445 	ZERO(0x028);		/* command */
3446 	writel(0x101f, port_mmio + EDMA_CFG);
3447 	ZERO(0x004);		/* timer */
3448 	ZERO(0x008);		/* irq err cause */
3449 	ZERO(0x00c);		/* irq err mask */
3450 	ZERO(0x010);		/* rq bah */
3451 	ZERO(0x014);		/* rq inp */
3452 	ZERO(0x018);		/* rq outp */
3453 	ZERO(0x01c);		/* respq bah */
3454 	ZERO(0x024);		/* respq outp */
3455 	ZERO(0x020);		/* respq inp */
3456 	ZERO(0x02c);		/* test control */
3457 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3458 }
3459 
3460 #undef ZERO
3461 
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3464 				       void __iomem *mmio)
3465 {
3466 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3467 
3468 	ZERO(0x00c);
3469 	ZERO(0x010);
3470 	ZERO(0x014);
3471 
3472 }
3473 
3474 #undef ZERO
3475 
3476 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3477 				  void __iomem *mmio, unsigned int n_hc)
3478 {
3479 	unsigned int port;
3480 
3481 	for (port = 0; port < hpriv->n_ports; port++)
3482 		mv_soc_reset_hc_port(hpriv, mmio, port);
3483 
3484 	mv_soc_reset_one_hc(hpriv, mmio);
3485 
3486 	return 0;
3487 }
3488 
3489 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3490 				      void __iomem *mmio)
3491 {
3492 	return;
3493 }
3494 
3495 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3496 {
3497 	return;
3498 }
3499 
3500 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3501 				  void __iomem *mmio, unsigned int port)
3502 {
3503 	void __iomem *port_mmio = mv_port_base(mmio, port);
3504 	u32	reg;
3505 
3506 	reg = readl(port_mmio + PHY_MODE3);
3507 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3508 	reg |= (0x1 << 27);
3509 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3510 	reg |= (0x1 << 29);
3511 	writel(reg, port_mmio + PHY_MODE3);
3512 
3513 	reg = readl(port_mmio + PHY_MODE4);
3514 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3515 	reg |= (0x1 << 16);
3516 	writel(reg, port_mmio + PHY_MODE4);
3517 
3518 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3519 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3520 	reg |= 0x8;
3521 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3522 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3523 
3524 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3525 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3526 	reg |= 0x8;
3527 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3528 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3529 }
3530 
3531 /**
3532  *	soc_is_65 - check if the soc is 65 nano device
3533  *
3534  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3535  *	register, this register should contain non-zero value and it exists only
3536  *	in the 65 nano devices, when reading it from older devices we get 0.
3537  */
3538 static bool soc_is_65n(struct mv_host_priv *hpriv)
3539 {
3540 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3541 
3542 	if (readl(port0_mmio + PHYCFG_OFS))
3543 		return true;
3544 	return false;
3545 }
3546 
3547 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3548 {
3549 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3550 
3551 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3552 	if (want_gen2i)
3553 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3554 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3555 }
3556 
3557 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3558 			     unsigned int port_no)
3559 {
3560 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3561 
3562 	/*
3563 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3564 	 * (but doesn't say what the problem might be).  So we first try
3565 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3566 	 */
3567 	mv_stop_edma_engine(port_mmio);
3568 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3569 
3570 	if (!IS_GEN_I(hpriv)) {
3571 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3572 		mv_setup_ifcfg(port_mmio, 1);
3573 	}
3574 	/*
3575 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3576 	 * link, and physical layers.  It resets all SATA interface registers
3577 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3578 	 */
3579 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3580 	udelay(25);	/* allow reset propagation */
3581 	writelfl(0, port_mmio + EDMA_CMD);
3582 
3583 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3584 
3585 	if (IS_GEN_I(hpriv))
3586 		usleep_range(500, 1000);
3587 }
3588 
3589 static void mv_pmp_select(struct ata_port *ap, int pmp)
3590 {
3591 	if (sata_pmp_supported(ap)) {
3592 		void __iomem *port_mmio = mv_ap_base(ap);
3593 		u32 reg = readl(port_mmio + SATA_IFCTL);
3594 		int old = reg & 0xf;
3595 
3596 		if (old != pmp) {
3597 			reg = (reg & ~0xf) | pmp;
3598 			writelfl(reg, port_mmio + SATA_IFCTL);
3599 		}
3600 	}
3601 }
3602 
3603 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3604 				unsigned long deadline)
3605 {
3606 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3607 	return sata_std_hardreset(link, class, deadline);
3608 }
3609 
3610 static int mv_softreset(struct ata_link *link, unsigned int *class,
3611 				unsigned long deadline)
3612 {
3613 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3614 	return ata_sff_softreset(link, class, deadline);
3615 }
3616 
3617 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3618 			unsigned long deadline)
3619 {
3620 	struct ata_port *ap = link->ap;
3621 	struct mv_host_priv *hpriv = ap->host->private_data;
3622 	struct mv_port_priv *pp = ap->private_data;
3623 	void __iomem *mmio = hpriv->base;
3624 	int rc, attempts = 0, extra = 0;
3625 	u32 sstatus;
3626 	bool online;
3627 
3628 	mv_reset_channel(hpriv, mmio, ap->port_no);
3629 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3630 	pp->pp_flags &=
3631 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3632 
3633 	/* Workaround for errata FEr SATA#10 (part 2) */
3634 	do {
3635 		const unsigned long *timing =
3636 				sata_ehc_deb_timing(&link->eh_context);
3637 
3638 		rc = sata_link_hardreset(link, timing, deadline + extra,
3639 					 &online, NULL);
3640 		rc = online ? -EAGAIN : rc;
3641 		if (rc)
3642 			return rc;
3643 		sata_scr_read(link, SCR_STATUS, &sstatus);
3644 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3645 			/* Force 1.5gb/s link speed and try again */
3646 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3647 			if (time_after(jiffies + HZ, deadline))
3648 				extra = HZ; /* only extend it once, max */
3649 		}
3650 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3651 	mv_save_cached_regs(ap);
3652 	mv_edma_cfg(ap, 0, 0);
3653 
3654 	return rc;
3655 }
3656 
3657 static void mv_eh_freeze(struct ata_port *ap)
3658 {
3659 	mv_stop_edma(ap);
3660 	mv_enable_port_irqs(ap, 0);
3661 }
3662 
3663 static void mv_eh_thaw(struct ata_port *ap)
3664 {
3665 	struct mv_host_priv *hpriv = ap->host->private_data;
3666 	unsigned int port = ap->port_no;
3667 	unsigned int hardport = mv_hardport_from_port(port);
3668 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3669 	void __iomem *port_mmio = mv_ap_base(ap);
3670 	u32 hc_irq_cause;
3671 
3672 	/* clear EDMA errors on this port */
3673 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3674 
3675 	/* clear pending irq events */
3676 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3677 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3678 
3679 	mv_enable_port_irqs(ap, ERR_IRQ);
3680 }
3681 
3682 /**
3683  *      mv_port_init - Perform some early initialization on a single port.
3684  *      @port: libata data structure storing shadow register addresses
3685  *      @port_mmio: base address of the port
3686  *
3687  *      Initialize shadow register mmio addresses, clear outstanding
3688  *      interrupts on the port, and unmask interrupts for the future
3689  *      start of the port.
3690  *
3691  *      LOCKING:
3692  *      Inherited from caller.
3693  */
3694 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3695 {
3696 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3697 
3698 	/* PIO related setup
3699 	 */
3700 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3701 	port->error_addr =
3702 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3703 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3704 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3705 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3706 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3707 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3708 	port->status_addr =
3709 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3710 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3711 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3712 
3713 	/* Clear any currently outstanding port interrupt conditions */
3714 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3715 	writelfl(readl(serr), serr);
3716 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3717 
3718 	/* unmask all non-transient EDMA error interrupts */
3719 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3720 
3721 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3722 		readl(port_mmio + EDMA_CFG),
3723 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3724 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3725 }
3726 
3727 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3728 {
3729 	struct mv_host_priv *hpriv = host->private_data;
3730 	void __iomem *mmio = hpriv->base;
3731 	u32 reg;
3732 
3733 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3734 		return 0;	/* not PCI-X capable */
3735 	reg = readl(mmio + MV_PCI_MODE);
3736 	if ((reg & MV_PCI_MODE_MASK) == 0)
3737 		return 0;	/* conventional PCI mode */
3738 	return 1;	/* chip is in PCI-X mode */
3739 }
3740 
3741 static int mv_pci_cut_through_okay(struct ata_host *host)
3742 {
3743 	struct mv_host_priv *hpriv = host->private_data;
3744 	void __iomem *mmio = hpriv->base;
3745 	u32 reg;
3746 
3747 	if (!mv_in_pcix_mode(host)) {
3748 		reg = readl(mmio + MV_PCI_COMMAND);
3749 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3750 			return 0; /* not okay */
3751 	}
3752 	return 1; /* okay */
3753 }
3754 
3755 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3756 {
3757 	struct mv_host_priv *hpriv = host->private_data;
3758 	void __iomem *mmio = hpriv->base;
3759 
3760 	/* workaround for 60x1-B2 errata PCI#7 */
3761 	if (mv_in_pcix_mode(host)) {
3762 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3763 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3764 	}
3765 }
3766 
3767 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3768 {
3769 	struct pci_dev *pdev = to_pci_dev(host->dev);
3770 	struct mv_host_priv *hpriv = host->private_data;
3771 	u32 hp_flags = hpriv->hp_flags;
3772 
3773 	switch (board_idx) {
3774 	case chip_5080:
3775 		hpriv->ops = &mv5xxx_ops;
3776 		hp_flags |= MV_HP_GEN_I;
3777 
3778 		switch (pdev->revision) {
3779 		case 0x1:
3780 			hp_flags |= MV_HP_ERRATA_50XXB0;
3781 			break;
3782 		case 0x3:
3783 			hp_flags |= MV_HP_ERRATA_50XXB2;
3784 			break;
3785 		default:
3786 			dev_warn(&pdev->dev,
3787 				 "Applying 50XXB2 workarounds to unknown rev\n");
3788 			hp_flags |= MV_HP_ERRATA_50XXB2;
3789 			break;
3790 		}
3791 		break;
3792 
3793 	case chip_504x:
3794 	case chip_508x:
3795 		hpriv->ops = &mv5xxx_ops;
3796 		hp_flags |= MV_HP_GEN_I;
3797 
3798 		switch (pdev->revision) {
3799 		case 0x0:
3800 			hp_flags |= MV_HP_ERRATA_50XXB0;
3801 			break;
3802 		case 0x3:
3803 			hp_flags |= MV_HP_ERRATA_50XXB2;
3804 			break;
3805 		default:
3806 			dev_warn(&pdev->dev,
3807 				 "Applying B2 workarounds to unknown rev\n");
3808 			hp_flags |= MV_HP_ERRATA_50XXB2;
3809 			break;
3810 		}
3811 		break;
3812 
3813 	case chip_604x:
3814 	case chip_608x:
3815 		hpriv->ops = &mv6xxx_ops;
3816 		hp_flags |= MV_HP_GEN_II;
3817 
3818 		switch (pdev->revision) {
3819 		case 0x7:
3820 			mv_60x1b2_errata_pci7(host);
3821 			hp_flags |= MV_HP_ERRATA_60X1B2;
3822 			break;
3823 		case 0x9:
3824 			hp_flags |= MV_HP_ERRATA_60X1C0;
3825 			break;
3826 		default:
3827 			dev_warn(&pdev->dev,
3828 				 "Applying B2 workarounds to unknown rev\n");
3829 			hp_flags |= MV_HP_ERRATA_60X1B2;
3830 			break;
3831 		}
3832 		break;
3833 
3834 	case chip_7042:
3835 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3836 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3837 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3838 		{
3839 			/*
3840 			 * Highpoint RocketRAID PCIe 23xx series cards:
3841 			 *
3842 			 * Unconfigured drives are treated as "Legacy"
3843 			 * by the BIOS, and it overwrites sector 8 with
3844 			 * a "Lgcy" metadata block prior to Linux boot.
3845 			 *
3846 			 * Configured drives (RAID or JBOD) leave sector 8
3847 			 * alone, but instead overwrite a high numbered
3848 			 * sector for the RAID metadata.  This sector can
3849 			 * be determined exactly, by truncating the physical
3850 			 * drive capacity to a nice even GB value.
3851 			 *
3852 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3853 			 *
3854 			 * Warn the user, lest they think we're just buggy.
3855 			 */
3856 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3857 				" BIOS CORRUPTS DATA on all attached drives,"
3858 				" regardless of if/how they are configured."
3859 				" BEWARE!\n");
3860 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3861 				" use sectors 8-9 on \"Legacy\" drives,"
3862 				" and avoid the final two gigabytes on"
3863 				" all RocketRAID BIOS initialized drives.\n");
3864 		}
3865 		/* fall through */
3866 	case chip_6042:
3867 		hpriv->ops = &mv6xxx_ops;
3868 		hp_flags |= MV_HP_GEN_IIE;
3869 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3870 			hp_flags |= MV_HP_CUT_THROUGH;
3871 
3872 		switch (pdev->revision) {
3873 		case 0x2: /* Rev.B0: the first/only public release */
3874 			hp_flags |= MV_HP_ERRATA_60X1C0;
3875 			break;
3876 		default:
3877 			dev_warn(&pdev->dev,
3878 				 "Applying 60X1C0 workarounds to unknown rev\n");
3879 			hp_flags |= MV_HP_ERRATA_60X1C0;
3880 			break;
3881 		}
3882 		break;
3883 	case chip_soc:
3884 		if (soc_is_65n(hpriv))
3885 			hpriv->ops = &mv_soc_65n_ops;
3886 		else
3887 			hpriv->ops = &mv_soc_ops;
3888 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3889 			MV_HP_ERRATA_60X1C0;
3890 		break;
3891 
3892 	default:
3893 		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3894 		return 1;
3895 	}
3896 
3897 	hpriv->hp_flags = hp_flags;
3898 	if (hp_flags & MV_HP_PCIE) {
3899 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3900 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3901 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3902 	} else {
3903 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3904 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3905 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3906 	}
3907 
3908 	return 0;
3909 }
3910 
3911 /**
3912  *      mv_init_host - Perform some early initialization of the host.
3913  *	@host: ATA host to initialize
3914  *
3915  *      If possible, do an early global reset of the host.  Then do
3916  *      our port init and clear/unmask all/relevant host interrupts.
3917  *
3918  *      LOCKING:
3919  *      Inherited from caller.
3920  */
3921 static int mv_init_host(struct ata_host *host)
3922 {
3923 	int rc = 0, n_hc, port, hc;
3924 	struct mv_host_priv *hpriv = host->private_data;
3925 	void __iomem *mmio = hpriv->base;
3926 
3927 	rc = mv_chip_id(host, hpriv->board_idx);
3928 	if (rc)
3929 		goto done;
3930 
3931 	if (IS_SOC(hpriv)) {
3932 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3933 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3934 	} else {
3935 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3936 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3937 	}
3938 
3939 	/* initialize shadow irq mask with register's value */
3940 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3941 
3942 	/* global interrupt mask: 0 == mask everything */
3943 	mv_set_main_irq_mask(host, ~0, 0);
3944 
3945 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3946 
3947 	for (port = 0; port < host->n_ports; port++)
3948 		if (hpriv->ops->read_preamp)
3949 			hpriv->ops->read_preamp(hpriv, port, mmio);
3950 
3951 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3952 	if (rc)
3953 		goto done;
3954 
3955 	hpriv->ops->reset_flash(hpriv, mmio);
3956 	hpriv->ops->reset_bus(host, mmio);
3957 	hpriv->ops->enable_leds(hpriv, mmio);
3958 
3959 	for (port = 0; port < host->n_ports; port++) {
3960 		struct ata_port *ap = host->ports[port];
3961 		void __iomem *port_mmio = mv_port_base(mmio, port);
3962 
3963 		mv_port_init(&ap->ioaddr, port_mmio);
3964 	}
3965 
3966 	for (hc = 0; hc < n_hc; hc++) {
3967 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3968 
3969 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3970 			"(before clear)=0x%08x\n", hc,
3971 			readl(hc_mmio + HC_CFG),
3972 			readl(hc_mmio + HC_IRQ_CAUSE));
3973 
3974 		/* Clear any currently outstanding hc interrupt conditions */
3975 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3976 	}
3977 
3978 	if (!IS_SOC(hpriv)) {
3979 		/* Clear any currently outstanding host interrupt conditions */
3980 		writelfl(0, mmio + hpriv->irq_cause_offset);
3981 
3982 		/* and unmask interrupt generation for host regs */
3983 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3984 	}
3985 
3986 	/*
3987 	 * enable only global host interrupts for now.
3988 	 * The per-port interrupts get done later as ports are set up.
3989 	 */
3990 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3991 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3992 				    irq_coalescing_usecs);
3993 done:
3994 	return rc;
3995 }
3996 
3997 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3998 {
3999 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4000 							     MV_CRQB_Q_SZ, 0);
4001 	if (!hpriv->crqb_pool)
4002 		return -ENOMEM;
4003 
4004 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4005 							     MV_CRPB_Q_SZ, 0);
4006 	if (!hpriv->crpb_pool)
4007 		return -ENOMEM;
4008 
4009 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4010 							     MV_SG_TBL_SZ, 0);
4011 	if (!hpriv->sg_tbl_pool)
4012 		return -ENOMEM;
4013 
4014 	return 0;
4015 }
4016 
4017 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4018 				 const struct mbus_dram_target_info *dram)
4019 {
4020 	int i;
4021 
4022 	for (i = 0; i < 4; i++) {
4023 		writel(0, hpriv->base + WINDOW_CTRL(i));
4024 		writel(0, hpriv->base + WINDOW_BASE(i));
4025 	}
4026 
4027 	for (i = 0; i < dram->num_cs; i++) {
4028 		const struct mbus_dram_window *cs = dram->cs + i;
4029 
4030 		writel(((cs->size - 1) & 0xffff0000) |
4031 			(cs->mbus_attr << 8) |
4032 			(dram->mbus_dram_target_id << 4) | 1,
4033 			hpriv->base + WINDOW_CTRL(i));
4034 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4035 	}
4036 }
4037 
4038 /**
4039  *      mv_platform_probe - handle a positive probe of an soc Marvell
4040  *      host
4041  *      @pdev: platform device found
4042  *
4043  *      LOCKING:
4044  *      Inherited from caller.
4045  */
4046 static int mv_platform_probe(struct platform_device *pdev)
4047 {
4048 	const struct mv_sata_platform_data *mv_platform_data;
4049 	const struct mbus_dram_target_info *dram;
4050 	const struct ata_port_info *ppi[] =
4051 	    { &mv_port_info[chip_soc], NULL };
4052 	struct ata_host *host;
4053 	struct mv_host_priv *hpriv;
4054 	struct resource *res;
4055 	int n_ports = 0, irq = 0;
4056 	int rc;
4057 	int port;
4058 
4059 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4060 
4061 	/*
4062 	 * Simple resource validation ..
4063 	 */
4064 	if (unlikely(pdev->num_resources != 2)) {
4065 		dev_err(&pdev->dev, "invalid number of resources\n");
4066 		return -EINVAL;
4067 	}
4068 
4069 	/*
4070 	 * Get the register base first
4071 	 */
4072 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4073 	if (res == NULL)
4074 		return -EINVAL;
4075 
4076 	/* allocate host */
4077 	if (pdev->dev.of_node) {
4078 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4079 					   &n_ports);
4080 		if (rc) {
4081 			dev_err(&pdev->dev,
4082 				"error parsing nr-ports property: %d\n", rc);
4083 			return rc;
4084 		}
4085 
4086 		if (n_ports <= 0) {
4087 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4088 				n_ports);
4089 			return -EINVAL;
4090 		}
4091 
4092 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4093 	} else {
4094 		mv_platform_data = dev_get_platdata(&pdev->dev);
4095 		n_ports = mv_platform_data->n_ports;
4096 		irq = platform_get_irq(pdev, 0);
4097 	}
4098 
4099 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4101 
4102 	if (!host || !hpriv)
4103 		return -ENOMEM;
4104 	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105 					n_ports, sizeof(struct clk *),
4106 					GFP_KERNEL);
4107 	if (!hpriv->port_clks)
4108 		return -ENOMEM;
4109 	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110 					n_ports, sizeof(struct phy *),
4111 					GFP_KERNEL);
4112 	if (!hpriv->port_phys)
4113 		return -ENOMEM;
4114 	host->private_data = hpriv;
4115 	hpriv->board_idx = chip_soc;
4116 
4117 	host->iomap = NULL;
4118 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119 				   resource_size(res));
4120 	if (!hpriv->base)
4121 		return -ENOMEM;
4122 
4123 	hpriv->base -= SATAHC0_REG_BASE;
4124 
4125 	hpriv->clk = clk_get(&pdev->dev, NULL);
4126 	if (IS_ERR(hpriv->clk))
4127 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4128 	else
4129 		clk_prepare_enable(hpriv->clk);
4130 
4131 	for (port = 0; port < n_ports; port++) {
4132 		char port_number[16];
4133 		sprintf(port_number, "%d", port);
4134 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135 		if (!IS_ERR(hpriv->port_clks[port]))
4136 			clk_prepare_enable(hpriv->port_clks[port]);
4137 
4138 		sprintf(port_number, "port%d", port);
4139 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4140 							       port_number);
4141 		if (IS_ERR(hpriv->port_phys[port])) {
4142 			rc = PTR_ERR(hpriv->port_phys[port]);
4143 			hpriv->port_phys[port] = NULL;
4144 			if (rc != -EPROBE_DEFER)
4145 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4146 
4147 			/* Cleanup only the initialized ports */
4148 			hpriv->n_ports = port;
4149 			goto err;
4150 		} else
4151 			phy_power_on(hpriv->port_phys[port]);
4152 	}
4153 
4154 	/* All the ports have been initialized */
4155 	hpriv->n_ports = n_ports;
4156 
4157 	/*
4158 	 * (Re-)program MBUS remapping windows if we are asked to.
4159 	 */
4160 	dram = mv_mbus_dram_info();
4161 	if (dram)
4162 		mv_conf_mbus_windows(hpriv, dram);
4163 
4164 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4165 	if (rc)
4166 		goto err;
4167 
4168 	/*
4169 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170 	 * updated in the LP_PHY_CTL register.
4171 	 */
4172 	if (pdev->dev.of_node &&
4173 		of_device_is_compatible(pdev->dev.of_node,
4174 					"marvell,armada-370-sata"))
4175 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4176 
4177 	/* initialize adapter */
4178 	rc = mv_init_host(host);
4179 	if (rc)
4180 		goto err;
4181 
4182 	dev_info(&pdev->dev, "slots %u ports %d\n",
4183 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4184 
4185 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4186 	if (!rc)
4187 		return 0;
4188 
4189 err:
4190 	if (!IS_ERR(hpriv->clk)) {
4191 		clk_disable_unprepare(hpriv->clk);
4192 		clk_put(hpriv->clk);
4193 	}
4194 	for (port = 0; port < hpriv->n_ports; port++) {
4195 		if (!IS_ERR(hpriv->port_clks[port])) {
4196 			clk_disable_unprepare(hpriv->port_clks[port]);
4197 			clk_put(hpriv->port_clks[port]);
4198 		}
4199 		phy_power_off(hpriv->port_phys[port]);
4200 	}
4201 
4202 	return rc;
4203 }
4204 
4205 /*
4206  *
4207  *      mv_platform_remove    -       unplug a platform interface
4208  *      @pdev: platform device
4209  *
4210  *      A platform bus SATA device has been unplugged. Perform the needed
4211  *      cleanup. Also called on module unload for any active devices.
4212  */
4213 static int mv_platform_remove(struct platform_device *pdev)
4214 {
4215 	struct ata_host *host = platform_get_drvdata(pdev);
4216 	struct mv_host_priv *hpriv = host->private_data;
4217 	int port;
4218 	ata_host_detach(host);
4219 
4220 	if (!IS_ERR(hpriv->clk)) {
4221 		clk_disable_unprepare(hpriv->clk);
4222 		clk_put(hpriv->clk);
4223 	}
4224 	for (port = 0; port < host->n_ports; port++) {
4225 		if (!IS_ERR(hpriv->port_clks[port])) {
4226 			clk_disable_unprepare(hpriv->port_clks[port]);
4227 			clk_put(hpriv->port_clks[port]);
4228 		}
4229 		phy_power_off(hpriv->port_phys[port]);
4230 	}
4231 	return 0;
4232 }
4233 
4234 #ifdef CONFIG_PM_SLEEP
4235 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4236 {
4237 	struct ata_host *host = platform_get_drvdata(pdev);
4238 	if (host)
4239 		return ata_host_suspend(host, state);
4240 	else
4241 		return 0;
4242 }
4243 
4244 static int mv_platform_resume(struct platform_device *pdev)
4245 {
4246 	struct ata_host *host = platform_get_drvdata(pdev);
4247 	const struct mbus_dram_target_info *dram;
4248 	int ret;
4249 
4250 	if (host) {
4251 		struct mv_host_priv *hpriv = host->private_data;
4252 
4253 		/*
4254 		 * (Re-)program MBUS remapping windows if we are asked to.
4255 		 */
4256 		dram = mv_mbus_dram_info();
4257 		if (dram)
4258 			mv_conf_mbus_windows(hpriv, dram);
4259 
4260 		/* initialize adapter */
4261 		ret = mv_init_host(host);
4262 		if (ret) {
4263 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4264 			return ret;
4265 		}
4266 		ata_host_resume(host);
4267 	}
4268 
4269 	return 0;
4270 }
4271 #else
4272 #define mv_platform_suspend NULL
4273 #define mv_platform_resume NULL
4274 #endif
4275 
4276 #ifdef CONFIG_OF
4277 static const struct of_device_id mv_sata_dt_ids[] = {
4278 	{ .compatible = "marvell,armada-370-sata", },
4279 	{ .compatible = "marvell,orion-sata", },
4280 	{},
4281 };
4282 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4283 #endif
4284 
4285 static struct platform_driver mv_platform_driver = {
4286 	.probe		= mv_platform_probe,
4287 	.remove		= mv_platform_remove,
4288 	.suspend	= mv_platform_suspend,
4289 	.resume		= mv_platform_resume,
4290 	.driver		= {
4291 		.name = DRV_NAME,
4292 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4293 	},
4294 };
4295 
4296 
4297 #ifdef CONFIG_PCI
4298 static int mv_pci_init_one(struct pci_dev *pdev,
4299 			   const struct pci_device_id *ent);
4300 #ifdef CONFIG_PM_SLEEP
4301 static int mv_pci_device_resume(struct pci_dev *pdev);
4302 #endif
4303 
4304 
4305 static struct pci_driver mv_pci_driver = {
4306 	.name			= DRV_NAME,
4307 	.id_table		= mv_pci_tbl,
4308 	.probe			= mv_pci_init_one,
4309 	.remove			= ata_pci_remove_one,
4310 #ifdef CONFIG_PM_SLEEP
4311 	.suspend		= ata_pci_device_suspend,
4312 	.resume			= mv_pci_device_resume,
4313 #endif
4314 
4315 };
4316 
4317 /* move to PCI layer or libata core? */
4318 static int pci_go_64(struct pci_dev *pdev)
4319 {
4320 	int rc;
4321 
4322 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4323 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4324 		if (rc) {
4325 			rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4326 			if (rc) {
4327 				dev_err(&pdev->dev,
4328 					"64-bit DMA enable failed\n");
4329 				return rc;
4330 			}
4331 		}
4332 	} else {
4333 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4334 		if (rc) {
4335 			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4336 			return rc;
4337 		}
4338 		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4339 		if (rc) {
4340 			dev_err(&pdev->dev,
4341 				"32-bit consistent DMA enable failed\n");
4342 			return rc;
4343 		}
4344 	}
4345 
4346 	return rc;
4347 }
4348 
4349 /**
4350  *      mv_print_info - Dump key info to kernel log for perusal.
4351  *      @host: ATA host to print info about
4352  *
4353  *      FIXME: complete this.
4354  *
4355  *      LOCKING:
4356  *      Inherited from caller.
4357  */
4358 static void mv_print_info(struct ata_host *host)
4359 {
4360 	struct pci_dev *pdev = to_pci_dev(host->dev);
4361 	struct mv_host_priv *hpriv = host->private_data;
4362 	u8 scc;
4363 	const char *scc_s, *gen;
4364 
4365 	/* Use this to determine the HW stepping of the chip so we know
4366 	 * what errata to workaround
4367 	 */
4368 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4369 	if (scc == 0)
4370 		scc_s = "SCSI";
4371 	else if (scc == 0x01)
4372 		scc_s = "RAID";
4373 	else
4374 		scc_s = "?";
4375 
4376 	if (IS_GEN_I(hpriv))
4377 		gen = "I";
4378 	else if (IS_GEN_II(hpriv))
4379 		gen = "II";
4380 	else if (IS_GEN_IIE(hpriv))
4381 		gen = "IIE";
4382 	else
4383 		gen = "?";
4384 
4385 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4386 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4387 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4388 }
4389 
4390 /**
4391  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4392  *      @pdev: PCI device found
4393  *      @ent: PCI device ID entry for the matched host
4394  *
4395  *      LOCKING:
4396  *      Inherited from caller.
4397  */
4398 static int mv_pci_init_one(struct pci_dev *pdev,
4399 			   const struct pci_device_id *ent)
4400 {
4401 	unsigned int board_idx = (unsigned int)ent->driver_data;
4402 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4403 	struct ata_host *host;
4404 	struct mv_host_priv *hpriv;
4405 	int n_ports, port, rc;
4406 
4407 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4408 
4409 	/* allocate host */
4410 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4411 
4412 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4413 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4414 	if (!host || !hpriv)
4415 		return -ENOMEM;
4416 	host->private_data = hpriv;
4417 	hpriv->n_ports = n_ports;
4418 	hpriv->board_idx = board_idx;
4419 
4420 	/* acquire resources */
4421 	rc = pcim_enable_device(pdev);
4422 	if (rc)
4423 		return rc;
4424 
4425 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4426 	if (rc == -EBUSY)
4427 		pcim_pin_device(pdev);
4428 	if (rc)
4429 		return rc;
4430 	host->iomap = pcim_iomap_table(pdev);
4431 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4432 
4433 	rc = pci_go_64(pdev);
4434 	if (rc)
4435 		return rc;
4436 
4437 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4438 	if (rc)
4439 		return rc;
4440 
4441 	for (port = 0; port < host->n_ports; port++) {
4442 		struct ata_port *ap = host->ports[port];
4443 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4444 		unsigned int offset = port_mmio - hpriv->base;
4445 
4446 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4447 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4448 	}
4449 
4450 	/* initialize adapter */
4451 	rc = mv_init_host(host);
4452 	if (rc)
4453 		return rc;
4454 
4455 	/* Enable message-switched interrupts, if requested */
4456 	if (msi && pci_enable_msi(pdev) == 0)
4457 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4458 
4459 	mv_dump_pci_cfg(pdev, 0x68);
4460 	mv_print_info(host);
4461 
4462 	pci_set_master(pdev);
4463 	pci_try_set_mwi(pdev);
4464 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4465 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4466 }
4467 
4468 #ifdef CONFIG_PM_SLEEP
4469 static int mv_pci_device_resume(struct pci_dev *pdev)
4470 {
4471 	struct ata_host *host = pci_get_drvdata(pdev);
4472 	int rc;
4473 
4474 	rc = ata_pci_device_do_resume(pdev);
4475 	if (rc)
4476 		return rc;
4477 
4478 	/* initialize adapter */
4479 	rc = mv_init_host(host);
4480 	if (rc)
4481 		return rc;
4482 
4483 	ata_host_resume(host);
4484 
4485 	return 0;
4486 }
4487 #endif
4488 #endif
4489 
4490 static int __init mv_init(void)
4491 {
4492 	int rc = -ENODEV;
4493 #ifdef CONFIG_PCI
4494 	rc = pci_register_driver(&mv_pci_driver);
4495 	if (rc < 0)
4496 		return rc;
4497 #endif
4498 	rc = platform_driver_register(&mv_platform_driver);
4499 
4500 #ifdef CONFIG_PCI
4501 	if (rc < 0)
4502 		pci_unregister_driver(&mv_pci_driver);
4503 #endif
4504 	return rc;
4505 }
4506 
4507 static void __exit mv_exit(void)
4508 {
4509 #ifdef CONFIG_PCI
4510 	pci_unregister_driver(&mv_pci_driver);
4511 #endif
4512 	platform_driver_unregister(&mv_platform_driver);
4513 }
4514 
4515 MODULE_AUTHOR("Brett Russ");
4516 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4517 MODULE_LICENSE("GPL v2");
4518 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4519 MODULE_VERSION(DRV_VERSION);
4520 MODULE_ALIAS("platform:" DRV_NAME);
4521 
4522 module_init(mv_init);
4523 module_exit(mv_exit);
4524