xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 732a675a)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 /*
26  * sata_mv TODO list:
27  *
28  * --> Errata workaround for NCQ device errors.
29  *
30  * --> More errata workarounds for PCI-X.
31  *
32  * --> Complete a full errata audit for all chipsets to identify others.
33  *
34  * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35  *
36  * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37  *
38  * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39  *
40  * --> Develop a low-power-consumption strategy, and implement it.
41  *
42  * --> [Experiment, low priority] Investigate interrupt coalescing.
43  *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
44  *       the overhead reduced by interrupt mitigation is quite often not
45  *       worth the latency cost.
46  *
47  * --> [Experiment, Marvell value added] Is it possible to use target
48  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
49  *       creating LibATA target mode support would be very interesting.
50  *
51  *       Target mode, for those without docs, is the ability to directly
52  *       connect two SATA ports.
53  */
54 
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
73 
74 #define DRV_NAME	"sata_mv"
75 #define DRV_VERSION	"1.24"
76 
77 enum {
78 	/* BAR's are enumerated in terms of pci_resource_start() terms */
79 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
80 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
81 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
82 
83 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
84 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
85 
86 	MV_PCI_REG_BASE		= 0,
87 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
88 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
89 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
90 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
91 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
92 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
93 
94 	MV_SATAHC0_REG_BASE	= 0x20000,
95 	MV_FLASH_CTL_OFS	= 0x1046c,
96 	MV_GPIO_PORT_CTL_OFS	= 0x104f0,
97 	MV_RESET_CFG_OFS	= 0x180d8,
98 
99 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
100 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
101 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
102 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
103 
104 	MV_MAX_Q_DEPTH		= 32,
105 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
106 
107 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 	 * CRPB needs alignment on a 256B boundary. Size == 256B
109 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
110 	 */
111 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
112 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
113 	MV_MAX_SG_CT		= 256,
114 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
115 
116 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 	MV_PORT_HC_SHIFT	= 2,
118 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
119 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
121 
122 	/* Host Flags */
123 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
124 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
125 
126 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
127 				  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
128 				  ATA_FLAG_PIO_POLLING,
129 
130 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
131 
132 	MV_GENIIE_FLAGS		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
133 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
134 				  ATA_FLAG_NCQ | ATA_FLAG_AN,
135 
136 	CRQB_FLAG_READ		= (1 << 0),
137 	CRQB_TAG_SHIFT		= 1,
138 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
139 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
140 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
141 	CRQB_CMD_ADDR_SHIFT	= 8,
142 	CRQB_CMD_CS		= (0x2 << 11),
143 	CRQB_CMD_LAST		= (1 << 15),
144 
145 	CRPB_FLAG_STATUS_SHIFT	= 8,
146 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
147 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
148 
149 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
150 
151 	/* PCI interface registers */
152 
153 	PCI_COMMAND_OFS		= 0xc00,
154 	PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
155 
156 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
157 	STOP_PCI_MASTER		= (1 << 2),
158 	PCI_MASTER_EMPTY	= (1 << 3),
159 	GLOB_SFT_RST		= (1 << 4),
160 
161 	MV_PCI_MODE_OFS		= 0xd00,
162 	MV_PCI_MODE_MASK	= 0x30,
163 
164 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
165 	MV_PCI_DISC_TIMER	= 0xd04,
166 	MV_PCI_MSI_TRIGGER	= 0xc38,
167 	MV_PCI_SERR_MASK	= 0xc28,
168 	MV_PCI_XBAR_TMOUT_OFS	= 0x1d04,
169 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
170 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
171 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
172 	MV_PCI_ERR_COMMAND	= 0x1d50,
173 
174 	PCI_IRQ_CAUSE_OFS	= 0x1d58,
175 	PCI_IRQ_MASK_OFS	= 0x1d5c,
176 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
177 
178 	PCIE_IRQ_CAUSE_OFS	= 0x1900,
179 	PCIE_IRQ_MASK_OFS	= 0x1910,
180 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
181 
182 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 	PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
184 	PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
185 	SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
186 	SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
187 	ERR_IRQ			= (1 << 0),	/* shift by port # */
188 	DONE_IRQ		= (1 << 1),	/* shift by port # */
189 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
190 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
191 	PCI_ERR			= (1 << 18),
192 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
193 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
194 	PORTS_0_3_COAL_DONE	= (1 << 8),
195 	PORTS_4_7_COAL_DONE	= (1 << 17),
196 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
197 	GPIO_INT		= (1 << 22),
198 	SELF_INT		= (1 << 23),
199 	TWSI_INT		= (1 << 24),
200 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
201 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
202 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
203 
204 	/* SATAHC registers */
205 	HC_CFG_OFS		= 0,
206 
207 	HC_IRQ_CAUSE_OFS	= 0x14,
208 	DMA_IRQ			= (1 << 0),	/* shift by port # */
209 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
210 	DEV_IRQ			= (1 << 8),	/* shift by port # */
211 
212 	/* Shadow block registers */
213 	SHD_BLK_OFS		= 0x100,
214 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
215 
216 	/* SATA registers */
217 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
218 	SATA_ACTIVE_OFS		= 0x350,
219 	SATA_FIS_IRQ_CAUSE_OFS	= 0x364,
220 	SATA_FIS_IRQ_AN		= (1 << 9),	/* async notification */
221 
222 	LTMODE_OFS		= 0x30c,
223 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
224 
225 	PHY_MODE3		= 0x310,
226 	PHY_MODE4		= 0x314,
227 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
228 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
229 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
230 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
231 
232 	PHY_MODE2		= 0x330,
233 	SATA_IFCTL_OFS		= 0x344,
234 	SATA_TESTCTL_OFS	= 0x348,
235 	SATA_IFSTAT_OFS		= 0x34c,
236 	VENDOR_UNIQUE_FIS_OFS	= 0x35c,
237 
238 	FISCFG_OFS		= 0x360,
239 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
240 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
241 
242 	MV5_PHY_MODE		= 0x74,
243 	MV5_LTMODE_OFS		= 0x30,
244 	MV5_PHY_CTL_OFS		= 0x0C,
245 	SATA_INTERFACE_CFG_OFS	= 0x050,
246 
247 	MV_M2_PREAMP_MASK	= 0x7e0,
248 
249 	/* Port registers */
250 	EDMA_CFG_OFS		= 0,
251 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
252 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
253 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
254 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
255 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
256 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
257 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
258 
259 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
260 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
261 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
262 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
263 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
264 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
265 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
266 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
267 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
268 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
269 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
270 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
271 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
272 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
273 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
274 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
275 
276 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
277 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
278 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
279 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
280 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
281 
282 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
283 
284 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
285 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
286 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
287 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
288 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
289 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
290 
291 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
292 
293 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
294 	EDMA_ERR_OVERRUN_5	= (1 << 5),
295 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
296 
297 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
298 				  EDMA_ERR_LNK_CTRL_RX_1 |
299 				  EDMA_ERR_LNK_CTRL_RX_3 |
300 				  EDMA_ERR_LNK_CTRL_TX,
301 
302 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
303 				  EDMA_ERR_PRD_PAR |
304 				  EDMA_ERR_DEV_DCON |
305 				  EDMA_ERR_DEV_CON |
306 				  EDMA_ERR_SERR |
307 				  EDMA_ERR_SELF_DIS |
308 				  EDMA_ERR_CRQB_PAR |
309 				  EDMA_ERR_CRPB_PAR |
310 				  EDMA_ERR_INTRL_PAR |
311 				  EDMA_ERR_IORDY |
312 				  EDMA_ERR_LNK_CTRL_RX_2 |
313 				  EDMA_ERR_LNK_DATA_RX |
314 				  EDMA_ERR_LNK_DATA_TX |
315 				  EDMA_ERR_TRANS_PROTO,
316 
317 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
318 				  EDMA_ERR_PRD_PAR |
319 				  EDMA_ERR_DEV_DCON |
320 				  EDMA_ERR_DEV_CON |
321 				  EDMA_ERR_OVERRUN_5 |
322 				  EDMA_ERR_UNDERRUN_5 |
323 				  EDMA_ERR_SELF_DIS_5 |
324 				  EDMA_ERR_CRQB_PAR |
325 				  EDMA_ERR_CRPB_PAR |
326 				  EDMA_ERR_INTRL_PAR |
327 				  EDMA_ERR_IORDY,
328 
329 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
330 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
331 
332 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
333 	EDMA_REQ_Q_PTR_SHIFT	= 5,
334 
335 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
336 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
337 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
338 	EDMA_RSP_Q_PTR_SHIFT	= 3,
339 
340 	EDMA_CMD_OFS		= 0x28,		/* EDMA command register */
341 	EDMA_EN			= (1 << 0),	/* enable EDMA */
342 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
343 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
344 
345 	EDMA_STATUS_OFS		= 0x30,		/* EDMA engine status */
346 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
347 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
348 
349 	EDMA_IORDY_TMOUT_OFS	= 0x34,
350 	EDMA_ARB_CFG_OFS	= 0x38,
351 
352 	EDMA_HALTCOND_OFS	= 0x60,		/* GenIIe halt conditions */
353 
354 	GEN_II_NCQ_MAX_SECTORS	= 256,		/* max sects/io on Gen2 w/NCQ */
355 
356 	/* Host private flags (hp_flags) */
357 	MV_HP_FLAG_MSI		= (1 << 0),
358 	MV_HP_ERRATA_50XXB0	= (1 << 1),
359 	MV_HP_ERRATA_50XXB2	= (1 << 2),
360 	MV_HP_ERRATA_60X1B2	= (1 << 3),
361 	MV_HP_ERRATA_60X1C0	= (1 << 4),
362 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
363 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
364 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
365 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
366 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
367 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
368 
369 	/* Port private flags (pp_flags) */
370 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
371 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
372 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
373 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
374 };
375 
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
381 
382 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
384 
385 enum {
386 	/* DMA boundary 0xffff is required by the s/g splitting
387 	 * we need on /length/ in mv_fill-sg().
388 	 */
389 	MV_DMA_BOUNDARY		= 0xffffU,
390 
391 	/* mask of register bits containing lower 32 bits
392 	 * of EDMA request queue DMA address
393 	 */
394 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
395 
396 	/* ditto, for response queue */
397 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
398 };
399 
400 enum chip_type {
401 	chip_504x,
402 	chip_508x,
403 	chip_5080,
404 	chip_604x,
405 	chip_608x,
406 	chip_6042,
407 	chip_7042,
408 	chip_soc,
409 };
410 
411 /* Command ReQuest Block: 32B */
412 struct mv_crqb {
413 	__le32			sg_addr;
414 	__le32			sg_addr_hi;
415 	__le16			ctrl_flags;
416 	__le16			ata_cmd[11];
417 };
418 
419 struct mv_crqb_iie {
420 	__le32			addr;
421 	__le32			addr_hi;
422 	__le32			flags;
423 	__le32			len;
424 	__le32			ata_cmd[4];
425 };
426 
427 /* Command ResPonse Block: 8B */
428 struct mv_crpb {
429 	__le16			id;
430 	__le16			flags;
431 	__le32			tmstmp;
432 };
433 
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
435 struct mv_sg {
436 	__le32			addr;
437 	__le32			flags_size;
438 	__le32			addr_hi;
439 	__le32			reserved;
440 };
441 
442 struct mv_port_priv {
443 	struct mv_crqb		*crqb;
444 	dma_addr_t		crqb_dma;
445 	struct mv_crpb		*crpb;
446 	dma_addr_t		crpb_dma;
447 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
448 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
449 
450 	unsigned int		req_idx;
451 	unsigned int		resp_idx;
452 
453 	u32			pp_flags;
454 	unsigned int		delayed_eh_pmp_map;
455 };
456 
457 struct mv_port_signal {
458 	u32			amps;
459 	u32			pre;
460 };
461 
462 struct mv_host_priv {
463 	u32			hp_flags;
464 	u32			main_irq_mask;
465 	struct mv_port_signal	signal[8];
466 	const struct mv_hw_ops	*ops;
467 	int			n_ports;
468 	void __iomem		*base;
469 	void __iomem		*main_irq_cause_addr;
470 	void __iomem		*main_irq_mask_addr;
471 	u32			irq_cause_ofs;
472 	u32			irq_mask_ofs;
473 	u32			unmask_all_irqs;
474 	/*
475 	 * These consistent DMA memory pools give us guaranteed
476 	 * alignment for hardware-accessed data structures,
477 	 * and less memory waste in accomplishing the alignment.
478 	 */
479 	struct dma_pool		*crqb_pool;
480 	struct dma_pool		*crpb_pool;
481 	struct dma_pool		*sg_tbl_pool;
482 };
483 
484 struct mv_hw_ops {
485 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
486 			   unsigned int port);
487 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
489 			   void __iomem *mmio);
490 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
491 			unsigned int n_hc);
492 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
493 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
494 };
495 
496 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
497 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
498 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
499 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
500 static int mv_port_start(struct ata_port *ap);
501 static void mv_port_stop(struct ata_port *ap);
502 static int mv_qc_defer(struct ata_queued_cmd *qc);
503 static void mv_qc_prep(struct ata_queued_cmd *qc);
504 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
506 static int mv_hardreset(struct ata_link *link, unsigned int *class,
507 			unsigned long deadline);
508 static void mv_eh_freeze(struct ata_port *ap);
509 static void mv_eh_thaw(struct ata_port *ap);
510 static void mv6_dev_config(struct ata_device *dev);
511 
512 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
513 			   unsigned int port);
514 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
516 			   void __iomem *mmio);
517 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
518 			unsigned int n_hc);
519 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
521 
522 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
523 			   unsigned int port);
524 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
526 			   void __iomem *mmio);
527 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
528 			unsigned int n_hc);
529 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
530 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
531 				      void __iomem *mmio);
532 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
533 				      void __iomem *mmio);
534 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
535 				  void __iomem *mmio, unsigned int n_hc);
536 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
537 				      void __iomem *mmio);
538 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
539 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
540 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
541 			     unsigned int port_no);
542 static int mv_stop_edma(struct ata_port *ap);
543 static int mv_stop_edma_engine(void __iomem *port_mmio);
544 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
545 
546 static void mv_pmp_select(struct ata_port *ap, int pmp);
547 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
548 				unsigned long deadline);
549 static int  mv_softreset(struct ata_link *link, unsigned int *class,
550 				unsigned long deadline);
551 static void mv_pmp_error_handler(struct ata_port *ap);
552 static void mv_process_crpb_entries(struct ata_port *ap,
553 					struct mv_port_priv *pp);
554 
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556  * because we have to allow room for worst case splitting of
557  * PRDs for 64K boundaries in mv_fill_sg().
558  */
559 static struct scsi_host_template mv5_sht = {
560 	ATA_BASE_SHT(DRV_NAME),
561 	.sg_tablesize		= MV_MAX_SG_CT / 2,
562 	.dma_boundary		= MV_DMA_BOUNDARY,
563 };
564 
565 static struct scsi_host_template mv6_sht = {
566 	ATA_NCQ_SHT(DRV_NAME),
567 	.can_queue		= MV_MAX_Q_DEPTH - 1,
568 	.sg_tablesize		= MV_MAX_SG_CT / 2,
569 	.dma_boundary		= MV_DMA_BOUNDARY,
570 };
571 
572 static struct ata_port_operations mv5_ops = {
573 	.inherits		= &ata_sff_port_ops,
574 
575 	.qc_defer		= mv_qc_defer,
576 	.qc_prep		= mv_qc_prep,
577 	.qc_issue		= mv_qc_issue,
578 
579 	.freeze			= mv_eh_freeze,
580 	.thaw			= mv_eh_thaw,
581 	.hardreset		= mv_hardreset,
582 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
583 	.post_internal_cmd	= ATA_OP_NULL,
584 
585 	.scr_read		= mv5_scr_read,
586 	.scr_write		= mv5_scr_write,
587 
588 	.port_start		= mv_port_start,
589 	.port_stop		= mv_port_stop,
590 };
591 
592 static struct ata_port_operations mv6_ops = {
593 	.inherits		= &mv5_ops,
594 	.dev_config             = mv6_dev_config,
595 	.scr_read		= mv_scr_read,
596 	.scr_write		= mv_scr_write,
597 
598 	.pmp_hardreset		= mv_pmp_hardreset,
599 	.pmp_softreset		= mv_softreset,
600 	.softreset		= mv_softreset,
601 	.error_handler		= mv_pmp_error_handler,
602 };
603 
604 static struct ata_port_operations mv_iie_ops = {
605 	.inherits		= &mv6_ops,
606 	.dev_config		= ATA_OP_NULL,
607 	.qc_prep		= mv_qc_prep_iie,
608 };
609 
610 static const struct ata_port_info mv_port_info[] = {
611 	{  /* chip_504x */
612 		.flags		= MV_COMMON_FLAGS,
613 		.pio_mask	= 0x1f,	/* pio0-4 */
614 		.udma_mask	= ATA_UDMA6,
615 		.port_ops	= &mv5_ops,
616 	},
617 	{  /* chip_508x */
618 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 		.pio_mask	= 0x1f,	/* pio0-4 */
620 		.udma_mask	= ATA_UDMA6,
621 		.port_ops	= &mv5_ops,
622 	},
623 	{  /* chip_5080 */
624 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
625 		.pio_mask	= 0x1f,	/* pio0-4 */
626 		.udma_mask	= ATA_UDMA6,
627 		.port_ops	= &mv5_ops,
628 	},
629 	{  /* chip_604x */
630 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
631 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
632 				  ATA_FLAG_NCQ,
633 		.pio_mask	= 0x1f,	/* pio0-4 */
634 		.udma_mask	= ATA_UDMA6,
635 		.port_ops	= &mv6_ops,
636 	},
637 	{  /* chip_608x */
638 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
639 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
640 				  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
641 		.pio_mask	= 0x1f,	/* pio0-4 */
642 		.udma_mask	= ATA_UDMA6,
643 		.port_ops	= &mv6_ops,
644 	},
645 	{  /* chip_6042 */
646 		.flags		= MV_GENIIE_FLAGS,
647 		.pio_mask	= 0x1f,	/* pio0-4 */
648 		.udma_mask	= ATA_UDMA6,
649 		.port_ops	= &mv_iie_ops,
650 	},
651 	{  /* chip_7042 */
652 		.flags		= MV_GENIIE_FLAGS,
653 		.pio_mask	= 0x1f,	/* pio0-4 */
654 		.udma_mask	= ATA_UDMA6,
655 		.port_ops	= &mv_iie_ops,
656 	},
657 	{  /* chip_soc */
658 		.flags		= MV_GENIIE_FLAGS,
659 		.pio_mask	= 0x1f,	/* pio0-4 */
660 		.udma_mask	= ATA_UDMA6,
661 		.port_ops	= &mv_iie_ops,
662 	},
663 };
664 
665 static const struct pci_device_id mv_pci_tbl[] = {
666 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
667 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
668 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
669 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
670 	/* RocketRAID 1740/174x have different identifiers */
671 	{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
672 	{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
673 
674 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
675 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
676 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
677 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
678 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
679 
680 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
681 
682 	/* Adaptec 1430SA */
683 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
684 
685 	/* Marvell 7042 support */
686 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
687 
688 	/* Highpoint RocketRAID PCIe series */
689 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
690 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
691 
692 	{ }			/* terminate list */
693 };
694 
695 static const struct mv_hw_ops mv5xxx_ops = {
696 	.phy_errata		= mv5_phy_errata,
697 	.enable_leds		= mv5_enable_leds,
698 	.read_preamp		= mv5_read_preamp,
699 	.reset_hc		= mv5_reset_hc,
700 	.reset_flash		= mv5_reset_flash,
701 	.reset_bus		= mv5_reset_bus,
702 };
703 
704 static const struct mv_hw_ops mv6xxx_ops = {
705 	.phy_errata		= mv6_phy_errata,
706 	.enable_leds		= mv6_enable_leds,
707 	.read_preamp		= mv6_read_preamp,
708 	.reset_hc		= mv6_reset_hc,
709 	.reset_flash		= mv6_reset_flash,
710 	.reset_bus		= mv_reset_pci_bus,
711 };
712 
713 static const struct mv_hw_ops mv_soc_ops = {
714 	.phy_errata		= mv6_phy_errata,
715 	.enable_leds		= mv_soc_enable_leds,
716 	.read_preamp		= mv_soc_read_preamp,
717 	.reset_hc		= mv_soc_reset_hc,
718 	.reset_flash		= mv_soc_reset_flash,
719 	.reset_bus		= mv_soc_reset_bus,
720 };
721 
722 /*
723  * Functions
724  */
725 
726 static inline void writelfl(unsigned long data, void __iomem *addr)
727 {
728 	writel(data, addr);
729 	(void) readl(addr);	/* flush to avoid PCI posted write */
730 }
731 
732 static inline unsigned int mv_hc_from_port(unsigned int port)
733 {
734 	return port >> MV_PORT_HC_SHIFT;
735 }
736 
737 static inline unsigned int mv_hardport_from_port(unsigned int port)
738 {
739 	return port & MV_PORT_MASK;
740 }
741 
742 /*
743  * Consolidate some rather tricky bit shift calculations.
744  * This is hot-path stuff, so not a function.
745  * Simple code, with two return values, so macro rather than inline.
746  *
747  * port is the sole input, in range 0..7.
748  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
749  * hardport is the other output, in range 0..3.
750  *
751  * Note that port and hardport may be the same variable in some cases.
752  */
753 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
754 {								\
755 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
756 	hardport = mv_hardport_from_port(port);			\
757 	shift   += hardport * 2;				\
758 }
759 
760 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
761 {
762 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
763 }
764 
765 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
766 						 unsigned int port)
767 {
768 	return mv_hc_base(base, mv_hc_from_port(port));
769 }
770 
771 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
772 {
773 	return  mv_hc_base_from_port(base, port) +
774 		MV_SATAHC_ARBTR_REG_SZ +
775 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
776 }
777 
778 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
779 {
780 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
781 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
782 
783 	return hc_mmio + ofs;
784 }
785 
786 static inline void __iomem *mv_host_base(struct ata_host *host)
787 {
788 	struct mv_host_priv *hpriv = host->private_data;
789 	return hpriv->base;
790 }
791 
792 static inline void __iomem *mv_ap_base(struct ata_port *ap)
793 {
794 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
795 }
796 
797 static inline int mv_get_hc_count(unsigned long port_flags)
798 {
799 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
800 }
801 
802 static void mv_set_edma_ptrs(void __iomem *port_mmio,
803 			     struct mv_host_priv *hpriv,
804 			     struct mv_port_priv *pp)
805 {
806 	u32 index;
807 
808 	/*
809 	 * initialize request queue
810 	 */
811 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
812 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
813 
814 	WARN_ON(pp->crqb_dma & 0x3ff);
815 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
816 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
817 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
818 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
819 
820 	/*
821 	 * initialize response queue
822 	 */
823 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
824 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
825 
826 	WARN_ON(pp->crpb_dma & 0xff);
827 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
828 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
829 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
830 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
831 }
832 
833 static void mv_set_main_irq_mask(struct ata_host *host,
834 				 u32 disable_bits, u32 enable_bits)
835 {
836 	struct mv_host_priv *hpriv = host->private_data;
837 	u32 old_mask, new_mask;
838 
839 	old_mask = hpriv->main_irq_mask;
840 	new_mask = (old_mask & ~disable_bits) | enable_bits;
841 	if (new_mask != old_mask) {
842 		hpriv->main_irq_mask = new_mask;
843 		writelfl(new_mask, hpriv->main_irq_mask_addr);
844 	}
845 }
846 
847 static void mv_enable_port_irqs(struct ata_port *ap,
848 				     unsigned int port_bits)
849 {
850 	unsigned int shift, hardport, port = ap->port_no;
851 	u32 disable_bits, enable_bits;
852 
853 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
854 
855 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
856 	enable_bits  = port_bits << shift;
857 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
858 }
859 
860 /**
861  *      mv_start_dma - Enable eDMA engine
862  *      @base: port base address
863  *      @pp: port private data
864  *
865  *      Verify the local cache of the eDMA state is accurate with a
866  *      WARN_ON.
867  *
868  *      LOCKING:
869  *      Inherited from caller.
870  */
871 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
872 			 struct mv_port_priv *pp, u8 protocol)
873 {
874 	int want_ncq = (protocol == ATA_PROT_NCQ);
875 
876 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
877 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
878 		if (want_ncq != using_ncq)
879 			mv_stop_edma(ap);
880 	}
881 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
882 		struct mv_host_priv *hpriv = ap->host->private_data;
883 		int hardport = mv_hardport_from_port(ap->port_no);
884 		void __iomem *hc_mmio = mv_hc_base_from_port(
885 					mv_host_base(ap->host), hardport);
886 		u32 hc_irq_cause, ipending;
887 
888 		/* clear EDMA event indicators, if any */
889 		writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
890 
891 		/* clear EDMA interrupt indicator, if any */
892 		hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
893 		ipending = (DEV_IRQ | DMA_IRQ) << hardport;
894 		if (hc_irq_cause & ipending) {
895 			writelfl(hc_irq_cause & ~ipending,
896 				 hc_mmio + HC_IRQ_CAUSE_OFS);
897 		}
898 
899 		mv_edma_cfg(ap, want_ncq);
900 
901 		/* clear FIS IRQ Cause */
902 		if (IS_GEN_IIE(hpriv))
903 			writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
904 
905 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
906 		mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
907 
908 		writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
909 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
910 	}
911 }
912 
913 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
914 {
915 	void __iomem *port_mmio = mv_ap_base(ap);
916 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
917 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
918 	int i;
919 
920 	/*
921 	 * Wait for the EDMA engine to finish transactions in progress.
922 	 * No idea what a good "timeout" value might be, but measurements
923 	 * indicate that it often requires hundreds of microseconds
924 	 * with two drives in-use.  So we use the 15msec value above
925 	 * as a rough guess at what even more drives might require.
926 	 */
927 	for (i = 0; i < timeout; ++i) {
928 		u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
929 		if ((edma_stat & empty_idle) == empty_idle)
930 			break;
931 		udelay(per_loop);
932 	}
933 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
934 }
935 
936 /**
937  *      mv_stop_edma_engine - Disable eDMA engine
938  *      @port_mmio: io base address
939  *
940  *      LOCKING:
941  *      Inherited from caller.
942  */
943 static int mv_stop_edma_engine(void __iomem *port_mmio)
944 {
945 	int i;
946 
947 	/* Disable eDMA.  The disable bit auto clears. */
948 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
949 
950 	/* Wait for the chip to confirm eDMA is off. */
951 	for (i = 10000; i > 0; i--) {
952 		u32 reg = readl(port_mmio + EDMA_CMD_OFS);
953 		if (!(reg & EDMA_EN))
954 			return 0;
955 		udelay(10);
956 	}
957 	return -EIO;
958 }
959 
960 static int mv_stop_edma(struct ata_port *ap)
961 {
962 	void __iomem *port_mmio = mv_ap_base(ap);
963 	struct mv_port_priv *pp = ap->private_data;
964 
965 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
966 		return 0;
967 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
968 	mv_wait_for_edma_empty_idle(ap);
969 	if (mv_stop_edma_engine(port_mmio)) {
970 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
971 		return -EIO;
972 	}
973 	return 0;
974 }
975 
976 #ifdef ATA_DEBUG
977 static void mv_dump_mem(void __iomem *start, unsigned bytes)
978 {
979 	int b, w;
980 	for (b = 0; b < bytes; ) {
981 		DPRINTK("%p: ", start + b);
982 		for (w = 0; b < bytes && w < 4; w++) {
983 			printk("%08x ", readl(start + b));
984 			b += sizeof(u32);
985 		}
986 		printk("\n");
987 	}
988 }
989 #endif
990 
991 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
992 {
993 #ifdef ATA_DEBUG
994 	int b, w;
995 	u32 dw;
996 	for (b = 0; b < bytes; ) {
997 		DPRINTK("%02x: ", b);
998 		for (w = 0; b < bytes && w < 4; w++) {
999 			(void) pci_read_config_dword(pdev, b, &dw);
1000 			printk("%08x ", dw);
1001 			b += sizeof(u32);
1002 		}
1003 		printk("\n");
1004 	}
1005 #endif
1006 }
1007 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1008 			     struct pci_dev *pdev)
1009 {
1010 #ifdef ATA_DEBUG
1011 	void __iomem *hc_base = mv_hc_base(mmio_base,
1012 					   port >> MV_PORT_HC_SHIFT);
1013 	void __iomem *port_base;
1014 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1015 
1016 	if (0 > port) {
1017 		start_hc = start_port = 0;
1018 		num_ports = 8;		/* shld be benign for 4 port devs */
1019 		num_hcs = 2;
1020 	} else {
1021 		start_hc = port >> MV_PORT_HC_SHIFT;
1022 		start_port = port;
1023 		num_ports = num_hcs = 1;
1024 	}
1025 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1026 		num_ports > 1 ? num_ports - 1 : start_port);
1027 
1028 	if (NULL != pdev) {
1029 		DPRINTK("PCI config space regs:\n");
1030 		mv_dump_pci_cfg(pdev, 0x68);
1031 	}
1032 	DPRINTK("PCI regs:\n");
1033 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1034 	mv_dump_mem(mmio_base+0xd00, 0x34);
1035 	mv_dump_mem(mmio_base+0xf00, 0x4);
1036 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1037 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1038 		hc_base = mv_hc_base(mmio_base, hc);
1039 		DPRINTK("HC regs (HC %i):\n", hc);
1040 		mv_dump_mem(hc_base, 0x1c);
1041 	}
1042 	for (p = start_port; p < start_port + num_ports; p++) {
1043 		port_base = mv_port_base(mmio_base, p);
1044 		DPRINTK("EDMA regs (port %i):\n", p);
1045 		mv_dump_mem(port_base, 0x54);
1046 		DPRINTK("SATA regs (port %i):\n", p);
1047 		mv_dump_mem(port_base+0x300, 0x60);
1048 	}
1049 #endif
1050 }
1051 
1052 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1053 {
1054 	unsigned int ofs;
1055 
1056 	switch (sc_reg_in) {
1057 	case SCR_STATUS:
1058 	case SCR_CONTROL:
1059 	case SCR_ERROR:
1060 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1061 		break;
1062 	case SCR_ACTIVE:
1063 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1064 		break;
1065 	default:
1066 		ofs = 0xffffffffU;
1067 		break;
1068 	}
1069 	return ofs;
1070 }
1071 
1072 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1073 {
1074 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1075 
1076 	if (ofs != 0xffffffffU) {
1077 		*val = readl(mv_ap_base(ap) + ofs);
1078 		return 0;
1079 	} else
1080 		return -EINVAL;
1081 }
1082 
1083 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1084 {
1085 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1086 
1087 	if (ofs != 0xffffffffU) {
1088 		writelfl(val, mv_ap_base(ap) + ofs);
1089 		return 0;
1090 	} else
1091 		return -EINVAL;
1092 }
1093 
1094 static void mv6_dev_config(struct ata_device *adev)
1095 {
1096 	/*
1097 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1098 	 *
1099 	 * Gen-II does not support NCQ over a port multiplier
1100 	 *  (no FIS-based switching).
1101 	 *
1102 	 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1103 	 * See mv_qc_prep() for more info.
1104 	 */
1105 	if (adev->flags & ATA_DFLAG_NCQ) {
1106 		if (sata_pmp_attached(adev->link->ap)) {
1107 			adev->flags &= ~ATA_DFLAG_NCQ;
1108 			ata_dev_printk(adev, KERN_INFO,
1109 				"NCQ disabled for command-based switching\n");
1110 		} else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1111 			adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1112 			ata_dev_printk(adev, KERN_INFO,
1113 				"max_sectors limited to %u for NCQ\n",
1114 				adev->max_sectors);
1115 		}
1116 	}
1117 }
1118 
1119 static int mv_qc_defer(struct ata_queued_cmd *qc)
1120 {
1121 	struct ata_link *link = qc->dev->link;
1122 	struct ata_port *ap = link->ap;
1123 	struct mv_port_priv *pp = ap->private_data;
1124 
1125 	/*
1126 	 * Don't allow new commands if we're in a delayed EH state
1127 	 * for NCQ and/or FIS-based switching.
1128 	 */
1129 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1130 		return ATA_DEFER_PORT;
1131 	/*
1132 	 * If the port is completely idle, then allow the new qc.
1133 	 */
1134 	if (ap->nr_active_links == 0)
1135 		return 0;
1136 
1137 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 		/*
1139 		 * The port is operating in host queuing mode (EDMA).
1140 		 * It can accomodate a new qc if the qc protocol
1141 		 * is compatible with the current host queue mode.
1142 		 */
1143 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1144 			/*
1145 			 * The host queue (EDMA) is in NCQ mode.
1146 			 * If the new qc is also an NCQ command,
1147 			 * then allow the new qc.
1148 			 */
1149 			if (qc->tf.protocol == ATA_PROT_NCQ)
1150 				return 0;
1151 		} else {
1152 			/*
1153 			 * The host queue (EDMA) is in non-NCQ, DMA mode.
1154 			 * If the new qc is also a non-NCQ, DMA command,
1155 			 * then allow the new qc.
1156 			 */
1157 			if (qc->tf.protocol == ATA_PROT_DMA)
1158 				return 0;
1159 		}
1160 	}
1161 	return ATA_DEFER_PORT;
1162 }
1163 
1164 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1165 {
1166 	u32 new_fiscfg, old_fiscfg;
1167 	u32 new_ltmode, old_ltmode;
1168 	u32 new_haltcond, old_haltcond;
1169 
1170 	old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1171 	old_ltmode   = readl(port_mmio + LTMODE_OFS);
1172 	old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1173 
1174 	new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1175 	new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1176 	new_haltcond = old_haltcond | EDMA_ERR_DEV;
1177 
1178 	if (want_fbs) {
1179 		new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1180 		new_ltmode = old_ltmode | LTMODE_BIT8;
1181 		if (want_ncq)
1182 			new_haltcond &= ~EDMA_ERR_DEV;
1183 		else
1184 			new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1185 	}
1186 
1187 	if (new_fiscfg != old_fiscfg)
1188 		writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1189 	if (new_ltmode != old_ltmode)
1190 		writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1191 	if (new_haltcond != old_haltcond)
1192 		writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1193 }
1194 
1195 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1196 {
1197 	struct mv_host_priv *hpriv = ap->host->private_data;
1198 	u32 old, new;
1199 
1200 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1201 	old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1202 	if (want_ncq)
1203 		new = old | (1 << 22);
1204 	else
1205 		new = old & ~(1 << 22);
1206 	if (new != old)
1207 		writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1208 }
1209 
1210 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1211 {
1212 	u32 cfg;
1213 	struct mv_port_priv *pp    = ap->private_data;
1214 	struct mv_host_priv *hpriv = ap->host->private_data;
1215 	void __iomem *port_mmio    = mv_ap_base(ap);
1216 
1217 	/* set up non-NCQ EDMA configuration */
1218 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1219 	pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1220 
1221 	if (IS_GEN_I(hpriv))
1222 		cfg |= (1 << 8);	/* enab config burst size mask */
1223 
1224 	else if (IS_GEN_II(hpriv)) {
1225 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1226 		mv_60x1_errata_sata25(ap, want_ncq);
1227 
1228 	} else if (IS_GEN_IIE(hpriv)) {
1229 		int want_fbs = sata_pmp_attached(ap);
1230 		/*
1231 		 * Possible future enhancement:
1232 		 *
1233 		 * The chip can use FBS with non-NCQ, if we allow it,
1234 		 * But first we need to have the error handling in place
1235 		 * for this mode (datasheet section 7.3.15.4.2.3).
1236 		 * So disallow non-NCQ FBS for now.
1237 		 */
1238 		want_fbs &= want_ncq;
1239 
1240 		mv_config_fbs(port_mmio, want_ncq, want_fbs);
1241 
1242 		if (want_fbs) {
1243 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1244 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1245 		}
1246 
1247 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1248 		cfg |= (1 << 22);	/* enab 4-entry host queue cache */
1249 		if (!IS_SOC(hpriv))
1250 			cfg |= (1 << 18);	/* enab early completion */
1251 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1252 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1253 	}
1254 
1255 	if (want_ncq) {
1256 		cfg |= EDMA_CFG_NCQ;
1257 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1258 	} else
1259 		pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1260 
1261 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1262 }
1263 
1264 static void mv_port_free_dma_mem(struct ata_port *ap)
1265 {
1266 	struct mv_host_priv *hpriv = ap->host->private_data;
1267 	struct mv_port_priv *pp = ap->private_data;
1268 	int tag;
1269 
1270 	if (pp->crqb) {
1271 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1272 		pp->crqb = NULL;
1273 	}
1274 	if (pp->crpb) {
1275 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1276 		pp->crpb = NULL;
1277 	}
1278 	/*
1279 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1280 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1281 	 */
1282 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1283 		if (pp->sg_tbl[tag]) {
1284 			if (tag == 0 || !IS_GEN_I(hpriv))
1285 				dma_pool_free(hpriv->sg_tbl_pool,
1286 					      pp->sg_tbl[tag],
1287 					      pp->sg_tbl_dma[tag]);
1288 			pp->sg_tbl[tag] = NULL;
1289 		}
1290 	}
1291 }
1292 
1293 /**
1294  *      mv_port_start - Port specific init/start routine.
1295  *      @ap: ATA channel to manipulate
1296  *
1297  *      Allocate and point to DMA memory, init port private memory,
1298  *      zero indices.
1299  *
1300  *      LOCKING:
1301  *      Inherited from caller.
1302  */
1303 static int mv_port_start(struct ata_port *ap)
1304 {
1305 	struct device *dev = ap->host->dev;
1306 	struct mv_host_priv *hpriv = ap->host->private_data;
1307 	struct mv_port_priv *pp;
1308 	int tag;
1309 
1310 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1311 	if (!pp)
1312 		return -ENOMEM;
1313 	ap->private_data = pp;
1314 
1315 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1316 	if (!pp->crqb)
1317 		return -ENOMEM;
1318 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1319 
1320 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1321 	if (!pp->crpb)
1322 		goto out_port_free_dma_mem;
1323 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1324 
1325 	/*
1326 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1327 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1328 	 */
1329 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1330 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1331 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1332 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1333 			if (!pp->sg_tbl[tag])
1334 				goto out_port_free_dma_mem;
1335 		} else {
1336 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1337 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1338 		}
1339 	}
1340 	return 0;
1341 
1342 out_port_free_dma_mem:
1343 	mv_port_free_dma_mem(ap);
1344 	return -ENOMEM;
1345 }
1346 
1347 /**
1348  *      mv_port_stop - Port specific cleanup/stop routine.
1349  *      @ap: ATA channel to manipulate
1350  *
1351  *      Stop DMA, cleanup port memory.
1352  *
1353  *      LOCKING:
1354  *      This routine uses the host lock to protect the DMA stop.
1355  */
1356 static void mv_port_stop(struct ata_port *ap)
1357 {
1358 	mv_stop_edma(ap);
1359 	mv_enable_port_irqs(ap, 0);
1360 	mv_port_free_dma_mem(ap);
1361 }
1362 
1363 /**
1364  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1365  *      @qc: queued command whose SG list to source from
1366  *
1367  *      Populate the SG list and mark the last entry.
1368  *
1369  *      LOCKING:
1370  *      Inherited from caller.
1371  */
1372 static void mv_fill_sg(struct ata_queued_cmd *qc)
1373 {
1374 	struct mv_port_priv *pp = qc->ap->private_data;
1375 	struct scatterlist *sg;
1376 	struct mv_sg *mv_sg, *last_sg = NULL;
1377 	unsigned int si;
1378 
1379 	mv_sg = pp->sg_tbl[qc->tag];
1380 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1381 		dma_addr_t addr = sg_dma_address(sg);
1382 		u32 sg_len = sg_dma_len(sg);
1383 
1384 		while (sg_len) {
1385 			u32 offset = addr & 0xffff;
1386 			u32 len = sg_len;
1387 
1388 			if ((offset + sg_len > 0x10000))
1389 				len = 0x10000 - offset;
1390 
1391 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1392 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1393 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1394 
1395 			sg_len -= len;
1396 			addr += len;
1397 
1398 			last_sg = mv_sg;
1399 			mv_sg++;
1400 		}
1401 	}
1402 
1403 	if (likely(last_sg))
1404 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1405 }
1406 
1407 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1408 {
1409 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1410 		(last ? CRQB_CMD_LAST : 0);
1411 	*cmdw = cpu_to_le16(tmp);
1412 }
1413 
1414 /**
1415  *      mv_qc_prep - Host specific command preparation.
1416  *      @qc: queued command to prepare
1417  *
1418  *      This routine simply redirects to the general purpose routine
1419  *      if command is not DMA.  Else, it handles prep of the CRQB
1420  *      (command request block), does some sanity checking, and calls
1421  *      the SG load routine.
1422  *
1423  *      LOCKING:
1424  *      Inherited from caller.
1425  */
1426 static void mv_qc_prep(struct ata_queued_cmd *qc)
1427 {
1428 	struct ata_port *ap = qc->ap;
1429 	struct mv_port_priv *pp = ap->private_data;
1430 	__le16 *cw;
1431 	struct ata_taskfile *tf;
1432 	u16 flags = 0;
1433 	unsigned in_index;
1434 
1435 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1436 	    (qc->tf.protocol != ATA_PROT_NCQ))
1437 		return;
1438 
1439 	/* Fill in command request block
1440 	 */
1441 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1442 		flags |= CRQB_FLAG_READ;
1443 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1444 	flags |= qc->tag << CRQB_TAG_SHIFT;
1445 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1446 
1447 	/* get current queue index from software */
1448 	in_index = pp->req_idx;
1449 
1450 	pp->crqb[in_index].sg_addr =
1451 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1452 	pp->crqb[in_index].sg_addr_hi =
1453 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1454 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1455 
1456 	cw = &pp->crqb[in_index].ata_cmd[0];
1457 	tf = &qc->tf;
1458 
1459 	/* Sadly, the CRQB cannot accomodate all registers--there are
1460 	 * only 11 bytes...so we must pick and choose required
1461 	 * registers based on the command.  So, we drop feature and
1462 	 * hob_feature for [RW] DMA commands, but they are needed for
1463 	 * NCQ.  NCQ will drop hob_nsect.
1464 	 */
1465 	switch (tf->command) {
1466 	case ATA_CMD_READ:
1467 	case ATA_CMD_READ_EXT:
1468 	case ATA_CMD_WRITE:
1469 	case ATA_CMD_WRITE_EXT:
1470 	case ATA_CMD_WRITE_FUA_EXT:
1471 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1472 		break;
1473 	case ATA_CMD_FPDMA_READ:
1474 	case ATA_CMD_FPDMA_WRITE:
1475 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1476 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1477 		break;
1478 	default:
1479 		/* The only other commands EDMA supports in non-queued and
1480 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1481 		 * of which are defined/used by Linux.  If we get here, this
1482 		 * driver needs work.
1483 		 *
1484 		 * FIXME: modify libata to give qc_prep a return value and
1485 		 * return error here.
1486 		 */
1487 		BUG_ON(tf->command);
1488 		break;
1489 	}
1490 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1491 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1492 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1493 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1494 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1495 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1496 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1497 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1498 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1499 
1500 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1501 		return;
1502 	mv_fill_sg(qc);
1503 }
1504 
1505 /**
1506  *      mv_qc_prep_iie - Host specific command preparation.
1507  *      @qc: queued command to prepare
1508  *
1509  *      This routine simply redirects to the general purpose routine
1510  *      if command is not DMA.  Else, it handles prep of the CRQB
1511  *      (command request block), does some sanity checking, and calls
1512  *      the SG load routine.
1513  *
1514  *      LOCKING:
1515  *      Inherited from caller.
1516  */
1517 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1518 {
1519 	struct ata_port *ap = qc->ap;
1520 	struct mv_port_priv *pp = ap->private_data;
1521 	struct mv_crqb_iie *crqb;
1522 	struct ata_taskfile *tf;
1523 	unsigned in_index;
1524 	u32 flags = 0;
1525 
1526 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1527 	    (qc->tf.protocol != ATA_PROT_NCQ))
1528 		return;
1529 
1530 	/* Fill in Gen IIE command request block */
1531 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1532 		flags |= CRQB_FLAG_READ;
1533 
1534 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1535 	flags |= qc->tag << CRQB_TAG_SHIFT;
1536 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1537 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1538 
1539 	/* get current queue index from software */
1540 	in_index = pp->req_idx;
1541 
1542 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1543 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1544 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1545 	crqb->flags = cpu_to_le32(flags);
1546 
1547 	tf = &qc->tf;
1548 	crqb->ata_cmd[0] = cpu_to_le32(
1549 			(tf->command << 16) |
1550 			(tf->feature << 24)
1551 		);
1552 	crqb->ata_cmd[1] = cpu_to_le32(
1553 			(tf->lbal << 0) |
1554 			(tf->lbam << 8) |
1555 			(tf->lbah << 16) |
1556 			(tf->device << 24)
1557 		);
1558 	crqb->ata_cmd[2] = cpu_to_le32(
1559 			(tf->hob_lbal << 0) |
1560 			(tf->hob_lbam << 8) |
1561 			(tf->hob_lbah << 16) |
1562 			(tf->hob_feature << 24)
1563 		);
1564 	crqb->ata_cmd[3] = cpu_to_le32(
1565 			(tf->nsect << 0) |
1566 			(tf->hob_nsect << 8)
1567 		);
1568 
1569 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1570 		return;
1571 	mv_fill_sg(qc);
1572 }
1573 
1574 /**
1575  *      mv_qc_issue - Initiate a command to the host
1576  *      @qc: queued command to start
1577  *
1578  *      This routine simply redirects to the general purpose routine
1579  *      if command is not DMA.  Else, it sanity checks our local
1580  *      caches of the request producer/consumer indices then enables
1581  *      DMA and bumps the request producer index.
1582  *
1583  *      LOCKING:
1584  *      Inherited from caller.
1585  */
1586 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1587 {
1588 	struct ata_port *ap = qc->ap;
1589 	void __iomem *port_mmio = mv_ap_base(ap);
1590 	struct mv_port_priv *pp = ap->private_data;
1591 	u32 in_index;
1592 
1593 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1594 	    (qc->tf.protocol != ATA_PROT_NCQ)) {
1595 		/*
1596 		 * We're about to send a non-EDMA capable command to the
1597 		 * port.  Turn off EDMA so there won't be problems accessing
1598 		 * shadow block, etc registers.
1599 		 */
1600 		mv_stop_edma(ap);
1601 		mv_enable_port_irqs(ap, ERR_IRQ);
1602 		mv_pmp_select(ap, qc->dev->link->pmp);
1603 		return ata_sff_qc_issue(qc);
1604 	}
1605 
1606 	mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1607 
1608 	pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1609 	in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1610 
1611 	/* and write the request in pointer to kick the EDMA to life */
1612 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1613 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1614 
1615 	return 0;
1616 }
1617 
1618 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1619 {
1620 	struct mv_port_priv *pp = ap->private_data;
1621 	struct ata_queued_cmd *qc;
1622 
1623 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1624 		return NULL;
1625 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1626 	if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1627 		qc = NULL;
1628 	return qc;
1629 }
1630 
1631 static void mv_pmp_error_handler(struct ata_port *ap)
1632 {
1633 	unsigned int pmp, pmp_map;
1634 	struct mv_port_priv *pp = ap->private_data;
1635 
1636 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1637 		/*
1638 		 * Perform NCQ error analysis on failed PMPs
1639 		 * before we freeze the port entirely.
1640 		 *
1641 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1642 		 */
1643 		pmp_map = pp->delayed_eh_pmp_map;
1644 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1645 		for (pmp = 0; pmp_map != 0; pmp++) {
1646 			unsigned int this_pmp = (1 << pmp);
1647 			if (pmp_map & this_pmp) {
1648 				struct ata_link *link = &ap->pmp_link[pmp];
1649 				pmp_map &= ~this_pmp;
1650 				ata_eh_analyze_ncq_error(link);
1651 			}
1652 		}
1653 		ata_port_freeze(ap);
1654 	}
1655 	sata_pmp_error_handler(ap);
1656 }
1657 
1658 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1659 {
1660 	void __iomem *port_mmio = mv_ap_base(ap);
1661 
1662 	return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1663 }
1664 
1665 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1666 {
1667 	struct ata_eh_info *ehi;
1668 	unsigned int pmp;
1669 
1670 	/*
1671 	 * Initialize EH info for PMPs which saw device errors
1672 	 */
1673 	ehi = &ap->link.eh_info;
1674 	for (pmp = 0; pmp_map != 0; pmp++) {
1675 		unsigned int this_pmp = (1 << pmp);
1676 		if (pmp_map & this_pmp) {
1677 			struct ata_link *link = &ap->pmp_link[pmp];
1678 
1679 			pmp_map &= ~this_pmp;
1680 			ehi = &link->eh_info;
1681 			ata_ehi_clear_desc(ehi);
1682 			ata_ehi_push_desc(ehi, "dev err");
1683 			ehi->err_mask |= AC_ERR_DEV;
1684 			ehi->action |= ATA_EH_RESET;
1685 			ata_link_abort(link);
1686 		}
1687 	}
1688 }
1689 
1690 static int mv_req_q_empty(struct ata_port *ap)
1691 {
1692 	void __iomem *port_mmio = mv_ap_base(ap);
1693 	u32 in_ptr, out_ptr;
1694 
1695 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1696 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1697 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1698 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1699 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
1700 }
1701 
1702 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1703 {
1704 	struct mv_port_priv *pp = ap->private_data;
1705 	int failed_links;
1706 	unsigned int old_map, new_map;
1707 
1708 	/*
1709 	 * Device error during FBS+NCQ operation:
1710 	 *
1711 	 * Set a port flag to prevent further I/O being enqueued.
1712 	 * Leave the EDMA running to drain outstanding commands from this port.
1713 	 * Perform the post-mortem/EH only when all responses are complete.
1714 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1715 	 */
1716 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1717 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1718 		pp->delayed_eh_pmp_map = 0;
1719 	}
1720 	old_map = pp->delayed_eh_pmp_map;
1721 	new_map = old_map | mv_get_err_pmp_map(ap);
1722 
1723 	if (old_map != new_map) {
1724 		pp->delayed_eh_pmp_map = new_map;
1725 		mv_pmp_eh_prep(ap, new_map & ~old_map);
1726 	}
1727 	failed_links = hweight16(new_map);
1728 
1729 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1730 			"failed_links=%d nr_active_links=%d\n",
1731 			__func__, pp->delayed_eh_pmp_map,
1732 			ap->qc_active, failed_links,
1733 			ap->nr_active_links);
1734 
1735 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1736 		mv_process_crpb_entries(ap, pp);
1737 		mv_stop_edma(ap);
1738 		mv_eh_freeze(ap);
1739 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1740 		return 1;	/* handled */
1741 	}
1742 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1743 	return 1;	/* handled */
1744 }
1745 
1746 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1747 {
1748 	/*
1749 	 * Possible future enhancement:
1750 	 *
1751 	 * FBS+non-NCQ operation is not yet implemented.
1752 	 * See related notes in mv_edma_cfg().
1753 	 *
1754 	 * Device error during FBS+non-NCQ operation:
1755 	 *
1756 	 * We need to snapshot the shadow registers for each failed command.
1757 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1758 	 */
1759 	return 0;	/* not handled */
1760 }
1761 
1762 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1763 {
1764 	struct mv_port_priv *pp = ap->private_data;
1765 
1766 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1767 		return 0;	/* EDMA was not active: not handled */
1768 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1769 		return 0;	/* FBS was not active: not handled */
1770 
1771 	if (!(edma_err_cause & EDMA_ERR_DEV))
1772 		return 0;	/* non DEV error: not handled */
1773 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1774 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1775 		return 0;	/* other problems: not handled */
1776 
1777 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1778 		/*
1779 		 * EDMA should NOT have self-disabled for this case.
1780 		 * If it did, then something is wrong elsewhere,
1781 		 * and we cannot handle it here.
1782 		 */
1783 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1784 			ata_port_printk(ap, KERN_WARNING,
1785 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1786 				__func__, edma_err_cause, pp->pp_flags);
1787 			return 0; /* not handled */
1788 		}
1789 		return mv_handle_fbs_ncq_dev_err(ap);
1790 	} else {
1791 		/*
1792 		 * EDMA should have self-disabled for this case.
1793 		 * If it did not, then something is wrong elsewhere,
1794 		 * and we cannot handle it here.
1795 		 */
1796 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1797 			ata_port_printk(ap, KERN_WARNING,
1798 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1799 				__func__, edma_err_cause, pp->pp_flags);
1800 			return 0; /* not handled */
1801 		}
1802 		return mv_handle_fbs_non_ncq_dev_err(ap);
1803 	}
1804 	return 0;	/* not handled */
1805 }
1806 
1807 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1808 {
1809 	struct ata_eh_info *ehi = &ap->link.eh_info;
1810 	char *when = "idle";
1811 
1812 	ata_ehi_clear_desc(ehi);
1813 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1814 		when = "disabled";
1815 	} else if (edma_was_enabled) {
1816 		when = "EDMA enabled";
1817 	} else {
1818 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1819 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1820 			when = "polling";
1821 	}
1822 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1823 	ehi->err_mask |= AC_ERR_OTHER;
1824 	ehi->action   |= ATA_EH_RESET;
1825 	ata_port_freeze(ap);
1826 }
1827 
1828 /**
1829  *      mv_err_intr - Handle error interrupts on the port
1830  *      @ap: ATA channel to manipulate
1831  *      @qc: affected command (non-NCQ), or NULL
1832  *
1833  *      Most cases require a full reset of the chip's state machine,
1834  *      which also performs a COMRESET.
1835  *      Also, if the port disabled DMA, update our cached copy to match.
1836  *
1837  *      LOCKING:
1838  *      Inherited from caller.
1839  */
1840 static void mv_err_intr(struct ata_port *ap)
1841 {
1842 	void __iomem *port_mmio = mv_ap_base(ap);
1843 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
1844 	u32 fis_cause = 0;
1845 	struct mv_port_priv *pp = ap->private_data;
1846 	struct mv_host_priv *hpriv = ap->host->private_data;
1847 	unsigned int action = 0, err_mask = 0;
1848 	struct ata_eh_info *ehi = &ap->link.eh_info;
1849 	struct ata_queued_cmd *qc;
1850 	int abort = 0;
1851 
1852 	/*
1853 	 * Read and clear the SError and err_cause bits.
1854 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1855 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1856 	 */
1857 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
1858 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1859 
1860 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1861 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1862 		fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1863 		writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1864 	}
1865 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1866 
1867 	if (edma_err_cause & EDMA_ERR_DEV) {
1868 		/*
1869 		 * Device errors during FIS-based switching operation
1870 		 * require special handling.
1871 		 */
1872 		if (mv_handle_dev_err(ap, edma_err_cause))
1873 			return;
1874 	}
1875 
1876 	qc = mv_get_active_qc(ap);
1877 	ata_ehi_clear_desc(ehi);
1878 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1879 			  edma_err_cause, pp->pp_flags);
1880 
1881 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1882 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1883 		if (fis_cause & SATA_FIS_IRQ_AN) {
1884 			u32 ec = edma_err_cause &
1885 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1886 			sata_async_notification(ap);
1887 			if (!ec)
1888 				return; /* Just an AN; no need for the nukes */
1889 			ata_ehi_push_desc(ehi, "SDB notify");
1890 		}
1891 	}
1892 	/*
1893 	 * All generations share these EDMA error cause bits:
1894 	 */
1895 	if (edma_err_cause & EDMA_ERR_DEV) {
1896 		err_mask |= AC_ERR_DEV;
1897 		action |= ATA_EH_RESET;
1898 		ata_ehi_push_desc(ehi, "dev error");
1899 	}
1900 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1901 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1902 			EDMA_ERR_INTRL_PAR)) {
1903 		err_mask |= AC_ERR_ATA_BUS;
1904 		action |= ATA_EH_RESET;
1905 		ata_ehi_push_desc(ehi, "parity error");
1906 	}
1907 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1908 		ata_ehi_hotplugged(ehi);
1909 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1910 			"dev disconnect" : "dev connect");
1911 		action |= ATA_EH_RESET;
1912 	}
1913 
1914 	/*
1915 	 * Gen-I has a different SELF_DIS bit,
1916 	 * different FREEZE bits, and no SERR bit:
1917 	 */
1918 	if (IS_GEN_I(hpriv)) {
1919 		eh_freeze_mask = EDMA_EH_FREEZE_5;
1920 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1921 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1922 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1923 		}
1924 	} else {
1925 		eh_freeze_mask = EDMA_EH_FREEZE;
1926 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1927 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1928 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1929 		}
1930 		if (edma_err_cause & EDMA_ERR_SERR) {
1931 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
1932 			err_mask |= AC_ERR_ATA_BUS;
1933 			action |= ATA_EH_RESET;
1934 		}
1935 	}
1936 
1937 	if (!err_mask) {
1938 		err_mask = AC_ERR_OTHER;
1939 		action |= ATA_EH_RESET;
1940 	}
1941 
1942 	ehi->serror |= serr;
1943 	ehi->action |= action;
1944 
1945 	if (qc)
1946 		qc->err_mask |= err_mask;
1947 	else
1948 		ehi->err_mask |= err_mask;
1949 
1950 	if (err_mask == AC_ERR_DEV) {
1951 		/*
1952 		 * Cannot do ata_port_freeze() here,
1953 		 * because it would kill PIO access,
1954 		 * which is needed for further diagnosis.
1955 		 */
1956 		mv_eh_freeze(ap);
1957 		abort = 1;
1958 	} else if (edma_err_cause & eh_freeze_mask) {
1959 		/*
1960 		 * Note to self: ata_port_freeze() calls ata_port_abort()
1961 		 */
1962 		ata_port_freeze(ap);
1963 	} else {
1964 		abort = 1;
1965 	}
1966 
1967 	if (abort) {
1968 		if (qc)
1969 			ata_link_abort(qc->dev->link);
1970 		else
1971 			ata_port_abort(ap);
1972 	}
1973 }
1974 
1975 static void mv_process_crpb_response(struct ata_port *ap,
1976 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1977 {
1978 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1979 
1980 	if (qc) {
1981 		u8 ata_status;
1982 		u16 edma_status = le16_to_cpu(response->flags);
1983 		/*
1984 		 * edma_status from a response queue entry:
1985 		 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1986 		 *   MSB is saved ATA status from command completion.
1987 		 */
1988 		if (!ncq_enabled) {
1989 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1990 			if (err_cause) {
1991 				/*
1992 				 * Error will be seen/handled by mv_err_intr().
1993 				 * So do nothing at all here.
1994 				 */
1995 				return;
1996 			}
1997 		}
1998 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1999 		if (!ac_err_mask(ata_status))
2000 			ata_qc_complete(qc);
2001 		/* else: leave it for mv_err_intr() */
2002 	} else {
2003 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2004 				__func__, tag);
2005 	}
2006 }
2007 
2008 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2009 {
2010 	void __iomem *port_mmio = mv_ap_base(ap);
2011 	struct mv_host_priv *hpriv = ap->host->private_data;
2012 	u32 in_index;
2013 	bool work_done = false;
2014 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2015 
2016 	/* Get the hardware queue position index */
2017 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2018 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2019 
2020 	/* Process new responses from since the last time we looked */
2021 	while (in_index != pp->resp_idx) {
2022 		unsigned int tag;
2023 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2024 
2025 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2026 
2027 		if (IS_GEN_I(hpriv)) {
2028 			/* 50xx: no NCQ, only one command active at a time */
2029 			tag = ap->link.active_tag;
2030 		} else {
2031 			/* Gen II/IIE: get command tag from CRPB entry */
2032 			tag = le16_to_cpu(response->id) & 0x1f;
2033 		}
2034 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2035 		work_done = true;
2036 	}
2037 
2038 	/* Update the software queue position index in hardware */
2039 	if (work_done)
2040 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2041 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2042 			 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2043 }
2044 
2045 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2046 {
2047 	struct mv_port_priv *pp;
2048 	int edma_was_enabled;
2049 
2050 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2051 		mv_unexpected_intr(ap, 0);
2052 		return;
2053 	}
2054 	/*
2055 	 * Grab a snapshot of the EDMA_EN flag setting,
2056 	 * so that we have a consistent view for this port,
2057 	 * even if something we call of our routines changes it.
2058 	 */
2059 	pp = ap->private_data;
2060 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2061 	/*
2062 	 * Process completed CRPB response(s) before other events.
2063 	 */
2064 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2065 		mv_process_crpb_entries(ap, pp);
2066 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2067 			mv_handle_fbs_ncq_dev_err(ap);
2068 	}
2069 	/*
2070 	 * Handle chip-reported errors, or continue on to handle PIO.
2071 	 */
2072 	if (unlikely(port_cause & ERR_IRQ)) {
2073 		mv_err_intr(ap);
2074 	} else if (!edma_was_enabled) {
2075 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2076 		if (qc)
2077 			ata_sff_host_intr(ap, qc);
2078 		else
2079 			mv_unexpected_intr(ap, edma_was_enabled);
2080 	}
2081 }
2082 
2083 /**
2084  *      mv_host_intr - Handle all interrupts on the given host controller
2085  *      @host: host specific structure
2086  *      @main_irq_cause: Main interrupt cause register for the chip.
2087  *
2088  *      LOCKING:
2089  *      Inherited from caller.
2090  */
2091 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2092 {
2093 	struct mv_host_priv *hpriv = host->private_data;
2094 	void __iomem *mmio = hpriv->base, *hc_mmio;
2095 	unsigned int handled = 0, port;
2096 
2097 	for (port = 0; port < hpriv->n_ports; port++) {
2098 		struct ata_port *ap = host->ports[port];
2099 		unsigned int p, shift, hardport, port_cause;
2100 
2101 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2102 		/*
2103 		 * Each hc within the host has its own hc_irq_cause register,
2104 		 * where the interrupting ports bits get ack'd.
2105 		 */
2106 		if (hardport == 0) {	/* first port on this hc ? */
2107 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2108 			u32 port_mask, ack_irqs;
2109 			/*
2110 			 * Skip this entire hc if nothing pending for any ports
2111 			 */
2112 			if (!hc_cause) {
2113 				port += MV_PORTS_PER_HC - 1;
2114 				continue;
2115 			}
2116 			/*
2117 			 * We don't need/want to read the hc_irq_cause register,
2118 			 * because doing so hurts performance, and
2119 			 * main_irq_cause already gives us everything we need.
2120 			 *
2121 			 * But we do have to *write* to the hc_irq_cause to ack
2122 			 * the ports that we are handling this time through.
2123 			 *
2124 			 * This requires that we create a bitmap for those
2125 			 * ports which interrupted us, and use that bitmap
2126 			 * to ack (only) those ports via hc_irq_cause.
2127 			 */
2128 			ack_irqs = 0;
2129 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2130 				if ((port + p) >= hpriv->n_ports)
2131 					break;
2132 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2133 				if (hc_cause & port_mask)
2134 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2135 			}
2136 			hc_mmio = mv_hc_base_from_port(mmio, port);
2137 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2138 			handled = 1;
2139 		}
2140 		/*
2141 		 * Handle interrupts signalled for this port:
2142 		 */
2143 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2144 		if (port_cause)
2145 			mv_port_intr(ap, port_cause);
2146 	}
2147 	return handled;
2148 }
2149 
2150 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2151 {
2152 	struct mv_host_priv *hpriv = host->private_data;
2153 	struct ata_port *ap;
2154 	struct ata_queued_cmd *qc;
2155 	struct ata_eh_info *ehi;
2156 	unsigned int i, err_mask, printed = 0;
2157 	u32 err_cause;
2158 
2159 	err_cause = readl(mmio + hpriv->irq_cause_ofs);
2160 
2161 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2162 		   err_cause);
2163 
2164 	DPRINTK("All regs @ PCI error\n");
2165 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2166 
2167 	writelfl(0, mmio + hpriv->irq_cause_ofs);
2168 
2169 	for (i = 0; i < host->n_ports; i++) {
2170 		ap = host->ports[i];
2171 		if (!ata_link_offline(&ap->link)) {
2172 			ehi = &ap->link.eh_info;
2173 			ata_ehi_clear_desc(ehi);
2174 			if (!printed++)
2175 				ata_ehi_push_desc(ehi,
2176 					"PCI err cause 0x%08x", err_cause);
2177 			err_mask = AC_ERR_HOST_BUS;
2178 			ehi->action = ATA_EH_RESET;
2179 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2180 			if (qc)
2181 				qc->err_mask |= err_mask;
2182 			else
2183 				ehi->err_mask |= err_mask;
2184 
2185 			ata_port_freeze(ap);
2186 		}
2187 	}
2188 	return 1;	/* handled */
2189 }
2190 
2191 /**
2192  *      mv_interrupt - Main interrupt event handler
2193  *      @irq: unused
2194  *      @dev_instance: private data; in this case the host structure
2195  *
2196  *      Read the read only register to determine if any host
2197  *      controllers have pending interrupts.  If so, call lower level
2198  *      routine to handle.  Also check for PCI errors which are only
2199  *      reported here.
2200  *
2201  *      LOCKING:
2202  *      This routine holds the host lock while processing pending
2203  *      interrupts.
2204  */
2205 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2206 {
2207 	struct ata_host *host = dev_instance;
2208 	struct mv_host_priv *hpriv = host->private_data;
2209 	unsigned int handled = 0;
2210 	u32 main_irq_cause, pending_irqs;
2211 
2212 	spin_lock(&host->lock);
2213 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2214 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2215 	/*
2216 	 * Deal with cases where we either have nothing pending, or have read
2217 	 * a bogus register value which can indicate HW removal or PCI fault.
2218 	 */
2219 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2220 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2221 			handled = mv_pci_error(host, hpriv->base);
2222 		else
2223 			handled = mv_host_intr(host, pending_irqs);
2224 	}
2225 	spin_unlock(&host->lock);
2226 	return IRQ_RETVAL(handled);
2227 }
2228 
2229 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2230 {
2231 	unsigned int ofs;
2232 
2233 	switch (sc_reg_in) {
2234 	case SCR_STATUS:
2235 	case SCR_ERROR:
2236 	case SCR_CONTROL:
2237 		ofs = sc_reg_in * sizeof(u32);
2238 		break;
2239 	default:
2240 		ofs = 0xffffffffU;
2241 		break;
2242 	}
2243 	return ofs;
2244 }
2245 
2246 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2247 {
2248 	struct mv_host_priv *hpriv = ap->host->private_data;
2249 	void __iomem *mmio = hpriv->base;
2250 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2251 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2252 
2253 	if (ofs != 0xffffffffU) {
2254 		*val = readl(addr + ofs);
2255 		return 0;
2256 	} else
2257 		return -EINVAL;
2258 }
2259 
2260 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2261 {
2262 	struct mv_host_priv *hpriv = ap->host->private_data;
2263 	void __iomem *mmio = hpriv->base;
2264 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2265 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2266 
2267 	if (ofs != 0xffffffffU) {
2268 		writelfl(val, addr + ofs);
2269 		return 0;
2270 	} else
2271 		return -EINVAL;
2272 }
2273 
2274 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2275 {
2276 	struct pci_dev *pdev = to_pci_dev(host->dev);
2277 	int early_5080;
2278 
2279 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2280 
2281 	if (!early_5080) {
2282 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2283 		tmp |= (1 << 0);
2284 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2285 	}
2286 
2287 	mv_reset_pci_bus(host, mmio);
2288 }
2289 
2290 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2291 {
2292 	writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2293 }
2294 
2295 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2296 			   void __iomem *mmio)
2297 {
2298 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2299 	u32 tmp;
2300 
2301 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2302 
2303 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2304 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2305 }
2306 
2307 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2308 {
2309 	u32 tmp;
2310 
2311 	writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2312 
2313 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2314 
2315 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2316 	tmp |= ~(1 << 0);
2317 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2318 }
2319 
2320 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2321 			   unsigned int port)
2322 {
2323 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2324 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2325 	u32 tmp;
2326 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2327 
2328 	if (fix_apm_sq) {
2329 		tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2330 		tmp |= (1 << 19);
2331 		writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2332 
2333 		tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2334 		tmp &= ~0x3;
2335 		tmp |= 0x1;
2336 		writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2337 	}
2338 
2339 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2340 	tmp &= ~mask;
2341 	tmp |= hpriv->signal[port].pre;
2342 	tmp |= hpriv->signal[port].amps;
2343 	writel(tmp, phy_mmio + MV5_PHY_MODE);
2344 }
2345 
2346 
2347 #undef ZERO
2348 #define ZERO(reg) writel(0, port_mmio + (reg))
2349 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2350 			     unsigned int port)
2351 {
2352 	void __iomem *port_mmio = mv_port_base(mmio, port);
2353 
2354 	mv_reset_channel(hpriv, mmio, port);
2355 
2356 	ZERO(0x028);	/* command */
2357 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
2358 	ZERO(0x004);	/* timer */
2359 	ZERO(0x008);	/* irq err cause */
2360 	ZERO(0x00c);	/* irq err mask */
2361 	ZERO(0x010);	/* rq bah */
2362 	ZERO(0x014);	/* rq inp */
2363 	ZERO(0x018);	/* rq outp */
2364 	ZERO(0x01c);	/* respq bah */
2365 	ZERO(0x024);	/* respq outp */
2366 	ZERO(0x020);	/* respq inp */
2367 	ZERO(0x02c);	/* test control */
2368 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2369 }
2370 #undef ZERO
2371 
2372 #define ZERO(reg) writel(0, hc_mmio + (reg))
2373 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2374 			unsigned int hc)
2375 {
2376 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2377 	u32 tmp;
2378 
2379 	ZERO(0x00c);
2380 	ZERO(0x010);
2381 	ZERO(0x014);
2382 	ZERO(0x018);
2383 
2384 	tmp = readl(hc_mmio + 0x20);
2385 	tmp &= 0x1c1c1c1c;
2386 	tmp |= 0x03030303;
2387 	writel(tmp, hc_mmio + 0x20);
2388 }
2389 #undef ZERO
2390 
2391 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2392 			unsigned int n_hc)
2393 {
2394 	unsigned int hc, port;
2395 
2396 	for (hc = 0; hc < n_hc; hc++) {
2397 		for (port = 0; port < MV_PORTS_PER_HC; port++)
2398 			mv5_reset_hc_port(hpriv, mmio,
2399 					  (hc * MV_PORTS_PER_HC) + port);
2400 
2401 		mv5_reset_one_hc(hpriv, mmio, hc);
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 #undef ZERO
2408 #define ZERO(reg) writel(0, mmio + (reg))
2409 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2410 {
2411 	struct mv_host_priv *hpriv = host->private_data;
2412 	u32 tmp;
2413 
2414 	tmp = readl(mmio + MV_PCI_MODE_OFS);
2415 	tmp &= 0xff00ffff;
2416 	writel(tmp, mmio + MV_PCI_MODE_OFS);
2417 
2418 	ZERO(MV_PCI_DISC_TIMER);
2419 	ZERO(MV_PCI_MSI_TRIGGER);
2420 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2421 	ZERO(MV_PCI_SERR_MASK);
2422 	ZERO(hpriv->irq_cause_ofs);
2423 	ZERO(hpriv->irq_mask_ofs);
2424 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
2425 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2426 	ZERO(MV_PCI_ERR_ATTRIBUTE);
2427 	ZERO(MV_PCI_ERR_COMMAND);
2428 }
2429 #undef ZERO
2430 
2431 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2432 {
2433 	u32 tmp;
2434 
2435 	mv5_reset_flash(hpriv, mmio);
2436 
2437 	tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2438 	tmp &= 0x3;
2439 	tmp |= (1 << 5) | (1 << 6);
2440 	writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2441 }
2442 
2443 /**
2444  *      mv6_reset_hc - Perform the 6xxx global soft reset
2445  *      @mmio: base address of the HBA
2446  *
2447  *      This routine only applies to 6xxx parts.
2448  *
2449  *      LOCKING:
2450  *      Inherited from caller.
2451  */
2452 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2453 			unsigned int n_hc)
2454 {
2455 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2456 	int i, rc = 0;
2457 	u32 t;
2458 
2459 	/* Following procedure defined in PCI "main command and status
2460 	 * register" table.
2461 	 */
2462 	t = readl(reg);
2463 	writel(t | STOP_PCI_MASTER, reg);
2464 
2465 	for (i = 0; i < 1000; i++) {
2466 		udelay(1);
2467 		t = readl(reg);
2468 		if (PCI_MASTER_EMPTY & t)
2469 			break;
2470 	}
2471 	if (!(PCI_MASTER_EMPTY & t)) {
2472 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2473 		rc = 1;
2474 		goto done;
2475 	}
2476 
2477 	/* set reset */
2478 	i = 5;
2479 	do {
2480 		writel(t | GLOB_SFT_RST, reg);
2481 		t = readl(reg);
2482 		udelay(1);
2483 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
2484 
2485 	if (!(GLOB_SFT_RST & t)) {
2486 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2487 		rc = 1;
2488 		goto done;
2489 	}
2490 
2491 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
2492 	i = 5;
2493 	do {
2494 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2495 		t = readl(reg);
2496 		udelay(1);
2497 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
2498 
2499 	if (GLOB_SFT_RST & t) {
2500 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2501 		rc = 1;
2502 	}
2503 done:
2504 	return rc;
2505 }
2506 
2507 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2508 			   void __iomem *mmio)
2509 {
2510 	void __iomem *port_mmio;
2511 	u32 tmp;
2512 
2513 	tmp = readl(mmio + MV_RESET_CFG_OFS);
2514 	if ((tmp & (1 << 0)) == 0) {
2515 		hpriv->signal[idx].amps = 0x7 << 8;
2516 		hpriv->signal[idx].pre = 0x1 << 5;
2517 		return;
2518 	}
2519 
2520 	port_mmio = mv_port_base(mmio, idx);
2521 	tmp = readl(port_mmio + PHY_MODE2);
2522 
2523 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2524 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2525 }
2526 
2527 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2528 {
2529 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2530 }
2531 
2532 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2533 			   unsigned int port)
2534 {
2535 	void __iomem *port_mmio = mv_port_base(mmio, port);
2536 
2537 	u32 hp_flags = hpriv->hp_flags;
2538 	int fix_phy_mode2 =
2539 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2540 	int fix_phy_mode4 =
2541 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2542 	u32 m2, m3;
2543 
2544 	if (fix_phy_mode2) {
2545 		m2 = readl(port_mmio + PHY_MODE2);
2546 		m2 &= ~(1 << 16);
2547 		m2 |= (1 << 31);
2548 		writel(m2, port_mmio + PHY_MODE2);
2549 
2550 		udelay(200);
2551 
2552 		m2 = readl(port_mmio + PHY_MODE2);
2553 		m2 &= ~((1 << 16) | (1 << 31));
2554 		writel(m2, port_mmio + PHY_MODE2);
2555 
2556 		udelay(200);
2557 	}
2558 
2559 	/*
2560 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
2561 	 * Achieves better receiver noise performance than the h/w default:
2562 	 */
2563 	m3 = readl(port_mmio + PHY_MODE3);
2564 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
2565 
2566 	/* Guideline 88F5182 (GL# SATA-S11) */
2567 	if (IS_SOC(hpriv))
2568 		m3 &= ~0x1c;
2569 
2570 	if (fix_phy_mode4) {
2571 		u32 m4 = readl(port_mmio + PHY_MODE4);
2572 		/*
2573 		 * Enforce reserved-bit restrictions on GenIIe devices only.
2574 		 * For earlier chipsets, force only the internal config field
2575 		 *  (workaround for errata FEr SATA#10 part 1).
2576 		 */
2577 		if (IS_GEN_IIE(hpriv))
2578 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2579 		else
2580 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2581 		writel(m4, port_mmio + PHY_MODE4);
2582 	}
2583 	/*
2584 	 * Workaround for 60x1-B2 errata SATA#13:
2585 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2586 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2587 	 */
2588 	writel(m3, port_mmio + PHY_MODE3);
2589 
2590 	/* Revert values of pre-emphasis and signal amps to the saved ones */
2591 	m2 = readl(port_mmio + PHY_MODE2);
2592 
2593 	m2 &= ~MV_M2_PREAMP_MASK;
2594 	m2 |= hpriv->signal[port].amps;
2595 	m2 |= hpriv->signal[port].pre;
2596 	m2 &= ~(1 << 16);
2597 
2598 	/* according to mvSata 3.6.1, some IIE values are fixed */
2599 	if (IS_GEN_IIE(hpriv)) {
2600 		m2 &= ~0xC30FF01F;
2601 		m2 |= 0x0000900F;
2602 	}
2603 
2604 	writel(m2, port_mmio + PHY_MODE2);
2605 }
2606 
2607 /* TODO: use the generic LED interface to configure the SATA Presence */
2608 /* & Acitivy LEDs on the board */
2609 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2610 				      void __iomem *mmio)
2611 {
2612 	return;
2613 }
2614 
2615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2616 			   void __iomem *mmio)
2617 {
2618 	void __iomem *port_mmio;
2619 	u32 tmp;
2620 
2621 	port_mmio = mv_port_base(mmio, idx);
2622 	tmp = readl(port_mmio + PHY_MODE2);
2623 
2624 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2625 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2626 }
2627 
2628 #undef ZERO
2629 #define ZERO(reg) writel(0, port_mmio + (reg))
2630 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2631 					void __iomem *mmio, unsigned int port)
2632 {
2633 	void __iomem *port_mmio = mv_port_base(mmio, port);
2634 
2635 	mv_reset_channel(hpriv, mmio, port);
2636 
2637 	ZERO(0x028);		/* command */
2638 	writel(0x101f, port_mmio + EDMA_CFG_OFS);
2639 	ZERO(0x004);		/* timer */
2640 	ZERO(0x008);		/* irq err cause */
2641 	ZERO(0x00c);		/* irq err mask */
2642 	ZERO(0x010);		/* rq bah */
2643 	ZERO(0x014);		/* rq inp */
2644 	ZERO(0x018);		/* rq outp */
2645 	ZERO(0x01c);		/* respq bah */
2646 	ZERO(0x024);		/* respq outp */
2647 	ZERO(0x020);		/* respq inp */
2648 	ZERO(0x02c);		/* test control */
2649 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2650 }
2651 
2652 #undef ZERO
2653 
2654 #define ZERO(reg) writel(0, hc_mmio + (reg))
2655 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2656 				       void __iomem *mmio)
2657 {
2658 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2659 
2660 	ZERO(0x00c);
2661 	ZERO(0x010);
2662 	ZERO(0x014);
2663 
2664 }
2665 
2666 #undef ZERO
2667 
2668 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2669 				  void __iomem *mmio, unsigned int n_hc)
2670 {
2671 	unsigned int port;
2672 
2673 	for (port = 0; port < hpriv->n_ports; port++)
2674 		mv_soc_reset_hc_port(hpriv, mmio, port);
2675 
2676 	mv_soc_reset_one_hc(hpriv, mmio);
2677 
2678 	return 0;
2679 }
2680 
2681 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2682 				      void __iomem *mmio)
2683 {
2684 	return;
2685 }
2686 
2687 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2688 {
2689 	return;
2690 }
2691 
2692 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2693 {
2694 	u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2695 
2696 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
2697 	if (want_gen2i)
2698 		ifcfg |= (1 << 7);		/* enable gen2i speed */
2699 	writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2700 }
2701 
2702 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2703 			     unsigned int port_no)
2704 {
2705 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
2706 
2707 	/*
2708 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
2709 	 * (but doesn't say what the problem might be).  So we first try
2710 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
2711 	 */
2712 	mv_stop_edma_engine(port_mmio);
2713 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2714 
2715 	if (!IS_GEN_I(hpriv)) {
2716 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2717 		mv_setup_ifcfg(port_mmio, 1);
2718 	}
2719 	/*
2720 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2721 	 * link, and physical layers.  It resets all SATA interface registers
2722 	 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2723 	 */
2724 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2725 	udelay(25);	/* allow reset propagation */
2726 	writelfl(0, port_mmio + EDMA_CMD_OFS);
2727 
2728 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
2729 
2730 	if (IS_GEN_I(hpriv))
2731 		mdelay(1);
2732 }
2733 
2734 static void mv_pmp_select(struct ata_port *ap, int pmp)
2735 {
2736 	if (sata_pmp_supported(ap)) {
2737 		void __iomem *port_mmio = mv_ap_base(ap);
2738 		u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2739 		int old = reg & 0xf;
2740 
2741 		if (old != pmp) {
2742 			reg = (reg & ~0xf) | pmp;
2743 			writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2744 		}
2745 	}
2746 }
2747 
2748 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2749 				unsigned long deadline)
2750 {
2751 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2752 	return sata_std_hardreset(link, class, deadline);
2753 }
2754 
2755 static int mv_softreset(struct ata_link *link, unsigned int *class,
2756 				unsigned long deadline)
2757 {
2758 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2759 	return ata_sff_softreset(link, class, deadline);
2760 }
2761 
2762 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2763 			unsigned long deadline)
2764 {
2765 	struct ata_port *ap = link->ap;
2766 	struct mv_host_priv *hpriv = ap->host->private_data;
2767 	struct mv_port_priv *pp = ap->private_data;
2768 	void __iomem *mmio = hpriv->base;
2769 	int rc, attempts = 0, extra = 0;
2770 	u32 sstatus;
2771 	bool online;
2772 
2773 	mv_reset_channel(hpriv, mmio, ap->port_no);
2774 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2775 
2776 	/* Workaround for errata FEr SATA#10 (part 2) */
2777 	do {
2778 		const unsigned long *timing =
2779 				sata_ehc_deb_timing(&link->eh_context);
2780 
2781 		rc = sata_link_hardreset(link, timing, deadline + extra,
2782 					 &online, NULL);
2783 		rc = online ? -EAGAIN : rc;
2784 		if (rc)
2785 			return rc;
2786 		sata_scr_read(link, SCR_STATUS, &sstatus);
2787 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2788 			/* Force 1.5gb/s link speed and try again */
2789 			mv_setup_ifcfg(mv_ap_base(ap), 0);
2790 			if (time_after(jiffies + HZ, deadline))
2791 				extra = HZ; /* only extend it once, max */
2792 		}
2793 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2794 
2795 	return rc;
2796 }
2797 
2798 static void mv_eh_freeze(struct ata_port *ap)
2799 {
2800 	mv_stop_edma(ap);
2801 	mv_enable_port_irqs(ap, 0);
2802 }
2803 
2804 static void mv_eh_thaw(struct ata_port *ap)
2805 {
2806 	struct mv_host_priv *hpriv = ap->host->private_data;
2807 	unsigned int port = ap->port_no;
2808 	unsigned int hardport = mv_hardport_from_port(port);
2809 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2810 	void __iomem *port_mmio = mv_ap_base(ap);
2811 	u32 hc_irq_cause;
2812 
2813 	/* clear EDMA errors on this port */
2814 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2815 
2816 	/* clear pending irq events */
2817 	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2818 	hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2819 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2820 
2821 	mv_enable_port_irqs(ap, ERR_IRQ);
2822 }
2823 
2824 /**
2825  *      mv_port_init - Perform some early initialization on a single port.
2826  *      @port: libata data structure storing shadow register addresses
2827  *      @port_mmio: base address of the port
2828  *
2829  *      Initialize shadow register mmio addresses, clear outstanding
2830  *      interrupts on the port, and unmask interrupts for the future
2831  *      start of the port.
2832  *
2833  *      LOCKING:
2834  *      Inherited from caller.
2835  */
2836 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2837 {
2838 	void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2839 	unsigned serr_ofs;
2840 
2841 	/* PIO related setup
2842 	 */
2843 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2844 	port->error_addr =
2845 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2846 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2847 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2848 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2849 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2850 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2851 	port->status_addr =
2852 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2853 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2854 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2855 
2856 	/* unused: */
2857 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2858 
2859 	/* Clear any currently outstanding port interrupt conditions */
2860 	serr_ofs = mv_scr_offset(SCR_ERROR);
2861 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2862 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2863 
2864 	/* unmask all non-transient EDMA error interrupts */
2865 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2866 
2867 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2868 		readl(port_mmio + EDMA_CFG_OFS),
2869 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2870 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2871 }
2872 
2873 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2874 {
2875 	struct mv_host_priv *hpriv = host->private_data;
2876 	void __iomem *mmio = hpriv->base;
2877 	u32 reg;
2878 
2879 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2880 		return 0;	/* not PCI-X capable */
2881 	reg = readl(mmio + MV_PCI_MODE_OFS);
2882 	if ((reg & MV_PCI_MODE_MASK) == 0)
2883 		return 0;	/* conventional PCI mode */
2884 	return 1;	/* chip is in PCI-X mode */
2885 }
2886 
2887 static int mv_pci_cut_through_okay(struct ata_host *host)
2888 {
2889 	struct mv_host_priv *hpriv = host->private_data;
2890 	void __iomem *mmio = hpriv->base;
2891 	u32 reg;
2892 
2893 	if (!mv_in_pcix_mode(host)) {
2894 		reg = readl(mmio + PCI_COMMAND_OFS);
2895 		if (reg & PCI_COMMAND_MRDTRIG)
2896 			return 0; /* not okay */
2897 	}
2898 	return 1; /* okay */
2899 }
2900 
2901 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2902 {
2903 	struct pci_dev *pdev = to_pci_dev(host->dev);
2904 	struct mv_host_priv *hpriv = host->private_data;
2905 	u32 hp_flags = hpriv->hp_flags;
2906 
2907 	switch (board_idx) {
2908 	case chip_5080:
2909 		hpriv->ops = &mv5xxx_ops;
2910 		hp_flags |= MV_HP_GEN_I;
2911 
2912 		switch (pdev->revision) {
2913 		case 0x1:
2914 			hp_flags |= MV_HP_ERRATA_50XXB0;
2915 			break;
2916 		case 0x3:
2917 			hp_flags |= MV_HP_ERRATA_50XXB2;
2918 			break;
2919 		default:
2920 			dev_printk(KERN_WARNING, &pdev->dev,
2921 			   "Applying 50XXB2 workarounds to unknown rev\n");
2922 			hp_flags |= MV_HP_ERRATA_50XXB2;
2923 			break;
2924 		}
2925 		break;
2926 
2927 	case chip_504x:
2928 	case chip_508x:
2929 		hpriv->ops = &mv5xxx_ops;
2930 		hp_flags |= MV_HP_GEN_I;
2931 
2932 		switch (pdev->revision) {
2933 		case 0x0:
2934 			hp_flags |= MV_HP_ERRATA_50XXB0;
2935 			break;
2936 		case 0x3:
2937 			hp_flags |= MV_HP_ERRATA_50XXB2;
2938 			break;
2939 		default:
2940 			dev_printk(KERN_WARNING, &pdev->dev,
2941 			   "Applying B2 workarounds to unknown rev\n");
2942 			hp_flags |= MV_HP_ERRATA_50XXB2;
2943 			break;
2944 		}
2945 		break;
2946 
2947 	case chip_604x:
2948 	case chip_608x:
2949 		hpriv->ops = &mv6xxx_ops;
2950 		hp_flags |= MV_HP_GEN_II;
2951 
2952 		switch (pdev->revision) {
2953 		case 0x7:
2954 			hp_flags |= MV_HP_ERRATA_60X1B2;
2955 			break;
2956 		case 0x9:
2957 			hp_flags |= MV_HP_ERRATA_60X1C0;
2958 			break;
2959 		default:
2960 			dev_printk(KERN_WARNING, &pdev->dev,
2961 				   "Applying B2 workarounds to unknown rev\n");
2962 			hp_flags |= MV_HP_ERRATA_60X1B2;
2963 			break;
2964 		}
2965 		break;
2966 
2967 	case chip_7042:
2968 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2969 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2970 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
2971 		{
2972 			/*
2973 			 * Highpoint RocketRAID PCIe 23xx series cards:
2974 			 *
2975 			 * Unconfigured drives are treated as "Legacy"
2976 			 * by the BIOS, and it overwrites sector 8 with
2977 			 * a "Lgcy" metadata block prior to Linux boot.
2978 			 *
2979 			 * Configured drives (RAID or JBOD) leave sector 8
2980 			 * alone, but instead overwrite a high numbered
2981 			 * sector for the RAID metadata.  This sector can
2982 			 * be determined exactly, by truncating the physical
2983 			 * drive capacity to a nice even GB value.
2984 			 *
2985 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2986 			 *
2987 			 * Warn the user, lest they think we're just buggy.
2988 			 */
2989 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2990 				" BIOS CORRUPTS DATA on all attached drives,"
2991 				" regardless of if/how they are configured."
2992 				" BEWARE!\n");
2993 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2994 				" use sectors 8-9 on \"Legacy\" drives,"
2995 				" and avoid the final two gigabytes on"
2996 				" all RocketRAID BIOS initialized drives.\n");
2997 		}
2998 		/* drop through */
2999 	case chip_6042:
3000 		hpriv->ops = &mv6xxx_ops;
3001 		hp_flags |= MV_HP_GEN_IIE;
3002 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3003 			hp_flags |= MV_HP_CUT_THROUGH;
3004 
3005 		switch (pdev->revision) {
3006 		case 0x2: /* Rev.B0: the first/only public release */
3007 			hp_flags |= MV_HP_ERRATA_60X1C0;
3008 			break;
3009 		default:
3010 			dev_printk(KERN_WARNING, &pdev->dev,
3011 			   "Applying 60X1C0 workarounds to unknown rev\n");
3012 			hp_flags |= MV_HP_ERRATA_60X1C0;
3013 			break;
3014 		}
3015 		break;
3016 	case chip_soc:
3017 		hpriv->ops = &mv_soc_ops;
3018 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_ERRATA_60X1C0;
3019 		break;
3020 
3021 	default:
3022 		dev_printk(KERN_ERR, host->dev,
3023 			   "BUG: invalid board index %u\n", board_idx);
3024 		return 1;
3025 	}
3026 
3027 	hpriv->hp_flags = hp_flags;
3028 	if (hp_flags & MV_HP_PCIE) {
3029 		hpriv->irq_cause_ofs	= PCIE_IRQ_CAUSE_OFS;
3030 		hpriv->irq_mask_ofs	= PCIE_IRQ_MASK_OFS;
3031 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3032 	} else {
3033 		hpriv->irq_cause_ofs	= PCI_IRQ_CAUSE_OFS;
3034 		hpriv->irq_mask_ofs	= PCI_IRQ_MASK_OFS;
3035 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 /**
3042  *      mv_init_host - Perform some early initialization of the host.
3043  *	@host: ATA host to initialize
3044  *      @board_idx: controller index
3045  *
3046  *      If possible, do an early global reset of the host.  Then do
3047  *      our port init and clear/unmask all/relevant host interrupts.
3048  *
3049  *      LOCKING:
3050  *      Inherited from caller.
3051  */
3052 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3053 {
3054 	int rc = 0, n_hc, port, hc;
3055 	struct mv_host_priv *hpriv = host->private_data;
3056 	void __iomem *mmio = hpriv->base;
3057 
3058 	rc = mv_chip_id(host, board_idx);
3059 	if (rc)
3060 		goto done;
3061 
3062 	if (IS_SOC(hpriv)) {
3063 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3064 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3065 	} else {
3066 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3067 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3068 	}
3069 
3070 	/* global interrupt mask: 0 == mask everything */
3071 	mv_set_main_irq_mask(host, ~0, 0);
3072 
3073 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3074 
3075 	for (port = 0; port < host->n_ports; port++)
3076 		hpriv->ops->read_preamp(hpriv, port, mmio);
3077 
3078 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3079 	if (rc)
3080 		goto done;
3081 
3082 	hpriv->ops->reset_flash(hpriv, mmio);
3083 	hpriv->ops->reset_bus(host, mmio);
3084 	hpriv->ops->enable_leds(hpriv, mmio);
3085 
3086 	for (port = 0; port < host->n_ports; port++) {
3087 		struct ata_port *ap = host->ports[port];
3088 		void __iomem *port_mmio = mv_port_base(mmio, port);
3089 
3090 		mv_port_init(&ap->ioaddr, port_mmio);
3091 
3092 #ifdef CONFIG_PCI
3093 		if (!IS_SOC(hpriv)) {
3094 			unsigned int offset = port_mmio - mmio;
3095 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3096 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3097 		}
3098 #endif
3099 	}
3100 
3101 	for (hc = 0; hc < n_hc; hc++) {
3102 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3103 
3104 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3105 			"(before clear)=0x%08x\n", hc,
3106 			readl(hc_mmio + HC_CFG_OFS),
3107 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3108 
3109 		/* Clear any currently outstanding hc interrupt conditions */
3110 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3111 	}
3112 
3113 	if (!IS_SOC(hpriv)) {
3114 		/* Clear any currently outstanding host interrupt conditions */
3115 		writelfl(0, mmio + hpriv->irq_cause_ofs);
3116 
3117 		/* and unmask interrupt generation for host regs */
3118 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3119 
3120 		/*
3121 		 * enable only global host interrupts for now.
3122 		 * The per-port interrupts get done later as ports are set up.
3123 		 */
3124 		mv_set_main_irq_mask(host, 0, PCI_ERR);
3125 	}
3126 done:
3127 	return rc;
3128 }
3129 
3130 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3131 {
3132 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3133 							     MV_CRQB_Q_SZ, 0);
3134 	if (!hpriv->crqb_pool)
3135 		return -ENOMEM;
3136 
3137 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3138 							     MV_CRPB_Q_SZ, 0);
3139 	if (!hpriv->crpb_pool)
3140 		return -ENOMEM;
3141 
3142 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3143 							     MV_SG_TBL_SZ, 0);
3144 	if (!hpriv->sg_tbl_pool)
3145 		return -ENOMEM;
3146 
3147 	return 0;
3148 }
3149 
3150 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3151 				 struct mbus_dram_target_info *dram)
3152 {
3153 	int i;
3154 
3155 	for (i = 0; i < 4; i++) {
3156 		writel(0, hpriv->base + WINDOW_CTRL(i));
3157 		writel(0, hpriv->base + WINDOW_BASE(i));
3158 	}
3159 
3160 	for (i = 0; i < dram->num_cs; i++) {
3161 		struct mbus_dram_window *cs = dram->cs + i;
3162 
3163 		writel(((cs->size - 1) & 0xffff0000) |
3164 			(cs->mbus_attr << 8) |
3165 			(dram->mbus_dram_target_id << 4) | 1,
3166 			hpriv->base + WINDOW_CTRL(i));
3167 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3168 	}
3169 }
3170 
3171 /**
3172  *      mv_platform_probe - handle a positive probe of an soc Marvell
3173  *      host
3174  *      @pdev: platform device found
3175  *
3176  *      LOCKING:
3177  *      Inherited from caller.
3178  */
3179 static int mv_platform_probe(struct platform_device *pdev)
3180 {
3181 	static int printed_version;
3182 	const struct mv_sata_platform_data *mv_platform_data;
3183 	const struct ata_port_info *ppi[] =
3184 	    { &mv_port_info[chip_soc], NULL };
3185 	struct ata_host *host;
3186 	struct mv_host_priv *hpriv;
3187 	struct resource *res;
3188 	int n_ports, rc;
3189 
3190 	if (!printed_version++)
3191 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3192 
3193 	/*
3194 	 * Simple resource validation ..
3195 	 */
3196 	if (unlikely(pdev->num_resources != 2)) {
3197 		dev_err(&pdev->dev, "invalid number of resources\n");
3198 		return -EINVAL;
3199 	}
3200 
3201 	/*
3202 	 * Get the register base first
3203 	 */
3204 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3205 	if (res == NULL)
3206 		return -EINVAL;
3207 
3208 	/* allocate host */
3209 	mv_platform_data = pdev->dev.platform_data;
3210 	n_ports = mv_platform_data->n_ports;
3211 
3212 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3213 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3214 
3215 	if (!host || !hpriv)
3216 		return -ENOMEM;
3217 	host->private_data = hpriv;
3218 	hpriv->n_ports = n_ports;
3219 
3220 	host->iomap = NULL;
3221 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3222 				   res->end - res->start + 1);
3223 	hpriv->base -= MV_SATAHC0_REG_BASE;
3224 
3225 	/*
3226 	 * (Re-)program MBUS remapping windows if we are asked to.
3227 	 */
3228 	if (mv_platform_data->dram != NULL)
3229 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3230 
3231 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3232 	if (rc)
3233 		return rc;
3234 
3235 	/* initialize adapter */
3236 	rc = mv_init_host(host, chip_soc);
3237 	if (rc)
3238 		return rc;
3239 
3240 	dev_printk(KERN_INFO, &pdev->dev,
3241 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3242 		   host->n_ports);
3243 
3244 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3245 				 IRQF_SHARED, &mv6_sht);
3246 }
3247 
3248 /*
3249  *
3250  *      mv_platform_remove    -       unplug a platform interface
3251  *      @pdev: platform device
3252  *
3253  *      A platform bus SATA device has been unplugged. Perform the needed
3254  *      cleanup. Also called on module unload for any active devices.
3255  */
3256 static int __devexit mv_platform_remove(struct platform_device *pdev)
3257 {
3258 	struct device *dev = &pdev->dev;
3259 	struct ata_host *host = dev_get_drvdata(dev);
3260 
3261 	ata_host_detach(host);
3262 	return 0;
3263 }
3264 
3265 static struct platform_driver mv_platform_driver = {
3266 	.probe			= mv_platform_probe,
3267 	.remove			= __devexit_p(mv_platform_remove),
3268 	.driver			= {
3269 				   .name = DRV_NAME,
3270 				   .owner = THIS_MODULE,
3271 				  },
3272 };
3273 
3274 
3275 #ifdef CONFIG_PCI
3276 static int mv_pci_init_one(struct pci_dev *pdev,
3277 			   const struct pci_device_id *ent);
3278 
3279 
3280 static struct pci_driver mv_pci_driver = {
3281 	.name			= DRV_NAME,
3282 	.id_table		= mv_pci_tbl,
3283 	.probe			= mv_pci_init_one,
3284 	.remove			= ata_pci_remove_one,
3285 };
3286 
3287 /*
3288  * module options
3289  */
3290 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
3291 
3292 
3293 /* move to PCI layer or libata core? */
3294 static int pci_go_64(struct pci_dev *pdev)
3295 {
3296 	int rc;
3297 
3298 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3299 		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3300 		if (rc) {
3301 			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3302 			if (rc) {
3303 				dev_printk(KERN_ERR, &pdev->dev,
3304 					   "64-bit DMA enable failed\n");
3305 				return rc;
3306 			}
3307 		}
3308 	} else {
3309 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3310 		if (rc) {
3311 			dev_printk(KERN_ERR, &pdev->dev,
3312 				   "32-bit DMA enable failed\n");
3313 			return rc;
3314 		}
3315 		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3316 		if (rc) {
3317 			dev_printk(KERN_ERR, &pdev->dev,
3318 				   "32-bit consistent DMA enable failed\n");
3319 			return rc;
3320 		}
3321 	}
3322 
3323 	return rc;
3324 }
3325 
3326 /**
3327  *      mv_print_info - Dump key info to kernel log for perusal.
3328  *      @host: ATA host to print info about
3329  *
3330  *      FIXME: complete this.
3331  *
3332  *      LOCKING:
3333  *      Inherited from caller.
3334  */
3335 static void mv_print_info(struct ata_host *host)
3336 {
3337 	struct pci_dev *pdev = to_pci_dev(host->dev);
3338 	struct mv_host_priv *hpriv = host->private_data;
3339 	u8 scc;
3340 	const char *scc_s, *gen;
3341 
3342 	/* Use this to determine the HW stepping of the chip so we know
3343 	 * what errata to workaround
3344 	 */
3345 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3346 	if (scc == 0)
3347 		scc_s = "SCSI";
3348 	else if (scc == 0x01)
3349 		scc_s = "RAID";
3350 	else
3351 		scc_s = "?";
3352 
3353 	if (IS_GEN_I(hpriv))
3354 		gen = "I";
3355 	else if (IS_GEN_II(hpriv))
3356 		gen = "II";
3357 	else if (IS_GEN_IIE(hpriv))
3358 		gen = "IIE";
3359 	else
3360 		gen = "?";
3361 
3362 	dev_printk(KERN_INFO, &pdev->dev,
3363 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3364 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3365 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3366 }
3367 
3368 /**
3369  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3370  *      @pdev: PCI device found
3371  *      @ent: PCI device ID entry for the matched host
3372  *
3373  *      LOCKING:
3374  *      Inherited from caller.
3375  */
3376 static int mv_pci_init_one(struct pci_dev *pdev,
3377 			   const struct pci_device_id *ent)
3378 {
3379 	static int printed_version;
3380 	unsigned int board_idx = (unsigned int)ent->driver_data;
3381 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3382 	struct ata_host *host;
3383 	struct mv_host_priv *hpriv;
3384 	int n_ports, rc;
3385 
3386 	if (!printed_version++)
3387 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3388 
3389 	/* allocate host */
3390 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3391 
3392 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3393 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3394 	if (!host || !hpriv)
3395 		return -ENOMEM;
3396 	host->private_data = hpriv;
3397 	hpriv->n_ports = n_ports;
3398 
3399 	/* acquire resources */
3400 	rc = pcim_enable_device(pdev);
3401 	if (rc)
3402 		return rc;
3403 
3404 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3405 	if (rc == -EBUSY)
3406 		pcim_pin_device(pdev);
3407 	if (rc)
3408 		return rc;
3409 	host->iomap = pcim_iomap_table(pdev);
3410 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
3411 
3412 	rc = pci_go_64(pdev);
3413 	if (rc)
3414 		return rc;
3415 
3416 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3417 	if (rc)
3418 		return rc;
3419 
3420 	/* initialize adapter */
3421 	rc = mv_init_host(host, board_idx);
3422 	if (rc)
3423 		return rc;
3424 
3425 	/* Enable interrupts */
3426 	if (msi && pci_enable_msi(pdev))
3427 		pci_intx(pdev, 1);
3428 
3429 	mv_dump_pci_cfg(pdev, 0x68);
3430 	mv_print_info(host);
3431 
3432 	pci_set_master(pdev);
3433 	pci_try_set_mwi(pdev);
3434 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3435 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3436 }
3437 #endif
3438 
3439 static int mv_platform_probe(struct platform_device *pdev);
3440 static int __devexit mv_platform_remove(struct platform_device *pdev);
3441 
3442 static int __init mv_init(void)
3443 {
3444 	int rc = -ENODEV;
3445 #ifdef CONFIG_PCI
3446 	rc = pci_register_driver(&mv_pci_driver);
3447 	if (rc < 0)
3448 		return rc;
3449 #endif
3450 	rc = platform_driver_register(&mv_platform_driver);
3451 
3452 #ifdef CONFIG_PCI
3453 	if (rc < 0)
3454 		pci_unregister_driver(&mv_pci_driver);
3455 #endif
3456 	return rc;
3457 }
3458 
3459 static void __exit mv_exit(void)
3460 {
3461 #ifdef CONFIG_PCI
3462 	pci_unregister_driver(&mv_pci_driver);
3463 #endif
3464 	platform_driver_unregister(&mv_platform_driver);
3465 }
3466 
3467 MODULE_AUTHOR("Brett Russ");
3468 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3469 MODULE_LICENSE("GPL");
3470 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3471 MODULE_VERSION(DRV_VERSION);
3472 MODULE_ALIAS("platform:" DRV_NAME);
3473 
3474 #ifdef CONFIG_PCI
3475 module_param(msi, int, 0444);
3476 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3477 #endif
3478 
3479 module_init(mv_init);
3480 module_exit(mv_exit);
3481