1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sata_mv.c - Marvell SATA support 4 * 5 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 6 * Copyright 2005: EMC Corporation, all rights reserved. 7 * Copyright 2005 Red Hat, Inc. All rights reserved. 8 * 9 * Originally written by Brett Russ. 10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 11 * 12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 13 */ 14 15 /* 16 * sata_mv TODO list: 17 * 18 * --> Develop a low-power-consumption strategy, and implement it. 19 * 20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 21 * 22 * --> [Experiment, Marvell value added] Is it possible to use target 23 * mode to cross-connect two Linux boxes with Marvell cards? If so, 24 * creating LibATA target mode support would be very interesting. 25 * 26 * Target mode, for those without docs, is the ability to directly 27 * connect two SATA ports. 28 */ 29 30 /* 31 * 80x1-B2 errata PCI#11: 32 * 33 * Users of the 6041/6081 Rev.B2 chips (current is C0) 34 * should be careful to insert those cards only onto PCI-X bus #0, 35 * and only in device slots 0..7, not higher. The chips may not 36 * work correctly otherwise (note: this is a pretty rare condition). 37 */ 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/pci.h> 42 #include <linux/init.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/dmapool.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/device.h> 49 #include <linux/clk.h> 50 #include <linux/phy/phy.h> 51 #include <linux/platform_device.h> 52 #include <linux/ata_platform.h> 53 #include <linux/mbus.h> 54 #include <linux/bitops.h> 55 #include <linux/gfp.h> 56 #include <linux/of.h> 57 #include <linux/of_irq.h> 58 #include <scsi/scsi_host.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_device.h> 61 #include <linux/libata.h> 62 63 #define DRV_NAME "sata_mv" 64 #define DRV_VERSION "1.28" 65 66 /* 67 * module options 68 */ 69 70 #ifdef CONFIG_PCI 71 static int msi; 72 module_param(msi, int, S_IRUGO); 73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 74 #endif 75 76 static int irq_coalescing_io_count; 77 module_param(irq_coalescing_io_count, int, S_IRUGO); 78 MODULE_PARM_DESC(irq_coalescing_io_count, 79 "IRQ coalescing I/O count threshold (0..255)"); 80 81 static int irq_coalescing_usecs; 82 module_param(irq_coalescing_usecs, int, S_IRUGO); 83 MODULE_PARM_DESC(irq_coalescing_usecs, 84 "IRQ coalescing time threshold in usecs"); 85 86 enum { 87 /* BAR's are enumerated in terms of pci_resource_start() terms */ 88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 89 MV_IO_BAR = 2, /* offset 0x18: IO space */ 90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 91 92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 94 95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 99 100 MV_PCI_REG_BASE = 0, 101 102 /* 103 * Per-chip ("all ports") interrupt coalescing feature. 104 * This is only for GEN_II / GEN_IIE hardware. 105 * 106 * Coalescing defers the interrupt until either the IO_THRESHOLD 107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 108 */ 109 COAL_REG_BASE = 0x18000, 110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 112 113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 115 116 /* 117 * Registers for the (unused here) transaction coalescing feature: 118 */ 119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 121 122 SATAHC0_REG_BASE = 0x20000, 123 FLASH_CTL = 0x1046c, 124 GPIO_PORT_CTL = 0x104f0, 125 RESET_CFG = 0x180d8, 126 127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 131 132 MV_MAX_Q_DEPTH = 32, 133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 134 135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 136 * CRPB needs alignment on a 256B boundary. Size == 256B 137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 138 */ 139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 141 MV_MAX_SG_CT = 256, 142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 143 144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 145 MV_PORT_HC_SHIFT = 2, 146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 149 150 /* Host Flags */ 151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 152 153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 154 155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 156 157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 159 160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 161 162 CRQB_FLAG_READ = (1 << 0), 163 CRQB_TAG_SHIFT = 1, 164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 167 CRQB_CMD_ADDR_SHIFT = 8, 168 CRQB_CMD_CS = (0x2 << 11), 169 CRQB_CMD_LAST = (1 << 15), 170 171 CRPB_FLAG_STATUS_SHIFT = 8, 172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 174 175 EPRD_FLAG_END_OF_TBL = (1 << 31), 176 177 /* PCI interface registers */ 178 179 MV_PCI_COMMAND = 0xc00, 180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 182 183 PCI_MAIN_CMD_STS = 0xd30, 184 STOP_PCI_MASTER = (1 << 2), 185 PCI_MASTER_EMPTY = (1 << 3), 186 GLOB_SFT_RST = (1 << 4), 187 188 MV_PCI_MODE = 0xd00, 189 MV_PCI_MODE_MASK = 0x30, 190 191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 192 MV_PCI_DISC_TIMER = 0xd04, 193 MV_PCI_MSI_TRIGGER = 0xc38, 194 MV_PCI_SERR_MASK = 0xc28, 195 MV_PCI_XBAR_TMOUT = 0x1d04, 196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 198 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 199 MV_PCI_ERR_COMMAND = 0x1d50, 200 201 PCI_IRQ_CAUSE = 0x1d58, 202 PCI_IRQ_MASK = 0x1d5c, 203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 204 205 PCIE_IRQ_CAUSE = 0x1900, 206 PCIE_IRQ_MASK = 0x1910, 207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 208 209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 211 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 213 SOC_HC_MAIN_IRQ_MASK = 0x20024, 214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 220 PCI_ERR = (1 << 18), 221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 226 GPIO_INT = (1 << 22), 227 SELF_INT = (1 << 23), 228 TWSI_INT = (1 << 24), 229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 232 233 /* SATAHC registers */ 234 HC_CFG = 0x00, 235 236 HC_IRQ_CAUSE = 0x14, 237 DMA_IRQ = (1 << 0), /* shift by port # */ 238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 239 DEV_IRQ = (1 << 8), /* shift by port # */ 240 241 /* 242 * Per-HC (Host-Controller) interrupt coalescing feature. 243 * This is present on all chip generations. 244 * 245 * Coalescing defers the interrupt until either the IO_THRESHOLD 246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 247 */ 248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 250 251 SOC_LED_CTRL = 0x2c, 252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 254 /* with dev activity LED */ 255 256 /* Shadow block registers */ 257 SHD_BLK = 0x100, 258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 259 260 /* SATA registers */ 261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 262 SATA_ACTIVE = 0x350, 263 FIS_IRQ_CAUSE = 0x364, 264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 265 266 LTMODE = 0x30c, /* requires read-after-write */ 267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 268 269 PHY_MODE2 = 0x330, 270 PHY_MODE3 = 0x310, 271 272 PHY_MODE4 = 0x314, /* requires read-after-write */ 273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 277 278 SATA_IFCTL = 0x344, 279 SATA_TESTCTL = 0x348, 280 SATA_IFSTAT = 0x34c, 281 VENDOR_UNIQUE_FIS = 0x35c, 282 283 FISCFG = 0x360, 284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 286 287 PHY_MODE9_GEN2 = 0x398, 288 PHY_MODE9_GEN1 = 0x39c, 289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 290 291 MV5_PHY_MODE = 0x74, 292 MV5_LTMODE = 0x30, 293 MV5_PHY_CTL = 0x0C, 294 SATA_IFCFG = 0x050, 295 LP_PHY_CTL = 0x058, 296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0), 297 LP_PHY_CTL_PIN_PU_RX = (1 << 1), 298 LP_PHY_CTL_PIN_PU_TX = (1 << 2), 299 LP_PHY_CTL_GEN_TX_3G = (1 << 5), 300 LP_PHY_CTL_GEN_RX_3G = (1 << 9), 301 302 MV_M2_PREAMP_MASK = 0x7e0, 303 304 /* Port registers */ 305 EDMA_CFG = 0, 306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 313 314 EDMA_ERR_IRQ_CAUSE = 0x8, 315 EDMA_ERR_IRQ_MASK = 0xc, 316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 318 EDMA_ERR_DEV = (1 << 2), /* device error */ 319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 330 331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 336 337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 338 339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 345 346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 347 348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 349 EDMA_ERR_OVERRUN_5 = (1 << 5), 350 EDMA_ERR_UNDERRUN_5 = (1 << 6), 351 352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 353 EDMA_ERR_LNK_CTRL_RX_1 | 354 EDMA_ERR_LNK_CTRL_RX_3 | 355 EDMA_ERR_LNK_CTRL_TX, 356 357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 358 EDMA_ERR_PRD_PAR | 359 EDMA_ERR_DEV_DCON | 360 EDMA_ERR_DEV_CON | 361 EDMA_ERR_SERR | 362 EDMA_ERR_SELF_DIS | 363 EDMA_ERR_CRQB_PAR | 364 EDMA_ERR_CRPB_PAR | 365 EDMA_ERR_INTRL_PAR | 366 EDMA_ERR_IORDY | 367 EDMA_ERR_LNK_CTRL_RX_2 | 368 EDMA_ERR_LNK_DATA_RX | 369 EDMA_ERR_LNK_DATA_TX | 370 EDMA_ERR_TRANS_PROTO, 371 372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 373 EDMA_ERR_PRD_PAR | 374 EDMA_ERR_DEV_DCON | 375 EDMA_ERR_DEV_CON | 376 EDMA_ERR_OVERRUN_5 | 377 EDMA_ERR_UNDERRUN_5 | 378 EDMA_ERR_SELF_DIS_5 | 379 EDMA_ERR_CRQB_PAR | 380 EDMA_ERR_CRPB_PAR | 381 EDMA_ERR_INTRL_PAR | 382 EDMA_ERR_IORDY, 383 384 EDMA_REQ_Q_BASE_HI = 0x10, 385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 386 387 EDMA_REQ_Q_OUT_PTR = 0x18, 388 EDMA_REQ_Q_PTR_SHIFT = 5, 389 390 EDMA_RSP_Q_BASE_HI = 0x1c, 391 EDMA_RSP_Q_IN_PTR = 0x20, 392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 393 EDMA_RSP_Q_PTR_SHIFT = 3, 394 395 EDMA_CMD = 0x28, /* EDMA command register */ 396 EDMA_EN = (1 << 0), /* enable EDMA */ 397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 399 400 EDMA_STATUS = 0x30, /* EDMA engine status */ 401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 403 404 EDMA_IORDY_TMOUT = 0x34, 405 EDMA_ARB_CFG = 0x38, 406 407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 409 410 BMDMA_CMD = 0x224, /* bmdma command register */ 411 BMDMA_STATUS = 0x228, /* bmdma status register */ 412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 414 415 /* Host private flags (hp_flags) */ 416 MV_HP_FLAG_MSI = (1 << 0), 417 MV_HP_ERRATA_50XXB0 = (1 << 1), 418 MV_HP_ERRATA_50XXB2 = (1 << 2), 419 MV_HP_ERRATA_60X1B2 = (1 << 3), 420 MV_HP_ERRATA_60X1C0 = (1 << 4), 421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */ 429 430 /* Port private flags (pp_flags) */ 431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 436 }; 437 438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 443 444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 446 447 enum { 448 /* DMA boundary 0xffff is required by the s/g splitting 449 * we need on /length/ in mv_fill-sg(). 450 */ 451 MV_DMA_BOUNDARY = 0xffffU, 452 453 /* mask of register bits containing lower 32 bits 454 * of EDMA request queue DMA address 455 */ 456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 457 458 /* ditto, for response queue */ 459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 460 }; 461 462 enum chip_type { 463 chip_504x, 464 chip_508x, 465 chip_5080, 466 chip_604x, 467 chip_608x, 468 chip_6042, 469 chip_7042, 470 chip_soc, 471 }; 472 473 /* Command ReQuest Block: 32B */ 474 struct mv_crqb { 475 __le32 sg_addr; 476 __le32 sg_addr_hi; 477 __le16 ctrl_flags; 478 __le16 ata_cmd[11]; 479 }; 480 481 struct mv_crqb_iie { 482 __le32 addr; 483 __le32 addr_hi; 484 __le32 flags; 485 __le32 len; 486 __le32 ata_cmd[4]; 487 }; 488 489 /* Command ResPonse Block: 8B */ 490 struct mv_crpb { 491 __le16 id; 492 __le16 flags; 493 __le32 tmstmp; 494 }; 495 496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 497 struct mv_sg { 498 __le32 addr; 499 __le32 flags_size; 500 __le32 addr_hi; 501 __le32 reserved; 502 }; 503 504 /* 505 * We keep a local cache of a few frequently accessed port 506 * registers here, to avoid having to read them (very slow) 507 * when switching between EDMA and non-EDMA modes. 508 */ 509 struct mv_cached_regs { 510 u32 fiscfg; 511 u32 ltmode; 512 u32 haltcond; 513 u32 unknown_rsvd; 514 }; 515 516 struct mv_port_priv { 517 struct mv_crqb *crqb; 518 dma_addr_t crqb_dma; 519 struct mv_crpb *crpb; 520 dma_addr_t crpb_dma; 521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 523 524 unsigned int req_idx; 525 unsigned int resp_idx; 526 527 u32 pp_flags; 528 struct mv_cached_regs cached; 529 unsigned int delayed_eh_pmp_map; 530 }; 531 532 struct mv_port_signal { 533 u32 amps; 534 u32 pre; 535 }; 536 537 struct mv_host_priv { 538 u32 hp_flags; 539 unsigned int board_idx; 540 u32 main_irq_mask; 541 struct mv_port_signal signal[8]; 542 const struct mv_hw_ops *ops; 543 int n_ports; 544 void __iomem *base; 545 void __iomem *main_irq_cause_addr; 546 void __iomem *main_irq_mask_addr; 547 u32 irq_cause_offset; 548 u32 irq_mask_offset; 549 u32 unmask_all_irqs; 550 551 /* 552 * Needed on some devices that require their clocks to be enabled. 553 * These are optional: if the platform device does not have any 554 * clocks, they won't be used. Also, if the underlying hardware 555 * does not support the common clock framework (CONFIG_HAVE_CLK=n), 556 * all the clock operations become no-ops (see clk.h). 557 */ 558 struct clk *clk; 559 struct clk **port_clks; 560 /* 561 * Some devices have a SATA PHY which can be enabled/disabled 562 * in order to save power. These are optional: if the platform 563 * devices does not have any phy, they won't be used. 564 */ 565 struct phy **port_phys; 566 /* 567 * These consistent DMA memory pools give us guaranteed 568 * alignment for hardware-accessed data structures, 569 * and less memory waste in accomplishing the alignment. 570 */ 571 struct dma_pool *crqb_pool; 572 struct dma_pool *crpb_pool; 573 struct dma_pool *sg_tbl_pool; 574 }; 575 576 struct mv_hw_ops { 577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 578 unsigned int port); 579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 581 void __iomem *mmio); 582 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 583 unsigned int n_hc); 584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 586 }; 587 588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 592 static int mv_port_start(struct ata_port *ap); 593 static void mv_port_stop(struct ata_port *ap); 594 static int mv_qc_defer(struct ata_queued_cmd *qc); 595 static void mv_qc_prep(struct ata_queued_cmd *qc); 596 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 598 static int mv_hardreset(struct ata_link *link, unsigned int *class, 599 unsigned long deadline); 600 static void mv_eh_freeze(struct ata_port *ap); 601 static void mv_eh_thaw(struct ata_port *ap); 602 static void mv6_dev_config(struct ata_device *dev); 603 604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 605 unsigned int port); 606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 608 void __iomem *mmio); 609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 610 unsigned int n_hc); 611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 613 614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 615 unsigned int port); 616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 618 void __iomem *mmio); 619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 620 unsigned int n_hc); 621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 623 void __iomem *mmio); 624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 625 void __iomem *mmio); 626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 627 void __iomem *mmio, unsigned int n_hc); 628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 629 void __iomem *mmio); 630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 632 void __iomem *mmio, unsigned int port); 633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 635 unsigned int port_no); 636 static int mv_stop_edma(struct ata_port *ap); 637 static int mv_stop_edma_engine(void __iomem *port_mmio); 638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 639 640 static void mv_pmp_select(struct ata_port *ap, int pmp); 641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 642 unsigned long deadline); 643 static int mv_softreset(struct ata_link *link, unsigned int *class, 644 unsigned long deadline); 645 static void mv_pmp_error_handler(struct ata_port *ap); 646 static void mv_process_crpb_entries(struct ata_port *ap, 647 struct mv_port_priv *pp); 648 649 static void mv_sff_irq_clear(struct ata_port *ap); 650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 651 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 652 static void mv_bmdma_start(struct ata_queued_cmd *qc); 653 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 654 static u8 mv_bmdma_status(struct ata_port *ap); 655 static u8 mv_sff_check_status(struct ata_port *ap); 656 657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 658 * because we have to allow room for worst case splitting of 659 * PRDs for 64K boundaries in mv_fill_sg(). 660 */ 661 #ifdef CONFIG_PCI 662 static struct scsi_host_template mv5_sht = { 663 ATA_BASE_SHT(DRV_NAME), 664 .sg_tablesize = MV_MAX_SG_CT / 2, 665 .dma_boundary = MV_DMA_BOUNDARY, 666 }; 667 #endif 668 static struct scsi_host_template mv6_sht = { 669 ATA_NCQ_SHT(DRV_NAME), 670 .can_queue = MV_MAX_Q_DEPTH - 1, 671 .sg_tablesize = MV_MAX_SG_CT / 2, 672 .dma_boundary = MV_DMA_BOUNDARY, 673 }; 674 675 static struct ata_port_operations mv5_ops = { 676 .inherits = &ata_sff_port_ops, 677 678 .lost_interrupt = ATA_OP_NULL, 679 680 .qc_defer = mv_qc_defer, 681 .qc_prep = mv_qc_prep, 682 .qc_issue = mv_qc_issue, 683 684 .freeze = mv_eh_freeze, 685 .thaw = mv_eh_thaw, 686 .hardreset = mv_hardreset, 687 688 .scr_read = mv5_scr_read, 689 .scr_write = mv5_scr_write, 690 691 .port_start = mv_port_start, 692 .port_stop = mv_port_stop, 693 }; 694 695 static struct ata_port_operations mv6_ops = { 696 .inherits = &ata_bmdma_port_ops, 697 698 .lost_interrupt = ATA_OP_NULL, 699 700 .qc_defer = mv_qc_defer, 701 .qc_prep = mv_qc_prep, 702 .qc_issue = mv_qc_issue, 703 704 .dev_config = mv6_dev_config, 705 706 .freeze = mv_eh_freeze, 707 .thaw = mv_eh_thaw, 708 .hardreset = mv_hardreset, 709 .softreset = mv_softreset, 710 .pmp_hardreset = mv_pmp_hardreset, 711 .pmp_softreset = mv_softreset, 712 .error_handler = mv_pmp_error_handler, 713 714 .scr_read = mv_scr_read, 715 .scr_write = mv_scr_write, 716 717 .sff_check_status = mv_sff_check_status, 718 .sff_irq_clear = mv_sff_irq_clear, 719 .check_atapi_dma = mv_check_atapi_dma, 720 .bmdma_setup = mv_bmdma_setup, 721 .bmdma_start = mv_bmdma_start, 722 .bmdma_stop = mv_bmdma_stop, 723 .bmdma_status = mv_bmdma_status, 724 725 .port_start = mv_port_start, 726 .port_stop = mv_port_stop, 727 }; 728 729 static struct ata_port_operations mv_iie_ops = { 730 .inherits = &mv6_ops, 731 .dev_config = ATA_OP_NULL, 732 .qc_prep = mv_qc_prep_iie, 733 }; 734 735 static const struct ata_port_info mv_port_info[] = { 736 { /* chip_504x */ 737 .flags = MV_GEN_I_FLAGS, 738 .pio_mask = ATA_PIO4, 739 .udma_mask = ATA_UDMA6, 740 .port_ops = &mv5_ops, 741 }, 742 { /* chip_508x */ 743 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 744 .pio_mask = ATA_PIO4, 745 .udma_mask = ATA_UDMA6, 746 .port_ops = &mv5_ops, 747 }, 748 { /* chip_5080 */ 749 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 750 .pio_mask = ATA_PIO4, 751 .udma_mask = ATA_UDMA6, 752 .port_ops = &mv5_ops, 753 }, 754 { /* chip_604x */ 755 .flags = MV_GEN_II_FLAGS, 756 .pio_mask = ATA_PIO4, 757 .udma_mask = ATA_UDMA6, 758 .port_ops = &mv6_ops, 759 }, 760 { /* chip_608x */ 761 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 762 .pio_mask = ATA_PIO4, 763 .udma_mask = ATA_UDMA6, 764 .port_ops = &mv6_ops, 765 }, 766 { /* chip_6042 */ 767 .flags = MV_GEN_IIE_FLAGS, 768 .pio_mask = ATA_PIO4, 769 .udma_mask = ATA_UDMA6, 770 .port_ops = &mv_iie_ops, 771 }, 772 { /* chip_7042 */ 773 .flags = MV_GEN_IIE_FLAGS, 774 .pio_mask = ATA_PIO4, 775 .udma_mask = ATA_UDMA6, 776 .port_ops = &mv_iie_ops, 777 }, 778 { /* chip_soc */ 779 .flags = MV_GEN_IIE_FLAGS, 780 .pio_mask = ATA_PIO4, 781 .udma_mask = ATA_UDMA6, 782 .port_ops = &mv_iie_ops, 783 }, 784 }; 785 786 static const struct pci_device_id mv_pci_tbl[] = { 787 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 788 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 789 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 790 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 791 /* RocketRAID 1720/174x have different identifiers */ 792 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 793 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 794 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 795 796 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 797 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 798 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 799 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 800 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 801 802 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 803 804 /* Adaptec 1430SA */ 805 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 806 807 /* Marvell 7042 support */ 808 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 809 810 /* Highpoint RocketRAID PCIe series */ 811 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 812 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 813 814 { } /* terminate list */ 815 }; 816 817 static const struct mv_hw_ops mv5xxx_ops = { 818 .phy_errata = mv5_phy_errata, 819 .enable_leds = mv5_enable_leds, 820 .read_preamp = mv5_read_preamp, 821 .reset_hc = mv5_reset_hc, 822 .reset_flash = mv5_reset_flash, 823 .reset_bus = mv5_reset_bus, 824 }; 825 826 static const struct mv_hw_ops mv6xxx_ops = { 827 .phy_errata = mv6_phy_errata, 828 .enable_leds = mv6_enable_leds, 829 .read_preamp = mv6_read_preamp, 830 .reset_hc = mv6_reset_hc, 831 .reset_flash = mv6_reset_flash, 832 .reset_bus = mv_reset_pci_bus, 833 }; 834 835 static const struct mv_hw_ops mv_soc_ops = { 836 .phy_errata = mv6_phy_errata, 837 .enable_leds = mv_soc_enable_leds, 838 .read_preamp = mv_soc_read_preamp, 839 .reset_hc = mv_soc_reset_hc, 840 .reset_flash = mv_soc_reset_flash, 841 .reset_bus = mv_soc_reset_bus, 842 }; 843 844 static const struct mv_hw_ops mv_soc_65n_ops = { 845 .phy_errata = mv_soc_65n_phy_errata, 846 .enable_leds = mv_soc_enable_leds, 847 .reset_hc = mv_soc_reset_hc, 848 .reset_flash = mv_soc_reset_flash, 849 .reset_bus = mv_soc_reset_bus, 850 }; 851 852 /* 853 * Functions 854 */ 855 856 static inline void writelfl(unsigned long data, void __iomem *addr) 857 { 858 writel(data, addr); 859 (void) readl(addr); /* flush to avoid PCI posted write */ 860 } 861 862 static inline unsigned int mv_hc_from_port(unsigned int port) 863 { 864 return port >> MV_PORT_HC_SHIFT; 865 } 866 867 static inline unsigned int mv_hardport_from_port(unsigned int port) 868 { 869 return port & MV_PORT_MASK; 870 } 871 872 /* 873 * Consolidate some rather tricky bit shift calculations. 874 * This is hot-path stuff, so not a function. 875 * Simple code, with two return values, so macro rather than inline. 876 * 877 * port is the sole input, in range 0..7. 878 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 879 * hardport is the other output, in range 0..3. 880 * 881 * Note that port and hardport may be the same variable in some cases. 882 */ 883 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 884 { \ 885 shift = mv_hc_from_port(port) * HC_SHIFT; \ 886 hardport = mv_hardport_from_port(port); \ 887 shift += hardport * 2; \ 888 } 889 890 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 891 { 892 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 893 } 894 895 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 896 unsigned int port) 897 { 898 return mv_hc_base(base, mv_hc_from_port(port)); 899 } 900 901 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 902 { 903 return mv_hc_base_from_port(base, port) + 904 MV_SATAHC_ARBTR_REG_SZ + 905 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 906 } 907 908 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 909 { 910 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 911 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 912 913 return hc_mmio + ofs; 914 } 915 916 static inline void __iomem *mv_host_base(struct ata_host *host) 917 { 918 struct mv_host_priv *hpriv = host->private_data; 919 return hpriv->base; 920 } 921 922 static inline void __iomem *mv_ap_base(struct ata_port *ap) 923 { 924 return mv_port_base(mv_host_base(ap->host), ap->port_no); 925 } 926 927 static inline int mv_get_hc_count(unsigned long port_flags) 928 { 929 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 930 } 931 932 /** 933 * mv_save_cached_regs - (re-)initialize cached port registers 934 * @ap: the port whose registers we are caching 935 * 936 * Initialize the local cache of port registers, 937 * so that reading them over and over again can 938 * be avoided on the hotter paths of this driver. 939 * This saves a few microseconds each time we switch 940 * to/from EDMA mode to perform (eg.) a drive cache flush. 941 */ 942 static void mv_save_cached_regs(struct ata_port *ap) 943 { 944 void __iomem *port_mmio = mv_ap_base(ap); 945 struct mv_port_priv *pp = ap->private_data; 946 947 pp->cached.fiscfg = readl(port_mmio + FISCFG); 948 pp->cached.ltmode = readl(port_mmio + LTMODE); 949 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 950 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 951 } 952 953 /** 954 * mv_write_cached_reg - write to a cached port register 955 * @addr: hardware address of the register 956 * @old: pointer to cached value of the register 957 * @new: new value for the register 958 * 959 * Write a new value to a cached register, 960 * but only if the value is different from before. 961 */ 962 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 963 { 964 if (new != *old) { 965 unsigned long laddr; 966 *old = new; 967 /* 968 * Workaround for 88SX60x1-B2 FEr SATA#13: 969 * Read-after-write is needed to prevent generating 64-bit 970 * write cycles on the PCI bus for SATA interface registers 971 * at offsets ending in 0x4 or 0xc. 972 * 973 * Looks like a lot of fuss, but it avoids an unnecessary 974 * +1 usec read-after-write delay for unaffected registers. 975 */ 976 laddr = (unsigned long)addr & 0xffff; 977 if (laddr >= 0x300 && laddr <= 0x33c) { 978 laddr &= 0x000f; 979 if (laddr == 0x4 || laddr == 0xc) { 980 writelfl(new, addr); /* read after write */ 981 return; 982 } 983 } 984 writel(new, addr); /* unaffected by the errata */ 985 } 986 } 987 988 static void mv_set_edma_ptrs(void __iomem *port_mmio, 989 struct mv_host_priv *hpriv, 990 struct mv_port_priv *pp) 991 { 992 u32 index; 993 994 /* 995 * initialize request queue 996 */ 997 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 998 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 999 1000 WARN_ON(pp->crqb_dma & 0x3ff); 1001 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 1002 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 1003 port_mmio + EDMA_REQ_Q_IN_PTR); 1004 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 1005 1006 /* 1007 * initialize response queue 1008 */ 1009 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1010 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1011 1012 WARN_ON(pp->crpb_dma & 0xff); 1013 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1014 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1015 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1016 port_mmio + EDMA_RSP_Q_OUT_PTR); 1017 } 1018 1019 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1020 { 1021 /* 1022 * When writing to the main_irq_mask in hardware, 1023 * we must ensure exclusivity between the interrupt coalescing bits 1024 * and the corresponding individual port DONE_IRQ bits. 1025 * 1026 * Note that this register is really an "IRQ enable" register, 1027 * not an "IRQ mask" register as Marvell's naming might suggest. 1028 */ 1029 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1030 mask &= ~DONE_IRQ_0_3; 1031 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1032 mask &= ~DONE_IRQ_4_7; 1033 writelfl(mask, hpriv->main_irq_mask_addr); 1034 } 1035 1036 static void mv_set_main_irq_mask(struct ata_host *host, 1037 u32 disable_bits, u32 enable_bits) 1038 { 1039 struct mv_host_priv *hpriv = host->private_data; 1040 u32 old_mask, new_mask; 1041 1042 old_mask = hpriv->main_irq_mask; 1043 new_mask = (old_mask & ~disable_bits) | enable_bits; 1044 if (new_mask != old_mask) { 1045 hpriv->main_irq_mask = new_mask; 1046 mv_write_main_irq_mask(new_mask, hpriv); 1047 } 1048 } 1049 1050 static void mv_enable_port_irqs(struct ata_port *ap, 1051 unsigned int port_bits) 1052 { 1053 unsigned int shift, hardport, port = ap->port_no; 1054 u32 disable_bits, enable_bits; 1055 1056 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1057 1058 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1059 enable_bits = port_bits << shift; 1060 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1061 } 1062 1063 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1064 void __iomem *port_mmio, 1065 unsigned int port_irqs) 1066 { 1067 struct mv_host_priv *hpriv = ap->host->private_data; 1068 int hardport = mv_hardport_from_port(ap->port_no); 1069 void __iomem *hc_mmio = mv_hc_base_from_port( 1070 mv_host_base(ap->host), ap->port_no); 1071 u32 hc_irq_cause; 1072 1073 /* clear EDMA event indicators, if any */ 1074 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1075 1076 /* clear pending irq events */ 1077 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1078 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1079 1080 /* clear FIS IRQ Cause */ 1081 if (IS_GEN_IIE(hpriv)) 1082 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1083 1084 mv_enable_port_irqs(ap, port_irqs); 1085 } 1086 1087 static void mv_set_irq_coalescing(struct ata_host *host, 1088 unsigned int count, unsigned int usecs) 1089 { 1090 struct mv_host_priv *hpriv = host->private_data; 1091 void __iomem *mmio = hpriv->base, *hc_mmio; 1092 u32 coal_enable = 0; 1093 unsigned long flags; 1094 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1095 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1096 ALL_PORTS_COAL_DONE; 1097 1098 /* Disable IRQ coalescing if either threshold is zero */ 1099 if (!usecs || !count) { 1100 clks = count = 0; 1101 } else { 1102 /* Respect maximum limits of the hardware */ 1103 clks = usecs * COAL_CLOCKS_PER_USEC; 1104 if (clks > MAX_COAL_TIME_THRESHOLD) 1105 clks = MAX_COAL_TIME_THRESHOLD; 1106 if (count > MAX_COAL_IO_COUNT) 1107 count = MAX_COAL_IO_COUNT; 1108 } 1109 1110 spin_lock_irqsave(&host->lock, flags); 1111 mv_set_main_irq_mask(host, coal_disable, 0); 1112 1113 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1114 /* 1115 * GEN_II/GEN_IIE with dual host controllers: 1116 * one set of global thresholds for the entire chip. 1117 */ 1118 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1119 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1120 /* clear leftover coal IRQ bit */ 1121 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1122 if (count) 1123 coal_enable = ALL_PORTS_COAL_DONE; 1124 clks = count = 0; /* force clearing of regular regs below */ 1125 } 1126 1127 /* 1128 * All chips: independent thresholds for each HC on the chip. 1129 */ 1130 hc_mmio = mv_hc_base_from_port(mmio, 0); 1131 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1132 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1133 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1134 if (count) 1135 coal_enable |= PORTS_0_3_COAL_DONE; 1136 if (is_dual_hc) { 1137 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1138 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1139 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1140 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1141 if (count) 1142 coal_enable |= PORTS_4_7_COAL_DONE; 1143 } 1144 1145 mv_set_main_irq_mask(host, 0, coal_enable); 1146 spin_unlock_irqrestore(&host->lock, flags); 1147 } 1148 1149 /** 1150 * mv_start_edma - Enable eDMA engine 1151 * @base: port base address 1152 * @pp: port private data 1153 * 1154 * Verify the local cache of the eDMA state is accurate with a 1155 * WARN_ON. 1156 * 1157 * LOCKING: 1158 * Inherited from caller. 1159 */ 1160 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1161 struct mv_port_priv *pp, u8 protocol) 1162 { 1163 int want_ncq = (protocol == ATA_PROT_NCQ); 1164 1165 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1166 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1167 if (want_ncq != using_ncq) 1168 mv_stop_edma(ap); 1169 } 1170 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1171 struct mv_host_priv *hpriv = ap->host->private_data; 1172 1173 mv_edma_cfg(ap, want_ncq, 1); 1174 1175 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1176 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1177 1178 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1179 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1180 } 1181 } 1182 1183 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1184 { 1185 void __iomem *port_mmio = mv_ap_base(ap); 1186 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1187 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1188 int i; 1189 1190 /* 1191 * Wait for the EDMA engine to finish transactions in progress. 1192 * No idea what a good "timeout" value might be, but measurements 1193 * indicate that it often requires hundreds of microseconds 1194 * with two drives in-use. So we use the 15msec value above 1195 * as a rough guess at what even more drives might require. 1196 */ 1197 for (i = 0; i < timeout; ++i) { 1198 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1199 if ((edma_stat & empty_idle) == empty_idle) 1200 break; 1201 udelay(per_loop); 1202 } 1203 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1204 } 1205 1206 /** 1207 * mv_stop_edma_engine - Disable eDMA engine 1208 * @port_mmio: io base address 1209 * 1210 * LOCKING: 1211 * Inherited from caller. 1212 */ 1213 static int mv_stop_edma_engine(void __iomem *port_mmio) 1214 { 1215 int i; 1216 1217 /* Disable eDMA. The disable bit auto clears. */ 1218 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1219 1220 /* Wait for the chip to confirm eDMA is off. */ 1221 for (i = 10000; i > 0; i--) { 1222 u32 reg = readl(port_mmio + EDMA_CMD); 1223 if (!(reg & EDMA_EN)) 1224 return 0; 1225 udelay(10); 1226 } 1227 return -EIO; 1228 } 1229 1230 static int mv_stop_edma(struct ata_port *ap) 1231 { 1232 void __iomem *port_mmio = mv_ap_base(ap); 1233 struct mv_port_priv *pp = ap->private_data; 1234 int err = 0; 1235 1236 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1237 return 0; 1238 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1239 mv_wait_for_edma_empty_idle(ap); 1240 if (mv_stop_edma_engine(port_mmio)) { 1241 ata_port_err(ap, "Unable to stop eDMA\n"); 1242 err = -EIO; 1243 } 1244 mv_edma_cfg(ap, 0, 0); 1245 return err; 1246 } 1247 1248 #ifdef ATA_DEBUG 1249 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1250 { 1251 int b, w; 1252 for (b = 0; b < bytes; ) { 1253 DPRINTK("%p: ", start + b); 1254 for (w = 0; b < bytes && w < 4; w++) { 1255 printk("%08x ", readl(start + b)); 1256 b += sizeof(u32); 1257 } 1258 printk("\n"); 1259 } 1260 } 1261 #endif 1262 #if defined(ATA_DEBUG) || defined(CONFIG_PCI) 1263 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1264 { 1265 #ifdef ATA_DEBUG 1266 int b, w; 1267 u32 dw; 1268 for (b = 0; b < bytes; ) { 1269 DPRINTK("%02x: ", b); 1270 for (w = 0; b < bytes && w < 4; w++) { 1271 (void) pci_read_config_dword(pdev, b, &dw); 1272 printk("%08x ", dw); 1273 b += sizeof(u32); 1274 } 1275 printk("\n"); 1276 } 1277 #endif 1278 } 1279 #endif 1280 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1281 struct pci_dev *pdev) 1282 { 1283 #ifdef ATA_DEBUG 1284 void __iomem *hc_base = mv_hc_base(mmio_base, 1285 port >> MV_PORT_HC_SHIFT); 1286 void __iomem *port_base; 1287 int start_port, num_ports, p, start_hc, num_hcs, hc; 1288 1289 if (0 > port) { 1290 start_hc = start_port = 0; 1291 num_ports = 8; /* shld be benign for 4 port devs */ 1292 num_hcs = 2; 1293 } else { 1294 start_hc = port >> MV_PORT_HC_SHIFT; 1295 start_port = port; 1296 num_ports = num_hcs = 1; 1297 } 1298 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1299 num_ports > 1 ? num_ports - 1 : start_port); 1300 1301 if (NULL != pdev) { 1302 DPRINTK("PCI config space regs:\n"); 1303 mv_dump_pci_cfg(pdev, 0x68); 1304 } 1305 DPRINTK("PCI regs:\n"); 1306 mv_dump_mem(mmio_base+0xc00, 0x3c); 1307 mv_dump_mem(mmio_base+0xd00, 0x34); 1308 mv_dump_mem(mmio_base+0xf00, 0x4); 1309 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1310 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1311 hc_base = mv_hc_base(mmio_base, hc); 1312 DPRINTK("HC regs (HC %i):\n", hc); 1313 mv_dump_mem(hc_base, 0x1c); 1314 } 1315 for (p = start_port; p < start_port + num_ports; p++) { 1316 port_base = mv_port_base(mmio_base, p); 1317 DPRINTK("EDMA regs (port %i):\n", p); 1318 mv_dump_mem(port_base, 0x54); 1319 DPRINTK("SATA regs (port %i):\n", p); 1320 mv_dump_mem(port_base+0x300, 0x60); 1321 } 1322 #endif 1323 } 1324 1325 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1326 { 1327 unsigned int ofs; 1328 1329 switch (sc_reg_in) { 1330 case SCR_STATUS: 1331 case SCR_CONTROL: 1332 case SCR_ERROR: 1333 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1334 break; 1335 case SCR_ACTIVE: 1336 ofs = SATA_ACTIVE; /* active is not with the others */ 1337 break; 1338 default: 1339 ofs = 0xffffffffU; 1340 break; 1341 } 1342 return ofs; 1343 } 1344 1345 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1346 { 1347 unsigned int ofs = mv_scr_offset(sc_reg_in); 1348 1349 if (ofs != 0xffffffffU) { 1350 *val = readl(mv_ap_base(link->ap) + ofs); 1351 return 0; 1352 } else 1353 return -EINVAL; 1354 } 1355 1356 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1357 { 1358 unsigned int ofs = mv_scr_offset(sc_reg_in); 1359 1360 if (ofs != 0xffffffffU) { 1361 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1362 struct mv_host_priv *hpriv = link->ap->host->private_data; 1363 if (sc_reg_in == SCR_CONTROL) { 1364 /* 1365 * Workaround for 88SX60x1 FEr SATA#26: 1366 * 1367 * COMRESETs have to take care not to accidentally 1368 * put the drive to sleep when writing SCR_CONTROL. 1369 * Setting bits 12..15 prevents this problem. 1370 * 1371 * So if we see an outbound COMMRESET, set those bits. 1372 * Ditto for the followup write that clears the reset. 1373 * 1374 * The proprietary driver does this for 1375 * all chip versions, and so do we. 1376 */ 1377 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1378 val |= 0xf000; 1379 1380 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) { 1381 void __iomem *lp_phy_addr = 1382 mv_ap_base(link->ap) + LP_PHY_CTL; 1383 /* 1384 * Set PHY speed according to SControl speed. 1385 */ 1386 u32 lp_phy_val = 1387 LP_PHY_CTL_PIN_PU_PLL | 1388 LP_PHY_CTL_PIN_PU_RX | 1389 LP_PHY_CTL_PIN_PU_TX; 1390 1391 if ((val & 0xf0) != 0x10) 1392 lp_phy_val |= 1393 LP_PHY_CTL_GEN_TX_3G | 1394 LP_PHY_CTL_GEN_RX_3G; 1395 1396 writelfl(lp_phy_val, lp_phy_addr); 1397 } 1398 } 1399 writelfl(val, addr); 1400 return 0; 1401 } else 1402 return -EINVAL; 1403 } 1404 1405 static void mv6_dev_config(struct ata_device *adev) 1406 { 1407 /* 1408 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1409 * 1410 * Gen-II does not support NCQ over a port multiplier 1411 * (no FIS-based switching). 1412 */ 1413 if (adev->flags & ATA_DFLAG_NCQ) { 1414 if (sata_pmp_attached(adev->link->ap)) { 1415 adev->flags &= ~ATA_DFLAG_NCQ; 1416 ata_dev_info(adev, 1417 "NCQ disabled for command-based switching\n"); 1418 } 1419 } 1420 } 1421 1422 static int mv_qc_defer(struct ata_queued_cmd *qc) 1423 { 1424 struct ata_link *link = qc->dev->link; 1425 struct ata_port *ap = link->ap; 1426 struct mv_port_priv *pp = ap->private_data; 1427 1428 /* 1429 * Don't allow new commands if we're in a delayed EH state 1430 * for NCQ and/or FIS-based switching. 1431 */ 1432 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1433 return ATA_DEFER_PORT; 1434 1435 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1436 * can run concurrently. 1437 * set excl_link when we want to send a PIO command in DMA mode 1438 * or a non-NCQ command in NCQ mode. 1439 * When we receive a command from that link, and there are no 1440 * outstanding commands, mark a flag to clear excl_link and let 1441 * the command go through. 1442 */ 1443 if (unlikely(ap->excl_link)) { 1444 if (link == ap->excl_link) { 1445 if (ap->nr_active_links) 1446 return ATA_DEFER_PORT; 1447 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1448 return 0; 1449 } else 1450 return ATA_DEFER_PORT; 1451 } 1452 1453 /* 1454 * If the port is completely idle, then allow the new qc. 1455 */ 1456 if (ap->nr_active_links == 0) 1457 return 0; 1458 1459 /* 1460 * The port is operating in host queuing mode (EDMA) with NCQ 1461 * enabled, allow multiple NCQ commands. EDMA also allows 1462 * queueing multiple DMA commands but libata core currently 1463 * doesn't allow it. 1464 */ 1465 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1466 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1467 if (ata_is_ncq(qc->tf.protocol)) 1468 return 0; 1469 else { 1470 ap->excl_link = link; 1471 return ATA_DEFER_PORT; 1472 } 1473 } 1474 1475 return ATA_DEFER_PORT; 1476 } 1477 1478 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1479 { 1480 struct mv_port_priv *pp = ap->private_data; 1481 void __iomem *port_mmio; 1482 1483 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1484 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1485 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1486 1487 ltmode = *old_ltmode & ~LTMODE_BIT8; 1488 haltcond = *old_haltcond | EDMA_ERR_DEV; 1489 1490 if (want_fbs) { 1491 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1492 ltmode = *old_ltmode | LTMODE_BIT8; 1493 if (want_ncq) 1494 haltcond &= ~EDMA_ERR_DEV; 1495 else 1496 fiscfg |= FISCFG_WAIT_DEV_ERR; 1497 } else { 1498 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1499 } 1500 1501 port_mmio = mv_ap_base(ap); 1502 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1503 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1504 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1505 } 1506 1507 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1508 { 1509 struct mv_host_priv *hpriv = ap->host->private_data; 1510 u32 old, new; 1511 1512 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1513 old = readl(hpriv->base + GPIO_PORT_CTL); 1514 if (want_ncq) 1515 new = old | (1 << 22); 1516 else 1517 new = old & ~(1 << 22); 1518 if (new != old) 1519 writel(new, hpriv->base + GPIO_PORT_CTL); 1520 } 1521 1522 /** 1523 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1524 * @ap: Port being initialized 1525 * 1526 * There are two DMA modes on these chips: basic DMA, and EDMA. 1527 * 1528 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1529 * of basic DMA on the GEN_IIE versions of the chips. 1530 * 1531 * This bit survives EDMA resets, and must be set for basic DMA 1532 * to function, and should be cleared when EDMA is active. 1533 */ 1534 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1535 { 1536 struct mv_port_priv *pp = ap->private_data; 1537 u32 new, *old = &pp->cached.unknown_rsvd; 1538 1539 if (enable_bmdma) 1540 new = *old | 1; 1541 else 1542 new = *old & ~1; 1543 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1544 } 1545 1546 /* 1547 * SOC chips have an issue whereby the HDD LEDs don't always blink 1548 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1549 * of the SOC takes care of it, generating a steady blink rate when 1550 * any drive on the chip is active. 1551 * 1552 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1553 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1554 * 1555 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1556 * LED operation works then, and provides better (more accurate) feedback. 1557 * 1558 * Note that this code assumes that an SOC never has more than one HC onboard. 1559 */ 1560 static void mv_soc_led_blink_enable(struct ata_port *ap) 1561 { 1562 struct ata_host *host = ap->host; 1563 struct mv_host_priv *hpriv = host->private_data; 1564 void __iomem *hc_mmio; 1565 u32 led_ctrl; 1566 1567 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1568 return; 1569 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1570 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1571 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1572 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1573 } 1574 1575 static void mv_soc_led_blink_disable(struct ata_port *ap) 1576 { 1577 struct ata_host *host = ap->host; 1578 struct mv_host_priv *hpriv = host->private_data; 1579 void __iomem *hc_mmio; 1580 u32 led_ctrl; 1581 unsigned int port; 1582 1583 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1584 return; 1585 1586 /* disable led-blink only if no ports are using NCQ */ 1587 for (port = 0; port < hpriv->n_ports; port++) { 1588 struct ata_port *this_ap = host->ports[port]; 1589 struct mv_port_priv *pp = this_ap->private_data; 1590 1591 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1592 return; 1593 } 1594 1595 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1596 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1597 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1598 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1599 } 1600 1601 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1602 { 1603 u32 cfg; 1604 struct mv_port_priv *pp = ap->private_data; 1605 struct mv_host_priv *hpriv = ap->host->private_data; 1606 void __iomem *port_mmio = mv_ap_base(ap); 1607 1608 /* set up non-NCQ EDMA configuration */ 1609 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1610 pp->pp_flags &= 1611 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1612 1613 if (IS_GEN_I(hpriv)) 1614 cfg |= (1 << 8); /* enab config burst size mask */ 1615 1616 else if (IS_GEN_II(hpriv)) { 1617 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1618 mv_60x1_errata_sata25(ap, want_ncq); 1619 1620 } else if (IS_GEN_IIE(hpriv)) { 1621 int want_fbs = sata_pmp_attached(ap); 1622 /* 1623 * Possible future enhancement: 1624 * 1625 * The chip can use FBS with non-NCQ, if we allow it, 1626 * But first we need to have the error handling in place 1627 * for this mode (datasheet section 7.3.15.4.2.3). 1628 * So disallow non-NCQ FBS for now. 1629 */ 1630 want_fbs &= want_ncq; 1631 1632 mv_config_fbs(ap, want_ncq, want_fbs); 1633 1634 if (want_fbs) { 1635 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1636 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1637 } 1638 1639 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1640 if (want_edma) { 1641 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1642 if (!IS_SOC(hpriv)) 1643 cfg |= (1 << 18); /* enab early completion */ 1644 } 1645 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1646 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1647 mv_bmdma_enable_iie(ap, !want_edma); 1648 1649 if (IS_SOC(hpriv)) { 1650 if (want_ncq) 1651 mv_soc_led_blink_enable(ap); 1652 else 1653 mv_soc_led_blink_disable(ap); 1654 } 1655 } 1656 1657 if (want_ncq) { 1658 cfg |= EDMA_CFG_NCQ; 1659 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1660 } 1661 1662 writelfl(cfg, port_mmio + EDMA_CFG); 1663 } 1664 1665 static void mv_port_free_dma_mem(struct ata_port *ap) 1666 { 1667 struct mv_host_priv *hpriv = ap->host->private_data; 1668 struct mv_port_priv *pp = ap->private_data; 1669 int tag; 1670 1671 if (pp->crqb) { 1672 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1673 pp->crqb = NULL; 1674 } 1675 if (pp->crpb) { 1676 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1677 pp->crpb = NULL; 1678 } 1679 /* 1680 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1681 * For later hardware, we have one unique sg_tbl per NCQ tag. 1682 */ 1683 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1684 if (pp->sg_tbl[tag]) { 1685 if (tag == 0 || !IS_GEN_I(hpriv)) 1686 dma_pool_free(hpriv->sg_tbl_pool, 1687 pp->sg_tbl[tag], 1688 pp->sg_tbl_dma[tag]); 1689 pp->sg_tbl[tag] = NULL; 1690 } 1691 } 1692 } 1693 1694 /** 1695 * mv_port_start - Port specific init/start routine. 1696 * @ap: ATA channel to manipulate 1697 * 1698 * Allocate and point to DMA memory, init port private memory, 1699 * zero indices. 1700 * 1701 * LOCKING: 1702 * Inherited from caller. 1703 */ 1704 static int mv_port_start(struct ata_port *ap) 1705 { 1706 struct device *dev = ap->host->dev; 1707 struct mv_host_priv *hpriv = ap->host->private_data; 1708 struct mv_port_priv *pp; 1709 unsigned long flags; 1710 int tag; 1711 1712 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1713 if (!pp) 1714 return -ENOMEM; 1715 ap->private_data = pp; 1716 1717 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1718 if (!pp->crqb) 1719 return -ENOMEM; 1720 1721 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1722 if (!pp->crpb) 1723 goto out_port_free_dma_mem; 1724 1725 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1726 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1727 ap->flags |= ATA_FLAG_AN; 1728 /* 1729 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1730 * For later hardware, we need one unique sg_tbl per NCQ tag. 1731 */ 1732 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1733 if (tag == 0 || !IS_GEN_I(hpriv)) { 1734 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1735 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1736 if (!pp->sg_tbl[tag]) 1737 goto out_port_free_dma_mem; 1738 } else { 1739 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1740 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1741 } 1742 } 1743 1744 spin_lock_irqsave(ap->lock, flags); 1745 mv_save_cached_regs(ap); 1746 mv_edma_cfg(ap, 0, 0); 1747 spin_unlock_irqrestore(ap->lock, flags); 1748 1749 return 0; 1750 1751 out_port_free_dma_mem: 1752 mv_port_free_dma_mem(ap); 1753 return -ENOMEM; 1754 } 1755 1756 /** 1757 * mv_port_stop - Port specific cleanup/stop routine. 1758 * @ap: ATA channel to manipulate 1759 * 1760 * Stop DMA, cleanup port memory. 1761 * 1762 * LOCKING: 1763 * This routine uses the host lock to protect the DMA stop. 1764 */ 1765 static void mv_port_stop(struct ata_port *ap) 1766 { 1767 unsigned long flags; 1768 1769 spin_lock_irqsave(ap->lock, flags); 1770 mv_stop_edma(ap); 1771 mv_enable_port_irqs(ap, 0); 1772 spin_unlock_irqrestore(ap->lock, flags); 1773 mv_port_free_dma_mem(ap); 1774 } 1775 1776 /** 1777 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1778 * @qc: queued command whose SG list to source from 1779 * 1780 * Populate the SG list and mark the last entry. 1781 * 1782 * LOCKING: 1783 * Inherited from caller. 1784 */ 1785 static void mv_fill_sg(struct ata_queued_cmd *qc) 1786 { 1787 struct mv_port_priv *pp = qc->ap->private_data; 1788 struct scatterlist *sg; 1789 struct mv_sg *mv_sg, *last_sg = NULL; 1790 unsigned int si; 1791 1792 mv_sg = pp->sg_tbl[qc->hw_tag]; 1793 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1794 dma_addr_t addr = sg_dma_address(sg); 1795 u32 sg_len = sg_dma_len(sg); 1796 1797 while (sg_len) { 1798 u32 offset = addr & 0xffff; 1799 u32 len = sg_len; 1800 1801 if (offset + len > 0x10000) 1802 len = 0x10000 - offset; 1803 1804 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1805 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1806 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1807 mv_sg->reserved = 0; 1808 1809 sg_len -= len; 1810 addr += len; 1811 1812 last_sg = mv_sg; 1813 mv_sg++; 1814 } 1815 } 1816 1817 if (likely(last_sg)) 1818 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1819 mb(); /* ensure data structure is visible to the chipset */ 1820 } 1821 1822 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1823 { 1824 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1825 (last ? CRQB_CMD_LAST : 0); 1826 *cmdw = cpu_to_le16(tmp); 1827 } 1828 1829 /** 1830 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1831 * @ap: Port associated with this ATA transaction. 1832 * 1833 * We need this only for ATAPI bmdma transactions, 1834 * as otherwise we experience spurious interrupts 1835 * after libata-sff handles the bmdma interrupts. 1836 */ 1837 static void mv_sff_irq_clear(struct ata_port *ap) 1838 { 1839 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1840 } 1841 1842 /** 1843 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1844 * @qc: queued command to check for chipset/DMA compatibility. 1845 * 1846 * The bmdma engines cannot handle speculative data sizes 1847 * (bytecount under/over flow). So only allow DMA for 1848 * data transfer commands with known data sizes. 1849 * 1850 * LOCKING: 1851 * Inherited from caller. 1852 */ 1853 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1854 { 1855 struct scsi_cmnd *scmd = qc->scsicmd; 1856 1857 if (scmd) { 1858 switch (scmd->cmnd[0]) { 1859 case READ_6: 1860 case READ_10: 1861 case READ_12: 1862 case WRITE_6: 1863 case WRITE_10: 1864 case WRITE_12: 1865 case GPCMD_READ_CD: 1866 case GPCMD_SEND_DVD_STRUCTURE: 1867 case GPCMD_SEND_CUE_SHEET: 1868 return 0; /* DMA is safe */ 1869 } 1870 } 1871 return -EOPNOTSUPP; /* use PIO instead */ 1872 } 1873 1874 /** 1875 * mv_bmdma_setup - Set up BMDMA transaction 1876 * @qc: queued command to prepare DMA for. 1877 * 1878 * LOCKING: 1879 * Inherited from caller. 1880 */ 1881 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1882 { 1883 struct ata_port *ap = qc->ap; 1884 void __iomem *port_mmio = mv_ap_base(ap); 1885 struct mv_port_priv *pp = ap->private_data; 1886 1887 mv_fill_sg(qc); 1888 1889 /* clear all DMA cmd bits */ 1890 writel(0, port_mmio + BMDMA_CMD); 1891 1892 /* load PRD table addr. */ 1893 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16, 1894 port_mmio + BMDMA_PRD_HIGH); 1895 writelfl(pp->sg_tbl_dma[qc->hw_tag], 1896 port_mmio + BMDMA_PRD_LOW); 1897 1898 /* issue r/w command */ 1899 ap->ops->sff_exec_command(ap, &qc->tf); 1900 } 1901 1902 /** 1903 * mv_bmdma_start - Start a BMDMA transaction 1904 * @qc: queued command to start DMA on. 1905 * 1906 * LOCKING: 1907 * Inherited from caller. 1908 */ 1909 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1910 { 1911 struct ata_port *ap = qc->ap; 1912 void __iomem *port_mmio = mv_ap_base(ap); 1913 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1914 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1915 1916 /* start host DMA transaction */ 1917 writelfl(cmd, port_mmio + BMDMA_CMD); 1918 } 1919 1920 /** 1921 * mv_bmdma_stop - Stop BMDMA transfer 1922 * @qc: queued command to stop DMA on. 1923 * 1924 * Clears the ATA_DMA_START flag in the bmdma control register 1925 * 1926 * LOCKING: 1927 * Inherited from caller. 1928 */ 1929 static void mv_bmdma_stop_ap(struct ata_port *ap) 1930 { 1931 void __iomem *port_mmio = mv_ap_base(ap); 1932 u32 cmd; 1933 1934 /* clear start/stop bit */ 1935 cmd = readl(port_mmio + BMDMA_CMD); 1936 if (cmd & ATA_DMA_START) { 1937 cmd &= ~ATA_DMA_START; 1938 writelfl(cmd, port_mmio + BMDMA_CMD); 1939 1940 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1941 ata_sff_dma_pause(ap); 1942 } 1943 } 1944 1945 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1946 { 1947 mv_bmdma_stop_ap(qc->ap); 1948 } 1949 1950 /** 1951 * mv_bmdma_status - Read BMDMA status 1952 * @ap: port for which to retrieve DMA status. 1953 * 1954 * Read and return equivalent of the sff BMDMA status register. 1955 * 1956 * LOCKING: 1957 * Inherited from caller. 1958 */ 1959 static u8 mv_bmdma_status(struct ata_port *ap) 1960 { 1961 void __iomem *port_mmio = mv_ap_base(ap); 1962 u32 reg, status; 1963 1964 /* 1965 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1966 * and the ATA_DMA_INTR bit doesn't exist. 1967 */ 1968 reg = readl(port_mmio + BMDMA_STATUS); 1969 if (reg & ATA_DMA_ACTIVE) 1970 status = ATA_DMA_ACTIVE; 1971 else if (reg & ATA_DMA_ERR) 1972 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1973 else { 1974 /* 1975 * Just because DMA_ACTIVE is 0 (DMA completed), 1976 * this does _not_ mean the device is "done". 1977 * So we should not yet be signalling ATA_DMA_INTR 1978 * in some cases. Eg. DSM/TRIM, and perhaps others. 1979 */ 1980 mv_bmdma_stop_ap(ap); 1981 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1982 status = 0; 1983 else 1984 status = ATA_DMA_INTR; 1985 } 1986 return status; 1987 } 1988 1989 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1990 { 1991 struct ata_taskfile *tf = &qc->tf; 1992 /* 1993 * Workaround for 88SX60x1 FEr SATA#24. 1994 * 1995 * Chip may corrupt WRITEs if multi_count >= 4kB. 1996 * Note that READs are unaffected. 1997 * 1998 * It's not clear if this errata really means "4K bytes", 1999 * or if it always happens for multi_count > 7 2000 * regardless of device sector_size. 2001 * 2002 * So, for safety, any write with multi_count > 7 2003 * gets converted here into a regular PIO write instead: 2004 */ 2005 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 2006 if (qc->dev->multi_count > 7) { 2007 switch (tf->command) { 2008 case ATA_CMD_WRITE_MULTI: 2009 tf->command = ATA_CMD_PIO_WRITE; 2010 break; 2011 case ATA_CMD_WRITE_MULTI_FUA_EXT: 2012 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 2013 /* fall through */ 2014 case ATA_CMD_WRITE_MULTI_EXT: 2015 tf->command = ATA_CMD_PIO_WRITE_EXT; 2016 break; 2017 } 2018 } 2019 } 2020 } 2021 2022 /** 2023 * mv_qc_prep - Host specific command preparation. 2024 * @qc: queued command to prepare 2025 * 2026 * This routine simply redirects to the general purpose routine 2027 * if command is not DMA. Else, it handles prep of the CRQB 2028 * (command request block), does some sanity checking, and calls 2029 * the SG load routine. 2030 * 2031 * LOCKING: 2032 * Inherited from caller. 2033 */ 2034 static void mv_qc_prep(struct ata_queued_cmd *qc) 2035 { 2036 struct ata_port *ap = qc->ap; 2037 struct mv_port_priv *pp = ap->private_data; 2038 __le16 *cw; 2039 struct ata_taskfile *tf = &qc->tf; 2040 u16 flags = 0; 2041 unsigned in_index; 2042 2043 switch (tf->protocol) { 2044 case ATA_PROT_DMA: 2045 if (tf->command == ATA_CMD_DSM) 2046 return; 2047 /* fall-thru */ 2048 case ATA_PROT_NCQ: 2049 break; /* continue below */ 2050 case ATA_PROT_PIO: 2051 mv_rw_multi_errata_sata24(qc); 2052 return; 2053 default: 2054 return; 2055 } 2056 2057 /* Fill in command request block 2058 */ 2059 if (!(tf->flags & ATA_TFLAG_WRITE)) 2060 flags |= CRQB_FLAG_READ; 2061 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag); 2062 flags |= qc->hw_tag << CRQB_TAG_SHIFT; 2063 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2064 2065 /* get current queue index from software */ 2066 in_index = pp->req_idx; 2067 2068 pp->crqb[in_index].sg_addr = 2069 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff); 2070 pp->crqb[in_index].sg_addr_hi = 2071 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16); 2072 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2073 2074 cw = &pp->crqb[in_index].ata_cmd[0]; 2075 2076 /* Sadly, the CRQB cannot accommodate all registers--there are 2077 * only 11 bytes...so we must pick and choose required 2078 * registers based on the command. So, we drop feature and 2079 * hob_feature for [RW] DMA commands, but they are needed for 2080 * NCQ. NCQ will drop hob_nsect, which is not needed there 2081 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2082 */ 2083 switch (tf->command) { 2084 case ATA_CMD_READ: 2085 case ATA_CMD_READ_EXT: 2086 case ATA_CMD_WRITE: 2087 case ATA_CMD_WRITE_EXT: 2088 case ATA_CMD_WRITE_FUA_EXT: 2089 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2090 break; 2091 case ATA_CMD_FPDMA_READ: 2092 case ATA_CMD_FPDMA_WRITE: 2093 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2094 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2095 break; 2096 default: 2097 /* The only other commands EDMA supports in non-queued and 2098 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2099 * of which are defined/used by Linux. If we get here, this 2100 * driver needs work. 2101 * 2102 * FIXME: modify libata to give qc_prep a return value and 2103 * return error here. 2104 */ 2105 BUG_ON(tf->command); 2106 break; 2107 } 2108 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2109 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2110 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2111 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2112 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2113 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2114 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2115 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2116 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2117 2118 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2119 return; 2120 mv_fill_sg(qc); 2121 } 2122 2123 /** 2124 * mv_qc_prep_iie - Host specific command preparation. 2125 * @qc: queued command to prepare 2126 * 2127 * This routine simply redirects to the general purpose routine 2128 * if command is not DMA. Else, it handles prep of the CRQB 2129 * (command request block), does some sanity checking, and calls 2130 * the SG load routine. 2131 * 2132 * LOCKING: 2133 * Inherited from caller. 2134 */ 2135 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2136 { 2137 struct ata_port *ap = qc->ap; 2138 struct mv_port_priv *pp = ap->private_data; 2139 struct mv_crqb_iie *crqb; 2140 struct ata_taskfile *tf = &qc->tf; 2141 unsigned in_index; 2142 u32 flags = 0; 2143 2144 if ((tf->protocol != ATA_PROT_DMA) && 2145 (tf->protocol != ATA_PROT_NCQ)) 2146 return; 2147 if (tf->command == ATA_CMD_DSM) 2148 return; /* use bmdma for this */ 2149 2150 /* Fill in Gen IIE command request block */ 2151 if (!(tf->flags & ATA_TFLAG_WRITE)) 2152 flags |= CRQB_FLAG_READ; 2153 2154 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag); 2155 flags |= qc->hw_tag << CRQB_TAG_SHIFT; 2156 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT; 2157 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2158 2159 /* get current queue index from software */ 2160 in_index = pp->req_idx; 2161 2162 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2163 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff); 2164 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16); 2165 crqb->flags = cpu_to_le32(flags); 2166 2167 crqb->ata_cmd[0] = cpu_to_le32( 2168 (tf->command << 16) | 2169 (tf->feature << 24) 2170 ); 2171 crqb->ata_cmd[1] = cpu_to_le32( 2172 (tf->lbal << 0) | 2173 (tf->lbam << 8) | 2174 (tf->lbah << 16) | 2175 (tf->device << 24) 2176 ); 2177 crqb->ata_cmd[2] = cpu_to_le32( 2178 (tf->hob_lbal << 0) | 2179 (tf->hob_lbam << 8) | 2180 (tf->hob_lbah << 16) | 2181 (tf->hob_feature << 24) 2182 ); 2183 crqb->ata_cmd[3] = cpu_to_le32( 2184 (tf->nsect << 0) | 2185 (tf->hob_nsect << 8) 2186 ); 2187 2188 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2189 return; 2190 mv_fill_sg(qc); 2191 } 2192 2193 /** 2194 * mv_sff_check_status - fetch device status, if valid 2195 * @ap: ATA port to fetch status from 2196 * 2197 * When using command issue via mv_qc_issue_fis(), 2198 * the initial ATA_BUSY state does not show up in the 2199 * ATA status (shadow) register. This can confuse libata! 2200 * 2201 * So we have a hook here to fake ATA_BUSY for that situation, 2202 * until the first time a BUSY, DRQ, or ERR bit is seen. 2203 * 2204 * The rest of the time, it simply returns the ATA status register. 2205 */ 2206 static u8 mv_sff_check_status(struct ata_port *ap) 2207 { 2208 u8 stat = ioread8(ap->ioaddr.status_addr); 2209 struct mv_port_priv *pp = ap->private_data; 2210 2211 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2212 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2213 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2214 else 2215 stat = ATA_BUSY; 2216 } 2217 return stat; 2218 } 2219 2220 /** 2221 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2222 * @fis: fis to be sent 2223 * @nwords: number of 32-bit words in the fis 2224 */ 2225 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2226 { 2227 void __iomem *port_mmio = mv_ap_base(ap); 2228 u32 ifctl, old_ifctl, ifstat; 2229 int i, timeout = 200, final_word = nwords - 1; 2230 2231 /* Initiate FIS transmission mode */ 2232 old_ifctl = readl(port_mmio + SATA_IFCTL); 2233 ifctl = 0x100 | (old_ifctl & 0xf); 2234 writelfl(ifctl, port_mmio + SATA_IFCTL); 2235 2236 /* Send all words of the FIS except for the final word */ 2237 for (i = 0; i < final_word; ++i) 2238 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2239 2240 /* Flag end-of-transmission, and then send the final word */ 2241 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2242 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2243 2244 /* 2245 * Wait for FIS transmission to complete. 2246 * This typically takes just a single iteration. 2247 */ 2248 do { 2249 ifstat = readl(port_mmio + SATA_IFSTAT); 2250 } while (!(ifstat & 0x1000) && --timeout); 2251 2252 /* Restore original port configuration */ 2253 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2254 2255 /* See if it worked */ 2256 if ((ifstat & 0x3000) != 0x1000) { 2257 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2258 __func__, ifstat); 2259 return AC_ERR_OTHER; 2260 } 2261 return 0; 2262 } 2263 2264 /** 2265 * mv_qc_issue_fis - Issue a command directly as a FIS 2266 * @qc: queued command to start 2267 * 2268 * Note that the ATA shadow registers are not updated 2269 * after command issue, so the device will appear "READY" 2270 * if polled, even while it is BUSY processing the command. 2271 * 2272 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2273 * 2274 * Note: we don't get updated shadow regs on *completion* 2275 * of non-data commands. So avoid sending them via this function, 2276 * as they will appear to have completed immediately. 2277 * 2278 * GEN_IIE has special registers that we could get the result tf from, 2279 * but earlier chipsets do not. For now, we ignore those registers. 2280 */ 2281 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2282 { 2283 struct ata_port *ap = qc->ap; 2284 struct mv_port_priv *pp = ap->private_data; 2285 struct ata_link *link = qc->dev->link; 2286 u32 fis[5]; 2287 int err = 0; 2288 2289 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2290 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2291 if (err) 2292 return err; 2293 2294 switch (qc->tf.protocol) { 2295 case ATAPI_PROT_PIO: 2296 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2297 /* fall through */ 2298 case ATAPI_PROT_NODATA: 2299 ap->hsm_task_state = HSM_ST_FIRST; 2300 break; 2301 case ATA_PROT_PIO: 2302 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2303 if (qc->tf.flags & ATA_TFLAG_WRITE) 2304 ap->hsm_task_state = HSM_ST_FIRST; 2305 else 2306 ap->hsm_task_state = HSM_ST; 2307 break; 2308 default: 2309 ap->hsm_task_state = HSM_ST_LAST; 2310 break; 2311 } 2312 2313 if (qc->tf.flags & ATA_TFLAG_POLLING) 2314 ata_sff_queue_pio_task(link, 0); 2315 return 0; 2316 } 2317 2318 /** 2319 * mv_qc_issue - Initiate a command to the host 2320 * @qc: queued command to start 2321 * 2322 * This routine simply redirects to the general purpose routine 2323 * if command is not DMA. Else, it sanity checks our local 2324 * caches of the request producer/consumer indices then enables 2325 * DMA and bumps the request producer index. 2326 * 2327 * LOCKING: 2328 * Inherited from caller. 2329 */ 2330 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2331 { 2332 static int limit_warnings = 10; 2333 struct ata_port *ap = qc->ap; 2334 void __iomem *port_mmio = mv_ap_base(ap); 2335 struct mv_port_priv *pp = ap->private_data; 2336 u32 in_index; 2337 unsigned int port_irqs; 2338 2339 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2340 2341 switch (qc->tf.protocol) { 2342 case ATA_PROT_DMA: 2343 if (qc->tf.command == ATA_CMD_DSM) { 2344 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2345 return AC_ERR_OTHER; 2346 break; /* use bmdma for this */ 2347 } 2348 /* fall thru */ 2349 case ATA_PROT_NCQ: 2350 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2351 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2352 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2353 2354 /* Write the request in pointer to kick the EDMA to life */ 2355 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2356 port_mmio + EDMA_REQ_Q_IN_PTR); 2357 return 0; 2358 2359 case ATA_PROT_PIO: 2360 /* 2361 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2362 * 2363 * Someday, we might implement special polling workarounds 2364 * for these, but it all seems rather unnecessary since we 2365 * normally use only DMA for commands which transfer more 2366 * than a single block of data. 2367 * 2368 * Much of the time, this could just work regardless. 2369 * So for now, just log the incident, and allow the attempt. 2370 */ 2371 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2372 --limit_warnings; 2373 ata_link_warn(qc->dev->link, DRV_NAME 2374 ": attempting PIO w/multiple DRQ: " 2375 "this may fail due to h/w errata\n"); 2376 } 2377 /* fall through */ 2378 case ATA_PROT_NODATA: 2379 case ATAPI_PROT_PIO: 2380 case ATAPI_PROT_NODATA: 2381 if (ap->flags & ATA_FLAG_PIO_POLLING) 2382 qc->tf.flags |= ATA_TFLAG_POLLING; 2383 break; 2384 } 2385 2386 if (qc->tf.flags & ATA_TFLAG_POLLING) 2387 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2388 else 2389 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2390 2391 /* 2392 * We're about to send a non-EDMA capable command to the 2393 * port. Turn off EDMA so there won't be problems accessing 2394 * shadow block, etc registers. 2395 */ 2396 mv_stop_edma(ap); 2397 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2398 mv_pmp_select(ap, qc->dev->link->pmp); 2399 2400 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2401 struct mv_host_priv *hpriv = ap->host->private_data; 2402 /* 2403 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2404 * 2405 * After any NCQ error, the READ_LOG_EXT command 2406 * from libata-eh *must* use mv_qc_issue_fis(). 2407 * Otherwise it might fail, due to chip errata. 2408 * 2409 * Rather than special-case it, we'll just *always* 2410 * use this method here for READ_LOG_EXT, making for 2411 * easier testing. 2412 */ 2413 if (IS_GEN_II(hpriv)) 2414 return mv_qc_issue_fis(qc); 2415 } 2416 return ata_bmdma_qc_issue(qc); 2417 } 2418 2419 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2420 { 2421 struct mv_port_priv *pp = ap->private_data; 2422 struct ata_queued_cmd *qc; 2423 2424 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2425 return NULL; 2426 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2427 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2428 return qc; 2429 return NULL; 2430 } 2431 2432 static void mv_pmp_error_handler(struct ata_port *ap) 2433 { 2434 unsigned int pmp, pmp_map; 2435 struct mv_port_priv *pp = ap->private_data; 2436 2437 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2438 /* 2439 * Perform NCQ error analysis on failed PMPs 2440 * before we freeze the port entirely. 2441 * 2442 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2443 */ 2444 pmp_map = pp->delayed_eh_pmp_map; 2445 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2446 for (pmp = 0; pmp_map != 0; pmp++) { 2447 unsigned int this_pmp = (1 << pmp); 2448 if (pmp_map & this_pmp) { 2449 struct ata_link *link = &ap->pmp_link[pmp]; 2450 pmp_map &= ~this_pmp; 2451 ata_eh_analyze_ncq_error(link); 2452 } 2453 } 2454 ata_port_freeze(ap); 2455 } 2456 sata_pmp_error_handler(ap); 2457 } 2458 2459 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2460 { 2461 void __iomem *port_mmio = mv_ap_base(ap); 2462 2463 return readl(port_mmio + SATA_TESTCTL) >> 16; 2464 } 2465 2466 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2467 { 2468 unsigned int pmp; 2469 2470 /* 2471 * Initialize EH info for PMPs which saw device errors 2472 */ 2473 for (pmp = 0; pmp_map != 0; pmp++) { 2474 unsigned int this_pmp = (1 << pmp); 2475 if (pmp_map & this_pmp) { 2476 struct ata_link *link = &ap->pmp_link[pmp]; 2477 struct ata_eh_info *ehi = &link->eh_info; 2478 2479 pmp_map &= ~this_pmp; 2480 ata_ehi_clear_desc(ehi); 2481 ata_ehi_push_desc(ehi, "dev err"); 2482 ehi->err_mask |= AC_ERR_DEV; 2483 ehi->action |= ATA_EH_RESET; 2484 ata_link_abort(link); 2485 } 2486 } 2487 } 2488 2489 static int mv_req_q_empty(struct ata_port *ap) 2490 { 2491 void __iomem *port_mmio = mv_ap_base(ap); 2492 u32 in_ptr, out_ptr; 2493 2494 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2495 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2496 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2497 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2498 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2499 } 2500 2501 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2502 { 2503 struct mv_port_priv *pp = ap->private_data; 2504 int failed_links; 2505 unsigned int old_map, new_map; 2506 2507 /* 2508 * Device error during FBS+NCQ operation: 2509 * 2510 * Set a port flag to prevent further I/O being enqueued. 2511 * Leave the EDMA running to drain outstanding commands from this port. 2512 * Perform the post-mortem/EH only when all responses are complete. 2513 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2514 */ 2515 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2516 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2517 pp->delayed_eh_pmp_map = 0; 2518 } 2519 old_map = pp->delayed_eh_pmp_map; 2520 new_map = old_map | mv_get_err_pmp_map(ap); 2521 2522 if (old_map != new_map) { 2523 pp->delayed_eh_pmp_map = new_map; 2524 mv_pmp_eh_prep(ap, new_map & ~old_map); 2525 } 2526 failed_links = hweight16(new_map); 2527 2528 ata_port_info(ap, 2529 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n", 2530 __func__, pp->delayed_eh_pmp_map, 2531 ap->qc_active, failed_links, 2532 ap->nr_active_links); 2533 2534 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2535 mv_process_crpb_entries(ap, pp); 2536 mv_stop_edma(ap); 2537 mv_eh_freeze(ap); 2538 ata_port_info(ap, "%s: done\n", __func__); 2539 return 1; /* handled */ 2540 } 2541 ata_port_info(ap, "%s: waiting\n", __func__); 2542 return 1; /* handled */ 2543 } 2544 2545 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2546 { 2547 /* 2548 * Possible future enhancement: 2549 * 2550 * FBS+non-NCQ operation is not yet implemented. 2551 * See related notes in mv_edma_cfg(). 2552 * 2553 * Device error during FBS+non-NCQ operation: 2554 * 2555 * We need to snapshot the shadow registers for each failed command. 2556 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2557 */ 2558 return 0; /* not handled */ 2559 } 2560 2561 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2562 { 2563 struct mv_port_priv *pp = ap->private_data; 2564 2565 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2566 return 0; /* EDMA was not active: not handled */ 2567 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2568 return 0; /* FBS was not active: not handled */ 2569 2570 if (!(edma_err_cause & EDMA_ERR_DEV)) 2571 return 0; /* non DEV error: not handled */ 2572 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2573 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2574 return 0; /* other problems: not handled */ 2575 2576 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2577 /* 2578 * EDMA should NOT have self-disabled for this case. 2579 * If it did, then something is wrong elsewhere, 2580 * and we cannot handle it here. 2581 */ 2582 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2583 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2584 __func__, edma_err_cause, pp->pp_flags); 2585 return 0; /* not handled */ 2586 } 2587 return mv_handle_fbs_ncq_dev_err(ap); 2588 } else { 2589 /* 2590 * EDMA should have self-disabled for this case. 2591 * If it did not, then something is wrong elsewhere, 2592 * and we cannot handle it here. 2593 */ 2594 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2595 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2596 __func__, edma_err_cause, pp->pp_flags); 2597 return 0; /* not handled */ 2598 } 2599 return mv_handle_fbs_non_ncq_dev_err(ap); 2600 } 2601 return 0; /* not handled */ 2602 } 2603 2604 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2605 { 2606 struct ata_eh_info *ehi = &ap->link.eh_info; 2607 char *when = "idle"; 2608 2609 ata_ehi_clear_desc(ehi); 2610 if (edma_was_enabled) { 2611 when = "EDMA enabled"; 2612 } else { 2613 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2614 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2615 when = "polling"; 2616 } 2617 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2618 ehi->err_mask |= AC_ERR_OTHER; 2619 ehi->action |= ATA_EH_RESET; 2620 ata_port_freeze(ap); 2621 } 2622 2623 /** 2624 * mv_err_intr - Handle error interrupts on the port 2625 * @ap: ATA channel to manipulate 2626 * 2627 * Most cases require a full reset of the chip's state machine, 2628 * which also performs a COMRESET. 2629 * Also, if the port disabled DMA, update our cached copy to match. 2630 * 2631 * LOCKING: 2632 * Inherited from caller. 2633 */ 2634 static void mv_err_intr(struct ata_port *ap) 2635 { 2636 void __iomem *port_mmio = mv_ap_base(ap); 2637 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2638 u32 fis_cause = 0; 2639 struct mv_port_priv *pp = ap->private_data; 2640 struct mv_host_priv *hpriv = ap->host->private_data; 2641 unsigned int action = 0, err_mask = 0; 2642 struct ata_eh_info *ehi = &ap->link.eh_info; 2643 struct ata_queued_cmd *qc; 2644 int abort = 0; 2645 2646 /* 2647 * Read and clear the SError and err_cause bits. 2648 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2649 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2650 */ 2651 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2652 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2653 2654 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2655 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2656 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2657 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2658 } 2659 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2660 2661 if (edma_err_cause & EDMA_ERR_DEV) { 2662 /* 2663 * Device errors during FIS-based switching operation 2664 * require special handling. 2665 */ 2666 if (mv_handle_dev_err(ap, edma_err_cause)) 2667 return; 2668 } 2669 2670 qc = mv_get_active_qc(ap); 2671 ata_ehi_clear_desc(ehi); 2672 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2673 edma_err_cause, pp->pp_flags); 2674 2675 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2676 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2677 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2678 u32 ec = edma_err_cause & 2679 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2680 sata_async_notification(ap); 2681 if (!ec) 2682 return; /* Just an AN; no need for the nukes */ 2683 ata_ehi_push_desc(ehi, "SDB notify"); 2684 } 2685 } 2686 /* 2687 * All generations share these EDMA error cause bits: 2688 */ 2689 if (edma_err_cause & EDMA_ERR_DEV) { 2690 err_mask |= AC_ERR_DEV; 2691 action |= ATA_EH_RESET; 2692 ata_ehi_push_desc(ehi, "dev error"); 2693 } 2694 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2695 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2696 EDMA_ERR_INTRL_PAR)) { 2697 err_mask |= AC_ERR_ATA_BUS; 2698 action |= ATA_EH_RESET; 2699 ata_ehi_push_desc(ehi, "parity error"); 2700 } 2701 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2702 ata_ehi_hotplugged(ehi); 2703 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2704 "dev disconnect" : "dev connect"); 2705 action |= ATA_EH_RESET; 2706 } 2707 2708 /* 2709 * Gen-I has a different SELF_DIS bit, 2710 * different FREEZE bits, and no SERR bit: 2711 */ 2712 if (IS_GEN_I(hpriv)) { 2713 eh_freeze_mask = EDMA_EH_FREEZE_5; 2714 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2715 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2716 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2717 } 2718 } else { 2719 eh_freeze_mask = EDMA_EH_FREEZE; 2720 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2721 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2722 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2723 } 2724 if (edma_err_cause & EDMA_ERR_SERR) { 2725 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2726 err_mask |= AC_ERR_ATA_BUS; 2727 action |= ATA_EH_RESET; 2728 } 2729 } 2730 2731 if (!err_mask) { 2732 err_mask = AC_ERR_OTHER; 2733 action |= ATA_EH_RESET; 2734 } 2735 2736 ehi->serror |= serr; 2737 ehi->action |= action; 2738 2739 if (qc) 2740 qc->err_mask |= err_mask; 2741 else 2742 ehi->err_mask |= err_mask; 2743 2744 if (err_mask == AC_ERR_DEV) { 2745 /* 2746 * Cannot do ata_port_freeze() here, 2747 * because it would kill PIO access, 2748 * which is needed for further diagnosis. 2749 */ 2750 mv_eh_freeze(ap); 2751 abort = 1; 2752 } else if (edma_err_cause & eh_freeze_mask) { 2753 /* 2754 * Note to self: ata_port_freeze() calls ata_port_abort() 2755 */ 2756 ata_port_freeze(ap); 2757 } else { 2758 abort = 1; 2759 } 2760 2761 if (abort) { 2762 if (qc) 2763 ata_link_abort(qc->dev->link); 2764 else 2765 ata_port_abort(ap); 2766 } 2767 } 2768 2769 static bool mv_process_crpb_response(struct ata_port *ap, 2770 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2771 { 2772 u8 ata_status; 2773 u16 edma_status = le16_to_cpu(response->flags); 2774 2775 /* 2776 * edma_status from a response queue entry: 2777 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2778 * MSB is saved ATA status from command completion. 2779 */ 2780 if (!ncq_enabled) { 2781 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2782 if (err_cause) { 2783 /* 2784 * Error will be seen/handled by 2785 * mv_err_intr(). So do nothing at all here. 2786 */ 2787 return false; 2788 } 2789 } 2790 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2791 if (!ac_err_mask(ata_status)) 2792 return true; 2793 /* else: leave it for mv_err_intr() */ 2794 return false; 2795 } 2796 2797 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2798 { 2799 void __iomem *port_mmio = mv_ap_base(ap); 2800 struct mv_host_priv *hpriv = ap->host->private_data; 2801 u32 in_index; 2802 bool work_done = false; 2803 u32 done_mask = 0; 2804 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2805 2806 /* Get the hardware queue position index */ 2807 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2808 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2809 2810 /* Process new responses from since the last time we looked */ 2811 while (in_index != pp->resp_idx) { 2812 unsigned int tag; 2813 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2814 2815 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2816 2817 if (IS_GEN_I(hpriv)) { 2818 /* 50xx: no NCQ, only one command active at a time */ 2819 tag = ap->link.active_tag; 2820 } else { 2821 /* Gen II/IIE: get command tag from CRPB entry */ 2822 tag = le16_to_cpu(response->id) & 0x1f; 2823 } 2824 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2825 done_mask |= 1 << tag; 2826 work_done = true; 2827 } 2828 2829 if (work_done) { 2830 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2831 2832 /* Update the software queue position index in hardware */ 2833 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2834 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2835 port_mmio + EDMA_RSP_Q_OUT_PTR); 2836 } 2837 } 2838 2839 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2840 { 2841 struct mv_port_priv *pp; 2842 int edma_was_enabled; 2843 2844 /* 2845 * Grab a snapshot of the EDMA_EN flag setting, 2846 * so that we have a consistent view for this port, 2847 * even if something we call of our routines changes it. 2848 */ 2849 pp = ap->private_data; 2850 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2851 /* 2852 * Process completed CRPB response(s) before other events. 2853 */ 2854 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2855 mv_process_crpb_entries(ap, pp); 2856 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2857 mv_handle_fbs_ncq_dev_err(ap); 2858 } 2859 /* 2860 * Handle chip-reported errors, or continue on to handle PIO. 2861 */ 2862 if (unlikely(port_cause & ERR_IRQ)) { 2863 mv_err_intr(ap); 2864 } else if (!edma_was_enabled) { 2865 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2866 if (qc) 2867 ata_bmdma_port_intr(ap, qc); 2868 else 2869 mv_unexpected_intr(ap, edma_was_enabled); 2870 } 2871 } 2872 2873 /** 2874 * mv_host_intr - Handle all interrupts on the given host controller 2875 * @host: host specific structure 2876 * @main_irq_cause: Main interrupt cause register for the chip. 2877 * 2878 * LOCKING: 2879 * Inherited from caller. 2880 */ 2881 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2882 { 2883 struct mv_host_priv *hpriv = host->private_data; 2884 void __iomem *mmio = hpriv->base, *hc_mmio; 2885 unsigned int handled = 0, port; 2886 2887 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2888 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2889 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2890 2891 for (port = 0; port < hpriv->n_ports; port++) { 2892 struct ata_port *ap = host->ports[port]; 2893 unsigned int p, shift, hardport, port_cause; 2894 2895 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2896 /* 2897 * Each hc within the host has its own hc_irq_cause register, 2898 * where the interrupting ports bits get ack'd. 2899 */ 2900 if (hardport == 0) { /* first port on this hc ? */ 2901 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2902 u32 port_mask, ack_irqs; 2903 /* 2904 * Skip this entire hc if nothing pending for any ports 2905 */ 2906 if (!hc_cause) { 2907 port += MV_PORTS_PER_HC - 1; 2908 continue; 2909 } 2910 /* 2911 * We don't need/want to read the hc_irq_cause register, 2912 * because doing so hurts performance, and 2913 * main_irq_cause already gives us everything we need. 2914 * 2915 * But we do have to *write* to the hc_irq_cause to ack 2916 * the ports that we are handling this time through. 2917 * 2918 * This requires that we create a bitmap for those 2919 * ports which interrupted us, and use that bitmap 2920 * to ack (only) those ports via hc_irq_cause. 2921 */ 2922 ack_irqs = 0; 2923 if (hc_cause & PORTS_0_3_COAL_DONE) 2924 ack_irqs = HC_COAL_IRQ; 2925 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2926 if ((port + p) >= hpriv->n_ports) 2927 break; 2928 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2929 if (hc_cause & port_mask) 2930 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2931 } 2932 hc_mmio = mv_hc_base_from_port(mmio, port); 2933 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2934 handled = 1; 2935 } 2936 /* 2937 * Handle interrupts signalled for this port: 2938 */ 2939 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2940 if (port_cause) 2941 mv_port_intr(ap, port_cause); 2942 } 2943 return handled; 2944 } 2945 2946 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2947 { 2948 struct mv_host_priv *hpriv = host->private_data; 2949 struct ata_port *ap; 2950 struct ata_queued_cmd *qc; 2951 struct ata_eh_info *ehi; 2952 unsigned int i, err_mask, printed = 0; 2953 u32 err_cause; 2954 2955 err_cause = readl(mmio + hpriv->irq_cause_offset); 2956 2957 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2958 2959 DPRINTK("All regs @ PCI error\n"); 2960 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2961 2962 writelfl(0, mmio + hpriv->irq_cause_offset); 2963 2964 for (i = 0; i < host->n_ports; i++) { 2965 ap = host->ports[i]; 2966 if (!ata_link_offline(&ap->link)) { 2967 ehi = &ap->link.eh_info; 2968 ata_ehi_clear_desc(ehi); 2969 if (!printed++) 2970 ata_ehi_push_desc(ehi, 2971 "PCI err cause 0x%08x", err_cause); 2972 err_mask = AC_ERR_HOST_BUS; 2973 ehi->action = ATA_EH_RESET; 2974 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2975 if (qc) 2976 qc->err_mask |= err_mask; 2977 else 2978 ehi->err_mask |= err_mask; 2979 2980 ata_port_freeze(ap); 2981 } 2982 } 2983 return 1; /* handled */ 2984 } 2985 2986 /** 2987 * mv_interrupt - Main interrupt event handler 2988 * @irq: unused 2989 * @dev_instance: private data; in this case the host structure 2990 * 2991 * Read the read only register to determine if any host 2992 * controllers have pending interrupts. If so, call lower level 2993 * routine to handle. Also check for PCI errors which are only 2994 * reported here. 2995 * 2996 * LOCKING: 2997 * This routine holds the host lock while processing pending 2998 * interrupts. 2999 */ 3000 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 3001 { 3002 struct ata_host *host = dev_instance; 3003 struct mv_host_priv *hpriv = host->private_data; 3004 unsigned int handled = 0; 3005 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 3006 u32 main_irq_cause, pending_irqs; 3007 3008 spin_lock(&host->lock); 3009 3010 /* for MSI: block new interrupts while in here */ 3011 if (using_msi) 3012 mv_write_main_irq_mask(0, hpriv); 3013 3014 main_irq_cause = readl(hpriv->main_irq_cause_addr); 3015 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 3016 /* 3017 * Deal with cases where we either have nothing pending, or have read 3018 * a bogus register value which can indicate HW removal or PCI fault. 3019 */ 3020 if (pending_irqs && main_irq_cause != 0xffffffffU) { 3021 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 3022 handled = mv_pci_error(host, hpriv->base); 3023 else 3024 handled = mv_host_intr(host, pending_irqs); 3025 } 3026 3027 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3028 if (using_msi) 3029 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3030 3031 spin_unlock(&host->lock); 3032 3033 return IRQ_RETVAL(handled); 3034 } 3035 3036 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3037 { 3038 unsigned int ofs; 3039 3040 switch (sc_reg_in) { 3041 case SCR_STATUS: 3042 case SCR_ERROR: 3043 case SCR_CONTROL: 3044 ofs = sc_reg_in * sizeof(u32); 3045 break; 3046 default: 3047 ofs = 0xffffffffU; 3048 break; 3049 } 3050 return ofs; 3051 } 3052 3053 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3054 { 3055 struct mv_host_priv *hpriv = link->ap->host->private_data; 3056 void __iomem *mmio = hpriv->base; 3057 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3058 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3059 3060 if (ofs != 0xffffffffU) { 3061 *val = readl(addr + ofs); 3062 return 0; 3063 } else 3064 return -EINVAL; 3065 } 3066 3067 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3068 { 3069 struct mv_host_priv *hpriv = link->ap->host->private_data; 3070 void __iomem *mmio = hpriv->base; 3071 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3072 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3073 3074 if (ofs != 0xffffffffU) { 3075 writelfl(val, addr + ofs); 3076 return 0; 3077 } else 3078 return -EINVAL; 3079 } 3080 3081 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3082 { 3083 struct pci_dev *pdev = to_pci_dev(host->dev); 3084 int early_5080; 3085 3086 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3087 3088 if (!early_5080) { 3089 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3090 tmp |= (1 << 0); 3091 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3092 } 3093 3094 mv_reset_pci_bus(host, mmio); 3095 } 3096 3097 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3098 { 3099 writel(0x0fcfffff, mmio + FLASH_CTL); 3100 } 3101 3102 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3103 void __iomem *mmio) 3104 { 3105 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3106 u32 tmp; 3107 3108 tmp = readl(phy_mmio + MV5_PHY_MODE); 3109 3110 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3111 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3112 } 3113 3114 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3115 { 3116 u32 tmp; 3117 3118 writel(0, mmio + GPIO_PORT_CTL); 3119 3120 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3121 3122 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3123 tmp |= ~(1 << 0); 3124 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3125 } 3126 3127 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3128 unsigned int port) 3129 { 3130 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3131 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3132 u32 tmp; 3133 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3134 3135 if (fix_apm_sq) { 3136 tmp = readl(phy_mmio + MV5_LTMODE); 3137 tmp |= (1 << 19); 3138 writel(tmp, phy_mmio + MV5_LTMODE); 3139 3140 tmp = readl(phy_mmio + MV5_PHY_CTL); 3141 tmp &= ~0x3; 3142 tmp |= 0x1; 3143 writel(tmp, phy_mmio + MV5_PHY_CTL); 3144 } 3145 3146 tmp = readl(phy_mmio + MV5_PHY_MODE); 3147 tmp &= ~mask; 3148 tmp |= hpriv->signal[port].pre; 3149 tmp |= hpriv->signal[port].amps; 3150 writel(tmp, phy_mmio + MV5_PHY_MODE); 3151 } 3152 3153 3154 #undef ZERO 3155 #define ZERO(reg) writel(0, port_mmio + (reg)) 3156 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3157 unsigned int port) 3158 { 3159 void __iomem *port_mmio = mv_port_base(mmio, port); 3160 3161 mv_reset_channel(hpriv, mmio, port); 3162 3163 ZERO(0x028); /* command */ 3164 writel(0x11f, port_mmio + EDMA_CFG); 3165 ZERO(0x004); /* timer */ 3166 ZERO(0x008); /* irq err cause */ 3167 ZERO(0x00c); /* irq err mask */ 3168 ZERO(0x010); /* rq bah */ 3169 ZERO(0x014); /* rq inp */ 3170 ZERO(0x018); /* rq outp */ 3171 ZERO(0x01c); /* respq bah */ 3172 ZERO(0x024); /* respq outp */ 3173 ZERO(0x020); /* respq inp */ 3174 ZERO(0x02c); /* test control */ 3175 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3176 } 3177 #undef ZERO 3178 3179 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3180 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3181 unsigned int hc) 3182 { 3183 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3184 u32 tmp; 3185 3186 ZERO(0x00c); 3187 ZERO(0x010); 3188 ZERO(0x014); 3189 ZERO(0x018); 3190 3191 tmp = readl(hc_mmio + 0x20); 3192 tmp &= 0x1c1c1c1c; 3193 tmp |= 0x03030303; 3194 writel(tmp, hc_mmio + 0x20); 3195 } 3196 #undef ZERO 3197 3198 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3199 unsigned int n_hc) 3200 { 3201 unsigned int hc, port; 3202 3203 for (hc = 0; hc < n_hc; hc++) { 3204 for (port = 0; port < MV_PORTS_PER_HC; port++) 3205 mv5_reset_hc_port(hpriv, mmio, 3206 (hc * MV_PORTS_PER_HC) + port); 3207 3208 mv5_reset_one_hc(hpriv, mmio, hc); 3209 } 3210 3211 return 0; 3212 } 3213 3214 #undef ZERO 3215 #define ZERO(reg) writel(0, mmio + (reg)) 3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3217 { 3218 struct mv_host_priv *hpriv = host->private_data; 3219 u32 tmp; 3220 3221 tmp = readl(mmio + MV_PCI_MODE); 3222 tmp &= 0xff00ffff; 3223 writel(tmp, mmio + MV_PCI_MODE); 3224 3225 ZERO(MV_PCI_DISC_TIMER); 3226 ZERO(MV_PCI_MSI_TRIGGER); 3227 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3228 ZERO(MV_PCI_SERR_MASK); 3229 ZERO(hpriv->irq_cause_offset); 3230 ZERO(hpriv->irq_mask_offset); 3231 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3232 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3233 ZERO(MV_PCI_ERR_ATTRIBUTE); 3234 ZERO(MV_PCI_ERR_COMMAND); 3235 } 3236 #undef ZERO 3237 3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3239 { 3240 u32 tmp; 3241 3242 mv5_reset_flash(hpriv, mmio); 3243 3244 tmp = readl(mmio + GPIO_PORT_CTL); 3245 tmp &= 0x3; 3246 tmp |= (1 << 5) | (1 << 6); 3247 writel(tmp, mmio + GPIO_PORT_CTL); 3248 } 3249 3250 /** 3251 * mv6_reset_hc - Perform the 6xxx global soft reset 3252 * @mmio: base address of the HBA 3253 * 3254 * This routine only applies to 6xxx parts. 3255 * 3256 * LOCKING: 3257 * Inherited from caller. 3258 */ 3259 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3260 unsigned int n_hc) 3261 { 3262 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3263 int i, rc = 0; 3264 u32 t; 3265 3266 /* Following procedure defined in PCI "main command and status 3267 * register" table. 3268 */ 3269 t = readl(reg); 3270 writel(t | STOP_PCI_MASTER, reg); 3271 3272 for (i = 0; i < 1000; i++) { 3273 udelay(1); 3274 t = readl(reg); 3275 if (PCI_MASTER_EMPTY & t) 3276 break; 3277 } 3278 if (!(PCI_MASTER_EMPTY & t)) { 3279 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3280 rc = 1; 3281 goto done; 3282 } 3283 3284 /* set reset */ 3285 i = 5; 3286 do { 3287 writel(t | GLOB_SFT_RST, reg); 3288 t = readl(reg); 3289 udelay(1); 3290 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3291 3292 if (!(GLOB_SFT_RST & t)) { 3293 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3294 rc = 1; 3295 goto done; 3296 } 3297 3298 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3299 i = 5; 3300 do { 3301 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3302 t = readl(reg); 3303 udelay(1); 3304 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3305 3306 if (GLOB_SFT_RST & t) { 3307 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3308 rc = 1; 3309 } 3310 done: 3311 return rc; 3312 } 3313 3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3315 void __iomem *mmio) 3316 { 3317 void __iomem *port_mmio; 3318 u32 tmp; 3319 3320 tmp = readl(mmio + RESET_CFG); 3321 if ((tmp & (1 << 0)) == 0) { 3322 hpriv->signal[idx].amps = 0x7 << 8; 3323 hpriv->signal[idx].pre = 0x1 << 5; 3324 return; 3325 } 3326 3327 port_mmio = mv_port_base(mmio, idx); 3328 tmp = readl(port_mmio + PHY_MODE2); 3329 3330 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3331 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3332 } 3333 3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3335 { 3336 writel(0x00000060, mmio + GPIO_PORT_CTL); 3337 } 3338 3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3340 unsigned int port) 3341 { 3342 void __iomem *port_mmio = mv_port_base(mmio, port); 3343 3344 u32 hp_flags = hpriv->hp_flags; 3345 int fix_phy_mode2 = 3346 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3347 int fix_phy_mode4 = 3348 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3349 u32 m2, m3; 3350 3351 if (fix_phy_mode2) { 3352 m2 = readl(port_mmio + PHY_MODE2); 3353 m2 &= ~(1 << 16); 3354 m2 |= (1 << 31); 3355 writel(m2, port_mmio + PHY_MODE2); 3356 3357 udelay(200); 3358 3359 m2 = readl(port_mmio + PHY_MODE2); 3360 m2 &= ~((1 << 16) | (1 << 31)); 3361 writel(m2, port_mmio + PHY_MODE2); 3362 3363 udelay(200); 3364 } 3365 3366 /* 3367 * Gen-II/IIe PHY_MODE3 errata RM#2: 3368 * Achieves better receiver noise performance than the h/w default: 3369 */ 3370 m3 = readl(port_mmio + PHY_MODE3); 3371 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3372 3373 /* Guideline 88F5182 (GL# SATA-S11) */ 3374 if (IS_SOC(hpriv)) 3375 m3 &= ~0x1c; 3376 3377 if (fix_phy_mode4) { 3378 u32 m4 = readl(port_mmio + PHY_MODE4); 3379 /* 3380 * Enforce reserved-bit restrictions on GenIIe devices only. 3381 * For earlier chipsets, force only the internal config field 3382 * (workaround for errata FEr SATA#10 part 1). 3383 */ 3384 if (IS_GEN_IIE(hpriv)) 3385 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3386 else 3387 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3388 writel(m4, port_mmio + PHY_MODE4); 3389 } 3390 /* 3391 * Workaround for 60x1-B2 errata SATA#13: 3392 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3393 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3394 * Or ensure we use writelfl() when writing PHY_MODE4. 3395 */ 3396 writel(m3, port_mmio + PHY_MODE3); 3397 3398 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3399 m2 = readl(port_mmio + PHY_MODE2); 3400 3401 m2 &= ~MV_M2_PREAMP_MASK; 3402 m2 |= hpriv->signal[port].amps; 3403 m2 |= hpriv->signal[port].pre; 3404 m2 &= ~(1 << 16); 3405 3406 /* according to mvSata 3.6.1, some IIE values are fixed */ 3407 if (IS_GEN_IIE(hpriv)) { 3408 m2 &= ~0xC30FF01F; 3409 m2 |= 0x0000900F; 3410 } 3411 3412 writel(m2, port_mmio + PHY_MODE2); 3413 } 3414 3415 /* TODO: use the generic LED interface to configure the SATA Presence */ 3416 /* & Acitivy LEDs on the board */ 3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3418 void __iomem *mmio) 3419 { 3420 return; 3421 } 3422 3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3424 void __iomem *mmio) 3425 { 3426 void __iomem *port_mmio; 3427 u32 tmp; 3428 3429 port_mmio = mv_port_base(mmio, idx); 3430 tmp = readl(port_mmio + PHY_MODE2); 3431 3432 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3433 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3434 } 3435 3436 #undef ZERO 3437 #define ZERO(reg) writel(0, port_mmio + (reg)) 3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3439 void __iomem *mmio, unsigned int port) 3440 { 3441 void __iomem *port_mmio = mv_port_base(mmio, port); 3442 3443 mv_reset_channel(hpriv, mmio, port); 3444 3445 ZERO(0x028); /* command */ 3446 writel(0x101f, port_mmio + EDMA_CFG); 3447 ZERO(0x004); /* timer */ 3448 ZERO(0x008); /* irq err cause */ 3449 ZERO(0x00c); /* irq err mask */ 3450 ZERO(0x010); /* rq bah */ 3451 ZERO(0x014); /* rq inp */ 3452 ZERO(0x018); /* rq outp */ 3453 ZERO(0x01c); /* respq bah */ 3454 ZERO(0x024); /* respq outp */ 3455 ZERO(0x020); /* respq inp */ 3456 ZERO(0x02c); /* test control */ 3457 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3458 } 3459 3460 #undef ZERO 3461 3462 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3464 void __iomem *mmio) 3465 { 3466 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3467 3468 ZERO(0x00c); 3469 ZERO(0x010); 3470 ZERO(0x014); 3471 3472 } 3473 3474 #undef ZERO 3475 3476 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3477 void __iomem *mmio, unsigned int n_hc) 3478 { 3479 unsigned int port; 3480 3481 for (port = 0; port < hpriv->n_ports; port++) 3482 mv_soc_reset_hc_port(hpriv, mmio, port); 3483 3484 mv_soc_reset_one_hc(hpriv, mmio); 3485 3486 return 0; 3487 } 3488 3489 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3490 void __iomem *mmio) 3491 { 3492 return; 3493 } 3494 3495 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3496 { 3497 return; 3498 } 3499 3500 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3501 void __iomem *mmio, unsigned int port) 3502 { 3503 void __iomem *port_mmio = mv_port_base(mmio, port); 3504 u32 reg; 3505 3506 reg = readl(port_mmio + PHY_MODE3); 3507 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3508 reg |= (0x1 << 27); 3509 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3510 reg |= (0x1 << 29); 3511 writel(reg, port_mmio + PHY_MODE3); 3512 3513 reg = readl(port_mmio + PHY_MODE4); 3514 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3515 reg |= (0x1 << 16); 3516 writel(reg, port_mmio + PHY_MODE4); 3517 3518 reg = readl(port_mmio + PHY_MODE9_GEN2); 3519 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3520 reg |= 0x8; 3521 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3522 writel(reg, port_mmio + PHY_MODE9_GEN2); 3523 3524 reg = readl(port_mmio + PHY_MODE9_GEN1); 3525 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3526 reg |= 0x8; 3527 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3528 writel(reg, port_mmio + PHY_MODE9_GEN1); 3529 } 3530 3531 /** 3532 * soc_is_65 - check if the soc is 65 nano device 3533 * 3534 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3535 * register, this register should contain non-zero value and it exists only 3536 * in the 65 nano devices, when reading it from older devices we get 0. 3537 */ 3538 static bool soc_is_65n(struct mv_host_priv *hpriv) 3539 { 3540 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3541 3542 if (readl(port0_mmio + PHYCFG_OFS)) 3543 return true; 3544 return false; 3545 } 3546 3547 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3548 { 3549 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3550 3551 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3552 if (want_gen2i) 3553 ifcfg |= (1 << 7); /* enable gen2i speed */ 3554 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3555 } 3556 3557 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3558 unsigned int port_no) 3559 { 3560 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3561 3562 /* 3563 * The datasheet warns against setting EDMA_RESET when EDMA is active 3564 * (but doesn't say what the problem might be). So we first try 3565 * to disable the EDMA engine before doing the EDMA_RESET operation. 3566 */ 3567 mv_stop_edma_engine(port_mmio); 3568 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3569 3570 if (!IS_GEN_I(hpriv)) { 3571 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3572 mv_setup_ifcfg(port_mmio, 1); 3573 } 3574 /* 3575 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3576 * link, and physical layers. It resets all SATA interface registers 3577 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3578 */ 3579 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3580 udelay(25); /* allow reset propagation */ 3581 writelfl(0, port_mmio + EDMA_CMD); 3582 3583 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3584 3585 if (IS_GEN_I(hpriv)) 3586 usleep_range(500, 1000); 3587 } 3588 3589 static void mv_pmp_select(struct ata_port *ap, int pmp) 3590 { 3591 if (sata_pmp_supported(ap)) { 3592 void __iomem *port_mmio = mv_ap_base(ap); 3593 u32 reg = readl(port_mmio + SATA_IFCTL); 3594 int old = reg & 0xf; 3595 3596 if (old != pmp) { 3597 reg = (reg & ~0xf) | pmp; 3598 writelfl(reg, port_mmio + SATA_IFCTL); 3599 } 3600 } 3601 } 3602 3603 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3604 unsigned long deadline) 3605 { 3606 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3607 return sata_std_hardreset(link, class, deadline); 3608 } 3609 3610 static int mv_softreset(struct ata_link *link, unsigned int *class, 3611 unsigned long deadline) 3612 { 3613 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3614 return ata_sff_softreset(link, class, deadline); 3615 } 3616 3617 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3618 unsigned long deadline) 3619 { 3620 struct ata_port *ap = link->ap; 3621 struct mv_host_priv *hpriv = ap->host->private_data; 3622 struct mv_port_priv *pp = ap->private_data; 3623 void __iomem *mmio = hpriv->base; 3624 int rc, attempts = 0, extra = 0; 3625 u32 sstatus; 3626 bool online; 3627 3628 mv_reset_channel(hpriv, mmio, ap->port_no); 3629 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3630 pp->pp_flags &= 3631 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3632 3633 /* Workaround for errata FEr SATA#10 (part 2) */ 3634 do { 3635 const unsigned long *timing = 3636 sata_ehc_deb_timing(&link->eh_context); 3637 3638 rc = sata_link_hardreset(link, timing, deadline + extra, 3639 &online, NULL); 3640 rc = online ? -EAGAIN : rc; 3641 if (rc) 3642 return rc; 3643 sata_scr_read(link, SCR_STATUS, &sstatus); 3644 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3645 /* Force 1.5gb/s link speed and try again */ 3646 mv_setup_ifcfg(mv_ap_base(ap), 0); 3647 if (time_after(jiffies + HZ, deadline)) 3648 extra = HZ; /* only extend it once, max */ 3649 } 3650 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3651 mv_save_cached_regs(ap); 3652 mv_edma_cfg(ap, 0, 0); 3653 3654 return rc; 3655 } 3656 3657 static void mv_eh_freeze(struct ata_port *ap) 3658 { 3659 mv_stop_edma(ap); 3660 mv_enable_port_irqs(ap, 0); 3661 } 3662 3663 static void mv_eh_thaw(struct ata_port *ap) 3664 { 3665 struct mv_host_priv *hpriv = ap->host->private_data; 3666 unsigned int port = ap->port_no; 3667 unsigned int hardport = mv_hardport_from_port(port); 3668 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3669 void __iomem *port_mmio = mv_ap_base(ap); 3670 u32 hc_irq_cause; 3671 3672 /* clear EDMA errors on this port */ 3673 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3674 3675 /* clear pending irq events */ 3676 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3677 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3678 3679 mv_enable_port_irqs(ap, ERR_IRQ); 3680 } 3681 3682 /** 3683 * mv_port_init - Perform some early initialization on a single port. 3684 * @port: libata data structure storing shadow register addresses 3685 * @port_mmio: base address of the port 3686 * 3687 * Initialize shadow register mmio addresses, clear outstanding 3688 * interrupts on the port, and unmask interrupts for the future 3689 * start of the port. 3690 * 3691 * LOCKING: 3692 * Inherited from caller. 3693 */ 3694 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3695 { 3696 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3697 3698 /* PIO related setup 3699 */ 3700 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3701 port->error_addr = 3702 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3703 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3704 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3705 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3706 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3707 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3708 port->status_addr = 3709 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3710 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3711 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3712 3713 /* Clear any currently outstanding port interrupt conditions */ 3714 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3715 writelfl(readl(serr), serr); 3716 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3717 3718 /* unmask all non-transient EDMA error interrupts */ 3719 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3720 3721 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3722 readl(port_mmio + EDMA_CFG), 3723 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3724 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3725 } 3726 3727 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3728 { 3729 struct mv_host_priv *hpriv = host->private_data; 3730 void __iomem *mmio = hpriv->base; 3731 u32 reg; 3732 3733 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3734 return 0; /* not PCI-X capable */ 3735 reg = readl(mmio + MV_PCI_MODE); 3736 if ((reg & MV_PCI_MODE_MASK) == 0) 3737 return 0; /* conventional PCI mode */ 3738 return 1; /* chip is in PCI-X mode */ 3739 } 3740 3741 static int mv_pci_cut_through_okay(struct ata_host *host) 3742 { 3743 struct mv_host_priv *hpriv = host->private_data; 3744 void __iomem *mmio = hpriv->base; 3745 u32 reg; 3746 3747 if (!mv_in_pcix_mode(host)) { 3748 reg = readl(mmio + MV_PCI_COMMAND); 3749 if (reg & MV_PCI_COMMAND_MRDTRIG) 3750 return 0; /* not okay */ 3751 } 3752 return 1; /* okay */ 3753 } 3754 3755 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3756 { 3757 struct mv_host_priv *hpriv = host->private_data; 3758 void __iomem *mmio = hpriv->base; 3759 3760 /* workaround for 60x1-B2 errata PCI#7 */ 3761 if (mv_in_pcix_mode(host)) { 3762 u32 reg = readl(mmio + MV_PCI_COMMAND); 3763 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3764 } 3765 } 3766 3767 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3768 { 3769 struct pci_dev *pdev = to_pci_dev(host->dev); 3770 struct mv_host_priv *hpriv = host->private_data; 3771 u32 hp_flags = hpriv->hp_flags; 3772 3773 switch (board_idx) { 3774 case chip_5080: 3775 hpriv->ops = &mv5xxx_ops; 3776 hp_flags |= MV_HP_GEN_I; 3777 3778 switch (pdev->revision) { 3779 case 0x1: 3780 hp_flags |= MV_HP_ERRATA_50XXB0; 3781 break; 3782 case 0x3: 3783 hp_flags |= MV_HP_ERRATA_50XXB2; 3784 break; 3785 default: 3786 dev_warn(&pdev->dev, 3787 "Applying 50XXB2 workarounds to unknown rev\n"); 3788 hp_flags |= MV_HP_ERRATA_50XXB2; 3789 break; 3790 } 3791 break; 3792 3793 case chip_504x: 3794 case chip_508x: 3795 hpriv->ops = &mv5xxx_ops; 3796 hp_flags |= MV_HP_GEN_I; 3797 3798 switch (pdev->revision) { 3799 case 0x0: 3800 hp_flags |= MV_HP_ERRATA_50XXB0; 3801 break; 3802 case 0x3: 3803 hp_flags |= MV_HP_ERRATA_50XXB2; 3804 break; 3805 default: 3806 dev_warn(&pdev->dev, 3807 "Applying B2 workarounds to unknown rev\n"); 3808 hp_flags |= MV_HP_ERRATA_50XXB2; 3809 break; 3810 } 3811 break; 3812 3813 case chip_604x: 3814 case chip_608x: 3815 hpriv->ops = &mv6xxx_ops; 3816 hp_flags |= MV_HP_GEN_II; 3817 3818 switch (pdev->revision) { 3819 case 0x7: 3820 mv_60x1b2_errata_pci7(host); 3821 hp_flags |= MV_HP_ERRATA_60X1B2; 3822 break; 3823 case 0x9: 3824 hp_flags |= MV_HP_ERRATA_60X1C0; 3825 break; 3826 default: 3827 dev_warn(&pdev->dev, 3828 "Applying B2 workarounds to unknown rev\n"); 3829 hp_flags |= MV_HP_ERRATA_60X1B2; 3830 break; 3831 } 3832 break; 3833 3834 case chip_7042: 3835 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3836 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3837 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3838 { 3839 /* 3840 * Highpoint RocketRAID PCIe 23xx series cards: 3841 * 3842 * Unconfigured drives are treated as "Legacy" 3843 * by the BIOS, and it overwrites sector 8 with 3844 * a "Lgcy" metadata block prior to Linux boot. 3845 * 3846 * Configured drives (RAID or JBOD) leave sector 8 3847 * alone, but instead overwrite a high numbered 3848 * sector for the RAID metadata. This sector can 3849 * be determined exactly, by truncating the physical 3850 * drive capacity to a nice even GB value. 3851 * 3852 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3853 * 3854 * Warn the user, lest they think we're just buggy. 3855 */ 3856 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3857 " BIOS CORRUPTS DATA on all attached drives," 3858 " regardless of if/how they are configured." 3859 " BEWARE!\n"); 3860 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3861 " use sectors 8-9 on \"Legacy\" drives," 3862 " and avoid the final two gigabytes on" 3863 " all RocketRAID BIOS initialized drives.\n"); 3864 } 3865 /* fall through */ 3866 case chip_6042: 3867 hpriv->ops = &mv6xxx_ops; 3868 hp_flags |= MV_HP_GEN_IIE; 3869 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3870 hp_flags |= MV_HP_CUT_THROUGH; 3871 3872 switch (pdev->revision) { 3873 case 0x2: /* Rev.B0: the first/only public release */ 3874 hp_flags |= MV_HP_ERRATA_60X1C0; 3875 break; 3876 default: 3877 dev_warn(&pdev->dev, 3878 "Applying 60X1C0 workarounds to unknown rev\n"); 3879 hp_flags |= MV_HP_ERRATA_60X1C0; 3880 break; 3881 } 3882 break; 3883 case chip_soc: 3884 if (soc_is_65n(hpriv)) 3885 hpriv->ops = &mv_soc_65n_ops; 3886 else 3887 hpriv->ops = &mv_soc_ops; 3888 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3889 MV_HP_ERRATA_60X1C0; 3890 break; 3891 3892 default: 3893 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3894 return 1; 3895 } 3896 3897 hpriv->hp_flags = hp_flags; 3898 if (hp_flags & MV_HP_PCIE) { 3899 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3900 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3901 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3902 } else { 3903 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3904 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3905 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3906 } 3907 3908 return 0; 3909 } 3910 3911 /** 3912 * mv_init_host - Perform some early initialization of the host. 3913 * @host: ATA host to initialize 3914 * 3915 * If possible, do an early global reset of the host. Then do 3916 * our port init and clear/unmask all/relevant host interrupts. 3917 * 3918 * LOCKING: 3919 * Inherited from caller. 3920 */ 3921 static int mv_init_host(struct ata_host *host) 3922 { 3923 int rc = 0, n_hc, port, hc; 3924 struct mv_host_priv *hpriv = host->private_data; 3925 void __iomem *mmio = hpriv->base; 3926 3927 rc = mv_chip_id(host, hpriv->board_idx); 3928 if (rc) 3929 goto done; 3930 3931 if (IS_SOC(hpriv)) { 3932 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3933 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3934 } else { 3935 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3936 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3937 } 3938 3939 /* initialize shadow irq mask with register's value */ 3940 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3941 3942 /* global interrupt mask: 0 == mask everything */ 3943 mv_set_main_irq_mask(host, ~0, 0); 3944 3945 n_hc = mv_get_hc_count(host->ports[0]->flags); 3946 3947 for (port = 0; port < host->n_ports; port++) 3948 if (hpriv->ops->read_preamp) 3949 hpriv->ops->read_preamp(hpriv, port, mmio); 3950 3951 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3952 if (rc) 3953 goto done; 3954 3955 hpriv->ops->reset_flash(hpriv, mmio); 3956 hpriv->ops->reset_bus(host, mmio); 3957 hpriv->ops->enable_leds(hpriv, mmio); 3958 3959 for (port = 0; port < host->n_ports; port++) { 3960 struct ata_port *ap = host->ports[port]; 3961 void __iomem *port_mmio = mv_port_base(mmio, port); 3962 3963 mv_port_init(&ap->ioaddr, port_mmio); 3964 } 3965 3966 for (hc = 0; hc < n_hc; hc++) { 3967 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3968 3969 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3970 "(before clear)=0x%08x\n", hc, 3971 readl(hc_mmio + HC_CFG), 3972 readl(hc_mmio + HC_IRQ_CAUSE)); 3973 3974 /* Clear any currently outstanding hc interrupt conditions */ 3975 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3976 } 3977 3978 if (!IS_SOC(hpriv)) { 3979 /* Clear any currently outstanding host interrupt conditions */ 3980 writelfl(0, mmio + hpriv->irq_cause_offset); 3981 3982 /* and unmask interrupt generation for host regs */ 3983 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3984 } 3985 3986 /* 3987 * enable only global host interrupts for now. 3988 * The per-port interrupts get done later as ports are set up. 3989 */ 3990 mv_set_main_irq_mask(host, 0, PCI_ERR); 3991 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3992 irq_coalescing_usecs); 3993 done: 3994 return rc; 3995 } 3996 3997 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3998 { 3999 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 4000 MV_CRQB_Q_SZ, 0); 4001 if (!hpriv->crqb_pool) 4002 return -ENOMEM; 4003 4004 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 4005 MV_CRPB_Q_SZ, 0); 4006 if (!hpriv->crpb_pool) 4007 return -ENOMEM; 4008 4009 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 4010 MV_SG_TBL_SZ, 0); 4011 if (!hpriv->sg_tbl_pool) 4012 return -ENOMEM; 4013 4014 return 0; 4015 } 4016 4017 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 4018 const struct mbus_dram_target_info *dram) 4019 { 4020 int i; 4021 4022 for (i = 0; i < 4; i++) { 4023 writel(0, hpriv->base + WINDOW_CTRL(i)); 4024 writel(0, hpriv->base + WINDOW_BASE(i)); 4025 } 4026 4027 for (i = 0; i < dram->num_cs; i++) { 4028 const struct mbus_dram_window *cs = dram->cs + i; 4029 4030 writel(((cs->size - 1) & 0xffff0000) | 4031 (cs->mbus_attr << 8) | 4032 (dram->mbus_dram_target_id << 4) | 1, 4033 hpriv->base + WINDOW_CTRL(i)); 4034 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4035 } 4036 } 4037 4038 /** 4039 * mv_platform_probe - handle a positive probe of an soc Marvell 4040 * host 4041 * @pdev: platform device found 4042 * 4043 * LOCKING: 4044 * Inherited from caller. 4045 */ 4046 static int mv_platform_probe(struct platform_device *pdev) 4047 { 4048 const struct mv_sata_platform_data *mv_platform_data; 4049 const struct mbus_dram_target_info *dram; 4050 const struct ata_port_info *ppi[] = 4051 { &mv_port_info[chip_soc], NULL }; 4052 struct ata_host *host; 4053 struct mv_host_priv *hpriv; 4054 struct resource *res; 4055 int n_ports = 0, irq = 0; 4056 int rc; 4057 int port; 4058 4059 ata_print_version_once(&pdev->dev, DRV_VERSION); 4060 4061 /* 4062 * Simple resource validation .. 4063 */ 4064 if (unlikely(pdev->num_resources != 2)) { 4065 dev_err(&pdev->dev, "invalid number of resources\n"); 4066 return -EINVAL; 4067 } 4068 4069 /* 4070 * Get the register base first 4071 */ 4072 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4073 if (res == NULL) 4074 return -EINVAL; 4075 4076 /* allocate host */ 4077 if (pdev->dev.of_node) { 4078 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports", 4079 &n_ports); 4080 if (rc) { 4081 dev_err(&pdev->dev, 4082 "error parsing nr-ports property: %d\n", rc); 4083 return rc; 4084 } 4085 4086 if (n_ports <= 0) { 4087 dev_err(&pdev->dev, "nr-ports must be positive: %d\n", 4088 n_ports); 4089 return -EINVAL; 4090 } 4091 4092 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 4093 } else { 4094 mv_platform_data = dev_get_platdata(&pdev->dev); 4095 n_ports = mv_platform_data->n_ports; 4096 irq = platform_get_irq(pdev, 0); 4097 } 4098 4099 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4100 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4101 4102 if (!host || !hpriv) 4103 return -ENOMEM; 4104 hpriv->port_clks = devm_kcalloc(&pdev->dev, 4105 n_ports, sizeof(struct clk *), 4106 GFP_KERNEL); 4107 if (!hpriv->port_clks) 4108 return -ENOMEM; 4109 hpriv->port_phys = devm_kcalloc(&pdev->dev, 4110 n_ports, sizeof(struct phy *), 4111 GFP_KERNEL); 4112 if (!hpriv->port_phys) 4113 return -ENOMEM; 4114 host->private_data = hpriv; 4115 hpriv->board_idx = chip_soc; 4116 4117 host->iomap = NULL; 4118 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4119 resource_size(res)); 4120 if (!hpriv->base) 4121 return -ENOMEM; 4122 4123 hpriv->base -= SATAHC0_REG_BASE; 4124 4125 hpriv->clk = clk_get(&pdev->dev, NULL); 4126 if (IS_ERR(hpriv->clk)) 4127 dev_notice(&pdev->dev, "cannot get optional clkdev\n"); 4128 else 4129 clk_prepare_enable(hpriv->clk); 4130 4131 for (port = 0; port < n_ports; port++) { 4132 char port_number[16]; 4133 sprintf(port_number, "%d", port); 4134 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); 4135 if (!IS_ERR(hpriv->port_clks[port])) 4136 clk_prepare_enable(hpriv->port_clks[port]); 4137 4138 sprintf(port_number, "port%d", port); 4139 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev, 4140 port_number); 4141 if (IS_ERR(hpriv->port_phys[port])) { 4142 rc = PTR_ERR(hpriv->port_phys[port]); 4143 hpriv->port_phys[port] = NULL; 4144 if (rc != -EPROBE_DEFER) 4145 dev_warn(&pdev->dev, "error getting phy %d", rc); 4146 4147 /* Cleanup only the initialized ports */ 4148 hpriv->n_ports = port; 4149 goto err; 4150 } else 4151 phy_power_on(hpriv->port_phys[port]); 4152 } 4153 4154 /* All the ports have been initialized */ 4155 hpriv->n_ports = n_ports; 4156 4157 /* 4158 * (Re-)program MBUS remapping windows if we are asked to. 4159 */ 4160 dram = mv_mbus_dram_info(); 4161 if (dram) 4162 mv_conf_mbus_windows(hpriv, dram); 4163 4164 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4165 if (rc) 4166 goto err; 4167 4168 /* 4169 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be 4170 * updated in the LP_PHY_CTL register. 4171 */ 4172 if (pdev->dev.of_node && 4173 of_device_is_compatible(pdev->dev.of_node, 4174 "marvell,armada-370-sata")) 4175 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL; 4176 4177 /* initialize adapter */ 4178 rc = mv_init_host(host); 4179 if (rc) 4180 goto err; 4181 4182 dev_info(&pdev->dev, "slots %u ports %d\n", 4183 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4184 4185 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); 4186 if (!rc) 4187 return 0; 4188 4189 err: 4190 if (!IS_ERR(hpriv->clk)) { 4191 clk_disable_unprepare(hpriv->clk); 4192 clk_put(hpriv->clk); 4193 } 4194 for (port = 0; port < hpriv->n_ports; port++) { 4195 if (!IS_ERR(hpriv->port_clks[port])) { 4196 clk_disable_unprepare(hpriv->port_clks[port]); 4197 clk_put(hpriv->port_clks[port]); 4198 } 4199 phy_power_off(hpriv->port_phys[port]); 4200 } 4201 4202 return rc; 4203 } 4204 4205 /* 4206 * 4207 * mv_platform_remove - unplug a platform interface 4208 * @pdev: platform device 4209 * 4210 * A platform bus SATA device has been unplugged. Perform the needed 4211 * cleanup. Also called on module unload for any active devices. 4212 */ 4213 static int mv_platform_remove(struct platform_device *pdev) 4214 { 4215 struct ata_host *host = platform_get_drvdata(pdev); 4216 struct mv_host_priv *hpriv = host->private_data; 4217 int port; 4218 ata_host_detach(host); 4219 4220 if (!IS_ERR(hpriv->clk)) { 4221 clk_disable_unprepare(hpriv->clk); 4222 clk_put(hpriv->clk); 4223 } 4224 for (port = 0; port < host->n_ports; port++) { 4225 if (!IS_ERR(hpriv->port_clks[port])) { 4226 clk_disable_unprepare(hpriv->port_clks[port]); 4227 clk_put(hpriv->port_clks[port]); 4228 } 4229 phy_power_off(hpriv->port_phys[port]); 4230 } 4231 return 0; 4232 } 4233 4234 #ifdef CONFIG_PM_SLEEP 4235 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4236 { 4237 struct ata_host *host = platform_get_drvdata(pdev); 4238 if (host) 4239 return ata_host_suspend(host, state); 4240 else 4241 return 0; 4242 } 4243 4244 static int mv_platform_resume(struct platform_device *pdev) 4245 { 4246 struct ata_host *host = platform_get_drvdata(pdev); 4247 const struct mbus_dram_target_info *dram; 4248 int ret; 4249 4250 if (host) { 4251 struct mv_host_priv *hpriv = host->private_data; 4252 4253 /* 4254 * (Re-)program MBUS remapping windows if we are asked to. 4255 */ 4256 dram = mv_mbus_dram_info(); 4257 if (dram) 4258 mv_conf_mbus_windows(hpriv, dram); 4259 4260 /* initialize adapter */ 4261 ret = mv_init_host(host); 4262 if (ret) { 4263 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4264 return ret; 4265 } 4266 ata_host_resume(host); 4267 } 4268 4269 return 0; 4270 } 4271 #else 4272 #define mv_platform_suspend NULL 4273 #define mv_platform_resume NULL 4274 #endif 4275 4276 #ifdef CONFIG_OF 4277 static const struct of_device_id mv_sata_dt_ids[] = { 4278 { .compatible = "marvell,armada-370-sata", }, 4279 { .compatible = "marvell,orion-sata", }, 4280 {}, 4281 }; 4282 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); 4283 #endif 4284 4285 static struct platform_driver mv_platform_driver = { 4286 .probe = mv_platform_probe, 4287 .remove = mv_platform_remove, 4288 .suspend = mv_platform_suspend, 4289 .resume = mv_platform_resume, 4290 .driver = { 4291 .name = DRV_NAME, 4292 .of_match_table = of_match_ptr(mv_sata_dt_ids), 4293 }, 4294 }; 4295 4296 4297 #ifdef CONFIG_PCI 4298 static int mv_pci_init_one(struct pci_dev *pdev, 4299 const struct pci_device_id *ent); 4300 #ifdef CONFIG_PM_SLEEP 4301 static int mv_pci_device_resume(struct pci_dev *pdev); 4302 #endif 4303 4304 4305 static struct pci_driver mv_pci_driver = { 4306 .name = DRV_NAME, 4307 .id_table = mv_pci_tbl, 4308 .probe = mv_pci_init_one, 4309 .remove = ata_pci_remove_one, 4310 #ifdef CONFIG_PM_SLEEP 4311 .suspend = ata_pci_device_suspend, 4312 .resume = mv_pci_device_resume, 4313 #endif 4314 4315 }; 4316 4317 /** 4318 * mv_print_info - Dump key info to kernel log for perusal. 4319 * @host: ATA host to print info about 4320 * 4321 * FIXME: complete this. 4322 * 4323 * LOCKING: 4324 * Inherited from caller. 4325 */ 4326 static void mv_print_info(struct ata_host *host) 4327 { 4328 struct pci_dev *pdev = to_pci_dev(host->dev); 4329 struct mv_host_priv *hpriv = host->private_data; 4330 u8 scc; 4331 const char *scc_s, *gen; 4332 4333 /* Use this to determine the HW stepping of the chip so we know 4334 * what errata to workaround 4335 */ 4336 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4337 if (scc == 0) 4338 scc_s = "SCSI"; 4339 else if (scc == 0x01) 4340 scc_s = "RAID"; 4341 else 4342 scc_s = "?"; 4343 4344 if (IS_GEN_I(hpriv)) 4345 gen = "I"; 4346 else if (IS_GEN_II(hpriv)) 4347 gen = "II"; 4348 else if (IS_GEN_IIE(hpriv)) 4349 gen = "IIE"; 4350 else 4351 gen = "?"; 4352 4353 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4354 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4355 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4356 } 4357 4358 /** 4359 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4360 * @pdev: PCI device found 4361 * @ent: PCI device ID entry for the matched host 4362 * 4363 * LOCKING: 4364 * Inherited from caller. 4365 */ 4366 static int mv_pci_init_one(struct pci_dev *pdev, 4367 const struct pci_device_id *ent) 4368 { 4369 unsigned int board_idx = (unsigned int)ent->driver_data; 4370 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4371 struct ata_host *host; 4372 struct mv_host_priv *hpriv; 4373 int n_ports, port, rc; 4374 4375 ata_print_version_once(&pdev->dev, DRV_VERSION); 4376 4377 /* allocate host */ 4378 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4379 4380 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4381 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4382 if (!host || !hpriv) 4383 return -ENOMEM; 4384 host->private_data = hpriv; 4385 hpriv->n_ports = n_ports; 4386 hpriv->board_idx = board_idx; 4387 4388 /* acquire resources */ 4389 rc = pcim_enable_device(pdev); 4390 if (rc) 4391 return rc; 4392 4393 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4394 if (rc == -EBUSY) 4395 pcim_pin_device(pdev); 4396 if (rc) 4397 return rc; 4398 host->iomap = pcim_iomap_table(pdev); 4399 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4400 4401 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4402 if (rc) { 4403 dev_err(&pdev->dev, "DMA enable failed\n"); 4404 return rc; 4405 } 4406 4407 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4408 if (rc) 4409 return rc; 4410 4411 for (port = 0; port < host->n_ports; port++) { 4412 struct ata_port *ap = host->ports[port]; 4413 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4414 unsigned int offset = port_mmio - hpriv->base; 4415 4416 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4417 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4418 } 4419 4420 /* initialize adapter */ 4421 rc = mv_init_host(host); 4422 if (rc) 4423 return rc; 4424 4425 /* Enable message-switched interrupts, if requested */ 4426 if (msi && pci_enable_msi(pdev) == 0) 4427 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4428 4429 mv_dump_pci_cfg(pdev, 0x68); 4430 mv_print_info(host); 4431 4432 pci_set_master(pdev); 4433 pci_try_set_mwi(pdev); 4434 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4435 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4436 } 4437 4438 #ifdef CONFIG_PM_SLEEP 4439 static int mv_pci_device_resume(struct pci_dev *pdev) 4440 { 4441 struct ata_host *host = pci_get_drvdata(pdev); 4442 int rc; 4443 4444 rc = ata_pci_device_do_resume(pdev); 4445 if (rc) 4446 return rc; 4447 4448 /* initialize adapter */ 4449 rc = mv_init_host(host); 4450 if (rc) 4451 return rc; 4452 4453 ata_host_resume(host); 4454 4455 return 0; 4456 } 4457 #endif 4458 #endif 4459 4460 static int __init mv_init(void) 4461 { 4462 int rc = -ENODEV; 4463 #ifdef CONFIG_PCI 4464 rc = pci_register_driver(&mv_pci_driver); 4465 if (rc < 0) 4466 return rc; 4467 #endif 4468 rc = platform_driver_register(&mv_platform_driver); 4469 4470 #ifdef CONFIG_PCI 4471 if (rc < 0) 4472 pci_unregister_driver(&mv_pci_driver); 4473 #endif 4474 return rc; 4475 } 4476 4477 static void __exit mv_exit(void) 4478 { 4479 #ifdef CONFIG_PCI 4480 pci_unregister_driver(&mv_pci_driver); 4481 #endif 4482 platform_driver_unregister(&mv_platform_driver); 4483 } 4484 4485 MODULE_AUTHOR("Brett Russ"); 4486 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4487 MODULE_LICENSE("GPL v2"); 4488 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4489 MODULE_VERSION(DRV_VERSION); 4490 MODULE_ALIAS("platform:" DRV_NAME); 4491 4492 module_init(mv_init); 4493 module_exit(mv_exit); 4494