1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/clk.h> 63 #include <linux/phy/phy.h> 64 #include <linux/platform_device.h> 65 #include <linux/ata_platform.h> 66 #include <linux/mbus.h> 67 #include <linux/bitops.h> 68 #include <linux/gfp.h> 69 #include <linux/of.h> 70 #include <linux/of_irq.h> 71 #include <scsi/scsi_host.h> 72 #include <scsi/scsi_cmnd.h> 73 #include <scsi/scsi_device.h> 74 #include <linux/libata.h> 75 76 #define DRV_NAME "sata_mv" 77 #define DRV_VERSION "1.28" 78 79 /* 80 * module options 81 */ 82 83 #ifdef CONFIG_PCI 84 static int msi; 85 module_param(msi, int, S_IRUGO); 86 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 87 #endif 88 89 static int irq_coalescing_io_count; 90 module_param(irq_coalescing_io_count, int, S_IRUGO); 91 MODULE_PARM_DESC(irq_coalescing_io_count, 92 "IRQ coalescing I/O count threshold (0..255)"); 93 94 static int irq_coalescing_usecs; 95 module_param(irq_coalescing_usecs, int, S_IRUGO); 96 MODULE_PARM_DESC(irq_coalescing_usecs, 97 "IRQ coalescing time threshold in usecs"); 98 99 enum { 100 /* BAR's are enumerated in terms of pci_resource_start() terms */ 101 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 102 MV_IO_BAR = 2, /* offset 0x18: IO space */ 103 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 104 105 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 106 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 107 108 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 109 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 110 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 111 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 112 113 MV_PCI_REG_BASE = 0, 114 115 /* 116 * Per-chip ("all ports") interrupt coalescing feature. 117 * This is only for GEN_II / GEN_IIE hardware. 118 * 119 * Coalescing defers the interrupt until either the IO_THRESHOLD 120 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 121 */ 122 COAL_REG_BASE = 0x18000, 123 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 124 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 125 126 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 127 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 128 129 /* 130 * Registers for the (unused here) transaction coalescing feature: 131 */ 132 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 133 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 134 135 SATAHC0_REG_BASE = 0x20000, 136 FLASH_CTL = 0x1046c, 137 GPIO_PORT_CTL = 0x104f0, 138 RESET_CFG = 0x180d8, 139 140 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 141 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 142 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 143 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 144 145 MV_MAX_Q_DEPTH = 32, 146 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 147 148 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 149 * CRPB needs alignment on a 256B boundary. Size == 256B 150 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 151 */ 152 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 153 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 154 MV_MAX_SG_CT = 256, 155 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 156 157 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 158 MV_PORT_HC_SHIFT = 2, 159 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 160 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 161 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 162 163 /* Host Flags */ 164 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 165 166 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 167 168 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 169 170 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 171 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 172 173 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 174 175 CRQB_FLAG_READ = (1 << 0), 176 CRQB_TAG_SHIFT = 1, 177 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 178 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 179 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 180 CRQB_CMD_ADDR_SHIFT = 8, 181 CRQB_CMD_CS = (0x2 << 11), 182 CRQB_CMD_LAST = (1 << 15), 183 184 CRPB_FLAG_STATUS_SHIFT = 8, 185 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 186 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 187 188 EPRD_FLAG_END_OF_TBL = (1 << 31), 189 190 /* PCI interface registers */ 191 192 MV_PCI_COMMAND = 0xc00, 193 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 194 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 195 196 PCI_MAIN_CMD_STS = 0xd30, 197 STOP_PCI_MASTER = (1 << 2), 198 PCI_MASTER_EMPTY = (1 << 3), 199 GLOB_SFT_RST = (1 << 4), 200 201 MV_PCI_MODE = 0xd00, 202 MV_PCI_MODE_MASK = 0x30, 203 204 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 205 MV_PCI_DISC_TIMER = 0xd04, 206 MV_PCI_MSI_TRIGGER = 0xc38, 207 MV_PCI_SERR_MASK = 0xc28, 208 MV_PCI_XBAR_TMOUT = 0x1d04, 209 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 210 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 211 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 212 MV_PCI_ERR_COMMAND = 0x1d50, 213 214 PCI_IRQ_CAUSE = 0x1d58, 215 PCI_IRQ_MASK = 0x1d5c, 216 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 217 218 PCIE_IRQ_CAUSE = 0x1900, 219 PCIE_IRQ_MASK = 0x1910, 220 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 221 222 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 223 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 224 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 225 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 226 SOC_HC_MAIN_IRQ_MASK = 0x20024, 227 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 228 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 229 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 230 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 231 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 232 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 233 PCI_ERR = (1 << 18), 234 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 235 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 236 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 237 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 238 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 239 GPIO_INT = (1 << 22), 240 SELF_INT = (1 << 23), 241 TWSI_INT = (1 << 24), 242 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 243 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 244 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 245 246 /* SATAHC registers */ 247 HC_CFG = 0x00, 248 249 HC_IRQ_CAUSE = 0x14, 250 DMA_IRQ = (1 << 0), /* shift by port # */ 251 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 252 DEV_IRQ = (1 << 8), /* shift by port # */ 253 254 /* 255 * Per-HC (Host-Controller) interrupt coalescing feature. 256 * This is present on all chip generations. 257 * 258 * Coalescing defers the interrupt until either the IO_THRESHOLD 259 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 260 */ 261 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 262 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 263 264 SOC_LED_CTRL = 0x2c, 265 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 266 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 267 /* with dev activity LED */ 268 269 /* Shadow block registers */ 270 SHD_BLK = 0x100, 271 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 272 273 /* SATA registers */ 274 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 275 SATA_ACTIVE = 0x350, 276 FIS_IRQ_CAUSE = 0x364, 277 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 278 279 LTMODE = 0x30c, /* requires read-after-write */ 280 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 281 282 PHY_MODE2 = 0x330, 283 PHY_MODE3 = 0x310, 284 285 PHY_MODE4 = 0x314, /* requires read-after-write */ 286 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 287 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 288 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 289 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 290 291 SATA_IFCTL = 0x344, 292 SATA_TESTCTL = 0x348, 293 SATA_IFSTAT = 0x34c, 294 VENDOR_UNIQUE_FIS = 0x35c, 295 296 FISCFG = 0x360, 297 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 298 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 299 300 PHY_MODE9_GEN2 = 0x398, 301 PHY_MODE9_GEN1 = 0x39c, 302 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 303 304 MV5_PHY_MODE = 0x74, 305 MV5_LTMODE = 0x30, 306 MV5_PHY_CTL = 0x0C, 307 SATA_IFCFG = 0x050, 308 LP_PHY_CTL = 0x058, 309 LP_PHY_CTL_PIN_PU_PLL = (1 << 0), 310 LP_PHY_CTL_PIN_PU_RX = (1 << 1), 311 LP_PHY_CTL_PIN_PU_TX = (1 << 2), 312 LP_PHY_CTL_GEN_TX_3G = (1 << 5), 313 LP_PHY_CTL_GEN_RX_3G = (1 << 9), 314 315 MV_M2_PREAMP_MASK = 0x7e0, 316 317 /* Port registers */ 318 EDMA_CFG = 0, 319 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 320 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 321 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 322 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 323 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 324 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 325 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 326 327 EDMA_ERR_IRQ_CAUSE = 0x8, 328 EDMA_ERR_IRQ_MASK = 0xc, 329 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 330 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 331 EDMA_ERR_DEV = (1 << 2), /* device error */ 332 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 333 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 334 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 335 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 336 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 337 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 338 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 339 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 340 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 341 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 342 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 343 344 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 345 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 346 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 347 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 348 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 349 350 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 351 352 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 353 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 354 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 355 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 356 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 357 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 358 359 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 360 361 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 362 EDMA_ERR_OVERRUN_5 = (1 << 5), 363 EDMA_ERR_UNDERRUN_5 = (1 << 6), 364 365 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 366 EDMA_ERR_LNK_CTRL_RX_1 | 367 EDMA_ERR_LNK_CTRL_RX_3 | 368 EDMA_ERR_LNK_CTRL_TX, 369 370 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 371 EDMA_ERR_PRD_PAR | 372 EDMA_ERR_DEV_DCON | 373 EDMA_ERR_DEV_CON | 374 EDMA_ERR_SERR | 375 EDMA_ERR_SELF_DIS | 376 EDMA_ERR_CRQB_PAR | 377 EDMA_ERR_CRPB_PAR | 378 EDMA_ERR_INTRL_PAR | 379 EDMA_ERR_IORDY | 380 EDMA_ERR_LNK_CTRL_RX_2 | 381 EDMA_ERR_LNK_DATA_RX | 382 EDMA_ERR_LNK_DATA_TX | 383 EDMA_ERR_TRANS_PROTO, 384 385 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 386 EDMA_ERR_PRD_PAR | 387 EDMA_ERR_DEV_DCON | 388 EDMA_ERR_DEV_CON | 389 EDMA_ERR_OVERRUN_5 | 390 EDMA_ERR_UNDERRUN_5 | 391 EDMA_ERR_SELF_DIS_5 | 392 EDMA_ERR_CRQB_PAR | 393 EDMA_ERR_CRPB_PAR | 394 EDMA_ERR_INTRL_PAR | 395 EDMA_ERR_IORDY, 396 397 EDMA_REQ_Q_BASE_HI = 0x10, 398 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 399 400 EDMA_REQ_Q_OUT_PTR = 0x18, 401 EDMA_REQ_Q_PTR_SHIFT = 5, 402 403 EDMA_RSP_Q_BASE_HI = 0x1c, 404 EDMA_RSP_Q_IN_PTR = 0x20, 405 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 406 EDMA_RSP_Q_PTR_SHIFT = 3, 407 408 EDMA_CMD = 0x28, /* EDMA command register */ 409 EDMA_EN = (1 << 0), /* enable EDMA */ 410 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 411 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 412 413 EDMA_STATUS = 0x30, /* EDMA engine status */ 414 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 415 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 416 417 EDMA_IORDY_TMOUT = 0x34, 418 EDMA_ARB_CFG = 0x38, 419 420 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 421 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 422 423 BMDMA_CMD = 0x224, /* bmdma command register */ 424 BMDMA_STATUS = 0x228, /* bmdma status register */ 425 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 426 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 427 428 /* Host private flags (hp_flags) */ 429 MV_HP_FLAG_MSI = (1 << 0), 430 MV_HP_ERRATA_50XXB0 = (1 << 1), 431 MV_HP_ERRATA_50XXB2 = (1 << 2), 432 MV_HP_ERRATA_60X1B2 = (1 << 3), 433 MV_HP_ERRATA_60X1C0 = (1 << 4), 434 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 435 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 436 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 437 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 438 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 439 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 440 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 441 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */ 442 443 /* Port private flags (pp_flags) */ 444 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 445 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 446 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 447 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 448 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 449 }; 450 451 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 452 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 453 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 454 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 455 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 456 457 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 458 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 459 460 enum { 461 /* DMA boundary 0xffff is required by the s/g splitting 462 * we need on /length/ in mv_fill-sg(). 463 */ 464 MV_DMA_BOUNDARY = 0xffffU, 465 466 /* mask of register bits containing lower 32 bits 467 * of EDMA request queue DMA address 468 */ 469 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 470 471 /* ditto, for response queue */ 472 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 473 }; 474 475 enum chip_type { 476 chip_504x, 477 chip_508x, 478 chip_5080, 479 chip_604x, 480 chip_608x, 481 chip_6042, 482 chip_7042, 483 chip_soc, 484 }; 485 486 /* Command ReQuest Block: 32B */ 487 struct mv_crqb { 488 __le32 sg_addr; 489 __le32 sg_addr_hi; 490 __le16 ctrl_flags; 491 __le16 ata_cmd[11]; 492 }; 493 494 struct mv_crqb_iie { 495 __le32 addr; 496 __le32 addr_hi; 497 __le32 flags; 498 __le32 len; 499 __le32 ata_cmd[4]; 500 }; 501 502 /* Command ResPonse Block: 8B */ 503 struct mv_crpb { 504 __le16 id; 505 __le16 flags; 506 __le32 tmstmp; 507 }; 508 509 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 510 struct mv_sg { 511 __le32 addr; 512 __le32 flags_size; 513 __le32 addr_hi; 514 __le32 reserved; 515 }; 516 517 /* 518 * We keep a local cache of a few frequently accessed port 519 * registers here, to avoid having to read them (very slow) 520 * when switching between EDMA and non-EDMA modes. 521 */ 522 struct mv_cached_regs { 523 u32 fiscfg; 524 u32 ltmode; 525 u32 haltcond; 526 u32 unknown_rsvd; 527 }; 528 529 struct mv_port_priv { 530 struct mv_crqb *crqb; 531 dma_addr_t crqb_dma; 532 struct mv_crpb *crpb; 533 dma_addr_t crpb_dma; 534 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 535 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 536 537 unsigned int req_idx; 538 unsigned int resp_idx; 539 540 u32 pp_flags; 541 struct mv_cached_regs cached; 542 unsigned int delayed_eh_pmp_map; 543 }; 544 545 struct mv_port_signal { 546 u32 amps; 547 u32 pre; 548 }; 549 550 struct mv_host_priv { 551 u32 hp_flags; 552 unsigned int board_idx; 553 u32 main_irq_mask; 554 struct mv_port_signal signal[8]; 555 const struct mv_hw_ops *ops; 556 int n_ports; 557 void __iomem *base; 558 void __iomem *main_irq_cause_addr; 559 void __iomem *main_irq_mask_addr; 560 u32 irq_cause_offset; 561 u32 irq_mask_offset; 562 u32 unmask_all_irqs; 563 564 /* 565 * Needed on some devices that require their clocks to be enabled. 566 * These are optional: if the platform device does not have any 567 * clocks, they won't be used. Also, if the underlying hardware 568 * does not support the common clock framework (CONFIG_HAVE_CLK=n), 569 * all the clock operations become no-ops (see clk.h). 570 */ 571 struct clk *clk; 572 struct clk **port_clks; 573 /* 574 * Some devices have a SATA PHY which can be enabled/disabled 575 * in order to save power. These are optional: if the platform 576 * devices does not have any phy, they won't be used. 577 */ 578 struct phy **port_phys; 579 /* 580 * These consistent DMA memory pools give us guaranteed 581 * alignment for hardware-accessed data structures, 582 * and less memory waste in accomplishing the alignment. 583 */ 584 struct dma_pool *crqb_pool; 585 struct dma_pool *crpb_pool; 586 struct dma_pool *sg_tbl_pool; 587 }; 588 589 struct mv_hw_ops { 590 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 591 unsigned int port); 592 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 593 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 594 void __iomem *mmio); 595 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 596 unsigned int n_hc); 597 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 598 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 599 }; 600 601 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 602 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 603 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 604 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 605 static int mv_port_start(struct ata_port *ap); 606 static void mv_port_stop(struct ata_port *ap); 607 static int mv_qc_defer(struct ata_queued_cmd *qc); 608 static void mv_qc_prep(struct ata_queued_cmd *qc); 609 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 610 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 611 static int mv_hardreset(struct ata_link *link, unsigned int *class, 612 unsigned long deadline); 613 static void mv_eh_freeze(struct ata_port *ap); 614 static void mv_eh_thaw(struct ata_port *ap); 615 static void mv6_dev_config(struct ata_device *dev); 616 617 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 618 unsigned int port); 619 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 620 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 621 void __iomem *mmio); 622 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 623 unsigned int n_hc); 624 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 625 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 626 627 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 628 unsigned int port); 629 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 630 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 631 void __iomem *mmio); 632 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 633 unsigned int n_hc); 634 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 635 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 636 void __iomem *mmio); 637 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 638 void __iomem *mmio); 639 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 640 void __iomem *mmio, unsigned int n_hc); 641 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 642 void __iomem *mmio); 643 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 644 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 645 void __iomem *mmio, unsigned int port); 646 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 647 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 648 unsigned int port_no); 649 static int mv_stop_edma(struct ata_port *ap); 650 static int mv_stop_edma_engine(void __iomem *port_mmio); 651 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 652 653 static void mv_pmp_select(struct ata_port *ap, int pmp); 654 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 655 unsigned long deadline); 656 static int mv_softreset(struct ata_link *link, unsigned int *class, 657 unsigned long deadline); 658 static void mv_pmp_error_handler(struct ata_port *ap); 659 static void mv_process_crpb_entries(struct ata_port *ap, 660 struct mv_port_priv *pp); 661 662 static void mv_sff_irq_clear(struct ata_port *ap); 663 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 664 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 665 static void mv_bmdma_start(struct ata_queued_cmd *qc); 666 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 667 static u8 mv_bmdma_status(struct ata_port *ap); 668 static u8 mv_sff_check_status(struct ata_port *ap); 669 670 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 671 * because we have to allow room for worst case splitting of 672 * PRDs for 64K boundaries in mv_fill_sg(). 673 */ 674 #ifdef CONFIG_PCI 675 static struct scsi_host_template mv5_sht = { 676 ATA_BASE_SHT(DRV_NAME), 677 .sg_tablesize = MV_MAX_SG_CT / 2, 678 .dma_boundary = MV_DMA_BOUNDARY, 679 }; 680 #endif 681 static struct scsi_host_template mv6_sht = { 682 ATA_NCQ_SHT(DRV_NAME), 683 .can_queue = MV_MAX_Q_DEPTH - 1, 684 .sg_tablesize = MV_MAX_SG_CT / 2, 685 .dma_boundary = MV_DMA_BOUNDARY, 686 }; 687 688 static struct ata_port_operations mv5_ops = { 689 .inherits = &ata_sff_port_ops, 690 691 .lost_interrupt = ATA_OP_NULL, 692 693 .qc_defer = mv_qc_defer, 694 .qc_prep = mv_qc_prep, 695 .qc_issue = mv_qc_issue, 696 697 .freeze = mv_eh_freeze, 698 .thaw = mv_eh_thaw, 699 .hardreset = mv_hardreset, 700 701 .scr_read = mv5_scr_read, 702 .scr_write = mv5_scr_write, 703 704 .port_start = mv_port_start, 705 .port_stop = mv_port_stop, 706 }; 707 708 static struct ata_port_operations mv6_ops = { 709 .inherits = &ata_bmdma_port_ops, 710 711 .lost_interrupt = ATA_OP_NULL, 712 713 .qc_defer = mv_qc_defer, 714 .qc_prep = mv_qc_prep, 715 .qc_issue = mv_qc_issue, 716 717 .dev_config = mv6_dev_config, 718 719 .freeze = mv_eh_freeze, 720 .thaw = mv_eh_thaw, 721 .hardreset = mv_hardreset, 722 .softreset = mv_softreset, 723 .pmp_hardreset = mv_pmp_hardreset, 724 .pmp_softreset = mv_softreset, 725 .error_handler = mv_pmp_error_handler, 726 727 .scr_read = mv_scr_read, 728 .scr_write = mv_scr_write, 729 730 .sff_check_status = mv_sff_check_status, 731 .sff_irq_clear = mv_sff_irq_clear, 732 .check_atapi_dma = mv_check_atapi_dma, 733 .bmdma_setup = mv_bmdma_setup, 734 .bmdma_start = mv_bmdma_start, 735 .bmdma_stop = mv_bmdma_stop, 736 .bmdma_status = mv_bmdma_status, 737 738 .port_start = mv_port_start, 739 .port_stop = mv_port_stop, 740 }; 741 742 static struct ata_port_operations mv_iie_ops = { 743 .inherits = &mv6_ops, 744 .dev_config = ATA_OP_NULL, 745 .qc_prep = mv_qc_prep_iie, 746 }; 747 748 static const struct ata_port_info mv_port_info[] = { 749 { /* chip_504x */ 750 .flags = MV_GEN_I_FLAGS, 751 .pio_mask = ATA_PIO4, 752 .udma_mask = ATA_UDMA6, 753 .port_ops = &mv5_ops, 754 }, 755 { /* chip_508x */ 756 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 757 .pio_mask = ATA_PIO4, 758 .udma_mask = ATA_UDMA6, 759 .port_ops = &mv5_ops, 760 }, 761 { /* chip_5080 */ 762 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 763 .pio_mask = ATA_PIO4, 764 .udma_mask = ATA_UDMA6, 765 .port_ops = &mv5_ops, 766 }, 767 { /* chip_604x */ 768 .flags = MV_GEN_II_FLAGS, 769 .pio_mask = ATA_PIO4, 770 .udma_mask = ATA_UDMA6, 771 .port_ops = &mv6_ops, 772 }, 773 { /* chip_608x */ 774 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 775 .pio_mask = ATA_PIO4, 776 .udma_mask = ATA_UDMA6, 777 .port_ops = &mv6_ops, 778 }, 779 { /* chip_6042 */ 780 .flags = MV_GEN_IIE_FLAGS, 781 .pio_mask = ATA_PIO4, 782 .udma_mask = ATA_UDMA6, 783 .port_ops = &mv_iie_ops, 784 }, 785 { /* chip_7042 */ 786 .flags = MV_GEN_IIE_FLAGS, 787 .pio_mask = ATA_PIO4, 788 .udma_mask = ATA_UDMA6, 789 .port_ops = &mv_iie_ops, 790 }, 791 { /* chip_soc */ 792 .flags = MV_GEN_IIE_FLAGS, 793 .pio_mask = ATA_PIO4, 794 .udma_mask = ATA_UDMA6, 795 .port_ops = &mv_iie_ops, 796 }, 797 }; 798 799 static const struct pci_device_id mv_pci_tbl[] = { 800 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 801 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 802 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 803 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 804 /* RocketRAID 1720/174x have different identifiers */ 805 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 806 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 807 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 808 809 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 810 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 811 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 812 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 813 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 814 815 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 816 817 /* Adaptec 1430SA */ 818 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 819 820 /* Marvell 7042 support */ 821 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 822 823 /* Highpoint RocketRAID PCIe series */ 824 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 825 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 826 827 { } /* terminate list */ 828 }; 829 830 static const struct mv_hw_ops mv5xxx_ops = { 831 .phy_errata = mv5_phy_errata, 832 .enable_leds = mv5_enable_leds, 833 .read_preamp = mv5_read_preamp, 834 .reset_hc = mv5_reset_hc, 835 .reset_flash = mv5_reset_flash, 836 .reset_bus = mv5_reset_bus, 837 }; 838 839 static const struct mv_hw_ops mv6xxx_ops = { 840 .phy_errata = mv6_phy_errata, 841 .enable_leds = mv6_enable_leds, 842 .read_preamp = mv6_read_preamp, 843 .reset_hc = mv6_reset_hc, 844 .reset_flash = mv6_reset_flash, 845 .reset_bus = mv_reset_pci_bus, 846 }; 847 848 static const struct mv_hw_ops mv_soc_ops = { 849 .phy_errata = mv6_phy_errata, 850 .enable_leds = mv_soc_enable_leds, 851 .read_preamp = mv_soc_read_preamp, 852 .reset_hc = mv_soc_reset_hc, 853 .reset_flash = mv_soc_reset_flash, 854 .reset_bus = mv_soc_reset_bus, 855 }; 856 857 static const struct mv_hw_ops mv_soc_65n_ops = { 858 .phy_errata = mv_soc_65n_phy_errata, 859 .enable_leds = mv_soc_enable_leds, 860 .reset_hc = mv_soc_reset_hc, 861 .reset_flash = mv_soc_reset_flash, 862 .reset_bus = mv_soc_reset_bus, 863 }; 864 865 /* 866 * Functions 867 */ 868 869 static inline void writelfl(unsigned long data, void __iomem *addr) 870 { 871 writel(data, addr); 872 (void) readl(addr); /* flush to avoid PCI posted write */ 873 } 874 875 static inline unsigned int mv_hc_from_port(unsigned int port) 876 { 877 return port >> MV_PORT_HC_SHIFT; 878 } 879 880 static inline unsigned int mv_hardport_from_port(unsigned int port) 881 { 882 return port & MV_PORT_MASK; 883 } 884 885 /* 886 * Consolidate some rather tricky bit shift calculations. 887 * This is hot-path stuff, so not a function. 888 * Simple code, with two return values, so macro rather than inline. 889 * 890 * port is the sole input, in range 0..7. 891 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 892 * hardport is the other output, in range 0..3. 893 * 894 * Note that port and hardport may be the same variable in some cases. 895 */ 896 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 897 { \ 898 shift = mv_hc_from_port(port) * HC_SHIFT; \ 899 hardport = mv_hardport_from_port(port); \ 900 shift += hardport * 2; \ 901 } 902 903 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 904 { 905 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 906 } 907 908 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 909 unsigned int port) 910 { 911 return mv_hc_base(base, mv_hc_from_port(port)); 912 } 913 914 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 915 { 916 return mv_hc_base_from_port(base, port) + 917 MV_SATAHC_ARBTR_REG_SZ + 918 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 919 } 920 921 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 922 { 923 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 924 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 925 926 return hc_mmio + ofs; 927 } 928 929 static inline void __iomem *mv_host_base(struct ata_host *host) 930 { 931 struct mv_host_priv *hpriv = host->private_data; 932 return hpriv->base; 933 } 934 935 static inline void __iomem *mv_ap_base(struct ata_port *ap) 936 { 937 return mv_port_base(mv_host_base(ap->host), ap->port_no); 938 } 939 940 static inline int mv_get_hc_count(unsigned long port_flags) 941 { 942 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 943 } 944 945 /** 946 * mv_save_cached_regs - (re-)initialize cached port registers 947 * @ap: the port whose registers we are caching 948 * 949 * Initialize the local cache of port registers, 950 * so that reading them over and over again can 951 * be avoided on the hotter paths of this driver. 952 * This saves a few microseconds each time we switch 953 * to/from EDMA mode to perform (eg.) a drive cache flush. 954 */ 955 static void mv_save_cached_regs(struct ata_port *ap) 956 { 957 void __iomem *port_mmio = mv_ap_base(ap); 958 struct mv_port_priv *pp = ap->private_data; 959 960 pp->cached.fiscfg = readl(port_mmio + FISCFG); 961 pp->cached.ltmode = readl(port_mmio + LTMODE); 962 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 963 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 964 } 965 966 /** 967 * mv_write_cached_reg - write to a cached port register 968 * @addr: hardware address of the register 969 * @old: pointer to cached value of the register 970 * @new: new value for the register 971 * 972 * Write a new value to a cached register, 973 * but only if the value is different from before. 974 */ 975 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 976 { 977 if (new != *old) { 978 unsigned long laddr; 979 *old = new; 980 /* 981 * Workaround for 88SX60x1-B2 FEr SATA#13: 982 * Read-after-write is needed to prevent generating 64-bit 983 * write cycles on the PCI bus for SATA interface registers 984 * at offsets ending in 0x4 or 0xc. 985 * 986 * Looks like a lot of fuss, but it avoids an unnecessary 987 * +1 usec read-after-write delay for unaffected registers. 988 */ 989 laddr = (unsigned long)addr & 0xffff; 990 if (laddr >= 0x300 && laddr <= 0x33c) { 991 laddr &= 0x000f; 992 if (laddr == 0x4 || laddr == 0xc) { 993 writelfl(new, addr); /* read after write */ 994 return; 995 } 996 } 997 writel(new, addr); /* unaffected by the errata */ 998 } 999 } 1000 1001 static void mv_set_edma_ptrs(void __iomem *port_mmio, 1002 struct mv_host_priv *hpriv, 1003 struct mv_port_priv *pp) 1004 { 1005 u32 index; 1006 1007 /* 1008 * initialize request queue 1009 */ 1010 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1011 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 1012 1013 WARN_ON(pp->crqb_dma & 0x3ff); 1014 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 1015 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 1016 port_mmio + EDMA_REQ_Q_IN_PTR); 1017 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 1018 1019 /* 1020 * initialize response queue 1021 */ 1022 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1023 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1024 1025 WARN_ON(pp->crpb_dma & 0xff); 1026 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1027 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1028 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1029 port_mmio + EDMA_RSP_Q_OUT_PTR); 1030 } 1031 1032 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1033 { 1034 /* 1035 * When writing to the main_irq_mask in hardware, 1036 * we must ensure exclusivity between the interrupt coalescing bits 1037 * and the corresponding individual port DONE_IRQ bits. 1038 * 1039 * Note that this register is really an "IRQ enable" register, 1040 * not an "IRQ mask" register as Marvell's naming might suggest. 1041 */ 1042 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1043 mask &= ~DONE_IRQ_0_3; 1044 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1045 mask &= ~DONE_IRQ_4_7; 1046 writelfl(mask, hpriv->main_irq_mask_addr); 1047 } 1048 1049 static void mv_set_main_irq_mask(struct ata_host *host, 1050 u32 disable_bits, u32 enable_bits) 1051 { 1052 struct mv_host_priv *hpriv = host->private_data; 1053 u32 old_mask, new_mask; 1054 1055 old_mask = hpriv->main_irq_mask; 1056 new_mask = (old_mask & ~disable_bits) | enable_bits; 1057 if (new_mask != old_mask) { 1058 hpriv->main_irq_mask = new_mask; 1059 mv_write_main_irq_mask(new_mask, hpriv); 1060 } 1061 } 1062 1063 static void mv_enable_port_irqs(struct ata_port *ap, 1064 unsigned int port_bits) 1065 { 1066 unsigned int shift, hardport, port = ap->port_no; 1067 u32 disable_bits, enable_bits; 1068 1069 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1070 1071 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1072 enable_bits = port_bits << shift; 1073 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1074 } 1075 1076 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1077 void __iomem *port_mmio, 1078 unsigned int port_irqs) 1079 { 1080 struct mv_host_priv *hpriv = ap->host->private_data; 1081 int hardport = mv_hardport_from_port(ap->port_no); 1082 void __iomem *hc_mmio = mv_hc_base_from_port( 1083 mv_host_base(ap->host), ap->port_no); 1084 u32 hc_irq_cause; 1085 1086 /* clear EDMA event indicators, if any */ 1087 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1088 1089 /* clear pending irq events */ 1090 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1091 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1092 1093 /* clear FIS IRQ Cause */ 1094 if (IS_GEN_IIE(hpriv)) 1095 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1096 1097 mv_enable_port_irqs(ap, port_irqs); 1098 } 1099 1100 static void mv_set_irq_coalescing(struct ata_host *host, 1101 unsigned int count, unsigned int usecs) 1102 { 1103 struct mv_host_priv *hpriv = host->private_data; 1104 void __iomem *mmio = hpriv->base, *hc_mmio; 1105 u32 coal_enable = 0; 1106 unsigned long flags; 1107 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1108 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1109 ALL_PORTS_COAL_DONE; 1110 1111 /* Disable IRQ coalescing if either threshold is zero */ 1112 if (!usecs || !count) { 1113 clks = count = 0; 1114 } else { 1115 /* Respect maximum limits of the hardware */ 1116 clks = usecs * COAL_CLOCKS_PER_USEC; 1117 if (clks > MAX_COAL_TIME_THRESHOLD) 1118 clks = MAX_COAL_TIME_THRESHOLD; 1119 if (count > MAX_COAL_IO_COUNT) 1120 count = MAX_COAL_IO_COUNT; 1121 } 1122 1123 spin_lock_irqsave(&host->lock, flags); 1124 mv_set_main_irq_mask(host, coal_disable, 0); 1125 1126 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1127 /* 1128 * GEN_II/GEN_IIE with dual host controllers: 1129 * one set of global thresholds for the entire chip. 1130 */ 1131 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1132 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1133 /* clear leftover coal IRQ bit */ 1134 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1135 if (count) 1136 coal_enable = ALL_PORTS_COAL_DONE; 1137 clks = count = 0; /* force clearing of regular regs below */ 1138 } 1139 1140 /* 1141 * All chips: independent thresholds for each HC on the chip. 1142 */ 1143 hc_mmio = mv_hc_base_from_port(mmio, 0); 1144 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1145 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1146 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1147 if (count) 1148 coal_enable |= PORTS_0_3_COAL_DONE; 1149 if (is_dual_hc) { 1150 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1151 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1152 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1153 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1154 if (count) 1155 coal_enable |= PORTS_4_7_COAL_DONE; 1156 } 1157 1158 mv_set_main_irq_mask(host, 0, coal_enable); 1159 spin_unlock_irqrestore(&host->lock, flags); 1160 } 1161 1162 /** 1163 * mv_start_edma - Enable eDMA engine 1164 * @base: port base address 1165 * @pp: port private data 1166 * 1167 * Verify the local cache of the eDMA state is accurate with a 1168 * WARN_ON. 1169 * 1170 * LOCKING: 1171 * Inherited from caller. 1172 */ 1173 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1174 struct mv_port_priv *pp, u8 protocol) 1175 { 1176 int want_ncq = (protocol == ATA_PROT_NCQ); 1177 1178 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1179 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1180 if (want_ncq != using_ncq) 1181 mv_stop_edma(ap); 1182 } 1183 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1184 struct mv_host_priv *hpriv = ap->host->private_data; 1185 1186 mv_edma_cfg(ap, want_ncq, 1); 1187 1188 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1189 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1190 1191 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1192 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1193 } 1194 } 1195 1196 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1197 { 1198 void __iomem *port_mmio = mv_ap_base(ap); 1199 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1200 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1201 int i; 1202 1203 /* 1204 * Wait for the EDMA engine to finish transactions in progress. 1205 * No idea what a good "timeout" value might be, but measurements 1206 * indicate that it often requires hundreds of microseconds 1207 * with two drives in-use. So we use the 15msec value above 1208 * as a rough guess at what even more drives might require. 1209 */ 1210 for (i = 0; i < timeout; ++i) { 1211 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1212 if ((edma_stat & empty_idle) == empty_idle) 1213 break; 1214 udelay(per_loop); 1215 } 1216 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1217 } 1218 1219 /** 1220 * mv_stop_edma_engine - Disable eDMA engine 1221 * @port_mmio: io base address 1222 * 1223 * LOCKING: 1224 * Inherited from caller. 1225 */ 1226 static int mv_stop_edma_engine(void __iomem *port_mmio) 1227 { 1228 int i; 1229 1230 /* Disable eDMA. The disable bit auto clears. */ 1231 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1232 1233 /* Wait for the chip to confirm eDMA is off. */ 1234 for (i = 10000; i > 0; i--) { 1235 u32 reg = readl(port_mmio + EDMA_CMD); 1236 if (!(reg & EDMA_EN)) 1237 return 0; 1238 udelay(10); 1239 } 1240 return -EIO; 1241 } 1242 1243 static int mv_stop_edma(struct ata_port *ap) 1244 { 1245 void __iomem *port_mmio = mv_ap_base(ap); 1246 struct mv_port_priv *pp = ap->private_data; 1247 int err = 0; 1248 1249 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1250 return 0; 1251 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1252 mv_wait_for_edma_empty_idle(ap); 1253 if (mv_stop_edma_engine(port_mmio)) { 1254 ata_port_err(ap, "Unable to stop eDMA\n"); 1255 err = -EIO; 1256 } 1257 mv_edma_cfg(ap, 0, 0); 1258 return err; 1259 } 1260 1261 #ifdef ATA_DEBUG 1262 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1263 { 1264 int b, w; 1265 for (b = 0; b < bytes; ) { 1266 DPRINTK("%p: ", start + b); 1267 for (w = 0; b < bytes && w < 4; w++) { 1268 printk("%08x ", readl(start + b)); 1269 b += sizeof(u32); 1270 } 1271 printk("\n"); 1272 } 1273 } 1274 #endif 1275 #if defined(ATA_DEBUG) || defined(CONFIG_PCI) 1276 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1277 { 1278 #ifdef ATA_DEBUG 1279 int b, w; 1280 u32 dw; 1281 for (b = 0; b < bytes; ) { 1282 DPRINTK("%02x: ", b); 1283 for (w = 0; b < bytes && w < 4; w++) { 1284 (void) pci_read_config_dword(pdev, b, &dw); 1285 printk("%08x ", dw); 1286 b += sizeof(u32); 1287 } 1288 printk("\n"); 1289 } 1290 #endif 1291 } 1292 #endif 1293 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1294 struct pci_dev *pdev) 1295 { 1296 #ifdef ATA_DEBUG 1297 void __iomem *hc_base = mv_hc_base(mmio_base, 1298 port >> MV_PORT_HC_SHIFT); 1299 void __iomem *port_base; 1300 int start_port, num_ports, p, start_hc, num_hcs, hc; 1301 1302 if (0 > port) { 1303 start_hc = start_port = 0; 1304 num_ports = 8; /* shld be benign for 4 port devs */ 1305 num_hcs = 2; 1306 } else { 1307 start_hc = port >> MV_PORT_HC_SHIFT; 1308 start_port = port; 1309 num_ports = num_hcs = 1; 1310 } 1311 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1312 num_ports > 1 ? num_ports - 1 : start_port); 1313 1314 if (NULL != pdev) { 1315 DPRINTK("PCI config space regs:\n"); 1316 mv_dump_pci_cfg(pdev, 0x68); 1317 } 1318 DPRINTK("PCI regs:\n"); 1319 mv_dump_mem(mmio_base+0xc00, 0x3c); 1320 mv_dump_mem(mmio_base+0xd00, 0x34); 1321 mv_dump_mem(mmio_base+0xf00, 0x4); 1322 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1323 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1324 hc_base = mv_hc_base(mmio_base, hc); 1325 DPRINTK("HC regs (HC %i):\n", hc); 1326 mv_dump_mem(hc_base, 0x1c); 1327 } 1328 for (p = start_port; p < start_port + num_ports; p++) { 1329 port_base = mv_port_base(mmio_base, p); 1330 DPRINTK("EDMA regs (port %i):\n", p); 1331 mv_dump_mem(port_base, 0x54); 1332 DPRINTK("SATA regs (port %i):\n", p); 1333 mv_dump_mem(port_base+0x300, 0x60); 1334 } 1335 #endif 1336 } 1337 1338 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1339 { 1340 unsigned int ofs; 1341 1342 switch (sc_reg_in) { 1343 case SCR_STATUS: 1344 case SCR_CONTROL: 1345 case SCR_ERROR: 1346 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1347 break; 1348 case SCR_ACTIVE: 1349 ofs = SATA_ACTIVE; /* active is not with the others */ 1350 break; 1351 default: 1352 ofs = 0xffffffffU; 1353 break; 1354 } 1355 return ofs; 1356 } 1357 1358 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1359 { 1360 unsigned int ofs = mv_scr_offset(sc_reg_in); 1361 1362 if (ofs != 0xffffffffU) { 1363 *val = readl(mv_ap_base(link->ap) + ofs); 1364 return 0; 1365 } else 1366 return -EINVAL; 1367 } 1368 1369 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1370 { 1371 unsigned int ofs = mv_scr_offset(sc_reg_in); 1372 1373 if (ofs != 0xffffffffU) { 1374 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1375 struct mv_host_priv *hpriv = link->ap->host->private_data; 1376 if (sc_reg_in == SCR_CONTROL) { 1377 /* 1378 * Workaround for 88SX60x1 FEr SATA#26: 1379 * 1380 * COMRESETs have to take care not to accidentally 1381 * put the drive to sleep when writing SCR_CONTROL. 1382 * Setting bits 12..15 prevents this problem. 1383 * 1384 * So if we see an outbound COMMRESET, set those bits. 1385 * Ditto for the followup write that clears the reset. 1386 * 1387 * The proprietary driver does this for 1388 * all chip versions, and so do we. 1389 */ 1390 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1391 val |= 0xf000; 1392 1393 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) { 1394 void __iomem *lp_phy_addr = 1395 mv_ap_base(link->ap) + LP_PHY_CTL; 1396 /* 1397 * Set PHY speed according to SControl speed. 1398 */ 1399 u32 lp_phy_val = 1400 LP_PHY_CTL_PIN_PU_PLL | 1401 LP_PHY_CTL_PIN_PU_RX | 1402 LP_PHY_CTL_PIN_PU_TX; 1403 1404 if ((val & 0xf0) != 0x10) 1405 lp_phy_val |= 1406 LP_PHY_CTL_GEN_TX_3G | 1407 LP_PHY_CTL_GEN_RX_3G; 1408 1409 writelfl(lp_phy_val, lp_phy_addr); 1410 } 1411 } 1412 writelfl(val, addr); 1413 return 0; 1414 } else 1415 return -EINVAL; 1416 } 1417 1418 static void mv6_dev_config(struct ata_device *adev) 1419 { 1420 /* 1421 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1422 * 1423 * Gen-II does not support NCQ over a port multiplier 1424 * (no FIS-based switching). 1425 */ 1426 if (adev->flags & ATA_DFLAG_NCQ) { 1427 if (sata_pmp_attached(adev->link->ap)) { 1428 adev->flags &= ~ATA_DFLAG_NCQ; 1429 ata_dev_info(adev, 1430 "NCQ disabled for command-based switching\n"); 1431 } 1432 } 1433 } 1434 1435 static int mv_qc_defer(struct ata_queued_cmd *qc) 1436 { 1437 struct ata_link *link = qc->dev->link; 1438 struct ata_port *ap = link->ap; 1439 struct mv_port_priv *pp = ap->private_data; 1440 1441 /* 1442 * Don't allow new commands if we're in a delayed EH state 1443 * for NCQ and/or FIS-based switching. 1444 */ 1445 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1446 return ATA_DEFER_PORT; 1447 1448 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1449 * can run concurrently. 1450 * set excl_link when we want to send a PIO command in DMA mode 1451 * or a non-NCQ command in NCQ mode. 1452 * When we receive a command from that link, and there are no 1453 * outstanding commands, mark a flag to clear excl_link and let 1454 * the command go through. 1455 */ 1456 if (unlikely(ap->excl_link)) { 1457 if (link == ap->excl_link) { 1458 if (ap->nr_active_links) 1459 return ATA_DEFER_PORT; 1460 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1461 return 0; 1462 } else 1463 return ATA_DEFER_PORT; 1464 } 1465 1466 /* 1467 * If the port is completely idle, then allow the new qc. 1468 */ 1469 if (ap->nr_active_links == 0) 1470 return 0; 1471 1472 /* 1473 * The port is operating in host queuing mode (EDMA) with NCQ 1474 * enabled, allow multiple NCQ commands. EDMA also allows 1475 * queueing multiple DMA commands but libata core currently 1476 * doesn't allow it. 1477 */ 1478 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1479 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1480 if (ata_is_ncq(qc->tf.protocol)) 1481 return 0; 1482 else { 1483 ap->excl_link = link; 1484 return ATA_DEFER_PORT; 1485 } 1486 } 1487 1488 return ATA_DEFER_PORT; 1489 } 1490 1491 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1492 { 1493 struct mv_port_priv *pp = ap->private_data; 1494 void __iomem *port_mmio; 1495 1496 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1497 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1498 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1499 1500 ltmode = *old_ltmode & ~LTMODE_BIT8; 1501 haltcond = *old_haltcond | EDMA_ERR_DEV; 1502 1503 if (want_fbs) { 1504 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1505 ltmode = *old_ltmode | LTMODE_BIT8; 1506 if (want_ncq) 1507 haltcond &= ~EDMA_ERR_DEV; 1508 else 1509 fiscfg |= FISCFG_WAIT_DEV_ERR; 1510 } else { 1511 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1512 } 1513 1514 port_mmio = mv_ap_base(ap); 1515 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1516 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1517 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1518 } 1519 1520 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1521 { 1522 struct mv_host_priv *hpriv = ap->host->private_data; 1523 u32 old, new; 1524 1525 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1526 old = readl(hpriv->base + GPIO_PORT_CTL); 1527 if (want_ncq) 1528 new = old | (1 << 22); 1529 else 1530 new = old & ~(1 << 22); 1531 if (new != old) 1532 writel(new, hpriv->base + GPIO_PORT_CTL); 1533 } 1534 1535 /** 1536 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1537 * @ap: Port being initialized 1538 * 1539 * There are two DMA modes on these chips: basic DMA, and EDMA. 1540 * 1541 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1542 * of basic DMA on the GEN_IIE versions of the chips. 1543 * 1544 * This bit survives EDMA resets, and must be set for basic DMA 1545 * to function, and should be cleared when EDMA is active. 1546 */ 1547 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1548 { 1549 struct mv_port_priv *pp = ap->private_data; 1550 u32 new, *old = &pp->cached.unknown_rsvd; 1551 1552 if (enable_bmdma) 1553 new = *old | 1; 1554 else 1555 new = *old & ~1; 1556 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1557 } 1558 1559 /* 1560 * SOC chips have an issue whereby the HDD LEDs don't always blink 1561 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1562 * of the SOC takes care of it, generating a steady blink rate when 1563 * any drive on the chip is active. 1564 * 1565 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1566 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1567 * 1568 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1569 * LED operation works then, and provides better (more accurate) feedback. 1570 * 1571 * Note that this code assumes that an SOC never has more than one HC onboard. 1572 */ 1573 static void mv_soc_led_blink_enable(struct ata_port *ap) 1574 { 1575 struct ata_host *host = ap->host; 1576 struct mv_host_priv *hpriv = host->private_data; 1577 void __iomem *hc_mmio; 1578 u32 led_ctrl; 1579 1580 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1581 return; 1582 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1583 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1584 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1585 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1586 } 1587 1588 static void mv_soc_led_blink_disable(struct ata_port *ap) 1589 { 1590 struct ata_host *host = ap->host; 1591 struct mv_host_priv *hpriv = host->private_data; 1592 void __iomem *hc_mmio; 1593 u32 led_ctrl; 1594 unsigned int port; 1595 1596 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1597 return; 1598 1599 /* disable led-blink only if no ports are using NCQ */ 1600 for (port = 0; port < hpriv->n_ports; port++) { 1601 struct ata_port *this_ap = host->ports[port]; 1602 struct mv_port_priv *pp = this_ap->private_data; 1603 1604 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1605 return; 1606 } 1607 1608 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1609 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1610 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1611 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1612 } 1613 1614 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1615 { 1616 u32 cfg; 1617 struct mv_port_priv *pp = ap->private_data; 1618 struct mv_host_priv *hpriv = ap->host->private_data; 1619 void __iomem *port_mmio = mv_ap_base(ap); 1620 1621 /* set up non-NCQ EDMA configuration */ 1622 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1623 pp->pp_flags &= 1624 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1625 1626 if (IS_GEN_I(hpriv)) 1627 cfg |= (1 << 8); /* enab config burst size mask */ 1628 1629 else if (IS_GEN_II(hpriv)) { 1630 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1631 mv_60x1_errata_sata25(ap, want_ncq); 1632 1633 } else if (IS_GEN_IIE(hpriv)) { 1634 int want_fbs = sata_pmp_attached(ap); 1635 /* 1636 * Possible future enhancement: 1637 * 1638 * The chip can use FBS with non-NCQ, if we allow it, 1639 * But first we need to have the error handling in place 1640 * for this mode (datasheet section 7.3.15.4.2.3). 1641 * So disallow non-NCQ FBS for now. 1642 */ 1643 want_fbs &= want_ncq; 1644 1645 mv_config_fbs(ap, want_ncq, want_fbs); 1646 1647 if (want_fbs) { 1648 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1649 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1650 } 1651 1652 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1653 if (want_edma) { 1654 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1655 if (!IS_SOC(hpriv)) 1656 cfg |= (1 << 18); /* enab early completion */ 1657 } 1658 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1659 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1660 mv_bmdma_enable_iie(ap, !want_edma); 1661 1662 if (IS_SOC(hpriv)) { 1663 if (want_ncq) 1664 mv_soc_led_blink_enable(ap); 1665 else 1666 mv_soc_led_blink_disable(ap); 1667 } 1668 } 1669 1670 if (want_ncq) { 1671 cfg |= EDMA_CFG_NCQ; 1672 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1673 } 1674 1675 writelfl(cfg, port_mmio + EDMA_CFG); 1676 } 1677 1678 static void mv_port_free_dma_mem(struct ata_port *ap) 1679 { 1680 struct mv_host_priv *hpriv = ap->host->private_data; 1681 struct mv_port_priv *pp = ap->private_data; 1682 int tag; 1683 1684 if (pp->crqb) { 1685 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1686 pp->crqb = NULL; 1687 } 1688 if (pp->crpb) { 1689 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1690 pp->crpb = NULL; 1691 } 1692 /* 1693 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1694 * For later hardware, we have one unique sg_tbl per NCQ tag. 1695 */ 1696 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1697 if (pp->sg_tbl[tag]) { 1698 if (tag == 0 || !IS_GEN_I(hpriv)) 1699 dma_pool_free(hpriv->sg_tbl_pool, 1700 pp->sg_tbl[tag], 1701 pp->sg_tbl_dma[tag]); 1702 pp->sg_tbl[tag] = NULL; 1703 } 1704 } 1705 } 1706 1707 /** 1708 * mv_port_start - Port specific init/start routine. 1709 * @ap: ATA channel to manipulate 1710 * 1711 * Allocate and point to DMA memory, init port private memory, 1712 * zero indices. 1713 * 1714 * LOCKING: 1715 * Inherited from caller. 1716 */ 1717 static int mv_port_start(struct ata_port *ap) 1718 { 1719 struct device *dev = ap->host->dev; 1720 struct mv_host_priv *hpriv = ap->host->private_data; 1721 struct mv_port_priv *pp; 1722 unsigned long flags; 1723 int tag; 1724 1725 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1726 if (!pp) 1727 return -ENOMEM; 1728 ap->private_data = pp; 1729 1730 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1731 if (!pp->crqb) 1732 return -ENOMEM; 1733 1734 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1735 if (!pp->crpb) 1736 goto out_port_free_dma_mem; 1737 1738 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1739 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1740 ap->flags |= ATA_FLAG_AN; 1741 /* 1742 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1743 * For later hardware, we need one unique sg_tbl per NCQ tag. 1744 */ 1745 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1746 if (tag == 0 || !IS_GEN_I(hpriv)) { 1747 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1748 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1749 if (!pp->sg_tbl[tag]) 1750 goto out_port_free_dma_mem; 1751 } else { 1752 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1753 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1754 } 1755 } 1756 1757 spin_lock_irqsave(ap->lock, flags); 1758 mv_save_cached_regs(ap); 1759 mv_edma_cfg(ap, 0, 0); 1760 spin_unlock_irqrestore(ap->lock, flags); 1761 1762 return 0; 1763 1764 out_port_free_dma_mem: 1765 mv_port_free_dma_mem(ap); 1766 return -ENOMEM; 1767 } 1768 1769 /** 1770 * mv_port_stop - Port specific cleanup/stop routine. 1771 * @ap: ATA channel to manipulate 1772 * 1773 * Stop DMA, cleanup port memory. 1774 * 1775 * LOCKING: 1776 * This routine uses the host lock to protect the DMA stop. 1777 */ 1778 static void mv_port_stop(struct ata_port *ap) 1779 { 1780 unsigned long flags; 1781 1782 spin_lock_irqsave(ap->lock, flags); 1783 mv_stop_edma(ap); 1784 mv_enable_port_irqs(ap, 0); 1785 spin_unlock_irqrestore(ap->lock, flags); 1786 mv_port_free_dma_mem(ap); 1787 } 1788 1789 /** 1790 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1791 * @qc: queued command whose SG list to source from 1792 * 1793 * Populate the SG list and mark the last entry. 1794 * 1795 * LOCKING: 1796 * Inherited from caller. 1797 */ 1798 static void mv_fill_sg(struct ata_queued_cmd *qc) 1799 { 1800 struct mv_port_priv *pp = qc->ap->private_data; 1801 struct scatterlist *sg; 1802 struct mv_sg *mv_sg, *last_sg = NULL; 1803 unsigned int si; 1804 1805 mv_sg = pp->sg_tbl[qc->tag]; 1806 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1807 dma_addr_t addr = sg_dma_address(sg); 1808 u32 sg_len = sg_dma_len(sg); 1809 1810 while (sg_len) { 1811 u32 offset = addr & 0xffff; 1812 u32 len = sg_len; 1813 1814 if (offset + len > 0x10000) 1815 len = 0x10000 - offset; 1816 1817 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1818 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1819 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1820 mv_sg->reserved = 0; 1821 1822 sg_len -= len; 1823 addr += len; 1824 1825 last_sg = mv_sg; 1826 mv_sg++; 1827 } 1828 } 1829 1830 if (likely(last_sg)) 1831 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1832 mb(); /* ensure data structure is visible to the chipset */ 1833 } 1834 1835 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1836 { 1837 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1838 (last ? CRQB_CMD_LAST : 0); 1839 *cmdw = cpu_to_le16(tmp); 1840 } 1841 1842 /** 1843 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1844 * @ap: Port associated with this ATA transaction. 1845 * 1846 * We need this only for ATAPI bmdma transactions, 1847 * as otherwise we experience spurious interrupts 1848 * after libata-sff handles the bmdma interrupts. 1849 */ 1850 static void mv_sff_irq_clear(struct ata_port *ap) 1851 { 1852 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1853 } 1854 1855 /** 1856 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1857 * @qc: queued command to check for chipset/DMA compatibility. 1858 * 1859 * The bmdma engines cannot handle speculative data sizes 1860 * (bytecount under/over flow). So only allow DMA for 1861 * data transfer commands with known data sizes. 1862 * 1863 * LOCKING: 1864 * Inherited from caller. 1865 */ 1866 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1867 { 1868 struct scsi_cmnd *scmd = qc->scsicmd; 1869 1870 if (scmd) { 1871 switch (scmd->cmnd[0]) { 1872 case READ_6: 1873 case READ_10: 1874 case READ_12: 1875 case WRITE_6: 1876 case WRITE_10: 1877 case WRITE_12: 1878 case GPCMD_READ_CD: 1879 case GPCMD_SEND_DVD_STRUCTURE: 1880 case GPCMD_SEND_CUE_SHEET: 1881 return 0; /* DMA is safe */ 1882 } 1883 } 1884 return -EOPNOTSUPP; /* use PIO instead */ 1885 } 1886 1887 /** 1888 * mv_bmdma_setup - Set up BMDMA transaction 1889 * @qc: queued command to prepare DMA for. 1890 * 1891 * LOCKING: 1892 * Inherited from caller. 1893 */ 1894 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1895 { 1896 struct ata_port *ap = qc->ap; 1897 void __iomem *port_mmio = mv_ap_base(ap); 1898 struct mv_port_priv *pp = ap->private_data; 1899 1900 mv_fill_sg(qc); 1901 1902 /* clear all DMA cmd bits */ 1903 writel(0, port_mmio + BMDMA_CMD); 1904 1905 /* load PRD table addr. */ 1906 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1907 port_mmio + BMDMA_PRD_HIGH); 1908 writelfl(pp->sg_tbl_dma[qc->tag], 1909 port_mmio + BMDMA_PRD_LOW); 1910 1911 /* issue r/w command */ 1912 ap->ops->sff_exec_command(ap, &qc->tf); 1913 } 1914 1915 /** 1916 * mv_bmdma_start - Start a BMDMA transaction 1917 * @qc: queued command to start DMA on. 1918 * 1919 * LOCKING: 1920 * Inherited from caller. 1921 */ 1922 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1923 { 1924 struct ata_port *ap = qc->ap; 1925 void __iomem *port_mmio = mv_ap_base(ap); 1926 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1927 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1928 1929 /* start host DMA transaction */ 1930 writelfl(cmd, port_mmio + BMDMA_CMD); 1931 } 1932 1933 /** 1934 * mv_bmdma_stop - Stop BMDMA transfer 1935 * @qc: queued command to stop DMA on. 1936 * 1937 * Clears the ATA_DMA_START flag in the bmdma control register 1938 * 1939 * LOCKING: 1940 * Inherited from caller. 1941 */ 1942 static void mv_bmdma_stop_ap(struct ata_port *ap) 1943 { 1944 void __iomem *port_mmio = mv_ap_base(ap); 1945 u32 cmd; 1946 1947 /* clear start/stop bit */ 1948 cmd = readl(port_mmio + BMDMA_CMD); 1949 if (cmd & ATA_DMA_START) { 1950 cmd &= ~ATA_DMA_START; 1951 writelfl(cmd, port_mmio + BMDMA_CMD); 1952 1953 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1954 ata_sff_dma_pause(ap); 1955 } 1956 } 1957 1958 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1959 { 1960 mv_bmdma_stop_ap(qc->ap); 1961 } 1962 1963 /** 1964 * mv_bmdma_status - Read BMDMA status 1965 * @ap: port for which to retrieve DMA status. 1966 * 1967 * Read and return equivalent of the sff BMDMA status register. 1968 * 1969 * LOCKING: 1970 * Inherited from caller. 1971 */ 1972 static u8 mv_bmdma_status(struct ata_port *ap) 1973 { 1974 void __iomem *port_mmio = mv_ap_base(ap); 1975 u32 reg, status; 1976 1977 /* 1978 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1979 * and the ATA_DMA_INTR bit doesn't exist. 1980 */ 1981 reg = readl(port_mmio + BMDMA_STATUS); 1982 if (reg & ATA_DMA_ACTIVE) 1983 status = ATA_DMA_ACTIVE; 1984 else if (reg & ATA_DMA_ERR) 1985 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1986 else { 1987 /* 1988 * Just because DMA_ACTIVE is 0 (DMA completed), 1989 * this does _not_ mean the device is "done". 1990 * So we should not yet be signalling ATA_DMA_INTR 1991 * in some cases. Eg. DSM/TRIM, and perhaps others. 1992 */ 1993 mv_bmdma_stop_ap(ap); 1994 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1995 status = 0; 1996 else 1997 status = ATA_DMA_INTR; 1998 } 1999 return status; 2000 } 2001 2002 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 2003 { 2004 struct ata_taskfile *tf = &qc->tf; 2005 /* 2006 * Workaround for 88SX60x1 FEr SATA#24. 2007 * 2008 * Chip may corrupt WRITEs if multi_count >= 4kB. 2009 * Note that READs are unaffected. 2010 * 2011 * It's not clear if this errata really means "4K bytes", 2012 * or if it always happens for multi_count > 7 2013 * regardless of device sector_size. 2014 * 2015 * So, for safety, any write with multi_count > 7 2016 * gets converted here into a regular PIO write instead: 2017 */ 2018 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 2019 if (qc->dev->multi_count > 7) { 2020 switch (tf->command) { 2021 case ATA_CMD_WRITE_MULTI: 2022 tf->command = ATA_CMD_PIO_WRITE; 2023 break; 2024 case ATA_CMD_WRITE_MULTI_FUA_EXT: 2025 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 2026 /* fall through */ 2027 case ATA_CMD_WRITE_MULTI_EXT: 2028 tf->command = ATA_CMD_PIO_WRITE_EXT; 2029 break; 2030 } 2031 } 2032 } 2033 } 2034 2035 /** 2036 * mv_qc_prep - Host specific command preparation. 2037 * @qc: queued command to prepare 2038 * 2039 * This routine simply redirects to the general purpose routine 2040 * if command is not DMA. Else, it handles prep of the CRQB 2041 * (command request block), does some sanity checking, and calls 2042 * the SG load routine. 2043 * 2044 * LOCKING: 2045 * Inherited from caller. 2046 */ 2047 static void mv_qc_prep(struct ata_queued_cmd *qc) 2048 { 2049 struct ata_port *ap = qc->ap; 2050 struct mv_port_priv *pp = ap->private_data; 2051 __le16 *cw; 2052 struct ata_taskfile *tf = &qc->tf; 2053 u16 flags = 0; 2054 unsigned in_index; 2055 2056 switch (tf->protocol) { 2057 case ATA_PROT_DMA: 2058 if (tf->command == ATA_CMD_DSM) 2059 return; 2060 /* fall-thru */ 2061 case ATA_PROT_NCQ: 2062 break; /* continue below */ 2063 case ATA_PROT_PIO: 2064 mv_rw_multi_errata_sata24(qc); 2065 return; 2066 default: 2067 return; 2068 } 2069 2070 /* Fill in command request block 2071 */ 2072 if (!(tf->flags & ATA_TFLAG_WRITE)) 2073 flags |= CRQB_FLAG_READ; 2074 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2075 flags |= qc->tag << CRQB_TAG_SHIFT; 2076 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2077 2078 /* get current queue index from software */ 2079 in_index = pp->req_idx; 2080 2081 pp->crqb[in_index].sg_addr = 2082 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2083 pp->crqb[in_index].sg_addr_hi = 2084 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2085 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2086 2087 cw = &pp->crqb[in_index].ata_cmd[0]; 2088 2089 /* Sadly, the CRQB cannot accommodate all registers--there are 2090 * only 11 bytes...so we must pick and choose required 2091 * registers based on the command. So, we drop feature and 2092 * hob_feature for [RW] DMA commands, but they are needed for 2093 * NCQ. NCQ will drop hob_nsect, which is not needed there 2094 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2095 */ 2096 switch (tf->command) { 2097 case ATA_CMD_READ: 2098 case ATA_CMD_READ_EXT: 2099 case ATA_CMD_WRITE: 2100 case ATA_CMD_WRITE_EXT: 2101 case ATA_CMD_WRITE_FUA_EXT: 2102 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2103 break; 2104 case ATA_CMD_FPDMA_READ: 2105 case ATA_CMD_FPDMA_WRITE: 2106 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2107 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2108 break; 2109 default: 2110 /* The only other commands EDMA supports in non-queued and 2111 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2112 * of which are defined/used by Linux. If we get here, this 2113 * driver needs work. 2114 * 2115 * FIXME: modify libata to give qc_prep a return value and 2116 * return error here. 2117 */ 2118 BUG_ON(tf->command); 2119 break; 2120 } 2121 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2122 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2123 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2124 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2125 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2126 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2127 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2128 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2129 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2130 2131 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2132 return; 2133 mv_fill_sg(qc); 2134 } 2135 2136 /** 2137 * mv_qc_prep_iie - Host specific command preparation. 2138 * @qc: queued command to prepare 2139 * 2140 * This routine simply redirects to the general purpose routine 2141 * if command is not DMA. Else, it handles prep of the CRQB 2142 * (command request block), does some sanity checking, and calls 2143 * the SG load routine. 2144 * 2145 * LOCKING: 2146 * Inherited from caller. 2147 */ 2148 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2149 { 2150 struct ata_port *ap = qc->ap; 2151 struct mv_port_priv *pp = ap->private_data; 2152 struct mv_crqb_iie *crqb; 2153 struct ata_taskfile *tf = &qc->tf; 2154 unsigned in_index; 2155 u32 flags = 0; 2156 2157 if ((tf->protocol != ATA_PROT_DMA) && 2158 (tf->protocol != ATA_PROT_NCQ)) 2159 return; 2160 if (tf->command == ATA_CMD_DSM) 2161 return; /* use bmdma for this */ 2162 2163 /* Fill in Gen IIE command request block */ 2164 if (!(tf->flags & ATA_TFLAG_WRITE)) 2165 flags |= CRQB_FLAG_READ; 2166 2167 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2168 flags |= qc->tag << CRQB_TAG_SHIFT; 2169 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2170 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2171 2172 /* get current queue index from software */ 2173 in_index = pp->req_idx; 2174 2175 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2176 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2177 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2178 crqb->flags = cpu_to_le32(flags); 2179 2180 crqb->ata_cmd[0] = cpu_to_le32( 2181 (tf->command << 16) | 2182 (tf->feature << 24) 2183 ); 2184 crqb->ata_cmd[1] = cpu_to_le32( 2185 (tf->lbal << 0) | 2186 (tf->lbam << 8) | 2187 (tf->lbah << 16) | 2188 (tf->device << 24) 2189 ); 2190 crqb->ata_cmd[2] = cpu_to_le32( 2191 (tf->hob_lbal << 0) | 2192 (tf->hob_lbam << 8) | 2193 (tf->hob_lbah << 16) | 2194 (tf->hob_feature << 24) 2195 ); 2196 crqb->ata_cmd[3] = cpu_to_le32( 2197 (tf->nsect << 0) | 2198 (tf->hob_nsect << 8) 2199 ); 2200 2201 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2202 return; 2203 mv_fill_sg(qc); 2204 } 2205 2206 /** 2207 * mv_sff_check_status - fetch device status, if valid 2208 * @ap: ATA port to fetch status from 2209 * 2210 * When using command issue via mv_qc_issue_fis(), 2211 * the initial ATA_BUSY state does not show up in the 2212 * ATA status (shadow) register. This can confuse libata! 2213 * 2214 * So we have a hook here to fake ATA_BUSY for that situation, 2215 * until the first time a BUSY, DRQ, or ERR bit is seen. 2216 * 2217 * The rest of the time, it simply returns the ATA status register. 2218 */ 2219 static u8 mv_sff_check_status(struct ata_port *ap) 2220 { 2221 u8 stat = ioread8(ap->ioaddr.status_addr); 2222 struct mv_port_priv *pp = ap->private_data; 2223 2224 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2225 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2226 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2227 else 2228 stat = ATA_BUSY; 2229 } 2230 return stat; 2231 } 2232 2233 /** 2234 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2235 * @fis: fis to be sent 2236 * @nwords: number of 32-bit words in the fis 2237 */ 2238 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2239 { 2240 void __iomem *port_mmio = mv_ap_base(ap); 2241 u32 ifctl, old_ifctl, ifstat; 2242 int i, timeout = 200, final_word = nwords - 1; 2243 2244 /* Initiate FIS transmission mode */ 2245 old_ifctl = readl(port_mmio + SATA_IFCTL); 2246 ifctl = 0x100 | (old_ifctl & 0xf); 2247 writelfl(ifctl, port_mmio + SATA_IFCTL); 2248 2249 /* Send all words of the FIS except for the final word */ 2250 for (i = 0; i < final_word; ++i) 2251 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2252 2253 /* Flag end-of-transmission, and then send the final word */ 2254 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2255 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2256 2257 /* 2258 * Wait for FIS transmission to complete. 2259 * This typically takes just a single iteration. 2260 */ 2261 do { 2262 ifstat = readl(port_mmio + SATA_IFSTAT); 2263 } while (!(ifstat & 0x1000) && --timeout); 2264 2265 /* Restore original port configuration */ 2266 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2267 2268 /* See if it worked */ 2269 if ((ifstat & 0x3000) != 0x1000) { 2270 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2271 __func__, ifstat); 2272 return AC_ERR_OTHER; 2273 } 2274 return 0; 2275 } 2276 2277 /** 2278 * mv_qc_issue_fis - Issue a command directly as a FIS 2279 * @qc: queued command to start 2280 * 2281 * Note that the ATA shadow registers are not updated 2282 * after command issue, so the device will appear "READY" 2283 * if polled, even while it is BUSY processing the command. 2284 * 2285 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2286 * 2287 * Note: we don't get updated shadow regs on *completion* 2288 * of non-data commands. So avoid sending them via this function, 2289 * as they will appear to have completed immediately. 2290 * 2291 * GEN_IIE has special registers that we could get the result tf from, 2292 * but earlier chipsets do not. For now, we ignore those registers. 2293 */ 2294 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2295 { 2296 struct ata_port *ap = qc->ap; 2297 struct mv_port_priv *pp = ap->private_data; 2298 struct ata_link *link = qc->dev->link; 2299 u32 fis[5]; 2300 int err = 0; 2301 2302 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2303 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2304 if (err) 2305 return err; 2306 2307 switch (qc->tf.protocol) { 2308 case ATAPI_PROT_PIO: 2309 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2310 /* fall through */ 2311 case ATAPI_PROT_NODATA: 2312 ap->hsm_task_state = HSM_ST_FIRST; 2313 break; 2314 case ATA_PROT_PIO: 2315 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2316 if (qc->tf.flags & ATA_TFLAG_WRITE) 2317 ap->hsm_task_state = HSM_ST_FIRST; 2318 else 2319 ap->hsm_task_state = HSM_ST; 2320 break; 2321 default: 2322 ap->hsm_task_state = HSM_ST_LAST; 2323 break; 2324 } 2325 2326 if (qc->tf.flags & ATA_TFLAG_POLLING) 2327 ata_sff_queue_pio_task(link, 0); 2328 return 0; 2329 } 2330 2331 /** 2332 * mv_qc_issue - Initiate a command to the host 2333 * @qc: queued command to start 2334 * 2335 * This routine simply redirects to the general purpose routine 2336 * if command is not DMA. Else, it sanity checks our local 2337 * caches of the request producer/consumer indices then enables 2338 * DMA and bumps the request producer index. 2339 * 2340 * LOCKING: 2341 * Inherited from caller. 2342 */ 2343 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2344 { 2345 static int limit_warnings = 10; 2346 struct ata_port *ap = qc->ap; 2347 void __iomem *port_mmio = mv_ap_base(ap); 2348 struct mv_port_priv *pp = ap->private_data; 2349 u32 in_index; 2350 unsigned int port_irqs; 2351 2352 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2353 2354 switch (qc->tf.protocol) { 2355 case ATA_PROT_DMA: 2356 if (qc->tf.command == ATA_CMD_DSM) { 2357 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2358 return AC_ERR_OTHER; 2359 break; /* use bmdma for this */ 2360 } 2361 /* fall thru */ 2362 case ATA_PROT_NCQ: 2363 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2364 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2365 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2366 2367 /* Write the request in pointer to kick the EDMA to life */ 2368 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2369 port_mmio + EDMA_REQ_Q_IN_PTR); 2370 return 0; 2371 2372 case ATA_PROT_PIO: 2373 /* 2374 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2375 * 2376 * Someday, we might implement special polling workarounds 2377 * for these, but it all seems rather unnecessary since we 2378 * normally use only DMA for commands which transfer more 2379 * than a single block of data. 2380 * 2381 * Much of the time, this could just work regardless. 2382 * So for now, just log the incident, and allow the attempt. 2383 */ 2384 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2385 --limit_warnings; 2386 ata_link_warn(qc->dev->link, DRV_NAME 2387 ": attempting PIO w/multiple DRQ: " 2388 "this may fail due to h/w errata\n"); 2389 } 2390 /* drop through */ 2391 case ATA_PROT_NODATA: 2392 case ATAPI_PROT_PIO: 2393 case ATAPI_PROT_NODATA: 2394 if (ap->flags & ATA_FLAG_PIO_POLLING) 2395 qc->tf.flags |= ATA_TFLAG_POLLING; 2396 break; 2397 } 2398 2399 if (qc->tf.flags & ATA_TFLAG_POLLING) 2400 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2401 else 2402 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2403 2404 /* 2405 * We're about to send a non-EDMA capable command to the 2406 * port. Turn off EDMA so there won't be problems accessing 2407 * shadow block, etc registers. 2408 */ 2409 mv_stop_edma(ap); 2410 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2411 mv_pmp_select(ap, qc->dev->link->pmp); 2412 2413 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2414 struct mv_host_priv *hpriv = ap->host->private_data; 2415 /* 2416 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2417 * 2418 * After any NCQ error, the READ_LOG_EXT command 2419 * from libata-eh *must* use mv_qc_issue_fis(). 2420 * Otherwise it might fail, due to chip errata. 2421 * 2422 * Rather than special-case it, we'll just *always* 2423 * use this method here for READ_LOG_EXT, making for 2424 * easier testing. 2425 */ 2426 if (IS_GEN_II(hpriv)) 2427 return mv_qc_issue_fis(qc); 2428 } 2429 return ata_bmdma_qc_issue(qc); 2430 } 2431 2432 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2433 { 2434 struct mv_port_priv *pp = ap->private_data; 2435 struct ata_queued_cmd *qc; 2436 2437 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2438 return NULL; 2439 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2440 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2441 return qc; 2442 return NULL; 2443 } 2444 2445 static void mv_pmp_error_handler(struct ata_port *ap) 2446 { 2447 unsigned int pmp, pmp_map; 2448 struct mv_port_priv *pp = ap->private_data; 2449 2450 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2451 /* 2452 * Perform NCQ error analysis on failed PMPs 2453 * before we freeze the port entirely. 2454 * 2455 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2456 */ 2457 pmp_map = pp->delayed_eh_pmp_map; 2458 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2459 for (pmp = 0; pmp_map != 0; pmp++) { 2460 unsigned int this_pmp = (1 << pmp); 2461 if (pmp_map & this_pmp) { 2462 struct ata_link *link = &ap->pmp_link[pmp]; 2463 pmp_map &= ~this_pmp; 2464 ata_eh_analyze_ncq_error(link); 2465 } 2466 } 2467 ata_port_freeze(ap); 2468 } 2469 sata_pmp_error_handler(ap); 2470 } 2471 2472 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2473 { 2474 void __iomem *port_mmio = mv_ap_base(ap); 2475 2476 return readl(port_mmio + SATA_TESTCTL) >> 16; 2477 } 2478 2479 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2480 { 2481 struct ata_eh_info *ehi; 2482 unsigned int pmp; 2483 2484 /* 2485 * Initialize EH info for PMPs which saw device errors 2486 */ 2487 ehi = &ap->link.eh_info; 2488 for (pmp = 0; pmp_map != 0; pmp++) { 2489 unsigned int this_pmp = (1 << pmp); 2490 if (pmp_map & this_pmp) { 2491 struct ata_link *link = &ap->pmp_link[pmp]; 2492 2493 pmp_map &= ~this_pmp; 2494 ehi = &link->eh_info; 2495 ata_ehi_clear_desc(ehi); 2496 ata_ehi_push_desc(ehi, "dev err"); 2497 ehi->err_mask |= AC_ERR_DEV; 2498 ehi->action |= ATA_EH_RESET; 2499 ata_link_abort(link); 2500 } 2501 } 2502 } 2503 2504 static int mv_req_q_empty(struct ata_port *ap) 2505 { 2506 void __iomem *port_mmio = mv_ap_base(ap); 2507 u32 in_ptr, out_ptr; 2508 2509 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2510 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2511 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2512 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2513 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2514 } 2515 2516 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2517 { 2518 struct mv_port_priv *pp = ap->private_data; 2519 int failed_links; 2520 unsigned int old_map, new_map; 2521 2522 /* 2523 * Device error during FBS+NCQ operation: 2524 * 2525 * Set a port flag to prevent further I/O being enqueued. 2526 * Leave the EDMA running to drain outstanding commands from this port. 2527 * Perform the post-mortem/EH only when all responses are complete. 2528 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2529 */ 2530 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2531 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2532 pp->delayed_eh_pmp_map = 0; 2533 } 2534 old_map = pp->delayed_eh_pmp_map; 2535 new_map = old_map | mv_get_err_pmp_map(ap); 2536 2537 if (old_map != new_map) { 2538 pp->delayed_eh_pmp_map = new_map; 2539 mv_pmp_eh_prep(ap, new_map & ~old_map); 2540 } 2541 failed_links = hweight16(new_map); 2542 2543 ata_port_info(ap, 2544 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", 2545 __func__, pp->delayed_eh_pmp_map, 2546 ap->qc_active, failed_links, 2547 ap->nr_active_links); 2548 2549 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2550 mv_process_crpb_entries(ap, pp); 2551 mv_stop_edma(ap); 2552 mv_eh_freeze(ap); 2553 ata_port_info(ap, "%s: done\n", __func__); 2554 return 1; /* handled */ 2555 } 2556 ata_port_info(ap, "%s: waiting\n", __func__); 2557 return 1; /* handled */ 2558 } 2559 2560 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2561 { 2562 /* 2563 * Possible future enhancement: 2564 * 2565 * FBS+non-NCQ operation is not yet implemented. 2566 * See related notes in mv_edma_cfg(). 2567 * 2568 * Device error during FBS+non-NCQ operation: 2569 * 2570 * We need to snapshot the shadow registers for each failed command. 2571 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2572 */ 2573 return 0; /* not handled */ 2574 } 2575 2576 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2577 { 2578 struct mv_port_priv *pp = ap->private_data; 2579 2580 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2581 return 0; /* EDMA was not active: not handled */ 2582 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2583 return 0; /* FBS was not active: not handled */ 2584 2585 if (!(edma_err_cause & EDMA_ERR_DEV)) 2586 return 0; /* non DEV error: not handled */ 2587 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2588 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2589 return 0; /* other problems: not handled */ 2590 2591 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2592 /* 2593 * EDMA should NOT have self-disabled for this case. 2594 * If it did, then something is wrong elsewhere, 2595 * and we cannot handle it here. 2596 */ 2597 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2598 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2599 __func__, edma_err_cause, pp->pp_flags); 2600 return 0; /* not handled */ 2601 } 2602 return mv_handle_fbs_ncq_dev_err(ap); 2603 } else { 2604 /* 2605 * EDMA should have self-disabled for this case. 2606 * If it did not, then something is wrong elsewhere, 2607 * and we cannot handle it here. 2608 */ 2609 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2610 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2611 __func__, edma_err_cause, pp->pp_flags); 2612 return 0; /* not handled */ 2613 } 2614 return mv_handle_fbs_non_ncq_dev_err(ap); 2615 } 2616 return 0; /* not handled */ 2617 } 2618 2619 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2620 { 2621 struct ata_eh_info *ehi = &ap->link.eh_info; 2622 char *when = "idle"; 2623 2624 ata_ehi_clear_desc(ehi); 2625 if (edma_was_enabled) { 2626 when = "EDMA enabled"; 2627 } else { 2628 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2629 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2630 when = "polling"; 2631 } 2632 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2633 ehi->err_mask |= AC_ERR_OTHER; 2634 ehi->action |= ATA_EH_RESET; 2635 ata_port_freeze(ap); 2636 } 2637 2638 /** 2639 * mv_err_intr - Handle error interrupts on the port 2640 * @ap: ATA channel to manipulate 2641 * 2642 * Most cases require a full reset of the chip's state machine, 2643 * which also performs a COMRESET. 2644 * Also, if the port disabled DMA, update our cached copy to match. 2645 * 2646 * LOCKING: 2647 * Inherited from caller. 2648 */ 2649 static void mv_err_intr(struct ata_port *ap) 2650 { 2651 void __iomem *port_mmio = mv_ap_base(ap); 2652 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2653 u32 fis_cause = 0; 2654 struct mv_port_priv *pp = ap->private_data; 2655 struct mv_host_priv *hpriv = ap->host->private_data; 2656 unsigned int action = 0, err_mask = 0; 2657 struct ata_eh_info *ehi = &ap->link.eh_info; 2658 struct ata_queued_cmd *qc; 2659 int abort = 0; 2660 2661 /* 2662 * Read and clear the SError and err_cause bits. 2663 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2664 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2665 */ 2666 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2667 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2668 2669 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2670 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2671 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2672 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2673 } 2674 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2675 2676 if (edma_err_cause & EDMA_ERR_DEV) { 2677 /* 2678 * Device errors during FIS-based switching operation 2679 * require special handling. 2680 */ 2681 if (mv_handle_dev_err(ap, edma_err_cause)) 2682 return; 2683 } 2684 2685 qc = mv_get_active_qc(ap); 2686 ata_ehi_clear_desc(ehi); 2687 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2688 edma_err_cause, pp->pp_flags); 2689 2690 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2691 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2692 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2693 u32 ec = edma_err_cause & 2694 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2695 sata_async_notification(ap); 2696 if (!ec) 2697 return; /* Just an AN; no need for the nukes */ 2698 ata_ehi_push_desc(ehi, "SDB notify"); 2699 } 2700 } 2701 /* 2702 * All generations share these EDMA error cause bits: 2703 */ 2704 if (edma_err_cause & EDMA_ERR_DEV) { 2705 err_mask |= AC_ERR_DEV; 2706 action |= ATA_EH_RESET; 2707 ata_ehi_push_desc(ehi, "dev error"); 2708 } 2709 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2710 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2711 EDMA_ERR_INTRL_PAR)) { 2712 err_mask |= AC_ERR_ATA_BUS; 2713 action |= ATA_EH_RESET; 2714 ata_ehi_push_desc(ehi, "parity error"); 2715 } 2716 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2717 ata_ehi_hotplugged(ehi); 2718 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2719 "dev disconnect" : "dev connect"); 2720 action |= ATA_EH_RESET; 2721 } 2722 2723 /* 2724 * Gen-I has a different SELF_DIS bit, 2725 * different FREEZE bits, and no SERR bit: 2726 */ 2727 if (IS_GEN_I(hpriv)) { 2728 eh_freeze_mask = EDMA_EH_FREEZE_5; 2729 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2730 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2731 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2732 } 2733 } else { 2734 eh_freeze_mask = EDMA_EH_FREEZE; 2735 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2736 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2737 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2738 } 2739 if (edma_err_cause & EDMA_ERR_SERR) { 2740 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2741 err_mask |= AC_ERR_ATA_BUS; 2742 action |= ATA_EH_RESET; 2743 } 2744 } 2745 2746 if (!err_mask) { 2747 err_mask = AC_ERR_OTHER; 2748 action |= ATA_EH_RESET; 2749 } 2750 2751 ehi->serror |= serr; 2752 ehi->action |= action; 2753 2754 if (qc) 2755 qc->err_mask |= err_mask; 2756 else 2757 ehi->err_mask |= err_mask; 2758 2759 if (err_mask == AC_ERR_DEV) { 2760 /* 2761 * Cannot do ata_port_freeze() here, 2762 * because it would kill PIO access, 2763 * which is needed for further diagnosis. 2764 */ 2765 mv_eh_freeze(ap); 2766 abort = 1; 2767 } else if (edma_err_cause & eh_freeze_mask) { 2768 /* 2769 * Note to self: ata_port_freeze() calls ata_port_abort() 2770 */ 2771 ata_port_freeze(ap); 2772 } else { 2773 abort = 1; 2774 } 2775 2776 if (abort) { 2777 if (qc) 2778 ata_link_abort(qc->dev->link); 2779 else 2780 ata_port_abort(ap); 2781 } 2782 } 2783 2784 static bool mv_process_crpb_response(struct ata_port *ap, 2785 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2786 { 2787 u8 ata_status; 2788 u16 edma_status = le16_to_cpu(response->flags); 2789 2790 /* 2791 * edma_status from a response queue entry: 2792 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2793 * MSB is saved ATA status from command completion. 2794 */ 2795 if (!ncq_enabled) { 2796 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2797 if (err_cause) { 2798 /* 2799 * Error will be seen/handled by 2800 * mv_err_intr(). So do nothing at all here. 2801 */ 2802 return false; 2803 } 2804 } 2805 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2806 if (!ac_err_mask(ata_status)) 2807 return true; 2808 /* else: leave it for mv_err_intr() */ 2809 return false; 2810 } 2811 2812 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2813 { 2814 void __iomem *port_mmio = mv_ap_base(ap); 2815 struct mv_host_priv *hpriv = ap->host->private_data; 2816 u32 in_index; 2817 bool work_done = false; 2818 u32 done_mask = 0; 2819 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2820 2821 /* Get the hardware queue position index */ 2822 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2823 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2824 2825 /* Process new responses from since the last time we looked */ 2826 while (in_index != pp->resp_idx) { 2827 unsigned int tag; 2828 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2829 2830 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2831 2832 if (IS_GEN_I(hpriv)) { 2833 /* 50xx: no NCQ, only one command active at a time */ 2834 tag = ap->link.active_tag; 2835 } else { 2836 /* Gen II/IIE: get command tag from CRPB entry */ 2837 tag = le16_to_cpu(response->id) & 0x1f; 2838 } 2839 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2840 done_mask |= 1 << tag; 2841 work_done = true; 2842 } 2843 2844 if (work_done) { 2845 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2846 2847 /* Update the software queue position index in hardware */ 2848 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2849 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2850 port_mmio + EDMA_RSP_Q_OUT_PTR); 2851 } 2852 } 2853 2854 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2855 { 2856 struct mv_port_priv *pp; 2857 int edma_was_enabled; 2858 2859 /* 2860 * Grab a snapshot of the EDMA_EN flag setting, 2861 * so that we have a consistent view for this port, 2862 * even if something we call of our routines changes it. 2863 */ 2864 pp = ap->private_data; 2865 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2866 /* 2867 * Process completed CRPB response(s) before other events. 2868 */ 2869 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2870 mv_process_crpb_entries(ap, pp); 2871 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2872 mv_handle_fbs_ncq_dev_err(ap); 2873 } 2874 /* 2875 * Handle chip-reported errors, or continue on to handle PIO. 2876 */ 2877 if (unlikely(port_cause & ERR_IRQ)) { 2878 mv_err_intr(ap); 2879 } else if (!edma_was_enabled) { 2880 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2881 if (qc) 2882 ata_bmdma_port_intr(ap, qc); 2883 else 2884 mv_unexpected_intr(ap, edma_was_enabled); 2885 } 2886 } 2887 2888 /** 2889 * mv_host_intr - Handle all interrupts on the given host controller 2890 * @host: host specific structure 2891 * @main_irq_cause: Main interrupt cause register for the chip. 2892 * 2893 * LOCKING: 2894 * Inherited from caller. 2895 */ 2896 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2897 { 2898 struct mv_host_priv *hpriv = host->private_data; 2899 void __iomem *mmio = hpriv->base, *hc_mmio; 2900 unsigned int handled = 0, port; 2901 2902 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2903 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2904 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2905 2906 for (port = 0; port < hpriv->n_ports; port++) { 2907 struct ata_port *ap = host->ports[port]; 2908 unsigned int p, shift, hardport, port_cause; 2909 2910 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2911 /* 2912 * Each hc within the host has its own hc_irq_cause register, 2913 * where the interrupting ports bits get ack'd. 2914 */ 2915 if (hardport == 0) { /* first port on this hc ? */ 2916 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2917 u32 port_mask, ack_irqs; 2918 /* 2919 * Skip this entire hc if nothing pending for any ports 2920 */ 2921 if (!hc_cause) { 2922 port += MV_PORTS_PER_HC - 1; 2923 continue; 2924 } 2925 /* 2926 * We don't need/want to read the hc_irq_cause register, 2927 * because doing so hurts performance, and 2928 * main_irq_cause already gives us everything we need. 2929 * 2930 * But we do have to *write* to the hc_irq_cause to ack 2931 * the ports that we are handling this time through. 2932 * 2933 * This requires that we create a bitmap for those 2934 * ports which interrupted us, and use that bitmap 2935 * to ack (only) those ports via hc_irq_cause. 2936 */ 2937 ack_irqs = 0; 2938 if (hc_cause & PORTS_0_3_COAL_DONE) 2939 ack_irqs = HC_COAL_IRQ; 2940 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2941 if ((port + p) >= hpriv->n_ports) 2942 break; 2943 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2944 if (hc_cause & port_mask) 2945 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2946 } 2947 hc_mmio = mv_hc_base_from_port(mmio, port); 2948 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2949 handled = 1; 2950 } 2951 /* 2952 * Handle interrupts signalled for this port: 2953 */ 2954 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2955 if (port_cause) 2956 mv_port_intr(ap, port_cause); 2957 } 2958 return handled; 2959 } 2960 2961 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2962 { 2963 struct mv_host_priv *hpriv = host->private_data; 2964 struct ata_port *ap; 2965 struct ata_queued_cmd *qc; 2966 struct ata_eh_info *ehi; 2967 unsigned int i, err_mask, printed = 0; 2968 u32 err_cause; 2969 2970 err_cause = readl(mmio + hpriv->irq_cause_offset); 2971 2972 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2973 2974 DPRINTK("All regs @ PCI error\n"); 2975 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2976 2977 writelfl(0, mmio + hpriv->irq_cause_offset); 2978 2979 for (i = 0; i < host->n_ports; i++) { 2980 ap = host->ports[i]; 2981 if (!ata_link_offline(&ap->link)) { 2982 ehi = &ap->link.eh_info; 2983 ata_ehi_clear_desc(ehi); 2984 if (!printed++) 2985 ata_ehi_push_desc(ehi, 2986 "PCI err cause 0x%08x", err_cause); 2987 err_mask = AC_ERR_HOST_BUS; 2988 ehi->action = ATA_EH_RESET; 2989 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2990 if (qc) 2991 qc->err_mask |= err_mask; 2992 else 2993 ehi->err_mask |= err_mask; 2994 2995 ata_port_freeze(ap); 2996 } 2997 } 2998 return 1; /* handled */ 2999 } 3000 3001 /** 3002 * mv_interrupt - Main interrupt event handler 3003 * @irq: unused 3004 * @dev_instance: private data; in this case the host structure 3005 * 3006 * Read the read only register to determine if any host 3007 * controllers have pending interrupts. If so, call lower level 3008 * routine to handle. Also check for PCI errors which are only 3009 * reported here. 3010 * 3011 * LOCKING: 3012 * This routine holds the host lock while processing pending 3013 * interrupts. 3014 */ 3015 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 3016 { 3017 struct ata_host *host = dev_instance; 3018 struct mv_host_priv *hpriv = host->private_data; 3019 unsigned int handled = 0; 3020 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 3021 u32 main_irq_cause, pending_irqs; 3022 3023 spin_lock(&host->lock); 3024 3025 /* for MSI: block new interrupts while in here */ 3026 if (using_msi) 3027 mv_write_main_irq_mask(0, hpriv); 3028 3029 main_irq_cause = readl(hpriv->main_irq_cause_addr); 3030 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 3031 /* 3032 * Deal with cases where we either have nothing pending, or have read 3033 * a bogus register value which can indicate HW removal or PCI fault. 3034 */ 3035 if (pending_irqs && main_irq_cause != 0xffffffffU) { 3036 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 3037 handled = mv_pci_error(host, hpriv->base); 3038 else 3039 handled = mv_host_intr(host, pending_irqs); 3040 } 3041 3042 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3043 if (using_msi) 3044 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3045 3046 spin_unlock(&host->lock); 3047 3048 return IRQ_RETVAL(handled); 3049 } 3050 3051 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3052 { 3053 unsigned int ofs; 3054 3055 switch (sc_reg_in) { 3056 case SCR_STATUS: 3057 case SCR_ERROR: 3058 case SCR_CONTROL: 3059 ofs = sc_reg_in * sizeof(u32); 3060 break; 3061 default: 3062 ofs = 0xffffffffU; 3063 break; 3064 } 3065 return ofs; 3066 } 3067 3068 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3069 { 3070 struct mv_host_priv *hpriv = link->ap->host->private_data; 3071 void __iomem *mmio = hpriv->base; 3072 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3073 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3074 3075 if (ofs != 0xffffffffU) { 3076 *val = readl(addr + ofs); 3077 return 0; 3078 } else 3079 return -EINVAL; 3080 } 3081 3082 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3083 { 3084 struct mv_host_priv *hpriv = link->ap->host->private_data; 3085 void __iomem *mmio = hpriv->base; 3086 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3087 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3088 3089 if (ofs != 0xffffffffU) { 3090 writelfl(val, addr + ofs); 3091 return 0; 3092 } else 3093 return -EINVAL; 3094 } 3095 3096 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3097 { 3098 struct pci_dev *pdev = to_pci_dev(host->dev); 3099 int early_5080; 3100 3101 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3102 3103 if (!early_5080) { 3104 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3105 tmp |= (1 << 0); 3106 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3107 } 3108 3109 mv_reset_pci_bus(host, mmio); 3110 } 3111 3112 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3113 { 3114 writel(0x0fcfffff, mmio + FLASH_CTL); 3115 } 3116 3117 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3118 void __iomem *mmio) 3119 { 3120 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3121 u32 tmp; 3122 3123 tmp = readl(phy_mmio + MV5_PHY_MODE); 3124 3125 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3126 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3127 } 3128 3129 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3130 { 3131 u32 tmp; 3132 3133 writel(0, mmio + GPIO_PORT_CTL); 3134 3135 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3136 3137 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3138 tmp |= ~(1 << 0); 3139 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3140 } 3141 3142 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3143 unsigned int port) 3144 { 3145 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3146 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3147 u32 tmp; 3148 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3149 3150 if (fix_apm_sq) { 3151 tmp = readl(phy_mmio + MV5_LTMODE); 3152 tmp |= (1 << 19); 3153 writel(tmp, phy_mmio + MV5_LTMODE); 3154 3155 tmp = readl(phy_mmio + MV5_PHY_CTL); 3156 tmp &= ~0x3; 3157 tmp |= 0x1; 3158 writel(tmp, phy_mmio + MV5_PHY_CTL); 3159 } 3160 3161 tmp = readl(phy_mmio + MV5_PHY_MODE); 3162 tmp &= ~mask; 3163 tmp |= hpriv->signal[port].pre; 3164 tmp |= hpriv->signal[port].amps; 3165 writel(tmp, phy_mmio + MV5_PHY_MODE); 3166 } 3167 3168 3169 #undef ZERO 3170 #define ZERO(reg) writel(0, port_mmio + (reg)) 3171 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3172 unsigned int port) 3173 { 3174 void __iomem *port_mmio = mv_port_base(mmio, port); 3175 3176 mv_reset_channel(hpriv, mmio, port); 3177 3178 ZERO(0x028); /* command */ 3179 writel(0x11f, port_mmio + EDMA_CFG); 3180 ZERO(0x004); /* timer */ 3181 ZERO(0x008); /* irq err cause */ 3182 ZERO(0x00c); /* irq err mask */ 3183 ZERO(0x010); /* rq bah */ 3184 ZERO(0x014); /* rq inp */ 3185 ZERO(0x018); /* rq outp */ 3186 ZERO(0x01c); /* respq bah */ 3187 ZERO(0x024); /* respq outp */ 3188 ZERO(0x020); /* respq inp */ 3189 ZERO(0x02c); /* test control */ 3190 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3191 } 3192 #undef ZERO 3193 3194 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3195 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3196 unsigned int hc) 3197 { 3198 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3199 u32 tmp; 3200 3201 ZERO(0x00c); 3202 ZERO(0x010); 3203 ZERO(0x014); 3204 ZERO(0x018); 3205 3206 tmp = readl(hc_mmio + 0x20); 3207 tmp &= 0x1c1c1c1c; 3208 tmp |= 0x03030303; 3209 writel(tmp, hc_mmio + 0x20); 3210 } 3211 #undef ZERO 3212 3213 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3214 unsigned int n_hc) 3215 { 3216 unsigned int hc, port; 3217 3218 for (hc = 0; hc < n_hc; hc++) { 3219 for (port = 0; port < MV_PORTS_PER_HC; port++) 3220 mv5_reset_hc_port(hpriv, mmio, 3221 (hc * MV_PORTS_PER_HC) + port); 3222 3223 mv5_reset_one_hc(hpriv, mmio, hc); 3224 } 3225 3226 return 0; 3227 } 3228 3229 #undef ZERO 3230 #define ZERO(reg) writel(0, mmio + (reg)) 3231 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3232 { 3233 struct mv_host_priv *hpriv = host->private_data; 3234 u32 tmp; 3235 3236 tmp = readl(mmio + MV_PCI_MODE); 3237 tmp &= 0xff00ffff; 3238 writel(tmp, mmio + MV_PCI_MODE); 3239 3240 ZERO(MV_PCI_DISC_TIMER); 3241 ZERO(MV_PCI_MSI_TRIGGER); 3242 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3243 ZERO(MV_PCI_SERR_MASK); 3244 ZERO(hpriv->irq_cause_offset); 3245 ZERO(hpriv->irq_mask_offset); 3246 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3247 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3248 ZERO(MV_PCI_ERR_ATTRIBUTE); 3249 ZERO(MV_PCI_ERR_COMMAND); 3250 } 3251 #undef ZERO 3252 3253 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3254 { 3255 u32 tmp; 3256 3257 mv5_reset_flash(hpriv, mmio); 3258 3259 tmp = readl(mmio + GPIO_PORT_CTL); 3260 tmp &= 0x3; 3261 tmp |= (1 << 5) | (1 << 6); 3262 writel(tmp, mmio + GPIO_PORT_CTL); 3263 } 3264 3265 /** 3266 * mv6_reset_hc - Perform the 6xxx global soft reset 3267 * @mmio: base address of the HBA 3268 * 3269 * This routine only applies to 6xxx parts. 3270 * 3271 * LOCKING: 3272 * Inherited from caller. 3273 */ 3274 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3275 unsigned int n_hc) 3276 { 3277 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3278 int i, rc = 0; 3279 u32 t; 3280 3281 /* Following procedure defined in PCI "main command and status 3282 * register" table. 3283 */ 3284 t = readl(reg); 3285 writel(t | STOP_PCI_MASTER, reg); 3286 3287 for (i = 0; i < 1000; i++) { 3288 udelay(1); 3289 t = readl(reg); 3290 if (PCI_MASTER_EMPTY & t) 3291 break; 3292 } 3293 if (!(PCI_MASTER_EMPTY & t)) { 3294 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3295 rc = 1; 3296 goto done; 3297 } 3298 3299 /* set reset */ 3300 i = 5; 3301 do { 3302 writel(t | GLOB_SFT_RST, reg); 3303 t = readl(reg); 3304 udelay(1); 3305 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3306 3307 if (!(GLOB_SFT_RST & t)) { 3308 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3309 rc = 1; 3310 goto done; 3311 } 3312 3313 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3314 i = 5; 3315 do { 3316 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3317 t = readl(reg); 3318 udelay(1); 3319 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3320 3321 if (GLOB_SFT_RST & t) { 3322 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3323 rc = 1; 3324 } 3325 done: 3326 return rc; 3327 } 3328 3329 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3330 void __iomem *mmio) 3331 { 3332 void __iomem *port_mmio; 3333 u32 tmp; 3334 3335 tmp = readl(mmio + RESET_CFG); 3336 if ((tmp & (1 << 0)) == 0) { 3337 hpriv->signal[idx].amps = 0x7 << 8; 3338 hpriv->signal[idx].pre = 0x1 << 5; 3339 return; 3340 } 3341 3342 port_mmio = mv_port_base(mmio, idx); 3343 tmp = readl(port_mmio + PHY_MODE2); 3344 3345 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3346 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3347 } 3348 3349 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3350 { 3351 writel(0x00000060, mmio + GPIO_PORT_CTL); 3352 } 3353 3354 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3355 unsigned int port) 3356 { 3357 void __iomem *port_mmio = mv_port_base(mmio, port); 3358 3359 u32 hp_flags = hpriv->hp_flags; 3360 int fix_phy_mode2 = 3361 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3362 int fix_phy_mode4 = 3363 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3364 u32 m2, m3; 3365 3366 if (fix_phy_mode2) { 3367 m2 = readl(port_mmio + PHY_MODE2); 3368 m2 &= ~(1 << 16); 3369 m2 |= (1 << 31); 3370 writel(m2, port_mmio + PHY_MODE2); 3371 3372 udelay(200); 3373 3374 m2 = readl(port_mmio + PHY_MODE2); 3375 m2 &= ~((1 << 16) | (1 << 31)); 3376 writel(m2, port_mmio + PHY_MODE2); 3377 3378 udelay(200); 3379 } 3380 3381 /* 3382 * Gen-II/IIe PHY_MODE3 errata RM#2: 3383 * Achieves better receiver noise performance than the h/w default: 3384 */ 3385 m3 = readl(port_mmio + PHY_MODE3); 3386 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3387 3388 /* Guideline 88F5182 (GL# SATA-S11) */ 3389 if (IS_SOC(hpriv)) 3390 m3 &= ~0x1c; 3391 3392 if (fix_phy_mode4) { 3393 u32 m4 = readl(port_mmio + PHY_MODE4); 3394 /* 3395 * Enforce reserved-bit restrictions on GenIIe devices only. 3396 * For earlier chipsets, force only the internal config field 3397 * (workaround for errata FEr SATA#10 part 1). 3398 */ 3399 if (IS_GEN_IIE(hpriv)) 3400 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3401 else 3402 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3403 writel(m4, port_mmio + PHY_MODE4); 3404 } 3405 /* 3406 * Workaround for 60x1-B2 errata SATA#13: 3407 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3408 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3409 * Or ensure we use writelfl() when writing PHY_MODE4. 3410 */ 3411 writel(m3, port_mmio + PHY_MODE3); 3412 3413 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3414 m2 = readl(port_mmio + PHY_MODE2); 3415 3416 m2 &= ~MV_M2_PREAMP_MASK; 3417 m2 |= hpriv->signal[port].amps; 3418 m2 |= hpriv->signal[port].pre; 3419 m2 &= ~(1 << 16); 3420 3421 /* according to mvSata 3.6.1, some IIE values are fixed */ 3422 if (IS_GEN_IIE(hpriv)) { 3423 m2 &= ~0xC30FF01F; 3424 m2 |= 0x0000900F; 3425 } 3426 3427 writel(m2, port_mmio + PHY_MODE2); 3428 } 3429 3430 /* TODO: use the generic LED interface to configure the SATA Presence */ 3431 /* & Acitivy LEDs on the board */ 3432 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3433 void __iomem *mmio) 3434 { 3435 return; 3436 } 3437 3438 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3439 void __iomem *mmio) 3440 { 3441 void __iomem *port_mmio; 3442 u32 tmp; 3443 3444 port_mmio = mv_port_base(mmio, idx); 3445 tmp = readl(port_mmio + PHY_MODE2); 3446 3447 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3448 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3449 } 3450 3451 #undef ZERO 3452 #define ZERO(reg) writel(0, port_mmio + (reg)) 3453 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3454 void __iomem *mmio, unsigned int port) 3455 { 3456 void __iomem *port_mmio = mv_port_base(mmio, port); 3457 3458 mv_reset_channel(hpriv, mmio, port); 3459 3460 ZERO(0x028); /* command */ 3461 writel(0x101f, port_mmio + EDMA_CFG); 3462 ZERO(0x004); /* timer */ 3463 ZERO(0x008); /* irq err cause */ 3464 ZERO(0x00c); /* irq err mask */ 3465 ZERO(0x010); /* rq bah */ 3466 ZERO(0x014); /* rq inp */ 3467 ZERO(0x018); /* rq outp */ 3468 ZERO(0x01c); /* respq bah */ 3469 ZERO(0x024); /* respq outp */ 3470 ZERO(0x020); /* respq inp */ 3471 ZERO(0x02c); /* test control */ 3472 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3473 } 3474 3475 #undef ZERO 3476 3477 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3478 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3479 void __iomem *mmio) 3480 { 3481 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3482 3483 ZERO(0x00c); 3484 ZERO(0x010); 3485 ZERO(0x014); 3486 3487 } 3488 3489 #undef ZERO 3490 3491 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3492 void __iomem *mmio, unsigned int n_hc) 3493 { 3494 unsigned int port; 3495 3496 for (port = 0; port < hpriv->n_ports; port++) 3497 mv_soc_reset_hc_port(hpriv, mmio, port); 3498 3499 mv_soc_reset_one_hc(hpriv, mmio); 3500 3501 return 0; 3502 } 3503 3504 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3505 void __iomem *mmio) 3506 { 3507 return; 3508 } 3509 3510 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3511 { 3512 return; 3513 } 3514 3515 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3516 void __iomem *mmio, unsigned int port) 3517 { 3518 void __iomem *port_mmio = mv_port_base(mmio, port); 3519 u32 reg; 3520 3521 reg = readl(port_mmio + PHY_MODE3); 3522 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3523 reg |= (0x1 << 27); 3524 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3525 reg |= (0x1 << 29); 3526 writel(reg, port_mmio + PHY_MODE3); 3527 3528 reg = readl(port_mmio + PHY_MODE4); 3529 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3530 reg |= (0x1 << 16); 3531 writel(reg, port_mmio + PHY_MODE4); 3532 3533 reg = readl(port_mmio + PHY_MODE9_GEN2); 3534 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3535 reg |= 0x8; 3536 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3537 writel(reg, port_mmio + PHY_MODE9_GEN2); 3538 3539 reg = readl(port_mmio + PHY_MODE9_GEN1); 3540 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3541 reg |= 0x8; 3542 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3543 writel(reg, port_mmio + PHY_MODE9_GEN1); 3544 } 3545 3546 /** 3547 * soc_is_65 - check if the soc is 65 nano device 3548 * 3549 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3550 * register, this register should contain non-zero value and it exists only 3551 * in the 65 nano devices, when reading it from older devices we get 0. 3552 */ 3553 static bool soc_is_65n(struct mv_host_priv *hpriv) 3554 { 3555 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3556 3557 if (readl(port0_mmio + PHYCFG_OFS)) 3558 return true; 3559 return false; 3560 } 3561 3562 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3563 { 3564 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3565 3566 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3567 if (want_gen2i) 3568 ifcfg |= (1 << 7); /* enable gen2i speed */ 3569 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3570 } 3571 3572 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3573 unsigned int port_no) 3574 { 3575 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3576 3577 /* 3578 * The datasheet warns against setting EDMA_RESET when EDMA is active 3579 * (but doesn't say what the problem might be). So we first try 3580 * to disable the EDMA engine before doing the EDMA_RESET operation. 3581 */ 3582 mv_stop_edma_engine(port_mmio); 3583 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3584 3585 if (!IS_GEN_I(hpriv)) { 3586 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3587 mv_setup_ifcfg(port_mmio, 1); 3588 } 3589 /* 3590 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3591 * link, and physical layers. It resets all SATA interface registers 3592 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3593 */ 3594 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3595 udelay(25); /* allow reset propagation */ 3596 writelfl(0, port_mmio + EDMA_CMD); 3597 3598 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3599 3600 if (IS_GEN_I(hpriv)) 3601 mdelay(1); 3602 } 3603 3604 static void mv_pmp_select(struct ata_port *ap, int pmp) 3605 { 3606 if (sata_pmp_supported(ap)) { 3607 void __iomem *port_mmio = mv_ap_base(ap); 3608 u32 reg = readl(port_mmio + SATA_IFCTL); 3609 int old = reg & 0xf; 3610 3611 if (old != pmp) { 3612 reg = (reg & ~0xf) | pmp; 3613 writelfl(reg, port_mmio + SATA_IFCTL); 3614 } 3615 } 3616 } 3617 3618 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3619 unsigned long deadline) 3620 { 3621 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3622 return sata_std_hardreset(link, class, deadline); 3623 } 3624 3625 static int mv_softreset(struct ata_link *link, unsigned int *class, 3626 unsigned long deadline) 3627 { 3628 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3629 return ata_sff_softreset(link, class, deadline); 3630 } 3631 3632 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3633 unsigned long deadline) 3634 { 3635 struct ata_port *ap = link->ap; 3636 struct mv_host_priv *hpriv = ap->host->private_data; 3637 struct mv_port_priv *pp = ap->private_data; 3638 void __iomem *mmio = hpriv->base; 3639 int rc, attempts = 0, extra = 0; 3640 u32 sstatus; 3641 bool online; 3642 3643 mv_reset_channel(hpriv, mmio, ap->port_no); 3644 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3645 pp->pp_flags &= 3646 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3647 3648 /* Workaround for errata FEr SATA#10 (part 2) */ 3649 do { 3650 const unsigned long *timing = 3651 sata_ehc_deb_timing(&link->eh_context); 3652 3653 rc = sata_link_hardreset(link, timing, deadline + extra, 3654 &online, NULL); 3655 rc = online ? -EAGAIN : rc; 3656 if (rc) 3657 return rc; 3658 sata_scr_read(link, SCR_STATUS, &sstatus); 3659 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3660 /* Force 1.5gb/s link speed and try again */ 3661 mv_setup_ifcfg(mv_ap_base(ap), 0); 3662 if (time_after(jiffies + HZ, deadline)) 3663 extra = HZ; /* only extend it once, max */ 3664 } 3665 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3666 mv_save_cached_regs(ap); 3667 mv_edma_cfg(ap, 0, 0); 3668 3669 return rc; 3670 } 3671 3672 static void mv_eh_freeze(struct ata_port *ap) 3673 { 3674 mv_stop_edma(ap); 3675 mv_enable_port_irqs(ap, 0); 3676 } 3677 3678 static void mv_eh_thaw(struct ata_port *ap) 3679 { 3680 struct mv_host_priv *hpriv = ap->host->private_data; 3681 unsigned int port = ap->port_no; 3682 unsigned int hardport = mv_hardport_from_port(port); 3683 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3684 void __iomem *port_mmio = mv_ap_base(ap); 3685 u32 hc_irq_cause; 3686 3687 /* clear EDMA errors on this port */ 3688 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3689 3690 /* clear pending irq events */ 3691 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3692 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3693 3694 mv_enable_port_irqs(ap, ERR_IRQ); 3695 } 3696 3697 /** 3698 * mv_port_init - Perform some early initialization on a single port. 3699 * @port: libata data structure storing shadow register addresses 3700 * @port_mmio: base address of the port 3701 * 3702 * Initialize shadow register mmio addresses, clear outstanding 3703 * interrupts on the port, and unmask interrupts for the future 3704 * start of the port. 3705 * 3706 * LOCKING: 3707 * Inherited from caller. 3708 */ 3709 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3710 { 3711 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3712 3713 /* PIO related setup 3714 */ 3715 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3716 port->error_addr = 3717 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3718 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3719 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3720 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3721 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3722 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3723 port->status_addr = 3724 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3725 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3726 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3727 3728 /* Clear any currently outstanding port interrupt conditions */ 3729 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3730 writelfl(readl(serr), serr); 3731 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3732 3733 /* unmask all non-transient EDMA error interrupts */ 3734 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3735 3736 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3737 readl(port_mmio + EDMA_CFG), 3738 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3739 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3740 } 3741 3742 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3743 { 3744 struct mv_host_priv *hpriv = host->private_data; 3745 void __iomem *mmio = hpriv->base; 3746 u32 reg; 3747 3748 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3749 return 0; /* not PCI-X capable */ 3750 reg = readl(mmio + MV_PCI_MODE); 3751 if ((reg & MV_PCI_MODE_MASK) == 0) 3752 return 0; /* conventional PCI mode */ 3753 return 1; /* chip is in PCI-X mode */ 3754 } 3755 3756 static int mv_pci_cut_through_okay(struct ata_host *host) 3757 { 3758 struct mv_host_priv *hpriv = host->private_data; 3759 void __iomem *mmio = hpriv->base; 3760 u32 reg; 3761 3762 if (!mv_in_pcix_mode(host)) { 3763 reg = readl(mmio + MV_PCI_COMMAND); 3764 if (reg & MV_PCI_COMMAND_MRDTRIG) 3765 return 0; /* not okay */ 3766 } 3767 return 1; /* okay */ 3768 } 3769 3770 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3771 { 3772 struct mv_host_priv *hpriv = host->private_data; 3773 void __iomem *mmio = hpriv->base; 3774 3775 /* workaround for 60x1-B2 errata PCI#7 */ 3776 if (mv_in_pcix_mode(host)) { 3777 u32 reg = readl(mmio + MV_PCI_COMMAND); 3778 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3779 } 3780 } 3781 3782 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3783 { 3784 struct pci_dev *pdev = to_pci_dev(host->dev); 3785 struct mv_host_priv *hpriv = host->private_data; 3786 u32 hp_flags = hpriv->hp_flags; 3787 3788 switch (board_idx) { 3789 case chip_5080: 3790 hpriv->ops = &mv5xxx_ops; 3791 hp_flags |= MV_HP_GEN_I; 3792 3793 switch (pdev->revision) { 3794 case 0x1: 3795 hp_flags |= MV_HP_ERRATA_50XXB0; 3796 break; 3797 case 0x3: 3798 hp_flags |= MV_HP_ERRATA_50XXB2; 3799 break; 3800 default: 3801 dev_warn(&pdev->dev, 3802 "Applying 50XXB2 workarounds to unknown rev\n"); 3803 hp_flags |= MV_HP_ERRATA_50XXB2; 3804 break; 3805 } 3806 break; 3807 3808 case chip_504x: 3809 case chip_508x: 3810 hpriv->ops = &mv5xxx_ops; 3811 hp_flags |= MV_HP_GEN_I; 3812 3813 switch (pdev->revision) { 3814 case 0x0: 3815 hp_flags |= MV_HP_ERRATA_50XXB0; 3816 break; 3817 case 0x3: 3818 hp_flags |= MV_HP_ERRATA_50XXB2; 3819 break; 3820 default: 3821 dev_warn(&pdev->dev, 3822 "Applying B2 workarounds to unknown rev\n"); 3823 hp_flags |= MV_HP_ERRATA_50XXB2; 3824 break; 3825 } 3826 break; 3827 3828 case chip_604x: 3829 case chip_608x: 3830 hpriv->ops = &mv6xxx_ops; 3831 hp_flags |= MV_HP_GEN_II; 3832 3833 switch (pdev->revision) { 3834 case 0x7: 3835 mv_60x1b2_errata_pci7(host); 3836 hp_flags |= MV_HP_ERRATA_60X1B2; 3837 break; 3838 case 0x9: 3839 hp_flags |= MV_HP_ERRATA_60X1C0; 3840 break; 3841 default: 3842 dev_warn(&pdev->dev, 3843 "Applying B2 workarounds to unknown rev\n"); 3844 hp_flags |= MV_HP_ERRATA_60X1B2; 3845 break; 3846 } 3847 break; 3848 3849 case chip_7042: 3850 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3851 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3852 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3853 { 3854 /* 3855 * Highpoint RocketRAID PCIe 23xx series cards: 3856 * 3857 * Unconfigured drives are treated as "Legacy" 3858 * by the BIOS, and it overwrites sector 8 with 3859 * a "Lgcy" metadata block prior to Linux boot. 3860 * 3861 * Configured drives (RAID or JBOD) leave sector 8 3862 * alone, but instead overwrite a high numbered 3863 * sector for the RAID metadata. This sector can 3864 * be determined exactly, by truncating the physical 3865 * drive capacity to a nice even GB value. 3866 * 3867 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3868 * 3869 * Warn the user, lest they think we're just buggy. 3870 */ 3871 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3872 " BIOS CORRUPTS DATA on all attached drives," 3873 " regardless of if/how they are configured." 3874 " BEWARE!\n"); 3875 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3876 " use sectors 8-9 on \"Legacy\" drives," 3877 " and avoid the final two gigabytes on" 3878 " all RocketRAID BIOS initialized drives.\n"); 3879 } 3880 /* drop through */ 3881 case chip_6042: 3882 hpriv->ops = &mv6xxx_ops; 3883 hp_flags |= MV_HP_GEN_IIE; 3884 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3885 hp_flags |= MV_HP_CUT_THROUGH; 3886 3887 switch (pdev->revision) { 3888 case 0x2: /* Rev.B0: the first/only public release */ 3889 hp_flags |= MV_HP_ERRATA_60X1C0; 3890 break; 3891 default: 3892 dev_warn(&pdev->dev, 3893 "Applying 60X1C0 workarounds to unknown rev\n"); 3894 hp_flags |= MV_HP_ERRATA_60X1C0; 3895 break; 3896 } 3897 break; 3898 case chip_soc: 3899 if (soc_is_65n(hpriv)) 3900 hpriv->ops = &mv_soc_65n_ops; 3901 else 3902 hpriv->ops = &mv_soc_ops; 3903 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3904 MV_HP_ERRATA_60X1C0; 3905 break; 3906 3907 default: 3908 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3909 return 1; 3910 } 3911 3912 hpriv->hp_flags = hp_flags; 3913 if (hp_flags & MV_HP_PCIE) { 3914 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3915 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3916 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3917 } else { 3918 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3919 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3920 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3921 } 3922 3923 return 0; 3924 } 3925 3926 /** 3927 * mv_init_host - Perform some early initialization of the host. 3928 * @host: ATA host to initialize 3929 * 3930 * If possible, do an early global reset of the host. Then do 3931 * our port init and clear/unmask all/relevant host interrupts. 3932 * 3933 * LOCKING: 3934 * Inherited from caller. 3935 */ 3936 static int mv_init_host(struct ata_host *host) 3937 { 3938 int rc = 0, n_hc, port, hc; 3939 struct mv_host_priv *hpriv = host->private_data; 3940 void __iomem *mmio = hpriv->base; 3941 3942 rc = mv_chip_id(host, hpriv->board_idx); 3943 if (rc) 3944 goto done; 3945 3946 if (IS_SOC(hpriv)) { 3947 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3948 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3949 } else { 3950 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3951 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3952 } 3953 3954 /* initialize shadow irq mask with register's value */ 3955 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3956 3957 /* global interrupt mask: 0 == mask everything */ 3958 mv_set_main_irq_mask(host, ~0, 0); 3959 3960 n_hc = mv_get_hc_count(host->ports[0]->flags); 3961 3962 for (port = 0; port < host->n_ports; port++) 3963 if (hpriv->ops->read_preamp) 3964 hpriv->ops->read_preamp(hpriv, port, mmio); 3965 3966 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3967 if (rc) 3968 goto done; 3969 3970 hpriv->ops->reset_flash(hpriv, mmio); 3971 hpriv->ops->reset_bus(host, mmio); 3972 hpriv->ops->enable_leds(hpriv, mmio); 3973 3974 for (port = 0; port < host->n_ports; port++) { 3975 struct ata_port *ap = host->ports[port]; 3976 void __iomem *port_mmio = mv_port_base(mmio, port); 3977 3978 mv_port_init(&ap->ioaddr, port_mmio); 3979 } 3980 3981 for (hc = 0; hc < n_hc; hc++) { 3982 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3983 3984 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3985 "(before clear)=0x%08x\n", hc, 3986 readl(hc_mmio + HC_CFG), 3987 readl(hc_mmio + HC_IRQ_CAUSE)); 3988 3989 /* Clear any currently outstanding hc interrupt conditions */ 3990 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3991 } 3992 3993 if (!IS_SOC(hpriv)) { 3994 /* Clear any currently outstanding host interrupt conditions */ 3995 writelfl(0, mmio + hpriv->irq_cause_offset); 3996 3997 /* and unmask interrupt generation for host regs */ 3998 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3999 } 4000 4001 /* 4002 * enable only global host interrupts for now. 4003 * The per-port interrupts get done later as ports are set up. 4004 */ 4005 mv_set_main_irq_mask(host, 0, PCI_ERR); 4006 mv_set_irq_coalescing(host, irq_coalescing_io_count, 4007 irq_coalescing_usecs); 4008 done: 4009 return rc; 4010 } 4011 4012 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 4013 { 4014 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 4015 MV_CRQB_Q_SZ, 0); 4016 if (!hpriv->crqb_pool) 4017 return -ENOMEM; 4018 4019 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 4020 MV_CRPB_Q_SZ, 0); 4021 if (!hpriv->crpb_pool) 4022 return -ENOMEM; 4023 4024 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 4025 MV_SG_TBL_SZ, 0); 4026 if (!hpriv->sg_tbl_pool) 4027 return -ENOMEM; 4028 4029 return 0; 4030 } 4031 4032 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 4033 const struct mbus_dram_target_info *dram) 4034 { 4035 int i; 4036 4037 for (i = 0; i < 4; i++) { 4038 writel(0, hpriv->base + WINDOW_CTRL(i)); 4039 writel(0, hpriv->base + WINDOW_BASE(i)); 4040 } 4041 4042 for (i = 0; i < dram->num_cs; i++) { 4043 const struct mbus_dram_window *cs = dram->cs + i; 4044 4045 writel(((cs->size - 1) & 0xffff0000) | 4046 (cs->mbus_attr << 8) | 4047 (dram->mbus_dram_target_id << 4) | 1, 4048 hpriv->base + WINDOW_CTRL(i)); 4049 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4050 } 4051 } 4052 4053 /** 4054 * mv_platform_probe - handle a positive probe of an soc Marvell 4055 * host 4056 * @pdev: platform device found 4057 * 4058 * LOCKING: 4059 * Inherited from caller. 4060 */ 4061 static int mv_platform_probe(struct platform_device *pdev) 4062 { 4063 const struct mv_sata_platform_data *mv_platform_data; 4064 const struct mbus_dram_target_info *dram; 4065 const struct ata_port_info *ppi[] = 4066 { &mv_port_info[chip_soc], NULL }; 4067 struct ata_host *host; 4068 struct mv_host_priv *hpriv; 4069 struct resource *res; 4070 int n_ports = 0, irq = 0; 4071 int rc; 4072 int port; 4073 4074 ata_print_version_once(&pdev->dev, DRV_VERSION); 4075 4076 /* 4077 * Simple resource validation .. 4078 */ 4079 if (unlikely(pdev->num_resources != 2)) { 4080 dev_err(&pdev->dev, "invalid number of resources\n"); 4081 return -EINVAL; 4082 } 4083 4084 /* 4085 * Get the register base first 4086 */ 4087 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4088 if (res == NULL) 4089 return -EINVAL; 4090 4091 /* allocate host */ 4092 if (pdev->dev.of_node) { 4093 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports", 4094 &n_ports); 4095 if (rc) { 4096 dev_err(&pdev->dev, 4097 "error parsing nr-ports property: %d\n", rc); 4098 return rc; 4099 } 4100 4101 if (n_ports <= 0) { 4102 dev_err(&pdev->dev, "nr-ports must be positive: %d\n", 4103 n_ports); 4104 return -EINVAL; 4105 } 4106 4107 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 4108 } else { 4109 mv_platform_data = dev_get_platdata(&pdev->dev); 4110 n_ports = mv_platform_data->n_ports; 4111 irq = platform_get_irq(pdev, 0); 4112 } 4113 4114 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4115 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4116 4117 if (!host || !hpriv) 4118 return -ENOMEM; 4119 hpriv->port_clks = devm_kzalloc(&pdev->dev, 4120 sizeof(struct clk *) * n_ports, 4121 GFP_KERNEL); 4122 if (!hpriv->port_clks) 4123 return -ENOMEM; 4124 hpriv->port_phys = devm_kzalloc(&pdev->dev, 4125 sizeof(struct phy *) * n_ports, 4126 GFP_KERNEL); 4127 if (!hpriv->port_phys) 4128 return -ENOMEM; 4129 host->private_data = hpriv; 4130 hpriv->board_idx = chip_soc; 4131 4132 host->iomap = NULL; 4133 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4134 resource_size(res)); 4135 if (!hpriv->base) 4136 return -ENOMEM; 4137 4138 hpriv->base -= SATAHC0_REG_BASE; 4139 4140 hpriv->clk = clk_get(&pdev->dev, NULL); 4141 if (IS_ERR(hpriv->clk)) 4142 dev_notice(&pdev->dev, "cannot get optional clkdev\n"); 4143 else 4144 clk_prepare_enable(hpriv->clk); 4145 4146 for (port = 0; port < n_ports; port++) { 4147 char port_number[16]; 4148 sprintf(port_number, "%d", port); 4149 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number); 4150 if (!IS_ERR(hpriv->port_clks[port])) 4151 clk_prepare_enable(hpriv->port_clks[port]); 4152 4153 sprintf(port_number, "port%d", port); 4154 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev, 4155 port_number); 4156 if (IS_ERR(hpriv->port_phys[port])) { 4157 rc = PTR_ERR(hpriv->port_phys[port]); 4158 hpriv->port_phys[port] = NULL; 4159 if (rc != -EPROBE_DEFER) 4160 dev_warn(&pdev->dev, "error getting phy %d", rc); 4161 4162 /* Cleanup only the initialized ports */ 4163 hpriv->n_ports = port; 4164 goto err; 4165 } else 4166 phy_power_on(hpriv->port_phys[port]); 4167 } 4168 4169 /* All the ports have been initialized */ 4170 hpriv->n_ports = n_ports; 4171 4172 /* 4173 * (Re-)program MBUS remapping windows if we are asked to. 4174 */ 4175 dram = mv_mbus_dram_info(); 4176 if (dram) 4177 mv_conf_mbus_windows(hpriv, dram); 4178 4179 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4180 if (rc) 4181 goto err; 4182 4183 /* 4184 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be 4185 * updated in the LP_PHY_CTL register. 4186 */ 4187 if (pdev->dev.of_node && 4188 of_device_is_compatible(pdev->dev.of_node, 4189 "marvell,armada-370-sata")) 4190 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL; 4191 4192 /* initialize adapter */ 4193 rc = mv_init_host(host); 4194 if (rc) 4195 goto err; 4196 4197 dev_info(&pdev->dev, "slots %u ports %d\n", 4198 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4199 4200 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht); 4201 if (!rc) 4202 return 0; 4203 4204 err: 4205 if (!IS_ERR(hpriv->clk)) { 4206 clk_disable_unprepare(hpriv->clk); 4207 clk_put(hpriv->clk); 4208 } 4209 for (port = 0; port < hpriv->n_ports; port++) { 4210 if (!IS_ERR(hpriv->port_clks[port])) { 4211 clk_disable_unprepare(hpriv->port_clks[port]); 4212 clk_put(hpriv->port_clks[port]); 4213 } 4214 phy_power_off(hpriv->port_phys[port]); 4215 } 4216 4217 return rc; 4218 } 4219 4220 /* 4221 * 4222 * mv_platform_remove - unplug a platform interface 4223 * @pdev: platform device 4224 * 4225 * A platform bus SATA device has been unplugged. Perform the needed 4226 * cleanup. Also called on module unload for any active devices. 4227 */ 4228 static int mv_platform_remove(struct platform_device *pdev) 4229 { 4230 struct ata_host *host = platform_get_drvdata(pdev); 4231 struct mv_host_priv *hpriv = host->private_data; 4232 int port; 4233 ata_host_detach(host); 4234 4235 if (!IS_ERR(hpriv->clk)) { 4236 clk_disable_unprepare(hpriv->clk); 4237 clk_put(hpriv->clk); 4238 } 4239 for (port = 0; port < host->n_ports; port++) { 4240 if (!IS_ERR(hpriv->port_clks[port])) { 4241 clk_disable_unprepare(hpriv->port_clks[port]); 4242 clk_put(hpriv->port_clks[port]); 4243 } 4244 phy_power_off(hpriv->port_phys[port]); 4245 } 4246 return 0; 4247 } 4248 4249 #ifdef CONFIG_PM_SLEEP 4250 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4251 { 4252 struct ata_host *host = platform_get_drvdata(pdev); 4253 if (host) 4254 return ata_host_suspend(host, state); 4255 else 4256 return 0; 4257 } 4258 4259 static int mv_platform_resume(struct platform_device *pdev) 4260 { 4261 struct ata_host *host = platform_get_drvdata(pdev); 4262 const struct mbus_dram_target_info *dram; 4263 int ret; 4264 4265 if (host) { 4266 struct mv_host_priv *hpriv = host->private_data; 4267 4268 /* 4269 * (Re-)program MBUS remapping windows if we are asked to. 4270 */ 4271 dram = mv_mbus_dram_info(); 4272 if (dram) 4273 mv_conf_mbus_windows(hpriv, dram); 4274 4275 /* initialize adapter */ 4276 ret = mv_init_host(host); 4277 if (ret) { 4278 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4279 return ret; 4280 } 4281 ata_host_resume(host); 4282 } 4283 4284 return 0; 4285 } 4286 #else 4287 #define mv_platform_suspend NULL 4288 #define mv_platform_resume NULL 4289 #endif 4290 4291 #ifdef CONFIG_OF 4292 static const struct of_device_id mv_sata_dt_ids[] = { 4293 { .compatible = "marvell,armada-370-sata", }, 4294 { .compatible = "marvell,orion-sata", }, 4295 {}, 4296 }; 4297 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids); 4298 #endif 4299 4300 static struct platform_driver mv_platform_driver = { 4301 .probe = mv_platform_probe, 4302 .remove = mv_platform_remove, 4303 .suspend = mv_platform_suspend, 4304 .resume = mv_platform_resume, 4305 .driver = { 4306 .name = DRV_NAME, 4307 .of_match_table = of_match_ptr(mv_sata_dt_ids), 4308 }, 4309 }; 4310 4311 4312 #ifdef CONFIG_PCI 4313 static int mv_pci_init_one(struct pci_dev *pdev, 4314 const struct pci_device_id *ent); 4315 #ifdef CONFIG_PM_SLEEP 4316 static int mv_pci_device_resume(struct pci_dev *pdev); 4317 #endif 4318 4319 4320 static struct pci_driver mv_pci_driver = { 4321 .name = DRV_NAME, 4322 .id_table = mv_pci_tbl, 4323 .probe = mv_pci_init_one, 4324 .remove = ata_pci_remove_one, 4325 #ifdef CONFIG_PM_SLEEP 4326 .suspend = ata_pci_device_suspend, 4327 .resume = mv_pci_device_resume, 4328 #endif 4329 4330 }; 4331 4332 /* move to PCI layer or libata core? */ 4333 static int pci_go_64(struct pci_dev *pdev) 4334 { 4335 int rc; 4336 4337 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 4338 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 4339 if (rc) { 4340 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 4341 if (rc) { 4342 dev_err(&pdev->dev, 4343 "64-bit DMA enable failed\n"); 4344 return rc; 4345 } 4346 } 4347 } else { 4348 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 4349 if (rc) { 4350 dev_err(&pdev->dev, "32-bit DMA enable failed\n"); 4351 return rc; 4352 } 4353 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 4354 if (rc) { 4355 dev_err(&pdev->dev, 4356 "32-bit consistent DMA enable failed\n"); 4357 return rc; 4358 } 4359 } 4360 4361 return rc; 4362 } 4363 4364 /** 4365 * mv_print_info - Dump key info to kernel log for perusal. 4366 * @host: ATA host to print info about 4367 * 4368 * FIXME: complete this. 4369 * 4370 * LOCKING: 4371 * Inherited from caller. 4372 */ 4373 static void mv_print_info(struct ata_host *host) 4374 { 4375 struct pci_dev *pdev = to_pci_dev(host->dev); 4376 struct mv_host_priv *hpriv = host->private_data; 4377 u8 scc; 4378 const char *scc_s, *gen; 4379 4380 /* Use this to determine the HW stepping of the chip so we know 4381 * what errata to workaround 4382 */ 4383 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4384 if (scc == 0) 4385 scc_s = "SCSI"; 4386 else if (scc == 0x01) 4387 scc_s = "RAID"; 4388 else 4389 scc_s = "?"; 4390 4391 if (IS_GEN_I(hpriv)) 4392 gen = "I"; 4393 else if (IS_GEN_II(hpriv)) 4394 gen = "II"; 4395 else if (IS_GEN_IIE(hpriv)) 4396 gen = "IIE"; 4397 else 4398 gen = "?"; 4399 4400 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4401 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4402 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4403 } 4404 4405 /** 4406 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4407 * @pdev: PCI device found 4408 * @ent: PCI device ID entry for the matched host 4409 * 4410 * LOCKING: 4411 * Inherited from caller. 4412 */ 4413 static int mv_pci_init_one(struct pci_dev *pdev, 4414 const struct pci_device_id *ent) 4415 { 4416 unsigned int board_idx = (unsigned int)ent->driver_data; 4417 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4418 struct ata_host *host; 4419 struct mv_host_priv *hpriv; 4420 int n_ports, port, rc; 4421 4422 ata_print_version_once(&pdev->dev, DRV_VERSION); 4423 4424 /* allocate host */ 4425 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4426 4427 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4428 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4429 if (!host || !hpriv) 4430 return -ENOMEM; 4431 host->private_data = hpriv; 4432 hpriv->n_ports = n_ports; 4433 hpriv->board_idx = board_idx; 4434 4435 /* acquire resources */ 4436 rc = pcim_enable_device(pdev); 4437 if (rc) 4438 return rc; 4439 4440 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4441 if (rc == -EBUSY) 4442 pcim_pin_device(pdev); 4443 if (rc) 4444 return rc; 4445 host->iomap = pcim_iomap_table(pdev); 4446 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4447 4448 rc = pci_go_64(pdev); 4449 if (rc) 4450 return rc; 4451 4452 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4453 if (rc) 4454 return rc; 4455 4456 for (port = 0; port < host->n_ports; port++) { 4457 struct ata_port *ap = host->ports[port]; 4458 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4459 unsigned int offset = port_mmio - hpriv->base; 4460 4461 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4462 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4463 } 4464 4465 /* initialize adapter */ 4466 rc = mv_init_host(host); 4467 if (rc) 4468 return rc; 4469 4470 /* Enable message-switched interrupts, if requested */ 4471 if (msi && pci_enable_msi(pdev) == 0) 4472 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4473 4474 mv_dump_pci_cfg(pdev, 0x68); 4475 mv_print_info(host); 4476 4477 pci_set_master(pdev); 4478 pci_try_set_mwi(pdev); 4479 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4480 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4481 } 4482 4483 #ifdef CONFIG_PM_SLEEP 4484 static int mv_pci_device_resume(struct pci_dev *pdev) 4485 { 4486 struct ata_host *host = pci_get_drvdata(pdev); 4487 int rc; 4488 4489 rc = ata_pci_device_do_resume(pdev); 4490 if (rc) 4491 return rc; 4492 4493 /* initialize adapter */ 4494 rc = mv_init_host(host); 4495 if (rc) 4496 return rc; 4497 4498 ata_host_resume(host); 4499 4500 return 0; 4501 } 4502 #endif 4503 #endif 4504 4505 static int __init mv_init(void) 4506 { 4507 int rc = -ENODEV; 4508 #ifdef CONFIG_PCI 4509 rc = pci_register_driver(&mv_pci_driver); 4510 if (rc < 0) 4511 return rc; 4512 #endif 4513 rc = platform_driver_register(&mv_platform_driver); 4514 4515 #ifdef CONFIG_PCI 4516 if (rc < 0) 4517 pci_unregister_driver(&mv_pci_driver); 4518 #endif 4519 return rc; 4520 } 4521 4522 static void __exit mv_exit(void) 4523 { 4524 #ifdef CONFIG_PCI 4525 pci_unregister_driver(&mv_pci_driver); 4526 #endif 4527 platform_driver_unregister(&mv_platform_driver); 4528 } 4529 4530 MODULE_AUTHOR("Brett Russ"); 4531 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4532 MODULE_LICENSE("GPL v2"); 4533 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4534 MODULE_VERSION(DRV_VERSION); 4535 MODULE_ALIAS("platform:" DRV_NAME); 4536 4537 module_init(mv_init); 4538 module_exit(mv_exit); 4539