1 /* 2 * sata_mv.c - Marvell SATA support 3 * 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved. 5 * Copyright 2005: EMC Corporation, all rights reserved. 6 * Copyright 2005 Red Hat, Inc. All rights reserved. 7 * 8 * Originally written by Brett Russ. 9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. 10 * 11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails. 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; version 2 of the License. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 /* 29 * sata_mv TODO list: 30 * 31 * --> Develop a low-power-consumption strategy, and implement it. 32 * 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. 34 * 35 * --> [Experiment, Marvell value added] Is it possible to use target 36 * mode to cross-connect two Linux boxes with Marvell cards? If so, 37 * creating LibATA target mode support would be very interesting. 38 * 39 * Target mode, for those without docs, is the ability to directly 40 * connect two SATA ports. 41 */ 42 43 /* 44 * 80x1-B2 errata PCI#11: 45 * 46 * Users of the 6041/6081 Rev.B2 chips (current is C0) 47 * should be careful to insert those cards only onto PCI-X bus #0, 48 * and only in device slots 0..7, not higher. The chips may not 49 * work correctly otherwise (note: this is a pretty rare condition). 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/init.h> 56 #include <linux/blkdev.h> 57 #include <linux/delay.h> 58 #include <linux/interrupt.h> 59 #include <linux/dmapool.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/device.h> 62 #include <linux/clk.h> 63 #include <linux/platform_device.h> 64 #include <linux/ata_platform.h> 65 #include <linux/mbus.h> 66 #include <linux/bitops.h> 67 #include <linux/gfp.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_cmnd.h> 70 #include <scsi/scsi_device.h> 71 #include <linux/libata.h> 72 73 #define DRV_NAME "sata_mv" 74 #define DRV_VERSION "1.28" 75 76 /* 77 * module options 78 */ 79 80 static int msi; 81 #ifdef CONFIG_PCI 82 module_param(msi, int, S_IRUGO); 83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); 84 #endif 85 86 static int irq_coalescing_io_count; 87 module_param(irq_coalescing_io_count, int, S_IRUGO); 88 MODULE_PARM_DESC(irq_coalescing_io_count, 89 "IRQ coalescing I/O count threshold (0..255)"); 90 91 static int irq_coalescing_usecs; 92 module_param(irq_coalescing_usecs, int, S_IRUGO); 93 MODULE_PARM_DESC(irq_coalescing_usecs, 94 "IRQ coalescing time threshold in usecs"); 95 96 enum { 97 /* BAR's are enumerated in terms of pci_resource_start() terms */ 98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ 99 MV_IO_BAR = 2, /* offset 0x18: IO space */ 100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ 101 102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ 103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ 104 105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ 106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */ 107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */ 108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */ 109 110 MV_PCI_REG_BASE = 0, 111 112 /* 113 * Per-chip ("all ports") interrupt coalescing feature. 114 * This is only for GEN_II / GEN_IIE hardware. 115 * 116 * Coalescing defers the interrupt until either the IO_THRESHOLD 117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 118 */ 119 COAL_REG_BASE = 0x18000, 120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08), 121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */ 122 123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc), 124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), 125 126 /* 127 * Registers for the (unused here) transaction coalescing feature: 128 */ 129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88), 130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c), 131 132 SATAHC0_REG_BASE = 0x20000, 133 FLASH_CTL = 0x1046c, 134 GPIO_PORT_CTL = 0x104f0, 135 RESET_CFG = 0x180d8, 136 137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, 138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, 139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 141 142 MV_MAX_Q_DEPTH = 32, 143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, 144 145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB 146 * CRPB needs alignment on a 256B boundary. Size == 256B 147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B 148 */ 149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), 150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), 151 MV_MAX_SG_CT = 256, 152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), 153 154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ 155 MV_PORT_HC_SHIFT = 2, 156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */ 157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ 158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */ 159 160 /* Host Flags */ 161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 162 163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, 164 165 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, 166 167 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ | 168 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, 169 170 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN, 171 172 CRQB_FLAG_READ = (1 << 0), 173 CRQB_TAG_SHIFT = 1, 174 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */ 175 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */ 176 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */ 177 CRQB_CMD_ADDR_SHIFT = 8, 178 CRQB_CMD_CS = (0x2 << 11), 179 CRQB_CMD_LAST = (1 << 15), 180 181 CRPB_FLAG_STATUS_SHIFT = 8, 182 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */ 183 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */ 184 185 EPRD_FLAG_END_OF_TBL = (1 << 31), 186 187 /* PCI interface registers */ 188 189 MV_PCI_COMMAND = 0xc00, 190 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */ 191 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */ 192 193 PCI_MAIN_CMD_STS = 0xd30, 194 STOP_PCI_MASTER = (1 << 2), 195 PCI_MASTER_EMPTY = (1 << 3), 196 GLOB_SFT_RST = (1 << 4), 197 198 MV_PCI_MODE = 0xd00, 199 MV_PCI_MODE_MASK = 0x30, 200 201 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, 202 MV_PCI_DISC_TIMER = 0xd04, 203 MV_PCI_MSI_TRIGGER = 0xc38, 204 MV_PCI_SERR_MASK = 0xc28, 205 MV_PCI_XBAR_TMOUT = 0x1d04, 206 MV_PCI_ERR_LOW_ADDRESS = 0x1d40, 207 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, 208 MV_PCI_ERR_ATTRIBUTE = 0x1d48, 209 MV_PCI_ERR_COMMAND = 0x1d50, 210 211 PCI_IRQ_CAUSE = 0x1d58, 212 PCI_IRQ_MASK = 0x1d5c, 213 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ 214 215 PCIE_IRQ_CAUSE = 0x1900, 216 PCIE_IRQ_MASK = 0x1910, 217 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */ 218 219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ 220 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60, 221 PCI_HC_MAIN_IRQ_MASK = 0x1d64, 222 SOC_HC_MAIN_IRQ_CAUSE = 0x20020, 223 SOC_HC_MAIN_IRQ_MASK = 0x20024, 224 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */ 225 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */ 226 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ 227 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ 228 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */ 229 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */ 230 PCI_ERR = (1 << 18), 231 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */ 232 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */ 233 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */ 234 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */ 235 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */ 236 GPIO_INT = (1 << 22), 237 SELF_INT = (1 << 23), 238 TWSI_INT = (1 << 24), 239 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ 240 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */ 241 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */ 242 243 /* SATAHC registers */ 244 HC_CFG = 0x00, 245 246 HC_IRQ_CAUSE = 0x14, 247 DMA_IRQ = (1 << 0), /* shift by port # */ 248 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */ 249 DEV_IRQ = (1 << 8), /* shift by port # */ 250 251 /* 252 * Per-HC (Host-Controller) interrupt coalescing feature. 253 * This is present on all chip generations. 254 * 255 * Coalescing defers the interrupt until either the IO_THRESHOLD 256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. 257 */ 258 HC_IRQ_COAL_IO_THRESHOLD = 0x000c, 259 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010, 260 261 SOC_LED_CTRL = 0x2c, 262 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */ 263 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */ 264 /* with dev activity LED */ 265 266 /* Shadow block registers */ 267 SHD_BLK = 0x100, 268 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */ 269 270 /* SATA registers */ 271 SATA_STATUS = 0x300, /* ctrl, err regs follow status */ 272 SATA_ACTIVE = 0x350, 273 FIS_IRQ_CAUSE = 0x364, 274 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */ 275 276 LTMODE = 0x30c, /* requires read-after-write */ 277 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */ 278 279 PHY_MODE2 = 0x330, 280 PHY_MODE3 = 0x310, 281 282 PHY_MODE4 = 0x314, /* requires read-after-write */ 283 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */ 284 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */ 285 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */ 286 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */ 287 288 SATA_IFCTL = 0x344, 289 SATA_TESTCTL = 0x348, 290 SATA_IFSTAT = 0x34c, 291 VENDOR_UNIQUE_FIS = 0x35c, 292 293 FISCFG = 0x360, 294 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */ 295 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */ 296 297 PHY_MODE9_GEN2 = 0x398, 298 PHY_MODE9_GEN1 = 0x39c, 299 PHYCFG_OFS = 0x3a0, /* only in 65n devices */ 300 301 MV5_PHY_MODE = 0x74, 302 MV5_LTMODE = 0x30, 303 MV5_PHY_CTL = 0x0C, 304 SATA_IFCFG = 0x050, 305 306 MV_M2_PREAMP_MASK = 0x7e0, 307 308 /* Port registers */ 309 EDMA_CFG = 0, 310 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */ 311 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */ 312 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ 313 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ 314 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ 315 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */ 316 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */ 317 318 EDMA_ERR_IRQ_CAUSE = 0x8, 319 EDMA_ERR_IRQ_MASK = 0xc, 320 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */ 321 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */ 322 EDMA_ERR_DEV = (1 << 2), /* device error */ 323 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */ 324 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */ 325 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */ 326 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */ 327 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */ 328 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */ 329 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */ 330 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */ 331 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */ 332 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */ 333 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */ 334 335 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */ 336 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */ 337 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */ 338 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */ 339 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */ 340 341 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */ 342 343 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */ 344 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */ 345 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */ 346 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */ 347 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */ 348 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */ 349 350 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */ 351 352 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */ 353 EDMA_ERR_OVERRUN_5 = (1 << 5), 354 EDMA_ERR_UNDERRUN_5 = (1 << 6), 355 356 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 | 357 EDMA_ERR_LNK_CTRL_RX_1 | 358 EDMA_ERR_LNK_CTRL_RX_3 | 359 EDMA_ERR_LNK_CTRL_TX, 360 361 EDMA_EH_FREEZE = EDMA_ERR_D_PAR | 362 EDMA_ERR_PRD_PAR | 363 EDMA_ERR_DEV_DCON | 364 EDMA_ERR_DEV_CON | 365 EDMA_ERR_SERR | 366 EDMA_ERR_SELF_DIS | 367 EDMA_ERR_CRQB_PAR | 368 EDMA_ERR_CRPB_PAR | 369 EDMA_ERR_INTRL_PAR | 370 EDMA_ERR_IORDY | 371 EDMA_ERR_LNK_CTRL_RX_2 | 372 EDMA_ERR_LNK_DATA_RX | 373 EDMA_ERR_LNK_DATA_TX | 374 EDMA_ERR_TRANS_PROTO, 375 376 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR | 377 EDMA_ERR_PRD_PAR | 378 EDMA_ERR_DEV_DCON | 379 EDMA_ERR_DEV_CON | 380 EDMA_ERR_OVERRUN_5 | 381 EDMA_ERR_UNDERRUN_5 | 382 EDMA_ERR_SELF_DIS_5 | 383 EDMA_ERR_CRQB_PAR | 384 EDMA_ERR_CRPB_PAR | 385 EDMA_ERR_INTRL_PAR | 386 EDMA_ERR_IORDY, 387 388 EDMA_REQ_Q_BASE_HI = 0x10, 389 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */ 390 391 EDMA_REQ_Q_OUT_PTR = 0x18, 392 EDMA_REQ_Q_PTR_SHIFT = 5, 393 394 EDMA_RSP_Q_BASE_HI = 0x1c, 395 EDMA_RSP_Q_IN_PTR = 0x20, 396 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */ 397 EDMA_RSP_Q_PTR_SHIFT = 3, 398 399 EDMA_CMD = 0x28, /* EDMA command register */ 400 EDMA_EN = (1 << 0), /* enable EDMA */ 401 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */ 402 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */ 403 404 EDMA_STATUS = 0x30, /* EDMA engine status */ 405 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */ 406 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */ 407 408 EDMA_IORDY_TMOUT = 0x34, 409 EDMA_ARB_CFG = 0x38, 410 411 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */ 412 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */ 413 414 BMDMA_CMD = 0x224, /* bmdma command register */ 415 BMDMA_STATUS = 0x228, /* bmdma status register */ 416 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */ 417 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */ 418 419 /* Host private flags (hp_flags) */ 420 MV_HP_FLAG_MSI = (1 << 0), 421 MV_HP_ERRATA_50XXB0 = (1 << 1), 422 MV_HP_ERRATA_50XXB2 = (1 << 2), 423 MV_HP_ERRATA_60X1B2 = (1 << 3), 424 MV_HP_ERRATA_60X1C0 = (1 << 4), 425 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */ 426 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */ 427 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */ 428 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */ 429 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */ 430 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */ 431 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */ 432 433 /* Port private flags (pp_flags) */ 434 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */ 435 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */ 436 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */ 437 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */ 438 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */ 439 }; 440 441 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) 442 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) 443 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) 444 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) 445 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) 446 447 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4)) 448 #define WINDOW_BASE(i) (0x20034 + ((i) << 4)) 449 450 enum { 451 /* DMA boundary 0xffff is required by the s/g splitting 452 * we need on /length/ in mv_fill-sg(). 453 */ 454 MV_DMA_BOUNDARY = 0xffffU, 455 456 /* mask of register bits containing lower 32 bits 457 * of EDMA request queue DMA address 458 */ 459 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, 460 461 /* ditto, for response queue */ 462 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, 463 }; 464 465 enum chip_type { 466 chip_504x, 467 chip_508x, 468 chip_5080, 469 chip_604x, 470 chip_608x, 471 chip_6042, 472 chip_7042, 473 chip_soc, 474 }; 475 476 /* Command ReQuest Block: 32B */ 477 struct mv_crqb { 478 __le32 sg_addr; 479 __le32 sg_addr_hi; 480 __le16 ctrl_flags; 481 __le16 ata_cmd[11]; 482 }; 483 484 struct mv_crqb_iie { 485 __le32 addr; 486 __le32 addr_hi; 487 __le32 flags; 488 __le32 len; 489 __le32 ata_cmd[4]; 490 }; 491 492 /* Command ResPonse Block: 8B */ 493 struct mv_crpb { 494 __le16 id; 495 __le16 flags; 496 __le32 tmstmp; 497 }; 498 499 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ 500 struct mv_sg { 501 __le32 addr; 502 __le32 flags_size; 503 __le32 addr_hi; 504 __le32 reserved; 505 }; 506 507 /* 508 * We keep a local cache of a few frequently accessed port 509 * registers here, to avoid having to read them (very slow) 510 * when switching between EDMA and non-EDMA modes. 511 */ 512 struct mv_cached_regs { 513 u32 fiscfg; 514 u32 ltmode; 515 u32 haltcond; 516 u32 unknown_rsvd; 517 }; 518 519 struct mv_port_priv { 520 struct mv_crqb *crqb; 521 dma_addr_t crqb_dma; 522 struct mv_crpb *crpb; 523 dma_addr_t crpb_dma; 524 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH]; 525 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH]; 526 527 unsigned int req_idx; 528 unsigned int resp_idx; 529 530 u32 pp_flags; 531 struct mv_cached_regs cached; 532 unsigned int delayed_eh_pmp_map; 533 }; 534 535 struct mv_port_signal { 536 u32 amps; 537 u32 pre; 538 }; 539 540 struct mv_host_priv { 541 u32 hp_flags; 542 unsigned int board_idx; 543 u32 main_irq_mask; 544 struct mv_port_signal signal[8]; 545 const struct mv_hw_ops *ops; 546 int n_ports; 547 void __iomem *base; 548 void __iomem *main_irq_cause_addr; 549 void __iomem *main_irq_mask_addr; 550 u32 irq_cause_offset; 551 u32 irq_mask_offset; 552 u32 unmask_all_irqs; 553 554 #if defined(CONFIG_HAVE_CLK) 555 struct clk *clk; 556 #endif 557 /* 558 * These consistent DMA memory pools give us guaranteed 559 * alignment for hardware-accessed data structures, 560 * and less memory waste in accomplishing the alignment. 561 */ 562 struct dma_pool *crqb_pool; 563 struct dma_pool *crpb_pool; 564 struct dma_pool *sg_tbl_pool; 565 }; 566 567 struct mv_hw_ops { 568 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, 569 unsigned int port); 570 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); 571 void (*read_preamp)(struct mv_host_priv *hpriv, int idx, 572 void __iomem *mmio); 573 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, 574 unsigned int n_hc); 575 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); 576 void (*reset_bus)(struct ata_host *host, void __iomem *mmio); 577 }; 578 579 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 580 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 581 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); 582 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); 583 static int mv_port_start(struct ata_port *ap); 584 static void mv_port_stop(struct ata_port *ap); 585 static int mv_qc_defer(struct ata_queued_cmd *qc); 586 static void mv_qc_prep(struct ata_queued_cmd *qc); 587 static void mv_qc_prep_iie(struct ata_queued_cmd *qc); 588 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); 589 static int mv_hardreset(struct ata_link *link, unsigned int *class, 590 unsigned long deadline); 591 static void mv_eh_freeze(struct ata_port *ap); 592 static void mv_eh_thaw(struct ata_port *ap); 593 static void mv6_dev_config(struct ata_device *dev); 594 595 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 596 unsigned int port); 597 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 598 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 599 void __iomem *mmio); 600 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 601 unsigned int n_hc); 602 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 603 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); 604 605 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 606 unsigned int port); 607 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); 608 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 609 void __iomem *mmio); 610 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 611 unsigned int n_hc); 612 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); 613 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 614 void __iomem *mmio); 615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 616 void __iomem *mmio); 617 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 618 void __iomem *mmio, unsigned int n_hc); 619 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 620 void __iomem *mmio); 621 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); 622 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 623 void __iomem *mmio, unsigned int port); 624 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); 625 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 626 unsigned int port_no); 627 static int mv_stop_edma(struct ata_port *ap); 628 static int mv_stop_edma_engine(void __iomem *port_mmio); 629 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); 630 631 static void mv_pmp_select(struct ata_port *ap, int pmp); 632 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 633 unsigned long deadline); 634 static int mv_softreset(struct ata_link *link, unsigned int *class, 635 unsigned long deadline); 636 static void mv_pmp_error_handler(struct ata_port *ap); 637 static void mv_process_crpb_entries(struct ata_port *ap, 638 struct mv_port_priv *pp); 639 640 static void mv_sff_irq_clear(struct ata_port *ap); 641 static int mv_check_atapi_dma(struct ata_queued_cmd *qc); 642 static void mv_bmdma_setup(struct ata_queued_cmd *qc); 643 static void mv_bmdma_start(struct ata_queued_cmd *qc); 644 static void mv_bmdma_stop(struct ata_queued_cmd *qc); 645 static u8 mv_bmdma_status(struct ata_port *ap); 646 static u8 mv_sff_check_status(struct ata_port *ap); 647 648 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below 649 * because we have to allow room for worst case splitting of 650 * PRDs for 64K boundaries in mv_fill_sg(). 651 */ 652 static struct scsi_host_template mv5_sht = { 653 ATA_BASE_SHT(DRV_NAME), 654 .sg_tablesize = MV_MAX_SG_CT / 2, 655 .dma_boundary = MV_DMA_BOUNDARY, 656 }; 657 658 static struct scsi_host_template mv6_sht = { 659 ATA_NCQ_SHT(DRV_NAME), 660 .can_queue = MV_MAX_Q_DEPTH - 1, 661 .sg_tablesize = MV_MAX_SG_CT / 2, 662 .dma_boundary = MV_DMA_BOUNDARY, 663 }; 664 665 static struct ata_port_operations mv5_ops = { 666 .inherits = &ata_sff_port_ops, 667 668 .lost_interrupt = ATA_OP_NULL, 669 670 .qc_defer = mv_qc_defer, 671 .qc_prep = mv_qc_prep, 672 .qc_issue = mv_qc_issue, 673 674 .freeze = mv_eh_freeze, 675 .thaw = mv_eh_thaw, 676 .hardreset = mv_hardreset, 677 678 .scr_read = mv5_scr_read, 679 .scr_write = mv5_scr_write, 680 681 .port_start = mv_port_start, 682 .port_stop = mv_port_stop, 683 }; 684 685 static struct ata_port_operations mv6_ops = { 686 .inherits = &ata_bmdma_port_ops, 687 688 .lost_interrupt = ATA_OP_NULL, 689 690 .qc_defer = mv_qc_defer, 691 .qc_prep = mv_qc_prep, 692 .qc_issue = mv_qc_issue, 693 694 .dev_config = mv6_dev_config, 695 696 .freeze = mv_eh_freeze, 697 .thaw = mv_eh_thaw, 698 .hardreset = mv_hardreset, 699 .softreset = mv_softreset, 700 .pmp_hardreset = mv_pmp_hardreset, 701 .pmp_softreset = mv_softreset, 702 .error_handler = mv_pmp_error_handler, 703 704 .scr_read = mv_scr_read, 705 .scr_write = mv_scr_write, 706 707 .sff_check_status = mv_sff_check_status, 708 .sff_irq_clear = mv_sff_irq_clear, 709 .check_atapi_dma = mv_check_atapi_dma, 710 .bmdma_setup = mv_bmdma_setup, 711 .bmdma_start = mv_bmdma_start, 712 .bmdma_stop = mv_bmdma_stop, 713 .bmdma_status = mv_bmdma_status, 714 715 .port_start = mv_port_start, 716 .port_stop = mv_port_stop, 717 }; 718 719 static struct ata_port_operations mv_iie_ops = { 720 .inherits = &mv6_ops, 721 .dev_config = ATA_OP_NULL, 722 .qc_prep = mv_qc_prep_iie, 723 }; 724 725 static const struct ata_port_info mv_port_info[] = { 726 { /* chip_504x */ 727 .flags = MV_GEN_I_FLAGS, 728 .pio_mask = ATA_PIO4, 729 .udma_mask = ATA_UDMA6, 730 .port_ops = &mv5_ops, 731 }, 732 { /* chip_508x */ 733 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 734 .pio_mask = ATA_PIO4, 735 .udma_mask = ATA_UDMA6, 736 .port_ops = &mv5_ops, 737 }, 738 { /* chip_5080 */ 739 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, 740 .pio_mask = ATA_PIO4, 741 .udma_mask = ATA_UDMA6, 742 .port_ops = &mv5_ops, 743 }, 744 { /* chip_604x */ 745 .flags = MV_GEN_II_FLAGS, 746 .pio_mask = ATA_PIO4, 747 .udma_mask = ATA_UDMA6, 748 .port_ops = &mv6_ops, 749 }, 750 { /* chip_608x */ 751 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, 752 .pio_mask = ATA_PIO4, 753 .udma_mask = ATA_UDMA6, 754 .port_ops = &mv6_ops, 755 }, 756 { /* chip_6042 */ 757 .flags = MV_GEN_IIE_FLAGS, 758 .pio_mask = ATA_PIO4, 759 .udma_mask = ATA_UDMA6, 760 .port_ops = &mv_iie_ops, 761 }, 762 { /* chip_7042 */ 763 .flags = MV_GEN_IIE_FLAGS, 764 .pio_mask = ATA_PIO4, 765 .udma_mask = ATA_UDMA6, 766 .port_ops = &mv_iie_ops, 767 }, 768 { /* chip_soc */ 769 .flags = MV_GEN_IIE_FLAGS, 770 .pio_mask = ATA_PIO4, 771 .udma_mask = ATA_UDMA6, 772 .port_ops = &mv_iie_ops, 773 }, 774 }; 775 776 static const struct pci_device_id mv_pci_tbl[] = { 777 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, 778 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, 779 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, 780 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, 781 /* RocketRAID 1720/174x have different identifiers */ 782 { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, 783 { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, 784 { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, 785 786 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, 787 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, 788 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, 789 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, 790 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, 791 792 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, 793 794 /* Adaptec 1430SA */ 795 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, 796 797 /* Marvell 7042 support */ 798 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, 799 800 /* Highpoint RocketRAID PCIe series */ 801 { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, 802 { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, 803 804 { } /* terminate list */ 805 }; 806 807 static const struct mv_hw_ops mv5xxx_ops = { 808 .phy_errata = mv5_phy_errata, 809 .enable_leds = mv5_enable_leds, 810 .read_preamp = mv5_read_preamp, 811 .reset_hc = mv5_reset_hc, 812 .reset_flash = mv5_reset_flash, 813 .reset_bus = mv5_reset_bus, 814 }; 815 816 static const struct mv_hw_ops mv6xxx_ops = { 817 .phy_errata = mv6_phy_errata, 818 .enable_leds = mv6_enable_leds, 819 .read_preamp = mv6_read_preamp, 820 .reset_hc = mv6_reset_hc, 821 .reset_flash = mv6_reset_flash, 822 .reset_bus = mv_reset_pci_bus, 823 }; 824 825 static const struct mv_hw_ops mv_soc_ops = { 826 .phy_errata = mv6_phy_errata, 827 .enable_leds = mv_soc_enable_leds, 828 .read_preamp = mv_soc_read_preamp, 829 .reset_hc = mv_soc_reset_hc, 830 .reset_flash = mv_soc_reset_flash, 831 .reset_bus = mv_soc_reset_bus, 832 }; 833 834 static const struct mv_hw_ops mv_soc_65n_ops = { 835 .phy_errata = mv_soc_65n_phy_errata, 836 .enable_leds = mv_soc_enable_leds, 837 .reset_hc = mv_soc_reset_hc, 838 .reset_flash = mv_soc_reset_flash, 839 .reset_bus = mv_soc_reset_bus, 840 }; 841 842 /* 843 * Functions 844 */ 845 846 static inline void writelfl(unsigned long data, void __iomem *addr) 847 { 848 writel(data, addr); 849 (void) readl(addr); /* flush to avoid PCI posted write */ 850 } 851 852 static inline unsigned int mv_hc_from_port(unsigned int port) 853 { 854 return port >> MV_PORT_HC_SHIFT; 855 } 856 857 static inline unsigned int mv_hardport_from_port(unsigned int port) 858 { 859 return port & MV_PORT_MASK; 860 } 861 862 /* 863 * Consolidate some rather tricky bit shift calculations. 864 * This is hot-path stuff, so not a function. 865 * Simple code, with two return values, so macro rather than inline. 866 * 867 * port is the sole input, in range 0..7. 868 * shift is one output, for use with main_irq_cause / main_irq_mask registers. 869 * hardport is the other output, in range 0..3. 870 * 871 * Note that port and hardport may be the same variable in some cases. 872 */ 873 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \ 874 { \ 875 shift = mv_hc_from_port(port) * HC_SHIFT; \ 876 hardport = mv_hardport_from_port(port); \ 877 shift += hardport * 2; \ 878 } 879 880 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 881 { 882 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 883 } 884 885 static inline void __iomem *mv_hc_base_from_port(void __iomem *base, 886 unsigned int port) 887 { 888 return mv_hc_base(base, mv_hc_from_port(port)); 889 } 890 891 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) 892 { 893 return mv_hc_base_from_port(base, port) + 894 MV_SATAHC_ARBTR_REG_SZ + 895 (mv_hardport_from_port(port) * MV_PORT_REG_SZ); 896 } 897 898 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) 899 { 900 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); 901 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; 902 903 return hc_mmio + ofs; 904 } 905 906 static inline void __iomem *mv_host_base(struct ata_host *host) 907 { 908 struct mv_host_priv *hpriv = host->private_data; 909 return hpriv->base; 910 } 911 912 static inline void __iomem *mv_ap_base(struct ata_port *ap) 913 { 914 return mv_port_base(mv_host_base(ap->host), ap->port_no); 915 } 916 917 static inline int mv_get_hc_count(unsigned long port_flags) 918 { 919 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); 920 } 921 922 /** 923 * mv_save_cached_regs - (re-)initialize cached port registers 924 * @ap: the port whose registers we are caching 925 * 926 * Initialize the local cache of port registers, 927 * so that reading them over and over again can 928 * be avoided on the hotter paths of this driver. 929 * This saves a few microseconds each time we switch 930 * to/from EDMA mode to perform (eg.) a drive cache flush. 931 */ 932 static void mv_save_cached_regs(struct ata_port *ap) 933 { 934 void __iomem *port_mmio = mv_ap_base(ap); 935 struct mv_port_priv *pp = ap->private_data; 936 937 pp->cached.fiscfg = readl(port_mmio + FISCFG); 938 pp->cached.ltmode = readl(port_mmio + LTMODE); 939 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); 940 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); 941 } 942 943 /** 944 * mv_write_cached_reg - write to a cached port register 945 * @addr: hardware address of the register 946 * @old: pointer to cached value of the register 947 * @new: new value for the register 948 * 949 * Write a new value to a cached register, 950 * but only if the value is different from before. 951 */ 952 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) 953 { 954 if (new != *old) { 955 unsigned long laddr; 956 *old = new; 957 /* 958 * Workaround for 88SX60x1-B2 FEr SATA#13: 959 * Read-after-write is needed to prevent generating 64-bit 960 * write cycles on the PCI bus for SATA interface registers 961 * at offsets ending in 0x4 or 0xc. 962 * 963 * Looks like a lot of fuss, but it avoids an unnecessary 964 * +1 usec read-after-write delay for unaffected registers. 965 */ 966 laddr = (long)addr & 0xffff; 967 if (laddr >= 0x300 && laddr <= 0x33c) { 968 laddr &= 0x000f; 969 if (laddr == 0x4 || laddr == 0xc) { 970 writelfl(new, addr); /* read after write */ 971 return; 972 } 973 } 974 writel(new, addr); /* unaffected by the errata */ 975 } 976 } 977 978 static void mv_set_edma_ptrs(void __iomem *port_mmio, 979 struct mv_host_priv *hpriv, 980 struct mv_port_priv *pp) 981 { 982 u32 index; 983 984 /* 985 * initialize request queue 986 */ 987 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 988 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 989 990 WARN_ON(pp->crqb_dma & 0x3ff); 991 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); 992 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, 993 port_mmio + EDMA_REQ_Q_IN_PTR); 994 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); 995 996 /* 997 * initialize response queue 998 */ 999 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */ 1000 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; 1001 1002 WARN_ON(pp->crpb_dma & 0xff); 1003 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); 1004 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); 1005 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, 1006 port_mmio + EDMA_RSP_Q_OUT_PTR); 1007 } 1008 1009 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) 1010 { 1011 /* 1012 * When writing to the main_irq_mask in hardware, 1013 * we must ensure exclusivity between the interrupt coalescing bits 1014 * and the corresponding individual port DONE_IRQ bits. 1015 * 1016 * Note that this register is really an "IRQ enable" register, 1017 * not an "IRQ mask" register as Marvell's naming might suggest. 1018 */ 1019 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) 1020 mask &= ~DONE_IRQ_0_3; 1021 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) 1022 mask &= ~DONE_IRQ_4_7; 1023 writelfl(mask, hpriv->main_irq_mask_addr); 1024 } 1025 1026 static void mv_set_main_irq_mask(struct ata_host *host, 1027 u32 disable_bits, u32 enable_bits) 1028 { 1029 struct mv_host_priv *hpriv = host->private_data; 1030 u32 old_mask, new_mask; 1031 1032 old_mask = hpriv->main_irq_mask; 1033 new_mask = (old_mask & ~disable_bits) | enable_bits; 1034 if (new_mask != old_mask) { 1035 hpriv->main_irq_mask = new_mask; 1036 mv_write_main_irq_mask(new_mask, hpriv); 1037 } 1038 } 1039 1040 static void mv_enable_port_irqs(struct ata_port *ap, 1041 unsigned int port_bits) 1042 { 1043 unsigned int shift, hardport, port = ap->port_no; 1044 u32 disable_bits, enable_bits; 1045 1046 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 1047 1048 disable_bits = (DONE_IRQ | ERR_IRQ) << shift; 1049 enable_bits = port_bits << shift; 1050 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); 1051 } 1052 1053 static void mv_clear_and_enable_port_irqs(struct ata_port *ap, 1054 void __iomem *port_mmio, 1055 unsigned int port_irqs) 1056 { 1057 struct mv_host_priv *hpriv = ap->host->private_data; 1058 int hardport = mv_hardport_from_port(ap->port_no); 1059 void __iomem *hc_mmio = mv_hc_base_from_port( 1060 mv_host_base(ap->host), ap->port_no); 1061 u32 hc_irq_cause; 1062 1063 /* clear EDMA event indicators, if any */ 1064 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 1065 1066 /* clear pending irq events */ 1067 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 1068 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 1069 1070 /* clear FIS IRQ Cause */ 1071 if (IS_GEN_IIE(hpriv)) 1072 writelfl(0, port_mmio + FIS_IRQ_CAUSE); 1073 1074 mv_enable_port_irqs(ap, port_irqs); 1075 } 1076 1077 static void mv_set_irq_coalescing(struct ata_host *host, 1078 unsigned int count, unsigned int usecs) 1079 { 1080 struct mv_host_priv *hpriv = host->private_data; 1081 void __iomem *mmio = hpriv->base, *hc_mmio; 1082 u32 coal_enable = 0; 1083 unsigned long flags; 1084 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; 1085 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | 1086 ALL_PORTS_COAL_DONE; 1087 1088 /* Disable IRQ coalescing if either threshold is zero */ 1089 if (!usecs || !count) { 1090 clks = count = 0; 1091 } else { 1092 /* Respect maximum limits of the hardware */ 1093 clks = usecs * COAL_CLOCKS_PER_USEC; 1094 if (clks > MAX_COAL_TIME_THRESHOLD) 1095 clks = MAX_COAL_TIME_THRESHOLD; 1096 if (count > MAX_COAL_IO_COUNT) 1097 count = MAX_COAL_IO_COUNT; 1098 } 1099 1100 spin_lock_irqsave(&host->lock, flags); 1101 mv_set_main_irq_mask(host, coal_disable, 0); 1102 1103 if (is_dual_hc && !IS_GEN_I(hpriv)) { 1104 /* 1105 * GEN_II/GEN_IIE with dual host controllers: 1106 * one set of global thresholds for the entire chip. 1107 */ 1108 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD); 1109 writel(count, mmio + IRQ_COAL_IO_THRESHOLD); 1110 /* clear leftover coal IRQ bit */ 1111 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 1112 if (count) 1113 coal_enable = ALL_PORTS_COAL_DONE; 1114 clks = count = 0; /* force clearing of regular regs below */ 1115 } 1116 1117 /* 1118 * All chips: independent thresholds for each HC on the chip. 1119 */ 1120 hc_mmio = mv_hc_base_from_port(mmio, 0); 1121 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1122 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1123 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1124 if (count) 1125 coal_enable |= PORTS_0_3_COAL_DONE; 1126 if (is_dual_hc) { 1127 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); 1128 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); 1129 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); 1130 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); 1131 if (count) 1132 coal_enable |= PORTS_4_7_COAL_DONE; 1133 } 1134 1135 mv_set_main_irq_mask(host, 0, coal_enable); 1136 spin_unlock_irqrestore(&host->lock, flags); 1137 } 1138 1139 /** 1140 * mv_start_edma - Enable eDMA engine 1141 * @base: port base address 1142 * @pp: port private data 1143 * 1144 * Verify the local cache of the eDMA state is accurate with a 1145 * WARN_ON. 1146 * 1147 * LOCKING: 1148 * Inherited from caller. 1149 */ 1150 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, 1151 struct mv_port_priv *pp, u8 protocol) 1152 { 1153 int want_ncq = (protocol == ATA_PROT_NCQ); 1154 1155 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { 1156 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); 1157 if (want_ncq != using_ncq) 1158 mv_stop_edma(ap); 1159 } 1160 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { 1161 struct mv_host_priv *hpriv = ap->host->private_data; 1162 1163 mv_edma_cfg(ap, want_ncq, 1); 1164 1165 mv_set_edma_ptrs(port_mmio, hpriv, pp); 1166 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); 1167 1168 writelfl(EDMA_EN, port_mmio + EDMA_CMD); 1169 pp->pp_flags |= MV_PP_FLAG_EDMA_EN; 1170 } 1171 } 1172 1173 static void mv_wait_for_edma_empty_idle(struct ata_port *ap) 1174 { 1175 void __iomem *port_mmio = mv_ap_base(ap); 1176 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); 1177 const int per_loop = 5, timeout = (15 * 1000 / per_loop); 1178 int i; 1179 1180 /* 1181 * Wait for the EDMA engine to finish transactions in progress. 1182 * No idea what a good "timeout" value might be, but measurements 1183 * indicate that it often requires hundreds of microseconds 1184 * with two drives in-use. So we use the 15msec value above 1185 * as a rough guess at what even more drives might require. 1186 */ 1187 for (i = 0; i < timeout; ++i) { 1188 u32 edma_stat = readl(port_mmio + EDMA_STATUS); 1189 if ((edma_stat & empty_idle) == empty_idle) 1190 break; 1191 udelay(per_loop); 1192 } 1193 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ 1194 } 1195 1196 /** 1197 * mv_stop_edma_engine - Disable eDMA engine 1198 * @port_mmio: io base address 1199 * 1200 * LOCKING: 1201 * Inherited from caller. 1202 */ 1203 static int mv_stop_edma_engine(void __iomem *port_mmio) 1204 { 1205 int i; 1206 1207 /* Disable eDMA. The disable bit auto clears. */ 1208 writelfl(EDMA_DS, port_mmio + EDMA_CMD); 1209 1210 /* Wait for the chip to confirm eDMA is off. */ 1211 for (i = 10000; i > 0; i--) { 1212 u32 reg = readl(port_mmio + EDMA_CMD); 1213 if (!(reg & EDMA_EN)) 1214 return 0; 1215 udelay(10); 1216 } 1217 return -EIO; 1218 } 1219 1220 static int mv_stop_edma(struct ata_port *ap) 1221 { 1222 void __iomem *port_mmio = mv_ap_base(ap); 1223 struct mv_port_priv *pp = ap->private_data; 1224 int err = 0; 1225 1226 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 1227 return 0; 1228 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 1229 mv_wait_for_edma_empty_idle(ap); 1230 if (mv_stop_edma_engine(port_mmio)) { 1231 ata_port_err(ap, "Unable to stop eDMA\n"); 1232 err = -EIO; 1233 } 1234 mv_edma_cfg(ap, 0, 0); 1235 return err; 1236 } 1237 1238 #ifdef ATA_DEBUG 1239 static void mv_dump_mem(void __iomem *start, unsigned bytes) 1240 { 1241 int b, w; 1242 for (b = 0; b < bytes; ) { 1243 DPRINTK("%p: ", start + b); 1244 for (w = 0; b < bytes && w < 4; w++) { 1245 printk("%08x ", readl(start + b)); 1246 b += sizeof(u32); 1247 } 1248 printk("\n"); 1249 } 1250 } 1251 #endif 1252 1253 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) 1254 { 1255 #ifdef ATA_DEBUG 1256 int b, w; 1257 u32 dw; 1258 for (b = 0; b < bytes; ) { 1259 DPRINTK("%02x: ", b); 1260 for (w = 0; b < bytes && w < 4; w++) { 1261 (void) pci_read_config_dword(pdev, b, &dw); 1262 printk("%08x ", dw); 1263 b += sizeof(u32); 1264 } 1265 printk("\n"); 1266 } 1267 #endif 1268 } 1269 static void mv_dump_all_regs(void __iomem *mmio_base, int port, 1270 struct pci_dev *pdev) 1271 { 1272 #ifdef ATA_DEBUG 1273 void __iomem *hc_base = mv_hc_base(mmio_base, 1274 port >> MV_PORT_HC_SHIFT); 1275 void __iomem *port_base; 1276 int start_port, num_ports, p, start_hc, num_hcs, hc; 1277 1278 if (0 > port) { 1279 start_hc = start_port = 0; 1280 num_ports = 8; /* shld be benign for 4 port devs */ 1281 num_hcs = 2; 1282 } else { 1283 start_hc = port >> MV_PORT_HC_SHIFT; 1284 start_port = port; 1285 num_ports = num_hcs = 1; 1286 } 1287 DPRINTK("All registers for port(s) %u-%u:\n", start_port, 1288 num_ports > 1 ? num_ports - 1 : start_port); 1289 1290 if (NULL != pdev) { 1291 DPRINTK("PCI config space regs:\n"); 1292 mv_dump_pci_cfg(pdev, 0x68); 1293 } 1294 DPRINTK("PCI regs:\n"); 1295 mv_dump_mem(mmio_base+0xc00, 0x3c); 1296 mv_dump_mem(mmio_base+0xd00, 0x34); 1297 mv_dump_mem(mmio_base+0xf00, 0x4); 1298 mv_dump_mem(mmio_base+0x1d00, 0x6c); 1299 for (hc = start_hc; hc < start_hc + num_hcs; hc++) { 1300 hc_base = mv_hc_base(mmio_base, hc); 1301 DPRINTK("HC regs (HC %i):\n", hc); 1302 mv_dump_mem(hc_base, 0x1c); 1303 } 1304 for (p = start_port; p < start_port + num_ports; p++) { 1305 port_base = mv_port_base(mmio_base, p); 1306 DPRINTK("EDMA regs (port %i):\n", p); 1307 mv_dump_mem(port_base, 0x54); 1308 DPRINTK("SATA regs (port %i):\n", p); 1309 mv_dump_mem(port_base+0x300, 0x60); 1310 } 1311 #endif 1312 } 1313 1314 static unsigned int mv_scr_offset(unsigned int sc_reg_in) 1315 { 1316 unsigned int ofs; 1317 1318 switch (sc_reg_in) { 1319 case SCR_STATUS: 1320 case SCR_CONTROL: 1321 case SCR_ERROR: 1322 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); 1323 break; 1324 case SCR_ACTIVE: 1325 ofs = SATA_ACTIVE; /* active is not with the others */ 1326 break; 1327 default: 1328 ofs = 0xffffffffU; 1329 break; 1330 } 1331 return ofs; 1332 } 1333 1334 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 1335 { 1336 unsigned int ofs = mv_scr_offset(sc_reg_in); 1337 1338 if (ofs != 0xffffffffU) { 1339 *val = readl(mv_ap_base(link->ap) + ofs); 1340 return 0; 1341 } else 1342 return -EINVAL; 1343 } 1344 1345 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 1346 { 1347 unsigned int ofs = mv_scr_offset(sc_reg_in); 1348 1349 if (ofs != 0xffffffffU) { 1350 void __iomem *addr = mv_ap_base(link->ap) + ofs; 1351 if (sc_reg_in == SCR_CONTROL) { 1352 /* 1353 * Workaround for 88SX60x1 FEr SATA#26: 1354 * 1355 * COMRESETs have to take care not to accidentally 1356 * put the drive to sleep when writing SCR_CONTROL. 1357 * Setting bits 12..15 prevents this problem. 1358 * 1359 * So if we see an outbound COMMRESET, set those bits. 1360 * Ditto for the followup write that clears the reset. 1361 * 1362 * The proprietary driver does this for 1363 * all chip versions, and so do we. 1364 */ 1365 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) 1366 val |= 0xf000; 1367 } 1368 writelfl(val, addr); 1369 return 0; 1370 } else 1371 return -EINVAL; 1372 } 1373 1374 static void mv6_dev_config(struct ata_device *adev) 1375 { 1376 /* 1377 * Deal with Gen-II ("mv6") hardware quirks/restrictions: 1378 * 1379 * Gen-II does not support NCQ over a port multiplier 1380 * (no FIS-based switching). 1381 */ 1382 if (adev->flags & ATA_DFLAG_NCQ) { 1383 if (sata_pmp_attached(adev->link->ap)) { 1384 adev->flags &= ~ATA_DFLAG_NCQ; 1385 ata_dev_info(adev, 1386 "NCQ disabled for command-based switching\n"); 1387 } 1388 } 1389 } 1390 1391 static int mv_qc_defer(struct ata_queued_cmd *qc) 1392 { 1393 struct ata_link *link = qc->dev->link; 1394 struct ata_port *ap = link->ap; 1395 struct mv_port_priv *pp = ap->private_data; 1396 1397 /* 1398 * Don't allow new commands if we're in a delayed EH state 1399 * for NCQ and/or FIS-based switching. 1400 */ 1401 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 1402 return ATA_DEFER_PORT; 1403 1404 /* PIO commands need exclusive link: no other commands [DMA or PIO] 1405 * can run concurrently. 1406 * set excl_link when we want to send a PIO command in DMA mode 1407 * or a non-NCQ command in NCQ mode. 1408 * When we receive a command from that link, and there are no 1409 * outstanding commands, mark a flag to clear excl_link and let 1410 * the command go through. 1411 */ 1412 if (unlikely(ap->excl_link)) { 1413 if (link == ap->excl_link) { 1414 if (ap->nr_active_links) 1415 return ATA_DEFER_PORT; 1416 qc->flags |= ATA_QCFLAG_CLEAR_EXCL; 1417 return 0; 1418 } else 1419 return ATA_DEFER_PORT; 1420 } 1421 1422 /* 1423 * If the port is completely idle, then allow the new qc. 1424 */ 1425 if (ap->nr_active_links == 0) 1426 return 0; 1427 1428 /* 1429 * The port is operating in host queuing mode (EDMA) with NCQ 1430 * enabled, allow multiple NCQ commands. EDMA also allows 1431 * queueing multiple DMA commands but libata core currently 1432 * doesn't allow it. 1433 */ 1434 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && 1435 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { 1436 if (ata_is_ncq(qc->tf.protocol)) 1437 return 0; 1438 else { 1439 ap->excl_link = link; 1440 return ATA_DEFER_PORT; 1441 } 1442 } 1443 1444 return ATA_DEFER_PORT; 1445 } 1446 1447 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) 1448 { 1449 struct mv_port_priv *pp = ap->private_data; 1450 void __iomem *port_mmio; 1451 1452 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg; 1453 u32 ltmode, *old_ltmode = &pp->cached.ltmode; 1454 u32 haltcond, *old_haltcond = &pp->cached.haltcond; 1455 1456 ltmode = *old_ltmode & ~LTMODE_BIT8; 1457 haltcond = *old_haltcond | EDMA_ERR_DEV; 1458 1459 if (want_fbs) { 1460 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; 1461 ltmode = *old_ltmode | LTMODE_BIT8; 1462 if (want_ncq) 1463 haltcond &= ~EDMA_ERR_DEV; 1464 else 1465 fiscfg |= FISCFG_WAIT_DEV_ERR; 1466 } else { 1467 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); 1468 } 1469 1470 port_mmio = mv_ap_base(ap); 1471 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); 1472 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); 1473 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); 1474 } 1475 1476 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) 1477 { 1478 struct mv_host_priv *hpriv = ap->host->private_data; 1479 u32 old, new; 1480 1481 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ 1482 old = readl(hpriv->base + GPIO_PORT_CTL); 1483 if (want_ncq) 1484 new = old | (1 << 22); 1485 else 1486 new = old & ~(1 << 22); 1487 if (new != old) 1488 writel(new, hpriv->base + GPIO_PORT_CTL); 1489 } 1490 1491 /** 1492 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma 1493 * @ap: Port being initialized 1494 * 1495 * There are two DMA modes on these chips: basic DMA, and EDMA. 1496 * 1497 * Bit-0 of the "EDMA RESERVED" register enables/disables use 1498 * of basic DMA on the GEN_IIE versions of the chips. 1499 * 1500 * This bit survives EDMA resets, and must be set for basic DMA 1501 * to function, and should be cleared when EDMA is active. 1502 */ 1503 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) 1504 { 1505 struct mv_port_priv *pp = ap->private_data; 1506 u32 new, *old = &pp->cached.unknown_rsvd; 1507 1508 if (enable_bmdma) 1509 new = *old | 1; 1510 else 1511 new = *old & ~1; 1512 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); 1513 } 1514 1515 /* 1516 * SOC chips have an issue whereby the HDD LEDs don't always blink 1517 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode 1518 * of the SOC takes care of it, generating a steady blink rate when 1519 * any drive on the chip is active. 1520 * 1521 * Unfortunately, the blink mode is a global hardware setting for the SOC, 1522 * so we must use it whenever at least one port on the SOC has NCQ enabled. 1523 * 1524 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal 1525 * LED operation works then, and provides better (more accurate) feedback. 1526 * 1527 * Note that this code assumes that an SOC never has more than one HC onboard. 1528 */ 1529 static void mv_soc_led_blink_enable(struct ata_port *ap) 1530 { 1531 struct ata_host *host = ap->host; 1532 struct mv_host_priv *hpriv = host->private_data; 1533 void __iomem *hc_mmio; 1534 u32 led_ctrl; 1535 1536 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) 1537 return; 1538 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; 1539 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1540 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1541 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1542 } 1543 1544 static void mv_soc_led_blink_disable(struct ata_port *ap) 1545 { 1546 struct ata_host *host = ap->host; 1547 struct mv_host_priv *hpriv = host->private_data; 1548 void __iomem *hc_mmio; 1549 u32 led_ctrl; 1550 unsigned int port; 1551 1552 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) 1553 return; 1554 1555 /* disable led-blink only if no ports are using NCQ */ 1556 for (port = 0; port < hpriv->n_ports; port++) { 1557 struct ata_port *this_ap = host->ports[port]; 1558 struct mv_port_priv *pp = this_ap->private_data; 1559 1560 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 1561 return; 1562 } 1563 1564 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; 1565 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); 1566 led_ctrl = readl(hc_mmio + SOC_LED_CTRL); 1567 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); 1568 } 1569 1570 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) 1571 { 1572 u32 cfg; 1573 struct mv_port_priv *pp = ap->private_data; 1574 struct mv_host_priv *hpriv = ap->host->private_data; 1575 void __iomem *port_mmio = mv_ap_base(ap); 1576 1577 /* set up non-NCQ EDMA configuration */ 1578 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */ 1579 pp->pp_flags &= 1580 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 1581 1582 if (IS_GEN_I(hpriv)) 1583 cfg |= (1 << 8); /* enab config burst size mask */ 1584 1585 else if (IS_GEN_II(hpriv)) { 1586 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; 1587 mv_60x1_errata_sata25(ap, want_ncq); 1588 1589 } else if (IS_GEN_IIE(hpriv)) { 1590 int want_fbs = sata_pmp_attached(ap); 1591 /* 1592 * Possible future enhancement: 1593 * 1594 * The chip can use FBS with non-NCQ, if we allow it, 1595 * But first we need to have the error handling in place 1596 * for this mode (datasheet section 7.3.15.4.2.3). 1597 * So disallow non-NCQ FBS for now. 1598 */ 1599 want_fbs &= want_ncq; 1600 1601 mv_config_fbs(ap, want_ncq, want_fbs); 1602 1603 if (want_fbs) { 1604 pp->pp_flags |= MV_PP_FLAG_FBS_EN; 1605 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ 1606 } 1607 1608 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */ 1609 if (want_edma) { 1610 cfg |= (1 << 22); /* enab 4-entry host queue cache */ 1611 if (!IS_SOC(hpriv)) 1612 cfg |= (1 << 18); /* enab early completion */ 1613 } 1614 if (hpriv->hp_flags & MV_HP_CUT_THROUGH) 1615 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ 1616 mv_bmdma_enable_iie(ap, !want_edma); 1617 1618 if (IS_SOC(hpriv)) { 1619 if (want_ncq) 1620 mv_soc_led_blink_enable(ap); 1621 else 1622 mv_soc_led_blink_disable(ap); 1623 } 1624 } 1625 1626 if (want_ncq) { 1627 cfg |= EDMA_CFG_NCQ; 1628 pp->pp_flags |= MV_PP_FLAG_NCQ_EN; 1629 } 1630 1631 writelfl(cfg, port_mmio + EDMA_CFG); 1632 } 1633 1634 static void mv_port_free_dma_mem(struct ata_port *ap) 1635 { 1636 struct mv_host_priv *hpriv = ap->host->private_data; 1637 struct mv_port_priv *pp = ap->private_data; 1638 int tag; 1639 1640 if (pp->crqb) { 1641 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); 1642 pp->crqb = NULL; 1643 } 1644 if (pp->crpb) { 1645 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); 1646 pp->crpb = NULL; 1647 } 1648 /* 1649 * For GEN_I, there's no NCQ, so we have only a single sg_tbl. 1650 * For later hardware, we have one unique sg_tbl per NCQ tag. 1651 */ 1652 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1653 if (pp->sg_tbl[tag]) { 1654 if (tag == 0 || !IS_GEN_I(hpriv)) 1655 dma_pool_free(hpriv->sg_tbl_pool, 1656 pp->sg_tbl[tag], 1657 pp->sg_tbl_dma[tag]); 1658 pp->sg_tbl[tag] = NULL; 1659 } 1660 } 1661 } 1662 1663 /** 1664 * mv_port_start - Port specific init/start routine. 1665 * @ap: ATA channel to manipulate 1666 * 1667 * Allocate and point to DMA memory, init port private memory, 1668 * zero indices. 1669 * 1670 * LOCKING: 1671 * Inherited from caller. 1672 */ 1673 static int mv_port_start(struct ata_port *ap) 1674 { 1675 struct device *dev = ap->host->dev; 1676 struct mv_host_priv *hpriv = ap->host->private_data; 1677 struct mv_port_priv *pp; 1678 unsigned long flags; 1679 int tag; 1680 1681 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); 1682 if (!pp) 1683 return -ENOMEM; 1684 ap->private_data = pp; 1685 1686 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); 1687 if (!pp->crqb) 1688 return -ENOMEM; 1689 memset(pp->crqb, 0, MV_CRQB_Q_SZ); 1690 1691 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); 1692 if (!pp->crpb) 1693 goto out_port_free_dma_mem; 1694 memset(pp->crpb, 0, MV_CRPB_Q_SZ); 1695 1696 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ 1697 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) 1698 ap->flags |= ATA_FLAG_AN; 1699 /* 1700 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. 1701 * For later hardware, we need one unique sg_tbl per NCQ tag. 1702 */ 1703 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { 1704 if (tag == 0 || !IS_GEN_I(hpriv)) { 1705 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, 1706 GFP_KERNEL, &pp->sg_tbl_dma[tag]); 1707 if (!pp->sg_tbl[tag]) 1708 goto out_port_free_dma_mem; 1709 } else { 1710 pp->sg_tbl[tag] = pp->sg_tbl[0]; 1711 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; 1712 } 1713 } 1714 1715 spin_lock_irqsave(ap->lock, flags); 1716 mv_save_cached_regs(ap); 1717 mv_edma_cfg(ap, 0, 0); 1718 spin_unlock_irqrestore(ap->lock, flags); 1719 1720 return 0; 1721 1722 out_port_free_dma_mem: 1723 mv_port_free_dma_mem(ap); 1724 return -ENOMEM; 1725 } 1726 1727 /** 1728 * mv_port_stop - Port specific cleanup/stop routine. 1729 * @ap: ATA channel to manipulate 1730 * 1731 * Stop DMA, cleanup port memory. 1732 * 1733 * LOCKING: 1734 * This routine uses the host lock to protect the DMA stop. 1735 */ 1736 static void mv_port_stop(struct ata_port *ap) 1737 { 1738 unsigned long flags; 1739 1740 spin_lock_irqsave(ap->lock, flags); 1741 mv_stop_edma(ap); 1742 mv_enable_port_irqs(ap, 0); 1743 spin_unlock_irqrestore(ap->lock, flags); 1744 mv_port_free_dma_mem(ap); 1745 } 1746 1747 /** 1748 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries 1749 * @qc: queued command whose SG list to source from 1750 * 1751 * Populate the SG list and mark the last entry. 1752 * 1753 * LOCKING: 1754 * Inherited from caller. 1755 */ 1756 static void mv_fill_sg(struct ata_queued_cmd *qc) 1757 { 1758 struct mv_port_priv *pp = qc->ap->private_data; 1759 struct scatterlist *sg; 1760 struct mv_sg *mv_sg, *last_sg = NULL; 1761 unsigned int si; 1762 1763 mv_sg = pp->sg_tbl[qc->tag]; 1764 for_each_sg(qc->sg, sg, qc->n_elem, si) { 1765 dma_addr_t addr = sg_dma_address(sg); 1766 u32 sg_len = sg_dma_len(sg); 1767 1768 while (sg_len) { 1769 u32 offset = addr & 0xffff; 1770 u32 len = sg_len; 1771 1772 if (offset + len > 0x10000) 1773 len = 0x10000 - offset; 1774 1775 mv_sg->addr = cpu_to_le32(addr & 0xffffffff); 1776 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); 1777 mv_sg->flags_size = cpu_to_le32(len & 0xffff); 1778 mv_sg->reserved = 0; 1779 1780 sg_len -= len; 1781 addr += len; 1782 1783 last_sg = mv_sg; 1784 mv_sg++; 1785 } 1786 } 1787 1788 if (likely(last_sg)) 1789 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); 1790 mb(); /* ensure data structure is visible to the chipset */ 1791 } 1792 1793 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) 1794 { 1795 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | 1796 (last ? CRQB_CMD_LAST : 0); 1797 *cmdw = cpu_to_le16(tmp); 1798 } 1799 1800 /** 1801 * mv_sff_irq_clear - Clear hardware interrupt after DMA. 1802 * @ap: Port associated with this ATA transaction. 1803 * 1804 * We need this only for ATAPI bmdma transactions, 1805 * as otherwise we experience spurious interrupts 1806 * after libata-sff handles the bmdma interrupts. 1807 */ 1808 static void mv_sff_irq_clear(struct ata_port *ap) 1809 { 1810 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); 1811 } 1812 1813 /** 1814 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. 1815 * @qc: queued command to check for chipset/DMA compatibility. 1816 * 1817 * The bmdma engines cannot handle speculative data sizes 1818 * (bytecount under/over flow). So only allow DMA for 1819 * data transfer commands with known data sizes. 1820 * 1821 * LOCKING: 1822 * Inherited from caller. 1823 */ 1824 static int mv_check_atapi_dma(struct ata_queued_cmd *qc) 1825 { 1826 struct scsi_cmnd *scmd = qc->scsicmd; 1827 1828 if (scmd) { 1829 switch (scmd->cmnd[0]) { 1830 case READ_6: 1831 case READ_10: 1832 case READ_12: 1833 case WRITE_6: 1834 case WRITE_10: 1835 case WRITE_12: 1836 case GPCMD_READ_CD: 1837 case GPCMD_SEND_DVD_STRUCTURE: 1838 case GPCMD_SEND_CUE_SHEET: 1839 return 0; /* DMA is safe */ 1840 } 1841 } 1842 return -EOPNOTSUPP; /* use PIO instead */ 1843 } 1844 1845 /** 1846 * mv_bmdma_setup - Set up BMDMA transaction 1847 * @qc: queued command to prepare DMA for. 1848 * 1849 * LOCKING: 1850 * Inherited from caller. 1851 */ 1852 static void mv_bmdma_setup(struct ata_queued_cmd *qc) 1853 { 1854 struct ata_port *ap = qc->ap; 1855 void __iomem *port_mmio = mv_ap_base(ap); 1856 struct mv_port_priv *pp = ap->private_data; 1857 1858 mv_fill_sg(qc); 1859 1860 /* clear all DMA cmd bits */ 1861 writel(0, port_mmio + BMDMA_CMD); 1862 1863 /* load PRD table addr. */ 1864 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, 1865 port_mmio + BMDMA_PRD_HIGH); 1866 writelfl(pp->sg_tbl_dma[qc->tag], 1867 port_mmio + BMDMA_PRD_LOW); 1868 1869 /* issue r/w command */ 1870 ap->ops->sff_exec_command(ap, &qc->tf); 1871 } 1872 1873 /** 1874 * mv_bmdma_start - Start a BMDMA transaction 1875 * @qc: queued command to start DMA on. 1876 * 1877 * LOCKING: 1878 * Inherited from caller. 1879 */ 1880 static void mv_bmdma_start(struct ata_queued_cmd *qc) 1881 { 1882 struct ata_port *ap = qc->ap; 1883 void __iomem *port_mmio = mv_ap_base(ap); 1884 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 1885 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; 1886 1887 /* start host DMA transaction */ 1888 writelfl(cmd, port_mmio + BMDMA_CMD); 1889 } 1890 1891 /** 1892 * mv_bmdma_stop - Stop BMDMA transfer 1893 * @qc: queued command to stop DMA on. 1894 * 1895 * Clears the ATA_DMA_START flag in the bmdma control register 1896 * 1897 * LOCKING: 1898 * Inherited from caller. 1899 */ 1900 static void mv_bmdma_stop_ap(struct ata_port *ap) 1901 { 1902 void __iomem *port_mmio = mv_ap_base(ap); 1903 u32 cmd; 1904 1905 /* clear start/stop bit */ 1906 cmd = readl(port_mmio + BMDMA_CMD); 1907 if (cmd & ATA_DMA_START) { 1908 cmd &= ~ATA_DMA_START; 1909 writelfl(cmd, port_mmio + BMDMA_CMD); 1910 1911 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 1912 ata_sff_dma_pause(ap); 1913 } 1914 } 1915 1916 static void mv_bmdma_stop(struct ata_queued_cmd *qc) 1917 { 1918 mv_bmdma_stop_ap(qc->ap); 1919 } 1920 1921 /** 1922 * mv_bmdma_status - Read BMDMA status 1923 * @ap: port for which to retrieve DMA status. 1924 * 1925 * Read and return equivalent of the sff BMDMA status register. 1926 * 1927 * LOCKING: 1928 * Inherited from caller. 1929 */ 1930 static u8 mv_bmdma_status(struct ata_port *ap) 1931 { 1932 void __iomem *port_mmio = mv_ap_base(ap); 1933 u32 reg, status; 1934 1935 /* 1936 * Other bits are valid only if ATA_DMA_ACTIVE==0, 1937 * and the ATA_DMA_INTR bit doesn't exist. 1938 */ 1939 reg = readl(port_mmio + BMDMA_STATUS); 1940 if (reg & ATA_DMA_ACTIVE) 1941 status = ATA_DMA_ACTIVE; 1942 else if (reg & ATA_DMA_ERR) 1943 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; 1944 else { 1945 /* 1946 * Just because DMA_ACTIVE is 0 (DMA completed), 1947 * this does _not_ mean the device is "done". 1948 * So we should not yet be signalling ATA_DMA_INTR 1949 * in some cases. Eg. DSM/TRIM, and perhaps others. 1950 */ 1951 mv_bmdma_stop_ap(ap); 1952 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) 1953 status = 0; 1954 else 1955 status = ATA_DMA_INTR; 1956 } 1957 return status; 1958 } 1959 1960 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) 1961 { 1962 struct ata_taskfile *tf = &qc->tf; 1963 /* 1964 * Workaround for 88SX60x1 FEr SATA#24. 1965 * 1966 * Chip may corrupt WRITEs if multi_count >= 4kB. 1967 * Note that READs are unaffected. 1968 * 1969 * It's not clear if this errata really means "4K bytes", 1970 * or if it always happens for multi_count > 7 1971 * regardless of device sector_size. 1972 * 1973 * So, for safety, any write with multi_count > 7 1974 * gets converted here into a regular PIO write instead: 1975 */ 1976 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { 1977 if (qc->dev->multi_count > 7) { 1978 switch (tf->command) { 1979 case ATA_CMD_WRITE_MULTI: 1980 tf->command = ATA_CMD_PIO_WRITE; 1981 break; 1982 case ATA_CMD_WRITE_MULTI_FUA_EXT: 1983 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ 1984 /* fall through */ 1985 case ATA_CMD_WRITE_MULTI_EXT: 1986 tf->command = ATA_CMD_PIO_WRITE_EXT; 1987 break; 1988 } 1989 } 1990 } 1991 } 1992 1993 /** 1994 * mv_qc_prep - Host specific command preparation. 1995 * @qc: queued command to prepare 1996 * 1997 * This routine simply redirects to the general purpose routine 1998 * if command is not DMA. Else, it handles prep of the CRQB 1999 * (command request block), does some sanity checking, and calls 2000 * the SG load routine. 2001 * 2002 * LOCKING: 2003 * Inherited from caller. 2004 */ 2005 static void mv_qc_prep(struct ata_queued_cmd *qc) 2006 { 2007 struct ata_port *ap = qc->ap; 2008 struct mv_port_priv *pp = ap->private_data; 2009 __le16 *cw; 2010 struct ata_taskfile *tf = &qc->tf; 2011 u16 flags = 0; 2012 unsigned in_index; 2013 2014 switch (tf->protocol) { 2015 case ATA_PROT_DMA: 2016 if (tf->command == ATA_CMD_DSM) 2017 return; 2018 /* fall-thru */ 2019 case ATA_PROT_NCQ: 2020 break; /* continue below */ 2021 case ATA_PROT_PIO: 2022 mv_rw_multi_errata_sata24(qc); 2023 return; 2024 default: 2025 return; 2026 } 2027 2028 /* Fill in command request block 2029 */ 2030 if (!(tf->flags & ATA_TFLAG_WRITE)) 2031 flags |= CRQB_FLAG_READ; 2032 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2033 flags |= qc->tag << CRQB_TAG_SHIFT; 2034 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2035 2036 /* get current queue index from software */ 2037 in_index = pp->req_idx; 2038 2039 pp->crqb[in_index].sg_addr = 2040 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2041 pp->crqb[in_index].sg_addr_hi = 2042 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2043 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); 2044 2045 cw = &pp->crqb[in_index].ata_cmd[0]; 2046 2047 /* Sadly, the CRQB cannot accommodate all registers--there are 2048 * only 11 bytes...so we must pick and choose required 2049 * registers based on the command. So, we drop feature and 2050 * hob_feature for [RW] DMA commands, but they are needed for 2051 * NCQ. NCQ will drop hob_nsect, which is not needed there 2052 * (nsect is used only for the tag; feat/hob_feat hold true nsect). 2053 */ 2054 switch (tf->command) { 2055 case ATA_CMD_READ: 2056 case ATA_CMD_READ_EXT: 2057 case ATA_CMD_WRITE: 2058 case ATA_CMD_WRITE_EXT: 2059 case ATA_CMD_WRITE_FUA_EXT: 2060 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); 2061 break; 2062 case ATA_CMD_FPDMA_READ: 2063 case ATA_CMD_FPDMA_WRITE: 2064 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); 2065 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); 2066 break; 2067 default: 2068 /* The only other commands EDMA supports in non-queued and 2069 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none 2070 * of which are defined/used by Linux. If we get here, this 2071 * driver needs work. 2072 * 2073 * FIXME: modify libata to give qc_prep a return value and 2074 * return error here. 2075 */ 2076 BUG_ON(tf->command); 2077 break; 2078 } 2079 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); 2080 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); 2081 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); 2082 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); 2083 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); 2084 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); 2085 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); 2086 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); 2087 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ 2088 2089 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2090 return; 2091 mv_fill_sg(qc); 2092 } 2093 2094 /** 2095 * mv_qc_prep_iie - Host specific command preparation. 2096 * @qc: queued command to prepare 2097 * 2098 * This routine simply redirects to the general purpose routine 2099 * if command is not DMA. Else, it handles prep of the CRQB 2100 * (command request block), does some sanity checking, and calls 2101 * the SG load routine. 2102 * 2103 * LOCKING: 2104 * Inherited from caller. 2105 */ 2106 static void mv_qc_prep_iie(struct ata_queued_cmd *qc) 2107 { 2108 struct ata_port *ap = qc->ap; 2109 struct mv_port_priv *pp = ap->private_data; 2110 struct mv_crqb_iie *crqb; 2111 struct ata_taskfile *tf = &qc->tf; 2112 unsigned in_index; 2113 u32 flags = 0; 2114 2115 if ((tf->protocol != ATA_PROT_DMA) && 2116 (tf->protocol != ATA_PROT_NCQ)) 2117 return; 2118 if (tf->command == ATA_CMD_DSM) 2119 return; /* use bmdma for this */ 2120 2121 /* Fill in Gen IIE command request block */ 2122 if (!(tf->flags & ATA_TFLAG_WRITE)) 2123 flags |= CRQB_FLAG_READ; 2124 2125 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); 2126 flags |= qc->tag << CRQB_TAG_SHIFT; 2127 flags |= qc->tag << CRQB_HOSTQ_SHIFT; 2128 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; 2129 2130 /* get current queue index from software */ 2131 in_index = pp->req_idx; 2132 2133 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; 2134 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); 2135 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); 2136 crqb->flags = cpu_to_le32(flags); 2137 2138 crqb->ata_cmd[0] = cpu_to_le32( 2139 (tf->command << 16) | 2140 (tf->feature << 24) 2141 ); 2142 crqb->ata_cmd[1] = cpu_to_le32( 2143 (tf->lbal << 0) | 2144 (tf->lbam << 8) | 2145 (tf->lbah << 16) | 2146 (tf->device << 24) 2147 ); 2148 crqb->ata_cmd[2] = cpu_to_le32( 2149 (tf->hob_lbal << 0) | 2150 (tf->hob_lbam << 8) | 2151 (tf->hob_lbah << 16) | 2152 (tf->hob_feature << 24) 2153 ); 2154 crqb->ata_cmd[3] = cpu_to_le32( 2155 (tf->nsect << 0) | 2156 (tf->hob_nsect << 8) 2157 ); 2158 2159 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2160 return; 2161 mv_fill_sg(qc); 2162 } 2163 2164 /** 2165 * mv_sff_check_status - fetch device status, if valid 2166 * @ap: ATA port to fetch status from 2167 * 2168 * When using command issue via mv_qc_issue_fis(), 2169 * the initial ATA_BUSY state does not show up in the 2170 * ATA status (shadow) register. This can confuse libata! 2171 * 2172 * So we have a hook here to fake ATA_BUSY for that situation, 2173 * until the first time a BUSY, DRQ, or ERR bit is seen. 2174 * 2175 * The rest of the time, it simply returns the ATA status register. 2176 */ 2177 static u8 mv_sff_check_status(struct ata_port *ap) 2178 { 2179 u8 stat = ioread8(ap->ioaddr.status_addr); 2180 struct mv_port_priv *pp = ap->private_data; 2181 2182 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { 2183 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) 2184 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; 2185 else 2186 stat = ATA_BUSY; 2187 } 2188 return stat; 2189 } 2190 2191 /** 2192 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register 2193 * @fis: fis to be sent 2194 * @nwords: number of 32-bit words in the fis 2195 */ 2196 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) 2197 { 2198 void __iomem *port_mmio = mv_ap_base(ap); 2199 u32 ifctl, old_ifctl, ifstat; 2200 int i, timeout = 200, final_word = nwords - 1; 2201 2202 /* Initiate FIS transmission mode */ 2203 old_ifctl = readl(port_mmio + SATA_IFCTL); 2204 ifctl = 0x100 | (old_ifctl & 0xf); 2205 writelfl(ifctl, port_mmio + SATA_IFCTL); 2206 2207 /* Send all words of the FIS except for the final word */ 2208 for (i = 0; i < final_word; ++i) 2209 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); 2210 2211 /* Flag end-of-transmission, and then send the final word */ 2212 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); 2213 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); 2214 2215 /* 2216 * Wait for FIS transmission to complete. 2217 * This typically takes just a single iteration. 2218 */ 2219 do { 2220 ifstat = readl(port_mmio + SATA_IFSTAT); 2221 } while (!(ifstat & 0x1000) && --timeout); 2222 2223 /* Restore original port configuration */ 2224 writelfl(old_ifctl, port_mmio + SATA_IFCTL); 2225 2226 /* See if it worked */ 2227 if ((ifstat & 0x3000) != 0x1000) { 2228 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", 2229 __func__, ifstat); 2230 return AC_ERR_OTHER; 2231 } 2232 return 0; 2233 } 2234 2235 /** 2236 * mv_qc_issue_fis - Issue a command directly as a FIS 2237 * @qc: queued command to start 2238 * 2239 * Note that the ATA shadow registers are not updated 2240 * after command issue, so the device will appear "READY" 2241 * if polled, even while it is BUSY processing the command. 2242 * 2243 * So we use a status hook to fake ATA_BUSY until the drive changes state. 2244 * 2245 * Note: we don't get updated shadow regs on *completion* 2246 * of non-data commands. So avoid sending them via this function, 2247 * as they will appear to have completed immediately. 2248 * 2249 * GEN_IIE has special registers that we could get the result tf from, 2250 * but earlier chipsets do not. For now, we ignore those registers. 2251 */ 2252 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) 2253 { 2254 struct ata_port *ap = qc->ap; 2255 struct mv_port_priv *pp = ap->private_data; 2256 struct ata_link *link = qc->dev->link; 2257 u32 fis[5]; 2258 int err = 0; 2259 2260 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); 2261 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); 2262 if (err) 2263 return err; 2264 2265 switch (qc->tf.protocol) { 2266 case ATAPI_PROT_PIO: 2267 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2268 /* fall through */ 2269 case ATAPI_PROT_NODATA: 2270 ap->hsm_task_state = HSM_ST_FIRST; 2271 break; 2272 case ATA_PROT_PIO: 2273 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; 2274 if (qc->tf.flags & ATA_TFLAG_WRITE) 2275 ap->hsm_task_state = HSM_ST_FIRST; 2276 else 2277 ap->hsm_task_state = HSM_ST; 2278 break; 2279 default: 2280 ap->hsm_task_state = HSM_ST_LAST; 2281 break; 2282 } 2283 2284 if (qc->tf.flags & ATA_TFLAG_POLLING) 2285 ata_sff_queue_pio_task(link, 0); 2286 return 0; 2287 } 2288 2289 /** 2290 * mv_qc_issue - Initiate a command to the host 2291 * @qc: queued command to start 2292 * 2293 * This routine simply redirects to the general purpose routine 2294 * if command is not DMA. Else, it sanity checks our local 2295 * caches of the request producer/consumer indices then enables 2296 * DMA and bumps the request producer index. 2297 * 2298 * LOCKING: 2299 * Inherited from caller. 2300 */ 2301 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) 2302 { 2303 static int limit_warnings = 10; 2304 struct ata_port *ap = qc->ap; 2305 void __iomem *port_mmio = mv_ap_base(ap); 2306 struct mv_port_priv *pp = ap->private_data; 2307 u32 in_index; 2308 unsigned int port_irqs; 2309 2310 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ 2311 2312 switch (qc->tf.protocol) { 2313 case ATA_PROT_DMA: 2314 if (qc->tf.command == ATA_CMD_DSM) { 2315 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */ 2316 return AC_ERR_OTHER; 2317 break; /* use bmdma for this */ 2318 } 2319 /* fall thru */ 2320 case ATA_PROT_NCQ: 2321 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); 2322 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2323 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; 2324 2325 /* Write the request in pointer to kick the EDMA to life */ 2326 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, 2327 port_mmio + EDMA_REQ_Q_IN_PTR); 2328 return 0; 2329 2330 case ATA_PROT_PIO: 2331 /* 2332 * Errata SATA#16, SATA#24: warn if multiple DRQs expected. 2333 * 2334 * Someday, we might implement special polling workarounds 2335 * for these, but it all seems rather unnecessary since we 2336 * normally use only DMA for commands which transfer more 2337 * than a single block of data. 2338 * 2339 * Much of the time, this could just work regardless. 2340 * So for now, just log the incident, and allow the attempt. 2341 */ 2342 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { 2343 --limit_warnings; 2344 ata_link_warn(qc->dev->link, DRV_NAME 2345 ": attempting PIO w/multiple DRQ: " 2346 "this may fail due to h/w errata\n"); 2347 } 2348 /* drop through */ 2349 case ATA_PROT_NODATA: 2350 case ATAPI_PROT_PIO: 2351 case ATAPI_PROT_NODATA: 2352 if (ap->flags & ATA_FLAG_PIO_POLLING) 2353 qc->tf.flags |= ATA_TFLAG_POLLING; 2354 break; 2355 } 2356 2357 if (qc->tf.flags & ATA_TFLAG_POLLING) 2358 port_irqs = ERR_IRQ; /* mask device interrupt when polling */ 2359 else 2360 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */ 2361 2362 /* 2363 * We're about to send a non-EDMA capable command to the 2364 * port. Turn off EDMA so there won't be problems accessing 2365 * shadow block, etc registers. 2366 */ 2367 mv_stop_edma(ap); 2368 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); 2369 mv_pmp_select(ap, qc->dev->link->pmp); 2370 2371 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { 2372 struct mv_host_priv *hpriv = ap->host->private_data; 2373 /* 2374 * Workaround for 88SX60x1 FEr SATA#25 (part 2). 2375 * 2376 * After any NCQ error, the READ_LOG_EXT command 2377 * from libata-eh *must* use mv_qc_issue_fis(). 2378 * Otherwise it might fail, due to chip errata. 2379 * 2380 * Rather than special-case it, we'll just *always* 2381 * use this method here for READ_LOG_EXT, making for 2382 * easier testing. 2383 */ 2384 if (IS_GEN_II(hpriv)) 2385 return mv_qc_issue_fis(qc); 2386 } 2387 return ata_bmdma_qc_issue(qc); 2388 } 2389 2390 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) 2391 { 2392 struct mv_port_priv *pp = ap->private_data; 2393 struct ata_queued_cmd *qc; 2394 2395 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) 2396 return NULL; 2397 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2398 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) 2399 return qc; 2400 return NULL; 2401 } 2402 2403 static void mv_pmp_error_handler(struct ata_port *ap) 2404 { 2405 unsigned int pmp, pmp_map; 2406 struct mv_port_priv *pp = ap->private_data; 2407 2408 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { 2409 /* 2410 * Perform NCQ error analysis on failed PMPs 2411 * before we freeze the port entirely. 2412 * 2413 * The failed PMPs are marked earlier by mv_pmp_eh_prep(). 2414 */ 2415 pmp_map = pp->delayed_eh_pmp_map; 2416 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; 2417 for (pmp = 0; pmp_map != 0; pmp++) { 2418 unsigned int this_pmp = (1 << pmp); 2419 if (pmp_map & this_pmp) { 2420 struct ata_link *link = &ap->pmp_link[pmp]; 2421 pmp_map &= ~this_pmp; 2422 ata_eh_analyze_ncq_error(link); 2423 } 2424 } 2425 ata_port_freeze(ap); 2426 } 2427 sata_pmp_error_handler(ap); 2428 } 2429 2430 static unsigned int mv_get_err_pmp_map(struct ata_port *ap) 2431 { 2432 void __iomem *port_mmio = mv_ap_base(ap); 2433 2434 return readl(port_mmio + SATA_TESTCTL) >> 16; 2435 } 2436 2437 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) 2438 { 2439 struct ata_eh_info *ehi; 2440 unsigned int pmp; 2441 2442 /* 2443 * Initialize EH info for PMPs which saw device errors 2444 */ 2445 ehi = &ap->link.eh_info; 2446 for (pmp = 0; pmp_map != 0; pmp++) { 2447 unsigned int this_pmp = (1 << pmp); 2448 if (pmp_map & this_pmp) { 2449 struct ata_link *link = &ap->pmp_link[pmp]; 2450 2451 pmp_map &= ~this_pmp; 2452 ehi = &link->eh_info; 2453 ata_ehi_clear_desc(ehi); 2454 ata_ehi_push_desc(ehi, "dev err"); 2455 ehi->err_mask |= AC_ERR_DEV; 2456 ehi->action |= ATA_EH_RESET; 2457 ata_link_abort(link); 2458 } 2459 } 2460 } 2461 2462 static int mv_req_q_empty(struct ata_port *ap) 2463 { 2464 void __iomem *port_mmio = mv_ap_base(ap); 2465 u32 in_ptr, out_ptr; 2466 2467 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) 2468 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2469 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) 2470 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2471 return (in_ptr == out_ptr); /* 1 == queue_is_empty */ 2472 } 2473 2474 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) 2475 { 2476 struct mv_port_priv *pp = ap->private_data; 2477 int failed_links; 2478 unsigned int old_map, new_map; 2479 2480 /* 2481 * Device error during FBS+NCQ operation: 2482 * 2483 * Set a port flag to prevent further I/O being enqueued. 2484 * Leave the EDMA running to drain outstanding commands from this port. 2485 * Perform the post-mortem/EH only when all responses are complete. 2486 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). 2487 */ 2488 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { 2489 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; 2490 pp->delayed_eh_pmp_map = 0; 2491 } 2492 old_map = pp->delayed_eh_pmp_map; 2493 new_map = old_map | mv_get_err_pmp_map(ap); 2494 2495 if (old_map != new_map) { 2496 pp->delayed_eh_pmp_map = new_map; 2497 mv_pmp_eh_prep(ap, new_map & ~old_map); 2498 } 2499 failed_links = hweight16(new_map); 2500 2501 ata_port_info(ap, 2502 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", 2503 __func__, pp->delayed_eh_pmp_map, 2504 ap->qc_active, failed_links, 2505 ap->nr_active_links); 2506 2507 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { 2508 mv_process_crpb_entries(ap, pp); 2509 mv_stop_edma(ap); 2510 mv_eh_freeze(ap); 2511 ata_port_info(ap, "%s: done\n", __func__); 2512 return 1; /* handled */ 2513 } 2514 ata_port_info(ap, "%s: waiting\n", __func__); 2515 return 1; /* handled */ 2516 } 2517 2518 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) 2519 { 2520 /* 2521 * Possible future enhancement: 2522 * 2523 * FBS+non-NCQ operation is not yet implemented. 2524 * See related notes in mv_edma_cfg(). 2525 * 2526 * Device error during FBS+non-NCQ operation: 2527 * 2528 * We need to snapshot the shadow registers for each failed command. 2529 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). 2530 */ 2531 return 0; /* not handled */ 2532 } 2533 2534 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) 2535 { 2536 struct mv_port_priv *pp = ap->private_data; 2537 2538 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) 2539 return 0; /* EDMA was not active: not handled */ 2540 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) 2541 return 0; /* FBS was not active: not handled */ 2542 2543 if (!(edma_err_cause & EDMA_ERR_DEV)) 2544 return 0; /* non DEV error: not handled */ 2545 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; 2546 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) 2547 return 0; /* other problems: not handled */ 2548 2549 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { 2550 /* 2551 * EDMA should NOT have self-disabled for this case. 2552 * If it did, then something is wrong elsewhere, 2553 * and we cannot handle it here. 2554 */ 2555 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2556 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2557 __func__, edma_err_cause, pp->pp_flags); 2558 return 0; /* not handled */ 2559 } 2560 return mv_handle_fbs_ncq_dev_err(ap); 2561 } else { 2562 /* 2563 * EDMA should have self-disabled for this case. 2564 * If it did not, then something is wrong elsewhere, 2565 * and we cannot handle it here. 2566 */ 2567 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { 2568 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", 2569 __func__, edma_err_cause, pp->pp_flags); 2570 return 0; /* not handled */ 2571 } 2572 return mv_handle_fbs_non_ncq_dev_err(ap); 2573 } 2574 return 0; /* not handled */ 2575 } 2576 2577 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) 2578 { 2579 struct ata_eh_info *ehi = &ap->link.eh_info; 2580 char *when = "idle"; 2581 2582 ata_ehi_clear_desc(ehi); 2583 if (edma_was_enabled) { 2584 when = "EDMA enabled"; 2585 } else { 2586 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); 2587 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) 2588 when = "polling"; 2589 } 2590 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); 2591 ehi->err_mask |= AC_ERR_OTHER; 2592 ehi->action |= ATA_EH_RESET; 2593 ata_port_freeze(ap); 2594 } 2595 2596 /** 2597 * mv_err_intr - Handle error interrupts on the port 2598 * @ap: ATA channel to manipulate 2599 * 2600 * Most cases require a full reset of the chip's state machine, 2601 * which also performs a COMRESET. 2602 * Also, if the port disabled DMA, update our cached copy to match. 2603 * 2604 * LOCKING: 2605 * Inherited from caller. 2606 */ 2607 static void mv_err_intr(struct ata_port *ap) 2608 { 2609 void __iomem *port_mmio = mv_ap_base(ap); 2610 u32 edma_err_cause, eh_freeze_mask, serr = 0; 2611 u32 fis_cause = 0; 2612 struct mv_port_priv *pp = ap->private_data; 2613 struct mv_host_priv *hpriv = ap->host->private_data; 2614 unsigned int action = 0, err_mask = 0; 2615 struct ata_eh_info *ehi = &ap->link.eh_info; 2616 struct ata_queued_cmd *qc; 2617 int abort = 0; 2618 2619 /* 2620 * Read and clear the SError and err_cause bits. 2621 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear 2622 * the FIS_IRQ_CAUSE register before clearing edma_err_cause. 2623 */ 2624 sata_scr_read(&ap->link, SCR_ERROR, &serr); 2625 sata_scr_write_flush(&ap->link, SCR_ERROR, serr); 2626 2627 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); 2628 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2629 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); 2630 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); 2631 } 2632 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); 2633 2634 if (edma_err_cause & EDMA_ERR_DEV) { 2635 /* 2636 * Device errors during FIS-based switching operation 2637 * require special handling. 2638 */ 2639 if (mv_handle_dev_err(ap, edma_err_cause)) 2640 return; 2641 } 2642 2643 qc = mv_get_active_qc(ap); 2644 ata_ehi_clear_desc(ehi); 2645 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", 2646 edma_err_cause, pp->pp_flags); 2647 2648 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { 2649 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); 2650 if (fis_cause & FIS_IRQ_CAUSE_AN) { 2651 u32 ec = edma_err_cause & 2652 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); 2653 sata_async_notification(ap); 2654 if (!ec) 2655 return; /* Just an AN; no need for the nukes */ 2656 ata_ehi_push_desc(ehi, "SDB notify"); 2657 } 2658 } 2659 /* 2660 * All generations share these EDMA error cause bits: 2661 */ 2662 if (edma_err_cause & EDMA_ERR_DEV) { 2663 err_mask |= AC_ERR_DEV; 2664 action |= ATA_EH_RESET; 2665 ata_ehi_push_desc(ehi, "dev error"); 2666 } 2667 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | 2668 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | 2669 EDMA_ERR_INTRL_PAR)) { 2670 err_mask |= AC_ERR_ATA_BUS; 2671 action |= ATA_EH_RESET; 2672 ata_ehi_push_desc(ehi, "parity error"); 2673 } 2674 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { 2675 ata_ehi_hotplugged(ehi); 2676 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? 2677 "dev disconnect" : "dev connect"); 2678 action |= ATA_EH_RESET; 2679 } 2680 2681 /* 2682 * Gen-I has a different SELF_DIS bit, 2683 * different FREEZE bits, and no SERR bit: 2684 */ 2685 if (IS_GEN_I(hpriv)) { 2686 eh_freeze_mask = EDMA_EH_FREEZE_5; 2687 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { 2688 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2689 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2690 } 2691 } else { 2692 eh_freeze_mask = EDMA_EH_FREEZE; 2693 if (edma_err_cause & EDMA_ERR_SELF_DIS) { 2694 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 2695 ata_ehi_push_desc(ehi, "EDMA self-disable"); 2696 } 2697 if (edma_err_cause & EDMA_ERR_SERR) { 2698 ata_ehi_push_desc(ehi, "SError=%08x", serr); 2699 err_mask |= AC_ERR_ATA_BUS; 2700 action |= ATA_EH_RESET; 2701 } 2702 } 2703 2704 if (!err_mask) { 2705 err_mask = AC_ERR_OTHER; 2706 action |= ATA_EH_RESET; 2707 } 2708 2709 ehi->serror |= serr; 2710 ehi->action |= action; 2711 2712 if (qc) 2713 qc->err_mask |= err_mask; 2714 else 2715 ehi->err_mask |= err_mask; 2716 2717 if (err_mask == AC_ERR_DEV) { 2718 /* 2719 * Cannot do ata_port_freeze() here, 2720 * because it would kill PIO access, 2721 * which is needed for further diagnosis. 2722 */ 2723 mv_eh_freeze(ap); 2724 abort = 1; 2725 } else if (edma_err_cause & eh_freeze_mask) { 2726 /* 2727 * Note to self: ata_port_freeze() calls ata_port_abort() 2728 */ 2729 ata_port_freeze(ap); 2730 } else { 2731 abort = 1; 2732 } 2733 2734 if (abort) { 2735 if (qc) 2736 ata_link_abort(qc->dev->link); 2737 else 2738 ata_port_abort(ap); 2739 } 2740 } 2741 2742 static bool mv_process_crpb_response(struct ata_port *ap, 2743 struct mv_crpb *response, unsigned int tag, int ncq_enabled) 2744 { 2745 u8 ata_status; 2746 u16 edma_status = le16_to_cpu(response->flags); 2747 2748 /* 2749 * edma_status from a response queue entry: 2750 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). 2751 * MSB is saved ATA status from command completion. 2752 */ 2753 if (!ncq_enabled) { 2754 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; 2755 if (err_cause) { 2756 /* 2757 * Error will be seen/handled by 2758 * mv_err_intr(). So do nothing at all here. 2759 */ 2760 return false; 2761 } 2762 } 2763 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; 2764 if (!ac_err_mask(ata_status)) 2765 return true; 2766 /* else: leave it for mv_err_intr() */ 2767 return false; 2768 } 2769 2770 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) 2771 { 2772 void __iomem *port_mmio = mv_ap_base(ap); 2773 struct mv_host_priv *hpriv = ap->host->private_data; 2774 u32 in_index; 2775 bool work_done = false; 2776 u32 done_mask = 0; 2777 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); 2778 2779 /* Get the hardware queue position index */ 2780 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) 2781 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; 2782 2783 /* Process new responses from since the last time we looked */ 2784 while (in_index != pp->resp_idx) { 2785 unsigned int tag; 2786 struct mv_crpb *response = &pp->crpb[pp->resp_idx]; 2787 2788 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; 2789 2790 if (IS_GEN_I(hpriv)) { 2791 /* 50xx: no NCQ, only one command active at a time */ 2792 tag = ap->link.active_tag; 2793 } else { 2794 /* Gen II/IIE: get command tag from CRPB entry */ 2795 tag = le16_to_cpu(response->id) & 0x1f; 2796 } 2797 if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) 2798 done_mask |= 1 << tag; 2799 work_done = true; 2800 } 2801 2802 if (work_done) { 2803 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); 2804 2805 /* Update the software queue position index in hardware */ 2806 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | 2807 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), 2808 port_mmio + EDMA_RSP_Q_OUT_PTR); 2809 } 2810 } 2811 2812 static void mv_port_intr(struct ata_port *ap, u32 port_cause) 2813 { 2814 struct mv_port_priv *pp; 2815 int edma_was_enabled; 2816 2817 /* 2818 * Grab a snapshot of the EDMA_EN flag setting, 2819 * so that we have a consistent view for this port, 2820 * even if something we call of our routines changes it. 2821 */ 2822 pp = ap->private_data; 2823 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); 2824 /* 2825 * Process completed CRPB response(s) before other events. 2826 */ 2827 if (edma_was_enabled && (port_cause & DONE_IRQ)) { 2828 mv_process_crpb_entries(ap, pp); 2829 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) 2830 mv_handle_fbs_ncq_dev_err(ap); 2831 } 2832 /* 2833 * Handle chip-reported errors, or continue on to handle PIO. 2834 */ 2835 if (unlikely(port_cause & ERR_IRQ)) { 2836 mv_err_intr(ap); 2837 } else if (!edma_was_enabled) { 2838 struct ata_queued_cmd *qc = mv_get_active_qc(ap); 2839 if (qc) 2840 ata_bmdma_port_intr(ap, qc); 2841 else 2842 mv_unexpected_intr(ap, edma_was_enabled); 2843 } 2844 } 2845 2846 /** 2847 * mv_host_intr - Handle all interrupts on the given host controller 2848 * @host: host specific structure 2849 * @main_irq_cause: Main interrupt cause register for the chip. 2850 * 2851 * LOCKING: 2852 * Inherited from caller. 2853 */ 2854 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) 2855 { 2856 struct mv_host_priv *hpriv = host->private_data; 2857 void __iomem *mmio = hpriv->base, *hc_mmio; 2858 unsigned int handled = 0, port; 2859 2860 /* If asserted, clear the "all ports" IRQ coalescing bit */ 2861 if (main_irq_cause & ALL_PORTS_COAL_DONE) 2862 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); 2863 2864 for (port = 0; port < hpriv->n_ports; port++) { 2865 struct ata_port *ap = host->ports[port]; 2866 unsigned int p, shift, hardport, port_cause; 2867 2868 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); 2869 /* 2870 * Each hc within the host has its own hc_irq_cause register, 2871 * where the interrupting ports bits get ack'd. 2872 */ 2873 if (hardport == 0) { /* first port on this hc ? */ 2874 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; 2875 u32 port_mask, ack_irqs; 2876 /* 2877 * Skip this entire hc if nothing pending for any ports 2878 */ 2879 if (!hc_cause) { 2880 port += MV_PORTS_PER_HC - 1; 2881 continue; 2882 } 2883 /* 2884 * We don't need/want to read the hc_irq_cause register, 2885 * because doing so hurts performance, and 2886 * main_irq_cause already gives us everything we need. 2887 * 2888 * But we do have to *write* to the hc_irq_cause to ack 2889 * the ports that we are handling this time through. 2890 * 2891 * This requires that we create a bitmap for those 2892 * ports which interrupted us, and use that bitmap 2893 * to ack (only) those ports via hc_irq_cause. 2894 */ 2895 ack_irqs = 0; 2896 if (hc_cause & PORTS_0_3_COAL_DONE) 2897 ack_irqs = HC_COAL_IRQ; 2898 for (p = 0; p < MV_PORTS_PER_HC; ++p) { 2899 if ((port + p) >= hpriv->n_ports) 2900 break; 2901 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); 2902 if (hc_cause & port_mask) 2903 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; 2904 } 2905 hc_mmio = mv_hc_base_from_port(mmio, port); 2906 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); 2907 handled = 1; 2908 } 2909 /* 2910 * Handle interrupts signalled for this port: 2911 */ 2912 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); 2913 if (port_cause) 2914 mv_port_intr(ap, port_cause); 2915 } 2916 return handled; 2917 } 2918 2919 static int mv_pci_error(struct ata_host *host, void __iomem *mmio) 2920 { 2921 struct mv_host_priv *hpriv = host->private_data; 2922 struct ata_port *ap; 2923 struct ata_queued_cmd *qc; 2924 struct ata_eh_info *ehi; 2925 unsigned int i, err_mask, printed = 0; 2926 u32 err_cause; 2927 2928 err_cause = readl(mmio + hpriv->irq_cause_offset); 2929 2930 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); 2931 2932 DPRINTK("All regs @ PCI error\n"); 2933 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); 2934 2935 writelfl(0, mmio + hpriv->irq_cause_offset); 2936 2937 for (i = 0; i < host->n_ports; i++) { 2938 ap = host->ports[i]; 2939 if (!ata_link_offline(&ap->link)) { 2940 ehi = &ap->link.eh_info; 2941 ata_ehi_clear_desc(ehi); 2942 if (!printed++) 2943 ata_ehi_push_desc(ehi, 2944 "PCI err cause 0x%08x", err_cause); 2945 err_mask = AC_ERR_HOST_BUS; 2946 ehi->action = ATA_EH_RESET; 2947 qc = ata_qc_from_tag(ap, ap->link.active_tag); 2948 if (qc) 2949 qc->err_mask |= err_mask; 2950 else 2951 ehi->err_mask |= err_mask; 2952 2953 ata_port_freeze(ap); 2954 } 2955 } 2956 return 1; /* handled */ 2957 } 2958 2959 /** 2960 * mv_interrupt - Main interrupt event handler 2961 * @irq: unused 2962 * @dev_instance: private data; in this case the host structure 2963 * 2964 * Read the read only register to determine if any host 2965 * controllers have pending interrupts. If so, call lower level 2966 * routine to handle. Also check for PCI errors which are only 2967 * reported here. 2968 * 2969 * LOCKING: 2970 * This routine holds the host lock while processing pending 2971 * interrupts. 2972 */ 2973 static irqreturn_t mv_interrupt(int irq, void *dev_instance) 2974 { 2975 struct ata_host *host = dev_instance; 2976 struct mv_host_priv *hpriv = host->private_data; 2977 unsigned int handled = 0; 2978 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; 2979 u32 main_irq_cause, pending_irqs; 2980 2981 spin_lock(&host->lock); 2982 2983 /* for MSI: block new interrupts while in here */ 2984 if (using_msi) 2985 mv_write_main_irq_mask(0, hpriv); 2986 2987 main_irq_cause = readl(hpriv->main_irq_cause_addr); 2988 pending_irqs = main_irq_cause & hpriv->main_irq_mask; 2989 /* 2990 * Deal with cases where we either have nothing pending, or have read 2991 * a bogus register value which can indicate HW removal or PCI fault. 2992 */ 2993 if (pending_irqs && main_irq_cause != 0xffffffffU) { 2994 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) 2995 handled = mv_pci_error(host, hpriv->base); 2996 else 2997 handled = mv_host_intr(host, pending_irqs); 2998 } 2999 3000 /* for MSI: unmask; interrupt cause bits will retrigger now */ 3001 if (using_msi) 3002 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); 3003 3004 spin_unlock(&host->lock); 3005 3006 return IRQ_RETVAL(handled); 3007 } 3008 3009 static unsigned int mv5_scr_offset(unsigned int sc_reg_in) 3010 { 3011 unsigned int ofs; 3012 3013 switch (sc_reg_in) { 3014 case SCR_STATUS: 3015 case SCR_ERROR: 3016 case SCR_CONTROL: 3017 ofs = sc_reg_in * sizeof(u32); 3018 break; 3019 default: 3020 ofs = 0xffffffffU; 3021 break; 3022 } 3023 return ofs; 3024 } 3025 3026 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) 3027 { 3028 struct mv_host_priv *hpriv = link->ap->host->private_data; 3029 void __iomem *mmio = hpriv->base; 3030 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3031 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3032 3033 if (ofs != 0xffffffffU) { 3034 *val = readl(addr + ofs); 3035 return 0; 3036 } else 3037 return -EINVAL; 3038 } 3039 3040 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) 3041 { 3042 struct mv_host_priv *hpriv = link->ap->host->private_data; 3043 void __iomem *mmio = hpriv->base; 3044 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); 3045 unsigned int ofs = mv5_scr_offset(sc_reg_in); 3046 3047 if (ofs != 0xffffffffU) { 3048 writelfl(val, addr + ofs); 3049 return 0; 3050 } else 3051 return -EINVAL; 3052 } 3053 3054 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) 3055 { 3056 struct pci_dev *pdev = to_pci_dev(host->dev); 3057 int early_5080; 3058 3059 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); 3060 3061 if (!early_5080) { 3062 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3063 tmp |= (1 << 0); 3064 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3065 } 3066 3067 mv_reset_pci_bus(host, mmio); 3068 } 3069 3070 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3071 { 3072 writel(0x0fcfffff, mmio + FLASH_CTL); 3073 } 3074 3075 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, 3076 void __iomem *mmio) 3077 { 3078 void __iomem *phy_mmio = mv5_phy_base(mmio, idx); 3079 u32 tmp; 3080 3081 tmp = readl(phy_mmio + MV5_PHY_MODE); 3082 3083 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ 3084 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ 3085 } 3086 3087 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3088 { 3089 u32 tmp; 3090 3091 writel(0, mmio + GPIO_PORT_CTL); 3092 3093 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ 3094 3095 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); 3096 tmp |= ~(1 << 0); 3097 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); 3098 } 3099 3100 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3101 unsigned int port) 3102 { 3103 void __iomem *phy_mmio = mv5_phy_base(mmio, port); 3104 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); 3105 u32 tmp; 3106 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); 3107 3108 if (fix_apm_sq) { 3109 tmp = readl(phy_mmio + MV5_LTMODE); 3110 tmp |= (1 << 19); 3111 writel(tmp, phy_mmio + MV5_LTMODE); 3112 3113 tmp = readl(phy_mmio + MV5_PHY_CTL); 3114 tmp &= ~0x3; 3115 tmp |= 0x1; 3116 writel(tmp, phy_mmio + MV5_PHY_CTL); 3117 } 3118 3119 tmp = readl(phy_mmio + MV5_PHY_MODE); 3120 tmp &= ~mask; 3121 tmp |= hpriv->signal[port].pre; 3122 tmp |= hpriv->signal[port].amps; 3123 writel(tmp, phy_mmio + MV5_PHY_MODE); 3124 } 3125 3126 3127 #undef ZERO 3128 #define ZERO(reg) writel(0, port_mmio + (reg)) 3129 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, 3130 unsigned int port) 3131 { 3132 void __iomem *port_mmio = mv_port_base(mmio, port); 3133 3134 mv_reset_channel(hpriv, mmio, port); 3135 3136 ZERO(0x028); /* command */ 3137 writel(0x11f, port_mmio + EDMA_CFG); 3138 ZERO(0x004); /* timer */ 3139 ZERO(0x008); /* irq err cause */ 3140 ZERO(0x00c); /* irq err mask */ 3141 ZERO(0x010); /* rq bah */ 3142 ZERO(0x014); /* rq inp */ 3143 ZERO(0x018); /* rq outp */ 3144 ZERO(0x01c); /* respq bah */ 3145 ZERO(0x024); /* respq outp */ 3146 ZERO(0x020); /* respq inp */ 3147 ZERO(0x02c); /* test control */ 3148 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); 3149 } 3150 #undef ZERO 3151 3152 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3153 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3154 unsigned int hc) 3155 { 3156 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3157 u32 tmp; 3158 3159 ZERO(0x00c); 3160 ZERO(0x010); 3161 ZERO(0x014); 3162 ZERO(0x018); 3163 3164 tmp = readl(hc_mmio + 0x20); 3165 tmp &= 0x1c1c1c1c; 3166 tmp |= 0x03030303; 3167 writel(tmp, hc_mmio + 0x20); 3168 } 3169 #undef ZERO 3170 3171 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3172 unsigned int n_hc) 3173 { 3174 unsigned int hc, port; 3175 3176 for (hc = 0; hc < n_hc; hc++) { 3177 for (port = 0; port < MV_PORTS_PER_HC; port++) 3178 mv5_reset_hc_port(hpriv, mmio, 3179 (hc * MV_PORTS_PER_HC) + port); 3180 3181 mv5_reset_one_hc(hpriv, mmio, hc); 3182 } 3183 3184 return 0; 3185 } 3186 3187 #undef ZERO 3188 #define ZERO(reg) writel(0, mmio + (reg)) 3189 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) 3190 { 3191 struct mv_host_priv *hpriv = host->private_data; 3192 u32 tmp; 3193 3194 tmp = readl(mmio + MV_PCI_MODE); 3195 tmp &= 0xff00ffff; 3196 writel(tmp, mmio + MV_PCI_MODE); 3197 3198 ZERO(MV_PCI_DISC_TIMER); 3199 ZERO(MV_PCI_MSI_TRIGGER); 3200 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); 3201 ZERO(MV_PCI_SERR_MASK); 3202 ZERO(hpriv->irq_cause_offset); 3203 ZERO(hpriv->irq_mask_offset); 3204 ZERO(MV_PCI_ERR_LOW_ADDRESS); 3205 ZERO(MV_PCI_ERR_HIGH_ADDRESS); 3206 ZERO(MV_PCI_ERR_ATTRIBUTE); 3207 ZERO(MV_PCI_ERR_COMMAND); 3208 } 3209 #undef ZERO 3210 3211 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) 3212 { 3213 u32 tmp; 3214 3215 mv5_reset_flash(hpriv, mmio); 3216 3217 tmp = readl(mmio + GPIO_PORT_CTL); 3218 tmp &= 0x3; 3219 tmp |= (1 << 5) | (1 << 6); 3220 writel(tmp, mmio + GPIO_PORT_CTL); 3221 } 3222 3223 /** 3224 * mv6_reset_hc - Perform the 6xxx global soft reset 3225 * @mmio: base address of the HBA 3226 * 3227 * This routine only applies to 6xxx parts. 3228 * 3229 * LOCKING: 3230 * Inherited from caller. 3231 */ 3232 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, 3233 unsigned int n_hc) 3234 { 3235 void __iomem *reg = mmio + PCI_MAIN_CMD_STS; 3236 int i, rc = 0; 3237 u32 t; 3238 3239 /* Following procedure defined in PCI "main command and status 3240 * register" table. 3241 */ 3242 t = readl(reg); 3243 writel(t | STOP_PCI_MASTER, reg); 3244 3245 for (i = 0; i < 1000; i++) { 3246 udelay(1); 3247 t = readl(reg); 3248 if (PCI_MASTER_EMPTY & t) 3249 break; 3250 } 3251 if (!(PCI_MASTER_EMPTY & t)) { 3252 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); 3253 rc = 1; 3254 goto done; 3255 } 3256 3257 /* set reset */ 3258 i = 5; 3259 do { 3260 writel(t | GLOB_SFT_RST, reg); 3261 t = readl(reg); 3262 udelay(1); 3263 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 3264 3265 if (!(GLOB_SFT_RST & t)) { 3266 printk(KERN_ERR DRV_NAME ": can't set global reset\n"); 3267 rc = 1; 3268 goto done; 3269 } 3270 3271 /* clear reset and *reenable the PCI master* (not mentioned in spec) */ 3272 i = 5; 3273 do { 3274 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); 3275 t = readl(reg); 3276 udelay(1); 3277 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 3278 3279 if (GLOB_SFT_RST & t) { 3280 printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); 3281 rc = 1; 3282 } 3283 done: 3284 return rc; 3285 } 3286 3287 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, 3288 void __iomem *mmio) 3289 { 3290 void __iomem *port_mmio; 3291 u32 tmp; 3292 3293 tmp = readl(mmio + RESET_CFG); 3294 if ((tmp & (1 << 0)) == 0) { 3295 hpriv->signal[idx].amps = 0x7 << 8; 3296 hpriv->signal[idx].pre = 0x1 << 5; 3297 return; 3298 } 3299 3300 port_mmio = mv_port_base(mmio, idx); 3301 tmp = readl(port_mmio + PHY_MODE2); 3302 3303 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3304 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3305 } 3306 3307 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) 3308 { 3309 writel(0x00000060, mmio + GPIO_PORT_CTL); 3310 } 3311 3312 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, 3313 unsigned int port) 3314 { 3315 void __iomem *port_mmio = mv_port_base(mmio, port); 3316 3317 u32 hp_flags = hpriv->hp_flags; 3318 int fix_phy_mode2 = 3319 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3320 int fix_phy_mode4 = 3321 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); 3322 u32 m2, m3; 3323 3324 if (fix_phy_mode2) { 3325 m2 = readl(port_mmio + PHY_MODE2); 3326 m2 &= ~(1 << 16); 3327 m2 |= (1 << 31); 3328 writel(m2, port_mmio + PHY_MODE2); 3329 3330 udelay(200); 3331 3332 m2 = readl(port_mmio + PHY_MODE2); 3333 m2 &= ~((1 << 16) | (1 << 31)); 3334 writel(m2, port_mmio + PHY_MODE2); 3335 3336 udelay(200); 3337 } 3338 3339 /* 3340 * Gen-II/IIe PHY_MODE3 errata RM#2: 3341 * Achieves better receiver noise performance than the h/w default: 3342 */ 3343 m3 = readl(port_mmio + PHY_MODE3); 3344 m3 = (m3 & 0x1f) | (0x5555601 << 5); 3345 3346 /* Guideline 88F5182 (GL# SATA-S11) */ 3347 if (IS_SOC(hpriv)) 3348 m3 &= ~0x1c; 3349 3350 if (fix_phy_mode4) { 3351 u32 m4 = readl(port_mmio + PHY_MODE4); 3352 /* 3353 * Enforce reserved-bit restrictions on GenIIe devices only. 3354 * For earlier chipsets, force only the internal config field 3355 * (workaround for errata FEr SATA#10 part 1). 3356 */ 3357 if (IS_GEN_IIE(hpriv)) 3358 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; 3359 else 3360 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; 3361 writel(m4, port_mmio + PHY_MODE4); 3362 } 3363 /* 3364 * Workaround for 60x1-B2 errata SATA#13: 3365 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, 3366 * so we must always rewrite PHY_MODE3 after PHY_MODE4. 3367 * Or ensure we use writelfl() when writing PHY_MODE4. 3368 */ 3369 writel(m3, port_mmio + PHY_MODE3); 3370 3371 /* Revert values of pre-emphasis and signal amps to the saved ones */ 3372 m2 = readl(port_mmio + PHY_MODE2); 3373 3374 m2 &= ~MV_M2_PREAMP_MASK; 3375 m2 |= hpriv->signal[port].amps; 3376 m2 |= hpriv->signal[port].pre; 3377 m2 &= ~(1 << 16); 3378 3379 /* according to mvSata 3.6.1, some IIE values are fixed */ 3380 if (IS_GEN_IIE(hpriv)) { 3381 m2 &= ~0xC30FF01F; 3382 m2 |= 0x0000900F; 3383 } 3384 3385 writel(m2, port_mmio + PHY_MODE2); 3386 } 3387 3388 /* TODO: use the generic LED interface to configure the SATA Presence */ 3389 /* & Acitivy LEDs on the board */ 3390 static void mv_soc_enable_leds(struct mv_host_priv *hpriv, 3391 void __iomem *mmio) 3392 { 3393 return; 3394 } 3395 3396 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, 3397 void __iomem *mmio) 3398 { 3399 void __iomem *port_mmio; 3400 u32 tmp; 3401 3402 port_mmio = mv_port_base(mmio, idx); 3403 tmp = readl(port_mmio + PHY_MODE2); 3404 3405 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ 3406 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ 3407 } 3408 3409 #undef ZERO 3410 #define ZERO(reg) writel(0, port_mmio + (reg)) 3411 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, 3412 void __iomem *mmio, unsigned int port) 3413 { 3414 void __iomem *port_mmio = mv_port_base(mmio, port); 3415 3416 mv_reset_channel(hpriv, mmio, port); 3417 3418 ZERO(0x028); /* command */ 3419 writel(0x101f, port_mmio + EDMA_CFG); 3420 ZERO(0x004); /* timer */ 3421 ZERO(0x008); /* irq err cause */ 3422 ZERO(0x00c); /* irq err mask */ 3423 ZERO(0x010); /* rq bah */ 3424 ZERO(0x014); /* rq inp */ 3425 ZERO(0x018); /* rq outp */ 3426 ZERO(0x01c); /* respq bah */ 3427 ZERO(0x024); /* respq outp */ 3428 ZERO(0x020); /* respq inp */ 3429 ZERO(0x02c); /* test control */ 3430 writel(0x800, port_mmio + EDMA_IORDY_TMOUT); 3431 } 3432 3433 #undef ZERO 3434 3435 #define ZERO(reg) writel(0, hc_mmio + (reg)) 3436 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, 3437 void __iomem *mmio) 3438 { 3439 void __iomem *hc_mmio = mv_hc_base(mmio, 0); 3440 3441 ZERO(0x00c); 3442 ZERO(0x010); 3443 ZERO(0x014); 3444 3445 } 3446 3447 #undef ZERO 3448 3449 static int mv_soc_reset_hc(struct mv_host_priv *hpriv, 3450 void __iomem *mmio, unsigned int n_hc) 3451 { 3452 unsigned int port; 3453 3454 for (port = 0; port < hpriv->n_ports; port++) 3455 mv_soc_reset_hc_port(hpriv, mmio, port); 3456 3457 mv_soc_reset_one_hc(hpriv, mmio); 3458 3459 return 0; 3460 } 3461 3462 static void mv_soc_reset_flash(struct mv_host_priv *hpriv, 3463 void __iomem *mmio) 3464 { 3465 return; 3466 } 3467 3468 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) 3469 { 3470 return; 3471 } 3472 3473 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, 3474 void __iomem *mmio, unsigned int port) 3475 { 3476 void __iomem *port_mmio = mv_port_base(mmio, port); 3477 u32 reg; 3478 3479 reg = readl(port_mmio + PHY_MODE3); 3480 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */ 3481 reg |= (0x1 << 27); 3482 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */ 3483 reg |= (0x1 << 29); 3484 writel(reg, port_mmio + PHY_MODE3); 3485 3486 reg = readl(port_mmio + PHY_MODE4); 3487 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ 3488 reg |= (0x1 << 16); 3489 writel(reg, port_mmio + PHY_MODE4); 3490 3491 reg = readl(port_mmio + PHY_MODE9_GEN2); 3492 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3493 reg |= 0x8; 3494 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3495 writel(reg, port_mmio + PHY_MODE9_GEN2); 3496 3497 reg = readl(port_mmio + PHY_MODE9_GEN1); 3498 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */ 3499 reg |= 0x8; 3500 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */ 3501 writel(reg, port_mmio + PHY_MODE9_GEN1); 3502 } 3503 3504 /** 3505 * soc_is_65 - check if the soc is 65 nano device 3506 * 3507 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS 3508 * register, this register should contain non-zero value and it exists only 3509 * in the 65 nano devices, when reading it from older devices we get 0. 3510 */ 3511 static bool soc_is_65n(struct mv_host_priv *hpriv) 3512 { 3513 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); 3514 3515 if (readl(port0_mmio + PHYCFG_OFS)) 3516 return true; 3517 return false; 3518 } 3519 3520 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) 3521 { 3522 u32 ifcfg = readl(port_mmio + SATA_IFCFG); 3523 3524 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */ 3525 if (want_gen2i) 3526 ifcfg |= (1 << 7); /* enable gen2i speed */ 3527 writelfl(ifcfg, port_mmio + SATA_IFCFG); 3528 } 3529 3530 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, 3531 unsigned int port_no) 3532 { 3533 void __iomem *port_mmio = mv_port_base(mmio, port_no); 3534 3535 /* 3536 * The datasheet warns against setting EDMA_RESET when EDMA is active 3537 * (but doesn't say what the problem might be). So we first try 3538 * to disable the EDMA engine before doing the EDMA_RESET operation. 3539 */ 3540 mv_stop_edma_engine(port_mmio); 3541 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3542 3543 if (!IS_GEN_I(hpriv)) { 3544 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ 3545 mv_setup_ifcfg(port_mmio, 1); 3546 } 3547 /* 3548 * Strobing EDMA_RESET here causes a hard reset of the SATA transport, 3549 * link, and physical layers. It resets all SATA interface registers 3550 * (except for SATA_IFCFG), and issues a COMRESET to the dev. 3551 */ 3552 writelfl(EDMA_RESET, port_mmio + EDMA_CMD); 3553 udelay(25); /* allow reset propagation */ 3554 writelfl(0, port_mmio + EDMA_CMD); 3555 3556 hpriv->ops->phy_errata(hpriv, mmio, port_no); 3557 3558 if (IS_GEN_I(hpriv)) 3559 mdelay(1); 3560 } 3561 3562 static void mv_pmp_select(struct ata_port *ap, int pmp) 3563 { 3564 if (sata_pmp_supported(ap)) { 3565 void __iomem *port_mmio = mv_ap_base(ap); 3566 u32 reg = readl(port_mmio + SATA_IFCTL); 3567 int old = reg & 0xf; 3568 3569 if (old != pmp) { 3570 reg = (reg & ~0xf) | pmp; 3571 writelfl(reg, port_mmio + SATA_IFCTL); 3572 } 3573 } 3574 } 3575 3576 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, 3577 unsigned long deadline) 3578 { 3579 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3580 return sata_std_hardreset(link, class, deadline); 3581 } 3582 3583 static int mv_softreset(struct ata_link *link, unsigned int *class, 3584 unsigned long deadline) 3585 { 3586 mv_pmp_select(link->ap, sata_srst_pmp(link)); 3587 return ata_sff_softreset(link, class, deadline); 3588 } 3589 3590 static int mv_hardreset(struct ata_link *link, unsigned int *class, 3591 unsigned long deadline) 3592 { 3593 struct ata_port *ap = link->ap; 3594 struct mv_host_priv *hpriv = ap->host->private_data; 3595 struct mv_port_priv *pp = ap->private_data; 3596 void __iomem *mmio = hpriv->base; 3597 int rc, attempts = 0, extra = 0; 3598 u32 sstatus; 3599 bool online; 3600 3601 mv_reset_channel(hpriv, mmio, ap->port_no); 3602 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; 3603 pp->pp_flags &= 3604 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); 3605 3606 /* Workaround for errata FEr SATA#10 (part 2) */ 3607 do { 3608 const unsigned long *timing = 3609 sata_ehc_deb_timing(&link->eh_context); 3610 3611 rc = sata_link_hardreset(link, timing, deadline + extra, 3612 &online, NULL); 3613 rc = online ? -EAGAIN : rc; 3614 if (rc) 3615 return rc; 3616 sata_scr_read(link, SCR_STATUS, &sstatus); 3617 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { 3618 /* Force 1.5gb/s link speed and try again */ 3619 mv_setup_ifcfg(mv_ap_base(ap), 0); 3620 if (time_after(jiffies + HZ, deadline)) 3621 extra = HZ; /* only extend it once, max */ 3622 } 3623 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); 3624 mv_save_cached_regs(ap); 3625 mv_edma_cfg(ap, 0, 0); 3626 3627 return rc; 3628 } 3629 3630 static void mv_eh_freeze(struct ata_port *ap) 3631 { 3632 mv_stop_edma(ap); 3633 mv_enable_port_irqs(ap, 0); 3634 } 3635 3636 static void mv_eh_thaw(struct ata_port *ap) 3637 { 3638 struct mv_host_priv *hpriv = ap->host->private_data; 3639 unsigned int port = ap->port_no; 3640 unsigned int hardport = mv_hardport_from_port(port); 3641 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); 3642 void __iomem *port_mmio = mv_ap_base(ap); 3643 u32 hc_irq_cause; 3644 3645 /* clear EDMA errors on this port */ 3646 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3647 3648 /* clear pending irq events */ 3649 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); 3650 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); 3651 3652 mv_enable_port_irqs(ap, ERR_IRQ); 3653 } 3654 3655 /** 3656 * mv_port_init - Perform some early initialization on a single port. 3657 * @port: libata data structure storing shadow register addresses 3658 * @port_mmio: base address of the port 3659 * 3660 * Initialize shadow register mmio addresses, clear outstanding 3661 * interrupts on the port, and unmask interrupts for the future 3662 * start of the port. 3663 * 3664 * LOCKING: 3665 * Inherited from caller. 3666 */ 3667 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) 3668 { 3669 void __iomem *serr, *shd_base = port_mmio + SHD_BLK; 3670 3671 /* PIO related setup 3672 */ 3673 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); 3674 port->error_addr = 3675 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); 3676 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); 3677 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); 3678 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); 3679 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); 3680 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); 3681 port->status_addr = 3682 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); 3683 /* special case: control/altstatus doesn't have ATA_REG_ address */ 3684 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; 3685 3686 /* Clear any currently outstanding port interrupt conditions */ 3687 serr = port_mmio + mv_scr_offset(SCR_ERROR); 3688 writelfl(readl(serr), serr); 3689 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); 3690 3691 /* unmask all non-transient EDMA error interrupts */ 3692 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); 3693 3694 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 3695 readl(port_mmio + EDMA_CFG), 3696 readl(port_mmio + EDMA_ERR_IRQ_CAUSE), 3697 readl(port_mmio + EDMA_ERR_IRQ_MASK)); 3698 } 3699 3700 static unsigned int mv_in_pcix_mode(struct ata_host *host) 3701 { 3702 struct mv_host_priv *hpriv = host->private_data; 3703 void __iomem *mmio = hpriv->base; 3704 u32 reg; 3705 3706 if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) 3707 return 0; /* not PCI-X capable */ 3708 reg = readl(mmio + MV_PCI_MODE); 3709 if ((reg & MV_PCI_MODE_MASK) == 0) 3710 return 0; /* conventional PCI mode */ 3711 return 1; /* chip is in PCI-X mode */ 3712 } 3713 3714 static int mv_pci_cut_through_okay(struct ata_host *host) 3715 { 3716 struct mv_host_priv *hpriv = host->private_data; 3717 void __iomem *mmio = hpriv->base; 3718 u32 reg; 3719 3720 if (!mv_in_pcix_mode(host)) { 3721 reg = readl(mmio + MV_PCI_COMMAND); 3722 if (reg & MV_PCI_COMMAND_MRDTRIG) 3723 return 0; /* not okay */ 3724 } 3725 return 1; /* okay */ 3726 } 3727 3728 static void mv_60x1b2_errata_pci7(struct ata_host *host) 3729 { 3730 struct mv_host_priv *hpriv = host->private_data; 3731 void __iomem *mmio = hpriv->base; 3732 3733 /* workaround for 60x1-B2 errata PCI#7 */ 3734 if (mv_in_pcix_mode(host)) { 3735 u32 reg = readl(mmio + MV_PCI_COMMAND); 3736 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); 3737 } 3738 } 3739 3740 static int mv_chip_id(struct ata_host *host, unsigned int board_idx) 3741 { 3742 struct pci_dev *pdev = to_pci_dev(host->dev); 3743 struct mv_host_priv *hpriv = host->private_data; 3744 u32 hp_flags = hpriv->hp_flags; 3745 3746 switch (board_idx) { 3747 case chip_5080: 3748 hpriv->ops = &mv5xxx_ops; 3749 hp_flags |= MV_HP_GEN_I; 3750 3751 switch (pdev->revision) { 3752 case 0x1: 3753 hp_flags |= MV_HP_ERRATA_50XXB0; 3754 break; 3755 case 0x3: 3756 hp_flags |= MV_HP_ERRATA_50XXB2; 3757 break; 3758 default: 3759 dev_warn(&pdev->dev, 3760 "Applying 50XXB2 workarounds to unknown rev\n"); 3761 hp_flags |= MV_HP_ERRATA_50XXB2; 3762 break; 3763 } 3764 break; 3765 3766 case chip_504x: 3767 case chip_508x: 3768 hpriv->ops = &mv5xxx_ops; 3769 hp_flags |= MV_HP_GEN_I; 3770 3771 switch (pdev->revision) { 3772 case 0x0: 3773 hp_flags |= MV_HP_ERRATA_50XXB0; 3774 break; 3775 case 0x3: 3776 hp_flags |= MV_HP_ERRATA_50XXB2; 3777 break; 3778 default: 3779 dev_warn(&pdev->dev, 3780 "Applying B2 workarounds to unknown rev\n"); 3781 hp_flags |= MV_HP_ERRATA_50XXB2; 3782 break; 3783 } 3784 break; 3785 3786 case chip_604x: 3787 case chip_608x: 3788 hpriv->ops = &mv6xxx_ops; 3789 hp_flags |= MV_HP_GEN_II; 3790 3791 switch (pdev->revision) { 3792 case 0x7: 3793 mv_60x1b2_errata_pci7(host); 3794 hp_flags |= MV_HP_ERRATA_60X1B2; 3795 break; 3796 case 0x9: 3797 hp_flags |= MV_HP_ERRATA_60X1C0; 3798 break; 3799 default: 3800 dev_warn(&pdev->dev, 3801 "Applying B2 workarounds to unknown rev\n"); 3802 hp_flags |= MV_HP_ERRATA_60X1B2; 3803 break; 3804 } 3805 break; 3806 3807 case chip_7042: 3808 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; 3809 if (pdev->vendor == PCI_VENDOR_ID_TTI && 3810 (pdev->device == 0x2300 || pdev->device == 0x2310)) 3811 { 3812 /* 3813 * Highpoint RocketRAID PCIe 23xx series cards: 3814 * 3815 * Unconfigured drives are treated as "Legacy" 3816 * by the BIOS, and it overwrites sector 8 with 3817 * a "Lgcy" metadata block prior to Linux boot. 3818 * 3819 * Configured drives (RAID or JBOD) leave sector 8 3820 * alone, but instead overwrite a high numbered 3821 * sector for the RAID metadata. This sector can 3822 * be determined exactly, by truncating the physical 3823 * drive capacity to a nice even GB value. 3824 * 3825 * RAID metadata is at: (dev->n_sectors & ~0xfffff) 3826 * 3827 * Warn the user, lest they think we're just buggy. 3828 */ 3829 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" 3830 " BIOS CORRUPTS DATA on all attached drives," 3831 " regardless of if/how they are configured." 3832 " BEWARE!\n"); 3833 printk(KERN_WARNING DRV_NAME ": For data safety, do not" 3834 " use sectors 8-9 on \"Legacy\" drives," 3835 " and avoid the final two gigabytes on" 3836 " all RocketRAID BIOS initialized drives.\n"); 3837 } 3838 /* drop through */ 3839 case chip_6042: 3840 hpriv->ops = &mv6xxx_ops; 3841 hp_flags |= MV_HP_GEN_IIE; 3842 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) 3843 hp_flags |= MV_HP_CUT_THROUGH; 3844 3845 switch (pdev->revision) { 3846 case 0x2: /* Rev.B0: the first/only public release */ 3847 hp_flags |= MV_HP_ERRATA_60X1C0; 3848 break; 3849 default: 3850 dev_warn(&pdev->dev, 3851 "Applying 60X1C0 workarounds to unknown rev\n"); 3852 hp_flags |= MV_HP_ERRATA_60X1C0; 3853 break; 3854 } 3855 break; 3856 case chip_soc: 3857 if (soc_is_65n(hpriv)) 3858 hpriv->ops = &mv_soc_65n_ops; 3859 else 3860 hpriv->ops = &mv_soc_ops; 3861 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | 3862 MV_HP_ERRATA_60X1C0; 3863 break; 3864 3865 default: 3866 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); 3867 return 1; 3868 } 3869 3870 hpriv->hp_flags = hp_flags; 3871 if (hp_flags & MV_HP_PCIE) { 3872 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE; 3873 hpriv->irq_mask_offset = PCIE_IRQ_MASK; 3874 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS; 3875 } else { 3876 hpriv->irq_cause_offset = PCI_IRQ_CAUSE; 3877 hpriv->irq_mask_offset = PCI_IRQ_MASK; 3878 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS; 3879 } 3880 3881 return 0; 3882 } 3883 3884 /** 3885 * mv_init_host - Perform some early initialization of the host. 3886 * @host: ATA host to initialize 3887 * 3888 * If possible, do an early global reset of the host. Then do 3889 * our port init and clear/unmask all/relevant host interrupts. 3890 * 3891 * LOCKING: 3892 * Inherited from caller. 3893 */ 3894 static int mv_init_host(struct ata_host *host) 3895 { 3896 int rc = 0, n_hc, port, hc; 3897 struct mv_host_priv *hpriv = host->private_data; 3898 void __iomem *mmio = hpriv->base; 3899 3900 rc = mv_chip_id(host, hpriv->board_idx); 3901 if (rc) 3902 goto done; 3903 3904 if (IS_SOC(hpriv)) { 3905 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; 3906 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK; 3907 } else { 3908 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; 3909 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK; 3910 } 3911 3912 /* initialize shadow irq mask with register's value */ 3913 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); 3914 3915 /* global interrupt mask: 0 == mask everything */ 3916 mv_set_main_irq_mask(host, ~0, 0); 3917 3918 n_hc = mv_get_hc_count(host->ports[0]->flags); 3919 3920 for (port = 0; port < host->n_ports; port++) 3921 if (hpriv->ops->read_preamp) 3922 hpriv->ops->read_preamp(hpriv, port, mmio); 3923 3924 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); 3925 if (rc) 3926 goto done; 3927 3928 hpriv->ops->reset_flash(hpriv, mmio); 3929 hpriv->ops->reset_bus(host, mmio); 3930 hpriv->ops->enable_leds(hpriv, mmio); 3931 3932 for (port = 0; port < host->n_ports; port++) { 3933 struct ata_port *ap = host->ports[port]; 3934 void __iomem *port_mmio = mv_port_base(mmio, port); 3935 3936 mv_port_init(&ap->ioaddr, port_mmio); 3937 } 3938 3939 for (hc = 0; hc < n_hc; hc++) { 3940 void __iomem *hc_mmio = mv_hc_base(mmio, hc); 3941 3942 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " 3943 "(before clear)=0x%08x\n", hc, 3944 readl(hc_mmio + HC_CFG), 3945 readl(hc_mmio + HC_IRQ_CAUSE)); 3946 3947 /* Clear any currently outstanding hc interrupt conditions */ 3948 writelfl(0, hc_mmio + HC_IRQ_CAUSE); 3949 } 3950 3951 if (!IS_SOC(hpriv)) { 3952 /* Clear any currently outstanding host interrupt conditions */ 3953 writelfl(0, mmio + hpriv->irq_cause_offset); 3954 3955 /* and unmask interrupt generation for host regs */ 3956 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); 3957 } 3958 3959 /* 3960 * enable only global host interrupts for now. 3961 * The per-port interrupts get done later as ports are set up. 3962 */ 3963 mv_set_main_irq_mask(host, 0, PCI_ERR); 3964 mv_set_irq_coalescing(host, irq_coalescing_io_count, 3965 irq_coalescing_usecs); 3966 done: 3967 return rc; 3968 } 3969 3970 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) 3971 { 3972 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, 3973 MV_CRQB_Q_SZ, 0); 3974 if (!hpriv->crqb_pool) 3975 return -ENOMEM; 3976 3977 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, 3978 MV_CRPB_Q_SZ, 0); 3979 if (!hpriv->crpb_pool) 3980 return -ENOMEM; 3981 3982 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, 3983 MV_SG_TBL_SZ, 0); 3984 if (!hpriv->sg_tbl_pool) 3985 return -ENOMEM; 3986 3987 return 0; 3988 } 3989 3990 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, 3991 const struct mbus_dram_target_info *dram) 3992 { 3993 int i; 3994 3995 for (i = 0; i < 4; i++) { 3996 writel(0, hpriv->base + WINDOW_CTRL(i)); 3997 writel(0, hpriv->base + WINDOW_BASE(i)); 3998 } 3999 4000 for (i = 0; i < dram->num_cs; i++) { 4001 const struct mbus_dram_window *cs = dram->cs + i; 4002 4003 writel(((cs->size - 1) & 0xffff0000) | 4004 (cs->mbus_attr << 8) | 4005 (dram->mbus_dram_target_id << 4) | 1, 4006 hpriv->base + WINDOW_CTRL(i)); 4007 writel(cs->base, hpriv->base + WINDOW_BASE(i)); 4008 } 4009 } 4010 4011 /** 4012 * mv_platform_probe - handle a positive probe of an soc Marvell 4013 * host 4014 * @pdev: platform device found 4015 * 4016 * LOCKING: 4017 * Inherited from caller. 4018 */ 4019 static int mv_platform_probe(struct platform_device *pdev) 4020 { 4021 const struct mv_sata_platform_data *mv_platform_data; 4022 const struct mbus_dram_target_info *dram; 4023 const struct ata_port_info *ppi[] = 4024 { &mv_port_info[chip_soc], NULL }; 4025 struct ata_host *host; 4026 struct mv_host_priv *hpriv; 4027 struct resource *res; 4028 int n_ports = 0; 4029 int rc; 4030 4031 ata_print_version_once(&pdev->dev, DRV_VERSION); 4032 4033 /* 4034 * Simple resource validation .. 4035 */ 4036 if (unlikely(pdev->num_resources != 2)) { 4037 dev_err(&pdev->dev, "invalid number of resources\n"); 4038 return -EINVAL; 4039 } 4040 4041 /* 4042 * Get the register base first 4043 */ 4044 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4045 if (res == NULL) 4046 return -EINVAL; 4047 4048 /* allocate host */ 4049 mv_platform_data = pdev->dev.platform_data; 4050 n_ports = mv_platform_data->n_ports; 4051 4052 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4053 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4054 4055 if (!host || !hpriv) 4056 return -ENOMEM; 4057 host->private_data = hpriv; 4058 hpriv->n_ports = n_ports; 4059 hpriv->board_idx = chip_soc; 4060 4061 host->iomap = NULL; 4062 hpriv->base = devm_ioremap(&pdev->dev, res->start, 4063 resource_size(res)); 4064 hpriv->base -= SATAHC0_REG_BASE; 4065 4066 #if defined(CONFIG_HAVE_CLK) 4067 hpriv->clk = clk_get(&pdev->dev, NULL); 4068 if (IS_ERR(hpriv->clk)) 4069 dev_notice(&pdev->dev, "cannot get clkdev\n"); 4070 else 4071 clk_enable(hpriv->clk); 4072 #endif 4073 4074 /* 4075 * (Re-)program MBUS remapping windows if we are asked to. 4076 */ 4077 dram = mv_mbus_dram_info(); 4078 if (dram) 4079 mv_conf_mbus_windows(hpriv, dram); 4080 4081 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4082 if (rc) 4083 goto err; 4084 4085 /* initialize adapter */ 4086 rc = mv_init_host(host); 4087 if (rc) 4088 goto err; 4089 4090 dev_info(&pdev->dev, "slots %u ports %d\n", 4091 (unsigned)MV_MAX_Q_DEPTH, host->n_ports); 4092 4093 rc = ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, 4094 IRQF_SHARED, &mv6_sht); 4095 if (!rc) 4096 return 0; 4097 4098 err: 4099 #if defined(CONFIG_HAVE_CLK) 4100 if (!IS_ERR(hpriv->clk)) { 4101 clk_disable(hpriv->clk); 4102 clk_put(hpriv->clk); 4103 } 4104 #endif 4105 4106 return rc; 4107 } 4108 4109 /* 4110 * 4111 * mv_platform_remove - unplug a platform interface 4112 * @pdev: platform device 4113 * 4114 * A platform bus SATA device has been unplugged. Perform the needed 4115 * cleanup. Also called on module unload for any active devices. 4116 */ 4117 static int __devexit mv_platform_remove(struct platform_device *pdev) 4118 { 4119 struct ata_host *host = platform_get_drvdata(pdev); 4120 #if defined(CONFIG_HAVE_CLK) 4121 struct mv_host_priv *hpriv = host->private_data; 4122 #endif 4123 ata_host_detach(host); 4124 4125 #if defined(CONFIG_HAVE_CLK) 4126 if (!IS_ERR(hpriv->clk)) { 4127 clk_disable(hpriv->clk); 4128 clk_put(hpriv->clk); 4129 } 4130 #endif 4131 return 0; 4132 } 4133 4134 #ifdef CONFIG_PM 4135 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) 4136 { 4137 struct ata_host *host = platform_get_drvdata(pdev); 4138 if (host) 4139 return ata_host_suspend(host, state); 4140 else 4141 return 0; 4142 } 4143 4144 static int mv_platform_resume(struct platform_device *pdev) 4145 { 4146 struct ata_host *host = platform_get_drvdata(pdev); 4147 const struct mbus_dram_target_info *dram; 4148 int ret; 4149 4150 if (host) { 4151 struct mv_host_priv *hpriv = host->private_data; 4152 4153 /* 4154 * (Re-)program MBUS remapping windows if we are asked to. 4155 */ 4156 dram = mv_mbus_dram_info(); 4157 if (dram) 4158 mv_conf_mbus_windows(hpriv, dram); 4159 4160 /* initialize adapter */ 4161 ret = mv_init_host(host); 4162 if (ret) { 4163 printk(KERN_ERR DRV_NAME ": Error during HW init\n"); 4164 return ret; 4165 } 4166 ata_host_resume(host); 4167 } 4168 4169 return 0; 4170 } 4171 #else 4172 #define mv_platform_suspend NULL 4173 #define mv_platform_resume NULL 4174 #endif 4175 4176 static struct platform_driver mv_platform_driver = { 4177 .probe = mv_platform_probe, 4178 .remove = __devexit_p(mv_platform_remove), 4179 .suspend = mv_platform_suspend, 4180 .resume = mv_platform_resume, 4181 .driver = { 4182 .name = DRV_NAME, 4183 .owner = THIS_MODULE, 4184 }, 4185 }; 4186 4187 4188 #ifdef CONFIG_PCI 4189 static int mv_pci_init_one(struct pci_dev *pdev, 4190 const struct pci_device_id *ent); 4191 #ifdef CONFIG_PM 4192 static int mv_pci_device_resume(struct pci_dev *pdev); 4193 #endif 4194 4195 4196 static struct pci_driver mv_pci_driver = { 4197 .name = DRV_NAME, 4198 .id_table = mv_pci_tbl, 4199 .probe = mv_pci_init_one, 4200 .remove = ata_pci_remove_one, 4201 #ifdef CONFIG_PM 4202 .suspend = ata_pci_device_suspend, 4203 .resume = mv_pci_device_resume, 4204 #endif 4205 4206 }; 4207 4208 /* move to PCI layer or libata core? */ 4209 static int pci_go_64(struct pci_dev *pdev) 4210 { 4211 int rc; 4212 4213 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4214 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4215 if (rc) { 4216 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4217 if (rc) { 4218 dev_err(&pdev->dev, 4219 "64-bit DMA enable failed\n"); 4220 return rc; 4221 } 4222 } 4223 } else { 4224 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4225 if (rc) { 4226 dev_err(&pdev->dev, "32-bit DMA enable failed\n"); 4227 return rc; 4228 } 4229 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 4230 if (rc) { 4231 dev_err(&pdev->dev, 4232 "32-bit consistent DMA enable failed\n"); 4233 return rc; 4234 } 4235 } 4236 4237 return rc; 4238 } 4239 4240 /** 4241 * mv_print_info - Dump key info to kernel log for perusal. 4242 * @host: ATA host to print info about 4243 * 4244 * FIXME: complete this. 4245 * 4246 * LOCKING: 4247 * Inherited from caller. 4248 */ 4249 static void mv_print_info(struct ata_host *host) 4250 { 4251 struct pci_dev *pdev = to_pci_dev(host->dev); 4252 struct mv_host_priv *hpriv = host->private_data; 4253 u8 scc; 4254 const char *scc_s, *gen; 4255 4256 /* Use this to determine the HW stepping of the chip so we know 4257 * what errata to workaround 4258 */ 4259 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); 4260 if (scc == 0) 4261 scc_s = "SCSI"; 4262 else if (scc == 0x01) 4263 scc_s = "RAID"; 4264 else 4265 scc_s = "?"; 4266 4267 if (IS_GEN_I(hpriv)) 4268 gen = "I"; 4269 else if (IS_GEN_II(hpriv)) 4270 gen = "II"; 4271 else if (IS_GEN_IIE(hpriv)) 4272 gen = "IIE"; 4273 else 4274 gen = "?"; 4275 4276 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", 4277 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, 4278 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); 4279 } 4280 4281 /** 4282 * mv_pci_init_one - handle a positive probe of a PCI Marvell host 4283 * @pdev: PCI device found 4284 * @ent: PCI device ID entry for the matched host 4285 * 4286 * LOCKING: 4287 * Inherited from caller. 4288 */ 4289 static int mv_pci_init_one(struct pci_dev *pdev, 4290 const struct pci_device_id *ent) 4291 { 4292 unsigned int board_idx = (unsigned int)ent->driver_data; 4293 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; 4294 struct ata_host *host; 4295 struct mv_host_priv *hpriv; 4296 int n_ports, port, rc; 4297 4298 ata_print_version_once(&pdev->dev, DRV_VERSION); 4299 4300 /* allocate host */ 4301 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; 4302 4303 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); 4304 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); 4305 if (!host || !hpriv) 4306 return -ENOMEM; 4307 host->private_data = hpriv; 4308 hpriv->n_ports = n_ports; 4309 hpriv->board_idx = board_idx; 4310 4311 /* acquire resources */ 4312 rc = pcim_enable_device(pdev); 4313 if (rc) 4314 return rc; 4315 4316 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); 4317 if (rc == -EBUSY) 4318 pcim_pin_device(pdev); 4319 if (rc) 4320 return rc; 4321 host->iomap = pcim_iomap_table(pdev); 4322 hpriv->base = host->iomap[MV_PRIMARY_BAR]; 4323 4324 rc = pci_go_64(pdev); 4325 if (rc) 4326 return rc; 4327 4328 rc = mv_create_dma_pools(hpriv, &pdev->dev); 4329 if (rc) 4330 return rc; 4331 4332 for (port = 0; port < host->n_ports; port++) { 4333 struct ata_port *ap = host->ports[port]; 4334 void __iomem *port_mmio = mv_port_base(hpriv->base, port); 4335 unsigned int offset = port_mmio - hpriv->base; 4336 4337 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); 4338 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); 4339 } 4340 4341 /* initialize adapter */ 4342 rc = mv_init_host(host); 4343 if (rc) 4344 return rc; 4345 4346 /* Enable message-switched interrupts, if requested */ 4347 if (msi && pci_enable_msi(pdev) == 0) 4348 hpriv->hp_flags |= MV_HP_FLAG_MSI; 4349 4350 mv_dump_pci_cfg(pdev, 0x68); 4351 mv_print_info(host); 4352 4353 pci_set_master(pdev); 4354 pci_try_set_mwi(pdev); 4355 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, 4356 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); 4357 } 4358 4359 #ifdef CONFIG_PM 4360 static int mv_pci_device_resume(struct pci_dev *pdev) 4361 { 4362 struct ata_host *host = pci_get_drvdata(pdev); 4363 int rc; 4364 4365 rc = ata_pci_device_do_resume(pdev); 4366 if (rc) 4367 return rc; 4368 4369 /* initialize adapter */ 4370 rc = mv_init_host(host); 4371 if (rc) 4372 return rc; 4373 4374 ata_host_resume(host); 4375 4376 return 0; 4377 } 4378 #endif 4379 #endif 4380 4381 static int mv_platform_probe(struct platform_device *pdev); 4382 static int __devexit mv_platform_remove(struct platform_device *pdev); 4383 4384 static int __init mv_init(void) 4385 { 4386 int rc = -ENODEV; 4387 #ifdef CONFIG_PCI 4388 rc = pci_register_driver(&mv_pci_driver); 4389 if (rc < 0) 4390 return rc; 4391 #endif 4392 rc = platform_driver_register(&mv_platform_driver); 4393 4394 #ifdef CONFIG_PCI 4395 if (rc < 0) 4396 pci_unregister_driver(&mv_pci_driver); 4397 #endif 4398 return rc; 4399 } 4400 4401 static void __exit mv_exit(void) 4402 { 4403 #ifdef CONFIG_PCI 4404 pci_unregister_driver(&mv_pci_driver); 4405 #endif 4406 platform_driver_unregister(&mv_platform_driver); 4407 } 4408 4409 MODULE_AUTHOR("Brett Russ"); 4410 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); 4411 MODULE_LICENSE("GPL"); 4412 MODULE_DEVICE_TABLE(pci, mv_pci_tbl); 4413 MODULE_VERSION(DRV_VERSION); 4414 MODULE_ALIAS("platform:" DRV_NAME); 4415 4416 module_init(mv_init); 4417 module_exit(mv_exit); 4418