xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 545e4006)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 /*
26  * sata_mv TODO list:
27  *
28  * --> Errata workaround for NCQ device errors.
29  *
30  * --> More errata workarounds for PCI-X.
31  *
32  * --> Complete a full errata audit for all chipsets to identify others.
33  *
34  * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35  *
36  * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37  *
38  * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39  *
40  * --> Develop a low-power-consumption strategy, and implement it.
41  *
42  * --> [Experiment, low priority] Investigate interrupt coalescing.
43  *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
44  *       the overhead reduced by interrupt mitigation is quite often not
45  *       worth the latency cost.
46  *
47  * --> [Experiment, Marvell value added] Is it possible to use target
48  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
49  *       creating LibATA target mode support would be very interesting.
50  *
51  *       Target mode, for those without docs, is the ability to directly
52  *       connect two SATA ports.
53  */
54 
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
73 
74 #define DRV_NAME	"sata_mv"
75 #define DRV_VERSION	"1.24"
76 
77 enum {
78 	/* BAR's are enumerated in terms of pci_resource_start() terms */
79 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
80 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
81 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
82 
83 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
84 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
85 
86 	MV_PCI_REG_BASE		= 0,
87 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
88 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
89 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
90 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
91 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
92 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
93 
94 	MV_SATAHC0_REG_BASE	= 0x20000,
95 	MV_FLASH_CTL_OFS	= 0x1046c,
96 	MV_GPIO_PORT_CTL_OFS	= 0x104f0,
97 	MV_RESET_CFG_OFS	= 0x180d8,
98 
99 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
100 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
101 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
102 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
103 
104 	MV_MAX_Q_DEPTH		= 32,
105 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
106 
107 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 	 * CRPB needs alignment on a 256B boundary. Size == 256B
109 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
110 	 */
111 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
112 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
113 	MV_MAX_SG_CT		= 256,
114 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
115 
116 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 	MV_PORT_HC_SHIFT	= 2,
118 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
119 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
121 
122 	/* Host Flags */
123 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
124 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
125 
126 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
127 				  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
128 				  ATA_FLAG_PIO_POLLING,
129 
130 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
131 
132 	MV_GENIIE_FLAGS		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
133 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
134 				  ATA_FLAG_NCQ | ATA_FLAG_AN,
135 
136 	CRQB_FLAG_READ		= (1 << 0),
137 	CRQB_TAG_SHIFT		= 1,
138 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
139 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
140 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
141 	CRQB_CMD_ADDR_SHIFT	= 8,
142 	CRQB_CMD_CS		= (0x2 << 11),
143 	CRQB_CMD_LAST		= (1 << 15),
144 
145 	CRPB_FLAG_STATUS_SHIFT	= 8,
146 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
147 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
148 
149 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
150 
151 	/* PCI interface registers */
152 
153 	PCI_COMMAND_OFS		= 0xc00,
154 	PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
155 
156 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
157 	STOP_PCI_MASTER		= (1 << 2),
158 	PCI_MASTER_EMPTY	= (1 << 3),
159 	GLOB_SFT_RST		= (1 << 4),
160 
161 	MV_PCI_MODE_OFS		= 0xd00,
162 	MV_PCI_MODE_MASK	= 0x30,
163 
164 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
165 	MV_PCI_DISC_TIMER	= 0xd04,
166 	MV_PCI_MSI_TRIGGER	= 0xc38,
167 	MV_PCI_SERR_MASK	= 0xc28,
168 	MV_PCI_XBAR_TMOUT_OFS	= 0x1d04,
169 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
170 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
171 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
172 	MV_PCI_ERR_COMMAND	= 0x1d50,
173 
174 	PCI_IRQ_CAUSE_OFS	= 0x1d58,
175 	PCI_IRQ_MASK_OFS	= 0x1d5c,
176 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
177 
178 	PCIE_IRQ_CAUSE_OFS	= 0x1900,
179 	PCIE_IRQ_MASK_OFS	= 0x1910,
180 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
181 
182 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 	PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
184 	PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
185 	SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
186 	SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
187 	ERR_IRQ			= (1 << 0),	/* shift by port # */
188 	DONE_IRQ		= (1 << 1),	/* shift by port # */
189 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
190 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
191 	PCI_ERR			= (1 << 18),
192 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
193 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
194 	PORTS_0_3_COAL_DONE	= (1 << 8),
195 	PORTS_4_7_COAL_DONE	= (1 << 17),
196 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
197 	GPIO_INT		= (1 << 22),
198 	SELF_INT		= (1 << 23),
199 	TWSI_INT		= (1 << 24),
200 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
201 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
202 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
203 
204 	/* SATAHC registers */
205 	HC_CFG_OFS		= 0,
206 
207 	HC_IRQ_CAUSE_OFS	= 0x14,
208 	DMA_IRQ			= (1 << 0),	/* shift by port # */
209 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
210 	DEV_IRQ			= (1 << 8),	/* shift by port # */
211 
212 	/* Shadow block registers */
213 	SHD_BLK_OFS		= 0x100,
214 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
215 
216 	/* SATA registers */
217 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
218 	SATA_ACTIVE_OFS		= 0x350,
219 	SATA_FIS_IRQ_CAUSE_OFS	= 0x364,
220 	SATA_FIS_IRQ_AN		= (1 << 9),	/* async notification */
221 
222 	LTMODE_OFS		= 0x30c,
223 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
224 
225 	PHY_MODE3		= 0x310,
226 	PHY_MODE4		= 0x314,
227 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
228 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
229 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
230 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
231 
232 	PHY_MODE2		= 0x330,
233 	SATA_IFCTL_OFS		= 0x344,
234 	SATA_TESTCTL_OFS	= 0x348,
235 	SATA_IFSTAT_OFS		= 0x34c,
236 	VENDOR_UNIQUE_FIS_OFS	= 0x35c,
237 
238 	FISCFG_OFS		= 0x360,
239 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
240 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
241 
242 	MV5_PHY_MODE		= 0x74,
243 	MV5_LTMODE_OFS		= 0x30,
244 	MV5_PHY_CTL_OFS		= 0x0C,
245 	SATA_INTERFACE_CFG_OFS	= 0x050,
246 
247 	MV_M2_PREAMP_MASK	= 0x7e0,
248 
249 	/* Port registers */
250 	EDMA_CFG_OFS		= 0,
251 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
252 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
253 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
254 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
255 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
256 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
257 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
258 
259 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
260 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
261 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
262 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
263 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
264 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
265 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
266 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
267 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
268 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
269 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
270 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
271 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
272 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
273 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
274 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
275 
276 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
277 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
278 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
279 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
280 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
281 
282 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
283 
284 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
285 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
286 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
287 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
288 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
289 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
290 
291 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
292 
293 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
294 	EDMA_ERR_OVERRUN_5	= (1 << 5),
295 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
296 
297 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
298 				  EDMA_ERR_LNK_CTRL_RX_1 |
299 				  EDMA_ERR_LNK_CTRL_RX_3 |
300 				  EDMA_ERR_LNK_CTRL_TX,
301 
302 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
303 				  EDMA_ERR_PRD_PAR |
304 				  EDMA_ERR_DEV_DCON |
305 				  EDMA_ERR_DEV_CON |
306 				  EDMA_ERR_SERR |
307 				  EDMA_ERR_SELF_DIS |
308 				  EDMA_ERR_CRQB_PAR |
309 				  EDMA_ERR_CRPB_PAR |
310 				  EDMA_ERR_INTRL_PAR |
311 				  EDMA_ERR_IORDY |
312 				  EDMA_ERR_LNK_CTRL_RX_2 |
313 				  EDMA_ERR_LNK_DATA_RX |
314 				  EDMA_ERR_LNK_DATA_TX |
315 				  EDMA_ERR_TRANS_PROTO,
316 
317 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
318 				  EDMA_ERR_PRD_PAR |
319 				  EDMA_ERR_DEV_DCON |
320 				  EDMA_ERR_DEV_CON |
321 				  EDMA_ERR_OVERRUN_5 |
322 				  EDMA_ERR_UNDERRUN_5 |
323 				  EDMA_ERR_SELF_DIS_5 |
324 				  EDMA_ERR_CRQB_PAR |
325 				  EDMA_ERR_CRPB_PAR |
326 				  EDMA_ERR_INTRL_PAR |
327 				  EDMA_ERR_IORDY,
328 
329 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
330 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
331 
332 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
333 	EDMA_REQ_Q_PTR_SHIFT	= 5,
334 
335 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
336 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
337 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
338 	EDMA_RSP_Q_PTR_SHIFT	= 3,
339 
340 	EDMA_CMD_OFS		= 0x28,		/* EDMA command register */
341 	EDMA_EN			= (1 << 0),	/* enable EDMA */
342 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
343 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
344 
345 	EDMA_STATUS_OFS		= 0x30,		/* EDMA engine status */
346 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
347 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
348 
349 	EDMA_IORDY_TMOUT_OFS	= 0x34,
350 	EDMA_ARB_CFG_OFS	= 0x38,
351 
352 	EDMA_HALTCOND_OFS	= 0x60,		/* GenIIe halt conditions */
353 
354 	GEN_II_NCQ_MAX_SECTORS	= 256,		/* max sects/io on Gen2 w/NCQ */
355 
356 	/* Host private flags (hp_flags) */
357 	MV_HP_FLAG_MSI		= (1 << 0),
358 	MV_HP_ERRATA_50XXB0	= (1 << 1),
359 	MV_HP_ERRATA_50XXB2	= (1 << 2),
360 	MV_HP_ERRATA_60X1B2	= (1 << 3),
361 	MV_HP_ERRATA_60X1C0	= (1 << 4),
362 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
363 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
364 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
365 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
366 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
367 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
368 
369 	/* Port private flags (pp_flags) */
370 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
371 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
372 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
373 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
374 };
375 
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
381 
382 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
384 
385 enum {
386 	/* DMA boundary 0xffff is required by the s/g splitting
387 	 * we need on /length/ in mv_fill-sg().
388 	 */
389 	MV_DMA_BOUNDARY		= 0xffffU,
390 
391 	/* mask of register bits containing lower 32 bits
392 	 * of EDMA request queue DMA address
393 	 */
394 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
395 
396 	/* ditto, for response queue */
397 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
398 };
399 
400 enum chip_type {
401 	chip_504x,
402 	chip_508x,
403 	chip_5080,
404 	chip_604x,
405 	chip_608x,
406 	chip_6042,
407 	chip_7042,
408 	chip_soc,
409 };
410 
411 /* Command ReQuest Block: 32B */
412 struct mv_crqb {
413 	__le32			sg_addr;
414 	__le32			sg_addr_hi;
415 	__le16			ctrl_flags;
416 	__le16			ata_cmd[11];
417 };
418 
419 struct mv_crqb_iie {
420 	__le32			addr;
421 	__le32			addr_hi;
422 	__le32			flags;
423 	__le32			len;
424 	__le32			ata_cmd[4];
425 };
426 
427 /* Command ResPonse Block: 8B */
428 struct mv_crpb {
429 	__le16			id;
430 	__le16			flags;
431 	__le32			tmstmp;
432 };
433 
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
435 struct mv_sg {
436 	__le32			addr;
437 	__le32			flags_size;
438 	__le32			addr_hi;
439 	__le32			reserved;
440 };
441 
442 struct mv_port_priv {
443 	struct mv_crqb		*crqb;
444 	dma_addr_t		crqb_dma;
445 	struct mv_crpb		*crpb;
446 	dma_addr_t		crpb_dma;
447 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
448 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
449 
450 	unsigned int		req_idx;
451 	unsigned int		resp_idx;
452 
453 	u32			pp_flags;
454 	unsigned int		delayed_eh_pmp_map;
455 };
456 
457 struct mv_port_signal {
458 	u32			amps;
459 	u32			pre;
460 };
461 
462 struct mv_host_priv {
463 	u32			hp_flags;
464 	u32			main_irq_mask;
465 	struct mv_port_signal	signal[8];
466 	const struct mv_hw_ops	*ops;
467 	int			n_ports;
468 	void __iomem		*base;
469 	void __iomem		*main_irq_cause_addr;
470 	void __iomem		*main_irq_mask_addr;
471 	u32			irq_cause_ofs;
472 	u32			irq_mask_ofs;
473 	u32			unmask_all_irqs;
474 	/*
475 	 * These consistent DMA memory pools give us guaranteed
476 	 * alignment for hardware-accessed data structures,
477 	 * and less memory waste in accomplishing the alignment.
478 	 */
479 	struct dma_pool		*crqb_pool;
480 	struct dma_pool		*crpb_pool;
481 	struct dma_pool		*sg_tbl_pool;
482 };
483 
484 struct mv_hw_ops {
485 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
486 			   unsigned int port);
487 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
489 			   void __iomem *mmio);
490 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
491 			unsigned int n_hc);
492 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
493 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
494 };
495 
496 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
497 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
498 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
499 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
500 static int mv_port_start(struct ata_port *ap);
501 static void mv_port_stop(struct ata_port *ap);
502 static int mv_qc_defer(struct ata_queued_cmd *qc);
503 static void mv_qc_prep(struct ata_queued_cmd *qc);
504 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
506 static int mv_hardreset(struct ata_link *link, unsigned int *class,
507 			unsigned long deadline);
508 static void mv_eh_freeze(struct ata_port *ap);
509 static void mv_eh_thaw(struct ata_port *ap);
510 static void mv6_dev_config(struct ata_device *dev);
511 
512 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
513 			   unsigned int port);
514 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
516 			   void __iomem *mmio);
517 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
518 			unsigned int n_hc);
519 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
521 
522 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
523 			   unsigned int port);
524 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
526 			   void __iomem *mmio);
527 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
528 			unsigned int n_hc);
529 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
530 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
531 				      void __iomem *mmio);
532 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
533 				      void __iomem *mmio);
534 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
535 				  void __iomem *mmio, unsigned int n_hc);
536 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
537 				      void __iomem *mmio);
538 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
539 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
540 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
541 			     unsigned int port_no);
542 static int mv_stop_edma(struct ata_port *ap);
543 static int mv_stop_edma_engine(void __iomem *port_mmio);
544 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
545 
546 static void mv_pmp_select(struct ata_port *ap, int pmp);
547 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
548 				unsigned long deadline);
549 static int  mv_softreset(struct ata_link *link, unsigned int *class,
550 				unsigned long deadline);
551 static void mv_pmp_error_handler(struct ata_port *ap);
552 static void mv_process_crpb_entries(struct ata_port *ap,
553 					struct mv_port_priv *pp);
554 
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556  * because we have to allow room for worst case splitting of
557  * PRDs for 64K boundaries in mv_fill_sg().
558  */
559 static struct scsi_host_template mv5_sht = {
560 	ATA_BASE_SHT(DRV_NAME),
561 	.sg_tablesize		= MV_MAX_SG_CT / 2,
562 	.dma_boundary		= MV_DMA_BOUNDARY,
563 };
564 
565 static struct scsi_host_template mv6_sht = {
566 	ATA_NCQ_SHT(DRV_NAME),
567 	.can_queue		= MV_MAX_Q_DEPTH - 1,
568 	.sg_tablesize		= MV_MAX_SG_CT / 2,
569 	.dma_boundary		= MV_DMA_BOUNDARY,
570 };
571 
572 static struct ata_port_operations mv5_ops = {
573 	.inherits		= &ata_sff_port_ops,
574 
575 	.qc_defer		= mv_qc_defer,
576 	.qc_prep		= mv_qc_prep,
577 	.qc_issue		= mv_qc_issue,
578 
579 	.freeze			= mv_eh_freeze,
580 	.thaw			= mv_eh_thaw,
581 	.hardreset		= mv_hardreset,
582 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
583 	.post_internal_cmd	= ATA_OP_NULL,
584 
585 	.scr_read		= mv5_scr_read,
586 	.scr_write		= mv5_scr_write,
587 
588 	.port_start		= mv_port_start,
589 	.port_stop		= mv_port_stop,
590 };
591 
592 static struct ata_port_operations mv6_ops = {
593 	.inherits		= &mv5_ops,
594 	.dev_config             = mv6_dev_config,
595 	.scr_read		= mv_scr_read,
596 	.scr_write		= mv_scr_write,
597 
598 	.pmp_hardreset		= mv_pmp_hardreset,
599 	.pmp_softreset		= mv_softreset,
600 	.softreset		= mv_softreset,
601 	.error_handler		= mv_pmp_error_handler,
602 };
603 
604 static struct ata_port_operations mv_iie_ops = {
605 	.inherits		= &mv6_ops,
606 	.dev_config		= ATA_OP_NULL,
607 	.qc_prep		= mv_qc_prep_iie,
608 };
609 
610 static const struct ata_port_info mv_port_info[] = {
611 	{  /* chip_504x */
612 		.flags		= MV_COMMON_FLAGS,
613 		.pio_mask	= 0x1f,	/* pio0-4 */
614 		.udma_mask	= ATA_UDMA6,
615 		.port_ops	= &mv5_ops,
616 	},
617 	{  /* chip_508x */
618 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 		.pio_mask	= 0x1f,	/* pio0-4 */
620 		.udma_mask	= ATA_UDMA6,
621 		.port_ops	= &mv5_ops,
622 	},
623 	{  /* chip_5080 */
624 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
625 		.pio_mask	= 0x1f,	/* pio0-4 */
626 		.udma_mask	= ATA_UDMA6,
627 		.port_ops	= &mv5_ops,
628 	},
629 	{  /* chip_604x */
630 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
631 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
632 				  ATA_FLAG_NCQ,
633 		.pio_mask	= 0x1f,	/* pio0-4 */
634 		.udma_mask	= ATA_UDMA6,
635 		.port_ops	= &mv6_ops,
636 	},
637 	{  /* chip_608x */
638 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
639 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
640 				  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
641 		.pio_mask	= 0x1f,	/* pio0-4 */
642 		.udma_mask	= ATA_UDMA6,
643 		.port_ops	= &mv6_ops,
644 	},
645 	{  /* chip_6042 */
646 		.flags		= MV_GENIIE_FLAGS,
647 		.pio_mask	= 0x1f,	/* pio0-4 */
648 		.udma_mask	= ATA_UDMA6,
649 		.port_ops	= &mv_iie_ops,
650 	},
651 	{  /* chip_7042 */
652 		.flags		= MV_GENIIE_FLAGS,
653 		.pio_mask	= 0x1f,	/* pio0-4 */
654 		.udma_mask	= ATA_UDMA6,
655 		.port_ops	= &mv_iie_ops,
656 	},
657 	{  /* chip_soc */
658 		.flags		= MV_GENIIE_FLAGS,
659 		.pio_mask	= 0x1f,	/* pio0-4 */
660 		.udma_mask	= ATA_UDMA6,
661 		.port_ops	= &mv_iie_ops,
662 	},
663 };
664 
665 static const struct pci_device_id mv_pci_tbl[] = {
666 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
667 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
668 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
669 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
670 	/* RocketRAID 1740/174x have different identifiers */
671 	{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
672 	{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
673 
674 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
675 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
676 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
677 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
678 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
679 
680 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
681 
682 	/* Adaptec 1430SA */
683 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
684 
685 	/* Marvell 7042 support */
686 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
687 
688 	/* Highpoint RocketRAID PCIe series */
689 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
690 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
691 
692 	{ }			/* terminate list */
693 };
694 
695 static const struct mv_hw_ops mv5xxx_ops = {
696 	.phy_errata		= mv5_phy_errata,
697 	.enable_leds		= mv5_enable_leds,
698 	.read_preamp		= mv5_read_preamp,
699 	.reset_hc		= mv5_reset_hc,
700 	.reset_flash		= mv5_reset_flash,
701 	.reset_bus		= mv5_reset_bus,
702 };
703 
704 static const struct mv_hw_ops mv6xxx_ops = {
705 	.phy_errata		= mv6_phy_errata,
706 	.enable_leds		= mv6_enable_leds,
707 	.read_preamp		= mv6_read_preamp,
708 	.reset_hc		= mv6_reset_hc,
709 	.reset_flash		= mv6_reset_flash,
710 	.reset_bus		= mv_reset_pci_bus,
711 };
712 
713 static const struct mv_hw_ops mv_soc_ops = {
714 	.phy_errata		= mv6_phy_errata,
715 	.enable_leds		= mv_soc_enable_leds,
716 	.read_preamp		= mv_soc_read_preamp,
717 	.reset_hc		= mv_soc_reset_hc,
718 	.reset_flash		= mv_soc_reset_flash,
719 	.reset_bus		= mv_soc_reset_bus,
720 };
721 
722 /*
723  * Functions
724  */
725 
726 static inline void writelfl(unsigned long data, void __iomem *addr)
727 {
728 	writel(data, addr);
729 	(void) readl(addr);	/* flush to avoid PCI posted write */
730 }
731 
732 static inline unsigned int mv_hc_from_port(unsigned int port)
733 {
734 	return port >> MV_PORT_HC_SHIFT;
735 }
736 
737 static inline unsigned int mv_hardport_from_port(unsigned int port)
738 {
739 	return port & MV_PORT_MASK;
740 }
741 
742 /*
743  * Consolidate some rather tricky bit shift calculations.
744  * This is hot-path stuff, so not a function.
745  * Simple code, with two return values, so macro rather than inline.
746  *
747  * port is the sole input, in range 0..7.
748  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
749  * hardport is the other output, in range 0..3.
750  *
751  * Note that port and hardport may be the same variable in some cases.
752  */
753 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
754 {								\
755 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
756 	hardport = mv_hardport_from_port(port);			\
757 	shift   += hardport * 2;				\
758 }
759 
760 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
761 {
762 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
763 }
764 
765 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
766 						 unsigned int port)
767 {
768 	return mv_hc_base(base, mv_hc_from_port(port));
769 }
770 
771 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
772 {
773 	return  mv_hc_base_from_port(base, port) +
774 		MV_SATAHC_ARBTR_REG_SZ +
775 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
776 }
777 
778 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
779 {
780 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
781 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
782 
783 	return hc_mmio + ofs;
784 }
785 
786 static inline void __iomem *mv_host_base(struct ata_host *host)
787 {
788 	struct mv_host_priv *hpriv = host->private_data;
789 	return hpriv->base;
790 }
791 
792 static inline void __iomem *mv_ap_base(struct ata_port *ap)
793 {
794 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
795 }
796 
797 static inline int mv_get_hc_count(unsigned long port_flags)
798 {
799 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
800 }
801 
802 static void mv_set_edma_ptrs(void __iomem *port_mmio,
803 			     struct mv_host_priv *hpriv,
804 			     struct mv_port_priv *pp)
805 {
806 	u32 index;
807 
808 	/*
809 	 * initialize request queue
810 	 */
811 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
812 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
813 
814 	WARN_ON(pp->crqb_dma & 0x3ff);
815 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
816 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
817 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
818 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
819 
820 	/*
821 	 * initialize response queue
822 	 */
823 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
824 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
825 
826 	WARN_ON(pp->crpb_dma & 0xff);
827 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
828 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
829 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
830 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
831 }
832 
833 static void mv_set_main_irq_mask(struct ata_host *host,
834 				 u32 disable_bits, u32 enable_bits)
835 {
836 	struct mv_host_priv *hpriv = host->private_data;
837 	u32 old_mask, new_mask;
838 
839 	old_mask = hpriv->main_irq_mask;
840 	new_mask = (old_mask & ~disable_bits) | enable_bits;
841 	if (new_mask != old_mask) {
842 		hpriv->main_irq_mask = new_mask;
843 		writelfl(new_mask, hpriv->main_irq_mask_addr);
844 	}
845 }
846 
847 static void mv_enable_port_irqs(struct ata_port *ap,
848 				     unsigned int port_bits)
849 {
850 	unsigned int shift, hardport, port = ap->port_no;
851 	u32 disable_bits, enable_bits;
852 
853 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
854 
855 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
856 	enable_bits  = port_bits << shift;
857 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
858 }
859 
860 /**
861  *      mv_start_dma - Enable eDMA engine
862  *      @base: port base address
863  *      @pp: port private data
864  *
865  *      Verify the local cache of the eDMA state is accurate with a
866  *      WARN_ON.
867  *
868  *      LOCKING:
869  *      Inherited from caller.
870  */
871 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
872 			 struct mv_port_priv *pp, u8 protocol)
873 {
874 	int want_ncq = (protocol == ATA_PROT_NCQ);
875 
876 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
877 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
878 		if (want_ncq != using_ncq)
879 			mv_stop_edma(ap);
880 	}
881 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
882 		struct mv_host_priv *hpriv = ap->host->private_data;
883 		int hardport = mv_hardport_from_port(ap->port_no);
884 		void __iomem *hc_mmio = mv_hc_base_from_port(
885 					mv_host_base(ap->host), hardport);
886 		u32 hc_irq_cause, ipending;
887 
888 		/* clear EDMA event indicators, if any */
889 		writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
890 
891 		/* clear EDMA interrupt indicator, if any */
892 		hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
893 		ipending = (DEV_IRQ | DMA_IRQ) << hardport;
894 		if (hc_irq_cause & ipending) {
895 			writelfl(hc_irq_cause & ~ipending,
896 				 hc_mmio + HC_IRQ_CAUSE_OFS);
897 		}
898 
899 		mv_edma_cfg(ap, want_ncq);
900 
901 		/* clear FIS IRQ Cause */
902 		if (IS_GEN_IIE(hpriv))
903 			writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
904 
905 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
906 		mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
907 
908 		writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
909 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
910 	}
911 }
912 
913 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
914 {
915 	void __iomem *port_mmio = mv_ap_base(ap);
916 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
917 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
918 	int i;
919 
920 	/*
921 	 * Wait for the EDMA engine to finish transactions in progress.
922 	 * No idea what a good "timeout" value might be, but measurements
923 	 * indicate that it often requires hundreds of microseconds
924 	 * with two drives in-use.  So we use the 15msec value above
925 	 * as a rough guess at what even more drives might require.
926 	 */
927 	for (i = 0; i < timeout; ++i) {
928 		u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
929 		if ((edma_stat & empty_idle) == empty_idle)
930 			break;
931 		udelay(per_loop);
932 	}
933 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
934 }
935 
936 /**
937  *      mv_stop_edma_engine - Disable eDMA engine
938  *      @port_mmio: io base address
939  *
940  *      LOCKING:
941  *      Inherited from caller.
942  */
943 static int mv_stop_edma_engine(void __iomem *port_mmio)
944 {
945 	int i;
946 
947 	/* Disable eDMA.  The disable bit auto clears. */
948 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
949 
950 	/* Wait for the chip to confirm eDMA is off. */
951 	for (i = 10000; i > 0; i--) {
952 		u32 reg = readl(port_mmio + EDMA_CMD_OFS);
953 		if (!(reg & EDMA_EN))
954 			return 0;
955 		udelay(10);
956 	}
957 	return -EIO;
958 }
959 
960 static int mv_stop_edma(struct ata_port *ap)
961 {
962 	void __iomem *port_mmio = mv_ap_base(ap);
963 	struct mv_port_priv *pp = ap->private_data;
964 
965 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
966 		return 0;
967 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
968 	mv_wait_for_edma_empty_idle(ap);
969 	if (mv_stop_edma_engine(port_mmio)) {
970 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
971 		return -EIO;
972 	}
973 	return 0;
974 }
975 
976 #ifdef ATA_DEBUG
977 static void mv_dump_mem(void __iomem *start, unsigned bytes)
978 {
979 	int b, w;
980 	for (b = 0; b < bytes; ) {
981 		DPRINTK("%p: ", start + b);
982 		for (w = 0; b < bytes && w < 4; w++) {
983 			printk("%08x ", readl(start + b));
984 			b += sizeof(u32);
985 		}
986 		printk("\n");
987 	}
988 }
989 #endif
990 
991 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
992 {
993 #ifdef ATA_DEBUG
994 	int b, w;
995 	u32 dw;
996 	for (b = 0; b < bytes; ) {
997 		DPRINTK("%02x: ", b);
998 		for (w = 0; b < bytes && w < 4; w++) {
999 			(void) pci_read_config_dword(pdev, b, &dw);
1000 			printk("%08x ", dw);
1001 			b += sizeof(u32);
1002 		}
1003 		printk("\n");
1004 	}
1005 #endif
1006 }
1007 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1008 			     struct pci_dev *pdev)
1009 {
1010 #ifdef ATA_DEBUG
1011 	void __iomem *hc_base = mv_hc_base(mmio_base,
1012 					   port >> MV_PORT_HC_SHIFT);
1013 	void __iomem *port_base;
1014 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1015 
1016 	if (0 > port) {
1017 		start_hc = start_port = 0;
1018 		num_ports = 8;		/* shld be benign for 4 port devs */
1019 		num_hcs = 2;
1020 	} else {
1021 		start_hc = port >> MV_PORT_HC_SHIFT;
1022 		start_port = port;
1023 		num_ports = num_hcs = 1;
1024 	}
1025 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1026 		num_ports > 1 ? num_ports - 1 : start_port);
1027 
1028 	if (NULL != pdev) {
1029 		DPRINTK("PCI config space regs:\n");
1030 		mv_dump_pci_cfg(pdev, 0x68);
1031 	}
1032 	DPRINTK("PCI regs:\n");
1033 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1034 	mv_dump_mem(mmio_base+0xd00, 0x34);
1035 	mv_dump_mem(mmio_base+0xf00, 0x4);
1036 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1037 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1038 		hc_base = mv_hc_base(mmio_base, hc);
1039 		DPRINTK("HC regs (HC %i):\n", hc);
1040 		mv_dump_mem(hc_base, 0x1c);
1041 	}
1042 	for (p = start_port; p < start_port + num_ports; p++) {
1043 		port_base = mv_port_base(mmio_base, p);
1044 		DPRINTK("EDMA regs (port %i):\n", p);
1045 		mv_dump_mem(port_base, 0x54);
1046 		DPRINTK("SATA regs (port %i):\n", p);
1047 		mv_dump_mem(port_base+0x300, 0x60);
1048 	}
1049 #endif
1050 }
1051 
1052 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1053 {
1054 	unsigned int ofs;
1055 
1056 	switch (sc_reg_in) {
1057 	case SCR_STATUS:
1058 	case SCR_CONTROL:
1059 	case SCR_ERROR:
1060 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1061 		break;
1062 	case SCR_ACTIVE:
1063 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1064 		break;
1065 	default:
1066 		ofs = 0xffffffffU;
1067 		break;
1068 	}
1069 	return ofs;
1070 }
1071 
1072 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1073 {
1074 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1075 
1076 	if (ofs != 0xffffffffU) {
1077 		*val = readl(mv_ap_base(ap) + ofs);
1078 		return 0;
1079 	} else
1080 		return -EINVAL;
1081 }
1082 
1083 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1084 {
1085 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1086 
1087 	if (ofs != 0xffffffffU) {
1088 		writelfl(val, mv_ap_base(ap) + ofs);
1089 		return 0;
1090 	} else
1091 		return -EINVAL;
1092 }
1093 
1094 static void mv6_dev_config(struct ata_device *adev)
1095 {
1096 	/*
1097 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1098 	 *
1099 	 * Gen-II does not support NCQ over a port multiplier
1100 	 *  (no FIS-based switching).
1101 	 *
1102 	 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1103 	 * See mv_qc_prep() for more info.
1104 	 */
1105 	if (adev->flags & ATA_DFLAG_NCQ) {
1106 		if (sata_pmp_attached(adev->link->ap)) {
1107 			adev->flags &= ~ATA_DFLAG_NCQ;
1108 			ata_dev_printk(adev, KERN_INFO,
1109 				"NCQ disabled for command-based switching\n");
1110 		} else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1111 			adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1112 			ata_dev_printk(adev, KERN_INFO,
1113 				"max_sectors limited to %u for NCQ\n",
1114 				adev->max_sectors);
1115 		}
1116 	}
1117 }
1118 
1119 static int mv_qc_defer(struct ata_queued_cmd *qc)
1120 {
1121 	struct ata_link *link = qc->dev->link;
1122 	struct ata_port *ap = link->ap;
1123 	struct mv_port_priv *pp = ap->private_data;
1124 
1125 	/*
1126 	 * Don't allow new commands if we're in a delayed EH state
1127 	 * for NCQ and/or FIS-based switching.
1128 	 */
1129 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1130 		return ATA_DEFER_PORT;
1131 	/*
1132 	 * If the port is completely idle, then allow the new qc.
1133 	 */
1134 	if (ap->nr_active_links == 0)
1135 		return 0;
1136 
1137 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138 		/*
1139 		 * The port is operating in host queuing mode (EDMA).
1140 		 * It can accomodate a new qc if the qc protocol
1141 		 * is compatible with the current host queue mode.
1142 		 */
1143 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1144 			/*
1145 			 * The host queue (EDMA) is in NCQ mode.
1146 			 * If the new qc is also an NCQ command,
1147 			 * then allow the new qc.
1148 			 */
1149 			if (qc->tf.protocol == ATA_PROT_NCQ)
1150 				return 0;
1151 		} else {
1152 			/*
1153 			 * The host queue (EDMA) is in non-NCQ, DMA mode.
1154 			 * If the new qc is also a non-NCQ, DMA command,
1155 			 * then allow the new qc.
1156 			 */
1157 			if (qc->tf.protocol == ATA_PROT_DMA)
1158 				return 0;
1159 		}
1160 	}
1161 	return ATA_DEFER_PORT;
1162 }
1163 
1164 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1165 {
1166 	u32 new_fiscfg, old_fiscfg;
1167 	u32 new_ltmode, old_ltmode;
1168 	u32 new_haltcond, old_haltcond;
1169 
1170 	old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1171 	old_ltmode   = readl(port_mmio + LTMODE_OFS);
1172 	old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1173 
1174 	new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1175 	new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1176 	new_haltcond = old_haltcond | EDMA_ERR_DEV;
1177 
1178 	if (want_fbs) {
1179 		new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1180 		new_ltmode = old_ltmode | LTMODE_BIT8;
1181 		if (want_ncq)
1182 			new_haltcond &= ~EDMA_ERR_DEV;
1183 		else
1184 			new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1185 	}
1186 
1187 	if (new_fiscfg != old_fiscfg)
1188 		writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1189 	if (new_ltmode != old_ltmode)
1190 		writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1191 	if (new_haltcond != old_haltcond)
1192 		writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1193 }
1194 
1195 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1196 {
1197 	struct mv_host_priv *hpriv = ap->host->private_data;
1198 	u32 old, new;
1199 
1200 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1201 	old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1202 	if (want_ncq)
1203 		new = old | (1 << 22);
1204 	else
1205 		new = old & ~(1 << 22);
1206 	if (new != old)
1207 		writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1208 }
1209 
1210 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1211 {
1212 	u32 cfg;
1213 	struct mv_port_priv *pp    = ap->private_data;
1214 	struct mv_host_priv *hpriv = ap->host->private_data;
1215 	void __iomem *port_mmio    = mv_ap_base(ap);
1216 
1217 	/* set up non-NCQ EDMA configuration */
1218 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1219 	pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1220 
1221 	if (IS_GEN_I(hpriv))
1222 		cfg |= (1 << 8);	/* enab config burst size mask */
1223 
1224 	else if (IS_GEN_II(hpriv)) {
1225 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1226 		mv_60x1_errata_sata25(ap, want_ncq);
1227 
1228 	} else if (IS_GEN_IIE(hpriv)) {
1229 		int want_fbs = sata_pmp_attached(ap);
1230 		/*
1231 		 * Possible future enhancement:
1232 		 *
1233 		 * The chip can use FBS with non-NCQ, if we allow it,
1234 		 * But first we need to have the error handling in place
1235 		 * for this mode (datasheet section 7.3.15.4.2.3).
1236 		 * So disallow non-NCQ FBS for now.
1237 		 */
1238 		want_fbs &= want_ncq;
1239 
1240 		mv_config_fbs(port_mmio, want_ncq, want_fbs);
1241 
1242 		if (want_fbs) {
1243 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1244 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1245 		}
1246 
1247 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1248 		cfg |= (1 << 22);	/* enab 4-entry host queue cache */
1249 		if (!IS_SOC(hpriv))
1250 			cfg |= (1 << 18);	/* enab early completion */
1251 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1252 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1253 	}
1254 
1255 	if (want_ncq) {
1256 		cfg |= EDMA_CFG_NCQ;
1257 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1258 	} else
1259 		pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1260 
1261 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1262 }
1263 
1264 static void mv_port_free_dma_mem(struct ata_port *ap)
1265 {
1266 	struct mv_host_priv *hpriv = ap->host->private_data;
1267 	struct mv_port_priv *pp = ap->private_data;
1268 	int tag;
1269 
1270 	if (pp->crqb) {
1271 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1272 		pp->crqb = NULL;
1273 	}
1274 	if (pp->crpb) {
1275 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1276 		pp->crpb = NULL;
1277 	}
1278 	/*
1279 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1280 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1281 	 */
1282 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1283 		if (pp->sg_tbl[tag]) {
1284 			if (tag == 0 || !IS_GEN_I(hpriv))
1285 				dma_pool_free(hpriv->sg_tbl_pool,
1286 					      pp->sg_tbl[tag],
1287 					      pp->sg_tbl_dma[tag]);
1288 			pp->sg_tbl[tag] = NULL;
1289 		}
1290 	}
1291 }
1292 
1293 /**
1294  *      mv_port_start - Port specific init/start routine.
1295  *      @ap: ATA channel to manipulate
1296  *
1297  *      Allocate and point to DMA memory, init port private memory,
1298  *      zero indices.
1299  *
1300  *      LOCKING:
1301  *      Inherited from caller.
1302  */
1303 static int mv_port_start(struct ata_port *ap)
1304 {
1305 	struct device *dev = ap->host->dev;
1306 	struct mv_host_priv *hpriv = ap->host->private_data;
1307 	struct mv_port_priv *pp;
1308 	int tag;
1309 
1310 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1311 	if (!pp)
1312 		return -ENOMEM;
1313 	ap->private_data = pp;
1314 
1315 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1316 	if (!pp->crqb)
1317 		return -ENOMEM;
1318 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1319 
1320 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1321 	if (!pp->crpb)
1322 		goto out_port_free_dma_mem;
1323 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1324 
1325 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1326 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1327 		ap->flags |= ATA_FLAG_AN;
1328 	/*
1329 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1330 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1331 	 */
1332 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1333 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1334 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1335 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1336 			if (!pp->sg_tbl[tag])
1337 				goto out_port_free_dma_mem;
1338 		} else {
1339 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1340 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1341 		}
1342 	}
1343 	return 0;
1344 
1345 out_port_free_dma_mem:
1346 	mv_port_free_dma_mem(ap);
1347 	return -ENOMEM;
1348 }
1349 
1350 /**
1351  *      mv_port_stop - Port specific cleanup/stop routine.
1352  *      @ap: ATA channel to manipulate
1353  *
1354  *      Stop DMA, cleanup port memory.
1355  *
1356  *      LOCKING:
1357  *      This routine uses the host lock to protect the DMA stop.
1358  */
1359 static void mv_port_stop(struct ata_port *ap)
1360 {
1361 	mv_stop_edma(ap);
1362 	mv_enable_port_irqs(ap, 0);
1363 	mv_port_free_dma_mem(ap);
1364 }
1365 
1366 /**
1367  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1368  *      @qc: queued command whose SG list to source from
1369  *
1370  *      Populate the SG list and mark the last entry.
1371  *
1372  *      LOCKING:
1373  *      Inherited from caller.
1374  */
1375 static void mv_fill_sg(struct ata_queued_cmd *qc)
1376 {
1377 	struct mv_port_priv *pp = qc->ap->private_data;
1378 	struct scatterlist *sg;
1379 	struct mv_sg *mv_sg, *last_sg = NULL;
1380 	unsigned int si;
1381 
1382 	mv_sg = pp->sg_tbl[qc->tag];
1383 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1384 		dma_addr_t addr = sg_dma_address(sg);
1385 		u32 sg_len = sg_dma_len(sg);
1386 
1387 		while (sg_len) {
1388 			u32 offset = addr & 0xffff;
1389 			u32 len = sg_len;
1390 
1391 			if ((offset + sg_len > 0x10000))
1392 				len = 0x10000 - offset;
1393 
1394 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1395 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1396 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1397 
1398 			sg_len -= len;
1399 			addr += len;
1400 
1401 			last_sg = mv_sg;
1402 			mv_sg++;
1403 		}
1404 	}
1405 
1406 	if (likely(last_sg))
1407 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1408 }
1409 
1410 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1411 {
1412 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1413 		(last ? CRQB_CMD_LAST : 0);
1414 	*cmdw = cpu_to_le16(tmp);
1415 }
1416 
1417 /**
1418  *      mv_qc_prep - Host specific command preparation.
1419  *      @qc: queued command to prepare
1420  *
1421  *      This routine simply redirects to the general purpose routine
1422  *      if command is not DMA.  Else, it handles prep of the CRQB
1423  *      (command request block), does some sanity checking, and calls
1424  *      the SG load routine.
1425  *
1426  *      LOCKING:
1427  *      Inherited from caller.
1428  */
1429 static void mv_qc_prep(struct ata_queued_cmd *qc)
1430 {
1431 	struct ata_port *ap = qc->ap;
1432 	struct mv_port_priv *pp = ap->private_data;
1433 	__le16 *cw;
1434 	struct ata_taskfile *tf;
1435 	u16 flags = 0;
1436 	unsigned in_index;
1437 
1438 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1439 	    (qc->tf.protocol != ATA_PROT_NCQ))
1440 		return;
1441 
1442 	/* Fill in command request block
1443 	 */
1444 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1445 		flags |= CRQB_FLAG_READ;
1446 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1447 	flags |= qc->tag << CRQB_TAG_SHIFT;
1448 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1449 
1450 	/* get current queue index from software */
1451 	in_index = pp->req_idx;
1452 
1453 	pp->crqb[in_index].sg_addr =
1454 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1455 	pp->crqb[in_index].sg_addr_hi =
1456 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1457 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1458 
1459 	cw = &pp->crqb[in_index].ata_cmd[0];
1460 	tf = &qc->tf;
1461 
1462 	/* Sadly, the CRQB cannot accomodate all registers--there are
1463 	 * only 11 bytes...so we must pick and choose required
1464 	 * registers based on the command.  So, we drop feature and
1465 	 * hob_feature for [RW] DMA commands, but they are needed for
1466 	 * NCQ.  NCQ will drop hob_nsect.
1467 	 */
1468 	switch (tf->command) {
1469 	case ATA_CMD_READ:
1470 	case ATA_CMD_READ_EXT:
1471 	case ATA_CMD_WRITE:
1472 	case ATA_CMD_WRITE_EXT:
1473 	case ATA_CMD_WRITE_FUA_EXT:
1474 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1475 		break;
1476 	case ATA_CMD_FPDMA_READ:
1477 	case ATA_CMD_FPDMA_WRITE:
1478 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1479 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1480 		break;
1481 	default:
1482 		/* The only other commands EDMA supports in non-queued and
1483 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1484 		 * of which are defined/used by Linux.  If we get here, this
1485 		 * driver needs work.
1486 		 *
1487 		 * FIXME: modify libata to give qc_prep a return value and
1488 		 * return error here.
1489 		 */
1490 		BUG_ON(tf->command);
1491 		break;
1492 	}
1493 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1494 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1495 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1496 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1497 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1498 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1499 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1500 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1501 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1502 
1503 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1504 		return;
1505 	mv_fill_sg(qc);
1506 }
1507 
1508 /**
1509  *      mv_qc_prep_iie - Host specific command preparation.
1510  *      @qc: queued command to prepare
1511  *
1512  *      This routine simply redirects to the general purpose routine
1513  *      if command is not DMA.  Else, it handles prep of the CRQB
1514  *      (command request block), does some sanity checking, and calls
1515  *      the SG load routine.
1516  *
1517  *      LOCKING:
1518  *      Inherited from caller.
1519  */
1520 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1521 {
1522 	struct ata_port *ap = qc->ap;
1523 	struct mv_port_priv *pp = ap->private_data;
1524 	struct mv_crqb_iie *crqb;
1525 	struct ata_taskfile *tf;
1526 	unsigned in_index;
1527 	u32 flags = 0;
1528 
1529 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1530 	    (qc->tf.protocol != ATA_PROT_NCQ))
1531 		return;
1532 
1533 	/* Fill in Gen IIE command request block */
1534 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1535 		flags |= CRQB_FLAG_READ;
1536 
1537 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1538 	flags |= qc->tag << CRQB_TAG_SHIFT;
1539 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1540 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1541 
1542 	/* get current queue index from software */
1543 	in_index = pp->req_idx;
1544 
1545 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1546 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1547 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1548 	crqb->flags = cpu_to_le32(flags);
1549 
1550 	tf = &qc->tf;
1551 	crqb->ata_cmd[0] = cpu_to_le32(
1552 			(tf->command << 16) |
1553 			(tf->feature << 24)
1554 		);
1555 	crqb->ata_cmd[1] = cpu_to_le32(
1556 			(tf->lbal << 0) |
1557 			(tf->lbam << 8) |
1558 			(tf->lbah << 16) |
1559 			(tf->device << 24)
1560 		);
1561 	crqb->ata_cmd[2] = cpu_to_le32(
1562 			(tf->hob_lbal << 0) |
1563 			(tf->hob_lbam << 8) |
1564 			(tf->hob_lbah << 16) |
1565 			(tf->hob_feature << 24)
1566 		);
1567 	crqb->ata_cmd[3] = cpu_to_le32(
1568 			(tf->nsect << 0) |
1569 			(tf->hob_nsect << 8)
1570 		);
1571 
1572 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1573 		return;
1574 	mv_fill_sg(qc);
1575 }
1576 
1577 /**
1578  *      mv_qc_issue - Initiate a command to the host
1579  *      @qc: queued command to start
1580  *
1581  *      This routine simply redirects to the general purpose routine
1582  *      if command is not DMA.  Else, it sanity checks our local
1583  *      caches of the request producer/consumer indices then enables
1584  *      DMA and bumps the request producer index.
1585  *
1586  *      LOCKING:
1587  *      Inherited from caller.
1588  */
1589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1590 {
1591 	struct ata_port *ap = qc->ap;
1592 	void __iomem *port_mmio = mv_ap_base(ap);
1593 	struct mv_port_priv *pp = ap->private_data;
1594 	u32 in_index;
1595 
1596 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1597 	    (qc->tf.protocol != ATA_PROT_NCQ)) {
1598 		static int limit_warnings = 10;
1599 		/*
1600 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1601 		 *
1602 		 * Someday, we might implement special polling workarounds
1603 		 * for these, but it all seems rather unnecessary since we
1604 		 * normally use only DMA for commands which transfer more
1605 		 * than a single block of data.
1606 		 *
1607 		 * Much of the time, this could just work regardless.
1608 		 * So for now, just log the incident, and allow the attempt.
1609 		 */
1610 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1611 			--limit_warnings;
1612 			ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1613 					": attempting PIO w/multiple DRQ: "
1614 					"this may fail due to h/w errata\n");
1615 		}
1616 		/*
1617 		 * We're about to send a non-EDMA capable command to the
1618 		 * port.  Turn off EDMA so there won't be problems accessing
1619 		 * shadow block, etc registers.
1620 		 */
1621 		mv_stop_edma(ap);
1622 		mv_enable_port_irqs(ap, ERR_IRQ);
1623 		mv_pmp_select(ap, qc->dev->link->pmp);
1624 		return ata_sff_qc_issue(qc);
1625 	}
1626 
1627 	mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1628 
1629 	pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1630 	in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1631 
1632 	/* and write the request in pointer to kick the EDMA to life */
1633 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1634 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1635 
1636 	return 0;
1637 }
1638 
1639 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1640 {
1641 	struct mv_port_priv *pp = ap->private_data;
1642 	struct ata_queued_cmd *qc;
1643 
1644 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1645 		return NULL;
1646 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1647 	if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1648 		qc = NULL;
1649 	return qc;
1650 }
1651 
1652 static void mv_pmp_error_handler(struct ata_port *ap)
1653 {
1654 	unsigned int pmp, pmp_map;
1655 	struct mv_port_priv *pp = ap->private_data;
1656 
1657 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1658 		/*
1659 		 * Perform NCQ error analysis on failed PMPs
1660 		 * before we freeze the port entirely.
1661 		 *
1662 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1663 		 */
1664 		pmp_map = pp->delayed_eh_pmp_map;
1665 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1666 		for (pmp = 0; pmp_map != 0; pmp++) {
1667 			unsigned int this_pmp = (1 << pmp);
1668 			if (pmp_map & this_pmp) {
1669 				struct ata_link *link = &ap->pmp_link[pmp];
1670 				pmp_map &= ~this_pmp;
1671 				ata_eh_analyze_ncq_error(link);
1672 			}
1673 		}
1674 		ata_port_freeze(ap);
1675 	}
1676 	sata_pmp_error_handler(ap);
1677 }
1678 
1679 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1680 {
1681 	void __iomem *port_mmio = mv_ap_base(ap);
1682 
1683 	return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1684 }
1685 
1686 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1687 {
1688 	struct ata_eh_info *ehi;
1689 	unsigned int pmp;
1690 
1691 	/*
1692 	 * Initialize EH info for PMPs which saw device errors
1693 	 */
1694 	ehi = &ap->link.eh_info;
1695 	for (pmp = 0; pmp_map != 0; pmp++) {
1696 		unsigned int this_pmp = (1 << pmp);
1697 		if (pmp_map & this_pmp) {
1698 			struct ata_link *link = &ap->pmp_link[pmp];
1699 
1700 			pmp_map &= ~this_pmp;
1701 			ehi = &link->eh_info;
1702 			ata_ehi_clear_desc(ehi);
1703 			ata_ehi_push_desc(ehi, "dev err");
1704 			ehi->err_mask |= AC_ERR_DEV;
1705 			ehi->action |= ATA_EH_RESET;
1706 			ata_link_abort(link);
1707 		}
1708 	}
1709 }
1710 
1711 static int mv_req_q_empty(struct ata_port *ap)
1712 {
1713 	void __iomem *port_mmio = mv_ap_base(ap);
1714 	u32 in_ptr, out_ptr;
1715 
1716 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1717 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1718 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1719 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1720 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
1721 }
1722 
1723 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1724 {
1725 	struct mv_port_priv *pp = ap->private_data;
1726 	int failed_links;
1727 	unsigned int old_map, new_map;
1728 
1729 	/*
1730 	 * Device error during FBS+NCQ operation:
1731 	 *
1732 	 * Set a port flag to prevent further I/O being enqueued.
1733 	 * Leave the EDMA running to drain outstanding commands from this port.
1734 	 * Perform the post-mortem/EH only when all responses are complete.
1735 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1736 	 */
1737 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1738 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1739 		pp->delayed_eh_pmp_map = 0;
1740 	}
1741 	old_map = pp->delayed_eh_pmp_map;
1742 	new_map = old_map | mv_get_err_pmp_map(ap);
1743 
1744 	if (old_map != new_map) {
1745 		pp->delayed_eh_pmp_map = new_map;
1746 		mv_pmp_eh_prep(ap, new_map & ~old_map);
1747 	}
1748 	failed_links = hweight16(new_map);
1749 
1750 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1751 			"failed_links=%d nr_active_links=%d\n",
1752 			__func__, pp->delayed_eh_pmp_map,
1753 			ap->qc_active, failed_links,
1754 			ap->nr_active_links);
1755 
1756 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1757 		mv_process_crpb_entries(ap, pp);
1758 		mv_stop_edma(ap);
1759 		mv_eh_freeze(ap);
1760 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1761 		return 1;	/* handled */
1762 	}
1763 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1764 	return 1;	/* handled */
1765 }
1766 
1767 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1768 {
1769 	/*
1770 	 * Possible future enhancement:
1771 	 *
1772 	 * FBS+non-NCQ operation is not yet implemented.
1773 	 * See related notes in mv_edma_cfg().
1774 	 *
1775 	 * Device error during FBS+non-NCQ operation:
1776 	 *
1777 	 * We need to snapshot the shadow registers for each failed command.
1778 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1779 	 */
1780 	return 0;	/* not handled */
1781 }
1782 
1783 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1784 {
1785 	struct mv_port_priv *pp = ap->private_data;
1786 
1787 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1788 		return 0;	/* EDMA was not active: not handled */
1789 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1790 		return 0;	/* FBS was not active: not handled */
1791 
1792 	if (!(edma_err_cause & EDMA_ERR_DEV))
1793 		return 0;	/* non DEV error: not handled */
1794 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1795 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1796 		return 0;	/* other problems: not handled */
1797 
1798 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1799 		/*
1800 		 * EDMA should NOT have self-disabled for this case.
1801 		 * If it did, then something is wrong elsewhere,
1802 		 * and we cannot handle it here.
1803 		 */
1804 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1805 			ata_port_printk(ap, KERN_WARNING,
1806 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1807 				__func__, edma_err_cause, pp->pp_flags);
1808 			return 0; /* not handled */
1809 		}
1810 		return mv_handle_fbs_ncq_dev_err(ap);
1811 	} else {
1812 		/*
1813 		 * EDMA should have self-disabled for this case.
1814 		 * If it did not, then something is wrong elsewhere,
1815 		 * and we cannot handle it here.
1816 		 */
1817 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1818 			ata_port_printk(ap, KERN_WARNING,
1819 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1820 				__func__, edma_err_cause, pp->pp_flags);
1821 			return 0; /* not handled */
1822 		}
1823 		return mv_handle_fbs_non_ncq_dev_err(ap);
1824 	}
1825 	return 0;	/* not handled */
1826 }
1827 
1828 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1829 {
1830 	struct ata_eh_info *ehi = &ap->link.eh_info;
1831 	char *when = "idle";
1832 
1833 	ata_ehi_clear_desc(ehi);
1834 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1835 		when = "disabled";
1836 	} else if (edma_was_enabled) {
1837 		when = "EDMA enabled";
1838 	} else {
1839 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1840 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1841 			when = "polling";
1842 	}
1843 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1844 	ehi->err_mask |= AC_ERR_OTHER;
1845 	ehi->action   |= ATA_EH_RESET;
1846 	ata_port_freeze(ap);
1847 }
1848 
1849 /**
1850  *      mv_err_intr - Handle error interrupts on the port
1851  *      @ap: ATA channel to manipulate
1852  *      @qc: affected command (non-NCQ), or NULL
1853  *
1854  *      Most cases require a full reset of the chip's state machine,
1855  *      which also performs a COMRESET.
1856  *      Also, if the port disabled DMA, update our cached copy to match.
1857  *
1858  *      LOCKING:
1859  *      Inherited from caller.
1860  */
1861 static void mv_err_intr(struct ata_port *ap)
1862 {
1863 	void __iomem *port_mmio = mv_ap_base(ap);
1864 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
1865 	u32 fis_cause = 0;
1866 	struct mv_port_priv *pp = ap->private_data;
1867 	struct mv_host_priv *hpriv = ap->host->private_data;
1868 	unsigned int action = 0, err_mask = 0;
1869 	struct ata_eh_info *ehi = &ap->link.eh_info;
1870 	struct ata_queued_cmd *qc;
1871 	int abort = 0;
1872 
1873 	/*
1874 	 * Read and clear the SError and err_cause bits.
1875 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1876 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1877 	 */
1878 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
1879 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1880 
1881 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1882 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1883 		fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1884 		writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1885 	}
1886 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1887 
1888 	if (edma_err_cause & EDMA_ERR_DEV) {
1889 		/*
1890 		 * Device errors during FIS-based switching operation
1891 		 * require special handling.
1892 		 */
1893 		if (mv_handle_dev_err(ap, edma_err_cause))
1894 			return;
1895 	}
1896 
1897 	qc = mv_get_active_qc(ap);
1898 	ata_ehi_clear_desc(ehi);
1899 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1900 			  edma_err_cause, pp->pp_flags);
1901 
1902 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1903 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1904 		if (fis_cause & SATA_FIS_IRQ_AN) {
1905 			u32 ec = edma_err_cause &
1906 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1907 			sata_async_notification(ap);
1908 			if (!ec)
1909 				return; /* Just an AN; no need for the nukes */
1910 			ata_ehi_push_desc(ehi, "SDB notify");
1911 		}
1912 	}
1913 	/*
1914 	 * All generations share these EDMA error cause bits:
1915 	 */
1916 	if (edma_err_cause & EDMA_ERR_DEV) {
1917 		err_mask |= AC_ERR_DEV;
1918 		action |= ATA_EH_RESET;
1919 		ata_ehi_push_desc(ehi, "dev error");
1920 	}
1921 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1922 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1923 			EDMA_ERR_INTRL_PAR)) {
1924 		err_mask |= AC_ERR_ATA_BUS;
1925 		action |= ATA_EH_RESET;
1926 		ata_ehi_push_desc(ehi, "parity error");
1927 	}
1928 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1929 		ata_ehi_hotplugged(ehi);
1930 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1931 			"dev disconnect" : "dev connect");
1932 		action |= ATA_EH_RESET;
1933 	}
1934 
1935 	/*
1936 	 * Gen-I has a different SELF_DIS bit,
1937 	 * different FREEZE bits, and no SERR bit:
1938 	 */
1939 	if (IS_GEN_I(hpriv)) {
1940 		eh_freeze_mask = EDMA_EH_FREEZE_5;
1941 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1942 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1943 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1944 		}
1945 	} else {
1946 		eh_freeze_mask = EDMA_EH_FREEZE;
1947 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1948 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1949 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1950 		}
1951 		if (edma_err_cause & EDMA_ERR_SERR) {
1952 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
1953 			err_mask |= AC_ERR_ATA_BUS;
1954 			action |= ATA_EH_RESET;
1955 		}
1956 	}
1957 
1958 	if (!err_mask) {
1959 		err_mask = AC_ERR_OTHER;
1960 		action |= ATA_EH_RESET;
1961 	}
1962 
1963 	ehi->serror |= serr;
1964 	ehi->action |= action;
1965 
1966 	if (qc)
1967 		qc->err_mask |= err_mask;
1968 	else
1969 		ehi->err_mask |= err_mask;
1970 
1971 	if (err_mask == AC_ERR_DEV) {
1972 		/*
1973 		 * Cannot do ata_port_freeze() here,
1974 		 * because it would kill PIO access,
1975 		 * which is needed for further diagnosis.
1976 		 */
1977 		mv_eh_freeze(ap);
1978 		abort = 1;
1979 	} else if (edma_err_cause & eh_freeze_mask) {
1980 		/*
1981 		 * Note to self: ata_port_freeze() calls ata_port_abort()
1982 		 */
1983 		ata_port_freeze(ap);
1984 	} else {
1985 		abort = 1;
1986 	}
1987 
1988 	if (abort) {
1989 		if (qc)
1990 			ata_link_abort(qc->dev->link);
1991 		else
1992 			ata_port_abort(ap);
1993 	}
1994 }
1995 
1996 static void mv_process_crpb_response(struct ata_port *ap,
1997 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1998 {
1999 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2000 
2001 	if (qc) {
2002 		u8 ata_status;
2003 		u16 edma_status = le16_to_cpu(response->flags);
2004 		/*
2005 		 * edma_status from a response queue entry:
2006 		 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
2007 		 *   MSB is saved ATA status from command completion.
2008 		 */
2009 		if (!ncq_enabled) {
2010 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2011 			if (err_cause) {
2012 				/*
2013 				 * Error will be seen/handled by mv_err_intr().
2014 				 * So do nothing at all here.
2015 				 */
2016 				return;
2017 			}
2018 		}
2019 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2020 		if (!ac_err_mask(ata_status))
2021 			ata_qc_complete(qc);
2022 		/* else: leave it for mv_err_intr() */
2023 	} else {
2024 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2025 				__func__, tag);
2026 	}
2027 }
2028 
2029 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2030 {
2031 	void __iomem *port_mmio = mv_ap_base(ap);
2032 	struct mv_host_priv *hpriv = ap->host->private_data;
2033 	u32 in_index;
2034 	bool work_done = false;
2035 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2036 
2037 	/* Get the hardware queue position index */
2038 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2039 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2040 
2041 	/* Process new responses from since the last time we looked */
2042 	while (in_index != pp->resp_idx) {
2043 		unsigned int tag;
2044 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2045 
2046 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2047 
2048 		if (IS_GEN_I(hpriv)) {
2049 			/* 50xx: no NCQ, only one command active at a time */
2050 			tag = ap->link.active_tag;
2051 		} else {
2052 			/* Gen II/IIE: get command tag from CRPB entry */
2053 			tag = le16_to_cpu(response->id) & 0x1f;
2054 		}
2055 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
2056 		work_done = true;
2057 	}
2058 
2059 	/* Update the software queue position index in hardware */
2060 	if (work_done)
2061 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2062 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2063 			 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2064 }
2065 
2066 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2067 {
2068 	struct mv_port_priv *pp;
2069 	int edma_was_enabled;
2070 
2071 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2072 		mv_unexpected_intr(ap, 0);
2073 		return;
2074 	}
2075 	/*
2076 	 * Grab a snapshot of the EDMA_EN flag setting,
2077 	 * so that we have a consistent view for this port,
2078 	 * even if something we call of our routines changes it.
2079 	 */
2080 	pp = ap->private_data;
2081 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2082 	/*
2083 	 * Process completed CRPB response(s) before other events.
2084 	 */
2085 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2086 		mv_process_crpb_entries(ap, pp);
2087 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2088 			mv_handle_fbs_ncq_dev_err(ap);
2089 	}
2090 	/*
2091 	 * Handle chip-reported errors, or continue on to handle PIO.
2092 	 */
2093 	if (unlikely(port_cause & ERR_IRQ)) {
2094 		mv_err_intr(ap);
2095 	} else if (!edma_was_enabled) {
2096 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2097 		if (qc)
2098 			ata_sff_host_intr(ap, qc);
2099 		else
2100 			mv_unexpected_intr(ap, edma_was_enabled);
2101 	}
2102 }
2103 
2104 /**
2105  *      mv_host_intr - Handle all interrupts on the given host controller
2106  *      @host: host specific structure
2107  *      @main_irq_cause: Main interrupt cause register for the chip.
2108  *
2109  *      LOCKING:
2110  *      Inherited from caller.
2111  */
2112 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2113 {
2114 	struct mv_host_priv *hpriv = host->private_data;
2115 	void __iomem *mmio = hpriv->base, *hc_mmio;
2116 	unsigned int handled = 0, port;
2117 
2118 	for (port = 0; port < hpriv->n_ports; port++) {
2119 		struct ata_port *ap = host->ports[port];
2120 		unsigned int p, shift, hardport, port_cause;
2121 
2122 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2123 		/*
2124 		 * Each hc within the host has its own hc_irq_cause register,
2125 		 * where the interrupting ports bits get ack'd.
2126 		 */
2127 		if (hardport == 0) {	/* first port on this hc ? */
2128 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2129 			u32 port_mask, ack_irqs;
2130 			/*
2131 			 * Skip this entire hc if nothing pending for any ports
2132 			 */
2133 			if (!hc_cause) {
2134 				port += MV_PORTS_PER_HC - 1;
2135 				continue;
2136 			}
2137 			/*
2138 			 * We don't need/want to read the hc_irq_cause register,
2139 			 * because doing so hurts performance, and
2140 			 * main_irq_cause already gives us everything we need.
2141 			 *
2142 			 * But we do have to *write* to the hc_irq_cause to ack
2143 			 * the ports that we are handling this time through.
2144 			 *
2145 			 * This requires that we create a bitmap for those
2146 			 * ports which interrupted us, and use that bitmap
2147 			 * to ack (only) those ports via hc_irq_cause.
2148 			 */
2149 			ack_irqs = 0;
2150 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2151 				if ((port + p) >= hpriv->n_ports)
2152 					break;
2153 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2154 				if (hc_cause & port_mask)
2155 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2156 			}
2157 			hc_mmio = mv_hc_base_from_port(mmio, port);
2158 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2159 			handled = 1;
2160 		}
2161 		/*
2162 		 * Handle interrupts signalled for this port:
2163 		 */
2164 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2165 		if (port_cause)
2166 			mv_port_intr(ap, port_cause);
2167 	}
2168 	return handled;
2169 }
2170 
2171 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2172 {
2173 	struct mv_host_priv *hpriv = host->private_data;
2174 	struct ata_port *ap;
2175 	struct ata_queued_cmd *qc;
2176 	struct ata_eh_info *ehi;
2177 	unsigned int i, err_mask, printed = 0;
2178 	u32 err_cause;
2179 
2180 	err_cause = readl(mmio + hpriv->irq_cause_ofs);
2181 
2182 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2183 		   err_cause);
2184 
2185 	DPRINTK("All regs @ PCI error\n");
2186 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2187 
2188 	writelfl(0, mmio + hpriv->irq_cause_ofs);
2189 
2190 	for (i = 0; i < host->n_ports; i++) {
2191 		ap = host->ports[i];
2192 		if (!ata_link_offline(&ap->link)) {
2193 			ehi = &ap->link.eh_info;
2194 			ata_ehi_clear_desc(ehi);
2195 			if (!printed++)
2196 				ata_ehi_push_desc(ehi,
2197 					"PCI err cause 0x%08x", err_cause);
2198 			err_mask = AC_ERR_HOST_BUS;
2199 			ehi->action = ATA_EH_RESET;
2200 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2201 			if (qc)
2202 				qc->err_mask |= err_mask;
2203 			else
2204 				ehi->err_mask |= err_mask;
2205 
2206 			ata_port_freeze(ap);
2207 		}
2208 	}
2209 	return 1;	/* handled */
2210 }
2211 
2212 /**
2213  *      mv_interrupt - Main interrupt event handler
2214  *      @irq: unused
2215  *      @dev_instance: private data; in this case the host structure
2216  *
2217  *      Read the read only register to determine if any host
2218  *      controllers have pending interrupts.  If so, call lower level
2219  *      routine to handle.  Also check for PCI errors which are only
2220  *      reported here.
2221  *
2222  *      LOCKING:
2223  *      This routine holds the host lock while processing pending
2224  *      interrupts.
2225  */
2226 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2227 {
2228 	struct ata_host *host = dev_instance;
2229 	struct mv_host_priv *hpriv = host->private_data;
2230 	unsigned int handled = 0;
2231 	u32 main_irq_cause, pending_irqs;
2232 
2233 	spin_lock(&host->lock);
2234 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2235 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2236 	/*
2237 	 * Deal with cases where we either have nothing pending, or have read
2238 	 * a bogus register value which can indicate HW removal or PCI fault.
2239 	 */
2240 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2241 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2242 			handled = mv_pci_error(host, hpriv->base);
2243 		else
2244 			handled = mv_host_intr(host, pending_irqs);
2245 	}
2246 	spin_unlock(&host->lock);
2247 	return IRQ_RETVAL(handled);
2248 }
2249 
2250 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2251 {
2252 	unsigned int ofs;
2253 
2254 	switch (sc_reg_in) {
2255 	case SCR_STATUS:
2256 	case SCR_ERROR:
2257 	case SCR_CONTROL:
2258 		ofs = sc_reg_in * sizeof(u32);
2259 		break;
2260 	default:
2261 		ofs = 0xffffffffU;
2262 		break;
2263 	}
2264 	return ofs;
2265 }
2266 
2267 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2268 {
2269 	struct mv_host_priv *hpriv = ap->host->private_data;
2270 	void __iomem *mmio = hpriv->base;
2271 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2272 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2273 
2274 	if (ofs != 0xffffffffU) {
2275 		*val = readl(addr + ofs);
2276 		return 0;
2277 	} else
2278 		return -EINVAL;
2279 }
2280 
2281 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2282 {
2283 	struct mv_host_priv *hpriv = ap->host->private_data;
2284 	void __iomem *mmio = hpriv->base;
2285 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2286 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2287 
2288 	if (ofs != 0xffffffffU) {
2289 		writelfl(val, addr + ofs);
2290 		return 0;
2291 	} else
2292 		return -EINVAL;
2293 }
2294 
2295 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2296 {
2297 	struct pci_dev *pdev = to_pci_dev(host->dev);
2298 	int early_5080;
2299 
2300 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2301 
2302 	if (!early_5080) {
2303 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2304 		tmp |= (1 << 0);
2305 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2306 	}
2307 
2308 	mv_reset_pci_bus(host, mmio);
2309 }
2310 
2311 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2312 {
2313 	writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2314 }
2315 
2316 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2317 			   void __iomem *mmio)
2318 {
2319 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2320 	u32 tmp;
2321 
2322 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2323 
2324 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2325 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2326 }
2327 
2328 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2329 {
2330 	u32 tmp;
2331 
2332 	writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2333 
2334 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2335 
2336 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2337 	tmp |= ~(1 << 0);
2338 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2339 }
2340 
2341 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2342 			   unsigned int port)
2343 {
2344 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2345 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2346 	u32 tmp;
2347 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2348 
2349 	if (fix_apm_sq) {
2350 		tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2351 		tmp |= (1 << 19);
2352 		writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2353 
2354 		tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2355 		tmp &= ~0x3;
2356 		tmp |= 0x1;
2357 		writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2358 	}
2359 
2360 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2361 	tmp &= ~mask;
2362 	tmp |= hpriv->signal[port].pre;
2363 	tmp |= hpriv->signal[port].amps;
2364 	writel(tmp, phy_mmio + MV5_PHY_MODE);
2365 }
2366 
2367 
2368 #undef ZERO
2369 #define ZERO(reg) writel(0, port_mmio + (reg))
2370 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2371 			     unsigned int port)
2372 {
2373 	void __iomem *port_mmio = mv_port_base(mmio, port);
2374 
2375 	mv_reset_channel(hpriv, mmio, port);
2376 
2377 	ZERO(0x028);	/* command */
2378 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
2379 	ZERO(0x004);	/* timer */
2380 	ZERO(0x008);	/* irq err cause */
2381 	ZERO(0x00c);	/* irq err mask */
2382 	ZERO(0x010);	/* rq bah */
2383 	ZERO(0x014);	/* rq inp */
2384 	ZERO(0x018);	/* rq outp */
2385 	ZERO(0x01c);	/* respq bah */
2386 	ZERO(0x024);	/* respq outp */
2387 	ZERO(0x020);	/* respq inp */
2388 	ZERO(0x02c);	/* test control */
2389 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2390 }
2391 #undef ZERO
2392 
2393 #define ZERO(reg) writel(0, hc_mmio + (reg))
2394 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2395 			unsigned int hc)
2396 {
2397 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2398 	u32 tmp;
2399 
2400 	ZERO(0x00c);
2401 	ZERO(0x010);
2402 	ZERO(0x014);
2403 	ZERO(0x018);
2404 
2405 	tmp = readl(hc_mmio + 0x20);
2406 	tmp &= 0x1c1c1c1c;
2407 	tmp |= 0x03030303;
2408 	writel(tmp, hc_mmio + 0x20);
2409 }
2410 #undef ZERO
2411 
2412 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2413 			unsigned int n_hc)
2414 {
2415 	unsigned int hc, port;
2416 
2417 	for (hc = 0; hc < n_hc; hc++) {
2418 		for (port = 0; port < MV_PORTS_PER_HC; port++)
2419 			mv5_reset_hc_port(hpriv, mmio,
2420 					  (hc * MV_PORTS_PER_HC) + port);
2421 
2422 		mv5_reset_one_hc(hpriv, mmio, hc);
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 #undef ZERO
2429 #define ZERO(reg) writel(0, mmio + (reg))
2430 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2431 {
2432 	struct mv_host_priv *hpriv = host->private_data;
2433 	u32 tmp;
2434 
2435 	tmp = readl(mmio + MV_PCI_MODE_OFS);
2436 	tmp &= 0xff00ffff;
2437 	writel(tmp, mmio + MV_PCI_MODE_OFS);
2438 
2439 	ZERO(MV_PCI_DISC_TIMER);
2440 	ZERO(MV_PCI_MSI_TRIGGER);
2441 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2442 	ZERO(MV_PCI_SERR_MASK);
2443 	ZERO(hpriv->irq_cause_ofs);
2444 	ZERO(hpriv->irq_mask_ofs);
2445 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
2446 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2447 	ZERO(MV_PCI_ERR_ATTRIBUTE);
2448 	ZERO(MV_PCI_ERR_COMMAND);
2449 }
2450 #undef ZERO
2451 
2452 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2453 {
2454 	u32 tmp;
2455 
2456 	mv5_reset_flash(hpriv, mmio);
2457 
2458 	tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2459 	tmp &= 0x3;
2460 	tmp |= (1 << 5) | (1 << 6);
2461 	writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2462 }
2463 
2464 /**
2465  *      mv6_reset_hc - Perform the 6xxx global soft reset
2466  *      @mmio: base address of the HBA
2467  *
2468  *      This routine only applies to 6xxx parts.
2469  *
2470  *      LOCKING:
2471  *      Inherited from caller.
2472  */
2473 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2474 			unsigned int n_hc)
2475 {
2476 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2477 	int i, rc = 0;
2478 	u32 t;
2479 
2480 	/* Following procedure defined in PCI "main command and status
2481 	 * register" table.
2482 	 */
2483 	t = readl(reg);
2484 	writel(t | STOP_PCI_MASTER, reg);
2485 
2486 	for (i = 0; i < 1000; i++) {
2487 		udelay(1);
2488 		t = readl(reg);
2489 		if (PCI_MASTER_EMPTY & t)
2490 			break;
2491 	}
2492 	if (!(PCI_MASTER_EMPTY & t)) {
2493 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2494 		rc = 1;
2495 		goto done;
2496 	}
2497 
2498 	/* set reset */
2499 	i = 5;
2500 	do {
2501 		writel(t | GLOB_SFT_RST, reg);
2502 		t = readl(reg);
2503 		udelay(1);
2504 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
2505 
2506 	if (!(GLOB_SFT_RST & t)) {
2507 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2508 		rc = 1;
2509 		goto done;
2510 	}
2511 
2512 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
2513 	i = 5;
2514 	do {
2515 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2516 		t = readl(reg);
2517 		udelay(1);
2518 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
2519 
2520 	if (GLOB_SFT_RST & t) {
2521 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2522 		rc = 1;
2523 	}
2524 done:
2525 	return rc;
2526 }
2527 
2528 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2529 			   void __iomem *mmio)
2530 {
2531 	void __iomem *port_mmio;
2532 	u32 tmp;
2533 
2534 	tmp = readl(mmio + MV_RESET_CFG_OFS);
2535 	if ((tmp & (1 << 0)) == 0) {
2536 		hpriv->signal[idx].amps = 0x7 << 8;
2537 		hpriv->signal[idx].pre = 0x1 << 5;
2538 		return;
2539 	}
2540 
2541 	port_mmio = mv_port_base(mmio, idx);
2542 	tmp = readl(port_mmio + PHY_MODE2);
2543 
2544 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2545 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2546 }
2547 
2548 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2549 {
2550 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2551 }
2552 
2553 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2554 			   unsigned int port)
2555 {
2556 	void __iomem *port_mmio = mv_port_base(mmio, port);
2557 
2558 	u32 hp_flags = hpriv->hp_flags;
2559 	int fix_phy_mode2 =
2560 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2561 	int fix_phy_mode4 =
2562 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2563 	u32 m2, m3;
2564 
2565 	if (fix_phy_mode2) {
2566 		m2 = readl(port_mmio + PHY_MODE2);
2567 		m2 &= ~(1 << 16);
2568 		m2 |= (1 << 31);
2569 		writel(m2, port_mmio + PHY_MODE2);
2570 
2571 		udelay(200);
2572 
2573 		m2 = readl(port_mmio + PHY_MODE2);
2574 		m2 &= ~((1 << 16) | (1 << 31));
2575 		writel(m2, port_mmio + PHY_MODE2);
2576 
2577 		udelay(200);
2578 	}
2579 
2580 	/*
2581 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
2582 	 * Achieves better receiver noise performance than the h/w default:
2583 	 */
2584 	m3 = readl(port_mmio + PHY_MODE3);
2585 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
2586 
2587 	/* Guideline 88F5182 (GL# SATA-S11) */
2588 	if (IS_SOC(hpriv))
2589 		m3 &= ~0x1c;
2590 
2591 	if (fix_phy_mode4) {
2592 		u32 m4 = readl(port_mmio + PHY_MODE4);
2593 		/*
2594 		 * Enforce reserved-bit restrictions on GenIIe devices only.
2595 		 * For earlier chipsets, force only the internal config field
2596 		 *  (workaround for errata FEr SATA#10 part 1).
2597 		 */
2598 		if (IS_GEN_IIE(hpriv))
2599 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2600 		else
2601 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2602 		writel(m4, port_mmio + PHY_MODE4);
2603 	}
2604 	/*
2605 	 * Workaround for 60x1-B2 errata SATA#13:
2606 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2607 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2608 	 */
2609 	writel(m3, port_mmio + PHY_MODE3);
2610 
2611 	/* Revert values of pre-emphasis and signal amps to the saved ones */
2612 	m2 = readl(port_mmio + PHY_MODE2);
2613 
2614 	m2 &= ~MV_M2_PREAMP_MASK;
2615 	m2 |= hpriv->signal[port].amps;
2616 	m2 |= hpriv->signal[port].pre;
2617 	m2 &= ~(1 << 16);
2618 
2619 	/* according to mvSata 3.6.1, some IIE values are fixed */
2620 	if (IS_GEN_IIE(hpriv)) {
2621 		m2 &= ~0xC30FF01F;
2622 		m2 |= 0x0000900F;
2623 	}
2624 
2625 	writel(m2, port_mmio + PHY_MODE2);
2626 }
2627 
2628 /* TODO: use the generic LED interface to configure the SATA Presence */
2629 /* & Acitivy LEDs on the board */
2630 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2631 				      void __iomem *mmio)
2632 {
2633 	return;
2634 }
2635 
2636 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2637 			   void __iomem *mmio)
2638 {
2639 	void __iomem *port_mmio;
2640 	u32 tmp;
2641 
2642 	port_mmio = mv_port_base(mmio, idx);
2643 	tmp = readl(port_mmio + PHY_MODE2);
2644 
2645 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2646 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2647 }
2648 
2649 #undef ZERO
2650 #define ZERO(reg) writel(0, port_mmio + (reg))
2651 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2652 					void __iomem *mmio, unsigned int port)
2653 {
2654 	void __iomem *port_mmio = mv_port_base(mmio, port);
2655 
2656 	mv_reset_channel(hpriv, mmio, port);
2657 
2658 	ZERO(0x028);		/* command */
2659 	writel(0x101f, port_mmio + EDMA_CFG_OFS);
2660 	ZERO(0x004);		/* timer */
2661 	ZERO(0x008);		/* irq err cause */
2662 	ZERO(0x00c);		/* irq err mask */
2663 	ZERO(0x010);		/* rq bah */
2664 	ZERO(0x014);		/* rq inp */
2665 	ZERO(0x018);		/* rq outp */
2666 	ZERO(0x01c);		/* respq bah */
2667 	ZERO(0x024);		/* respq outp */
2668 	ZERO(0x020);		/* respq inp */
2669 	ZERO(0x02c);		/* test control */
2670 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2671 }
2672 
2673 #undef ZERO
2674 
2675 #define ZERO(reg) writel(0, hc_mmio + (reg))
2676 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2677 				       void __iomem *mmio)
2678 {
2679 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2680 
2681 	ZERO(0x00c);
2682 	ZERO(0x010);
2683 	ZERO(0x014);
2684 
2685 }
2686 
2687 #undef ZERO
2688 
2689 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2690 				  void __iomem *mmio, unsigned int n_hc)
2691 {
2692 	unsigned int port;
2693 
2694 	for (port = 0; port < hpriv->n_ports; port++)
2695 		mv_soc_reset_hc_port(hpriv, mmio, port);
2696 
2697 	mv_soc_reset_one_hc(hpriv, mmio);
2698 
2699 	return 0;
2700 }
2701 
2702 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2703 				      void __iomem *mmio)
2704 {
2705 	return;
2706 }
2707 
2708 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2709 {
2710 	return;
2711 }
2712 
2713 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2714 {
2715 	u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2716 
2717 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
2718 	if (want_gen2i)
2719 		ifcfg |= (1 << 7);		/* enable gen2i speed */
2720 	writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2721 }
2722 
2723 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2724 			     unsigned int port_no)
2725 {
2726 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
2727 
2728 	/*
2729 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
2730 	 * (but doesn't say what the problem might be).  So we first try
2731 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
2732 	 */
2733 	mv_stop_edma_engine(port_mmio);
2734 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2735 
2736 	if (!IS_GEN_I(hpriv)) {
2737 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2738 		mv_setup_ifcfg(port_mmio, 1);
2739 	}
2740 	/*
2741 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2742 	 * link, and physical layers.  It resets all SATA interface registers
2743 	 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2744 	 */
2745 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2746 	udelay(25);	/* allow reset propagation */
2747 	writelfl(0, port_mmio + EDMA_CMD_OFS);
2748 
2749 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
2750 
2751 	if (IS_GEN_I(hpriv))
2752 		mdelay(1);
2753 }
2754 
2755 static void mv_pmp_select(struct ata_port *ap, int pmp)
2756 {
2757 	if (sata_pmp_supported(ap)) {
2758 		void __iomem *port_mmio = mv_ap_base(ap);
2759 		u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2760 		int old = reg & 0xf;
2761 
2762 		if (old != pmp) {
2763 			reg = (reg & ~0xf) | pmp;
2764 			writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2765 		}
2766 	}
2767 }
2768 
2769 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2770 				unsigned long deadline)
2771 {
2772 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2773 	return sata_std_hardreset(link, class, deadline);
2774 }
2775 
2776 static int mv_softreset(struct ata_link *link, unsigned int *class,
2777 				unsigned long deadline)
2778 {
2779 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2780 	return ata_sff_softreset(link, class, deadline);
2781 }
2782 
2783 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2784 			unsigned long deadline)
2785 {
2786 	struct ata_port *ap = link->ap;
2787 	struct mv_host_priv *hpriv = ap->host->private_data;
2788 	struct mv_port_priv *pp = ap->private_data;
2789 	void __iomem *mmio = hpriv->base;
2790 	int rc, attempts = 0, extra = 0;
2791 	u32 sstatus;
2792 	bool online;
2793 
2794 	mv_reset_channel(hpriv, mmio, ap->port_no);
2795 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2796 
2797 	/* Workaround for errata FEr SATA#10 (part 2) */
2798 	do {
2799 		const unsigned long *timing =
2800 				sata_ehc_deb_timing(&link->eh_context);
2801 
2802 		rc = sata_link_hardreset(link, timing, deadline + extra,
2803 					 &online, NULL);
2804 		rc = online ? -EAGAIN : rc;
2805 		if (rc)
2806 			return rc;
2807 		sata_scr_read(link, SCR_STATUS, &sstatus);
2808 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2809 			/* Force 1.5gb/s link speed and try again */
2810 			mv_setup_ifcfg(mv_ap_base(ap), 0);
2811 			if (time_after(jiffies + HZ, deadline))
2812 				extra = HZ; /* only extend it once, max */
2813 		}
2814 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2815 
2816 	return rc;
2817 }
2818 
2819 static void mv_eh_freeze(struct ata_port *ap)
2820 {
2821 	mv_stop_edma(ap);
2822 	mv_enable_port_irqs(ap, 0);
2823 }
2824 
2825 static void mv_eh_thaw(struct ata_port *ap)
2826 {
2827 	struct mv_host_priv *hpriv = ap->host->private_data;
2828 	unsigned int port = ap->port_no;
2829 	unsigned int hardport = mv_hardport_from_port(port);
2830 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2831 	void __iomem *port_mmio = mv_ap_base(ap);
2832 	u32 hc_irq_cause;
2833 
2834 	/* clear EDMA errors on this port */
2835 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2836 
2837 	/* clear pending irq events */
2838 	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2839 	hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2840 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2841 
2842 	mv_enable_port_irqs(ap, ERR_IRQ);
2843 }
2844 
2845 /**
2846  *      mv_port_init - Perform some early initialization on a single port.
2847  *      @port: libata data structure storing shadow register addresses
2848  *      @port_mmio: base address of the port
2849  *
2850  *      Initialize shadow register mmio addresses, clear outstanding
2851  *      interrupts on the port, and unmask interrupts for the future
2852  *      start of the port.
2853  *
2854  *      LOCKING:
2855  *      Inherited from caller.
2856  */
2857 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2858 {
2859 	void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2860 	unsigned serr_ofs;
2861 
2862 	/* PIO related setup
2863 	 */
2864 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2865 	port->error_addr =
2866 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2867 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2868 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2869 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2870 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2871 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2872 	port->status_addr =
2873 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2874 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2875 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2876 
2877 	/* unused: */
2878 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2879 
2880 	/* Clear any currently outstanding port interrupt conditions */
2881 	serr_ofs = mv_scr_offset(SCR_ERROR);
2882 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2883 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2884 
2885 	/* unmask all non-transient EDMA error interrupts */
2886 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2887 
2888 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2889 		readl(port_mmio + EDMA_CFG_OFS),
2890 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2891 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2892 }
2893 
2894 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2895 {
2896 	struct mv_host_priv *hpriv = host->private_data;
2897 	void __iomem *mmio = hpriv->base;
2898 	u32 reg;
2899 
2900 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2901 		return 0;	/* not PCI-X capable */
2902 	reg = readl(mmio + MV_PCI_MODE_OFS);
2903 	if ((reg & MV_PCI_MODE_MASK) == 0)
2904 		return 0;	/* conventional PCI mode */
2905 	return 1;	/* chip is in PCI-X mode */
2906 }
2907 
2908 static int mv_pci_cut_through_okay(struct ata_host *host)
2909 {
2910 	struct mv_host_priv *hpriv = host->private_data;
2911 	void __iomem *mmio = hpriv->base;
2912 	u32 reg;
2913 
2914 	if (!mv_in_pcix_mode(host)) {
2915 		reg = readl(mmio + PCI_COMMAND_OFS);
2916 		if (reg & PCI_COMMAND_MRDTRIG)
2917 			return 0; /* not okay */
2918 	}
2919 	return 1; /* okay */
2920 }
2921 
2922 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2923 {
2924 	struct pci_dev *pdev = to_pci_dev(host->dev);
2925 	struct mv_host_priv *hpriv = host->private_data;
2926 	u32 hp_flags = hpriv->hp_flags;
2927 
2928 	switch (board_idx) {
2929 	case chip_5080:
2930 		hpriv->ops = &mv5xxx_ops;
2931 		hp_flags |= MV_HP_GEN_I;
2932 
2933 		switch (pdev->revision) {
2934 		case 0x1:
2935 			hp_flags |= MV_HP_ERRATA_50XXB0;
2936 			break;
2937 		case 0x3:
2938 			hp_flags |= MV_HP_ERRATA_50XXB2;
2939 			break;
2940 		default:
2941 			dev_printk(KERN_WARNING, &pdev->dev,
2942 			   "Applying 50XXB2 workarounds to unknown rev\n");
2943 			hp_flags |= MV_HP_ERRATA_50XXB2;
2944 			break;
2945 		}
2946 		break;
2947 
2948 	case chip_504x:
2949 	case chip_508x:
2950 		hpriv->ops = &mv5xxx_ops;
2951 		hp_flags |= MV_HP_GEN_I;
2952 
2953 		switch (pdev->revision) {
2954 		case 0x0:
2955 			hp_flags |= MV_HP_ERRATA_50XXB0;
2956 			break;
2957 		case 0x3:
2958 			hp_flags |= MV_HP_ERRATA_50XXB2;
2959 			break;
2960 		default:
2961 			dev_printk(KERN_WARNING, &pdev->dev,
2962 			   "Applying B2 workarounds to unknown rev\n");
2963 			hp_flags |= MV_HP_ERRATA_50XXB2;
2964 			break;
2965 		}
2966 		break;
2967 
2968 	case chip_604x:
2969 	case chip_608x:
2970 		hpriv->ops = &mv6xxx_ops;
2971 		hp_flags |= MV_HP_GEN_II;
2972 
2973 		switch (pdev->revision) {
2974 		case 0x7:
2975 			hp_flags |= MV_HP_ERRATA_60X1B2;
2976 			break;
2977 		case 0x9:
2978 			hp_flags |= MV_HP_ERRATA_60X1C0;
2979 			break;
2980 		default:
2981 			dev_printk(KERN_WARNING, &pdev->dev,
2982 				   "Applying B2 workarounds to unknown rev\n");
2983 			hp_flags |= MV_HP_ERRATA_60X1B2;
2984 			break;
2985 		}
2986 		break;
2987 
2988 	case chip_7042:
2989 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2990 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2991 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
2992 		{
2993 			/*
2994 			 * Highpoint RocketRAID PCIe 23xx series cards:
2995 			 *
2996 			 * Unconfigured drives are treated as "Legacy"
2997 			 * by the BIOS, and it overwrites sector 8 with
2998 			 * a "Lgcy" metadata block prior to Linux boot.
2999 			 *
3000 			 * Configured drives (RAID or JBOD) leave sector 8
3001 			 * alone, but instead overwrite a high numbered
3002 			 * sector for the RAID metadata.  This sector can
3003 			 * be determined exactly, by truncating the physical
3004 			 * drive capacity to a nice even GB value.
3005 			 *
3006 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3007 			 *
3008 			 * Warn the user, lest they think we're just buggy.
3009 			 */
3010 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3011 				" BIOS CORRUPTS DATA on all attached drives,"
3012 				" regardless of if/how they are configured."
3013 				" BEWARE!\n");
3014 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3015 				" use sectors 8-9 on \"Legacy\" drives,"
3016 				" and avoid the final two gigabytes on"
3017 				" all RocketRAID BIOS initialized drives.\n");
3018 		}
3019 		/* drop through */
3020 	case chip_6042:
3021 		hpriv->ops = &mv6xxx_ops;
3022 		hp_flags |= MV_HP_GEN_IIE;
3023 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3024 			hp_flags |= MV_HP_CUT_THROUGH;
3025 
3026 		switch (pdev->revision) {
3027 		case 0x2: /* Rev.B0: the first/only public release */
3028 			hp_flags |= MV_HP_ERRATA_60X1C0;
3029 			break;
3030 		default:
3031 			dev_printk(KERN_WARNING, &pdev->dev,
3032 			   "Applying 60X1C0 workarounds to unknown rev\n");
3033 			hp_flags |= MV_HP_ERRATA_60X1C0;
3034 			break;
3035 		}
3036 		break;
3037 	case chip_soc:
3038 		hpriv->ops = &mv_soc_ops;
3039 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_ERRATA_60X1C0;
3040 		break;
3041 
3042 	default:
3043 		dev_printk(KERN_ERR, host->dev,
3044 			   "BUG: invalid board index %u\n", board_idx);
3045 		return 1;
3046 	}
3047 
3048 	hpriv->hp_flags = hp_flags;
3049 	if (hp_flags & MV_HP_PCIE) {
3050 		hpriv->irq_cause_ofs	= PCIE_IRQ_CAUSE_OFS;
3051 		hpriv->irq_mask_ofs	= PCIE_IRQ_MASK_OFS;
3052 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3053 	} else {
3054 		hpriv->irq_cause_ofs	= PCI_IRQ_CAUSE_OFS;
3055 		hpriv->irq_mask_ofs	= PCI_IRQ_MASK_OFS;
3056 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 /**
3063  *      mv_init_host - Perform some early initialization of the host.
3064  *	@host: ATA host to initialize
3065  *      @board_idx: controller index
3066  *
3067  *      If possible, do an early global reset of the host.  Then do
3068  *      our port init and clear/unmask all/relevant host interrupts.
3069  *
3070  *      LOCKING:
3071  *      Inherited from caller.
3072  */
3073 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3074 {
3075 	int rc = 0, n_hc, port, hc;
3076 	struct mv_host_priv *hpriv = host->private_data;
3077 	void __iomem *mmio = hpriv->base;
3078 
3079 	rc = mv_chip_id(host, board_idx);
3080 	if (rc)
3081 		goto done;
3082 
3083 	if (IS_SOC(hpriv)) {
3084 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3085 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3086 	} else {
3087 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3088 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3089 	}
3090 
3091 	/* global interrupt mask: 0 == mask everything */
3092 	mv_set_main_irq_mask(host, ~0, 0);
3093 
3094 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3095 
3096 	for (port = 0; port < host->n_ports; port++)
3097 		hpriv->ops->read_preamp(hpriv, port, mmio);
3098 
3099 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3100 	if (rc)
3101 		goto done;
3102 
3103 	hpriv->ops->reset_flash(hpriv, mmio);
3104 	hpriv->ops->reset_bus(host, mmio);
3105 	hpriv->ops->enable_leds(hpriv, mmio);
3106 
3107 	for (port = 0; port < host->n_ports; port++) {
3108 		struct ata_port *ap = host->ports[port];
3109 		void __iomem *port_mmio = mv_port_base(mmio, port);
3110 
3111 		mv_port_init(&ap->ioaddr, port_mmio);
3112 
3113 #ifdef CONFIG_PCI
3114 		if (!IS_SOC(hpriv)) {
3115 			unsigned int offset = port_mmio - mmio;
3116 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3117 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3118 		}
3119 #endif
3120 	}
3121 
3122 	for (hc = 0; hc < n_hc; hc++) {
3123 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3124 
3125 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3126 			"(before clear)=0x%08x\n", hc,
3127 			readl(hc_mmio + HC_CFG_OFS),
3128 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3129 
3130 		/* Clear any currently outstanding hc interrupt conditions */
3131 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3132 	}
3133 
3134 	if (!IS_SOC(hpriv)) {
3135 		/* Clear any currently outstanding host interrupt conditions */
3136 		writelfl(0, mmio + hpriv->irq_cause_ofs);
3137 
3138 		/* and unmask interrupt generation for host regs */
3139 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3140 
3141 		/*
3142 		 * enable only global host interrupts for now.
3143 		 * The per-port interrupts get done later as ports are set up.
3144 		 */
3145 		mv_set_main_irq_mask(host, 0, PCI_ERR);
3146 	}
3147 done:
3148 	return rc;
3149 }
3150 
3151 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3152 {
3153 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3154 							     MV_CRQB_Q_SZ, 0);
3155 	if (!hpriv->crqb_pool)
3156 		return -ENOMEM;
3157 
3158 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3159 							     MV_CRPB_Q_SZ, 0);
3160 	if (!hpriv->crpb_pool)
3161 		return -ENOMEM;
3162 
3163 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3164 							     MV_SG_TBL_SZ, 0);
3165 	if (!hpriv->sg_tbl_pool)
3166 		return -ENOMEM;
3167 
3168 	return 0;
3169 }
3170 
3171 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3172 				 struct mbus_dram_target_info *dram)
3173 {
3174 	int i;
3175 
3176 	for (i = 0; i < 4; i++) {
3177 		writel(0, hpriv->base + WINDOW_CTRL(i));
3178 		writel(0, hpriv->base + WINDOW_BASE(i));
3179 	}
3180 
3181 	for (i = 0; i < dram->num_cs; i++) {
3182 		struct mbus_dram_window *cs = dram->cs + i;
3183 
3184 		writel(((cs->size - 1) & 0xffff0000) |
3185 			(cs->mbus_attr << 8) |
3186 			(dram->mbus_dram_target_id << 4) | 1,
3187 			hpriv->base + WINDOW_CTRL(i));
3188 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3189 	}
3190 }
3191 
3192 /**
3193  *      mv_platform_probe - handle a positive probe of an soc Marvell
3194  *      host
3195  *      @pdev: platform device found
3196  *
3197  *      LOCKING:
3198  *      Inherited from caller.
3199  */
3200 static int mv_platform_probe(struct platform_device *pdev)
3201 {
3202 	static int printed_version;
3203 	const struct mv_sata_platform_data *mv_platform_data;
3204 	const struct ata_port_info *ppi[] =
3205 	    { &mv_port_info[chip_soc], NULL };
3206 	struct ata_host *host;
3207 	struct mv_host_priv *hpriv;
3208 	struct resource *res;
3209 	int n_ports, rc;
3210 
3211 	if (!printed_version++)
3212 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3213 
3214 	/*
3215 	 * Simple resource validation ..
3216 	 */
3217 	if (unlikely(pdev->num_resources != 2)) {
3218 		dev_err(&pdev->dev, "invalid number of resources\n");
3219 		return -EINVAL;
3220 	}
3221 
3222 	/*
3223 	 * Get the register base first
3224 	 */
3225 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3226 	if (res == NULL)
3227 		return -EINVAL;
3228 
3229 	/* allocate host */
3230 	mv_platform_data = pdev->dev.platform_data;
3231 	n_ports = mv_platform_data->n_ports;
3232 
3233 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3234 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3235 
3236 	if (!host || !hpriv)
3237 		return -ENOMEM;
3238 	host->private_data = hpriv;
3239 	hpriv->n_ports = n_ports;
3240 
3241 	host->iomap = NULL;
3242 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3243 				   res->end - res->start + 1);
3244 	hpriv->base -= MV_SATAHC0_REG_BASE;
3245 
3246 	/*
3247 	 * (Re-)program MBUS remapping windows if we are asked to.
3248 	 */
3249 	if (mv_platform_data->dram != NULL)
3250 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3251 
3252 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3253 	if (rc)
3254 		return rc;
3255 
3256 	/* initialize adapter */
3257 	rc = mv_init_host(host, chip_soc);
3258 	if (rc)
3259 		return rc;
3260 
3261 	dev_printk(KERN_INFO, &pdev->dev,
3262 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3263 		   host->n_ports);
3264 
3265 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3266 				 IRQF_SHARED, &mv6_sht);
3267 }
3268 
3269 /*
3270  *
3271  *      mv_platform_remove    -       unplug a platform interface
3272  *      @pdev: platform device
3273  *
3274  *      A platform bus SATA device has been unplugged. Perform the needed
3275  *      cleanup. Also called on module unload for any active devices.
3276  */
3277 static int __devexit mv_platform_remove(struct platform_device *pdev)
3278 {
3279 	struct device *dev = &pdev->dev;
3280 	struct ata_host *host = dev_get_drvdata(dev);
3281 
3282 	ata_host_detach(host);
3283 	return 0;
3284 }
3285 
3286 static struct platform_driver mv_platform_driver = {
3287 	.probe			= mv_platform_probe,
3288 	.remove			= __devexit_p(mv_platform_remove),
3289 	.driver			= {
3290 				   .name = DRV_NAME,
3291 				   .owner = THIS_MODULE,
3292 				  },
3293 };
3294 
3295 
3296 #ifdef CONFIG_PCI
3297 static int mv_pci_init_one(struct pci_dev *pdev,
3298 			   const struct pci_device_id *ent);
3299 
3300 
3301 static struct pci_driver mv_pci_driver = {
3302 	.name			= DRV_NAME,
3303 	.id_table		= mv_pci_tbl,
3304 	.probe			= mv_pci_init_one,
3305 	.remove			= ata_pci_remove_one,
3306 };
3307 
3308 /*
3309  * module options
3310  */
3311 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
3312 
3313 
3314 /* move to PCI layer or libata core? */
3315 static int pci_go_64(struct pci_dev *pdev)
3316 {
3317 	int rc;
3318 
3319 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3320 		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3321 		if (rc) {
3322 			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3323 			if (rc) {
3324 				dev_printk(KERN_ERR, &pdev->dev,
3325 					   "64-bit DMA enable failed\n");
3326 				return rc;
3327 			}
3328 		}
3329 	} else {
3330 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3331 		if (rc) {
3332 			dev_printk(KERN_ERR, &pdev->dev,
3333 				   "32-bit DMA enable failed\n");
3334 			return rc;
3335 		}
3336 		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3337 		if (rc) {
3338 			dev_printk(KERN_ERR, &pdev->dev,
3339 				   "32-bit consistent DMA enable failed\n");
3340 			return rc;
3341 		}
3342 	}
3343 
3344 	return rc;
3345 }
3346 
3347 /**
3348  *      mv_print_info - Dump key info to kernel log for perusal.
3349  *      @host: ATA host to print info about
3350  *
3351  *      FIXME: complete this.
3352  *
3353  *      LOCKING:
3354  *      Inherited from caller.
3355  */
3356 static void mv_print_info(struct ata_host *host)
3357 {
3358 	struct pci_dev *pdev = to_pci_dev(host->dev);
3359 	struct mv_host_priv *hpriv = host->private_data;
3360 	u8 scc;
3361 	const char *scc_s, *gen;
3362 
3363 	/* Use this to determine the HW stepping of the chip so we know
3364 	 * what errata to workaround
3365 	 */
3366 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3367 	if (scc == 0)
3368 		scc_s = "SCSI";
3369 	else if (scc == 0x01)
3370 		scc_s = "RAID";
3371 	else
3372 		scc_s = "?";
3373 
3374 	if (IS_GEN_I(hpriv))
3375 		gen = "I";
3376 	else if (IS_GEN_II(hpriv))
3377 		gen = "II";
3378 	else if (IS_GEN_IIE(hpriv))
3379 		gen = "IIE";
3380 	else
3381 		gen = "?";
3382 
3383 	dev_printk(KERN_INFO, &pdev->dev,
3384 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3385 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3386 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3387 }
3388 
3389 /**
3390  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3391  *      @pdev: PCI device found
3392  *      @ent: PCI device ID entry for the matched host
3393  *
3394  *      LOCKING:
3395  *      Inherited from caller.
3396  */
3397 static int mv_pci_init_one(struct pci_dev *pdev,
3398 			   const struct pci_device_id *ent)
3399 {
3400 	static int printed_version;
3401 	unsigned int board_idx = (unsigned int)ent->driver_data;
3402 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3403 	struct ata_host *host;
3404 	struct mv_host_priv *hpriv;
3405 	int n_ports, rc;
3406 
3407 	if (!printed_version++)
3408 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3409 
3410 	/* allocate host */
3411 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3412 
3413 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3414 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3415 	if (!host || !hpriv)
3416 		return -ENOMEM;
3417 	host->private_data = hpriv;
3418 	hpriv->n_ports = n_ports;
3419 
3420 	/* acquire resources */
3421 	rc = pcim_enable_device(pdev);
3422 	if (rc)
3423 		return rc;
3424 
3425 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3426 	if (rc == -EBUSY)
3427 		pcim_pin_device(pdev);
3428 	if (rc)
3429 		return rc;
3430 	host->iomap = pcim_iomap_table(pdev);
3431 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
3432 
3433 	rc = pci_go_64(pdev);
3434 	if (rc)
3435 		return rc;
3436 
3437 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3438 	if (rc)
3439 		return rc;
3440 
3441 	/* initialize adapter */
3442 	rc = mv_init_host(host, board_idx);
3443 	if (rc)
3444 		return rc;
3445 
3446 	/* Enable interrupts */
3447 	if (msi && pci_enable_msi(pdev))
3448 		pci_intx(pdev, 1);
3449 
3450 	mv_dump_pci_cfg(pdev, 0x68);
3451 	mv_print_info(host);
3452 
3453 	pci_set_master(pdev);
3454 	pci_try_set_mwi(pdev);
3455 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3456 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3457 }
3458 #endif
3459 
3460 static int mv_platform_probe(struct platform_device *pdev);
3461 static int __devexit mv_platform_remove(struct platform_device *pdev);
3462 
3463 static int __init mv_init(void)
3464 {
3465 	int rc = -ENODEV;
3466 #ifdef CONFIG_PCI
3467 	rc = pci_register_driver(&mv_pci_driver);
3468 	if (rc < 0)
3469 		return rc;
3470 #endif
3471 	rc = platform_driver_register(&mv_platform_driver);
3472 
3473 #ifdef CONFIG_PCI
3474 	if (rc < 0)
3475 		pci_unregister_driver(&mv_pci_driver);
3476 #endif
3477 	return rc;
3478 }
3479 
3480 static void __exit mv_exit(void)
3481 {
3482 #ifdef CONFIG_PCI
3483 	pci_unregister_driver(&mv_pci_driver);
3484 #endif
3485 	platform_driver_unregister(&mv_platform_driver);
3486 }
3487 
3488 MODULE_AUTHOR("Brett Russ");
3489 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3490 MODULE_LICENSE("GPL");
3491 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3492 MODULE_VERSION(DRV_VERSION);
3493 MODULE_ALIAS("platform:" DRV_NAME);
3494 
3495 #ifdef CONFIG_PCI
3496 module_param(msi, int, 0444);
3497 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3498 #endif
3499 
3500 module_init(mv_init);
3501 module_exit(mv_exit);
3502