xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 78c99ba1)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10  *
11  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37  *       creating LibATA target mode support would be very interesting.
38  *
39  *       Target mode, for those without docs, is the ability to directly
40  *       connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher.  The chips may not
49  * work correctly otherwise  (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/platform_device.h>
63 #include <linux/ata_platform.h>
64 #include <linux/mbus.h>
65 #include <linux/bitops.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_cmnd.h>
68 #include <scsi/scsi_device.h>
69 #include <linux/libata.h>
70 
71 #define DRV_NAME	"sata_mv"
72 #define DRV_VERSION	"1.28"
73 
74 /*
75  * module options
76  */
77 
78 static int msi;
79 #ifdef CONFIG_PCI
80 module_param(msi, int, S_IRUGO);
81 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
82 #endif
83 
84 static int irq_coalescing_io_count;
85 module_param(irq_coalescing_io_count, int, S_IRUGO);
86 MODULE_PARM_DESC(irq_coalescing_io_count,
87 		 "IRQ coalescing I/O count threshold (0..255)");
88 
89 static int irq_coalescing_usecs;
90 module_param(irq_coalescing_usecs, int, S_IRUGO);
91 MODULE_PARM_DESC(irq_coalescing_usecs,
92 		 "IRQ coalescing time threshold in usecs");
93 
94 enum {
95 	/* BAR's are enumerated in terms of pci_resource_start() terms */
96 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
97 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
98 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
99 
100 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
101 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
102 
103 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
104 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
105 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
106 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
107 
108 	MV_PCI_REG_BASE		= 0,
109 
110 	/*
111 	 * Per-chip ("all ports") interrupt coalescing feature.
112 	 * This is only for GEN_II / GEN_IIE hardware.
113 	 *
114 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
115 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
116 	 */
117 	COAL_REG_BASE		= 0x18000,
118 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
119 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
120 
121 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
122 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
123 
124 	/*
125 	 * Registers for the (unused here) transaction coalescing feature:
126 	 */
127 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
128 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
129 
130 	SATAHC0_REG_BASE	= 0x20000,
131 	FLASH_CTL		= 0x1046c,
132 	GPIO_PORT_CTL		= 0x104f0,
133 	RESET_CFG		= 0x180d8,
134 
135 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
136 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
137 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
138 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
139 
140 	MV_MAX_Q_DEPTH		= 32,
141 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
142 
143 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
144 	 * CRPB needs alignment on a 256B boundary. Size == 256B
145 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
146 	 */
147 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
148 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
149 	MV_MAX_SG_CT		= 256,
150 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
151 
152 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
153 	MV_PORT_HC_SHIFT	= 2,
154 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
155 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
156 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
157 
158 	/* Host Flags */
159 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
160 
161 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
162 				  ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
163 
164 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
165 
166 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
167 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
168 
169 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
170 
171 	CRQB_FLAG_READ		= (1 << 0),
172 	CRQB_TAG_SHIFT		= 1,
173 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
174 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
175 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
176 	CRQB_CMD_ADDR_SHIFT	= 8,
177 	CRQB_CMD_CS		= (0x2 << 11),
178 	CRQB_CMD_LAST		= (1 << 15),
179 
180 	CRPB_FLAG_STATUS_SHIFT	= 8,
181 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
182 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
183 
184 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
185 
186 	/* PCI interface registers */
187 
188 	MV_PCI_COMMAND		= 0xc00,
189 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
190 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
191 
192 	PCI_MAIN_CMD_STS	= 0xd30,
193 	STOP_PCI_MASTER		= (1 << 2),
194 	PCI_MASTER_EMPTY	= (1 << 3),
195 	GLOB_SFT_RST		= (1 << 4),
196 
197 	MV_PCI_MODE		= 0xd00,
198 	MV_PCI_MODE_MASK	= 0x30,
199 
200 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
201 	MV_PCI_DISC_TIMER	= 0xd04,
202 	MV_PCI_MSI_TRIGGER	= 0xc38,
203 	MV_PCI_SERR_MASK	= 0xc28,
204 	MV_PCI_XBAR_TMOUT	= 0x1d04,
205 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
206 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
207 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
208 	MV_PCI_ERR_COMMAND	= 0x1d50,
209 
210 	PCI_IRQ_CAUSE		= 0x1d58,
211 	PCI_IRQ_MASK		= 0x1d5c,
212 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
213 
214 	PCIE_IRQ_CAUSE		= 0x1900,
215 	PCIE_IRQ_MASK		= 0x1910,
216 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
217 
218 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
219 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
220 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
221 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
222 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
223 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
224 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
225 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
226 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
227 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
228 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
229 	PCI_ERR			= (1 << 18),
230 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
231 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
232 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
233 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
234 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
235 	GPIO_INT		= (1 << 22),
236 	SELF_INT		= (1 << 23),
237 	TWSI_INT		= (1 << 24),
238 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
239 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
240 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
241 
242 	/* SATAHC registers */
243 	HC_CFG			= 0x00,
244 
245 	HC_IRQ_CAUSE		= 0x14,
246 	DMA_IRQ			= (1 << 0),	/* shift by port # */
247 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
248 	DEV_IRQ			= (1 << 8),	/* shift by port # */
249 
250 	/*
251 	 * Per-HC (Host-Controller) interrupt coalescing feature.
252 	 * This is present on all chip generations.
253 	 *
254 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
255 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
256 	 */
257 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
258 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
259 
260 	SOC_LED_CTRL		= 0x2c,
261 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
262 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
263 						/*  with dev activity LED */
264 
265 	/* Shadow block registers */
266 	SHD_BLK			= 0x100,
267 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
268 
269 	/* SATA registers */
270 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
271 	SATA_ACTIVE		= 0x350,
272 	FIS_IRQ_CAUSE		= 0x364,
273 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
274 
275 	LTMODE			= 0x30c,	/* requires read-after-write */
276 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
277 
278 	PHY_MODE2		= 0x330,
279 	PHY_MODE3		= 0x310,
280 
281 	PHY_MODE4		= 0x314,	/* requires read-after-write */
282 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
283 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
284 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
285 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
286 
287 	SATA_IFCTL		= 0x344,
288 	SATA_TESTCTL		= 0x348,
289 	SATA_IFSTAT		= 0x34c,
290 	VENDOR_UNIQUE_FIS	= 0x35c,
291 
292 	FISCFG			= 0x360,
293 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
294 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
295 
296 	PHY_MODE9_GEN2		= 0x398,
297 	PHY_MODE9_GEN1		= 0x39c,
298 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
299 
300 	MV5_PHY_MODE		= 0x74,
301 	MV5_LTMODE		= 0x30,
302 	MV5_PHY_CTL		= 0x0C,
303 	SATA_IFCFG		= 0x050,
304 
305 	MV_M2_PREAMP_MASK	= 0x7e0,
306 
307 	/* Port registers */
308 	EDMA_CFG		= 0,
309 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
310 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
311 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
312 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
313 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
314 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
315 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
316 
317 	EDMA_ERR_IRQ_CAUSE	= 0x8,
318 	EDMA_ERR_IRQ_MASK	= 0xc,
319 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
320 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
321 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
322 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
323 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
324 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
325 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
326 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
327 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
328 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
329 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
330 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
331 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
332 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
333 
334 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
335 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
336 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
337 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
338 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
339 
340 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
341 
342 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
343 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
344 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
345 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
346 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
347 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
348 
349 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
350 
351 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
352 	EDMA_ERR_OVERRUN_5	= (1 << 5),
353 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
354 
355 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
356 				  EDMA_ERR_LNK_CTRL_RX_1 |
357 				  EDMA_ERR_LNK_CTRL_RX_3 |
358 				  EDMA_ERR_LNK_CTRL_TX,
359 
360 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
361 				  EDMA_ERR_PRD_PAR |
362 				  EDMA_ERR_DEV_DCON |
363 				  EDMA_ERR_DEV_CON |
364 				  EDMA_ERR_SERR |
365 				  EDMA_ERR_SELF_DIS |
366 				  EDMA_ERR_CRQB_PAR |
367 				  EDMA_ERR_CRPB_PAR |
368 				  EDMA_ERR_INTRL_PAR |
369 				  EDMA_ERR_IORDY |
370 				  EDMA_ERR_LNK_CTRL_RX_2 |
371 				  EDMA_ERR_LNK_DATA_RX |
372 				  EDMA_ERR_LNK_DATA_TX |
373 				  EDMA_ERR_TRANS_PROTO,
374 
375 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
376 				  EDMA_ERR_PRD_PAR |
377 				  EDMA_ERR_DEV_DCON |
378 				  EDMA_ERR_DEV_CON |
379 				  EDMA_ERR_OVERRUN_5 |
380 				  EDMA_ERR_UNDERRUN_5 |
381 				  EDMA_ERR_SELF_DIS_5 |
382 				  EDMA_ERR_CRQB_PAR |
383 				  EDMA_ERR_CRPB_PAR |
384 				  EDMA_ERR_INTRL_PAR |
385 				  EDMA_ERR_IORDY,
386 
387 	EDMA_REQ_Q_BASE_HI	= 0x10,
388 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
389 
390 	EDMA_REQ_Q_OUT_PTR	= 0x18,
391 	EDMA_REQ_Q_PTR_SHIFT	= 5,
392 
393 	EDMA_RSP_Q_BASE_HI	= 0x1c,
394 	EDMA_RSP_Q_IN_PTR	= 0x20,
395 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
396 	EDMA_RSP_Q_PTR_SHIFT	= 3,
397 
398 	EDMA_CMD		= 0x28,		/* EDMA command register */
399 	EDMA_EN			= (1 << 0),	/* enable EDMA */
400 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
401 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
402 
403 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
404 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
405 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
406 
407 	EDMA_IORDY_TMOUT	= 0x34,
408 	EDMA_ARB_CFG		= 0x38,
409 
410 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
411 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
412 
413 	BMDMA_CMD		= 0x224,	/* bmdma command register */
414 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
415 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
416 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
417 
418 	/* Host private flags (hp_flags) */
419 	MV_HP_FLAG_MSI		= (1 << 0),
420 	MV_HP_ERRATA_50XXB0	= (1 << 1),
421 	MV_HP_ERRATA_50XXB2	= (1 << 2),
422 	MV_HP_ERRATA_60X1B2	= (1 << 3),
423 	MV_HP_ERRATA_60X1C0	= (1 << 4),
424 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
425 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
426 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
427 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
428 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
429 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
430 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
431 
432 	/* Port private flags (pp_flags) */
433 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
434 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
435 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
436 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
437 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
438 };
439 
440 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
441 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
442 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
443 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
444 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
445 
446 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
447 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
448 
449 enum {
450 	/* DMA boundary 0xffff is required by the s/g splitting
451 	 * we need on /length/ in mv_fill-sg().
452 	 */
453 	MV_DMA_BOUNDARY		= 0xffffU,
454 
455 	/* mask of register bits containing lower 32 bits
456 	 * of EDMA request queue DMA address
457 	 */
458 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
459 
460 	/* ditto, for response queue */
461 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
462 };
463 
464 enum chip_type {
465 	chip_504x,
466 	chip_508x,
467 	chip_5080,
468 	chip_604x,
469 	chip_608x,
470 	chip_6042,
471 	chip_7042,
472 	chip_soc,
473 };
474 
475 /* Command ReQuest Block: 32B */
476 struct mv_crqb {
477 	__le32			sg_addr;
478 	__le32			sg_addr_hi;
479 	__le16			ctrl_flags;
480 	__le16			ata_cmd[11];
481 };
482 
483 struct mv_crqb_iie {
484 	__le32			addr;
485 	__le32			addr_hi;
486 	__le32			flags;
487 	__le32			len;
488 	__le32			ata_cmd[4];
489 };
490 
491 /* Command ResPonse Block: 8B */
492 struct mv_crpb {
493 	__le16			id;
494 	__le16			flags;
495 	__le32			tmstmp;
496 };
497 
498 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
499 struct mv_sg {
500 	__le32			addr;
501 	__le32			flags_size;
502 	__le32			addr_hi;
503 	__le32			reserved;
504 };
505 
506 /*
507  * We keep a local cache of a few frequently accessed port
508  * registers here, to avoid having to read them (very slow)
509  * when switching between EDMA and non-EDMA modes.
510  */
511 struct mv_cached_regs {
512 	u32			fiscfg;
513 	u32			ltmode;
514 	u32			haltcond;
515 	u32			unknown_rsvd;
516 };
517 
518 struct mv_port_priv {
519 	struct mv_crqb		*crqb;
520 	dma_addr_t		crqb_dma;
521 	struct mv_crpb		*crpb;
522 	dma_addr_t		crpb_dma;
523 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
524 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
525 
526 	unsigned int		req_idx;
527 	unsigned int		resp_idx;
528 
529 	u32			pp_flags;
530 	struct mv_cached_regs	cached;
531 	unsigned int		delayed_eh_pmp_map;
532 };
533 
534 struct mv_port_signal {
535 	u32			amps;
536 	u32			pre;
537 };
538 
539 struct mv_host_priv {
540 	u32			hp_flags;
541 	u32			main_irq_mask;
542 	struct mv_port_signal	signal[8];
543 	const struct mv_hw_ops	*ops;
544 	int			n_ports;
545 	void __iomem		*base;
546 	void __iomem		*main_irq_cause_addr;
547 	void __iomem		*main_irq_mask_addr;
548 	u32			irq_cause_offset;
549 	u32			irq_mask_offset;
550 	u32			unmask_all_irqs;
551 	/*
552 	 * These consistent DMA memory pools give us guaranteed
553 	 * alignment for hardware-accessed data structures,
554 	 * and less memory waste in accomplishing the alignment.
555 	 */
556 	struct dma_pool		*crqb_pool;
557 	struct dma_pool		*crpb_pool;
558 	struct dma_pool		*sg_tbl_pool;
559 };
560 
561 struct mv_hw_ops {
562 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
563 			   unsigned int port);
564 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
565 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
566 			   void __iomem *mmio);
567 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
568 			unsigned int n_hc);
569 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
570 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
571 };
572 
573 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
574 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
575 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
576 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
577 static int mv_port_start(struct ata_port *ap);
578 static void mv_port_stop(struct ata_port *ap);
579 static int mv_qc_defer(struct ata_queued_cmd *qc);
580 static void mv_qc_prep(struct ata_queued_cmd *qc);
581 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
582 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
583 static int mv_hardreset(struct ata_link *link, unsigned int *class,
584 			unsigned long deadline);
585 static void mv_eh_freeze(struct ata_port *ap);
586 static void mv_eh_thaw(struct ata_port *ap);
587 static void mv6_dev_config(struct ata_device *dev);
588 
589 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
590 			   unsigned int port);
591 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
592 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
593 			   void __iomem *mmio);
594 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
595 			unsigned int n_hc);
596 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
597 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
598 
599 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
600 			   unsigned int port);
601 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
602 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
603 			   void __iomem *mmio);
604 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			unsigned int n_hc);
606 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
608 				      void __iomem *mmio);
609 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
610 				      void __iomem *mmio);
611 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
612 				  void __iomem *mmio, unsigned int n_hc);
613 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
614 				      void __iomem *mmio);
615 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
616 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
617 				  void __iomem *mmio, unsigned int port);
618 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
619 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
620 			     unsigned int port_no);
621 static int mv_stop_edma(struct ata_port *ap);
622 static int mv_stop_edma_engine(void __iomem *port_mmio);
623 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
624 
625 static void mv_pmp_select(struct ata_port *ap, int pmp);
626 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
627 				unsigned long deadline);
628 static int  mv_softreset(struct ata_link *link, unsigned int *class,
629 				unsigned long deadline);
630 static void mv_pmp_error_handler(struct ata_port *ap);
631 static void mv_process_crpb_entries(struct ata_port *ap,
632 					struct mv_port_priv *pp);
633 
634 static void mv_sff_irq_clear(struct ata_port *ap);
635 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
636 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
637 static void mv_bmdma_start(struct ata_queued_cmd *qc);
638 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
639 static u8   mv_bmdma_status(struct ata_port *ap);
640 static u8 mv_sff_check_status(struct ata_port *ap);
641 
642 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
643  * because we have to allow room for worst case splitting of
644  * PRDs for 64K boundaries in mv_fill_sg().
645  */
646 static struct scsi_host_template mv5_sht = {
647 	ATA_BASE_SHT(DRV_NAME),
648 	.sg_tablesize		= MV_MAX_SG_CT / 2,
649 	.dma_boundary		= MV_DMA_BOUNDARY,
650 };
651 
652 static struct scsi_host_template mv6_sht = {
653 	ATA_NCQ_SHT(DRV_NAME),
654 	.can_queue		= MV_MAX_Q_DEPTH - 1,
655 	.sg_tablesize		= MV_MAX_SG_CT / 2,
656 	.dma_boundary		= MV_DMA_BOUNDARY,
657 };
658 
659 static struct ata_port_operations mv5_ops = {
660 	.inherits		= &ata_sff_port_ops,
661 
662 	.lost_interrupt		= ATA_OP_NULL,
663 
664 	.qc_defer		= mv_qc_defer,
665 	.qc_prep		= mv_qc_prep,
666 	.qc_issue		= mv_qc_issue,
667 
668 	.freeze			= mv_eh_freeze,
669 	.thaw			= mv_eh_thaw,
670 	.hardreset		= mv_hardreset,
671 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
672 	.post_internal_cmd	= ATA_OP_NULL,
673 
674 	.scr_read		= mv5_scr_read,
675 	.scr_write		= mv5_scr_write,
676 
677 	.port_start		= mv_port_start,
678 	.port_stop		= mv_port_stop,
679 };
680 
681 static struct ata_port_operations mv6_ops = {
682 	.inherits		= &mv5_ops,
683 	.dev_config             = mv6_dev_config,
684 	.scr_read		= mv_scr_read,
685 	.scr_write		= mv_scr_write,
686 
687 	.pmp_hardreset		= mv_pmp_hardreset,
688 	.pmp_softreset		= mv_softreset,
689 	.softreset		= mv_softreset,
690 	.error_handler		= mv_pmp_error_handler,
691 
692 	.sff_check_status	= mv_sff_check_status,
693 	.sff_irq_clear		= mv_sff_irq_clear,
694 	.check_atapi_dma	= mv_check_atapi_dma,
695 	.bmdma_setup		= mv_bmdma_setup,
696 	.bmdma_start		= mv_bmdma_start,
697 	.bmdma_stop		= mv_bmdma_stop,
698 	.bmdma_status		= mv_bmdma_status,
699 };
700 
701 static struct ata_port_operations mv_iie_ops = {
702 	.inherits		= &mv6_ops,
703 	.dev_config		= ATA_OP_NULL,
704 	.qc_prep		= mv_qc_prep_iie,
705 };
706 
707 static const struct ata_port_info mv_port_info[] = {
708 	{  /* chip_504x */
709 		.flags		= MV_GEN_I_FLAGS,
710 		.pio_mask	= ATA_PIO4,
711 		.udma_mask	= ATA_UDMA6,
712 		.port_ops	= &mv5_ops,
713 	},
714 	{  /* chip_508x */
715 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
716 		.pio_mask	= ATA_PIO4,
717 		.udma_mask	= ATA_UDMA6,
718 		.port_ops	= &mv5_ops,
719 	},
720 	{  /* chip_5080 */
721 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
722 		.pio_mask	= ATA_PIO4,
723 		.udma_mask	= ATA_UDMA6,
724 		.port_ops	= &mv5_ops,
725 	},
726 	{  /* chip_604x */
727 		.flags		= MV_GEN_II_FLAGS,
728 		.pio_mask	= ATA_PIO4,
729 		.udma_mask	= ATA_UDMA6,
730 		.port_ops	= &mv6_ops,
731 	},
732 	{  /* chip_608x */
733 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
734 		.pio_mask	= ATA_PIO4,
735 		.udma_mask	= ATA_UDMA6,
736 		.port_ops	= &mv6_ops,
737 	},
738 	{  /* chip_6042 */
739 		.flags		= MV_GEN_IIE_FLAGS,
740 		.pio_mask	= ATA_PIO4,
741 		.udma_mask	= ATA_UDMA6,
742 		.port_ops	= &mv_iie_ops,
743 	},
744 	{  /* chip_7042 */
745 		.flags		= MV_GEN_IIE_FLAGS,
746 		.pio_mask	= ATA_PIO4,
747 		.udma_mask	= ATA_UDMA6,
748 		.port_ops	= &mv_iie_ops,
749 	},
750 	{  /* chip_soc */
751 		.flags		= MV_GEN_IIE_FLAGS,
752 		.pio_mask	= ATA_PIO4,
753 		.udma_mask	= ATA_UDMA6,
754 		.port_ops	= &mv_iie_ops,
755 	},
756 };
757 
758 static const struct pci_device_id mv_pci_tbl[] = {
759 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
760 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
761 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
762 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
763 	/* RocketRAID 1720/174x have different identifiers */
764 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
765 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
766 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
767 
768 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
769 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
770 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
771 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
772 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
773 
774 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
775 
776 	/* Adaptec 1430SA */
777 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
778 
779 	/* Marvell 7042 support */
780 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
781 
782 	/* Highpoint RocketRAID PCIe series */
783 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
784 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
785 
786 	{ }			/* terminate list */
787 };
788 
789 static const struct mv_hw_ops mv5xxx_ops = {
790 	.phy_errata		= mv5_phy_errata,
791 	.enable_leds		= mv5_enable_leds,
792 	.read_preamp		= mv5_read_preamp,
793 	.reset_hc		= mv5_reset_hc,
794 	.reset_flash		= mv5_reset_flash,
795 	.reset_bus		= mv5_reset_bus,
796 };
797 
798 static const struct mv_hw_ops mv6xxx_ops = {
799 	.phy_errata		= mv6_phy_errata,
800 	.enable_leds		= mv6_enable_leds,
801 	.read_preamp		= mv6_read_preamp,
802 	.reset_hc		= mv6_reset_hc,
803 	.reset_flash		= mv6_reset_flash,
804 	.reset_bus		= mv_reset_pci_bus,
805 };
806 
807 static const struct mv_hw_ops mv_soc_ops = {
808 	.phy_errata		= mv6_phy_errata,
809 	.enable_leds		= mv_soc_enable_leds,
810 	.read_preamp		= mv_soc_read_preamp,
811 	.reset_hc		= mv_soc_reset_hc,
812 	.reset_flash		= mv_soc_reset_flash,
813 	.reset_bus		= mv_soc_reset_bus,
814 };
815 
816 static const struct mv_hw_ops mv_soc_65n_ops = {
817 	.phy_errata		= mv_soc_65n_phy_errata,
818 	.enable_leds		= mv_soc_enable_leds,
819 	.reset_hc		= mv_soc_reset_hc,
820 	.reset_flash		= mv_soc_reset_flash,
821 	.reset_bus		= mv_soc_reset_bus,
822 };
823 
824 /*
825  * Functions
826  */
827 
828 static inline void writelfl(unsigned long data, void __iomem *addr)
829 {
830 	writel(data, addr);
831 	(void) readl(addr);	/* flush to avoid PCI posted write */
832 }
833 
834 static inline unsigned int mv_hc_from_port(unsigned int port)
835 {
836 	return port >> MV_PORT_HC_SHIFT;
837 }
838 
839 static inline unsigned int mv_hardport_from_port(unsigned int port)
840 {
841 	return port & MV_PORT_MASK;
842 }
843 
844 /*
845  * Consolidate some rather tricky bit shift calculations.
846  * This is hot-path stuff, so not a function.
847  * Simple code, with two return values, so macro rather than inline.
848  *
849  * port is the sole input, in range 0..7.
850  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
851  * hardport is the other output, in range 0..3.
852  *
853  * Note that port and hardport may be the same variable in some cases.
854  */
855 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
856 {								\
857 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
858 	hardport = mv_hardport_from_port(port);			\
859 	shift   += hardport * 2;				\
860 }
861 
862 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
863 {
864 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
865 }
866 
867 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
868 						 unsigned int port)
869 {
870 	return mv_hc_base(base, mv_hc_from_port(port));
871 }
872 
873 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
874 {
875 	return  mv_hc_base_from_port(base, port) +
876 		MV_SATAHC_ARBTR_REG_SZ +
877 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
878 }
879 
880 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
881 {
882 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
883 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
884 
885 	return hc_mmio + ofs;
886 }
887 
888 static inline void __iomem *mv_host_base(struct ata_host *host)
889 {
890 	struct mv_host_priv *hpriv = host->private_data;
891 	return hpriv->base;
892 }
893 
894 static inline void __iomem *mv_ap_base(struct ata_port *ap)
895 {
896 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
897 }
898 
899 static inline int mv_get_hc_count(unsigned long port_flags)
900 {
901 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
902 }
903 
904 /**
905  *      mv_save_cached_regs - (re-)initialize cached port registers
906  *      @ap: the port whose registers we are caching
907  *
908  *	Initialize the local cache of port registers,
909  *	so that reading them over and over again can
910  *	be avoided on the hotter paths of this driver.
911  *	This saves a few microseconds each time we switch
912  *	to/from EDMA mode to perform (eg.) a drive cache flush.
913  */
914 static void mv_save_cached_regs(struct ata_port *ap)
915 {
916 	void __iomem *port_mmio = mv_ap_base(ap);
917 	struct mv_port_priv *pp = ap->private_data;
918 
919 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
920 	pp->cached.ltmode = readl(port_mmio + LTMODE);
921 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
922 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
923 }
924 
925 /**
926  *      mv_write_cached_reg - write to a cached port register
927  *      @addr: hardware address of the register
928  *      @old: pointer to cached value of the register
929  *      @new: new value for the register
930  *
931  *	Write a new value to a cached register,
932  *	but only if the value is different from before.
933  */
934 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
935 {
936 	if (new != *old) {
937 		unsigned long laddr;
938 		*old = new;
939 		/*
940 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
941 		 * Read-after-write is needed to prevent generating 64-bit
942 		 * write cycles on the PCI bus for SATA interface registers
943 		 * at offsets ending in 0x4 or 0xc.
944 		 *
945 		 * Looks like a lot of fuss, but it avoids an unnecessary
946 		 * +1 usec read-after-write delay for unaffected registers.
947 		 */
948 		laddr = (long)addr & 0xffff;
949 		if (laddr >= 0x300 && laddr <= 0x33c) {
950 			laddr &= 0x000f;
951 			if (laddr == 0x4 || laddr == 0xc) {
952 				writelfl(new, addr); /* read after write */
953 				return;
954 			}
955 		}
956 		writel(new, addr); /* unaffected by the errata */
957 	}
958 }
959 
960 static void mv_set_edma_ptrs(void __iomem *port_mmio,
961 			     struct mv_host_priv *hpriv,
962 			     struct mv_port_priv *pp)
963 {
964 	u32 index;
965 
966 	/*
967 	 * initialize request queue
968 	 */
969 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
970 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
971 
972 	WARN_ON(pp->crqb_dma & 0x3ff);
973 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
974 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
975 		 port_mmio + EDMA_REQ_Q_IN_PTR);
976 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
977 
978 	/*
979 	 * initialize response queue
980 	 */
981 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
982 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
983 
984 	WARN_ON(pp->crpb_dma & 0xff);
985 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
986 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
987 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
988 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
989 }
990 
991 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
992 {
993 	/*
994 	 * When writing to the main_irq_mask in hardware,
995 	 * we must ensure exclusivity between the interrupt coalescing bits
996 	 * and the corresponding individual port DONE_IRQ bits.
997 	 *
998 	 * Note that this register is really an "IRQ enable" register,
999 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1000 	 */
1001 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1002 		mask &= ~DONE_IRQ_0_3;
1003 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1004 		mask &= ~DONE_IRQ_4_7;
1005 	writelfl(mask, hpriv->main_irq_mask_addr);
1006 }
1007 
1008 static void mv_set_main_irq_mask(struct ata_host *host,
1009 				 u32 disable_bits, u32 enable_bits)
1010 {
1011 	struct mv_host_priv *hpriv = host->private_data;
1012 	u32 old_mask, new_mask;
1013 
1014 	old_mask = hpriv->main_irq_mask;
1015 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1016 	if (new_mask != old_mask) {
1017 		hpriv->main_irq_mask = new_mask;
1018 		mv_write_main_irq_mask(new_mask, hpriv);
1019 	}
1020 }
1021 
1022 static void mv_enable_port_irqs(struct ata_port *ap,
1023 				     unsigned int port_bits)
1024 {
1025 	unsigned int shift, hardport, port = ap->port_no;
1026 	u32 disable_bits, enable_bits;
1027 
1028 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1029 
1030 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1031 	enable_bits  = port_bits << shift;
1032 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1033 }
1034 
1035 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1036 					  void __iomem *port_mmio,
1037 					  unsigned int port_irqs)
1038 {
1039 	struct mv_host_priv *hpriv = ap->host->private_data;
1040 	int hardport = mv_hardport_from_port(ap->port_no);
1041 	void __iomem *hc_mmio = mv_hc_base_from_port(
1042 				mv_host_base(ap->host), ap->port_no);
1043 	u32 hc_irq_cause;
1044 
1045 	/* clear EDMA event indicators, if any */
1046 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1047 
1048 	/* clear pending irq events */
1049 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1050 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1051 
1052 	/* clear FIS IRQ Cause */
1053 	if (IS_GEN_IIE(hpriv))
1054 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1055 
1056 	mv_enable_port_irqs(ap, port_irqs);
1057 }
1058 
1059 static void mv_set_irq_coalescing(struct ata_host *host,
1060 				  unsigned int count, unsigned int usecs)
1061 {
1062 	struct mv_host_priv *hpriv = host->private_data;
1063 	void __iomem *mmio = hpriv->base, *hc_mmio;
1064 	u32 coal_enable = 0;
1065 	unsigned long flags;
1066 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1067 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1068 							ALL_PORTS_COAL_DONE;
1069 
1070 	/* Disable IRQ coalescing if either threshold is zero */
1071 	if (!usecs || !count) {
1072 		clks = count = 0;
1073 	} else {
1074 		/* Respect maximum limits of the hardware */
1075 		clks = usecs * COAL_CLOCKS_PER_USEC;
1076 		if (clks > MAX_COAL_TIME_THRESHOLD)
1077 			clks = MAX_COAL_TIME_THRESHOLD;
1078 		if (count > MAX_COAL_IO_COUNT)
1079 			count = MAX_COAL_IO_COUNT;
1080 	}
1081 
1082 	spin_lock_irqsave(&host->lock, flags);
1083 	mv_set_main_irq_mask(host, coal_disable, 0);
1084 
1085 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1086 		/*
1087 		 * GEN_II/GEN_IIE with dual host controllers:
1088 		 * one set of global thresholds for the entire chip.
1089 		 */
1090 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1091 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1092 		/* clear leftover coal IRQ bit */
1093 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1094 		if (count)
1095 			coal_enable = ALL_PORTS_COAL_DONE;
1096 		clks = count = 0; /* force clearing of regular regs below */
1097 	}
1098 
1099 	/*
1100 	 * All chips: independent thresholds for each HC on the chip.
1101 	 */
1102 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1103 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1104 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1105 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1106 	if (count)
1107 		coal_enable |= PORTS_0_3_COAL_DONE;
1108 	if (is_dual_hc) {
1109 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1110 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1111 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1112 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1113 		if (count)
1114 			coal_enable |= PORTS_4_7_COAL_DONE;
1115 	}
1116 
1117 	mv_set_main_irq_mask(host, 0, coal_enable);
1118 	spin_unlock_irqrestore(&host->lock, flags);
1119 }
1120 
1121 /**
1122  *      mv_start_edma - Enable eDMA engine
1123  *      @base: port base address
1124  *      @pp: port private data
1125  *
1126  *      Verify the local cache of the eDMA state is accurate with a
1127  *      WARN_ON.
1128  *
1129  *      LOCKING:
1130  *      Inherited from caller.
1131  */
1132 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133 			 struct mv_port_priv *pp, u8 protocol)
1134 {
1135 	int want_ncq = (protocol == ATA_PROT_NCQ);
1136 
1137 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139 		if (want_ncq != using_ncq)
1140 			mv_stop_edma(ap);
1141 	}
1142 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143 		struct mv_host_priv *hpriv = ap->host->private_data;
1144 
1145 		mv_edma_cfg(ap, want_ncq, 1);
1146 
1147 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149 
1150 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152 	}
1153 }
1154 
1155 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156 {
1157 	void __iomem *port_mmio = mv_ap_base(ap);
1158 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160 	int i;
1161 
1162 	/*
1163 	 * Wait for the EDMA engine to finish transactions in progress.
1164 	 * No idea what a good "timeout" value might be, but measurements
1165 	 * indicate that it often requires hundreds of microseconds
1166 	 * with two drives in-use.  So we use the 15msec value above
1167 	 * as a rough guess at what even more drives might require.
1168 	 */
1169 	for (i = 0; i < timeout; ++i) {
1170 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171 		if ((edma_stat & empty_idle) == empty_idle)
1172 			break;
1173 		udelay(per_loop);
1174 	}
1175 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1176 }
1177 
1178 /**
1179  *      mv_stop_edma_engine - Disable eDMA engine
1180  *      @port_mmio: io base address
1181  *
1182  *      LOCKING:
1183  *      Inherited from caller.
1184  */
1185 static int mv_stop_edma_engine(void __iomem *port_mmio)
1186 {
1187 	int i;
1188 
1189 	/* Disable eDMA.  The disable bit auto clears. */
1190 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191 
1192 	/* Wait for the chip to confirm eDMA is off. */
1193 	for (i = 10000; i > 0; i--) {
1194 		u32 reg = readl(port_mmio + EDMA_CMD);
1195 		if (!(reg & EDMA_EN))
1196 			return 0;
1197 		udelay(10);
1198 	}
1199 	return -EIO;
1200 }
1201 
1202 static int mv_stop_edma(struct ata_port *ap)
1203 {
1204 	void __iomem *port_mmio = mv_ap_base(ap);
1205 	struct mv_port_priv *pp = ap->private_data;
1206 	int err = 0;
1207 
1208 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209 		return 0;
1210 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211 	mv_wait_for_edma_empty_idle(ap);
1212 	if (mv_stop_edma_engine(port_mmio)) {
1213 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1214 		err = -EIO;
1215 	}
1216 	mv_edma_cfg(ap, 0, 0);
1217 	return err;
1218 }
1219 
1220 #ifdef ATA_DEBUG
1221 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1222 {
1223 	int b, w;
1224 	for (b = 0; b < bytes; ) {
1225 		DPRINTK("%p: ", start + b);
1226 		for (w = 0; b < bytes && w < 4; w++) {
1227 			printk("%08x ", readl(start + b));
1228 			b += sizeof(u32);
1229 		}
1230 		printk("\n");
1231 	}
1232 }
1233 #endif
1234 
1235 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1236 {
1237 #ifdef ATA_DEBUG
1238 	int b, w;
1239 	u32 dw;
1240 	for (b = 0; b < bytes; ) {
1241 		DPRINTK("%02x: ", b);
1242 		for (w = 0; b < bytes && w < 4; w++) {
1243 			(void) pci_read_config_dword(pdev, b, &dw);
1244 			printk("%08x ", dw);
1245 			b += sizeof(u32);
1246 		}
1247 		printk("\n");
1248 	}
1249 #endif
1250 }
1251 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1252 			     struct pci_dev *pdev)
1253 {
1254 #ifdef ATA_DEBUG
1255 	void __iomem *hc_base = mv_hc_base(mmio_base,
1256 					   port >> MV_PORT_HC_SHIFT);
1257 	void __iomem *port_base;
1258 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1259 
1260 	if (0 > port) {
1261 		start_hc = start_port = 0;
1262 		num_ports = 8;		/* shld be benign for 4 port devs */
1263 		num_hcs = 2;
1264 	} else {
1265 		start_hc = port >> MV_PORT_HC_SHIFT;
1266 		start_port = port;
1267 		num_ports = num_hcs = 1;
1268 	}
1269 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1270 		num_ports > 1 ? num_ports - 1 : start_port);
1271 
1272 	if (NULL != pdev) {
1273 		DPRINTK("PCI config space regs:\n");
1274 		mv_dump_pci_cfg(pdev, 0x68);
1275 	}
1276 	DPRINTK("PCI regs:\n");
1277 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1278 	mv_dump_mem(mmio_base+0xd00, 0x34);
1279 	mv_dump_mem(mmio_base+0xf00, 0x4);
1280 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1281 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1282 		hc_base = mv_hc_base(mmio_base, hc);
1283 		DPRINTK("HC regs (HC %i):\n", hc);
1284 		mv_dump_mem(hc_base, 0x1c);
1285 	}
1286 	for (p = start_port; p < start_port + num_ports; p++) {
1287 		port_base = mv_port_base(mmio_base, p);
1288 		DPRINTK("EDMA regs (port %i):\n", p);
1289 		mv_dump_mem(port_base, 0x54);
1290 		DPRINTK("SATA regs (port %i):\n", p);
1291 		mv_dump_mem(port_base+0x300, 0x60);
1292 	}
1293 #endif
1294 }
1295 
1296 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1297 {
1298 	unsigned int ofs;
1299 
1300 	switch (sc_reg_in) {
1301 	case SCR_STATUS:
1302 	case SCR_CONTROL:
1303 	case SCR_ERROR:
1304 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1305 		break;
1306 	case SCR_ACTIVE:
1307 		ofs = SATA_ACTIVE;   /* active is not with the others */
1308 		break;
1309 	default:
1310 		ofs = 0xffffffffU;
1311 		break;
1312 	}
1313 	return ofs;
1314 }
1315 
1316 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1317 {
1318 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1319 
1320 	if (ofs != 0xffffffffU) {
1321 		*val = readl(mv_ap_base(link->ap) + ofs);
1322 		return 0;
1323 	} else
1324 		return -EINVAL;
1325 }
1326 
1327 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1328 {
1329 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1330 
1331 	if (ofs != 0xffffffffU) {
1332 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1333 		if (sc_reg_in == SCR_CONTROL) {
1334 			/*
1335 			 * Workaround for 88SX60x1 FEr SATA#26:
1336 			 *
1337 			 * COMRESETs have to take care not to accidently
1338 			 * put the drive to sleep when writing SCR_CONTROL.
1339 			 * Setting bits 12..15 prevents this problem.
1340 			 *
1341 			 * So if we see an outbound COMMRESET, set those bits.
1342 			 * Ditto for the followup write that clears the reset.
1343 			 *
1344 			 * The proprietary driver does this for
1345 			 * all chip versions, and so do we.
1346 			 */
1347 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1348 				val |= 0xf000;
1349 		}
1350 		writelfl(val, addr);
1351 		return 0;
1352 	} else
1353 		return -EINVAL;
1354 }
1355 
1356 static void mv6_dev_config(struct ata_device *adev)
1357 {
1358 	/*
1359 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1360 	 *
1361 	 * Gen-II does not support NCQ over a port multiplier
1362 	 *  (no FIS-based switching).
1363 	 */
1364 	if (adev->flags & ATA_DFLAG_NCQ) {
1365 		if (sata_pmp_attached(adev->link->ap)) {
1366 			adev->flags &= ~ATA_DFLAG_NCQ;
1367 			ata_dev_printk(adev, KERN_INFO,
1368 				"NCQ disabled for command-based switching\n");
1369 		}
1370 	}
1371 }
1372 
1373 static int mv_qc_defer(struct ata_queued_cmd *qc)
1374 {
1375 	struct ata_link *link = qc->dev->link;
1376 	struct ata_port *ap = link->ap;
1377 	struct mv_port_priv *pp = ap->private_data;
1378 
1379 	/*
1380 	 * Don't allow new commands if we're in a delayed EH state
1381 	 * for NCQ and/or FIS-based switching.
1382 	 */
1383 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1384 		return ATA_DEFER_PORT;
1385 	/*
1386 	 * If the port is completely idle, then allow the new qc.
1387 	 */
1388 	if (ap->nr_active_links == 0)
1389 		return 0;
1390 
1391 	/*
1392 	 * The port is operating in host queuing mode (EDMA) with NCQ
1393 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1394 	 * queueing multiple DMA commands but libata core currently
1395 	 * doesn't allow it.
1396 	 */
1397 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1398 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1399 		return 0;
1400 
1401 	return ATA_DEFER_PORT;
1402 }
1403 
1404 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1405 {
1406 	struct mv_port_priv *pp = ap->private_data;
1407 	void __iomem *port_mmio;
1408 
1409 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1410 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1411 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1412 
1413 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1414 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1415 
1416 	if (want_fbs) {
1417 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1418 		ltmode = *old_ltmode | LTMODE_BIT8;
1419 		if (want_ncq)
1420 			haltcond &= ~EDMA_ERR_DEV;
1421 		else
1422 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1423 	} else {
1424 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1425 	}
1426 
1427 	port_mmio = mv_ap_base(ap);
1428 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1429 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1430 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1431 }
1432 
1433 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1434 {
1435 	struct mv_host_priv *hpriv = ap->host->private_data;
1436 	u32 old, new;
1437 
1438 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1439 	old = readl(hpriv->base + GPIO_PORT_CTL);
1440 	if (want_ncq)
1441 		new = old | (1 << 22);
1442 	else
1443 		new = old & ~(1 << 22);
1444 	if (new != old)
1445 		writel(new, hpriv->base + GPIO_PORT_CTL);
1446 }
1447 
1448 /**
1449  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1450  *	@ap: Port being initialized
1451  *
1452  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1453  *
1454  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1455  *	of basic DMA on the GEN_IIE versions of the chips.
1456  *
1457  *	This bit survives EDMA resets, and must be set for basic DMA
1458  *	to function, and should be cleared when EDMA is active.
1459  */
1460 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1461 {
1462 	struct mv_port_priv *pp = ap->private_data;
1463 	u32 new, *old = &pp->cached.unknown_rsvd;
1464 
1465 	if (enable_bmdma)
1466 		new = *old | 1;
1467 	else
1468 		new = *old & ~1;
1469 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1470 }
1471 
1472 /*
1473  * SOC chips have an issue whereby the HDD LEDs don't always blink
1474  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1475  * of the SOC takes care of it, generating a steady blink rate when
1476  * any drive on the chip is active.
1477  *
1478  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1479  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1480  *
1481  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1482  * LED operation works then, and provides better (more accurate) feedback.
1483  *
1484  * Note that this code assumes that an SOC never has more than one HC onboard.
1485  */
1486 static void mv_soc_led_blink_enable(struct ata_port *ap)
1487 {
1488 	struct ata_host *host = ap->host;
1489 	struct mv_host_priv *hpriv = host->private_data;
1490 	void __iomem *hc_mmio;
1491 	u32 led_ctrl;
1492 
1493 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1494 		return;
1495 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1496 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1497 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1498 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1499 }
1500 
1501 static void mv_soc_led_blink_disable(struct ata_port *ap)
1502 {
1503 	struct ata_host *host = ap->host;
1504 	struct mv_host_priv *hpriv = host->private_data;
1505 	void __iomem *hc_mmio;
1506 	u32 led_ctrl;
1507 	unsigned int port;
1508 
1509 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1510 		return;
1511 
1512 	/* disable led-blink only if no ports are using NCQ */
1513 	for (port = 0; port < hpriv->n_ports; port++) {
1514 		struct ata_port *this_ap = host->ports[port];
1515 		struct mv_port_priv *pp = this_ap->private_data;
1516 
1517 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1518 			return;
1519 	}
1520 
1521 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1522 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1523 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1524 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1525 }
1526 
1527 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1528 {
1529 	u32 cfg;
1530 	struct mv_port_priv *pp    = ap->private_data;
1531 	struct mv_host_priv *hpriv = ap->host->private_data;
1532 	void __iomem *port_mmio    = mv_ap_base(ap);
1533 
1534 	/* set up non-NCQ EDMA configuration */
1535 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1536 	pp->pp_flags &=
1537 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1538 
1539 	if (IS_GEN_I(hpriv))
1540 		cfg |= (1 << 8);	/* enab config burst size mask */
1541 
1542 	else if (IS_GEN_II(hpriv)) {
1543 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1544 		mv_60x1_errata_sata25(ap, want_ncq);
1545 
1546 	} else if (IS_GEN_IIE(hpriv)) {
1547 		int want_fbs = sata_pmp_attached(ap);
1548 		/*
1549 		 * Possible future enhancement:
1550 		 *
1551 		 * The chip can use FBS with non-NCQ, if we allow it,
1552 		 * But first we need to have the error handling in place
1553 		 * for this mode (datasheet section 7.3.15.4.2.3).
1554 		 * So disallow non-NCQ FBS for now.
1555 		 */
1556 		want_fbs &= want_ncq;
1557 
1558 		mv_config_fbs(ap, want_ncq, want_fbs);
1559 
1560 		if (want_fbs) {
1561 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1562 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1563 		}
1564 
1565 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1566 		if (want_edma) {
1567 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1568 			if (!IS_SOC(hpriv))
1569 				cfg |= (1 << 18); /* enab early completion */
1570 		}
1571 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1572 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1573 		mv_bmdma_enable_iie(ap, !want_edma);
1574 
1575 		if (IS_SOC(hpriv)) {
1576 			if (want_ncq)
1577 				mv_soc_led_blink_enable(ap);
1578 			else
1579 				mv_soc_led_blink_disable(ap);
1580 		}
1581 	}
1582 
1583 	if (want_ncq) {
1584 		cfg |= EDMA_CFG_NCQ;
1585 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1586 	}
1587 
1588 	writelfl(cfg, port_mmio + EDMA_CFG);
1589 }
1590 
1591 static void mv_port_free_dma_mem(struct ata_port *ap)
1592 {
1593 	struct mv_host_priv *hpriv = ap->host->private_data;
1594 	struct mv_port_priv *pp = ap->private_data;
1595 	int tag;
1596 
1597 	if (pp->crqb) {
1598 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1599 		pp->crqb = NULL;
1600 	}
1601 	if (pp->crpb) {
1602 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1603 		pp->crpb = NULL;
1604 	}
1605 	/*
1606 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1607 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1608 	 */
1609 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1610 		if (pp->sg_tbl[tag]) {
1611 			if (tag == 0 || !IS_GEN_I(hpriv))
1612 				dma_pool_free(hpriv->sg_tbl_pool,
1613 					      pp->sg_tbl[tag],
1614 					      pp->sg_tbl_dma[tag]);
1615 			pp->sg_tbl[tag] = NULL;
1616 		}
1617 	}
1618 }
1619 
1620 /**
1621  *      mv_port_start - Port specific init/start routine.
1622  *      @ap: ATA channel to manipulate
1623  *
1624  *      Allocate and point to DMA memory, init port private memory,
1625  *      zero indices.
1626  *
1627  *      LOCKING:
1628  *      Inherited from caller.
1629  */
1630 static int mv_port_start(struct ata_port *ap)
1631 {
1632 	struct device *dev = ap->host->dev;
1633 	struct mv_host_priv *hpriv = ap->host->private_data;
1634 	struct mv_port_priv *pp;
1635 	unsigned long flags;
1636 	int tag;
1637 
1638 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1639 	if (!pp)
1640 		return -ENOMEM;
1641 	ap->private_data = pp;
1642 
1643 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1644 	if (!pp->crqb)
1645 		return -ENOMEM;
1646 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1647 
1648 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1649 	if (!pp->crpb)
1650 		goto out_port_free_dma_mem;
1651 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1652 
1653 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1654 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1655 		ap->flags |= ATA_FLAG_AN;
1656 	/*
1657 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1658 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1659 	 */
1660 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1661 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1662 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1663 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1664 			if (!pp->sg_tbl[tag])
1665 				goto out_port_free_dma_mem;
1666 		} else {
1667 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1668 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1669 		}
1670 	}
1671 
1672 	spin_lock_irqsave(ap->lock, flags);
1673 	mv_save_cached_regs(ap);
1674 	mv_edma_cfg(ap, 0, 0);
1675 	spin_unlock_irqrestore(ap->lock, flags);
1676 
1677 	return 0;
1678 
1679 out_port_free_dma_mem:
1680 	mv_port_free_dma_mem(ap);
1681 	return -ENOMEM;
1682 }
1683 
1684 /**
1685  *      mv_port_stop - Port specific cleanup/stop routine.
1686  *      @ap: ATA channel to manipulate
1687  *
1688  *      Stop DMA, cleanup port memory.
1689  *
1690  *      LOCKING:
1691  *      This routine uses the host lock to protect the DMA stop.
1692  */
1693 static void mv_port_stop(struct ata_port *ap)
1694 {
1695 	unsigned long flags;
1696 
1697 	spin_lock_irqsave(ap->lock, flags);
1698 	mv_stop_edma(ap);
1699 	mv_enable_port_irqs(ap, 0);
1700 	spin_unlock_irqrestore(ap->lock, flags);
1701 	mv_port_free_dma_mem(ap);
1702 }
1703 
1704 /**
1705  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1706  *      @qc: queued command whose SG list to source from
1707  *
1708  *      Populate the SG list and mark the last entry.
1709  *
1710  *      LOCKING:
1711  *      Inherited from caller.
1712  */
1713 static void mv_fill_sg(struct ata_queued_cmd *qc)
1714 {
1715 	struct mv_port_priv *pp = qc->ap->private_data;
1716 	struct scatterlist *sg;
1717 	struct mv_sg *mv_sg, *last_sg = NULL;
1718 	unsigned int si;
1719 
1720 	mv_sg = pp->sg_tbl[qc->tag];
1721 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1722 		dma_addr_t addr = sg_dma_address(sg);
1723 		u32 sg_len = sg_dma_len(sg);
1724 
1725 		while (sg_len) {
1726 			u32 offset = addr & 0xffff;
1727 			u32 len = sg_len;
1728 
1729 			if (offset + len > 0x10000)
1730 				len = 0x10000 - offset;
1731 
1732 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1733 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1734 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1735 			mv_sg->reserved = 0;
1736 
1737 			sg_len -= len;
1738 			addr += len;
1739 
1740 			last_sg = mv_sg;
1741 			mv_sg++;
1742 		}
1743 	}
1744 
1745 	if (likely(last_sg))
1746 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1747 	mb(); /* ensure data structure is visible to the chipset */
1748 }
1749 
1750 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1751 {
1752 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1753 		(last ? CRQB_CMD_LAST : 0);
1754 	*cmdw = cpu_to_le16(tmp);
1755 }
1756 
1757 /**
1758  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1759  *	@ap: Port associated with this ATA transaction.
1760  *
1761  *	We need this only for ATAPI bmdma transactions,
1762  *	as otherwise we experience spurious interrupts
1763  *	after libata-sff handles the bmdma interrupts.
1764  */
1765 static void mv_sff_irq_clear(struct ata_port *ap)
1766 {
1767 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1768 }
1769 
1770 /**
1771  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1772  *	@qc: queued command to check for chipset/DMA compatibility.
1773  *
1774  *	The bmdma engines cannot handle speculative data sizes
1775  *	(bytecount under/over flow).  So only allow DMA for
1776  *	data transfer commands with known data sizes.
1777  *
1778  *	LOCKING:
1779  *	Inherited from caller.
1780  */
1781 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1782 {
1783 	struct scsi_cmnd *scmd = qc->scsicmd;
1784 
1785 	if (scmd) {
1786 		switch (scmd->cmnd[0]) {
1787 		case READ_6:
1788 		case READ_10:
1789 		case READ_12:
1790 		case WRITE_6:
1791 		case WRITE_10:
1792 		case WRITE_12:
1793 		case GPCMD_READ_CD:
1794 		case GPCMD_SEND_DVD_STRUCTURE:
1795 		case GPCMD_SEND_CUE_SHEET:
1796 			return 0; /* DMA is safe */
1797 		}
1798 	}
1799 	return -EOPNOTSUPP; /* use PIO instead */
1800 }
1801 
1802 /**
1803  *	mv_bmdma_setup - Set up BMDMA transaction
1804  *	@qc: queued command to prepare DMA for.
1805  *
1806  *	LOCKING:
1807  *	Inherited from caller.
1808  */
1809 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1810 {
1811 	struct ata_port *ap = qc->ap;
1812 	void __iomem *port_mmio = mv_ap_base(ap);
1813 	struct mv_port_priv *pp = ap->private_data;
1814 
1815 	mv_fill_sg(qc);
1816 
1817 	/* clear all DMA cmd bits */
1818 	writel(0, port_mmio + BMDMA_CMD);
1819 
1820 	/* load PRD table addr. */
1821 	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1822 		port_mmio + BMDMA_PRD_HIGH);
1823 	writelfl(pp->sg_tbl_dma[qc->tag],
1824 		port_mmio + BMDMA_PRD_LOW);
1825 
1826 	/* issue r/w command */
1827 	ap->ops->sff_exec_command(ap, &qc->tf);
1828 }
1829 
1830 /**
1831  *	mv_bmdma_start - Start a BMDMA transaction
1832  *	@qc: queued command to start DMA on.
1833  *
1834  *	LOCKING:
1835  *	Inherited from caller.
1836  */
1837 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1838 {
1839 	struct ata_port *ap = qc->ap;
1840 	void __iomem *port_mmio = mv_ap_base(ap);
1841 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1842 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1843 
1844 	/* start host DMA transaction */
1845 	writelfl(cmd, port_mmio + BMDMA_CMD);
1846 }
1847 
1848 /**
1849  *	mv_bmdma_stop - Stop BMDMA transfer
1850  *	@qc: queued command to stop DMA on.
1851  *
1852  *	Clears the ATA_DMA_START flag in the bmdma control register
1853  *
1854  *	LOCKING:
1855  *	Inherited from caller.
1856  */
1857 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1858 {
1859 	struct ata_port *ap = qc->ap;
1860 	void __iomem *port_mmio = mv_ap_base(ap);
1861 	u32 cmd;
1862 
1863 	/* clear start/stop bit */
1864 	cmd = readl(port_mmio + BMDMA_CMD);
1865 	cmd &= ~ATA_DMA_START;
1866 	writelfl(cmd, port_mmio + BMDMA_CMD);
1867 
1868 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1869 	ata_sff_dma_pause(ap);
1870 }
1871 
1872 /**
1873  *	mv_bmdma_status - Read BMDMA status
1874  *	@ap: port for which to retrieve DMA status.
1875  *
1876  *	Read and return equivalent of the sff BMDMA status register.
1877  *
1878  *	LOCKING:
1879  *	Inherited from caller.
1880  */
1881 static u8 mv_bmdma_status(struct ata_port *ap)
1882 {
1883 	void __iomem *port_mmio = mv_ap_base(ap);
1884 	u32 reg, status;
1885 
1886 	/*
1887 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1888 	 * and the ATA_DMA_INTR bit doesn't exist.
1889 	 */
1890 	reg = readl(port_mmio + BMDMA_STATUS);
1891 	if (reg & ATA_DMA_ACTIVE)
1892 		status = ATA_DMA_ACTIVE;
1893 	else
1894 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1895 	return status;
1896 }
1897 
1898 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1899 {
1900 	struct ata_taskfile *tf = &qc->tf;
1901 	/*
1902 	 * Workaround for 88SX60x1 FEr SATA#24.
1903 	 *
1904 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1905 	 * Note that READs are unaffected.
1906 	 *
1907 	 * It's not clear if this errata really means "4K bytes",
1908 	 * or if it always happens for multi_count > 7
1909 	 * regardless of device sector_size.
1910 	 *
1911 	 * So, for safety, any write with multi_count > 7
1912 	 * gets converted here into a regular PIO write instead:
1913 	 */
1914 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1915 		if (qc->dev->multi_count > 7) {
1916 			switch (tf->command) {
1917 			case ATA_CMD_WRITE_MULTI:
1918 				tf->command = ATA_CMD_PIO_WRITE;
1919 				break;
1920 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1921 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1922 				/* fall through */
1923 			case ATA_CMD_WRITE_MULTI_EXT:
1924 				tf->command = ATA_CMD_PIO_WRITE_EXT;
1925 				break;
1926 			}
1927 		}
1928 	}
1929 }
1930 
1931 /**
1932  *      mv_qc_prep - Host specific command preparation.
1933  *      @qc: queued command to prepare
1934  *
1935  *      This routine simply redirects to the general purpose routine
1936  *      if command is not DMA.  Else, it handles prep of the CRQB
1937  *      (command request block), does some sanity checking, and calls
1938  *      the SG load routine.
1939  *
1940  *      LOCKING:
1941  *      Inherited from caller.
1942  */
1943 static void mv_qc_prep(struct ata_queued_cmd *qc)
1944 {
1945 	struct ata_port *ap = qc->ap;
1946 	struct mv_port_priv *pp = ap->private_data;
1947 	__le16 *cw;
1948 	struct ata_taskfile *tf = &qc->tf;
1949 	u16 flags = 0;
1950 	unsigned in_index;
1951 
1952 	switch (tf->protocol) {
1953 	case ATA_PROT_DMA:
1954 	case ATA_PROT_NCQ:
1955 		break;	/* continue below */
1956 	case ATA_PROT_PIO:
1957 		mv_rw_multi_errata_sata24(qc);
1958 		return;
1959 	default:
1960 		return;
1961 	}
1962 
1963 	/* Fill in command request block
1964 	 */
1965 	if (!(tf->flags & ATA_TFLAG_WRITE))
1966 		flags |= CRQB_FLAG_READ;
1967 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1968 	flags |= qc->tag << CRQB_TAG_SHIFT;
1969 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1970 
1971 	/* get current queue index from software */
1972 	in_index = pp->req_idx;
1973 
1974 	pp->crqb[in_index].sg_addr =
1975 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1976 	pp->crqb[in_index].sg_addr_hi =
1977 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1978 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1979 
1980 	cw = &pp->crqb[in_index].ata_cmd[0];
1981 
1982 	/* Sadly, the CRQB cannot accomodate all registers--there are
1983 	 * only 11 bytes...so we must pick and choose required
1984 	 * registers based on the command.  So, we drop feature and
1985 	 * hob_feature for [RW] DMA commands, but they are needed for
1986 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
1987 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1988 	 */
1989 	switch (tf->command) {
1990 	case ATA_CMD_READ:
1991 	case ATA_CMD_READ_EXT:
1992 	case ATA_CMD_WRITE:
1993 	case ATA_CMD_WRITE_EXT:
1994 	case ATA_CMD_WRITE_FUA_EXT:
1995 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1996 		break;
1997 	case ATA_CMD_FPDMA_READ:
1998 	case ATA_CMD_FPDMA_WRITE:
1999 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2000 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2001 		break;
2002 	default:
2003 		/* The only other commands EDMA supports in non-queued and
2004 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2005 		 * of which are defined/used by Linux.  If we get here, this
2006 		 * driver needs work.
2007 		 *
2008 		 * FIXME: modify libata to give qc_prep a return value and
2009 		 * return error here.
2010 		 */
2011 		BUG_ON(tf->command);
2012 		break;
2013 	}
2014 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2015 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2016 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2017 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2018 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2019 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2020 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2021 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2022 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2023 
2024 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2025 		return;
2026 	mv_fill_sg(qc);
2027 }
2028 
2029 /**
2030  *      mv_qc_prep_iie - Host specific command preparation.
2031  *      @qc: queued command to prepare
2032  *
2033  *      This routine simply redirects to the general purpose routine
2034  *      if command is not DMA.  Else, it handles prep of the CRQB
2035  *      (command request block), does some sanity checking, and calls
2036  *      the SG load routine.
2037  *
2038  *      LOCKING:
2039  *      Inherited from caller.
2040  */
2041 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2042 {
2043 	struct ata_port *ap = qc->ap;
2044 	struct mv_port_priv *pp = ap->private_data;
2045 	struct mv_crqb_iie *crqb;
2046 	struct ata_taskfile *tf = &qc->tf;
2047 	unsigned in_index;
2048 	u32 flags = 0;
2049 
2050 	if ((tf->protocol != ATA_PROT_DMA) &&
2051 	    (tf->protocol != ATA_PROT_NCQ))
2052 		return;
2053 
2054 	/* Fill in Gen IIE command request block */
2055 	if (!(tf->flags & ATA_TFLAG_WRITE))
2056 		flags |= CRQB_FLAG_READ;
2057 
2058 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2059 	flags |= qc->tag << CRQB_TAG_SHIFT;
2060 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2061 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2062 
2063 	/* get current queue index from software */
2064 	in_index = pp->req_idx;
2065 
2066 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2067 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2068 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2069 	crqb->flags = cpu_to_le32(flags);
2070 
2071 	crqb->ata_cmd[0] = cpu_to_le32(
2072 			(tf->command << 16) |
2073 			(tf->feature << 24)
2074 		);
2075 	crqb->ata_cmd[1] = cpu_to_le32(
2076 			(tf->lbal << 0) |
2077 			(tf->lbam << 8) |
2078 			(tf->lbah << 16) |
2079 			(tf->device << 24)
2080 		);
2081 	crqb->ata_cmd[2] = cpu_to_le32(
2082 			(tf->hob_lbal << 0) |
2083 			(tf->hob_lbam << 8) |
2084 			(tf->hob_lbah << 16) |
2085 			(tf->hob_feature << 24)
2086 		);
2087 	crqb->ata_cmd[3] = cpu_to_le32(
2088 			(tf->nsect << 0) |
2089 			(tf->hob_nsect << 8)
2090 		);
2091 
2092 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2093 		return;
2094 	mv_fill_sg(qc);
2095 }
2096 
2097 /**
2098  *	mv_sff_check_status - fetch device status, if valid
2099  *	@ap: ATA port to fetch status from
2100  *
2101  *	When using command issue via mv_qc_issue_fis(),
2102  *	the initial ATA_BUSY state does not show up in the
2103  *	ATA status (shadow) register.  This can confuse libata!
2104  *
2105  *	So we have a hook here to fake ATA_BUSY for that situation,
2106  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2107  *
2108  *	The rest of the time, it simply returns the ATA status register.
2109  */
2110 static u8 mv_sff_check_status(struct ata_port *ap)
2111 {
2112 	u8 stat = ioread8(ap->ioaddr.status_addr);
2113 	struct mv_port_priv *pp = ap->private_data;
2114 
2115 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2116 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2117 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2118 		else
2119 			stat = ATA_BUSY;
2120 	}
2121 	return stat;
2122 }
2123 
2124 /**
2125  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2126  *	@fis: fis to be sent
2127  *	@nwords: number of 32-bit words in the fis
2128  */
2129 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2130 {
2131 	void __iomem *port_mmio = mv_ap_base(ap);
2132 	u32 ifctl, old_ifctl, ifstat;
2133 	int i, timeout = 200, final_word = nwords - 1;
2134 
2135 	/* Initiate FIS transmission mode */
2136 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2137 	ifctl = 0x100 | (old_ifctl & 0xf);
2138 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2139 
2140 	/* Send all words of the FIS except for the final word */
2141 	for (i = 0; i < final_word; ++i)
2142 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2143 
2144 	/* Flag end-of-transmission, and then send the final word */
2145 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2146 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2147 
2148 	/*
2149 	 * Wait for FIS transmission to complete.
2150 	 * This typically takes just a single iteration.
2151 	 */
2152 	do {
2153 		ifstat = readl(port_mmio + SATA_IFSTAT);
2154 	} while (!(ifstat & 0x1000) && --timeout);
2155 
2156 	/* Restore original port configuration */
2157 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2158 
2159 	/* See if it worked */
2160 	if ((ifstat & 0x3000) != 0x1000) {
2161 		ata_port_printk(ap, KERN_WARNING,
2162 				"%s transmission error, ifstat=%08x\n",
2163 				__func__, ifstat);
2164 		return AC_ERR_OTHER;
2165 	}
2166 	return 0;
2167 }
2168 
2169 /**
2170  *	mv_qc_issue_fis - Issue a command directly as a FIS
2171  *	@qc: queued command to start
2172  *
2173  *	Note that the ATA shadow registers are not updated
2174  *	after command issue, so the device will appear "READY"
2175  *	if polled, even while it is BUSY processing the command.
2176  *
2177  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2178  *
2179  *	Note: we don't get updated shadow regs on *completion*
2180  *	of non-data commands. So avoid sending them via this function,
2181  *	as they will appear to have completed immediately.
2182  *
2183  *	GEN_IIE has special registers that we could get the result tf from,
2184  *	but earlier chipsets do not.  For now, we ignore those registers.
2185  */
2186 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2187 {
2188 	struct ata_port *ap = qc->ap;
2189 	struct mv_port_priv *pp = ap->private_data;
2190 	struct ata_link *link = qc->dev->link;
2191 	u32 fis[5];
2192 	int err = 0;
2193 
2194 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2195 	err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
2196 	if (err)
2197 		return err;
2198 
2199 	switch (qc->tf.protocol) {
2200 	case ATAPI_PROT_PIO:
2201 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2202 		/* fall through */
2203 	case ATAPI_PROT_NODATA:
2204 		ap->hsm_task_state = HSM_ST_FIRST;
2205 		break;
2206 	case ATA_PROT_PIO:
2207 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2208 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2209 			ap->hsm_task_state = HSM_ST_FIRST;
2210 		else
2211 			ap->hsm_task_state = HSM_ST;
2212 		break;
2213 	default:
2214 		ap->hsm_task_state = HSM_ST_LAST;
2215 		break;
2216 	}
2217 
2218 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2219 		ata_pio_queue_task(ap, qc, 0);
2220 	return 0;
2221 }
2222 
2223 /**
2224  *      mv_qc_issue - Initiate a command to the host
2225  *      @qc: queued command to start
2226  *
2227  *      This routine simply redirects to the general purpose routine
2228  *      if command is not DMA.  Else, it sanity checks our local
2229  *      caches of the request producer/consumer indices then enables
2230  *      DMA and bumps the request producer index.
2231  *
2232  *      LOCKING:
2233  *      Inherited from caller.
2234  */
2235 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2236 {
2237 	static int limit_warnings = 10;
2238 	struct ata_port *ap = qc->ap;
2239 	void __iomem *port_mmio = mv_ap_base(ap);
2240 	struct mv_port_priv *pp = ap->private_data;
2241 	u32 in_index;
2242 	unsigned int port_irqs;
2243 
2244 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2245 
2246 	switch (qc->tf.protocol) {
2247 	case ATA_PROT_DMA:
2248 	case ATA_PROT_NCQ:
2249 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2250 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2251 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2252 
2253 		/* Write the request in pointer to kick the EDMA to life */
2254 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2255 					port_mmio + EDMA_REQ_Q_IN_PTR);
2256 		return 0;
2257 
2258 	case ATA_PROT_PIO:
2259 		/*
2260 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2261 		 *
2262 		 * Someday, we might implement special polling workarounds
2263 		 * for these, but it all seems rather unnecessary since we
2264 		 * normally use only DMA for commands which transfer more
2265 		 * than a single block of data.
2266 		 *
2267 		 * Much of the time, this could just work regardless.
2268 		 * So for now, just log the incident, and allow the attempt.
2269 		 */
2270 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2271 			--limit_warnings;
2272 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2273 					": attempting PIO w/multiple DRQ: "
2274 					"this may fail due to h/w errata\n");
2275 		}
2276 		/* drop through */
2277 	case ATA_PROT_NODATA:
2278 	case ATAPI_PROT_PIO:
2279 	case ATAPI_PROT_NODATA:
2280 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2281 			qc->tf.flags |= ATA_TFLAG_POLLING;
2282 		break;
2283 	}
2284 
2285 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2286 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2287 	else
2288 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2289 
2290 	/*
2291 	 * We're about to send a non-EDMA capable command to the
2292 	 * port.  Turn off EDMA so there won't be problems accessing
2293 	 * shadow block, etc registers.
2294 	 */
2295 	mv_stop_edma(ap);
2296 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2297 	mv_pmp_select(ap, qc->dev->link->pmp);
2298 
2299 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2300 		struct mv_host_priv *hpriv = ap->host->private_data;
2301 		/*
2302 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2303 		 *
2304 		 * After any NCQ error, the READ_LOG_EXT command
2305 		 * from libata-eh *must* use mv_qc_issue_fis().
2306 		 * Otherwise it might fail, due to chip errata.
2307 		 *
2308 		 * Rather than special-case it, we'll just *always*
2309 		 * use this method here for READ_LOG_EXT, making for
2310 		 * easier testing.
2311 		 */
2312 		if (IS_GEN_II(hpriv))
2313 			return mv_qc_issue_fis(qc);
2314 	}
2315 	return ata_sff_qc_issue(qc);
2316 }
2317 
2318 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2319 {
2320 	struct mv_port_priv *pp = ap->private_data;
2321 	struct ata_queued_cmd *qc;
2322 
2323 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2324 		return NULL;
2325 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2326 	if (qc) {
2327 		if (qc->tf.flags & ATA_TFLAG_POLLING)
2328 			qc = NULL;
2329 		else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2330 			qc = NULL;
2331 	}
2332 	return qc;
2333 }
2334 
2335 static void mv_pmp_error_handler(struct ata_port *ap)
2336 {
2337 	unsigned int pmp, pmp_map;
2338 	struct mv_port_priv *pp = ap->private_data;
2339 
2340 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2341 		/*
2342 		 * Perform NCQ error analysis on failed PMPs
2343 		 * before we freeze the port entirely.
2344 		 *
2345 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2346 		 */
2347 		pmp_map = pp->delayed_eh_pmp_map;
2348 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2349 		for (pmp = 0; pmp_map != 0; pmp++) {
2350 			unsigned int this_pmp = (1 << pmp);
2351 			if (pmp_map & this_pmp) {
2352 				struct ata_link *link = &ap->pmp_link[pmp];
2353 				pmp_map &= ~this_pmp;
2354 				ata_eh_analyze_ncq_error(link);
2355 			}
2356 		}
2357 		ata_port_freeze(ap);
2358 	}
2359 	sata_pmp_error_handler(ap);
2360 }
2361 
2362 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2363 {
2364 	void __iomem *port_mmio = mv_ap_base(ap);
2365 
2366 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2367 }
2368 
2369 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2370 {
2371 	struct ata_eh_info *ehi;
2372 	unsigned int pmp;
2373 
2374 	/*
2375 	 * Initialize EH info for PMPs which saw device errors
2376 	 */
2377 	ehi = &ap->link.eh_info;
2378 	for (pmp = 0; pmp_map != 0; pmp++) {
2379 		unsigned int this_pmp = (1 << pmp);
2380 		if (pmp_map & this_pmp) {
2381 			struct ata_link *link = &ap->pmp_link[pmp];
2382 
2383 			pmp_map &= ~this_pmp;
2384 			ehi = &link->eh_info;
2385 			ata_ehi_clear_desc(ehi);
2386 			ata_ehi_push_desc(ehi, "dev err");
2387 			ehi->err_mask |= AC_ERR_DEV;
2388 			ehi->action |= ATA_EH_RESET;
2389 			ata_link_abort(link);
2390 		}
2391 	}
2392 }
2393 
2394 static int mv_req_q_empty(struct ata_port *ap)
2395 {
2396 	void __iomem *port_mmio = mv_ap_base(ap);
2397 	u32 in_ptr, out_ptr;
2398 
2399 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2400 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2401 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2402 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2403 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2404 }
2405 
2406 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2407 {
2408 	struct mv_port_priv *pp = ap->private_data;
2409 	int failed_links;
2410 	unsigned int old_map, new_map;
2411 
2412 	/*
2413 	 * Device error during FBS+NCQ operation:
2414 	 *
2415 	 * Set a port flag to prevent further I/O being enqueued.
2416 	 * Leave the EDMA running to drain outstanding commands from this port.
2417 	 * Perform the post-mortem/EH only when all responses are complete.
2418 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2419 	 */
2420 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2421 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2422 		pp->delayed_eh_pmp_map = 0;
2423 	}
2424 	old_map = pp->delayed_eh_pmp_map;
2425 	new_map = old_map | mv_get_err_pmp_map(ap);
2426 
2427 	if (old_map != new_map) {
2428 		pp->delayed_eh_pmp_map = new_map;
2429 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2430 	}
2431 	failed_links = hweight16(new_map);
2432 
2433 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2434 			"failed_links=%d nr_active_links=%d\n",
2435 			__func__, pp->delayed_eh_pmp_map,
2436 			ap->qc_active, failed_links,
2437 			ap->nr_active_links);
2438 
2439 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2440 		mv_process_crpb_entries(ap, pp);
2441 		mv_stop_edma(ap);
2442 		mv_eh_freeze(ap);
2443 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2444 		return 1;	/* handled */
2445 	}
2446 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2447 	return 1;	/* handled */
2448 }
2449 
2450 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2451 {
2452 	/*
2453 	 * Possible future enhancement:
2454 	 *
2455 	 * FBS+non-NCQ operation is not yet implemented.
2456 	 * See related notes in mv_edma_cfg().
2457 	 *
2458 	 * Device error during FBS+non-NCQ operation:
2459 	 *
2460 	 * We need to snapshot the shadow registers for each failed command.
2461 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2462 	 */
2463 	return 0;	/* not handled */
2464 }
2465 
2466 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2467 {
2468 	struct mv_port_priv *pp = ap->private_data;
2469 
2470 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2471 		return 0;	/* EDMA was not active: not handled */
2472 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2473 		return 0;	/* FBS was not active: not handled */
2474 
2475 	if (!(edma_err_cause & EDMA_ERR_DEV))
2476 		return 0;	/* non DEV error: not handled */
2477 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2478 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2479 		return 0;	/* other problems: not handled */
2480 
2481 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2482 		/*
2483 		 * EDMA should NOT have self-disabled for this case.
2484 		 * If it did, then something is wrong elsewhere,
2485 		 * and we cannot handle it here.
2486 		 */
2487 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2488 			ata_port_printk(ap, KERN_WARNING,
2489 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2490 				__func__, edma_err_cause, pp->pp_flags);
2491 			return 0; /* not handled */
2492 		}
2493 		return mv_handle_fbs_ncq_dev_err(ap);
2494 	} else {
2495 		/*
2496 		 * EDMA should have self-disabled for this case.
2497 		 * If it did not, then something is wrong elsewhere,
2498 		 * and we cannot handle it here.
2499 		 */
2500 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2501 			ata_port_printk(ap, KERN_WARNING,
2502 				"%s: err_cause=0x%x pp_flags=0x%x\n",
2503 				__func__, edma_err_cause, pp->pp_flags);
2504 			return 0; /* not handled */
2505 		}
2506 		return mv_handle_fbs_non_ncq_dev_err(ap);
2507 	}
2508 	return 0;	/* not handled */
2509 }
2510 
2511 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2512 {
2513 	struct ata_eh_info *ehi = &ap->link.eh_info;
2514 	char *when = "idle";
2515 
2516 	ata_ehi_clear_desc(ehi);
2517 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2518 		when = "disabled";
2519 	} else if (edma_was_enabled) {
2520 		when = "EDMA enabled";
2521 	} else {
2522 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2523 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2524 			when = "polling";
2525 	}
2526 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2527 	ehi->err_mask |= AC_ERR_OTHER;
2528 	ehi->action   |= ATA_EH_RESET;
2529 	ata_port_freeze(ap);
2530 }
2531 
2532 /**
2533  *      mv_err_intr - Handle error interrupts on the port
2534  *      @ap: ATA channel to manipulate
2535  *
2536  *      Most cases require a full reset of the chip's state machine,
2537  *      which also performs a COMRESET.
2538  *      Also, if the port disabled DMA, update our cached copy to match.
2539  *
2540  *      LOCKING:
2541  *      Inherited from caller.
2542  */
2543 static void mv_err_intr(struct ata_port *ap)
2544 {
2545 	void __iomem *port_mmio = mv_ap_base(ap);
2546 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2547 	u32 fis_cause = 0;
2548 	struct mv_port_priv *pp = ap->private_data;
2549 	struct mv_host_priv *hpriv = ap->host->private_data;
2550 	unsigned int action = 0, err_mask = 0;
2551 	struct ata_eh_info *ehi = &ap->link.eh_info;
2552 	struct ata_queued_cmd *qc;
2553 	int abort = 0;
2554 
2555 	/*
2556 	 * Read and clear the SError and err_cause bits.
2557 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2558 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2559 	 */
2560 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2561 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2562 
2563 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2564 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2565 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2566 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2567 	}
2568 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2569 
2570 	if (edma_err_cause & EDMA_ERR_DEV) {
2571 		/*
2572 		 * Device errors during FIS-based switching operation
2573 		 * require special handling.
2574 		 */
2575 		if (mv_handle_dev_err(ap, edma_err_cause))
2576 			return;
2577 	}
2578 
2579 	qc = mv_get_active_qc(ap);
2580 	ata_ehi_clear_desc(ehi);
2581 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2582 			  edma_err_cause, pp->pp_flags);
2583 
2584 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2585 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2586 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2587 			u32 ec = edma_err_cause &
2588 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2589 			sata_async_notification(ap);
2590 			if (!ec)
2591 				return; /* Just an AN; no need for the nukes */
2592 			ata_ehi_push_desc(ehi, "SDB notify");
2593 		}
2594 	}
2595 	/*
2596 	 * All generations share these EDMA error cause bits:
2597 	 */
2598 	if (edma_err_cause & EDMA_ERR_DEV) {
2599 		err_mask |= AC_ERR_DEV;
2600 		action |= ATA_EH_RESET;
2601 		ata_ehi_push_desc(ehi, "dev error");
2602 	}
2603 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2604 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2605 			EDMA_ERR_INTRL_PAR)) {
2606 		err_mask |= AC_ERR_ATA_BUS;
2607 		action |= ATA_EH_RESET;
2608 		ata_ehi_push_desc(ehi, "parity error");
2609 	}
2610 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2611 		ata_ehi_hotplugged(ehi);
2612 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2613 			"dev disconnect" : "dev connect");
2614 		action |= ATA_EH_RESET;
2615 	}
2616 
2617 	/*
2618 	 * Gen-I has a different SELF_DIS bit,
2619 	 * different FREEZE bits, and no SERR bit:
2620 	 */
2621 	if (IS_GEN_I(hpriv)) {
2622 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2623 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2624 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2625 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2626 		}
2627 	} else {
2628 		eh_freeze_mask = EDMA_EH_FREEZE;
2629 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2630 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2631 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2632 		}
2633 		if (edma_err_cause & EDMA_ERR_SERR) {
2634 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2635 			err_mask |= AC_ERR_ATA_BUS;
2636 			action |= ATA_EH_RESET;
2637 		}
2638 	}
2639 
2640 	if (!err_mask) {
2641 		err_mask = AC_ERR_OTHER;
2642 		action |= ATA_EH_RESET;
2643 	}
2644 
2645 	ehi->serror |= serr;
2646 	ehi->action |= action;
2647 
2648 	if (qc)
2649 		qc->err_mask |= err_mask;
2650 	else
2651 		ehi->err_mask |= err_mask;
2652 
2653 	if (err_mask == AC_ERR_DEV) {
2654 		/*
2655 		 * Cannot do ata_port_freeze() here,
2656 		 * because it would kill PIO access,
2657 		 * which is needed for further diagnosis.
2658 		 */
2659 		mv_eh_freeze(ap);
2660 		abort = 1;
2661 	} else if (edma_err_cause & eh_freeze_mask) {
2662 		/*
2663 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2664 		 */
2665 		ata_port_freeze(ap);
2666 	} else {
2667 		abort = 1;
2668 	}
2669 
2670 	if (abort) {
2671 		if (qc)
2672 			ata_link_abort(qc->dev->link);
2673 		else
2674 			ata_port_abort(ap);
2675 	}
2676 }
2677 
2678 static void mv_process_crpb_response(struct ata_port *ap,
2679 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2680 {
2681 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2682 
2683 	if (qc) {
2684 		u8 ata_status;
2685 		u16 edma_status = le16_to_cpu(response->flags);
2686 		/*
2687 		 * edma_status from a response queue entry:
2688 		 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2689 		 *   MSB is saved ATA status from command completion.
2690 		 */
2691 		if (!ncq_enabled) {
2692 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2693 			if (err_cause) {
2694 				/*
2695 				 * Error will be seen/handled by mv_err_intr().
2696 				 * So do nothing at all here.
2697 				 */
2698 				return;
2699 			}
2700 		}
2701 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2702 		if (!ac_err_mask(ata_status))
2703 			ata_qc_complete(qc);
2704 		/* else: leave it for mv_err_intr() */
2705 	} else {
2706 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2707 				__func__, tag);
2708 	}
2709 }
2710 
2711 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2712 {
2713 	void __iomem *port_mmio = mv_ap_base(ap);
2714 	struct mv_host_priv *hpriv = ap->host->private_data;
2715 	u32 in_index;
2716 	bool work_done = false;
2717 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2718 
2719 	/* Get the hardware queue position index */
2720 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2721 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2722 
2723 	/* Process new responses from since the last time we looked */
2724 	while (in_index != pp->resp_idx) {
2725 		unsigned int tag;
2726 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2727 
2728 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2729 
2730 		if (IS_GEN_I(hpriv)) {
2731 			/* 50xx: no NCQ, only one command active at a time */
2732 			tag = ap->link.active_tag;
2733 		} else {
2734 			/* Gen II/IIE: get command tag from CRPB entry */
2735 			tag = le16_to_cpu(response->id) & 0x1f;
2736 		}
2737 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2738 		work_done = true;
2739 	}
2740 
2741 	/* Update the software queue position index in hardware */
2742 	if (work_done)
2743 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2744 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2745 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2746 }
2747 
2748 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2749 {
2750 	struct mv_port_priv *pp;
2751 	int edma_was_enabled;
2752 
2753 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2754 		mv_unexpected_intr(ap, 0);
2755 		return;
2756 	}
2757 	/*
2758 	 * Grab a snapshot of the EDMA_EN flag setting,
2759 	 * so that we have a consistent view for this port,
2760 	 * even if something we call of our routines changes it.
2761 	 */
2762 	pp = ap->private_data;
2763 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2764 	/*
2765 	 * Process completed CRPB response(s) before other events.
2766 	 */
2767 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2768 		mv_process_crpb_entries(ap, pp);
2769 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2770 			mv_handle_fbs_ncq_dev_err(ap);
2771 	}
2772 	/*
2773 	 * Handle chip-reported errors, or continue on to handle PIO.
2774 	 */
2775 	if (unlikely(port_cause & ERR_IRQ)) {
2776 		mv_err_intr(ap);
2777 	} else if (!edma_was_enabled) {
2778 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2779 		if (qc)
2780 			ata_sff_host_intr(ap, qc);
2781 		else
2782 			mv_unexpected_intr(ap, edma_was_enabled);
2783 	}
2784 }
2785 
2786 /**
2787  *      mv_host_intr - Handle all interrupts on the given host controller
2788  *      @host: host specific structure
2789  *      @main_irq_cause: Main interrupt cause register for the chip.
2790  *
2791  *      LOCKING:
2792  *      Inherited from caller.
2793  */
2794 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2795 {
2796 	struct mv_host_priv *hpriv = host->private_data;
2797 	void __iomem *mmio = hpriv->base, *hc_mmio;
2798 	unsigned int handled = 0, port;
2799 
2800 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2801 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2802 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2803 
2804 	for (port = 0; port < hpriv->n_ports; port++) {
2805 		struct ata_port *ap = host->ports[port];
2806 		unsigned int p, shift, hardport, port_cause;
2807 
2808 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2809 		/*
2810 		 * Each hc within the host has its own hc_irq_cause register,
2811 		 * where the interrupting ports bits get ack'd.
2812 		 */
2813 		if (hardport == 0) {	/* first port on this hc ? */
2814 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2815 			u32 port_mask, ack_irqs;
2816 			/*
2817 			 * Skip this entire hc if nothing pending for any ports
2818 			 */
2819 			if (!hc_cause) {
2820 				port += MV_PORTS_PER_HC - 1;
2821 				continue;
2822 			}
2823 			/*
2824 			 * We don't need/want to read the hc_irq_cause register,
2825 			 * because doing so hurts performance, and
2826 			 * main_irq_cause already gives us everything we need.
2827 			 *
2828 			 * But we do have to *write* to the hc_irq_cause to ack
2829 			 * the ports that we are handling this time through.
2830 			 *
2831 			 * This requires that we create a bitmap for those
2832 			 * ports which interrupted us, and use that bitmap
2833 			 * to ack (only) those ports via hc_irq_cause.
2834 			 */
2835 			ack_irqs = 0;
2836 			if (hc_cause & PORTS_0_3_COAL_DONE)
2837 				ack_irqs = HC_COAL_IRQ;
2838 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2839 				if ((port + p) >= hpriv->n_ports)
2840 					break;
2841 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2842 				if (hc_cause & port_mask)
2843 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2844 			}
2845 			hc_mmio = mv_hc_base_from_port(mmio, port);
2846 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2847 			handled = 1;
2848 		}
2849 		/*
2850 		 * Handle interrupts signalled for this port:
2851 		 */
2852 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2853 		if (port_cause)
2854 			mv_port_intr(ap, port_cause);
2855 	}
2856 	return handled;
2857 }
2858 
2859 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2860 {
2861 	struct mv_host_priv *hpriv = host->private_data;
2862 	struct ata_port *ap;
2863 	struct ata_queued_cmd *qc;
2864 	struct ata_eh_info *ehi;
2865 	unsigned int i, err_mask, printed = 0;
2866 	u32 err_cause;
2867 
2868 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2869 
2870 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2871 		   err_cause);
2872 
2873 	DPRINTK("All regs @ PCI error\n");
2874 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2875 
2876 	writelfl(0, mmio + hpriv->irq_cause_offset);
2877 
2878 	for (i = 0; i < host->n_ports; i++) {
2879 		ap = host->ports[i];
2880 		if (!ata_link_offline(&ap->link)) {
2881 			ehi = &ap->link.eh_info;
2882 			ata_ehi_clear_desc(ehi);
2883 			if (!printed++)
2884 				ata_ehi_push_desc(ehi,
2885 					"PCI err cause 0x%08x", err_cause);
2886 			err_mask = AC_ERR_HOST_BUS;
2887 			ehi->action = ATA_EH_RESET;
2888 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2889 			if (qc)
2890 				qc->err_mask |= err_mask;
2891 			else
2892 				ehi->err_mask |= err_mask;
2893 
2894 			ata_port_freeze(ap);
2895 		}
2896 	}
2897 	return 1;	/* handled */
2898 }
2899 
2900 /**
2901  *      mv_interrupt - Main interrupt event handler
2902  *      @irq: unused
2903  *      @dev_instance: private data; in this case the host structure
2904  *
2905  *      Read the read only register to determine if any host
2906  *      controllers have pending interrupts.  If so, call lower level
2907  *      routine to handle.  Also check for PCI errors which are only
2908  *      reported here.
2909  *
2910  *      LOCKING:
2911  *      This routine holds the host lock while processing pending
2912  *      interrupts.
2913  */
2914 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2915 {
2916 	struct ata_host *host = dev_instance;
2917 	struct mv_host_priv *hpriv = host->private_data;
2918 	unsigned int handled = 0;
2919 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2920 	u32 main_irq_cause, pending_irqs;
2921 
2922 	spin_lock(&host->lock);
2923 
2924 	/* for MSI:  block new interrupts while in here */
2925 	if (using_msi)
2926 		mv_write_main_irq_mask(0, hpriv);
2927 
2928 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2929 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2930 	/*
2931 	 * Deal with cases where we either have nothing pending, or have read
2932 	 * a bogus register value which can indicate HW removal or PCI fault.
2933 	 */
2934 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2935 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2936 			handled = mv_pci_error(host, hpriv->base);
2937 		else
2938 			handled = mv_host_intr(host, pending_irqs);
2939 	}
2940 
2941 	/* for MSI: unmask; interrupt cause bits will retrigger now */
2942 	if (using_msi)
2943 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2944 
2945 	spin_unlock(&host->lock);
2946 
2947 	return IRQ_RETVAL(handled);
2948 }
2949 
2950 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2951 {
2952 	unsigned int ofs;
2953 
2954 	switch (sc_reg_in) {
2955 	case SCR_STATUS:
2956 	case SCR_ERROR:
2957 	case SCR_CONTROL:
2958 		ofs = sc_reg_in * sizeof(u32);
2959 		break;
2960 	default:
2961 		ofs = 0xffffffffU;
2962 		break;
2963 	}
2964 	return ofs;
2965 }
2966 
2967 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2968 {
2969 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2970 	void __iomem *mmio = hpriv->base;
2971 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2972 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2973 
2974 	if (ofs != 0xffffffffU) {
2975 		*val = readl(addr + ofs);
2976 		return 0;
2977 	} else
2978 		return -EINVAL;
2979 }
2980 
2981 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2982 {
2983 	struct mv_host_priv *hpriv = link->ap->host->private_data;
2984 	void __iomem *mmio = hpriv->base;
2985 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2986 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2987 
2988 	if (ofs != 0xffffffffU) {
2989 		writelfl(val, addr + ofs);
2990 		return 0;
2991 	} else
2992 		return -EINVAL;
2993 }
2994 
2995 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2996 {
2997 	struct pci_dev *pdev = to_pci_dev(host->dev);
2998 	int early_5080;
2999 
3000 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3001 
3002 	if (!early_5080) {
3003 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3004 		tmp |= (1 << 0);
3005 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3006 	}
3007 
3008 	mv_reset_pci_bus(host, mmio);
3009 }
3010 
3011 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3012 {
3013 	writel(0x0fcfffff, mmio + FLASH_CTL);
3014 }
3015 
3016 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3017 			   void __iomem *mmio)
3018 {
3019 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3020 	u32 tmp;
3021 
3022 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3023 
3024 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3025 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3026 }
3027 
3028 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3029 {
3030 	u32 tmp;
3031 
3032 	writel(0, mmio + GPIO_PORT_CTL);
3033 
3034 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3035 
3036 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3037 	tmp |= ~(1 << 0);
3038 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3039 }
3040 
3041 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3042 			   unsigned int port)
3043 {
3044 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3045 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3046 	u32 tmp;
3047 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3048 
3049 	if (fix_apm_sq) {
3050 		tmp = readl(phy_mmio + MV5_LTMODE);
3051 		tmp |= (1 << 19);
3052 		writel(tmp, phy_mmio + MV5_LTMODE);
3053 
3054 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3055 		tmp &= ~0x3;
3056 		tmp |= 0x1;
3057 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3058 	}
3059 
3060 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3061 	tmp &= ~mask;
3062 	tmp |= hpriv->signal[port].pre;
3063 	tmp |= hpriv->signal[port].amps;
3064 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3065 }
3066 
3067 
3068 #undef ZERO
3069 #define ZERO(reg) writel(0, port_mmio + (reg))
3070 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3071 			     unsigned int port)
3072 {
3073 	void __iomem *port_mmio = mv_port_base(mmio, port);
3074 
3075 	mv_reset_channel(hpriv, mmio, port);
3076 
3077 	ZERO(0x028);	/* command */
3078 	writel(0x11f, port_mmio + EDMA_CFG);
3079 	ZERO(0x004);	/* timer */
3080 	ZERO(0x008);	/* irq err cause */
3081 	ZERO(0x00c);	/* irq err mask */
3082 	ZERO(0x010);	/* rq bah */
3083 	ZERO(0x014);	/* rq inp */
3084 	ZERO(0x018);	/* rq outp */
3085 	ZERO(0x01c);	/* respq bah */
3086 	ZERO(0x024);	/* respq outp */
3087 	ZERO(0x020);	/* respq inp */
3088 	ZERO(0x02c);	/* test control */
3089 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3090 }
3091 #undef ZERO
3092 
3093 #define ZERO(reg) writel(0, hc_mmio + (reg))
3094 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3095 			unsigned int hc)
3096 {
3097 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3098 	u32 tmp;
3099 
3100 	ZERO(0x00c);
3101 	ZERO(0x010);
3102 	ZERO(0x014);
3103 	ZERO(0x018);
3104 
3105 	tmp = readl(hc_mmio + 0x20);
3106 	tmp &= 0x1c1c1c1c;
3107 	tmp |= 0x03030303;
3108 	writel(tmp, hc_mmio + 0x20);
3109 }
3110 #undef ZERO
3111 
3112 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3113 			unsigned int n_hc)
3114 {
3115 	unsigned int hc, port;
3116 
3117 	for (hc = 0; hc < n_hc; hc++) {
3118 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3119 			mv5_reset_hc_port(hpriv, mmio,
3120 					  (hc * MV_PORTS_PER_HC) + port);
3121 
3122 		mv5_reset_one_hc(hpriv, mmio, hc);
3123 	}
3124 
3125 	return 0;
3126 }
3127 
3128 #undef ZERO
3129 #define ZERO(reg) writel(0, mmio + (reg))
3130 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3131 {
3132 	struct mv_host_priv *hpriv = host->private_data;
3133 	u32 tmp;
3134 
3135 	tmp = readl(mmio + MV_PCI_MODE);
3136 	tmp &= 0xff00ffff;
3137 	writel(tmp, mmio + MV_PCI_MODE);
3138 
3139 	ZERO(MV_PCI_DISC_TIMER);
3140 	ZERO(MV_PCI_MSI_TRIGGER);
3141 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3142 	ZERO(MV_PCI_SERR_MASK);
3143 	ZERO(hpriv->irq_cause_offset);
3144 	ZERO(hpriv->irq_mask_offset);
3145 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3146 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3147 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3148 	ZERO(MV_PCI_ERR_COMMAND);
3149 }
3150 #undef ZERO
3151 
3152 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3153 {
3154 	u32 tmp;
3155 
3156 	mv5_reset_flash(hpriv, mmio);
3157 
3158 	tmp = readl(mmio + GPIO_PORT_CTL);
3159 	tmp &= 0x3;
3160 	tmp |= (1 << 5) | (1 << 6);
3161 	writel(tmp, mmio + GPIO_PORT_CTL);
3162 }
3163 
3164 /**
3165  *      mv6_reset_hc - Perform the 6xxx global soft reset
3166  *      @mmio: base address of the HBA
3167  *
3168  *      This routine only applies to 6xxx parts.
3169  *
3170  *      LOCKING:
3171  *      Inherited from caller.
3172  */
3173 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3174 			unsigned int n_hc)
3175 {
3176 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3177 	int i, rc = 0;
3178 	u32 t;
3179 
3180 	/* Following procedure defined in PCI "main command and status
3181 	 * register" table.
3182 	 */
3183 	t = readl(reg);
3184 	writel(t | STOP_PCI_MASTER, reg);
3185 
3186 	for (i = 0; i < 1000; i++) {
3187 		udelay(1);
3188 		t = readl(reg);
3189 		if (PCI_MASTER_EMPTY & t)
3190 			break;
3191 	}
3192 	if (!(PCI_MASTER_EMPTY & t)) {
3193 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3194 		rc = 1;
3195 		goto done;
3196 	}
3197 
3198 	/* set reset */
3199 	i = 5;
3200 	do {
3201 		writel(t | GLOB_SFT_RST, reg);
3202 		t = readl(reg);
3203 		udelay(1);
3204 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3205 
3206 	if (!(GLOB_SFT_RST & t)) {
3207 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3208 		rc = 1;
3209 		goto done;
3210 	}
3211 
3212 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3213 	i = 5;
3214 	do {
3215 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3216 		t = readl(reg);
3217 		udelay(1);
3218 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3219 
3220 	if (GLOB_SFT_RST & t) {
3221 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3222 		rc = 1;
3223 	}
3224 done:
3225 	return rc;
3226 }
3227 
3228 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3229 			   void __iomem *mmio)
3230 {
3231 	void __iomem *port_mmio;
3232 	u32 tmp;
3233 
3234 	tmp = readl(mmio + RESET_CFG);
3235 	if ((tmp & (1 << 0)) == 0) {
3236 		hpriv->signal[idx].amps = 0x7 << 8;
3237 		hpriv->signal[idx].pre = 0x1 << 5;
3238 		return;
3239 	}
3240 
3241 	port_mmio = mv_port_base(mmio, idx);
3242 	tmp = readl(port_mmio + PHY_MODE2);
3243 
3244 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3245 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3246 }
3247 
3248 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3249 {
3250 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3251 }
3252 
3253 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3254 			   unsigned int port)
3255 {
3256 	void __iomem *port_mmio = mv_port_base(mmio, port);
3257 
3258 	u32 hp_flags = hpriv->hp_flags;
3259 	int fix_phy_mode2 =
3260 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3261 	int fix_phy_mode4 =
3262 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3263 	u32 m2, m3;
3264 
3265 	if (fix_phy_mode2) {
3266 		m2 = readl(port_mmio + PHY_MODE2);
3267 		m2 &= ~(1 << 16);
3268 		m2 |= (1 << 31);
3269 		writel(m2, port_mmio + PHY_MODE2);
3270 
3271 		udelay(200);
3272 
3273 		m2 = readl(port_mmio + PHY_MODE2);
3274 		m2 &= ~((1 << 16) | (1 << 31));
3275 		writel(m2, port_mmio + PHY_MODE2);
3276 
3277 		udelay(200);
3278 	}
3279 
3280 	/*
3281 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3282 	 * Achieves better receiver noise performance than the h/w default:
3283 	 */
3284 	m3 = readl(port_mmio + PHY_MODE3);
3285 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3286 
3287 	/* Guideline 88F5182 (GL# SATA-S11) */
3288 	if (IS_SOC(hpriv))
3289 		m3 &= ~0x1c;
3290 
3291 	if (fix_phy_mode4) {
3292 		u32 m4 = readl(port_mmio + PHY_MODE4);
3293 		/*
3294 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3295 		 * For earlier chipsets, force only the internal config field
3296 		 *  (workaround for errata FEr SATA#10 part 1).
3297 		 */
3298 		if (IS_GEN_IIE(hpriv))
3299 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3300 		else
3301 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3302 		writel(m4, port_mmio + PHY_MODE4);
3303 	}
3304 	/*
3305 	 * Workaround for 60x1-B2 errata SATA#13:
3306 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3307 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3308 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3309 	 */
3310 	writel(m3, port_mmio + PHY_MODE3);
3311 
3312 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3313 	m2 = readl(port_mmio + PHY_MODE2);
3314 
3315 	m2 &= ~MV_M2_PREAMP_MASK;
3316 	m2 |= hpriv->signal[port].amps;
3317 	m2 |= hpriv->signal[port].pre;
3318 	m2 &= ~(1 << 16);
3319 
3320 	/* according to mvSata 3.6.1, some IIE values are fixed */
3321 	if (IS_GEN_IIE(hpriv)) {
3322 		m2 &= ~0xC30FF01F;
3323 		m2 |= 0x0000900F;
3324 	}
3325 
3326 	writel(m2, port_mmio + PHY_MODE2);
3327 }
3328 
3329 /* TODO: use the generic LED interface to configure the SATA Presence */
3330 /* & Acitivy LEDs on the board */
3331 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3332 				      void __iomem *mmio)
3333 {
3334 	return;
3335 }
3336 
3337 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3338 			   void __iomem *mmio)
3339 {
3340 	void __iomem *port_mmio;
3341 	u32 tmp;
3342 
3343 	port_mmio = mv_port_base(mmio, idx);
3344 	tmp = readl(port_mmio + PHY_MODE2);
3345 
3346 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3347 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3348 }
3349 
3350 #undef ZERO
3351 #define ZERO(reg) writel(0, port_mmio + (reg))
3352 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3353 					void __iomem *mmio, unsigned int port)
3354 {
3355 	void __iomem *port_mmio = mv_port_base(mmio, port);
3356 
3357 	mv_reset_channel(hpriv, mmio, port);
3358 
3359 	ZERO(0x028);		/* command */
3360 	writel(0x101f, port_mmio + EDMA_CFG);
3361 	ZERO(0x004);		/* timer */
3362 	ZERO(0x008);		/* irq err cause */
3363 	ZERO(0x00c);		/* irq err mask */
3364 	ZERO(0x010);		/* rq bah */
3365 	ZERO(0x014);		/* rq inp */
3366 	ZERO(0x018);		/* rq outp */
3367 	ZERO(0x01c);		/* respq bah */
3368 	ZERO(0x024);		/* respq outp */
3369 	ZERO(0x020);		/* respq inp */
3370 	ZERO(0x02c);		/* test control */
3371 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3372 }
3373 
3374 #undef ZERO
3375 
3376 #define ZERO(reg) writel(0, hc_mmio + (reg))
3377 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3378 				       void __iomem *mmio)
3379 {
3380 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3381 
3382 	ZERO(0x00c);
3383 	ZERO(0x010);
3384 	ZERO(0x014);
3385 
3386 }
3387 
3388 #undef ZERO
3389 
3390 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3391 				  void __iomem *mmio, unsigned int n_hc)
3392 {
3393 	unsigned int port;
3394 
3395 	for (port = 0; port < hpriv->n_ports; port++)
3396 		mv_soc_reset_hc_port(hpriv, mmio, port);
3397 
3398 	mv_soc_reset_one_hc(hpriv, mmio);
3399 
3400 	return 0;
3401 }
3402 
3403 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3404 				      void __iomem *mmio)
3405 {
3406 	return;
3407 }
3408 
3409 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3410 {
3411 	return;
3412 }
3413 
3414 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3415 				  void __iomem *mmio, unsigned int port)
3416 {
3417 	void __iomem *port_mmio = mv_port_base(mmio, port);
3418 	u32	reg;
3419 
3420 	reg = readl(port_mmio + PHY_MODE3);
3421 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3422 	reg |= (0x1 << 27);
3423 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3424 	reg |= (0x1 << 29);
3425 	writel(reg, port_mmio + PHY_MODE3);
3426 
3427 	reg = readl(port_mmio + PHY_MODE4);
3428 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3429 	reg |= (0x1 << 16);
3430 	writel(reg, port_mmio + PHY_MODE4);
3431 
3432 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3433 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3434 	reg |= 0x8;
3435 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3436 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3437 
3438 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3439 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3440 	reg |= 0x8;
3441 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3442 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3443 }
3444 
3445 /**
3446  *	soc_is_65 - check if the soc is 65 nano device
3447  *
3448  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3449  *	register, this register should contain non-zero value and it exists only
3450  *	in the 65 nano devices, when reading it from older devices we get 0.
3451  */
3452 static bool soc_is_65n(struct mv_host_priv *hpriv)
3453 {
3454 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3455 
3456 	if (readl(port0_mmio + PHYCFG_OFS))
3457 		return true;
3458 	return false;
3459 }
3460 
3461 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3462 {
3463 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3464 
3465 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3466 	if (want_gen2i)
3467 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3468 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3469 }
3470 
3471 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3472 			     unsigned int port_no)
3473 {
3474 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3475 
3476 	/*
3477 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3478 	 * (but doesn't say what the problem might be).  So we first try
3479 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3480 	 */
3481 	mv_stop_edma_engine(port_mmio);
3482 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3483 
3484 	if (!IS_GEN_I(hpriv)) {
3485 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3486 		mv_setup_ifcfg(port_mmio, 1);
3487 	}
3488 	/*
3489 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3490 	 * link, and physical layers.  It resets all SATA interface registers
3491 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3492 	 */
3493 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3494 	udelay(25);	/* allow reset propagation */
3495 	writelfl(0, port_mmio + EDMA_CMD);
3496 
3497 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3498 
3499 	if (IS_GEN_I(hpriv))
3500 		mdelay(1);
3501 }
3502 
3503 static void mv_pmp_select(struct ata_port *ap, int pmp)
3504 {
3505 	if (sata_pmp_supported(ap)) {
3506 		void __iomem *port_mmio = mv_ap_base(ap);
3507 		u32 reg = readl(port_mmio + SATA_IFCTL);
3508 		int old = reg & 0xf;
3509 
3510 		if (old != pmp) {
3511 			reg = (reg & ~0xf) | pmp;
3512 			writelfl(reg, port_mmio + SATA_IFCTL);
3513 		}
3514 	}
3515 }
3516 
3517 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3518 				unsigned long deadline)
3519 {
3520 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3521 	return sata_std_hardreset(link, class, deadline);
3522 }
3523 
3524 static int mv_softreset(struct ata_link *link, unsigned int *class,
3525 				unsigned long deadline)
3526 {
3527 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3528 	return ata_sff_softreset(link, class, deadline);
3529 }
3530 
3531 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3532 			unsigned long deadline)
3533 {
3534 	struct ata_port *ap = link->ap;
3535 	struct mv_host_priv *hpriv = ap->host->private_data;
3536 	struct mv_port_priv *pp = ap->private_data;
3537 	void __iomem *mmio = hpriv->base;
3538 	int rc, attempts = 0, extra = 0;
3539 	u32 sstatus;
3540 	bool online;
3541 
3542 	mv_reset_channel(hpriv, mmio, ap->port_no);
3543 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3544 	pp->pp_flags &=
3545 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3546 
3547 	/* Workaround for errata FEr SATA#10 (part 2) */
3548 	do {
3549 		const unsigned long *timing =
3550 				sata_ehc_deb_timing(&link->eh_context);
3551 
3552 		rc = sata_link_hardreset(link, timing, deadline + extra,
3553 					 &online, NULL);
3554 		rc = online ? -EAGAIN : rc;
3555 		if (rc)
3556 			return rc;
3557 		sata_scr_read(link, SCR_STATUS, &sstatus);
3558 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3559 			/* Force 1.5gb/s link speed and try again */
3560 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3561 			if (time_after(jiffies + HZ, deadline))
3562 				extra = HZ; /* only extend it once, max */
3563 		}
3564 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3565 	mv_save_cached_regs(ap);
3566 	mv_edma_cfg(ap, 0, 0);
3567 
3568 	return rc;
3569 }
3570 
3571 static void mv_eh_freeze(struct ata_port *ap)
3572 {
3573 	mv_stop_edma(ap);
3574 	mv_enable_port_irqs(ap, 0);
3575 }
3576 
3577 static void mv_eh_thaw(struct ata_port *ap)
3578 {
3579 	struct mv_host_priv *hpriv = ap->host->private_data;
3580 	unsigned int port = ap->port_no;
3581 	unsigned int hardport = mv_hardport_from_port(port);
3582 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3583 	void __iomem *port_mmio = mv_ap_base(ap);
3584 	u32 hc_irq_cause;
3585 
3586 	/* clear EDMA errors on this port */
3587 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3588 
3589 	/* clear pending irq events */
3590 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3591 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3592 
3593 	mv_enable_port_irqs(ap, ERR_IRQ);
3594 }
3595 
3596 /**
3597  *      mv_port_init - Perform some early initialization on a single port.
3598  *      @port: libata data structure storing shadow register addresses
3599  *      @port_mmio: base address of the port
3600  *
3601  *      Initialize shadow register mmio addresses, clear outstanding
3602  *      interrupts on the port, and unmask interrupts for the future
3603  *      start of the port.
3604  *
3605  *      LOCKING:
3606  *      Inherited from caller.
3607  */
3608 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3609 {
3610 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3611 
3612 	/* PIO related setup
3613 	 */
3614 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3615 	port->error_addr =
3616 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3617 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3618 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3619 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3620 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3621 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3622 	port->status_addr =
3623 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3624 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3625 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3626 
3627 	/* unused: */
3628 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
3629 
3630 	/* Clear any currently outstanding port interrupt conditions */
3631 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3632 	writelfl(readl(serr), serr);
3633 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3634 
3635 	/* unmask all non-transient EDMA error interrupts */
3636 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3637 
3638 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3639 		readl(port_mmio + EDMA_CFG),
3640 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3641 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3642 }
3643 
3644 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3645 {
3646 	struct mv_host_priv *hpriv = host->private_data;
3647 	void __iomem *mmio = hpriv->base;
3648 	u32 reg;
3649 
3650 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3651 		return 0;	/* not PCI-X capable */
3652 	reg = readl(mmio + MV_PCI_MODE);
3653 	if ((reg & MV_PCI_MODE_MASK) == 0)
3654 		return 0;	/* conventional PCI mode */
3655 	return 1;	/* chip is in PCI-X mode */
3656 }
3657 
3658 static int mv_pci_cut_through_okay(struct ata_host *host)
3659 {
3660 	struct mv_host_priv *hpriv = host->private_data;
3661 	void __iomem *mmio = hpriv->base;
3662 	u32 reg;
3663 
3664 	if (!mv_in_pcix_mode(host)) {
3665 		reg = readl(mmio + MV_PCI_COMMAND);
3666 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3667 			return 0; /* not okay */
3668 	}
3669 	return 1; /* okay */
3670 }
3671 
3672 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3673 {
3674 	struct mv_host_priv *hpriv = host->private_data;
3675 	void __iomem *mmio = hpriv->base;
3676 
3677 	/* workaround for 60x1-B2 errata PCI#7 */
3678 	if (mv_in_pcix_mode(host)) {
3679 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3680 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3681 	}
3682 }
3683 
3684 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3685 {
3686 	struct pci_dev *pdev = to_pci_dev(host->dev);
3687 	struct mv_host_priv *hpriv = host->private_data;
3688 	u32 hp_flags = hpriv->hp_flags;
3689 
3690 	switch (board_idx) {
3691 	case chip_5080:
3692 		hpriv->ops = &mv5xxx_ops;
3693 		hp_flags |= MV_HP_GEN_I;
3694 
3695 		switch (pdev->revision) {
3696 		case 0x1:
3697 			hp_flags |= MV_HP_ERRATA_50XXB0;
3698 			break;
3699 		case 0x3:
3700 			hp_flags |= MV_HP_ERRATA_50XXB2;
3701 			break;
3702 		default:
3703 			dev_printk(KERN_WARNING, &pdev->dev,
3704 			   "Applying 50XXB2 workarounds to unknown rev\n");
3705 			hp_flags |= MV_HP_ERRATA_50XXB2;
3706 			break;
3707 		}
3708 		break;
3709 
3710 	case chip_504x:
3711 	case chip_508x:
3712 		hpriv->ops = &mv5xxx_ops;
3713 		hp_flags |= MV_HP_GEN_I;
3714 
3715 		switch (pdev->revision) {
3716 		case 0x0:
3717 			hp_flags |= MV_HP_ERRATA_50XXB0;
3718 			break;
3719 		case 0x3:
3720 			hp_flags |= MV_HP_ERRATA_50XXB2;
3721 			break;
3722 		default:
3723 			dev_printk(KERN_WARNING, &pdev->dev,
3724 			   "Applying B2 workarounds to unknown rev\n");
3725 			hp_flags |= MV_HP_ERRATA_50XXB2;
3726 			break;
3727 		}
3728 		break;
3729 
3730 	case chip_604x:
3731 	case chip_608x:
3732 		hpriv->ops = &mv6xxx_ops;
3733 		hp_flags |= MV_HP_GEN_II;
3734 
3735 		switch (pdev->revision) {
3736 		case 0x7:
3737 			mv_60x1b2_errata_pci7(host);
3738 			hp_flags |= MV_HP_ERRATA_60X1B2;
3739 			break;
3740 		case 0x9:
3741 			hp_flags |= MV_HP_ERRATA_60X1C0;
3742 			break;
3743 		default:
3744 			dev_printk(KERN_WARNING, &pdev->dev,
3745 				   "Applying B2 workarounds to unknown rev\n");
3746 			hp_flags |= MV_HP_ERRATA_60X1B2;
3747 			break;
3748 		}
3749 		break;
3750 
3751 	case chip_7042:
3752 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3753 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3754 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3755 		{
3756 			/*
3757 			 * Highpoint RocketRAID PCIe 23xx series cards:
3758 			 *
3759 			 * Unconfigured drives are treated as "Legacy"
3760 			 * by the BIOS, and it overwrites sector 8 with
3761 			 * a "Lgcy" metadata block prior to Linux boot.
3762 			 *
3763 			 * Configured drives (RAID or JBOD) leave sector 8
3764 			 * alone, but instead overwrite a high numbered
3765 			 * sector for the RAID metadata.  This sector can
3766 			 * be determined exactly, by truncating the physical
3767 			 * drive capacity to a nice even GB value.
3768 			 *
3769 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3770 			 *
3771 			 * Warn the user, lest they think we're just buggy.
3772 			 */
3773 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3774 				" BIOS CORRUPTS DATA on all attached drives,"
3775 				" regardless of if/how they are configured."
3776 				" BEWARE!\n");
3777 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3778 				" use sectors 8-9 on \"Legacy\" drives,"
3779 				" and avoid the final two gigabytes on"
3780 				" all RocketRAID BIOS initialized drives.\n");
3781 		}
3782 		/* drop through */
3783 	case chip_6042:
3784 		hpriv->ops = &mv6xxx_ops;
3785 		hp_flags |= MV_HP_GEN_IIE;
3786 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3787 			hp_flags |= MV_HP_CUT_THROUGH;
3788 
3789 		switch (pdev->revision) {
3790 		case 0x2: /* Rev.B0: the first/only public release */
3791 			hp_flags |= MV_HP_ERRATA_60X1C0;
3792 			break;
3793 		default:
3794 			dev_printk(KERN_WARNING, &pdev->dev,
3795 			   "Applying 60X1C0 workarounds to unknown rev\n");
3796 			hp_flags |= MV_HP_ERRATA_60X1C0;
3797 			break;
3798 		}
3799 		break;
3800 	case chip_soc:
3801 		if (soc_is_65n(hpriv))
3802 			hpriv->ops = &mv_soc_65n_ops;
3803 		else
3804 			hpriv->ops = &mv_soc_ops;
3805 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3806 			MV_HP_ERRATA_60X1C0;
3807 		break;
3808 
3809 	default:
3810 		dev_printk(KERN_ERR, host->dev,
3811 			   "BUG: invalid board index %u\n", board_idx);
3812 		return 1;
3813 	}
3814 
3815 	hpriv->hp_flags = hp_flags;
3816 	if (hp_flags & MV_HP_PCIE) {
3817 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3818 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3819 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3820 	} else {
3821 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3822 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3823 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
3829 /**
3830  *      mv_init_host - Perform some early initialization of the host.
3831  *	@host: ATA host to initialize
3832  *      @board_idx: controller index
3833  *
3834  *      If possible, do an early global reset of the host.  Then do
3835  *      our port init and clear/unmask all/relevant host interrupts.
3836  *
3837  *      LOCKING:
3838  *      Inherited from caller.
3839  */
3840 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3841 {
3842 	int rc = 0, n_hc, port, hc;
3843 	struct mv_host_priv *hpriv = host->private_data;
3844 	void __iomem *mmio = hpriv->base;
3845 
3846 	rc = mv_chip_id(host, board_idx);
3847 	if (rc)
3848 		goto done;
3849 
3850 	if (IS_SOC(hpriv)) {
3851 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3852 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3853 	} else {
3854 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3855 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3856 	}
3857 
3858 	/* initialize shadow irq mask with register's value */
3859 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3860 
3861 	/* global interrupt mask: 0 == mask everything */
3862 	mv_set_main_irq_mask(host, ~0, 0);
3863 
3864 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3865 
3866 	for (port = 0; port < host->n_ports; port++)
3867 		if (hpriv->ops->read_preamp)
3868 			hpriv->ops->read_preamp(hpriv, port, mmio);
3869 
3870 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3871 	if (rc)
3872 		goto done;
3873 
3874 	hpriv->ops->reset_flash(hpriv, mmio);
3875 	hpriv->ops->reset_bus(host, mmio);
3876 	hpriv->ops->enable_leds(hpriv, mmio);
3877 
3878 	for (port = 0; port < host->n_ports; port++) {
3879 		struct ata_port *ap = host->ports[port];
3880 		void __iomem *port_mmio = mv_port_base(mmio, port);
3881 
3882 		mv_port_init(&ap->ioaddr, port_mmio);
3883 
3884 #ifdef CONFIG_PCI
3885 		if (!IS_SOC(hpriv)) {
3886 			unsigned int offset = port_mmio - mmio;
3887 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3888 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3889 		}
3890 #endif
3891 	}
3892 
3893 	for (hc = 0; hc < n_hc; hc++) {
3894 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3895 
3896 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3897 			"(before clear)=0x%08x\n", hc,
3898 			readl(hc_mmio + HC_CFG),
3899 			readl(hc_mmio + HC_IRQ_CAUSE));
3900 
3901 		/* Clear any currently outstanding hc interrupt conditions */
3902 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3903 	}
3904 
3905 	if (!IS_SOC(hpriv)) {
3906 		/* Clear any currently outstanding host interrupt conditions */
3907 		writelfl(0, mmio + hpriv->irq_cause_offset);
3908 
3909 		/* and unmask interrupt generation for host regs */
3910 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3911 	}
3912 
3913 	/*
3914 	 * enable only global host interrupts for now.
3915 	 * The per-port interrupts get done later as ports are set up.
3916 	 */
3917 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3918 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3919 				    irq_coalescing_usecs);
3920 done:
3921 	return rc;
3922 }
3923 
3924 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3925 {
3926 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3927 							     MV_CRQB_Q_SZ, 0);
3928 	if (!hpriv->crqb_pool)
3929 		return -ENOMEM;
3930 
3931 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3932 							     MV_CRPB_Q_SZ, 0);
3933 	if (!hpriv->crpb_pool)
3934 		return -ENOMEM;
3935 
3936 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3937 							     MV_SG_TBL_SZ, 0);
3938 	if (!hpriv->sg_tbl_pool)
3939 		return -ENOMEM;
3940 
3941 	return 0;
3942 }
3943 
3944 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3945 				 struct mbus_dram_target_info *dram)
3946 {
3947 	int i;
3948 
3949 	for (i = 0; i < 4; i++) {
3950 		writel(0, hpriv->base + WINDOW_CTRL(i));
3951 		writel(0, hpriv->base + WINDOW_BASE(i));
3952 	}
3953 
3954 	for (i = 0; i < dram->num_cs; i++) {
3955 		struct mbus_dram_window *cs = dram->cs + i;
3956 
3957 		writel(((cs->size - 1) & 0xffff0000) |
3958 			(cs->mbus_attr << 8) |
3959 			(dram->mbus_dram_target_id << 4) | 1,
3960 			hpriv->base + WINDOW_CTRL(i));
3961 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3962 	}
3963 }
3964 
3965 /**
3966  *      mv_platform_probe - handle a positive probe of an soc Marvell
3967  *      host
3968  *      @pdev: platform device found
3969  *
3970  *      LOCKING:
3971  *      Inherited from caller.
3972  */
3973 static int mv_platform_probe(struct platform_device *pdev)
3974 {
3975 	static int printed_version;
3976 	const struct mv_sata_platform_data *mv_platform_data;
3977 	const struct ata_port_info *ppi[] =
3978 	    { &mv_port_info[chip_soc], NULL };
3979 	struct ata_host *host;
3980 	struct mv_host_priv *hpriv;
3981 	struct resource *res;
3982 	int n_ports, rc;
3983 
3984 	if (!printed_version++)
3985 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3986 
3987 	/*
3988 	 * Simple resource validation ..
3989 	 */
3990 	if (unlikely(pdev->num_resources != 2)) {
3991 		dev_err(&pdev->dev, "invalid number of resources\n");
3992 		return -EINVAL;
3993 	}
3994 
3995 	/*
3996 	 * Get the register base first
3997 	 */
3998 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3999 	if (res == NULL)
4000 		return -EINVAL;
4001 
4002 	/* allocate host */
4003 	mv_platform_data = pdev->dev.platform_data;
4004 	n_ports = mv_platform_data->n_ports;
4005 
4006 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4007 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4008 
4009 	if (!host || !hpriv)
4010 		return -ENOMEM;
4011 	host->private_data = hpriv;
4012 	hpriv->n_ports = n_ports;
4013 
4014 	host->iomap = NULL;
4015 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4016 				   res->end - res->start + 1);
4017 	hpriv->base -= SATAHC0_REG_BASE;
4018 
4019 	/*
4020 	 * (Re-)program MBUS remapping windows if we are asked to.
4021 	 */
4022 	if (mv_platform_data->dram != NULL)
4023 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4024 
4025 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4026 	if (rc)
4027 		return rc;
4028 
4029 	/* initialize adapter */
4030 	rc = mv_init_host(host, chip_soc);
4031 	if (rc)
4032 		return rc;
4033 
4034 	dev_printk(KERN_INFO, &pdev->dev,
4035 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4036 		   host->n_ports);
4037 
4038 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4039 				 IRQF_SHARED, &mv6_sht);
4040 }
4041 
4042 /*
4043  *
4044  *      mv_platform_remove    -       unplug a platform interface
4045  *      @pdev: platform device
4046  *
4047  *      A platform bus SATA device has been unplugged. Perform the needed
4048  *      cleanup. Also called on module unload for any active devices.
4049  */
4050 static int __devexit mv_platform_remove(struct platform_device *pdev)
4051 {
4052 	struct device *dev = &pdev->dev;
4053 	struct ata_host *host = dev_get_drvdata(dev);
4054 
4055 	ata_host_detach(host);
4056 	return 0;
4057 }
4058 
4059 static struct platform_driver mv_platform_driver = {
4060 	.probe			= mv_platform_probe,
4061 	.remove			= __devexit_p(mv_platform_remove),
4062 	.driver			= {
4063 				   .name = DRV_NAME,
4064 				   .owner = THIS_MODULE,
4065 				  },
4066 };
4067 
4068 
4069 #ifdef CONFIG_PCI
4070 static int mv_pci_init_one(struct pci_dev *pdev,
4071 			   const struct pci_device_id *ent);
4072 
4073 
4074 static struct pci_driver mv_pci_driver = {
4075 	.name			= DRV_NAME,
4076 	.id_table		= mv_pci_tbl,
4077 	.probe			= mv_pci_init_one,
4078 	.remove			= ata_pci_remove_one,
4079 };
4080 
4081 /* move to PCI layer or libata core? */
4082 static int pci_go_64(struct pci_dev *pdev)
4083 {
4084 	int rc;
4085 
4086 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4087 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4088 		if (rc) {
4089 			rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4090 			if (rc) {
4091 				dev_printk(KERN_ERR, &pdev->dev,
4092 					   "64-bit DMA enable failed\n");
4093 				return rc;
4094 			}
4095 		}
4096 	} else {
4097 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4098 		if (rc) {
4099 			dev_printk(KERN_ERR, &pdev->dev,
4100 				   "32-bit DMA enable failed\n");
4101 			return rc;
4102 		}
4103 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4104 		if (rc) {
4105 			dev_printk(KERN_ERR, &pdev->dev,
4106 				   "32-bit consistent DMA enable failed\n");
4107 			return rc;
4108 		}
4109 	}
4110 
4111 	return rc;
4112 }
4113 
4114 /**
4115  *      mv_print_info - Dump key info to kernel log for perusal.
4116  *      @host: ATA host to print info about
4117  *
4118  *      FIXME: complete this.
4119  *
4120  *      LOCKING:
4121  *      Inherited from caller.
4122  */
4123 static void mv_print_info(struct ata_host *host)
4124 {
4125 	struct pci_dev *pdev = to_pci_dev(host->dev);
4126 	struct mv_host_priv *hpriv = host->private_data;
4127 	u8 scc;
4128 	const char *scc_s, *gen;
4129 
4130 	/* Use this to determine the HW stepping of the chip so we know
4131 	 * what errata to workaround
4132 	 */
4133 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4134 	if (scc == 0)
4135 		scc_s = "SCSI";
4136 	else if (scc == 0x01)
4137 		scc_s = "RAID";
4138 	else
4139 		scc_s = "?";
4140 
4141 	if (IS_GEN_I(hpriv))
4142 		gen = "I";
4143 	else if (IS_GEN_II(hpriv))
4144 		gen = "II";
4145 	else if (IS_GEN_IIE(hpriv))
4146 		gen = "IIE";
4147 	else
4148 		gen = "?";
4149 
4150 	dev_printk(KERN_INFO, &pdev->dev,
4151 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4152 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4153 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4154 }
4155 
4156 /**
4157  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4158  *      @pdev: PCI device found
4159  *      @ent: PCI device ID entry for the matched host
4160  *
4161  *      LOCKING:
4162  *      Inherited from caller.
4163  */
4164 static int mv_pci_init_one(struct pci_dev *pdev,
4165 			   const struct pci_device_id *ent)
4166 {
4167 	static int printed_version;
4168 	unsigned int board_idx = (unsigned int)ent->driver_data;
4169 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4170 	struct ata_host *host;
4171 	struct mv_host_priv *hpriv;
4172 	int n_ports, rc;
4173 
4174 	if (!printed_version++)
4175 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4176 
4177 	/* allocate host */
4178 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4179 
4180 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4181 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4182 	if (!host || !hpriv)
4183 		return -ENOMEM;
4184 	host->private_data = hpriv;
4185 	hpriv->n_ports = n_ports;
4186 
4187 	/* acquire resources */
4188 	rc = pcim_enable_device(pdev);
4189 	if (rc)
4190 		return rc;
4191 
4192 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4193 	if (rc == -EBUSY)
4194 		pcim_pin_device(pdev);
4195 	if (rc)
4196 		return rc;
4197 	host->iomap = pcim_iomap_table(pdev);
4198 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4199 
4200 	rc = pci_go_64(pdev);
4201 	if (rc)
4202 		return rc;
4203 
4204 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4205 	if (rc)
4206 		return rc;
4207 
4208 	/* initialize adapter */
4209 	rc = mv_init_host(host, board_idx);
4210 	if (rc)
4211 		return rc;
4212 
4213 	/* Enable message-switched interrupts, if requested */
4214 	if (msi && pci_enable_msi(pdev) == 0)
4215 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4216 
4217 	mv_dump_pci_cfg(pdev, 0x68);
4218 	mv_print_info(host);
4219 
4220 	pci_set_master(pdev);
4221 	pci_try_set_mwi(pdev);
4222 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4223 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4224 }
4225 #endif
4226 
4227 static int mv_platform_probe(struct platform_device *pdev);
4228 static int __devexit mv_platform_remove(struct platform_device *pdev);
4229 
4230 static int __init mv_init(void)
4231 {
4232 	int rc = -ENODEV;
4233 #ifdef CONFIG_PCI
4234 	rc = pci_register_driver(&mv_pci_driver);
4235 	if (rc < 0)
4236 		return rc;
4237 #endif
4238 	rc = platform_driver_register(&mv_platform_driver);
4239 
4240 #ifdef CONFIG_PCI
4241 	if (rc < 0)
4242 		pci_unregister_driver(&mv_pci_driver);
4243 #endif
4244 	return rc;
4245 }
4246 
4247 static void __exit mv_exit(void)
4248 {
4249 #ifdef CONFIG_PCI
4250 	pci_unregister_driver(&mv_pci_driver);
4251 #endif
4252 	platform_driver_unregister(&mv_platform_driver);
4253 }
4254 
4255 MODULE_AUTHOR("Brett Russ");
4256 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4257 MODULE_LICENSE("GPL");
4258 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4259 MODULE_VERSION(DRV_VERSION);
4260 MODULE_ALIAS("platform:" DRV_NAME);
4261 
4262 module_init(mv_init);
4263 module_exit(mv_exit);
4264