1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/platform_device.h> 63 #include <linux/ata_platform.h> 64 #include <linux/mbus.h> 65 #include <linux/bitops.h> 66 #include <scsi/scsi_host.h> 67 #include <scsi/scsi_cmnd.h> 68 #include <scsi/scsi_device.h> 69 #include <linux/libata.h> 70 71 #define DRV_NAME "sata_mv" 72 #define DRV_VERSION "1.28" 73 74 /* 75 * module options 76 */ 77 78 static int msi; 79 #ifdef CONFIG_PCI 80 module_param(msi, int, S_IRUGO); 81 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 82 #endif 83 84 static int irq_coalescing_io_count; 85 module_param(irq_coalescing_io_count, int, S_IRUGO); 86 MODULE_PARM_DESC(irq_coalescing_io_count, 87 "IRQ coalescing I/O count threshold (0..255)"); 88 89 static int irq_coalescing_usecs; 90 module_param(irq_coalescing_usecs, int, S_IRUGO); 91 MODULE_PARM_DESC(irq_coalescing_usecs, 92 "IRQ coalescing time threshold in usecs"); 93 94 enum { 95 /* BAR's are enumerated in terms of pci_resource_start() terms */ 96 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 97 MV_IO_BAR = 2, /* offset 0x18: IO space */ 98 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 99 100 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 101 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 102 103 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 104 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 105 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 106 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 107 108 MV_PCI_REG_BASE = 0, 109 110 /* 111 * Per-chip ("all ports") interrupt coalescing feature. 112 * This is only for GEN_II / GEN_IIE hardware. 113 * 114 * Coalescing defers the interrupt until either the IO_THRESHOLD 115 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 116 */ 117 COAL_REG_BASE = 0x18000, 118 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 119 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 120 121 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 122 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 123 124 /* 125 * Registers for the (unused here) transaction coalescing feature: 126 */ 127 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 128 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 129 130 SATAHC0_REG_BASE = 0x20000, 131 FLASH_CTL = 0x1046c, 132 GPIO_PORT_CTL = 0x104f0, 133 RESET_CFG = 0x180d8, 134 135 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 136 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 137 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 138 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 139 140 MV_MAX_Q_DEPTH = 32, 141 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 142 143 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 144 * CRPB needs alignment on a 256B boundary. Size == 256B 145 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 146 */ 147 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 148 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 149 MV_MAX_SG_CT = 256, 150 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 151 152 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 153 MV_PORT_HC_SHIFT = 2, 154 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 155 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 156 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 157 158 /* Host Flags */ 159 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 160 161 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 162 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING, 163 164 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 165 166 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 167 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 168 169 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 170 171 CRQB_FLAG_READ = (1 << 0), 172 CRQB_TAG_SHIFT = 1, 173 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 174 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 175 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 176 CRQB_CMD_ADDR_SHIFT = 8, 177 CRQB_CMD_CS = (0x2 << 11), 178 CRQB_CMD_LAST = (1 << 15), 179 180 CRPB_FLAG_STATUS_SHIFT = 8, 181 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 182 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 183 184 EPRD_FLAG_END_OF_TBL = (1 << 31), 185 186 /* PCI interface registers */ 187 188 MV_PCI_COMMAND = 0xc00, 189 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 190 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 191 192 PCI_MAIN_CMD_STS = 0xd30, 193 STOP_PCI_MASTER = (1 << 2), 194 PCI_MASTER_EMPTY = (1 << 3), 195 GLOB_SFT_RST = (1 << 4), 196 197 MV_PCI_MODE = 0xd00, 198 MV_PCI_MODE_MASK = 0x30, 199 200 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 201 MV_PCI_DISC_TIMER = 0xd04, 202 MV_PCI_MSI_TRIGGER = 0xc38, 203 MV_PCI_SERR_MASK = 0xc28, 204 MV_PCI_XBAR_TMOUT = 0x1d04, 205 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 206 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 207 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 208 MV_PCI_ERR_COMMAND = 0x1d50, 209 210 PCI_IRQ_CAUSE = 0x1d58, 211 PCI_IRQ_MASK = 0x1d5c, 212 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 213 214 PCIE_IRQ_CAUSE = 0x1900, 215 PCIE_IRQ_MASK = 0x1910, 216 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 217 218 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 219 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 220 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 221 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 222 SOC_HC_MAIN_IRQ_MASK = 0x20024, 223 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 224 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 225 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 226 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 227 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 228 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 229 PCI_ERR = (1 << 18), 230 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 231 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 232 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 233 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 234 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 235 GPIO_INT = (1 << 22), 236 SELF_INT = (1 << 23), 237 TWSI_INT = (1 << 24), 238 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 239 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 240 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 241 242 /* SATAHC registers */ 243 HC_CFG = 0x00, 244 245 HC_IRQ_CAUSE = 0x14, 246 DMA_IRQ = (1 << 0), /* shift by port # */ 247 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 248 DEV_IRQ = (1 << 8), /* shift by port # */ 249 250 /* 251 * Per-HC (Host-Controller) interrupt coalescing feature. 252 * This is present on all chip generations. 253 * 254 * Coalescing defers the interrupt until either the IO_THRESHOLD 255 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 256 */ 257 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 258 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 259 260 SOC_LED_CTRL = 0x2c, 261 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 262 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 263 /* with dev activity LED */ 264 265 /* Shadow block registers */ 266 SHD_BLK = 0x100, 267 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 268 269 /* SATA registers */ 270 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 271 SATA_ACTIVE = 0x350, 272 FIS_IRQ_CAUSE = 0x364, 273 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 274 275 LTMODE = 0x30c, /* requires read-after-write */ 276 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 277 278 PHY_MODE2 = 0x330, 279 PHY_MODE3 = 0x310, 280 281 PHY_MODE4 = 0x314, /* requires read-after-write */ 282 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 283 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 284 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 285 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 286 287 SATA_IFCTL = 0x344, 288 SATA_TESTCTL = 0x348, 289 SATA_IFSTAT = 0x34c, 290 VENDOR_UNIQUE_FIS = 0x35c, 291 292 FISCFG = 0x360, 293 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 294 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 295 296 PHY_MODE9_GEN2 = 0x398, 297 PHY_MODE9_GEN1 = 0x39c, 298 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 299 300 MV5_PHY_MODE = 0x74, 301 MV5_LTMODE = 0x30, 302 MV5_PHY_CTL = 0x0C, 303 SATA_IFCFG = 0x050, 304 305 MV_M2_PREAMP_MASK = 0x7e0, 306 307 /* Port registers */ 308 EDMA_CFG = 0, 309 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 310 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 311 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 312 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 313 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 314 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 315 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 316 317 EDMA_ERR_IRQ_CAUSE = 0x8, 318 EDMA_ERR_IRQ_MASK = 0xc, 319 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 320 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 321 EDMA_ERR_DEV = (1 << 2), /* device error */ 322 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 323 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 324 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 325 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 326 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 327 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 328 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 329 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 330 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 331 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 332 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 333 334 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 335 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 336 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 337 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 338 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 339 340 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 341 342 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 343 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 344 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 345 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 346 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 347 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 348 349 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 350 351 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 352 EDMA_ERR_OVERRUN_5 = (1 << 5), 353 EDMA_ERR_UNDERRUN_5 = (1 << 6), 354 355 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 356 EDMA_ERR_LNK_CTRL_RX_1 | 357 EDMA_ERR_LNK_CTRL_RX_3 | 358 EDMA_ERR_LNK_CTRL_TX, 359 360 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 361 EDMA_ERR_PRD_PAR | 362 EDMA_ERR_DEV_DCON | 363 EDMA_ERR_DEV_CON | 364 EDMA_ERR_SERR | 365 EDMA_ERR_SELF_DIS | 366 EDMA_ERR_CRQB_PAR | 367 EDMA_ERR_CRPB_PAR | 368 EDMA_ERR_INTRL_PAR | 369 EDMA_ERR_IORDY | 370 EDMA_ERR_LNK_CTRL_RX_2 | 371 EDMA_ERR_LNK_DATA_RX | 372 EDMA_ERR_LNK_DATA_TX | 373 EDMA_ERR_TRANS_PROTO, 374 375 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 376 EDMA_ERR_PRD_PAR | 377 EDMA_ERR_DEV_DCON | 378 EDMA_ERR_DEV_CON | 379 EDMA_ERR_OVERRUN_5 | 380 EDMA_ERR_UNDERRUN_5 | 381 EDMA_ERR_SELF_DIS_5 | 382 EDMA_ERR_CRQB_PAR | 383 EDMA_ERR_CRPB_PAR | 384 EDMA_ERR_INTRL_PAR | 385 EDMA_ERR_IORDY, 386 387 EDMA_REQ_Q_BASE_HI = 0x10, 388 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 389 390 EDMA_REQ_Q_OUT_PTR = 0x18, 391 EDMA_REQ_Q_PTR_SHIFT = 5, 392 393 EDMA_RSP_Q_BASE_HI = 0x1c, 394 EDMA_RSP_Q_IN_PTR = 0x20, 395 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 396 EDMA_RSP_Q_PTR_SHIFT = 3, 397 398 EDMA_CMD = 0x28, /* EDMA command register */ 399 EDMA_EN = (1 << 0), /* enable EDMA */ 400 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 401 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 402 403 EDMA_STATUS = 0x30, /* EDMA engine status */ 404 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 405 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 406 407 EDMA_IORDY_TMOUT = 0x34, 408 EDMA_ARB_CFG = 0x38, 409 410 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 411 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 412 413 BMDMA_CMD = 0x224, /* bmdma command register */ 414 BMDMA_STATUS = 0x228, /* bmdma status register */ 415 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 416 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 417 418 /* Host private flags (hp_flags) */ 419 MV_HP_FLAG_MSI = (1 << 0), 420 MV_HP_ERRATA_50XXB0 = (1 << 1), 421 MV_HP_ERRATA_50XXB2 = (1 << 2), 422 MV_HP_ERRATA_60X1B2 = (1 << 3), 423 MV_HP_ERRATA_60X1C0 = (1 << 4), 424 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 425 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 426 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 427 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 428 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 429 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 430 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 431 432 /* Port private flags (pp_flags) */ 433 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 434 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 435 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 436 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 437 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 438 }; 439 440 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 441 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 442 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 443 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 444 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 445 446 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 447 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 448 449 enum { 450 /* DMA boundary 0xffff is required by the s/g splitting 451 * we need on /length/ in mv_fill-sg(). 452 */ 453 MV_DMA_BOUNDARY = 0xffffU, 454 455 /* mask of register bits containing lower 32 bits 456 * of EDMA request queue DMA address 457 */ 458 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 459 460 /* ditto, for response queue */ 461 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 462 }; 463 464 enum chip_type { 465 chip_504x, 466 chip_508x, 467 chip_5080, 468 chip_604x, 469 chip_608x, 470 chip_6042, 471 chip_7042, 472 chip_soc, 473 }; 474 475 /* Command ReQuest Block: 32B */ 476 struct mv_crqb { 477 __le32 sg_addr; 478 __le32 sg_addr_hi; 479 __le16 ctrl_flags; 480 __le16 ata_cmd[11]; 481 }; 482 483 struct mv_crqb_iie { 484 __le32 addr; 485 __le32 addr_hi; 486 __le32 flags; 487 __le32 len; 488 __le32 ata_cmd[4]; 489 }; 490 491 /* Command ResPonse Block: 8B */ 492 struct mv_crpb { 493 __le16 id; 494 __le16 flags; 495 __le32 tmstmp; 496 }; 497 498 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 499 struct mv_sg { 500 __le32 addr; 501 __le32 flags_size; 502 __le32 addr_hi; 503 __le32 reserved; 504 }; 505 506 /* 507 * We keep a local cache of a few frequently accessed port 508 * registers here, to avoid having to read them (very slow) 509 * when switching between EDMA and non-EDMA modes. 510 */ 511 struct mv_cached_regs { 512 u32 fiscfg; 513 u32 ltmode; 514 u32 haltcond; 515 u32 unknown_rsvd; 516 }; 517 518 struct mv_port_priv { 519 struct mv_crqb *crqb; 520 dma_addr_t crqb_dma; 521 struct mv_crpb *crpb; 522 dma_addr_t crpb_dma; 523 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 524 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 525 526 unsigned int req_idx; 527 unsigned int resp_idx; 528 529 u32 pp_flags; 530 struct mv_cached_regs cached; 531 unsigned int delayed_eh_pmp_map; 532 }; 533 534 struct mv_port_signal { 535 u32 amps; 536 u32 pre; 537 }; 538 539 struct mv_host_priv { 540 u32 hp_flags; 541 u32 main_irq_mask; 542 struct mv_port_signal signal[8]; 543 const struct mv_hw_ops *ops; 544 int n_ports; 545 void __iomem *base; 546 void __iomem *main_irq_cause_addr; 547 void __iomem *main_irq_mask_addr; 548 u32 irq_cause_offset; 549 u32 irq_mask_offset; 550 u32 unmask_all_irqs; 551 /* 552 * These consistent DMA memory pools give us guaranteed 553 * alignment for hardware-accessed data structures, 554 * and less memory waste in accomplishing the alignment. 555 */ 556 struct dma_pool *crqb_pool; 557 struct dma_pool *crpb_pool; 558 struct dma_pool *sg_tbl_pool; 559 }; 560 561 struct mv_hw_ops { 562 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 563 unsigned int port); 564 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 565 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 566 void __iomem *mmio); 567 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 568 unsigned int n_hc); 569 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 570 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 571 }; 572 573 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 574 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 575 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 576 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 577 static int mv_port_start(struct ata_port *ap); 578 static void mv_port_stop(struct ata_port *ap); 579 static int mv_qc_defer(struct ata_queued_cmd *qc); 580 static void mv_qc_prep(struct ata_queued_cmd *qc); 581 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 582 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 583 static int mv_hardreset(struct ata_link *link, unsigned int *class, 584 unsigned long deadline); 585 static void mv_eh_freeze(struct ata_port *ap); 586 static void mv_eh_thaw(struct ata_port *ap); 587 static void mv6_dev_config(struct ata_device *dev); 588 589 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 590 unsigned int port); 591 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 592 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 593 void __iomem *mmio); 594 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 595 unsigned int n_hc); 596 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 597 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 598 599 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 600 unsigned int port); 601 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 602 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 603 void __iomem *mmio); 604 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 605 unsigned int n_hc); 606 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 607 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 608 void __iomem *mmio); 609 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 610 void __iomem *mmio); 611 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 612 void __iomem *mmio, unsigned int n_hc); 613 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 614 void __iomem *mmio); 615 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 616 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 617 void __iomem *mmio, unsigned int port); 618 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 619 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 620 unsigned int port_no); 621 static int mv_stop_edma(struct ata_port *ap); 622 static int mv_stop_edma_engine(void __iomem *port_mmio); 623 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 624 625 static void mv_pmp_select(struct ata_port *ap, int pmp); 626 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 627 unsigned long deadline); 628 static int mv_softreset(struct ata_link *link, unsigned int *class, 629 unsigned long deadline); 630 static void mv_pmp_error_handler(struct ata_port *ap); 631 static void mv_process_crpb_entries(struct ata_port *ap, 632 struct mv_port_priv *pp); 633 634 static void mv_sff_irq_clear(struct ata_port *ap); 635 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 636 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 637 static void mv_bmdma_start(struct ata_queued_cmd *qc); 638 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 639 static u8 mv_bmdma_status(struct ata_port *ap); 640 static u8 mv_sff_check_status(struct ata_port *ap); 641 642 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 643 * because we have to allow room for worst case splitting of 644 * PRDs for 64K boundaries in mv_fill_sg(). 645 */ 646 static struct scsi_host_template mv5_sht = { 647 ATA_BASE_SHT(DRV_NAME), 648 .sg_tablesize = MV_MAX_SG_CT / 2, 649 .dma_boundary = MV_DMA_BOUNDARY, 650 }; 651 652 static struct scsi_host_template mv6_sht = { 653 ATA_NCQ_SHT(DRV_NAME), 654 .can_queue = MV_MAX_Q_DEPTH - 1, 655 .sg_tablesize = MV_MAX_SG_CT / 2, 656 .dma_boundary = MV_DMA_BOUNDARY, 657 }; 658 659 static struct ata_port_operations mv5_ops = { 660 .inherits = &ata_sff_port_ops, 661 662 .lost_interrupt = ATA_OP_NULL, 663 664 .qc_defer = mv_qc_defer, 665 .qc_prep = mv_qc_prep, 666 .qc_issue = mv_qc_issue, 667 668 .freeze = mv_eh_freeze, 669 .thaw = mv_eh_thaw, 670 .hardreset = mv_hardreset, 671 .error_handler = ata_std_error_handler, /* avoid SFF EH */ 672 .post_internal_cmd = ATA_OP_NULL, 673 674 .scr_read = mv5_scr_read, 675 .scr_write = mv5_scr_write, 676 677 .port_start = mv_port_start, 678 .port_stop = mv_port_stop, 679 }; 680 681 static struct ata_port_operations mv6_ops = { 682 .inherits = &mv5_ops, 683 .dev_config = mv6_dev_config, 684 .scr_read = mv_scr_read, 685 .scr_write = mv_scr_write, 686 687 .pmp_hardreset = mv_pmp_hardreset, 688 .pmp_softreset = mv_softreset, 689 .softreset = mv_softreset, 690 .error_handler = mv_pmp_error_handler, 691 692 .sff_check_status = mv_sff_check_status, 693 .sff_irq_clear = mv_sff_irq_clear, 694 .check_atapi_dma = mv_check_atapi_dma, 695 .bmdma_setup = mv_bmdma_setup, 696 .bmdma_start = mv_bmdma_start, 697 .bmdma_stop = mv_bmdma_stop, 698 .bmdma_status = mv_bmdma_status, 699 }; 700 701 static struct ata_port_operations mv_iie_ops = { 702 .inherits = &mv6_ops, 703 .dev_config = ATA_OP_NULL, 704 .qc_prep = mv_qc_prep_iie, 705 }; 706 707 static const struct ata_port_info mv_port_info[] = { 708 { /* chip_504x */ 709 .flags = MV_GEN_I_FLAGS, 710 .pio_mask = ATA_PIO4, 711 .udma_mask = ATA_UDMA6, 712 .port_ops = &mv5_ops, 713 }, 714 { /* chip_508x */ 715 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 716 .pio_mask = ATA_PIO4, 717 .udma_mask = ATA_UDMA6, 718 .port_ops = &mv5_ops, 719 }, 720 { /* chip_5080 */ 721 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 722 .pio_mask = ATA_PIO4, 723 .udma_mask = ATA_UDMA6, 724 .port_ops = &mv5_ops, 725 }, 726 { /* chip_604x */ 727 .flags = MV_GEN_II_FLAGS, 728 .pio_mask = ATA_PIO4, 729 .udma_mask = ATA_UDMA6, 730 .port_ops = &mv6_ops, 731 }, 732 { /* chip_608x */ 733 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 734 .pio_mask = ATA_PIO4, 735 .udma_mask = ATA_UDMA6, 736 .port_ops = &mv6_ops, 737 }, 738 { /* chip_6042 */ 739 .flags = MV_GEN_IIE_FLAGS, 740 .pio_mask = ATA_PIO4, 741 .udma_mask = ATA_UDMA6, 742 .port_ops = &mv_iie_ops, 743 }, 744 { /* chip_7042 */ 745 .flags = MV_GEN_IIE_FLAGS, 746 .pio_mask = ATA_PIO4, 747 .udma_mask = ATA_UDMA6, 748 .port_ops = &mv_iie_ops, 749 }, 750 { /* chip_soc */ 751 .flags = MV_GEN_IIE_FLAGS, 752 .pio_mask = ATA_PIO4, 753 .udma_mask = ATA_UDMA6, 754 .port_ops = &mv_iie_ops, 755 }, 756 }; 757 758 static const struct pci_device_id mv_pci_tbl[] = { 759 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 760 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 761 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 762 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 763 /* RocketRAID 1720/174x have different identifiers */ 764 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 765 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 766 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 767 768 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 769 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 770 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 771 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 772 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 773 774 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 775 776 /* Adaptec 1430SA */ 777 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 778 779 /* Marvell 7042 support */ 780 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 781 782 /* Highpoint RocketRAID PCIe series */ 783 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 784 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 785 786 { } /* terminate list */ 787 }; 788 789 static const struct mv_hw_ops mv5xxx_ops = { 790 .phy_errata = mv5_phy_errata, 791 .enable_leds = mv5_enable_leds, 792 .read_preamp = mv5_read_preamp, 793 .reset_hc = mv5_reset_hc, 794 .reset_flash = mv5_reset_flash, 795 .reset_bus = mv5_reset_bus, 796 }; 797 798 static const struct mv_hw_ops mv6xxx_ops = { 799 .phy_errata = mv6_phy_errata, 800 .enable_leds = mv6_enable_leds, 801 .read_preamp = mv6_read_preamp, 802 .reset_hc = mv6_reset_hc, 803 .reset_flash = mv6_reset_flash, 804 .reset_bus = mv_reset_pci_bus, 805 }; 806 807 static const struct mv_hw_ops mv_soc_ops = { 808 .phy_errata = mv6_phy_errata, 809 .enable_leds = mv_soc_enable_leds, 810 .read_preamp = mv_soc_read_preamp, 811 .reset_hc = mv_soc_reset_hc, 812 .reset_flash = mv_soc_reset_flash, 813 .reset_bus = mv_soc_reset_bus, 814 }; 815 816 static const struct mv_hw_ops mv_soc_65n_ops = { 817 .phy_errata = mv_soc_65n_phy_errata, 818 .enable_leds = mv_soc_enable_leds, 819 .reset_hc = mv_soc_reset_hc, 820 .reset_flash = mv_soc_reset_flash, 821 .reset_bus = mv_soc_reset_bus, 822 }; 823 824 /* 825 * Functions 826 */ 827 828 static inline void writelfl(unsigned long data, void __iomem *addr) 829 { 830 writel(data, addr); 831 (void) readl(addr); /* flush to avoid PCI posted write */ 832 } 833 834 static inline unsigned int mv_hc_from_port(unsigned int port) 835 { 836 return port >> MV_PORT_HC_SHIFT; 837 } 838 839 static inline unsigned int mv_hardport_from_port(unsigned int port) 840 { 841 return port & MV_PORT_MASK; 842 } 843 844 /* 845 * Consolidate some rather tricky bit shift calculations. 846 * This is hot-path stuff, so not a function. 847 * Simple code, with two return values, so macro rather than inline. 848 * 849 * port is the sole input, in range 0..7. 850 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 851 * hardport is the other output, in range 0..3. 852 * 853 * Note that port and hardport may be the same variable in some cases. 854 */ 855 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 856 { \ 857 shift = mv_hc_from_port(port) * HC_SHIFT; \ 858 hardport = mv_hardport_from_port(port); \ 859 shift += hardport * 2; \ 860 } 861 862 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 863 { 864 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 865 } 866 867 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 868 unsigned int port) 869 { 870 return mv_hc_base(base, mv_hc_from_port(port)); 871 } 872 873 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 874 { 875 return mv_hc_base_from_port(base, port) + 876 MV_SATAHC_ARBTR_REG_SZ + 877 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 878 } 879 880 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 881 { 882 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 883 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 884 885 return hc_mmio + ofs; 886 } 887 888 static inline void __iomem *mv_host_base(struct ata_host *host) 889 { 890 struct mv_host_priv *hpriv = host->private_data; 891 return hpriv->base; 892 } 893 894 static inline void __iomem *mv_ap_base(struct ata_port *ap) 895 { 896 return mv_port_base(mv_host_base(ap->host), ap->port_no); 897 } 898 899 static inline int mv_get_hc_count(unsigned long port_flags) 900 { 901 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 902 } 903 904 /** 905 * mv_save_cached_regs - (re-)initialize cached port registers 906 * @ap: the port whose registers we are caching 907 * 908 * Initialize the local cache of port registers, 909 * so that reading them over and over again can 910 * be avoided on the hotter paths of this driver. 911 * This saves a few microseconds each time we switch 912 * to/from EDMA mode to perform (eg.) a drive cache flush. 913 */ 914 static void mv_save_cached_regs(struct ata_port *ap) 915 { 916 void __iomem *port_mmio = mv_ap_base(ap); 917 struct mv_port_priv *pp = ap->private_data; 918 919 pp->cached.fiscfg = readl(port_mmio + FISCFG); 920 pp->cached.ltmode = readl(port_mmio + LTMODE); 921 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 922 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 923 } 924 925 /** 926 * mv_write_cached_reg - write to a cached port register 927 * @addr: hardware address of the register 928 * @old: pointer to cached value of the register 929 * @new: new value for the register 930 * 931 * Write a new value to a cached register, 932 * but only if the value is different from before. 933 */ 934 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 935 { 936 if (new != *old) { 937 unsigned long laddr; 938 *old = new; 939 /* 940 * Workaround for 88SX60x1-B2 FEr SATA#13: 941 * Read-after-write is needed to prevent generating 64-bit 942 * write cycles on the PCI bus for SATA interface registers 943 * at offsets ending in 0x4 or 0xc. 944 * 945 * Looks like a lot of fuss, but it avoids an unnecessary 946 * +1 usec read-after-write delay for unaffected registers. 947 */ 948 laddr = (long)addr & 0xffff; 949 if (laddr >= 0x300 && laddr <= 0x33c) { 950 laddr &= 0x000f; 951 if (laddr == 0x4 || laddr == 0xc) { 952 writelfl(new, addr); /* read after write */ 953 return; 954 } 955 } 956 writel(new, addr); /* unaffected by the errata */ 957 } 958 } 959 960 static void mv_set_edma_ptrs(void __iomem *port_mmio, 961 struct mv_host_priv *hpriv, 962 struct mv_port_priv *pp) 963 { 964 u32 index; 965 966 /* 967 * initialize request queue 968 */ 969 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 970 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 971 972 WARN_ON(pp->crqb_dma & 0x3ff); 973 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 974 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 975 port_mmio + EDMA_REQ_Q_IN_PTR); 976 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 977 978 /* 979 * initialize response queue 980 */ 981 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 982 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 983 984 WARN_ON(pp->crpb_dma & 0xff); 985 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 986 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 987 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 988 port_mmio + EDMA_RSP_Q_OUT_PTR); 989 } 990 991 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 992 { 993 /* 994 * When writing to the main_irq_mask in hardware, 995 * we must ensure exclusivity between the interrupt coalescing bits 996 * and the corresponding individual port DONE_IRQ bits. 997 * 998 * Note that this register is really an "IRQ enable" register, 999 * not an "IRQ mask" register as Marvell's naming might suggest. 1000 */ 1001 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1002 mask &= ~DONE_IRQ_0_3; 1003 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1004 mask &= ~DONE_IRQ_4_7; 1005 writelfl(mask, hpriv->main_irq_mask_addr); 1006 } 1007 1008 static void mv_set_main_irq_mask(struct ata_host *host, 1009 u32 disable_bits, u32 enable_bits) 1010 { 1011 struct mv_host_priv *hpriv = host->private_data; 1012 u32 old_mask, new_mask; 1013 1014 old_mask = hpriv->main_irq_mask; 1015 new_mask = (old_mask & ~disable_bits) | enable_bits; 1016 if (new_mask != old_mask) { 1017 hpriv->main_irq_mask = new_mask; 1018 mv_write_main_irq_mask(new_mask, hpriv); 1019 } 1020 } 1021 1022 static void mv_enable_port_irqs(struct ata_port *ap, 1023 unsigned int port_bits) 1024 { 1025 unsigned int shift, hardport, port = ap->port_no; 1026 u32 disable_bits, enable_bits; 1027 1028 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1029 1030 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1031 enable_bits = port_bits << shift; 1032 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1033 } 1034 1035 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1036 void __iomem *port_mmio, 1037 unsigned int port_irqs) 1038 { 1039 struct mv_host_priv *hpriv = ap->host->private_data; 1040 int hardport = mv_hardport_from_port(ap->port_no); 1041 void __iomem *hc_mmio = mv_hc_base_from_port( 1042 mv_host_base(ap->host), ap->port_no); 1043 u32 hc_irq_cause; 1044 1045 /* clear EDMA event indicators, if any */ 1046 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1047 1048 /* clear pending irq events */ 1049 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1050 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1051 1052 /* clear FIS IRQ Cause */ 1053 if (IS_GEN_IIE(hpriv)) 1054 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1055 1056 mv_enable_port_irqs(ap, port_irqs); 1057 } 1058 1059 static void mv_set_irq_coalescing(struct ata_host *host, 1060 unsigned int count, unsigned int usecs) 1061 { 1062 struct mv_host_priv *hpriv = host->private_data; 1063 void __iomem *mmio = hpriv->base, *hc_mmio; 1064 u32 coal_enable = 0; 1065 unsigned long flags; 1066 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1067 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1068 ALL_PORTS_COAL_DONE; 1069 1070 /* Disable IRQ coalescing if either threshold is zero */ 1071 if (!usecs || !count) { 1072 clks = count = 0; 1073 } else { 1074 /* Respect maximum limits of the hardware */ 1075 clks = usecs * COAL_CLOCKS_PER_USEC; 1076 if (clks > MAX_COAL_TIME_THRESHOLD) 1077 clks = MAX_COAL_TIME_THRESHOLD; 1078 if (count > MAX_COAL_IO_COUNT) 1079 count = MAX_COAL_IO_COUNT; 1080 } 1081 1082 spin_lock_irqsave(&host->lock, flags); 1083 mv_set_main_irq_mask(host, coal_disable, 0); 1084 1085 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1086 /* 1087 * GEN_II/GEN_IIE with dual host controllers: 1088 * one set of global thresholds for the entire chip. 1089 */ 1090 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1091 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1092 /* clear leftover coal IRQ bit */ 1093 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1094 if (count) 1095 coal_enable = ALL_PORTS_COAL_DONE; 1096 clks = count = 0; /* force clearing of regular regs below */ 1097 } 1098 1099 /* 1100 * All chips: independent thresholds for each HC on the chip. 1101 */ 1102 hc_mmio = mv_hc_base_from_port(mmio, 0); 1103 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1104 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1105 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1106 if (count) 1107 coal_enable |= PORTS_0_3_COAL_DONE; 1108 if (is_dual_hc) { 1109 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1110 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1111 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1112 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1113 if (count) 1114 coal_enable |= PORTS_4_7_COAL_DONE; 1115 } 1116 1117 mv_set_main_irq_mask(host, 0, coal_enable); 1118 spin_unlock_irqrestore(&host->lock, flags); 1119 } 1120 1121 /** 1122 * mv_start_edma - Enable eDMA engine 1123 * @base: port base address 1124 * @pp: port private data 1125 * 1126 * Verify the local cache of the eDMA state is accurate with a 1127 * WARN_ON. 1128 * 1129 * LOCKING: 1130 * Inherited from caller. 1131 */ 1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1133 struct mv_port_priv *pp, u8 protocol) 1134 { 1135 int want_ncq = (protocol == ATA_PROT_NCQ); 1136 1137 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1138 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1139 if (want_ncq != using_ncq) 1140 mv_stop_edma(ap); 1141 } 1142 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1143 struct mv_host_priv *hpriv = ap->host->private_data; 1144 1145 mv_edma_cfg(ap, want_ncq, 1); 1146 1147 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1148 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1149 1150 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1151 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1152 } 1153 } 1154 1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1156 { 1157 void __iomem *port_mmio = mv_ap_base(ap); 1158 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1159 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1160 int i; 1161 1162 /* 1163 * Wait for the EDMA engine to finish transactions in progress. 1164 * No idea what a good "timeout" value might be, but measurements 1165 * indicate that it often requires hundreds of microseconds 1166 * with two drives in-use. So we use the 15msec value above 1167 * as a rough guess at what even more drives might require. 1168 */ 1169 for (i = 0; i < timeout; ++i) { 1170 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1171 if ((edma_stat & empty_idle) == empty_idle) 1172 break; 1173 udelay(per_loop); 1174 } 1175 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */ 1176 } 1177 1178 /** 1179 * mv_stop_edma_engine - Disable eDMA engine 1180 * @port_mmio: io base address 1181 * 1182 * LOCKING: 1183 * Inherited from caller. 1184 */ 1185 static int mv_stop_edma_engine(void __iomem *port_mmio) 1186 { 1187 int i; 1188 1189 /* Disable eDMA. The disable bit auto clears. */ 1190 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1191 1192 /* Wait for the chip to confirm eDMA is off. */ 1193 for (i = 10000; i > 0; i--) { 1194 u32 reg = readl(port_mmio + EDMA_CMD); 1195 if (!(reg & EDMA_EN)) 1196 return 0; 1197 udelay(10); 1198 } 1199 return -EIO; 1200 } 1201 1202 static int mv_stop_edma(struct ata_port *ap) 1203 { 1204 void __iomem *port_mmio = mv_ap_base(ap); 1205 struct mv_port_priv *pp = ap->private_data; 1206 int err = 0; 1207 1208 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1209 return 0; 1210 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1211 mv_wait_for_edma_empty_idle(ap); 1212 if (mv_stop_edma_engine(port_mmio)) { 1213 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); 1214 err = -EIO; 1215 } 1216 mv_edma_cfg(ap, 0, 0); 1217 return err; 1218 } 1219 1220 #ifdef ATA_DEBUG 1221 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1222 { 1223 int b, w; 1224 for (b = 0; b < bytes; ) { 1225 DPRINTK("%p: ", start + b); 1226 for (w = 0; b < bytes && w < 4; w++) { 1227 printk("%08x ", readl(start + b)); 1228 b += sizeof(u32); 1229 } 1230 printk("\n"); 1231 } 1232 } 1233 #endif 1234 1235 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1236 { 1237 #ifdef ATA_DEBUG 1238 int b, w; 1239 u32 dw; 1240 for (b = 0; b < bytes; ) { 1241 DPRINTK("%02x: ", b); 1242 for (w = 0; b < bytes && w < 4; w++) { 1243 (void) pci_read_config_dword(pdev, b, &dw); 1244 printk("%08x ", dw); 1245 b += sizeof(u32); 1246 } 1247 printk("\n"); 1248 } 1249 #endif 1250 } 1251 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1252 struct pci_dev *pdev) 1253 { 1254 #ifdef ATA_DEBUG 1255 void __iomem *hc_base = mv_hc_base(mmio_base, 1256 port >> MV_PORT_HC_SHIFT); 1257 void __iomem *port_base; 1258 int start_port, num_ports, p, start_hc, num_hcs, hc; 1259 1260 if (0 > port) { 1261 start_hc = start_port = 0; 1262 num_ports = 8; /* shld be benign for 4 port devs */ 1263 num_hcs = 2; 1264 } else { 1265 start_hc = port >> MV_PORT_HC_SHIFT; 1266 start_port = port; 1267 num_ports = num_hcs = 1; 1268 } 1269 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1270 num_ports > 1 ? num_ports - 1 : start_port); 1271 1272 if (NULL != pdev) { 1273 DPRINTK("PCI config space regs:\n"); 1274 mv_dump_pci_cfg(pdev, 0x68); 1275 } 1276 DPRINTK("PCI regs:\n"); 1277 mv_dump_mem(mmio_base+0xc00, 0x3c); 1278 mv_dump_mem(mmio_base+0xd00, 0x34); 1279 mv_dump_mem(mmio_base+0xf00, 0x4); 1280 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1281 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1282 hc_base = mv_hc_base(mmio_base, hc); 1283 DPRINTK("HC regs (HC %i):\n", hc); 1284 mv_dump_mem(hc_base, 0x1c); 1285 } 1286 for (p = start_port; p < start_port + num_ports; p++) { 1287 port_base = mv_port_base(mmio_base, p); 1288 DPRINTK("EDMA regs (port %i):\n", p); 1289 mv_dump_mem(port_base, 0x54); 1290 DPRINTK("SATA regs (port %i):\n", p); 1291 mv_dump_mem(port_base+0x300, 0x60); 1292 } 1293 #endif 1294 } 1295 1296 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1297 { 1298 unsigned int ofs; 1299 1300 switch (sc_reg_in) { 1301 case SCR_STATUS: 1302 case SCR_CONTROL: 1303 case SCR_ERROR: 1304 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1305 break; 1306 case SCR_ACTIVE: 1307 ofs = SATA_ACTIVE; /* active is not with the others */ 1308 break; 1309 default: 1310 ofs = 0xffffffffU; 1311 break; 1312 } 1313 return ofs; 1314 } 1315 1316 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1317 { 1318 unsigned int ofs = mv_scr_offset(sc_reg_in); 1319 1320 if (ofs != 0xffffffffU) { 1321 *val = readl(mv_ap_base(link->ap) + ofs); 1322 return 0; 1323 } else 1324 return -EINVAL; 1325 } 1326 1327 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1328 { 1329 unsigned int ofs = mv_scr_offset(sc_reg_in); 1330 1331 if (ofs != 0xffffffffU) { 1332 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1333 if (sc_reg_in == SCR_CONTROL) { 1334 /* 1335 * Workaround for 88SX60x1 FEr SATA#26: 1336 * 1337 * COMRESETs have to take care not to accidently 1338 * put the drive to sleep when writing SCR_CONTROL. 1339 * Setting bits 12..15 prevents this problem. 1340 * 1341 * So if we see an outbound COMMRESET, set those bits. 1342 * Ditto for the followup write that clears the reset. 1343 * 1344 * The proprietary driver does this for 1345 * all chip versions, and so do we. 1346 */ 1347 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1348 val |= 0xf000; 1349 } 1350 writelfl(val, addr); 1351 return 0; 1352 } else 1353 return -EINVAL; 1354 } 1355 1356 static void mv6_dev_config(struct ata_device *adev) 1357 { 1358 /* 1359 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1360 * 1361 * Gen-II does not support NCQ over a port multiplier 1362 * (no FIS-based switching). 1363 */ 1364 if (adev->flags & ATA_DFLAG_NCQ) { 1365 if (sata_pmp_attached(adev->link->ap)) { 1366 adev->flags &= ~ATA_DFLAG_NCQ; 1367 ata_dev_printk(adev, KERN_INFO, 1368 "NCQ disabled for command-based switching\n"); 1369 } 1370 } 1371 } 1372 1373 static int mv_qc_defer(struct ata_queued_cmd *qc) 1374 { 1375 struct ata_link *link = qc->dev->link; 1376 struct ata_port *ap = link->ap; 1377 struct mv_port_priv *pp = ap->private_data; 1378 1379 /* 1380 * Don't allow new commands if we're in a delayed EH state 1381 * for NCQ and/or FIS-based switching. 1382 */ 1383 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1384 return ATA_DEFER_PORT; 1385 /* 1386 * If the port is completely idle, then allow the new qc. 1387 */ 1388 if (ap->nr_active_links == 0) 1389 return 0; 1390 1391 /* 1392 * The port is operating in host queuing mode (EDMA) with NCQ 1393 * enabled, allow multiple NCQ commands. EDMA also allows 1394 * queueing multiple DMA commands but libata core currently 1395 * doesn't allow it. 1396 */ 1397 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1398 (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol)) 1399 return 0; 1400 1401 return ATA_DEFER_PORT; 1402 } 1403 1404 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1405 { 1406 struct mv_port_priv *pp = ap->private_data; 1407 void __iomem *port_mmio; 1408 1409 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1410 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1411 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1412 1413 ltmode = *old_ltmode & ~LTMODE_BIT8; 1414 haltcond = *old_haltcond | EDMA_ERR_DEV; 1415 1416 if (want_fbs) { 1417 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1418 ltmode = *old_ltmode | LTMODE_BIT8; 1419 if (want_ncq) 1420 haltcond &= ~EDMA_ERR_DEV; 1421 else 1422 fiscfg |= FISCFG_WAIT_DEV_ERR; 1423 } else { 1424 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1425 } 1426 1427 port_mmio = mv_ap_base(ap); 1428 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1429 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1430 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1431 } 1432 1433 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1434 { 1435 struct mv_host_priv *hpriv = ap->host->private_data; 1436 u32 old, new; 1437 1438 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1439 old = readl(hpriv->base + GPIO_PORT_CTL); 1440 if (want_ncq) 1441 new = old | (1 << 22); 1442 else 1443 new = old & ~(1 << 22); 1444 if (new != old) 1445 writel(new, hpriv->base + GPIO_PORT_CTL); 1446 } 1447 1448 /** 1449 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1450 * @ap: Port being initialized 1451 * 1452 * There are two DMA modes on these chips: basic DMA, and EDMA. 1453 * 1454 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1455 * of basic DMA on the GEN_IIE versions of the chips. 1456 * 1457 * This bit survives EDMA resets, and must be set for basic DMA 1458 * to function, and should be cleared when EDMA is active. 1459 */ 1460 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1461 { 1462 struct mv_port_priv *pp = ap->private_data; 1463 u32 new, *old = &pp->cached.unknown_rsvd; 1464 1465 if (enable_bmdma) 1466 new = *old | 1; 1467 else 1468 new = *old & ~1; 1469 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1470 } 1471 1472 /* 1473 * SOC chips have an issue whereby the HDD LEDs don't always blink 1474 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1475 * of the SOC takes care of it, generating a steady blink rate when 1476 * any drive on the chip is active. 1477 * 1478 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1479 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1480 * 1481 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1482 * LED operation works then, and provides better (more accurate) feedback. 1483 * 1484 * Note that this code assumes that an SOC never has more than one HC onboard. 1485 */ 1486 static void mv_soc_led_blink_enable(struct ata_port *ap) 1487 { 1488 struct ata_host *host = ap->host; 1489 struct mv_host_priv *hpriv = host->private_data; 1490 void __iomem *hc_mmio; 1491 u32 led_ctrl; 1492 1493 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1494 return; 1495 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1496 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1497 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1498 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1499 } 1500 1501 static void mv_soc_led_blink_disable(struct ata_port *ap) 1502 { 1503 struct ata_host *host = ap->host; 1504 struct mv_host_priv *hpriv = host->private_data; 1505 void __iomem *hc_mmio; 1506 u32 led_ctrl; 1507 unsigned int port; 1508 1509 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1510 return; 1511 1512 /* disable led-blink only if no ports are using NCQ */ 1513 for (port = 0; port < hpriv->n_ports; port++) { 1514 struct ata_port *this_ap = host->ports[port]; 1515 struct mv_port_priv *pp = this_ap->private_data; 1516 1517 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1518 return; 1519 } 1520 1521 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1522 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1523 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1524 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1525 } 1526 1527 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1528 { 1529 u32 cfg; 1530 struct mv_port_priv *pp = ap->private_data; 1531 struct mv_host_priv *hpriv = ap->host->private_data; 1532 void __iomem *port_mmio = mv_ap_base(ap); 1533 1534 /* set up non-NCQ EDMA configuration */ 1535 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1536 pp->pp_flags &= 1537 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1538 1539 if (IS_GEN_I(hpriv)) 1540 cfg |= (1 << 8); /* enab config burst size mask */ 1541 1542 else if (IS_GEN_II(hpriv)) { 1543 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1544 mv_60x1_errata_sata25(ap, want_ncq); 1545 1546 } else if (IS_GEN_IIE(hpriv)) { 1547 int want_fbs = sata_pmp_attached(ap); 1548 /* 1549 * Possible future enhancement: 1550 * 1551 * The chip can use FBS with non-NCQ, if we allow it, 1552 * But first we need to have the error handling in place 1553 * for this mode (datasheet section 7.3.15.4.2.3). 1554 * So disallow non-NCQ FBS for now. 1555 */ 1556 want_fbs &= want_ncq; 1557 1558 mv_config_fbs(ap, want_ncq, want_fbs); 1559 1560 if (want_fbs) { 1561 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1562 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1563 } 1564 1565 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1566 if (want_edma) { 1567 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1568 if (!IS_SOC(hpriv)) 1569 cfg |= (1 << 18); /* enab early completion */ 1570 } 1571 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1572 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1573 mv_bmdma_enable_iie(ap, !want_edma); 1574 1575 if (IS_SOC(hpriv)) { 1576 if (want_ncq) 1577 mv_soc_led_blink_enable(ap); 1578 else 1579 mv_soc_led_blink_disable(ap); 1580 } 1581 } 1582 1583 if (want_ncq) { 1584 cfg |= EDMA_CFG_NCQ; 1585 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1586 } 1587 1588 writelfl(cfg, port_mmio + EDMA_CFG); 1589 } 1590 1591 static void mv_port_free_dma_mem(struct ata_port *ap) 1592 { 1593 struct mv_host_priv *hpriv = ap->host->private_data; 1594 struct mv_port_priv *pp = ap->private_data; 1595 int tag; 1596 1597 if (pp->crqb) { 1598 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1599 pp->crqb = NULL; 1600 } 1601 if (pp->crpb) { 1602 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1603 pp->crpb = NULL; 1604 } 1605 /* 1606 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1607 * For later hardware, we have one unique sg_tbl per NCQ tag. 1608 */ 1609 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1610 if (pp->sg_tbl[tag]) { 1611 if (tag == 0 || !IS_GEN_I(hpriv)) 1612 dma_pool_free(hpriv->sg_tbl_pool, 1613 pp->sg_tbl[tag], 1614 pp->sg_tbl_dma[tag]); 1615 pp->sg_tbl[tag] = NULL; 1616 } 1617 } 1618 } 1619 1620 /** 1621 * mv_port_start - Port specific init/start routine. 1622 * @ap: ATA channel to manipulate 1623 * 1624 * Allocate and point to DMA memory, init port private memory, 1625 * zero indices. 1626 * 1627 * LOCKING: 1628 * Inherited from caller. 1629 */ 1630 static int mv_port_start(struct ata_port *ap) 1631 { 1632 struct device *dev = ap->host->dev; 1633 struct mv_host_priv *hpriv = ap->host->private_data; 1634 struct mv_port_priv *pp; 1635 unsigned long flags; 1636 int tag; 1637 1638 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1639 if (!pp) 1640 return -ENOMEM; 1641 ap->private_data = pp; 1642 1643 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1644 if (!pp->crqb) 1645 return -ENOMEM; 1646 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1647 1648 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1649 if (!pp->crpb) 1650 goto out_port_free_dma_mem; 1651 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1652 1653 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1654 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1655 ap->flags |= ATA_FLAG_AN; 1656 /* 1657 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1658 * For later hardware, we need one unique sg_tbl per NCQ tag. 1659 */ 1660 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1661 if (tag == 0 || !IS_GEN_I(hpriv)) { 1662 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1663 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1664 if (!pp->sg_tbl[tag]) 1665 goto out_port_free_dma_mem; 1666 } else { 1667 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1668 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1669 } 1670 } 1671 1672 spin_lock_irqsave(ap->lock, flags); 1673 mv_save_cached_regs(ap); 1674 mv_edma_cfg(ap, 0, 0); 1675 spin_unlock_irqrestore(ap->lock, flags); 1676 1677 return 0; 1678 1679 out_port_free_dma_mem: 1680 mv_port_free_dma_mem(ap); 1681 return -ENOMEM; 1682 } 1683 1684 /** 1685 * mv_port_stop - Port specific cleanup/stop routine. 1686 * @ap: ATA channel to manipulate 1687 * 1688 * Stop DMA, cleanup port memory. 1689 * 1690 * LOCKING: 1691 * This routine uses the host lock to protect the DMA stop. 1692 */ 1693 static void mv_port_stop(struct ata_port *ap) 1694 { 1695 unsigned long flags; 1696 1697 spin_lock_irqsave(ap->lock, flags); 1698 mv_stop_edma(ap); 1699 mv_enable_port_irqs(ap, 0); 1700 spin_unlock_irqrestore(ap->lock, flags); 1701 mv_port_free_dma_mem(ap); 1702 } 1703 1704 /** 1705 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1706 * @qc: queued command whose SG list to source from 1707 * 1708 * Populate the SG list and mark the last entry. 1709 * 1710 * LOCKING: 1711 * Inherited from caller. 1712 */ 1713 static void mv_fill_sg(struct ata_queued_cmd *qc) 1714 { 1715 struct mv_port_priv *pp = qc->ap->private_data; 1716 struct scatterlist *sg; 1717 struct mv_sg *mv_sg, *last_sg = NULL; 1718 unsigned int si; 1719 1720 mv_sg = pp->sg_tbl[qc->tag]; 1721 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1722 dma_addr_t addr = sg_dma_address(sg); 1723 u32 sg_len = sg_dma_len(sg); 1724 1725 while (sg_len) { 1726 u32 offset = addr & 0xffff; 1727 u32 len = sg_len; 1728 1729 if (offset + len > 0x10000) 1730 len = 0x10000 - offset; 1731 1732 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1733 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1734 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1735 mv_sg->reserved = 0; 1736 1737 sg_len -= len; 1738 addr += len; 1739 1740 last_sg = mv_sg; 1741 mv_sg++; 1742 } 1743 } 1744 1745 if (likely(last_sg)) 1746 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1747 mb(); /* ensure data structure is visible to the chipset */ 1748 } 1749 1750 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1751 { 1752 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1753 (last ? CRQB_CMD_LAST : 0); 1754 *cmdw = cpu_to_le16(tmp); 1755 } 1756 1757 /** 1758 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1759 * @ap: Port associated with this ATA transaction. 1760 * 1761 * We need this only for ATAPI bmdma transactions, 1762 * as otherwise we experience spurious interrupts 1763 * after libata-sff handles the bmdma interrupts. 1764 */ 1765 static void mv_sff_irq_clear(struct ata_port *ap) 1766 { 1767 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1768 } 1769 1770 /** 1771 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1772 * @qc: queued command to check for chipset/DMA compatibility. 1773 * 1774 * The bmdma engines cannot handle speculative data sizes 1775 * (bytecount under/over flow). So only allow DMA for 1776 * data transfer commands with known data sizes. 1777 * 1778 * LOCKING: 1779 * Inherited from caller. 1780 */ 1781 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1782 { 1783 struct scsi_cmnd *scmd = qc->scsicmd; 1784 1785 if (scmd) { 1786 switch (scmd->cmnd[0]) { 1787 case READ_6: 1788 case READ_10: 1789 case READ_12: 1790 case WRITE_6: 1791 case WRITE_10: 1792 case WRITE_12: 1793 case GPCMD_READ_CD: 1794 case GPCMD_SEND_DVD_STRUCTURE: 1795 case GPCMD_SEND_CUE_SHEET: 1796 return 0; /* DMA is safe */ 1797 } 1798 } 1799 return -EOPNOTSUPP; /* use PIO instead */ 1800 } 1801 1802 /** 1803 * mv_bmdma_setup - Set up BMDMA transaction 1804 * @qc: queued command to prepare DMA for. 1805 * 1806 * LOCKING: 1807 * Inherited from caller. 1808 */ 1809 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1810 { 1811 struct ata_port *ap = qc->ap; 1812 void __iomem *port_mmio = mv_ap_base(ap); 1813 struct mv_port_priv *pp = ap->private_data; 1814 1815 mv_fill_sg(qc); 1816 1817 /* clear all DMA cmd bits */ 1818 writel(0, port_mmio + BMDMA_CMD); 1819 1820 /* load PRD table addr. */ 1821 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1822 port_mmio + BMDMA_PRD_HIGH); 1823 writelfl(pp->sg_tbl_dma[qc->tag], 1824 port_mmio + BMDMA_PRD_LOW); 1825 1826 /* issue r/w command */ 1827 ap->ops->sff_exec_command(ap, &qc->tf); 1828 } 1829 1830 /** 1831 * mv_bmdma_start - Start a BMDMA transaction 1832 * @qc: queued command to start DMA on. 1833 * 1834 * LOCKING: 1835 * Inherited from caller. 1836 */ 1837 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1838 { 1839 struct ata_port *ap = qc->ap; 1840 void __iomem *port_mmio = mv_ap_base(ap); 1841 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1842 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1843 1844 /* start host DMA transaction */ 1845 writelfl(cmd, port_mmio + BMDMA_CMD); 1846 } 1847 1848 /** 1849 * mv_bmdma_stop - Stop BMDMA transfer 1850 * @qc: queued command to stop DMA on. 1851 * 1852 * Clears the ATA_DMA_START flag in the bmdma control register 1853 * 1854 * LOCKING: 1855 * Inherited from caller. 1856 */ 1857 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1858 { 1859 struct ata_port *ap = qc->ap; 1860 void __iomem *port_mmio = mv_ap_base(ap); 1861 u32 cmd; 1862 1863 /* clear start/stop bit */ 1864 cmd = readl(port_mmio + BMDMA_CMD); 1865 cmd &= ~ATA_DMA_START; 1866 writelfl(cmd, port_mmio + BMDMA_CMD); 1867 1868 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1869 ata_sff_dma_pause(ap); 1870 } 1871 1872 /** 1873 * mv_bmdma_status - Read BMDMA status 1874 * @ap: port for which to retrieve DMA status. 1875 * 1876 * Read and return equivalent of the sff BMDMA status register. 1877 * 1878 * LOCKING: 1879 * Inherited from caller. 1880 */ 1881 static u8 mv_bmdma_status(struct ata_port *ap) 1882 { 1883 void __iomem *port_mmio = mv_ap_base(ap); 1884 u32 reg, status; 1885 1886 /* 1887 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1888 * and the ATA_DMA_INTR bit doesn't exist. 1889 */ 1890 reg = readl(port_mmio + BMDMA_STATUS); 1891 if (reg & ATA_DMA_ACTIVE) 1892 status = ATA_DMA_ACTIVE; 1893 else 1894 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1895 return status; 1896 } 1897 1898 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1899 { 1900 struct ata_taskfile *tf = &qc->tf; 1901 /* 1902 * Workaround for 88SX60x1 FEr SATA#24. 1903 * 1904 * Chip may corrupt WRITEs if multi_count >= 4kB. 1905 * Note that READs are unaffected. 1906 * 1907 * It's not clear if this errata really means "4K bytes", 1908 * or if it always happens for multi_count > 7 1909 * regardless of device sector_size. 1910 * 1911 * So, for safety, any write with multi_count > 7 1912 * gets converted here into a regular PIO write instead: 1913 */ 1914 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 1915 if (qc->dev->multi_count > 7) { 1916 switch (tf->command) { 1917 case ATA_CMD_WRITE_MULTI: 1918 tf->command = ATA_CMD_PIO_WRITE; 1919 break; 1920 case ATA_CMD_WRITE_MULTI_FUA_EXT: 1921 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 1922 /* fall through */ 1923 case ATA_CMD_WRITE_MULTI_EXT: 1924 tf->command = ATA_CMD_PIO_WRITE_EXT; 1925 break; 1926 } 1927 } 1928 } 1929 } 1930 1931 /** 1932 * mv_qc_prep - Host specific command preparation. 1933 * @qc: queued command to prepare 1934 * 1935 * This routine simply redirects to the general purpose routine 1936 * if command is not DMA. Else, it handles prep of the CRQB 1937 * (command request block), does some sanity checking, and calls 1938 * the SG load routine. 1939 * 1940 * LOCKING: 1941 * Inherited from caller. 1942 */ 1943 static void mv_qc_prep(struct ata_queued_cmd *qc) 1944 { 1945 struct ata_port *ap = qc->ap; 1946 struct mv_port_priv *pp = ap->private_data; 1947 __le16 *cw; 1948 struct ata_taskfile *tf = &qc->tf; 1949 u16 flags = 0; 1950 unsigned in_index; 1951 1952 switch (tf->protocol) { 1953 case ATA_PROT_DMA: 1954 case ATA_PROT_NCQ: 1955 break; /* continue below */ 1956 case ATA_PROT_PIO: 1957 mv_rw_multi_errata_sata24(qc); 1958 return; 1959 default: 1960 return; 1961 } 1962 1963 /* Fill in command request block 1964 */ 1965 if (!(tf->flags & ATA_TFLAG_WRITE)) 1966 flags |= CRQB_FLAG_READ; 1967 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 1968 flags |= qc->tag << CRQB_TAG_SHIFT; 1969 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 1970 1971 /* get current queue index from software */ 1972 in_index = pp->req_idx; 1973 1974 pp->crqb[in_index].sg_addr = 1975 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 1976 pp->crqb[in_index].sg_addr_hi = 1977 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 1978 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 1979 1980 cw = &pp->crqb[in_index].ata_cmd[0]; 1981 1982 /* Sadly, the CRQB cannot accomodate all registers--there are 1983 * only 11 bytes...so we must pick and choose required 1984 * registers based on the command. So, we drop feature and 1985 * hob_feature for [RW] DMA commands, but they are needed for 1986 * NCQ. NCQ will drop hob_nsect, which is not needed there 1987 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 1988 */ 1989 switch (tf->command) { 1990 case ATA_CMD_READ: 1991 case ATA_CMD_READ_EXT: 1992 case ATA_CMD_WRITE: 1993 case ATA_CMD_WRITE_EXT: 1994 case ATA_CMD_WRITE_FUA_EXT: 1995 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 1996 break; 1997 case ATA_CMD_FPDMA_READ: 1998 case ATA_CMD_FPDMA_WRITE: 1999 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2000 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2001 break; 2002 default: 2003 /* The only other commands EDMA supports in non-queued and 2004 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2005 * of which are defined/used by Linux. If we get here, this 2006 * driver needs work. 2007 * 2008 * FIXME: modify libata to give qc_prep a return value and 2009 * return error here. 2010 */ 2011 BUG_ON(tf->command); 2012 break; 2013 } 2014 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2015 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2016 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2017 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2018 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2019 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2020 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2021 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2022 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2023 2024 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2025 return; 2026 mv_fill_sg(qc); 2027 } 2028 2029 /** 2030 * mv_qc_prep_iie - Host specific command preparation. 2031 * @qc: queued command to prepare 2032 * 2033 * This routine simply redirects to the general purpose routine 2034 * if command is not DMA. Else, it handles prep of the CRQB 2035 * (command request block), does some sanity checking, and calls 2036 * the SG load routine. 2037 * 2038 * LOCKING: 2039 * Inherited from caller. 2040 */ 2041 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2042 { 2043 struct ata_port *ap = qc->ap; 2044 struct mv_port_priv *pp = ap->private_data; 2045 struct mv_crqb_iie *crqb; 2046 struct ata_taskfile *tf = &qc->tf; 2047 unsigned in_index; 2048 u32 flags = 0; 2049 2050 if ((tf->protocol != ATA_PROT_DMA) && 2051 (tf->protocol != ATA_PROT_NCQ)) 2052 return; 2053 2054 /* Fill in Gen IIE command request block */ 2055 if (!(tf->flags & ATA_TFLAG_WRITE)) 2056 flags |= CRQB_FLAG_READ; 2057 2058 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2059 flags |= qc->tag << CRQB_TAG_SHIFT; 2060 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2061 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2062 2063 /* get current queue index from software */ 2064 in_index = pp->req_idx; 2065 2066 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2067 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2068 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2069 crqb->flags = cpu_to_le32(flags); 2070 2071 crqb->ata_cmd[0] = cpu_to_le32( 2072 (tf->command << 16) | 2073 (tf->feature << 24) 2074 ); 2075 crqb->ata_cmd[1] = cpu_to_le32( 2076 (tf->lbal << 0) | 2077 (tf->lbam << 8) | 2078 (tf->lbah << 16) | 2079 (tf->device << 24) 2080 ); 2081 crqb->ata_cmd[2] = cpu_to_le32( 2082 (tf->hob_lbal << 0) | 2083 (tf->hob_lbam << 8) | 2084 (tf->hob_lbah << 16) | 2085 (tf->hob_feature << 24) 2086 ); 2087 crqb->ata_cmd[3] = cpu_to_le32( 2088 (tf->nsect << 0) | 2089 (tf->hob_nsect << 8) 2090 ); 2091 2092 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2093 return; 2094 mv_fill_sg(qc); 2095 } 2096 2097 /** 2098 * mv_sff_check_status - fetch device status, if valid 2099 * @ap: ATA port to fetch status from 2100 * 2101 * When using command issue via mv_qc_issue_fis(), 2102 * the initial ATA_BUSY state does not show up in the 2103 * ATA status (shadow) register. This can confuse libata! 2104 * 2105 * So we have a hook here to fake ATA_BUSY for that situation, 2106 * until the first time a BUSY, DRQ, or ERR bit is seen. 2107 * 2108 * The rest of the time, it simply returns the ATA status register. 2109 */ 2110 static u8 mv_sff_check_status(struct ata_port *ap) 2111 { 2112 u8 stat = ioread8(ap->ioaddr.status_addr); 2113 struct mv_port_priv *pp = ap->private_data; 2114 2115 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2116 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2117 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2118 else 2119 stat = ATA_BUSY; 2120 } 2121 return stat; 2122 } 2123 2124 /** 2125 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2126 * @fis: fis to be sent 2127 * @nwords: number of 32-bit words in the fis 2128 */ 2129 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2130 { 2131 void __iomem *port_mmio = mv_ap_base(ap); 2132 u32 ifctl, old_ifctl, ifstat; 2133 int i, timeout = 200, final_word = nwords - 1; 2134 2135 /* Initiate FIS transmission mode */ 2136 old_ifctl = readl(port_mmio + SATA_IFCTL); 2137 ifctl = 0x100 | (old_ifctl & 0xf); 2138 writelfl(ifctl, port_mmio + SATA_IFCTL); 2139 2140 /* Send all words of the FIS except for the final word */ 2141 for (i = 0; i < final_word; ++i) 2142 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2143 2144 /* Flag end-of-transmission, and then send the final word */ 2145 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2146 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2147 2148 /* 2149 * Wait for FIS transmission to complete. 2150 * This typically takes just a single iteration. 2151 */ 2152 do { 2153 ifstat = readl(port_mmio + SATA_IFSTAT); 2154 } while (!(ifstat & 0x1000) && --timeout); 2155 2156 /* Restore original port configuration */ 2157 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2158 2159 /* See if it worked */ 2160 if ((ifstat & 0x3000) != 0x1000) { 2161 ata_port_printk(ap, KERN_WARNING, 2162 "%s transmission error, ifstat=%08x\n", 2163 __func__, ifstat); 2164 return AC_ERR_OTHER; 2165 } 2166 return 0; 2167 } 2168 2169 /** 2170 * mv_qc_issue_fis - Issue a command directly as a FIS 2171 * @qc: queued command to start 2172 * 2173 * Note that the ATA shadow registers are not updated 2174 * after command issue, so the device will appear "READY" 2175 * if polled, even while it is BUSY processing the command. 2176 * 2177 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2178 * 2179 * Note: we don't get updated shadow regs on *completion* 2180 * of non-data commands. So avoid sending them via this function, 2181 * as they will appear to have completed immediately. 2182 * 2183 * GEN_IIE has special registers that we could get the result tf from, 2184 * but earlier chipsets do not. For now, we ignore those registers. 2185 */ 2186 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2187 { 2188 struct ata_port *ap = qc->ap; 2189 struct mv_port_priv *pp = ap->private_data; 2190 struct ata_link *link = qc->dev->link; 2191 u32 fis[5]; 2192 int err = 0; 2193 2194 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2195 err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0])); 2196 if (err) 2197 return err; 2198 2199 switch (qc->tf.protocol) { 2200 case ATAPI_PROT_PIO: 2201 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2202 /* fall through */ 2203 case ATAPI_PROT_NODATA: 2204 ap->hsm_task_state = HSM_ST_FIRST; 2205 break; 2206 case ATA_PROT_PIO: 2207 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2208 if (qc->tf.flags & ATA_TFLAG_WRITE) 2209 ap->hsm_task_state = HSM_ST_FIRST; 2210 else 2211 ap->hsm_task_state = HSM_ST; 2212 break; 2213 default: 2214 ap->hsm_task_state = HSM_ST_LAST; 2215 break; 2216 } 2217 2218 if (qc->tf.flags & ATA_TFLAG_POLLING) 2219 ata_pio_queue_task(ap, qc, 0); 2220 return 0; 2221 } 2222 2223 /** 2224 * mv_qc_issue - Initiate a command to the host 2225 * @qc: queued command to start 2226 * 2227 * This routine simply redirects to the general purpose routine 2228 * if command is not DMA. Else, it sanity checks our local 2229 * caches of the request producer/consumer indices then enables 2230 * DMA and bumps the request producer index. 2231 * 2232 * LOCKING: 2233 * Inherited from caller. 2234 */ 2235 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2236 { 2237 static int limit_warnings = 10; 2238 struct ata_port *ap = qc->ap; 2239 void __iomem *port_mmio = mv_ap_base(ap); 2240 struct mv_port_priv *pp = ap->private_data; 2241 u32 in_index; 2242 unsigned int port_irqs; 2243 2244 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2245 2246 switch (qc->tf.protocol) { 2247 case ATA_PROT_DMA: 2248 case ATA_PROT_NCQ: 2249 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2250 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2251 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2252 2253 /* Write the request in pointer to kick the EDMA to life */ 2254 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2255 port_mmio + EDMA_REQ_Q_IN_PTR); 2256 return 0; 2257 2258 case ATA_PROT_PIO: 2259 /* 2260 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2261 * 2262 * Someday, we might implement special polling workarounds 2263 * for these, but it all seems rather unnecessary since we 2264 * normally use only DMA for commands which transfer more 2265 * than a single block of data. 2266 * 2267 * Much of the time, this could just work regardless. 2268 * So for now, just log the incident, and allow the attempt. 2269 */ 2270 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2271 --limit_warnings; 2272 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME 2273 ": attempting PIO w/multiple DRQ: " 2274 "this may fail due to h/w errata\n"); 2275 } 2276 /* drop through */ 2277 case ATA_PROT_NODATA: 2278 case ATAPI_PROT_PIO: 2279 case ATAPI_PROT_NODATA: 2280 if (ap->flags & ATA_FLAG_PIO_POLLING) 2281 qc->tf.flags |= ATA_TFLAG_POLLING; 2282 break; 2283 } 2284 2285 if (qc->tf.flags & ATA_TFLAG_POLLING) 2286 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2287 else 2288 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2289 2290 /* 2291 * We're about to send a non-EDMA capable command to the 2292 * port. Turn off EDMA so there won't be problems accessing 2293 * shadow block, etc registers. 2294 */ 2295 mv_stop_edma(ap); 2296 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2297 mv_pmp_select(ap, qc->dev->link->pmp); 2298 2299 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2300 struct mv_host_priv *hpriv = ap->host->private_data; 2301 /* 2302 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2303 * 2304 * After any NCQ error, the READ_LOG_EXT command 2305 * from libata-eh *must* use mv_qc_issue_fis(). 2306 * Otherwise it might fail, due to chip errata. 2307 * 2308 * Rather than special-case it, we'll just *always* 2309 * use this method here for READ_LOG_EXT, making for 2310 * easier testing. 2311 */ 2312 if (IS_GEN_II(hpriv)) 2313 return mv_qc_issue_fis(qc); 2314 } 2315 return ata_sff_qc_issue(qc); 2316 } 2317 2318 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2319 { 2320 struct mv_port_priv *pp = ap->private_data; 2321 struct ata_queued_cmd *qc; 2322 2323 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2324 return NULL; 2325 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2326 if (qc) { 2327 if (qc->tf.flags & ATA_TFLAG_POLLING) 2328 qc = NULL; 2329 else if (!(qc->flags & ATA_QCFLAG_ACTIVE)) 2330 qc = NULL; 2331 } 2332 return qc; 2333 } 2334 2335 static void mv_pmp_error_handler(struct ata_port *ap) 2336 { 2337 unsigned int pmp, pmp_map; 2338 struct mv_port_priv *pp = ap->private_data; 2339 2340 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2341 /* 2342 * Perform NCQ error analysis on failed PMPs 2343 * before we freeze the port entirely. 2344 * 2345 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2346 */ 2347 pmp_map = pp->delayed_eh_pmp_map; 2348 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2349 for (pmp = 0; pmp_map != 0; pmp++) { 2350 unsigned int this_pmp = (1 << pmp); 2351 if (pmp_map & this_pmp) { 2352 struct ata_link *link = &ap->pmp_link[pmp]; 2353 pmp_map &= ~this_pmp; 2354 ata_eh_analyze_ncq_error(link); 2355 } 2356 } 2357 ata_port_freeze(ap); 2358 } 2359 sata_pmp_error_handler(ap); 2360 } 2361 2362 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2363 { 2364 void __iomem *port_mmio = mv_ap_base(ap); 2365 2366 return readl(port_mmio + SATA_TESTCTL) >> 16; 2367 } 2368 2369 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2370 { 2371 struct ata_eh_info *ehi; 2372 unsigned int pmp; 2373 2374 /* 2375 * Initialize EH info for PMPs which saw device errors 2376 */ 2377 ehi = &ap->link.eh_info; 2378 for (pmp = 0; pmp_map != 0; pmp++) { 2379 unsigned int this_pmp = (1 << pmp); 2380 if (pmp_map & this_pmp) { 2381 struct ata_link *link = &ap->pmp_link[pmp]; 2382 2383 pmp_map &= ~this_pmp; 2384 ehi = &link->eh_info; 2385 ata_ehi_clear_desc(ehi); 2386 ata_ehi_push_desc(ehi, "dev err"); 2387 ehi->err_mask |= AC_ERR_DEV; 2388 ehi->action |= ATA_EH_RESET; 2389 ata_link_abort(link); 2390 } 2391 } 2392 } 2393 2394 static int mv_req_q_empty(struct ata_port *ap) 2395 { 2396 void __iomem *port_mmio = mv_ap_base(ap); 2397 u32 in_ptr, out_ptr; 2398 2399 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2400 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2401 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2402 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2403 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2404 } 2405 2406 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2407 { 2408 struct mv_port_priv *pp = ap->private_data; 2409 int failed_links; 2410 unsigned int old_map, new_map; 2411 2412 /* 2413 * Device error during FBS+NCQ operation: 2414 * 2415 * Set a port flag to prevent further I/O being enqueued. 2416 * Leave the EDMA running to drain outstanding commands from this port. 2417 * Perform the post-mortem/EH only when all responses are complete. 2418 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2419 */ 2420 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2421 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2422 pp->delayed_eh_pmp_map = 0; 2423 } 2424 old_map = pp->delayed_eh_pmp_map; 2425 new_map = old_map | mv_get_err_pmp_map(ap); 2426 2427 if (old_map != new_map) { 2428 pp->delayed_eh_pmp_map = new_map; 2429 mv_pmp_eh_prep(ap, new_map & ~old_map); 2430 } 2431 failed_links = hweight16(new_map); 2432 2433 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x " 2434 "failed_links=%d nr_active_links=%d\n", 2435 __func__, pp->delayed_eh_pmp_map, 2436 ap->qc_active, failed_links, 2437 ap->nr_active_links); 2438 2439 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2440 mv_process_crpb_entries(ap, pp); 2441 mv_stop_edma(ap); 2442 mv_eh_freeze(ap); 2443 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__); 2444 return 1; /* handled */ 2445 } 2446 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__); 2447 return 1; /* handled */ 2448 } 2449 2450 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2451 { 2452 /* 2453 * Possible future enhancement: 2454 * 2455 * FBS+non-NCQ operation is not yet implemented. 2456 * See related notes in mv_edma_cfg(). 2457 * 2458 * Device error during FBS+non-NCQ operation: 2459 * 2460 * We need to snapshot the shadow registers for each failed command. 2461 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2462 */ 2463 return 0; /* not handled */ 2464 } 2465 2466 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2467 { 2468 struct mv_port_priv *pp = ap->private_data; 2469 2470 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2471 return 0; /* EDMA was not active: not handled */ 2472 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2473 return 0; /* FBS was not active: not handled */ 2474 2475 if (!(edma_err_cause & EDMA_ERR_DEV)) 2476 return 0; /* non DEV error: not handled */ 2477 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2478 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2479 return 0; /* other problems: not handled */ 2480 2481 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2482 /* 2483 * EDMA should NOT have self-disabled for this case. 2484 * If it did, then something is wrong elsewhere, 2485 * and we cannot handle it here. 2486 */ 2487 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2488 ata_port_printk(ap, KERN_WARNING, 2489 "%s: err_cause=0x%x pp_flags=0x%x\n", 2490 __func__, edma_err_cause, pp->pp_flags); 2491 return 0; /* not handled */ 2492 } 2493 return mv_handle_fbs_ncq_dev_err(ap); 2494 } else { 2495 /* 2496 * EDMA should have self-disabled for this case. 2497 * If it did not, then something is wrong elsewhere, 2498 * and we cannot handle it here. 2499 */ 2500 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2501 ata_port_printk(ap, KERN_WARNING, 2502 "%s: err_cause=0x%x pp_flags=0x%x\n", 2503 __func__, edma_err_cause, pp->pp_flags); 2504 return 0; /* not handled */ 2505 } 2506 return mv_handle_fbs_non_ncq_dev_err(ap); 2507 } 2508 return 0; /* not handled */ 2509 } 2510 2511 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2512 { 2513 struct ata_eh_info *ehi = &ap->link.eh_info; 2514 char *when = "idle"; 2515 2516 ata_ehi_clear_desc(ehi); 2517 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) { 2518 when = "disabled"; 2519 } else if (edma_was_enabled) { 2520 when = "EDMA enabled"; 2521 } else { 2522 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2523 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2524 when = "polling"; 2525 } 2526 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2527 ehi->err_mask |= AC_ERR_OTHER; 2528 ehi->action |= ATA_EH_RESET; 2529 ata_port_freeze(ap); 2530 } 2531 2532 /** 2533 * mv_err_intr - Handle error interrupts on the port 2534 * @ap: ATA channel to manipulate 2535 * 2536 * Most cases require a full reset of the chip's state machine, 2537 * which also performs a COMRESET. 2538 * Also, if the port disabled DMA, update our cached copy to match. 2539 * 2540 * LOCKING: 2541 * Inherited from caller. 2542 */ 2543 static void mv_err_intr(struct ata_port *ap) 2544 { 2545 void __iomem *port_mmio = mv_ap_base(ap); 2546 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2547 u32 fis_cause = 0; 2548 struct mv_port_priv *pp = ap->private_data; 2549 struct mv_host_priv *hpriv = ap->host->private_data; 2550 unsigned int action = 0, err_mask = 0; 2551 struct ata_eh_info *ehi = &ap->link.eh_info; 2552 struct ata_queued_cmd *qc; 2553 int abort = 0; 2554 2555 /* 2556 * Read and clear the SError and err_cause bits. 2557 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2558 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2559 */ 2560 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2561 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2562 2563 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2564 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2565 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2566 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2567 } 2568 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2569 2570 if (edma_err_cause & EDMA_ERR_DEV) { 2571 /* 2572 * Device errors during FIS-based switching operation 2573 * require special handling. 2574 */ 2575 if (mv_handle_dev_err(ap, edma_err_cause)) 2576 return; 2577 } 2578 2579 qc = mv_get_active_qc(ap); 2580 ata_ehi_clear_desc(ehi); 2581 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2582 edma_err_cause, pp->pp_flags); 2583 2584 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2585 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2586 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2587 u32 ec = edma_err_cause & 2588 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2589 sata_async_notification(ap); 2590 if (!ec) 2591 return; /* Just an AN; no need for the nukes */ 2592 ata_ehi_push_desc(ehi, "SDB notify"); 2593 } 2594 } 2595 /* 2596 * All generations share these EDMA error cause bits: 2597 */ 2598 if (edma_err_cause & EDMA_ERR_DEV) { 2599 err_mask |= AC_ERR_DEV; 2600 action |= ATA_EH_RESET; 2601 ata_ehi_push_desc(ehi, "dev error"); 2602 } 2603 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2604 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2605 EDMA_ERR_INTRL_PAR)) { 2606 err_mask |= AC_ERR_ATA_BUS; 2607 action |= ATA_EH_RESET; 2608 ata_ehi_push_desc(ehi, "parity error"); 2609 } 2610 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2611 ata_ehi_hotplugged(ehi); 2612 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2613 "dev disconnect" : "dev connect"); 2614 action |= ATA_EH_RESET; 2615 } 2616 2617 /* 2618 * Gen-I has a different SELF_DIS bit, 2619 * different FREEZE bits, and no SERR bit: 2620 */ 2621 if (IS_GEN_I(hpriv)) { 2622 eh_freeze_mask = EDMA_EH_FREEZE_5; 2623 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2624 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2625 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2626 } 2627 } else { 2628 eh_freeze_mask = EDMA_EH_FREEZE; 2629 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2630 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2631 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2632 } 2633 if (edma_err_cause & EDMA_ERR_SERR) { 2634 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2635 err_mask |= AC_ERR_ATA_BUS; 2636 action |= ATA_EH_RESET; 2637 } 2638 } 2639 2640 if (!err_mask) { 2641 err_mask = AC_ERR_OTHER; 2642 action |= ATA_EH_RESET; 2643 } 2644 2645 ehi->serror |= serr; 2646 ehi->action |= action; 2647 2648 if (qc) 2649 qc->err_mask |= err_mask; 2650 else 2651 ehi->err_mask |= err_mask; 2652 2653 if (err_mask == AC_ERR_DEV) { 2654 /* 2655 * Cannot do ata_port_freeze() here, 2656 * because it would kill PIO access, 2657 * which is needed for further diagnosis. 2658 */ 2659 mv_eh_freeze(ap); 2660 abort = 1; 2661 } else if (edma_err_cause & eh_freeze_mask) { 2662 /* 2663 * Note to self: ata_port_freeze() calls ata_port_abort() 2664 */ 2665 ata_port_freeze(ap); 2666 } else { 2667 abort = 1; 2668 } 2669 2670 if (abort) { 2671 if (qc) 2672 ata_link_abort(qc->dev->link); 2673 else 2674 ata_port_abort(ap); 2675 } 2676 } 2677 2678 static void mv_process_crpb_response(struct ata_port *ap, 2679 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2680 { 2681 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag); 2682 2683 if (qc) { 2684 u8 ata_status; 2685 u16 edma_status = le16_to_cpu(response->flags); 2686 /* 2687 * edma_status from a response queue entry: 2688 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2689 * MSB is saved ATA status from command completion. 2690 */ 2691 if (!ncq_enabled) { 2692 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2693 if (err_cause) { 2694 /* 2695 * Error will be seen/handled by mv_err_intr(). 2696 * So do nothing at all here. 2697 */ 2698 return; 2699 } 2700 } 2701 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2702 if (!ac_err_mask(ata_status)) 2703 ata_qc_complete(qc); 2704 /* else: leave it for mv_err_intr() */ 2705 } else { 2706 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n", 2707 __func__, tag); 2708 } 2709 } 2710 2711 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2712 { 2713 void __iomem *port_mmio = mv_ap_base(ap); 2714 struct mv_host_priv *hpriv = ap->host->private_data; 2715 u32 in_index; 2716 bool work_done = false; 2717 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2718 2719 /* Get the hardware queue position index */ 2720 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2721 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2722 2723 /* Process new responses from since the last time we looked */ 2724 while (in_index != pp->resp_idx) { 2725 unsigned int tag; 2726 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2727 2728 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2729 2730 if (IS_GEN_I(hpriv)) { 2731 /* 50xx: no NCQ, only one command active at a time */ 2732 tag = ap->link.active_tag; 2733 } else { 2734 /* Gen II/IIE: get command tag from CRPB entry */ 2735 tag = le16_to_cpu(response->id) & 0x1f; 2736 } 2737 mv_process_crpb_response(ap, response, tag, ncq_enabled); 2738 work_done = true; 2739 } 2740 2741 /* Update the software queue position index in hardware */ 2742 if (work_done) 2743 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2744 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2745 port_mmio + EDMA_RSP_Q_OUT_PTR); 2746 } 2747 2748 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2749 { 2750 struct mv_port_priv *pp; 2751 int edma_was_enabled; 2752 2753 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) { 2754 mv_unexpected_intr(ap, 0); 2755 return; 2756 } 2757 /* 2758 * Grab a snapshot of the EDMA_EN flag setting, 2759 * so that we have a consistent view for this port, 2760 * even if something we call of our routines changes it. 2761 */ 2762 pp = ap->private_data; 2763 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2764 /* 2765 * Process completed CRPB response(s) before other events. 2766 */ 2767 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2768 mv_process_crpb_entries(ap, pp); 2769 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2770 mv_handle_fbs_ncq_dev_err(ap); 2771 } 2772 /* 2773 * Handle chip-reported errors, or continue on to handle PIO. 2774 */ 2775 if (unlikely(port_cause & ERR_IRQ)) { 2776 mv_err_intr(ap); 2777 } else if (!edma_was_enabled) { 2778 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2779 if (qc) 2780 ata_sff_host_intr(ap, qc); 2781 else 2782 mv_unexpected_intr(ap, edma_was_enabled); 2783 } 2784 } 2785 2786 /** 2787 * mv_host_intr - Handle all interrupts on the given host controller 2788 * @host: host specific structure 2789 * @main_irq_cause: Main interrupt cause register for the chip. 2790 * 2791 * LOCKING: 2792 * Inherited from caller. 2793 */ 2794 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2795 { 2796 struct mv_host_priv *hpriv = host->private_data; 2797 void __iomem *mmio = hpriv->base, *hc_mmio; 2798 unsigned int handled = 0, port; 2799 2800 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2801 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2802 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2803 2804 for (port = 0; port < hpriv->n_ports; port++) { 2805 struct ata_port *ap = host->ports[port]; 2806 unsigned int p, shift, hardport, port_cause; 2807 2808 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2809 /* 2810 * Each hc within the host has its own hc_irq_cause register, 2811 * where the interrupting ports bits get ack'd. 2812 */ 2813 if (hardport == 0) { /* first port on this hc ? */ 2814 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2815 u32 port_mask, ack_irqs; 2816 /* 2817 * Skip this entire hc if nothing pending for any ports 2818 */ 2819 if (!hc_cause) { 2820 port += MV_PORTS_PER_HC - 1; 2821 continue; 2822 } 2823 /* 2824 * We don't need/want to read the hc_irq_cause register, 2825 * because doing so hurts performance, and 2826 * main_irq_cause already gives us everything we need. 2827 * 2828 * But we do have to *write* to the hc_irq_cause to ack 2829 * the ports that we are handling this time through. 2830 * 2831 * This requires that we create a bitmap for those 2832 * ports which interrupted us, and use that bitmap 2833 * to ack (only) those ports via hc_irq_cause. 2834 */ 2835 ack_irqs = 0; 2836 if (hc_cause & PORTS_0_3_COAL_DONE) 2837 ack_irqs = HC_COAL_IRQ; 2838 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2839 if ((port + p) >= hpriv->n_ports) 2840 break; 2841 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2842 if (hc_cause & port_mask) 2843 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2844 } 2845 hc_mmio = mv_hc_base_from_port(mmio, port); 2846 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2847 handled = 1; 2848 } 2849 /* 2850 * Handle interrupts signalled for this port: 2851 */ 2852 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2853 if (port_cause) 2854 mv_port_intr(ap, port_cause); 2855 } 2856 return handled; 2857 } 2858 2859 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2860 { 2861 struct mv_host_priv *hpriv = host->private_data; 2862 struct ata_port *ap; 2863 struct ata_queued_cmd *qc; 2864 struct ata_eh_info *ehi; 2865 unsigned int i, err_mask, printed = 0; 2866 u32 err_cause; 2867 2868 err_cause = readl(mmio + hpriv->irq_cause_offset); 2869 2870 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", 2871 err_cause); 2872 2873 DPRINTK("All regs @ PCI error\n"); 2874 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2875 2876 writelfl(0, mmio + hpriv->irq_cause_offset); 2877 2878 for (i = 0; i < host->n_ports; i++) { 2879 ap = host->ports[i]; 2880 if (!ata_link_offline(&ap->link)) { 2881 ehi = &ap->link.eh_info; 2882 ata_ehi_clear_desc(ehi); 2883 if (!printed++) 2884 ata_ehi_push_desc(ehi, 2885 "PCI err cause 0x%08x", err_cause); 2886 err_mask = AC_ERR_HOST_BUS; 2887 ehi->action = ATA_EH_RESET; 2888 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2889 if (qc) 2890 qc->err_mask |= err_mask; 2891 else 2892 ehi->err_mask |= err_mask; 2893 2894 ata_port_freeze(ap); 2895 } 2896 } 2897 return 1; /* handled */ 2898 } 2899 2900 /** 2901 * mv_interrupt - Main interrupt event handler 2902 * @irq: unused 2903 * @dev_instance: private data; in this case the host structure 2904 * 2905 * Read the read only register to determine if any host 2906 * controllers have pending interrupts. If so, call lower level 2907 * routine to handle. Also check for PCI errors which are only 2908 * reported here. 2909 * 2910 * LOCKING: 2911 * This routine holds the host lock while processing pending 2912 * interrupts. 2913 */ 2914 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 2915 { 2916 struct ata_host *host = dev_instance; 2917 struct mv_host_priv *hpriv = host->private_data; 2918 unsigned int handled = 0; 2919 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 2920 u32 main_irq_cause, pending_irqs; 2921 2922 spin_lock(&host->lock); 2923 2924 /* for MSI: block new interrupts while in here */ 2925 if (using_msi) 2926 mv_write_main_irq_mask(0, hpriv); 2927 2928 main_irq_cause = readl(hpriv->main_irq_cause_addr); 2929 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 2930 /* 2931 * Deal with cases where we either have nothing pending, or have read 2932 * a bogus register value which can indicate HW removal or PCI fault. 2933 */ 2934 if (pending_irqs && main_irq_cause != 0xffffffffU) { 2935 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 2936 handled = mv_pci_error(host, hpriv->base); 2937 else 2938 handled = mv_host_intr(host, pending_irqs); 2939 } 2940 2941 /* for MSI: unmask; interrupt cause bits will retrigger now */ 2942 if (using_msi) 2943 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 2944 2945 spin_unlock(&host->lock); 2946 2947 return IRQ_RETVAL(handled); 2948 } 2949 2950 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 2951 { 2952 unsigned int ofs; 2953 2954 switch (sc_reg_in) { 2955 case SCR_STATUS: 2956 case SCR_ERROR: 2957 case SCR_CONTROL: 2958 ofs = sc_reg_in * sizeof(u32); 2959 break; 2960 default: 2961 ofs = 0xffffffffU; 2962 break; 2963 } 2964 return ofs; 2965 } 2966 2967 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 2968 { 2969 struct mv_host_priv *hpriv = link->ap->host->private_data; 2970 void __iomem *mmio = hpriv->base; 2971 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 2972 unsigned int ofs = mv5_scr_offset(sc_reg_in); 2973 2974 if (ofs != 0xffffffffU) { 2975 *val = readl(addr + ofs); 2976 return 0; 2977 } else 2978 return -EINVAL; 2979 } 2980 2981 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 2982 { 2983 struct mv_host_priv *hpriv = link->ap->host->private_data; 2984 void __iomem *mmio = hpriv->base; 2985 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 2986 unsigned int ofs = mv5_scr_offset(sc_reg_in); 2987 2988 if (ofs != 0xffffffffU) { 2989 writelfl(val, addr + ofs); 2990 return 0; 2991 } else 2992 return -EINVAL; 2993 } 2994 2995 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 2996 { 2997 struct pci_dev *pdev = to_pci_dev(host->dev); 2998 int early_5080; 2999 3000 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3001 3002 if (!early_5080) { 3003 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3004 tmp |= (1 << 0); 3005 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3006 } 3007 3008 mv_reset_pci_bus(host, mmio); 3009 } 3010 3011 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3012 { 3013 writel(0x0fcfffff, mmio + FLASH_CTL); 3014 } 3015 3016 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3017 void __iomem *mmio) 3018 { 3019 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3020 u32 tmp; 3021 3022 tmp = readl(phy_mmio + MV5_PHY_MODE); 3023 3024 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3025 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3026 } 3027 3028 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3029 { 3030 u32 tmp; 3031 3032 writel(0, mmio + GPIO_PORT_CTL); 3033 3034 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3035 3036 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3037 tmp |= ~(1 << 0); 3038 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3039 } 3040 3041 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3042 unsigned int port) 3043 { 3044 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3045 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3046 u32 tmp; 3047 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3048 3049 if (fix_apm_sq) { 3050 tmp = readl(phy_mmio + MV5_LTMODE); 3051 tmp |= (1 << 19); 3052 writel(tmp, phy_mmio + MV5_LTMODE); 3053 3054 tmp = readl(phy_mmio + MV5_PHY_CTL); 3055 tmp &= ~0x3; 3056 tmp |= 0x1; 3057 writel(tmp, phy_mmio + MV5_PHY_CTL); 3058 } 3059 3060 tmp = readl(phy_mmio + MV5_PHY_MODE); 3061 tmp &= ~mask; 3062 tmp |= hpriv->signal[port].pre; 3063 tmp |= hpriv->signal[port].amps; 3064 writel(tmp, phy_mmio + MV5_PHY_MODE); 3065 } 3066 3067 3068 #undef ZERO 3069 #define ZERO(reg) writel(0, port_mmio + (reg)) 3070 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3071 unsigned int port) 3072 { 3073 void __iomem *port_mmio = mv_port_base(mmio, port); 3074 3075 mv_reset_channel(hpriv, mmio, port); 3076 3077 ZERO(0x028); /* command */ 3078 writel(0x11f, port_mmio + EDMA_CFG); 3079 ZERO(0x004); /* timer */ 3080 ZERO(0x008); /* irq err cause */ 3081 ZERO(0x00c); /* irq err mask */ 3082 ZERO(0x010); /* rq bah */ 3083 ZERO(0x014); /* rq inp */ 3084 ZERO(0x018); /* rq outp */ 3085 ZERO(0x01c); /* respq bah */ 3086 ZERO(0x024); /* respq outp */ 3087 ZERO(0x020); /* respq inp */ 3088 ZERO(0x02c); /* test control */ 3089 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3090 } 3091 #undef ZERO 3092 3093 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3094 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3095 unsigned int hc) 3096 { 3097 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3098 u32 tmp; 3099 3100 ZERO(0x00c); 3101 ZERO(0x010); 3102 ZERO(0x014); 3103 ZERO(0x018); 3104 3105 tmp = readl(hc_mmio + 0x20); 3106 tmp &= 0x1c1c1c1c; 3107 tmp |= 0x03030303; 3108 writel(tmp, hc_mmio + 0x20); 3109 } 3110 #undef ZERO 3111 3112 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3113 unsigned int n_hc) 3114 { 3115 unsigned int hc, port; 3116 3117 for (hc = 0; hc < n_hc; hc++) { 3118 for (port = 0; port < MV_PORTS_PER_HC; port++) 3119 mv5_reset_hc_port(hpriv, mmio, 3120 (hc * MV_PORTS_PER_HC) + port); 3121 3122 mv5_reset_one_hc(hpriv, mmio, hc); 3123 } 3124 3125 return 0; 3126 } 3127 3128 #undef ZERO 3129 #define ZERO(reg) writel(0, mmio + (reg)) 3130 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3131 { 3132 struct mv_host_priv *hpriv = host->private_data; 3133 u32 tmp; 3134 3135 tmp = readl(mmio + MV_PCI_MODE); 3136 tmp &= 0xff00ffff; 3137 writel(tmp, mmio + MV_PCI_MODE); 3138 3139 ZERO(MV_PCI_DISC_TIMER); 3140 ZERO(MV_PCI_MSI_TRIGGER); 3141 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3142 ZERO(MV_PCI_SERR_MASK); 3143 ZERO(hpriv->irq_cause_offset); 3144 ZERO(hpriv->irq_mask_offset); 3145 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3146 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3147 ZERO(MV_PCI_ERR_ATTRIBUTE); 3148 ZERO(MV_PCI_ERR_COMMAND); 3149 } 3150 #undef ZERO 3151 3152 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3153 { 3154 u32 tmp; 3155 3156 mv5_reset_flash(hpriv, mmio); 3157 3158 tmp = readl(mmio + GPIO_PORT_CTL); 3159 tmp &= 0x3; 3160 tmp |= (1 << 5) | (1 << 6); 3161 writel(tmp, mmio + GPIO_PORT_CTL); 3162 } 3163 3164 /** 3165 * mv6_reset_hc - Perform the 6xxx global soft reset 3166 * @mmio: base address of the HBA 3167 * 3168 * This routine only applies to 6xxx parts. 3169 * 3170 * LOCKING: 3171 * Inherited from caller. 3172 */ 3173 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3174 unsigned int n_hc) 3175 { 3176 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3177 int i, rc = 0; 3178 u32 t; 3179 3180 /* Following procedure defined in PCI "main command and status 3181 * register" table. 3182 */ 3183 t = readl(reg); 3184 writel(t | STOP_PCI_MASTER, reg); 3185 3186 for (i = 0; i < 1000; i++) { 3187 udelay(1); 3188 t = readl(reg); 3189 if (PCI_MASTER_EMPTY & t) 3190 break; 3191 } 3192 if (!(PCI_MASTER_EMPTY & t)) { 3193 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3194 rc = 1; 3195 goto done; 3196 } 3197 3198 /* set reset */ 3199 i = 5; 3200 do { 3201 writel(t | GLOB_SFT_RST, reg); 3202 t = readl(reg); 3203 udelay(1); 3204 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3205 3206 if (!(GLOB_SFT_RST & t)) { 3207 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3208 rc = 1; 3209 goto done; 3210 } 3211 3212 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3213 i = 5; 3214 do { 3215 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3216 t = readl(reg); 3217 udelay(1); 3218 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3219 3220 if (GLOB_SFT_RST & t) { 3221 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3222 rc = 1; 3223 } 3224 done: 3225 return rc; 3226 } 3227 3228 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3229 void __iomem *mmio) 3230 { 3231 void __iomem *port_mmio; 3232 u32 tmp; 3233 3234 tmp = readl(mmio + RESET_CFG); 3235 if ((tmp & (1 << 0)) == 0) { 3236 hpriv->signal[idx].amps = 0x7 << 8; 3237 hpriv->signal[idx].pre = 0x1 << 5; 3238 return; 3239 } 3240 3241 port_mmio = mv_port_base(mmio, idx); 3242 tmp = readl(port_mmio + PHY_MODE2); 3243 3244 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3245 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3246 } 3247 3248 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3249 { 3250 writel(0x00000060, mmio + GPIO_PORT_CTL); 3251 } 3252 3253 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3254 unsigned int port) 3255 { 3256 void __iomem *port_mmio = mv_port_base(mmio, port); 3257 3258 u32 hp_flags = hpriv->hp_flags; 3259 int fix_phy_mode2 = 3260 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3261 int fix_phy_mode4 = 3262 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3263 u32 m2, m3; 3264 3265 if (fix_phy_mode2) { 3266 m2 = readl(port_mmio + PHY_MODE2); 3267 m2 &= ~(1 << 16); 3268 m2 |= (1 << 31); 3269 writel(m2, port_mmio + PHY_MODE2); 3270 3271 udelay(200); 3272 3273 m2 = readl(port_mmio + PHY_MODE2); 3274 m2 &= ~((1 << 16) | (1 << 31)); 3275 writel(m2, port_mmio + PHY_MODE2); 3276 3277 udelay(200); 3278 } 3279 3280 /* 3281 * Gen-II/IIe PHY_MODE3 errata RM#2: 3282 * Achieves better receiver noise performance than the h/w default: 3283 */ 3284 m3 = readl(port_mmio + PHY_MODE3); 3285 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3286 3287 /* Guideline 88F5182 (GL# SATA-S11) */ 3288 if (IS_SOC(hpriv)) 3289 m3 &= ~0x1c; 3290 3291 if (fix_phy_mode4) { 3292 u32 m4 = readl(port_mmio + PHY_MODE4); 3293 /* 3294 * Enforce reserved-bit restrictions on GenIIe devices only. 3295 * For earlier chipsets, force only the internal config field 3296 * (workaround for errata FEr SATA#10 part 1). 3297 */ 3298 if (IS_GEN_IIE(hpriv)) 3299 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3300 else 3301 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3302 writel(m4, port_mmio + PHY_MODE4); 3303 } 3304 /* 3305 * Workaround for 60x1-B2 errata SATA#13: 3306 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3307 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3308 * Or ensure we use writelfl() when writing PHY_MODE4. 3309 */ 3310 writel(m3, port_mmio + PHY_MODE3); 3311 3312 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3313 m2 = readl(port_mmio + PHY_MODE2); 3314 3315 m2 &= ~MV_M2_PREAMP_MASK; 3316 m2 |= hpriv->signal[port].amps; 3317 m2 |= hpriv->signal[port].pre; 3318 m2 &= ~(1 << 16); 3319 3320 /* according to mvSata 3.6.1, some IIE values are fixed */ 3321 if (IS_GEN_IIE(hpriv)) { 3322 m2 &= ~0xC30FF01F; 3323 m2 |= 0x0000900F; 3324 } 3325 3326 writel(m2, port_mmio + PHY_MODE2); 3327 } 3328 3329 /* TODO: use the generic LED interface to configure the SATA Presence */ 3330 /* & Acitivy LEDs on the board */ 3331 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3332 void __iomem *mmio) 3333 { 3334 return; 3335 } 3336 3337 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3338 void __iomem *mmio) 3339 { 3340 void __iomem *port_mmio; 3341 u32 tmp; 3342 3343 port_mmio = mv_port_base(mmio, idx); 3344 tmp = readl(port_mmio + PHY_MODE2); 3345 3346 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3347 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3348 } 3349 3350 #undef ZERO 3351 #define ZERO(reg) writel(0, port_mmio + (reg)) 3352 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3353 void __iomem *mmio, unsigned int port) 3354 { 3355 void __iomem *port_mmio = mv_port_base(mmio, port); 3356 3357 mv_reset_channel(hpriv, mmio, port); 3358 3359 ZERO(0x028); /* command */ 3360 writel(0x101f, port_mmio + EDMA_CFG); 3361 ZERO(0x004); /* timer */ 3362 ZERO(0x008); /* irq err cause */ 3363 ZERO(0x00c); /* irq err mask */ 3364 ZERO(0x010); /* rq bah */ 3365 ZERO(0x014); /* rq inp */ 3366 ZERO(0x018); /* rq outp */ 3367 ZERO(0x01c); /* respq bah */ 3368 ZERO(0x024); /* respq outp */ 3369 ZERO(0x020); /* respq inp */ 3370 ZERO(0x02c); /* test control */ 3371 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3372 } 3373 3374 #undef ZERO 3375 3376 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3377 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3378 void __iomem *mmio) 3379 { 3380 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3381 3382 ZERO(0x00c); 3383 ZERO(0x010); 3384 ZERO(0x014); 3385 3386 } 3387 3388 #undef ZERO 3389 3390 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3391 void __iomem *mmio, unsigned int n_hc) 3392 { 3393 unsigned int port; 3394 3395 for (port = 0; port < hpriv->n_ports; port++) 3396 mv_soc_reset_hc_port(hpriv, mmio, port); 3397 3398 mv_soc_reset_one_hc(hpriv, mmio); 3399 3400 return 0; 3401 } 3402 3403 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3404 void __iomem *mmio) 3405 { 3406 return; 3407 } 3408 3409 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3410 { 3411 return; 3412 } 3413 3414 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3415 void __iomem *mmio, unsigned int port) 3416 { 3417 void __iomem *port_mmio = mv_port_base(mmio, port); 3418 u32 reg; 3419 3420 reg = readl(port_mmio + PHY_MODE3); 3421 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3422 reg |= (0x1 << 27); 3423 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3424 reg |= (0x1 << 29); 3425 writel(reg, port_mmio + PHY_MODE3); 3426 3427 reg = readl(port_mmio + PHY_MODE4); 3428 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3429 reg |= (0x1 << 16); 3430 writel(reg, port_mmio + PHY_MODE4); 3431 3432 reg = readl(port_mmio + PHY_MODE9_GEN2); 3433 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3434 reg |= 0x8; 3435 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3436 writel(reg, port_mmio + PHY_MODE9_GEN2); 3437 3438 reg = readl(port_mmio + PHY_MODE9_GEN1); 3439 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3440 reg |= 0x8; 3441 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3442 writel(reg, port_mmio + PHY_MODE9_GEN1); 3443 } 3444 3445 /** 3446 * soc_is_65 - check if the soc is 65 nano device 3447 * 3448 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3449 * register, this register should contain non-zero value and it exists only 3450 * in the 65 nano devices, when reading it from older devices we get 0. 3451 */ 3452 static bool soc_is_65n(struct mv_host_priv *hpriv) 3453 { 3454 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3455 3456 if (readl(port0_mmio + PHYCFG_OFS)) 3457 return true; 3458 return false; 3459 } 3460 3461 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3462 { 3463 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3464 3465 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3466 if (want_gen2i) 3467 ifcfg |= (1 << 7); /* enable gen2i speed */ 3468 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3469 } 3470 3471 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3472 unsigned int port_no) 3473 { 3474 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3475 3476 /* 3477 * The datasheet warns against setting EDMA_RESET when EDMA is active 3478 * (but doesn't say what the problem might be). So we first try 3479 * to disable the EDMA engine before doing the EDMA_RESET operation. 3480 */ 3481 mv_stop_edma_engine(port_mmio); 3482 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3483 3484 if (!IS_GEN_I(hpriv)) { 3485 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3486 mv_setup_ifcfg(port_mmio, 1); 3487 } 3488 /* 3489 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3490 * link, and physical layers. It resets all SATA interface registers 3491 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3492 */ 3493 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3494 udelay(25); /* allow reset propagation */ 3495 writelfl(0, port_mmio + EDMA_CMD); 3496 3497 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3498 3499 if (IS_GEN_I(hpriv)) 3500 mdelay(1); 3501 } 3502 3503 static void mv_pmp_select(struct ata_port *ap, int pmp) 3504 { 3505 if (sata_pmp_supported(ap)) { 3506 void __iomem *port_mmio = mv_ap_base(ap); 3507 u32 reg = readl(port_mmio + SATA_IFCTL); 3508 int old = reg & 0xf; 3509 3510 if (old != pmp) { 3511 reg = (reg & ~0xf) | pmp; 3512 writelfl(reg, port_mmio + SATA_IFCTL); 3513 } 3514 } 3515 } 3516 3517 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3518 unsigned long deadline) 3519 { 3520 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3521 return sata_std_hardreset(link, class, deadline); 3522 } 3523 3524 static int mv_softreset(struct ata_link *link, unsigned int *class, 3525 unsigned long deadline) 3526 { 3527 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3528 return ata_sff_softreset(link, class, deadline); 3529 } 3530 3531 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3532 unsigned long deadline) 3533 { 3534 struct ata_port *ap = link->ap; 3535 struct mv_host_priv *hpriv = ap->host->private_data; 3536 struct mv_port_priv *pp = ap->private_data; 3537 void __iomem *mmio = hpriv->base; 3538 int rc, attempts = 0, extra = 0; 3539 u32 sstatus; 3540 bool online; 3541 3542 mv_reset_channel(hpriv, mmio, ap->port_no); 3543 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3544 pp->pp_flags &= 3545 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3546 3547 /* Workaround for errata FEr SATA#10 (part 2) */ 3548 do { 3549 const unsigned long *timing = 3550 sata_ehc_deb_timing(&link->eh_context); 3551 3552 rc = sata_link_hardreset(link, timing, deadline + extra, 3553 &online, NULL); 3554 rc = online ? -EAGAIN : rc; 3555 if (rc) 3556 return rc; 3557 sata_scr_read(link, SCR_STATUS, &sstatus); 3558 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3559 /* Force 1.5gb/s link speed and try again */ 3560 mv_setup_ifcfg(mv_ap_base(ap), 0); 3561 if (time_after(jiffies + HZ, deadline)) 3562 extra = HZ; /* only extend it once, max */ 3563 } 3564 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3565 mv_save_cached_regs(ap); 3566 mv_edma_cfg(ap, 0, 0); 3567 3568 return rc; 3569 } 3570 3571 static void mv_eh_freeze(struct ata_port *ap) 3572 { 3573 mv_stop_edma(ap); 3574 mv_enable_port_irqs(ap, 0); 3575 } 3576 3577 static void mv_eh_thaw(struct ata_port *ap) 3578 { 3579 struct mv_host_priv *hpriv = ap->host->private_data; 3580 unsigned int port = ap->port_no; 3581 unsigned int hardport = mv_hardport_from_port(port); 3582 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3583 void __iomem *port_mmio = mv_ap_base(ap); 3584 u32 hc_irq_cause; 3585 3586 /* clear EDMA errors on this port */ 3587 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3588 3589 /* clear pending irq events */ 3590 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3591 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3592 3593 mv_enable_port_irqs(ap, ERR_IRQ); 3594 } 3595 3596 /** 3597 * mv_port_init - Perform some early initialization on a single port. 3598 * @port: libata data structure storing shadow register addresses 3599 * @port_mmio: base address of the port 3600 * 3601 * Initialize shadow register mmio addresses, clear outstanding 3602 * interrupts on the port, and unmask interrupts for the future 3603 * start of the port. 3604 * 3605 * LOCKING: 3606 * Inherited from caller. 3607 */ 3608 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3609 { 3610 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3611 3612 /* PIO related setup 3613 */ 3614 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3615 port->error_addr = 3616 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3617 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3618 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3619 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3620 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3621 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3622 port->status_addr = 3623 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3624 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3625 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3626 3627 /* unused: */ 3628 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL; 3629 3630 /* Clear any currently outstanding port interrupt conditions */ 3631 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3632 writelfl(readl(serr), serr); 3633 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3634 3635 /* unmask all non-transient EDMA error interrupts */ 3636 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3637 3638 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3639 readl(port_mmio + EDMA_CFG), 3640 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3641 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3642 } 3643 3644 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3645 { 3646 struct mv_host_priv *hpriv = host->private_data; 3647 void __iomem *mmio = hpriv->base; 3648 u32 reg; 3649 3650 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3651 return 0; /* not PCI-X capable */ 3652 reg = readl(mmio + MV_PCI_MODE); 3653 if ((reg & MV_PCI_MODE_MASK) == 0) 3654 return 0; /* conventional PCI mode */ 3655 return 1; /* chip is in PCI-X mode */ 3656 } 3657 3658 static int mv_pci_cut_through_okay(struct ata_host *host) 3659 { 3660 struct mv_host_priv *hpriv = host->private_data; 3661 void __iomem *mmio = hpriv->base; 3662 u32 reg; 3663 3664 if (!mv_in_pcix_mode(host)) { 3665 reg = readl(mmio + MV_PCI_COMMAND); 3666 if (reg & MV_PCI_COMMAND_MRDTRIG) 3667 return 0; /* not okay */ 3668 } 3669 return 1; /* okay */ 3670 } 3671 3672 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3673 { 3674 struct mv_host_priv *hpriv = host->private_data; 3675 void __iomem *mmio = hpriv->base; 3676 3677 /* workaround for 60x1-B2 errata PCI#7 */ 3678 if (mv_in_pcix_mode(host)) { 3679 u32 reg = readl(mmio + MV_PCI_COMMAND); 3680 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3681 } 3682 } 3683 3684 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3685 { 3686 struct pci_dev *pdev = to_pci_dev(host->dev); 3687 struct mv_host_priv *hpriv = host->private_data; 3688 u32 hp_flags = hpriv->hp_flags; 3689 3690 switch (board_idx) { 3691 case chip_5080: 3692 hpriv->ops = &mv5xxx_ops; 3693 hp_flags |= MV_HP_GEN_I; 3694 3695 switch (pdev->revision) { 3696 case 0x1: 3697 hp_flags |= MV_HP_ERRATA_50XXB0; 3698 break; 3699 case 0x3: 3700 hp_flags |= MV_HP_ERRATA_50XXB2; 3701 break; 3702 default: 3703 dev_printk(KERN_WARNING, &pdev->dev, 3704 "Applying 50XXB2 workarounds to unknown rev\n"); 3705 hp_flags |= MV_HP_ERRATA_50XXB2; 3706 break; 3707 } 3708 break; 3709 3710 case chip_504x: 3711 case chip_508x: 3712 hpriv->ops = &mv5xxx_ops; 3713 hp_flags |= MV_HP_GEN_I; 3714 3715 switch (pdev->revision) { 3716 case 0x0: 3717 hp_flags |= MV_HP_ERRATA_50XXB0; 3718 break; 3719 case 0x3: 3720 hp_flags |= MV_HP_ERRATA_50XXB2; 3721 break; 3722 default: 3723 dev_printk(KERN_WARNING, &pdev->dev, 3724 "Applying B2 workarounds to unknown rev\n"); 3725 hp_flags |= MV_HP_ERRATA_50XXB2; 3726 break; 3727 } 3728 break; 3729 3730 case chip_604x: 3731 case chip_608x: 3732 hpriv->ops = &mv6xxx_ops; 3733 hp_flags |= MV_HP_GEN_II; 3734 3735 switch (pdev->revision) { 3736 case 0x7: 3737 mv_60x1b2_errata_pci7(host); 3738 hp_flags |= MV_HP_ERRATA_60X1B2; 3739 break; 3740 case 0x9: 3741 hp_flags |= MV_HP_ERRATA_60X1C0; 3742 break; 3743 default: 3744 dev_printk(KERN_WARNING, &pdev->dev, 3745 "Applying B2 workarounds to unknown rev\n"); 3746 hp_flags |= MV_HP_ERRATA_60X1B2; 3747 break; 3748 } 3749 break; 3750 3751 case chip_7042: 3752 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3753 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3754 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3755 { 3756 /* 3757 * Highpoint RocketRAID PCIe 23xx series cards: 3758 * 3759 * Unconfigured drives are treated as "Legacy" 3760 * by the BIOS, and it overwrites sector 8 with 3761 * a "Lgcy" metadata block prior to Linux boot. 3762 * 3763 * Configured drives (RAID or JBOD) leave sector 8 3764 * alone, but instead overwrite a high numbered 3765 * sector for the RAID metadata. This sector can 3766 * be determined exactly, by truncating the physical 3767 * drive capacity to a nice even GB value. 3768 * 3769 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3770 * 3771 * Warn the user, lest they think we're just buggy. 3772 */ 3773 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3774 " BIOS CORRUPTS DATA on all attached drives," 3775 " regardless of if/how they are configured." 3776 " BEWARE!\n"); 3777 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3778 " use sectors 8-9 on \"Legacy\" drives," 3779 " and avoid the final two gigabytes on" 3780 " all RocketRAID BIOS initialized drives.\n"); 3781 } 3782 /* drop through */ 3783 case chip_6042: 3784 hpriv->ops = &mv6xxx_ops; 3785 hp_flags |= MV_HP_GEN_IIE; 3786 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3787 hp_flags |= MV_HP_CUT_THROUGH; 3788 3789 switch (pdev->revision) { 3790 case 0x2: /* Rev.B0: the first/only public release */ 3791 hp_flags |= MV_HP_ERRATA_60X1C0; 3792 break; 3793 default: 3794 dev_printk(KERN_WARNING, &pdev->dev, 3795 "Applying 60X1C0 workarounds to unknown rev\n"); 3796 hp_flags |= MV_HP_ERRATA_60X1C0; 3797 break; 3798 } 3799 break; 3800 case chip_soc: 3801 if (soc_is_65n(hpriv)) 3802 hpriv->ops = &mv_soc_65n_ops; 3803 else 3804 hpriv->ops = &mv_soc_ops; 3805 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3806 MV_HP_ERRATA_60X1C0; 3807 break; 3808 3809 default: 3810 dev_printk(KERN_ERR, host->dev, 3811 "BUG: invalid board index %u\n", board_idx); 3812 return 1; 3813 } 3814 3815 hpriv->hp_flags = hp_flags; 3816 if (hp_flags & MV_HP_PCIE) { 3817 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3818 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3819 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3820 } else { 3821 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3822 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3823 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3824 } 3825 3826 return 0; 3827 } 3828 3829 /** 3830 * mv_init_host - Perform some early initialization of the host. 3831 * @host: ATA host to initialize 3832 * @board_idx: controller index 3833 * 3834 * If possible, do an early global reset of the host. Then do 3835 * our port init and clear/unmask all/relevant host interrupts. 3836 * 3837 * LOCKING: 3838 * Inherited from caller. 3839 */ 3840 static int mv_init_host(struct ata_host *host, unsigned int board_idx) 3841 { 3842 int rc = 0, n_hc, port, hc; 3843 struct mv_host_priv *hpriv = host->private_data; 3844 void __iomem *mmio = hpriv->base; 3845 3846 rc = mv_chip_id(host, board_idx); 3847 if (rc) 3848 goto done; 3849 3850 if (IS_SOC(hpriv)) { 3851 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3852 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3853 } else { 3854 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3855 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3856 } 3857 3858 /* initialize shadow irq mask with register's value */ 3859 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3860 3861 /* global interrupt mask: 0 == mask everything */ 3862 mv_set_main_irq_mask(host, ~0, 0); 3863 3864 n_hc = mv_get_hc_count(host->ports[0]->flags); 3865 3866 for (port = 0; port < host->n_ports; port++) 3867 if (hpriv->ops->read_preamp) 3868 hpriv->ops->read_preamp(hpriv, port, mmio); 3869 3870 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3871 if (rc) 3872 goto done; 3873 3874 hpriv->ops->reset_flash(hpriv, mmio); 3875 hpriv->ops->reset_bus(host, mmio); 3876 hpriv->ops->enable_leds(hpriv, mmio); 3877 3878 for (port = 0; port < host->n_ports; port++) { 3879 struct ata_port *ap = host->ports[port]; 3880 void __iomem *port_mmio = mv_port_base(mmio, port); 3881 3882 mv_port_init(&ap->ioaddr, port_mmio); 3883 3884 #ifdef CONFIG_PCI 3885 if (!IS_SOC(hpriv)) { 3886 unsigned int offset = port_mmio - mmio; 3887 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 3888 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 3889 } 3890 #endif 3891 } 3892 3893 for (hc = 0; hc < n_hc; hc++) { 3894 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3895 3896 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3897 "(before clear)=0x%08x\n", hc, 3898 readl(hc_mmio + HC_CFG), 3899 readl(hc_mmio + HC_IRQ_CAUSE)); 3900 3901 /* Clear any currently outstanding hc interrupt conditions */ 3902 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3903 } 3904 3905 if (!IS_SOC(hpriv)) { 3906 /* Clear any currently outstanding host interrupt conditions */ 3907 writelfl(0, mmio + hpriv->irq_cause_offset); 3908 3909 /* and unmask interrupt generation for host regs */ 3910 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3911 } 3912 3913 /* 3914 * enable only global host interrupts for now. 3915 * The per-port interrupts get done later as ports are set up. 3916 */ 3917 mv_set_main_irq_mask(host, 0, PCI_ERR); 3918 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3919 irq_coalescing_usecs); 3920 done: 3921 return rc; 3922 } 3923 3924 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3925 { 3926 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 3927 MV_CRQB_Q_SZ, 0); 3928 if (!hpriv->crqb_pool) 3929 return -ENOMEM; 3930 3931 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 3932 MV_CRPB_Q_SZ, 0); 3933 if (!hpriv->crpb_pool) 3934 return -ENOMEM; 3935 3936 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 3937 MV_SG_TBL_SZ, 0); 3938 if (!hpriv->sg_tbl_pool) 3939 return -ENOMEM; 3940 3941 return 0; 3942 } 3943 3944 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 3945 struct mbus_dram_target_info *dram) 3946 { 3947 int i; 3948 3949 for (i = 0; i < 4; i++) { 3950 writel(0, hpriv->base + WINDOW_CTRL(i)); 3951 writel(0, hpriv->base + WINDOW_BASE(i)); 3952 } 3953 3954 for (i = 0; i < dram->num_cs; i++) { 3955 struct mbus_dram_window *cs = dram->cs + i; 3956 3957 writel(((cs->size - 1) & 0xffff0000) | 3958 (cs->mbus_attr << 8) | 3959 (dram->mbus_dram_target_id << 4) | 1, 3960 hpriv->base + WINDOW_CTRL(i)); 3961 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 3962 } 3963 } 3964 3965 /** 3966 * mv_platform_probe - handle a positive probe of an soc Marvell 3967 * host 3968 * @pdev: platform device found 3969 * 3970 * LOCKING: 3971 * Inherited from caller. 3972 */ 3973 static int mv_platform_probe(struct platform_device *pdev) 3974 { 3975 static int printed_version; 3976 const struct mv_sata_platform_data *mv_platform_data; 3977 const struct ata_port_info *ppi[] = 3978 { &mv_port_info[chip_soc], NULL }; 3979 struct ata_host *host; 3980 struct mv_host_priv *hpriv; 3981 struct resource *res; 3982 int n_ports, rc; 3983 3984 if (!printed_version++) 3985 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 3986 3987 /* 3988 * Simple resource validation .. 3989 */ 3990 if (unlikely(pdev->num_resources != 2)) { 3991 dev_err(&pdev->dev, "invalid number of resources\n"); 3992 return -EINVAL; 3993 } 3994 3995 /* 3996 * Get the register base first 3997 */ 3998 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3999 if (res == NULL) 4000 return -EINVAL; 4001 4002 /* allocate host */ 4003 mv_platform_data = pdev->dev.platform_data; 4004 n_ports = mv_platform_data->n_ports; 4005 4006 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4007 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4008 4009 if (!host || !hpriv) 4010 return -ENOMEM; 4011 host->private_data = hpriv; 4012 hpriv->n_ports = n_ports; 4013 4014 host->iomap = NULL; 4015 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4016 res->end - res->start + 1); 4017 hpriv->base -= SATAHC0_REG_BASE; 4018 4019 /* 4020 * (Re-)program MBUS remapping windows if we are asked to. 4021 */ 4022 if (mv_platform_data->dram != NULL) 4023 mv_conf_mbus_windows(hpriv, mv_platform_data->dram); 4024 4025 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4026 if (rc) 4027 return rc; 4028 4029 /* initialize adapter */ 4030 rc = mv_init_host(host, chip_soc); 4031 if (rc) 4032 return rc; 4033 4034 dev_printk(KERN_INFO, &pdev->dev, 4035 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH, 4036 host->n_ports); 4037 4038 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, 4039 IRQF_SHARED, &mv6_sht); 4040 } 4041 4042 /* 4043 * 4044 * mv_platform_remove - unplug a platform interface 4045 * @pdev: platform device 4046 * 4047 * A platform bus SATA device has been unplugged. Perform the needed 4048 * cleanup. Also called on module unload for any active devices. 4049 */ 4050 static int __devexit mv_platform_remove(struct platform_device *pdev) 4051 { 4052 struct device *dev = &pdev->dev; 4053 struct ata_host *host = dev_get_drvdata(dev); 4054 4055 ata_host_detach(host); 4056 return 0; 4057 } 4058 4059 static struct platform_driver mv_platform_driver = { 4060 .probe = mv_platform_probe, 4061 .remove = __devexit_p(mv_platform_remove), 4062 .driver = { 4063 .name = DRV_NAME, 4064 .owner = THIS_MODULE, 4065 }, 4066 }; 4067 4068 4069 #ifdef CONFIG_PCI 4070 static int mv_pci_init_one(struct pci_dev *pdev, 4071 const struct pci_device_id *ent); 4072 4073 4074 static struct pci_driver mv_pci_driver = { 4075 .name = DRV_NAME, 4076 .id_table = mv_pci_tbl, 4077 .probe = mv_pci_init_one, 4078 .remove = ata_pci_remove_one, 4079 }; 4080 4081 /* move to PCI layer or libata core? */ 4082 static int pci_go_64(struct pci_dev *pdev) 4083 { 4084 int rc; 4085 4086 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4087 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4088 if (rc) { 4089 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4090 if (rc) { 4091 dev_printk(KERN_ERR, &pdev->dev, 4092 "64-bit DMA enable failed\n"); 4093 return rc; 4094 } 4095 } 4096 } else { 4097 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4098 if (rc) { 4099 dev_printk(KERN_ERR, &pdev->dev, 4100 "32-bit DMA enable failed\n"); 4101 return rc; 4102 } 4103 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4104 if (rc) { 4105 dev_printk(KERN_ERR, &pdev->dev, 4106 "32-bit consistent DMA enable failed\n"); 4107 return rc; 4108 } 4109 } 4110 4111 return rc; 4112 } 4113 4114 /** 4115 * mv_print_info - Dump key info to kernel log for perusal. 4116 * @host: ATA host to print info about 4117 * 4118 * FIXME: complete this. 4119 * 4120 * LOCKING: 4121 * Inherited from caller. 4122 */ 4123 static void mv_print_info(struct ata_host *host) 4124 { 4125 struct pci_dev *pdev = to_pci_dev(host->dev); 4126 struct mv_host_priv *hpriv = host->private_data; 4127 u8 scc; 4128 const char *scc_s, *gen; 4129 4130 /* Use this to determine the HW stepping of the chip so we know 4131 * what errata to workaround 4132 */ 4133 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4134 if (scc == 0) 4135 scc_s = "SCSI"; 4136 else if (scc == 0x01) 4137 scc_s = "RAID"; 4138 else 4139 scc_s = "?"; 4140 4141 if (IS_GEN_I(hpriv)) 4142 gen = "I"; 4143 else if (IS_GEN_II(hpriv)) 4144 gen = "II"; 4145 else if (IS_GEN_IIE(hpriv)) 4146 gen = "IIE"; 4147 else 4148 gen = "?"; 4149 4150 dev_printk(KERN_INFO, &pdev->dev, 4151 "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4152 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4153 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4154 } 4155 4156 /** 4157 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4158 * @pdev: PCI device found 4159 * @ent: PCI device ID entry for the matched host 4160 * 4161 * LOCKING: 4162 * Inherited from caller. 4163 */ 4164 static int mv_pci_init_one(struct pci_dev *pdev, 4165 const struct pci_device_id *ent) 4166 { 4167 static int printed_version; 4168 unsigned int board_idx = (unsigned int)ent->driver_data; 4169 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4170 struct ata_host *host; 4171 struct mv_host_priv *hpriv; 4172 int n_ports, rc; 4173 4174 if (!printed_version++) 4175 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); 4176 4177 /* allocate host */ 4178 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4179 4180 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4181 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4182 if (!host || !hpriv) 4183 return -ENOMEM; 4184 host->private_data = hpriv; 4185 hpriv->n_ports = n_ports; 4186 4187 /* acquire resources */ 4188 rc = pcim_enable_device(pdev); 4189 if (rc) 4190 return rc; 4191 4192 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4193 if (rc == -EBUSY) 4194 pcim_pin_device(pdev); 4195 if (rc) 4196 return rc; 4197 host->iomap = pcim_iomap_table(pdev); 4198 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4199 4200 rc = pci_go_64(pdev); 4201 if (rc) 4202 return rc; 4203 4204 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4205 if (rc) 4206 return rc; 4207 4208 /* initialize adapter */ 4209 rc = mv_init_host(host, board_idx); 4210 if (rc) 4211 return rc; 4212 4213 /* Enable message-switched interrupts, if requested */ 4214 if (msi && pci_enable_msi(pdev) == 0) 4215 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4216 4217 mv_dump_pci_cfg(pdev, 0x68); 4218 mv_print_info(host); 4219 4220 pci_set_master(pdev); 4221 pci_try_set_mwi(pdev); 4222 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4223 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4224 } 4225 #endif 4226 4227 static int mv_platform_probe(struct platform_device *pdev); 4228 static int __devexit mv_platform_remove(struct platform_device *pdev); 4229 4230 static int __init mv_init(void) 4231 { 4232 int rc = -ENODEV; 4233 #ifdef CONFIG_PCI 4234 rc = pci_register_driver(&mv_pci_driver); 4235 if (rc < 0) 4236 return rc; 4237 #endif 4238 rc = platform_driver_register(&mv_platform_driver); 4239 4240 #ifdef CONFIG_PCI 4241 if (rc < 0) 4242 pci_unregister_driver(&mv_pci_driver); 4243 #endif 4244 return rc; 4245 } 4246 4247 static void __exit mv_exit(void) 4248 { 4249 #ifdef CONFIG_PCI 4250 pci_unregister_driver(&mv_pci_driver); 4251 #endif 4252 platform_driver_unregister(&mv_platform_driver); 4253 } 4254 4255 MODULE_AUTHOR("Brett Russ"); 4256 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4257 MODULE_LICENSE("GPL"); 4258 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4259 MODULE_VERSION(DRV_VERSION); 4260 MODULE_ALIAS("platform:" DRV_NAME); 4261 4262 module_init(mv_init); 4263 module_exit(mv_exit); 4264