xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sata_mv.c - Marvell SATA support
4  *
5  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6  * Copyright 2005: EMC Corporation, all rights reserved.
7  * Copyright 2005 Red Hat, Inc.  All rights reserved.
8  *
9  * Originally written by Brett Russ.
10  * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11  *
12  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13  */
14 
15 /*
16  * sata_mv TODO list:
17  *
18  * --> Develop a low-power-consumption strategy, and implement it.
19  *
20  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21  *
22  * --> [Experiment, Marvell value added] Is it possible to use target
23  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24  *       creating LibATA target mode support would be very interesting.
25  *
26  *       Target mode, for those without docs, is the ability to directly
27  *       connect two SATA ports.
28  */
29 
30 /*
31  * 80x1-B2 errata PCI#11:
32  *
33  * Users of the 6041/6081 Rev.B2 chips (current is C0)
34  * should be careful to insert those cards only onto PCI-X bus #0,
35  * and only in device slots 0..7, not higher.  The chips may not
36  * work correctly otherwise  (note: this is a pretty rare condition).
37  */
38 
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62 
63 #define DRV_NAME	"sata_mv"
64 #define DRV_VERSION	"1.28"
65 
66 /*
67  * module options
68  */
69 
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75 
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 		 "IRQ coalescing I/O count threshold (0..255)");
80 
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 		 "IRQ coalescing time threshold in usecs");
85 
86 enum {
87 	/* BAR's are enumerated in terms of pci_resource_start() terms */
88 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91 
92 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94 
95 	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97 	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98 	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99 
100 	MV_PCI_REG_BASE		= 0,
101 
102 	/*
103 	 * Per-chip ("all ports") interrupt coalescing feature.
104 	 * This is only for GEN_II / GEN_IIE hardware.
105 	 *
106 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 	 */
109 	COAL_REG_BASE		= 0x18000,
110 	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111 	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112 
113 	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114 	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115 
116 	/*
117 	 * Registers for the (unused here) transaction coalescing feature:
118 	 */
119 	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120 	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121 
122 	SATAHC0_REG_BASE	= 0x20000,
123 	FLASH_CTL		= 0x1046c,
124 	GPIO_PORT_CTL		= 0x104f0,
125 	RESET_CFG		= 0x180d8,
126 
127 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131 
132 	MV_MAX_Q_DEPTH		= 32,
133 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134 
135 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 	 * CRPB needs alignment on a 256B boundary. Size == 256B
137 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 	 */
139 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141 	MV_MAX_SG_CT		= 256,
142 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143 
144 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 	MV_PORT_HC_SHIFT	= 2,
146 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149 
150 	/* Host Flags */
151 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152 
153 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154 
155 	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156 
157 	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159 
160 	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161 
162 	CRQB_FLAG_READ		= (1 << 0),
163 	CRQB_TAG_SHIFT		= 1,
164 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167 	CRQB_CMD_ADDR_SHIFT	= 8,
168 	CRQB_CMD_CS		= (0x2 << 11),
169 	CRQB_CMD_LAST		= (1 << 15),
170 
171 	CRPB_FLAG_STATUS_SHIFT	= 8,
172 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174 
175 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176 
177 	/* PCI interface registers */
178 
179 	MV_PCI_COMMAND		= 0xc00,
180 	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181 	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182 
183 	PCI_MAIN_CMD_STS	= 0xd30,
184 	STOP_PCI_MASTER		= (1 << 2),
185 	PCI_MASTER_EMPTY	= (1 << 3),
186 	GLOB_SFT_RST		= (1 << 4),
187 
188 	MV_PCI_MODE		= 0xd00,
189 	MV_PCI_MODE_MASK	= 0x30,
190 
191 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192 	MV_PCI_DISC_TIMER	= 0xd04,
193 	MV_PCI_MSI_TRIGGER	= 0xc38,
194 	MV_PCI_SERR_MASK	= 0xc28,
195 	MV_PCI_XBAR_TMOUT	= 0x1d04,
196 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199 	MV_PCI_ERR_COMMAND	= 0x1d50,
200 
201 	PCI_IRQ_CAUSE		= 0x1d58,
202 	PCI_IRQ_MASK		= 0x1d5c,
203 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204 
205 	PCIE_IRQ_CAUSE		= 0x1900,
206 	PCIE_IRQ_MASK		= 0x1910,
207 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208 
209 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211 	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212 	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213 	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214 	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215 	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218 	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219 	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220 	PCI_ERR			= (1 << 18),
221 	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222 	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223 	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224 	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225 	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226 	GPIO_INT		= (1 << 22),
227 	SELF_INT		= (1 << 23),
228 	TWSI_INT		= (1 << 24),
229 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232 
233 	/* SATAHC registers */
234 	HC_CFG			= 0x00,
235 
236 	HC_IRQ_CAUSE		= 0x14,
237 	DMA_IRQ			= (1 << 0),	/* shift by port # */
238 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239 	DEV_IRQ			= (1 << 8),	/* shift by port # */
240 
241 	/*
242 	 * Per-HC (Host-Controller) interrupt coalescing feature.
243 	 * This is present on all chip generations.
244 	 *
245 	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 	 */
248 	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249 	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250 
251 	SOC_LED_CTRL		= 0x2c,
252 	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253 	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254 						/*  with dev activity LED */
255 
256 	/* Shadow block registers */
257 	SHD_BLK			= 0x100,
258 	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259 
260 	/* SATA registers */
261 	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262 	SATA_ACTIVE		= 0x350,
263 	FIS_IRQ_CAUSE		= 0x364,
264 	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265 
266 	LTMODE			= 0x30c,	/* requires read-after-write */
267 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268 
269 	PHY_MODE2		= 0x330,
270 	PHY_MODE3		= 0x310,
271 
272 	PHY_MODE4		= 0x314,	/* requires read-after-write */
273 	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274 	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275 	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276 	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277 
278 	SATA_IFCTL		= 0x344,
279 	SATA_TESTCTL		= 0x348,
280 	SATA_IFSTAT		= 0x34c,
281 	VENDOR_UNIQUE_FIS	= 0x35c,
282 
283 	FISCFG			= 0x360,
284 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286 
287 	PHY_MODE9_GEN2		= 0x398,
288 	PHY_MODE9_GEN1		= 0x39c,
289 	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290 
291 	MV5_PHY_MODE		= 0x74,
292 	MV5_LTMODE		= 0x30,
293 	MV5_PHY_CTL		= 0x0C,
294 	SATA_IFCFG		= 0x050,
295 	LP_PHY_CTL		= 0x058,
296 	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297 	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298 	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299 	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300 	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301 
302 	MV_M2_PREAMP_MASK	= 0x7e0,
303 
304 	/* Port registers */
305 	EDMA_CFG		= 0,
306 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313 
314 	EDMA_ERR_IRQ_CAUSE	= 0x8,
315 	EDMA_ERR_IRQ_MASK	= 0xc,
316 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330 
331 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336 
337 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338 
339 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345 
346 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347 
348 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349 	EDMA_ERR_OVERRUN_5	= (1 << 5),
350 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351 
352 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353 				  EDMA_ERR_LNK_CTRL_RX_1 |
354 				  EDMA_ERR_LNK_CTRL_RX_3 |
355 				  EDMA_ERR_LNK_CTRL_TX,
356 
357 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358 				  EDMA_ERR_PRD_PAR |
359 				  EDMA_ERR_DEV_DCON |
360 				  EDMA_ERR_DEV_CON |
361 				  EDMA_ERR_SERR |
362 				  EDMA_ERR_SELF_DIS |
363 				  EDMA_ERR_CRQB_PAR |
364 				  EDMA_ERR_CRPB_PAR |
365 				  EDMA_ERR_INTRL_PAR |
366 				  EDMA_ERR_IORDY |
367 				  EDMA_ERR_LNK_CTRL_RX_2 |
368 				  EDMA_ERR_LNK_DATA_RX |
369 				  EDMA_ERR_LNK_DATA_TX |
370 				  EDMA_ERR_TRANS_PROTO,
371 
372 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373 				  EDMA_ERR_PRD_PAR |
374 				  EDMA_ERR_DEV_DCON |
375 				  EDMA_ERR_DEV_CON |
376 				  EDMA_ERR_OVERRUN_5 |
377 				  EDMA_ERR_UNDERRUN_5 |
378 				  EDMA_ERR_SELF_DIS_5 |
379 				  EDMA_ERR_CRQB_PAR |
380 				  EDMA_ERR_CRPB_PAR |
381 				  EDMA_ERR_INTRL_PAR |
382 				  EDMA_ERR_IORDY,
383 
384 	EDMA_REQ_Q_BASE_HI	= 0x10,
385 	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386 
387 	EDMA_REQ_Q_OUT_PTR	= 0x18,
388 	EDMA_REQ_Q_PTR_SHIFT	= 5,
389 
390 	EDMA_RSP_Q_BASE_HI	= 0x1c,
391 	EDMA_RSP_Q_IN_PTR	= 0x20,
392 	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393 	EDMA_RSP_Q_PTR_SHIFT	= 3,
394 
395 	EDMA_CMD		= 0x28,		/* EDMA command register */
396 	EDMA_EN			= (1 << 0),	/* enable EDMA */
397 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399 
400 	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403 
404 	EDMA_IORDY_TMOUT	= 0x34,
405 	EDMA_ARB_CFG		= 0x38,
406 
407 	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408 	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409 
410 	BMDMA_CMD		= 0x224,	/* bmdma command register */
411 	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412 	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413 	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414 
415 	/* Host private flags (hp_flags) */
416 	MV_HP_FLAG_MSI		= (1 << 0),
417 	MV_HP_ERRATA_50XXB0	= (1 << 1),
418 	MV_HP_ERRATA_50XXB2	= (1 << 2),
419 	MV_HP_ERRATA_60X1B2	= (1 << 3),
420 	MV_HP_ERRATA_60X1C0	= (1 << 4),
421 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426 	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427 	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428 	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429 
430 	/* Port private flags (pp_flags) */
431 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435 	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436 };
437 
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443 
444 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446 
447 enum {
448 	/* DMA boundary 0xffff is required by the s/g splitting
449 	 * we need on /length/ in mv_fill-sg().
450 	 */
451 	MV_DMA_BOUNDARY		= 0xffffU,
452 
453 	/* mask of register bits containing lower 32 bits
454 	 * of EDMA request queue DMA address
455 	 */
456 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457 
458 	/* ditto, for response queue */
459 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460 };
461 
462 enum chip_type {
463 	chip_504x,
464 	chip_508x,
465 	chip_5080,
466 	chip_604x,
467 	chip_608x,
468 	chip_6042,
469 	chip_7042,
470 	chip_soc,
471 };
472 
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 	__le32			sg_addr;
476 	__le32			sg_addr_hi;
477 	__le16			ctrl_flags;
478 	__le16			ata_cmd[11];
479 };
480 
481 struct mv_crqb_iie {
482 	__le32			addr;
483 	__le32			addr_hi;
484 	__le32			flags;
485 	__le32			len;
486 	__le32			ata_cmd[4];
487 };
488 
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 	__le16			id;
492 	__le16			flags;
493 	__le32			tmstmp;
494 };
495 
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 	__le32			addr;
499 	__le32			flags_size;
500 	__le32			addr_hi;
501 	__le32			reserved;
502 };
503 
504 /*
505  * We keep a local cache of a few frequently accessed port
506  * registers here, to avoid having to read them (very slow)
507  * when switching between EDMA and non-EDMA modes.
508  */
509 struct mv_cached_regs {
510 	u32			fiscfg;
511 	u32			ltmode;
512 	u32			haltcond;
513 	u32			unknown_rsvd;
514 };
515 
516 struct mv_port_priv {
517 	struct mv_crqb		*crqb;
518 	dma_addr_t		crqb_dma;
519 	struct mv_crpb		*crpb;
520 	dma_addr_t		crpb_dma;
521 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523 
524 	unsigned int		req_idx;
525 	unsigned int		resp_idx;
526 
527 	u32			pp_flags;
528 	struct mv_cached_regs	cached;
529 	unsigned int		delayed_eh_pmp_map;
530 };
531 
532 struct mv_port_signal {
533 	u32			amps;
534 	u32			pre;
535 };
536 
537 struct mv_host_priv {
538 	u32			hp_flags;
539 	unsigned int 		board_idx;
540 	u32			main_irq_mask;
541 	struct mv_port_signal	signal[8];
542 	const struct mv_hw_ops	*ops;
543 	int			n_ports;
544 	void __iomem		*base;
545 	void __iomem		*main_irq_cause_addr;
546 	void __iomem		*main_irq_mask_addr;
547 	u32			irq_cause_offset;
548 	u32			irq_mask_offset;
549 	u32			unmask_all_irqs;
550 
551 	/*
552 	 * Needed on some devices that require their clocks to be enabled.
553 	 * These are optional: if the platform device does not have any
554 	 * clocks, they won't be used.  Also, if the underlying hardware
555 	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 	 * all the clock operations become no-ops (see clk.h).
557 	 */
558 	struct clk		*clk;
559 	struct clk              **port_clks;
560 	/*
561 	 * Some devices have a SATA PHY which can be enabled/disabled
562 	 * in order to save power. These are optional: if the platform
563 	 * devices does not have any phy, they won't be used.
564 	 */
565 	struct phy		**port_phys;
566 	/*
567 	 * These consistent DMA memory pools give us guaranteed
568 	 * alignment for hardware-accessed data structures,
569 	 * and less memory waste in accomplishing the alignment.
570 	 */
571 	struct dma_pool		*crqb_pool;
572 	struct dma_pool		*crpb_pool;
573 	struct dma_pool		*sg_tbl_pool;
574 };
575 
576 struct mv_hw_ops {
577 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 			   unsigned int port);
579 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 			   void __iomem *mmio);
582 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 			unsigned int n_hc);
584 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587 
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 			unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603 
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 			   unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 			   void __iomem *mmio);
609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 			unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613 
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 			   unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 			   void __iomem *mmio);
619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 			unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 				      void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 				      void __iomem *mmio);
626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 				  void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 				      void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 				  void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 			     unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639 
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 				unsigned long deadline);
643 static int  mv_softreset(struct ata_link *link, unsigned int *class,
644 				unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 					struct mv_port_priv *pp);
648 
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8   mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656 
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658  * because we have to allow room for worst case splitting of
659  * PRDs for 64K boundaries in mv_fill_sg().
660  */
661 #ifdef CONFIG_PCI
662 static struct scsi_host_template mv5_sht = {
663 	ATA_BASE_SHT(DRV_NAME),
664 	.sg_tablesize		= MV_MAX_SG_CT / 2,
665 	.dma_boundary		= MV_DMA_BOUNDARY,
666 };
667 #endif
668 static struct scsi_host_template mv6_sht = {
669 	__ATA_BASE_SHT(DRV_NAME),
670 	.can_queue		= MV_MAX_Q_DEPTH - 1,
671 	.sg_tablesize		= MV_MAX_SG_CT / 2,
672 	.dma_boundary		= MV_DMA_BOUNDARY,
673 	.sdev_groups		= ata_ncq_sdev_groups,
674 	.change_queue_depth	= ata_scsi_change_queue_depth,
675 	.tag_alloc_policy	= BLK_TAG_ALLOC_RR,
676 	.slave_configure	= ata_scsi_slave_config
677 };
678 
679 static struct ata_port_operations mv5_ops = {
680 	.inherits		= &ata_sff_port_ops,
681 
682 	.lost_interrupt		= ATA_OP_NULL,
683 
684 	.qc_defer		= mv_qc_defer,
685 	.qc_prep		= mv_qc_prep,
686 	.qc_issue		= mv_qc_issue,
687 
688 	.freeze			= mv_eh_freeze,
689 	.thaw			= mv_eh_thaw,
690 	.hardreset		= mv_hardreset,
691 
692 	.scr_read		= mv5_scr_read,
693 	.scr_write		= mv5_scr_write,
694 
695 	.port_start		= mv_port_start,
696 	.port_stop		= mv_port_stop,
697 };
698 
699 static struct ata_port_operations mv6_ops = {
700 	.inherits		= &ata_bmdma_port_ops,
701 
702 	.lost_interrupt		= ATA_OP_NULL,
703 
704 	.qc_defer		= mv_qc_defer,
705 	.qc_prep		= mv_qc_prep,
706 	.qc_issue		= mv_qc_issue,
707 
708 	.dev_config             = mv6_dev_config,
709 
710 	.freeze			= mv_eh_freeze,
711 	.thaw			= mv_eh_thaw,
712 	.hardreset		= mv_hardreset,
713 	.softreset		= mv_softreset,
714 	.pmp_hardreset		= mv_pmp_hardreset,
715 	.pmp_softreset		= mv_softreset,
716 	.error_handler		= mv_pmp_error_handler,
717 
718 	.scr_read		= mv_scr_read,
719 	.scr_write		= mv_scr_write,
720 
721 	.sff_check_status	= mv_sff_check_status,
722 	.sff_irq_clear		= mv_sff_irq_clear,
723 	.check_atapi_dma	= mv_check_atapi_dma,
724 	.bmdma_setup		= mv_bmdma_setup,
725 	.bmdma_start		= mv_bmdma_start,
726 	.bmdma_stop		= mv_bmdma_stop,
727 	.bmdma_status		= mv_bmdma_status,
728 
729 	.port_start		= mv_port_start,
730 	.port_stop		= mv_port_stop,
731 };
732 
733 static struct ata_port_operations mv_iie_ops = {
734 	.inherits		= &mv6_ops,
735 	.dev_config		= ATA_OP_NULL,
736 	.qc_prep		= mv_qc_prep_iie,
737 };
738 
739 static const struct ata_port_info mv_port_info[] = {
740 	{  /* chip_504x */
741 		.flags		= MV_GEN_I_FLAGS,
742 		.pio_mask	= ATA_PIO4,
743 		.udma_mask	= ATA_UDMA6,
744 		.port_ops	= &mv5_ops,
745 	},
746 	{  /* chip_508x */
747 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 		.pio_mask	= ATA_PIO4,
749 		.udma_mask	= ATA_UDMA6,
750 		.port_ops	= &mv5_ops,
751 	},
752 	{  /* chip_5080 */
753 		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 		.pio_mask	= ATA_PIO4,
755 		.udma_mask	= ATA_UDMA6,
756 		.port_ops	= &mv5_ops,
757 	},
758 	{  /* chip_604x */
759 		.flags		= MV_GEN_II_FLAGS,
760 		.pio_mask	= ATA_PIO4,
761 		.udma_mask	= ATA_UDMA6,
762 		.port_ops	= &mv6_ops,
763 	},
764 	{  /* chip_608x */
765 		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 		.pio_mask	= ATA_PIO4,
767 		.udma_mask	= ATA_UDMA6,
768 		.port_ops	= &mv6_ops,
769 	},
770 	{  /* chip_6042 */
771 		.flags		= MV_GEN_IIE_FLAGS,
772 		.pio_mask	= ATA_PIO4,
773 		.udma_mask	= ATA_UDMA6,
774 		.port_ops	= &mv_iie_ops,
775 	},
776 	{  /* chip_7042 */
777 		.flags		= MV_GEN_IIE_FLAGS,
778 		.pio_mask	= ATA_PIO4,
779 		.udma_mask	= ATA_UDMA6,
780 		.port_ops	= &mv_iie_ops,
781 	},
782 	{  /* chip_soc */
783 		.flags		= MV_GEN_IIE_FLAGS,
784 		.pio_mask	= ATA_PIO4,
785 		.udma_mask	= ATA_UDMA6,
786 		.port_ops	= &mv_iie_ops,
787 	},
788 };
789 
790 static const struct pci_device_id mv_pci_tbl[] = {
791 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
795 	/* RocketRAID 1720/174x have different identifiers */
796 	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
797 	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
799 
800 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
805 
806 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
807 
808 	/* Adaptec 1430SA */
809 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
810 
811 	/* Marvell 7042 support */
812 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
813 
814 	/* Highpoint RocketRAID PCIe series */
815 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
817 
818 	{ }			/* terminate list */
819 };
820 
821 static const struct mv_hw_ops mv5xxx_ops = {
822 	.phy_errata		= mv5_phy_errata,
823 	.enable_leds		= mv5_enable_leds,
824 	.read_preamp		= mv5_read_preamp,
825 	.reset_hc		= mv5_reset_hc,
826 	.reset_flash		= mv5_reset_flash,
827 	.reset_bus		= mv5_reset_bus,
828 };
829 
830 static const struct mv_hw_ops mv6xxx_ops = {
831 	.phy_errata		= mv6_phy_errata,
832 	.enable_leds		= mv6_enable_leds,
833 	.read_preamp		= mv6_read_preamp,
834 	.reset_hc		= mv6_reset_hc,
835 	.reset_flash		= mv6_reset_flash,
836 	.reset_bus		= mv_reset_pci_bus,
837 };
838 
839 static const struct mv_hw_ops mv_soc_ops = {
840 	.phy_errata		= mv6_phy_errata,
841 	.enable_leds		= mv_soc_enable_leds,
842 	.read_preamp		= mv_soc_read_preamp,
843 	.reset_hc		= mv_soc_reset_hc,
844 	.reset_flash		= mv_soc_reset_flash,
845 	.reset_bus		= mv_soc_reset_bus,
846 };
847 
848 static const struct mv_hw_ops mv_soc_65n_ops = {
849 	.phy_errata		= mv_soc_65n_phy_errata,
850 	.enable_leds		= mv_soc_enable_leds,
851 	.reset_hc		= mv_soc_reset_hc,
852 	.reset_flash		= mv_soc_reset_flash,
853 	.reset_bus		= mv_soc_reset_bus,
854 };
855 
856 /*
857  * Functions
858  */
859 
860 static inline void writelfl(unsigned long data, void __iomem *addr)
861 {
862 	writel(data, addr);
863 	(void) readl(addr);	/* flush to avoid PCI posted write */
864 }
865 
866 static inline unsigned int mv_hc_from_port(unsigned int port)
867 {
868 	return port >> MV_PORT_HC_SHIFT;
869 }
870 
871 static inline unsigned int mv_hardport_from_port(unsigned int port)
872 {
873 	return port & MV_PORT_MASK;
874 }
875 
876 /*
877  * Consolidate some rather tricky bit shift calculations.
878  * This is hot-path stuff, so not a function.
879  * Simple code, with two return values, so macro rather than inline.
880  *
881  * port is the sole input, in range 0..7.
882  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883  * hardport is the other output, in range 0..3.
884  *
885  * Note that port and hardport may be the same variable in some cases.
886  */
887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
888 {								\
889 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
890 	hardport = mv_hardport_from_port(port);			\
891 	shift   += hardport * 2;				\
892 }
893 
894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
895 {
896 	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
897 }
898 
899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
900 						 unsigned int port)
901 {
902 	return mv_hc_base(base, mv_hc_from_port(port));
903 }
904 
905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
906 {
907 	return  mv_hc_base_from_port(base, port) +
908 		MV_SATAHC_ARBTR_REG_SZ +
909 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
910 }
911 
912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
913 {
914 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
916 
917 	return hc_mmio + ofs;
918 }
919 
920 static inline void __iomem *mv_host_base(struct ata_host *host)
921 {
922 	struct mv_host_priv *hpriv = host->private_data;
923 	return hpriv->base;
924 }
925 
926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
927 {
928 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
929 }
930 
931 static inline int mv_get_hc_count(unsigned long port_flags)
932 {
933 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
934 }
935 
936 /**
937  *      mv_save_cached_regs - (re-)initialize cached port registers
938  *      @ap: the port whose registers we are caching
939  *
940  *	Initialize the local cache of port registers,
941  *	so that reading them over and over again can
942  *	be avoided on the hotter paths of this driver.
943  *	This saves a few microseconds each time we switch
944  *	to/from EDMA mode to perform (eg.) a drive cache flush.
945  */
946 static void mv_save_cached_regs(struct ata_port *ap)
947 {
948 	void __iomem *port_mmio = mv_ap_base(ap);
949 	struct mv_port_priv *pp = ap->private_data;
950 
951 	pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 	pp->cached.ltmode = readl(port_mmio + LTMODE);
953 	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
955 }
956 
957 /**
958  *      mv_write_cached_reg - write to a cached port register
959  *      @addr: hardware address of the register
960  *      @old: pointer to cached value of the register
961  *      @new: new value for the register
962  *
963  *	Write a new value to a cached register,
964  *	but only if the value is different from before.
965  */
966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
967 {
968 	if (new != *old) {
969 		unsigned long laddr;
970 		*old = new;
971 		/*
972 		 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 		 * Read-after-write is needed to prevent generating 64-bit
974 		 * write cycles on the PCI bus for SATA interface registers
975 		 * at offsets ending in 0x4 or 0xc.
976 		 *
977 		 * Looks like a lot of fuss, but it avoids an unnecessary
978 		 * +1 usec read-after-write delay for unaffected registers.
979 		 */
980 		laddr = (unsigned long)addr & 0xffff;
981 		if (laddr >= 0x300 && laddr <= 0x33c) {
982 			laddr &= 0x000f;
983 			if (laddr == 0x4 || laddr == 0xc) {
984 				writelfl(new, addr); /* read after write */
985 				return;
986 			}
987 		}
988 		writel(new, addr); /* unaffected by the errata */
989 	}
990 }
991 
992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 			     struct mv_host_priv *hpriv,
994 			     struct mv_port_priv *pp)
995 {
996 	u32 index;
997 
998 	/*
999 	 * initialize request queue
1000 	 */
1001 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1002 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1003 
1004 	WARN_ON(pp->crqb_dma & 0x3ff);
1005 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007 		 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1009 
1010 	/*
1011 	 * initialize response queue
1012 	 */
1013 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1014 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1015 
1016 	WARN_ON(pp->crpb_dma & 0xff);
1017 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020 		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1021 }
1022 
1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024 {
1025 	/*
1026 	 * When writing to the main_irq_mask in hardware,
1027 	 * we must ensure exclusivity between the interrupt coalescing bits
1028 	 * and the corresponding individual port DONE_IRQ bits.
1029 	 *
1030 	 * Note that this register is really an "IRQ enable" register,
1031 	 * not an "IRQ mask" register as Marvell's naming might suggest.
1032 	 */
1033 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 		mask &= ~DONE_IRQ_0_3;
1035 	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 		mask &= ~DONE_IRQ_4_7;
1037 	writelfl(mask, hpriv->main_irq_mask_addr);
1038 }
1039 
1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041 				 u32 disable_bits, u32 enable_bits)
1042 {
1043 	struct mv_host_priv *hpriv = host->private_data;
1044 	u32 old_mask, new_mask;
1045 
1046 	old_mask = hpriv->main_irq_mask;
1047 	new_mask = (old_mask & ~disable_bits) | enable_bits;
1048 	if (new_mask != old_mask) {
1049 		hpriv->main_irq_mask = new_mask;
1050 		mv_write_main_irq_mask(new_mask, hpriv);
1051 	}
1052 }
1053 
1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055 				     unsigned int port_bits)
1056 {
1057 	unsigned int shift, hardport, port = ap->port_no;
1058 	u32 disable_bits, enable_bits;
1059 
1060 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061 
1062 	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 	enable_bits  = port_bits << shift;
1064 	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065 }
1066 
1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 					  void __iomem *port_mmio,
1069 					  unsigned int port_irqs)
1070 {
1071 	struct mv_host_priv *hpriv = ap->host->private_data;
1072 	int hardport = mv_hardport_from_port(ap->port_no);
1073 	void __iomem *hc_mmio = mv_hc_base_from_port(
1074 				mv_host_base(ap->host), ap->port_no);
1075 	u32 hc_irq_cause;
1076 
1077 	/* clear EDMA event indicators, if any */
1078 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1079 
1080 	/* clear pending irq events */
1081 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1083 
1084 	/* clear FIS IRQ Cause */
1085 	if (IS_GEN_IIE(hpriv))
1086 		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1087 
1088 	mv_enable_port_irqs(ap, port_irqs);
1089 }
1090 
1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092 				  unsigned int count, unsigned int usecs)
1093 {
1094 	struct mv_host_priv *hpriv = host->private_data;
1095 	void __iomem *mmio = hpriv->base, *hc_mmio;
1096 	u32 coal_enable = 0;
1097 	unsigned long flags;
1098 	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099 	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 							ALL_PORTS_COAL_DONE;
1101 
1102 	/* Disable IRQ coalescing if either threshold is zero */
1103 	if (!usecs || !count) {
1104 		clks = count = 0;
1105 	} else {
1106 		/* Respect maximum limits of the hardware */
1107 		clks = usecs * COAL_CLOCKS_PER_USEC;
1108 		if (clks > MAX_COAL_TIME_THRESHOLD)
1109 			clks = MAX_COAL_TIME_THRESHOLD;
1110 		if (count > MAX_COAL_IO_COUNT)
1111 			count = MAX_COAL_IO_COUNT;
1112 	}
1113 
1114 	spin_lock_irqsave(&host->lock, flags);
1115 	mv_set_main_irq_mask(host, coal_disable, 0);
1116 
1117 	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1118 		/*
1119 		 * GEN_II/GEN_IIE with dual host controllers:
1120 		 * one set of global thresholds for the entire chip.
1121 		 */
1122 		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1123 		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124 		/* clear leftover coal IRQ bit */
1125 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1126 		if (count)
1127 			coal_enable = ALL_PORTS_COAL_DONE;
1128 		clks = count = 0; /* force clearing of regular regs below */
1129 	}
1130 
1131 	/*
1132 	 * All chips: independent thresholds for each HC on the chip.
1133 	 */
1134 	hc_mmio = mv_hc_base_from_port(mmio, 0);
1135 	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1138 	if (count)
1139 		coal_enable |= PORTS_0_3_COAL_DONE;
1140 	if (is_dual_hc) {
1141 		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142 		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1145 		if (count)
1146 			coal_enable |= PORTS_4_7_COAL_DONE;
1147 	}
1148 
1149 	mv_set_main_irq_mask(host, 0, coal_enable);
1150 	spin_unlock_irqrestore(&host->lock, flags);
1151 }
1152 
1153 /*
1154  *      mv_start_edma - Enable eDMA engine
1155  *      @pp: port private data
1156  *
1157  *      Verify the local cache of the eDMA state is accurate with a
1158  *      WARN_ON.
1159  *
1160  *      LOCKING:
1161  *      Inherited from caller.
1162  */
1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164 			 struct mv_port_priv *pp, u8 protocol)
1165 {
1166 	int want_ncq = (protocol == ATA_PROT_NCQ);
1167 
1168 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 		if (want_ncq != using_ncq)
1171 			mv_stop_edma(ap);
1172 	}
1173 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174 		struct mv_host_priv *hpriv = ap->host->private_data;
1175 
1176 		mv_edma_cfg(ap, want_ncq, 1);
1177 
1178 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179 		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1180 
1181 		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183 	}
1184 }
1185 
1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187 {
1188 	void __iomem *port_mmio = mv_ap_base(ap);
1189 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191 	int i;
1192 
1193 	/*
1194 	 * Wait for the EDMA engine to finish transactions in progress.
1195 	 * No idea what a good "timeout" value might be, but measurements
1196 	 * indicate that it often requires hundreds of microseconds
1197 	 * with two drives in-use.  So we use the 15msec value above
1198 	 * as a rough guess at what even more drives might require.
1199 	 */
1200 	for (i = 0; i < timeout; ++i) {
1201 		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202 		if ((edma_stat & empty_idle) == empty_idle)
1203 			break;
1204 		udelay(per_loop);
1205 	}
1206 	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1207 }
1208 
1209 /**
1210  *      mv_stop_edma_engine - Disable eDMA engine
1211  *      @port_mmio: io base address
1212  *
1213  *      LOCKING:
1214  *      Inherited from caller.
1215  */
1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1217 {
1218 	int i;
1219 
1220 	/* Disable eDMA.  The disable bit auto clears. */
1221 	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1222 
1223 	/* Wait for the chip to confirm eDMA is off. */
1224 	for (i = 10000; i > 0; i--) {
1225 		u32 reg = readl(port_mmio + EDMA_CMD);
1226 		if (!(reg & EDMA_EN))
1227 			return 0;
1228 		udelay(10);
1229 	}
1230 	return -EIO;
1231 }
1232 
1233 static int mv_stop_edma(struct ata_port *ap)
1234 {
1235 	void __iomem *port_mmio = mv_ap_base(ap);
1236 	struct mv_port_priv *pp = ap->private_data;
1237 	int err = 0;
1238 
1239 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240 		return 0;
1241 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242 	mv_wait_for_edma_empty_idle(ap);
1243 	if (mv_stop_edma_engine(port_mmio)) {
1244 		ata_port_err(ap, "Unable to stop eDMA\n");
1245 		err = -EIO;
1246 	}
1247 	mv_edma_cfg(ap, 0, 0);
1248 	return err;
1249 }
1250 
1251 #ifdef ATA_DEBUG
1252 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1253 {
1254 	int b, w;
1255 	for (b = 0; b < bytes; ) {
1256 		DPRINTK("%p: ", start + b);
1257 		for (w = 0; b < bytes && w < 4; w++) {
1258 			printk("%08x ", readl(start + b));
1259 			b += sizeof(u32);
1260 		}
1261 		printk("\n");
1262 	}
1263 }
1264 #endif
1265 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1266 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1267 {
1268 #ifdef ATA_DEBUG
1269 	int b, w;
1270 	u32 dw;
1271 	for (b = 0; b < bytes; ) {
1272 		DPRINTK("%02x: ", b);
1273 		for (w = 0; b < bytes && w < 4; w++) {
1274 			(void) pci_read_config_dword(pdev, b, &dw);
1275 			printk("%08x ", dw);
1276 			b += sizeof(u32);
1277 		}
1278 		printk("\n");
1279 	}
1280 #endif
1281 }
1282 #endif
1283 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1284 			     struct pci_dev *pdev)
1285 {
1286 #ifdef ATA_DEBUG
1287 	void __iomem *hc_base = mv_hc_base(mmio_base,
1288 					   port >> MV_PORT_HC_SHIFT);
1289 	void __iomem *port_base;
1290 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1291 
1292 	if (0 > port) {
1293 		start_hc = start_port = 0;
1294 		num_ports = 8;		/* shld be benign for 4 port devs */
1295 		num_hcs = 2;
1296 	} else {
1297 		start_hc = port >> MV_PORT_HC_SHIFT;
1298 		start_port = port;
1299 		num_ports = num_hcs = 1;
1300 	}
1301 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1302 		num_ports > 1 ? num_ports - 1 : start_port);
1303 
1304 	if (NULL != pdev) {
1305 		DPRINTK("PCI config space regs:\n");
1306 		mv_dump_pci_cfg(pdev, 0x68);
1307 	}
1308 	DPRINTK("PCI regs:\n");
1309 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1310 	mv_dump_mem(mmio_base+0xd00, 0x34);
1311 	mv_dump_mem(mmio_base+0xf00, 0x4);
1312 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1313 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1314 		hc_base = mv_hc_base(mmio_base, hc);
1315 		DPRINTK("HC regs (HC %i):\n", hc);
1316 		mv_dump_mem(hc_base, 0x1c);
1317 	}
1318 	for (p = start_port; p < start_port + num_ports; p++) {
1319 		port_base = mv_port_base(mmio_base, p);
1320 		DPRINTK("EDMA regs (port %i):\n", p);
1321 		mv_dump_mem(port_base, 0x54);
1322 		DPRINTK("SATA regs (port %i):\n", p);
1323 		mv_dump_mem(port_base+0x300, 0x60);
1324 	}
1325 #endif
1326 }
1327 
1328 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1329 {
1330 	unsigned int ofs;
1331 
1332 	switch (sc_reg_in) {
1333 	case SCR_STATUS:
1334 	case SCR_CONTROL:
1335 	case SCR_ERROR:
1336 		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1337 		break;
1338 	case SCR_ACTIVE:
1339 		ofs = SATA_ACTIVE;   /* active is not with the others */
1340 		break;
1341 	default:
1342 		ofs = 0xffffffffU;
1343 		break;
1344 	}
1345 	return ofs;
1346 }
1347 
1348 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1349 {
1350 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1351 
1352 	if (ofs != 0xffffffffU) {
1353 		*val = readl(mv_ap_base(link->ap) + ofs);
1354 		return 0;
1355 	} else
1356 		return -EINVAL;
1357 }
1358 
1359 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1360 {
1361 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1362 
1363 	if (ofs != 0xffffffffU) {
1364 		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1365 		struct mv_host_priv *hpriv = link->ap->host->private_data;
1366 		if (sc_reg_in == SCR_CONTROL) {
1367 			/*
1368 			 * Workaround for 88SX60x1 FEr SATA#26:
1369 			 *
1370 			 * COMRESETs have to take care not to accidentally
1371 			 * put the drive to sleep when writing SCR_CONTROL.
1372 			 * Setting bits 12..15 prevents this problem.
1373 			 *
1374 			 * So if we see an outbound COMMRESET, set those bits.
1375 			 * Ditto for the followup write that clears the reset.
1376 			 *
1377 			 * The proprietary driver does this for
1378 			 * all chip versions, and so do we.
1379 			 */
1380 			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1381 				val |= 0xf000;
1382 
1383 			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1384 				void __iomem *lp_phy_addr =
1385 					mv_ap_base(link->ap) + LP_PHY_CTL;
1386 				/*
1387 				 * Set PHY speed according to SControl speed.
1388 				 */
1389 				u32 lp_phy_val =
1390 					LP_PHY_CTL_PIN_PU_PLL |
1391 					LP_PHY_CTL_PIN_PU_RX  |
1392 					LP_PHY_CTL_PIN_PU_TX;
1393 
1394 				if ((val & 0xf0) != 0x10)
1395 					lp_phy_val |=
1396 						LP_PHY_CTL_GEN_TX_3G |
1397 						LP_PHY_CTL_GEN_RX_3G;
1398 
1399 				writelfl(lp_phy_val, lp_phy_addr);
1400 			}
1401 		}
1402 		writelfl(val, addr);
1403 		return 0;
1404 	} else
1405 		return -EINVAL;
1406 }
1407 
1408 static void mv6_dev_config(struct ata_device *adev)
1409 {
1410 	/*
1411 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1412 	 *
1413 	 * Gen-II does not support NCQ over a port multiplier
1414 	 *  (no FIS-based switching).
1415 	 */
1416 	if (adev->flags & ATA_DFLAG_NCQ) {
1417 		if (sata_pmp_attached(adev->link->ap)) {
1418 			adev->flags &= ~ATA_DFLAG_NCQ;
1419 			ata_dev_info(adev,
1420 				"NCQ disabled for command-based switching\n");
1421 		}
1422 	}
1423 }
1424 
1425 static int mv_qc_defer(struct ata_queued_cmd *qc)
1426 {
1427 	struct ata_link *link = qc->dev->link;
1428 	struct ata_port *ap = link->ap;
1429 	struct mv_port_priv *pp = ap->private_data;
1430 
1431 	/*
1432 	 * Don't allow new commands if we're in a delayed EH state
1433 	 * for NCQ and/or FIS-based switching.
1434 	 */
1435 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1436 		return ATA_DEFER_PORT;
1437 
1438 	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1439 	 * can run concurrently.
1440 	 * set excl_link when we want to send a PIO command in DMA mode
1441 	 * or a non-NCQ command in NCQ mode.
1442 	 * When we receive a command from that link, and there are no
1443 	 * outstanding commands, mark a flag to clear excl_link and let
1444 	 * the command go through.
1445 	 */
1446 	if (unlikely(ap->excl_link)) {
1447 		if (link == ap->excl_link) {
1448 			if (ap->nr_active_links)
1449 				return ATA_DEFER_PORT;
1450 			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1451 			return 0;
1452 		} else
1453 			return ATA_DEFER_PORT;
1454 	}
1455 
1456 	/*
1457 	 * If the port is completely idle, then allow the new qc.
1458 	 */
1459 	if (ap->nr_active_links == 0)
1460 		return 0;
1461 
1462 	/*
1463 	 * The port is operating in host queuing mode (EDMA) with NCQ
1464 	 * enabled, allow multiple NCQ commands.  EDMA also allows
1465 	 * queueing multiple DMA commands but libata core currently
1466 	 * doesn't allow it.
1467 	 */
1468 	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1469 	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1470 		if (ata_is_ncq(qc->tf.protocol))
1471 			return 0;
1472 		else {
1473 			ap->excl_link = link;
1474 			return ATA_DEFER_PORT;
1475 		}
1476 	}
1477 
1478 	return ATA_DEFER_PORT;
1479 }
1480 
1481 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1482 {
1483 	struct mv_port_priv *pp = ap->private_data;
1484 	void __iomem *port_mmio;
1485 
1486 	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1487 	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1488 	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1489 
1490 	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1491 	haltcond = *old_haltcond | EDMA_ERR_DEV;
1492 
1493 	if (want_fbs) {
1494 		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1495 		ltmode = *old_ltmode | LTMODE_BIT8;
1496 		if (want_ncq)
1497 			haltcond &= ~EDMA_ERR_DEV;
1498 		else
1499 			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1500 	} else {
1501 		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1502 	}
1503 
1504 	port_mmio = mv_ap_base(ap);
1505 	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1506 	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1507 	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1508 }
1509 
1510 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1511 {
1512 	struct mv_host_priv *hpriv = ap->host->private_data;
1513 	u32 old, new;
1514 
1515 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1516 	old = readl(hpriv->base + GPIO_PORT_CTL);
1517 	if (want_ncq)
1518 		new = old | (1 << 22);
1519 	else
1520 		new = old & ~(1 << 22);
1521 	if (new != old)
1522 		writel(new, hpriv->base + GPIO_PORT_CTL);
1523 }
1524 
1525 /*
1526  *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1527  *	@ap: Port being initialized
1528  *
1529  *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1530  *
1531  *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1532  *	of basic DMA on the GEN_IIE versions of the chips.
1533  *
1534  *	This bit survives EDMA resets, and must be set for basic DMA
1535  *	to function, and should be cleared when EDMA is active.
1536  */
1537 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1538 {
1539 	struct mv_port_priv *pp = ap->private_data;
1540 	u32 new, *old = &pp->cached.unknown_rsvd;
1541 
1542 	if (enable_bmdma)
1543 		new = *old | 1;
1544 	else
1545 		new = *old & ~1;
1546 	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1547 }
1548 
1549 /*
1550  * SOC chips have an issue whereby the HDD LEDs don't always blink
1551  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1552  * of the SOC takes care of it, generating a steady blink rate when
1553  * any drive on the chip is active.
1554  *
1555  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1556  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1557  *
1558  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1559  * LED operation works then, and provides better (more accurate) feedback.
1560  *
1561  * Note that this code assumes that an SOC never has more than one HC onboard.
1562  */
1563 static void mv_soc_led_blink_enable(struct ata_port *ap)
1564 {
1565 	struct ata_host *host = ap->host;
1566 	struct mv_host_priv *hpriv = host->private_data;
1567 	void __iomem *hc_mmio;
1568 	u32 led_ctrl;
1569 
1570 	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1571 		return;
1572 	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1573 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1574 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1575 	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1576 }
1577 
1578 static void mv_soc_led_blink_disable(struct ata_port *ap)
1579 {
1580 	struct ata_host *host = ap->host;
1581 	struct mv_host_priv *hpriv = host->private_data;
1582 	void __iomem *hc_mmio;
1583 	u32 led_ctrl;
1584 	unsigned int port;
1585 
1586 	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1587 		return;
1588 
1589 	/* disable led-blink only if no ports are using NCQ */
1590 	for (port = 0; port < hpriv->n_ports; port++) {
1591 		struct ata_port *this_ap = host->ports[port];
1592 		struct mv_port_priv *pp = this_ap->private_data;
1593 
1594 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1595 			return;
1596 	}
1597 
1598 	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1599 	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1600 	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1601 	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1602 }
1603 
1604 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1605 {
1606 	u32 cfg;
1607 	struct mv_port_priv *pp    = ap->private_data;
1608 	struct mv_host_priv *hpriv = ap->host->private_data;
1609 	void __iomem *port_mmio    = mv_ap_base(ap);
1610 
1611 	/* set up non-NCQ EDMA configuration */
1612 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1613 	pp->pp_flags &=
1614 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1615 
1616 	if (IS_GEN_I(hpriv))
1617 		cfg |= (1 << 8);	/* enab config burst size mask */
1618 
1619 	else if (IS_GEN_II(hpriv)) {
1620 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1621 		mv_60x1_errata_sata25(ap, want_ncq);
1622 
1623 	} else if (IS_GEN_IIE(hpriv)) {
1624 		int want_fbs = sata_pmp_attached(ap);
1625 		/*
1626 		 * Possible future enhancement:
1627 		 *
1628 		 * The chip can use FBS with non-NCQ, if we allow it,
1629 		 * But first we need to have the error handling in place
1630 		 * for this mode (datasheet section 7.3.15.4.2.3).
1631 		 * So disallow non-NCQ FBS for now.
1632 		 */
1633 		want_fbs &= want_ncq;
1634 
1635 		mv_config_fbs(ap, want_ncq, want_fbs);
1636 
1637 		if (want_fbs) {
1638 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1639 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1640 		}
1641 
1642 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1643 		if (want_edma) {
1644 			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1645 			if (!IS_SOC(hpriv))
1646 				cfg |= (1 << 18); /* enab early completion */
1647 		}
1648 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1649 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1650 		mv_bmdma_enable_iie(ap, !want_edma);
1651 
1652 		if (IS_SOC(hpriv)) {
1653 			if (want_ncq)
1654 				mv_soc_led_blink_enable(ap);
1655 			else
1656 				mv_soc_led_blink_disable(ap);
1657 		}
1658 	}
1659 
1660 	if (want_ncq) {
1661 		cfg |= EDMA_CFG_NCQ;
1662 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1663 	}
1664 
1665 	writelfl(cfg, port_mmio + EDMA_CFG);
1666 }
1667 
1668 static void mv_port_free_dma_mem(struct ata_port *ap)
1669 {
1670 	struct mv_host_priv *hpriv = ap->host->private_data;
1671 	struct mv_port_priv *pp = ap->private_data;
1672 	int tag;
1673 
1674 	if (pp->crqb) {
1675 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1676 		pp->crqb = NULL;
1677 	}
1678 	if (pp->crpb) {
1679 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1680 		pp->crpb = NULL;
1681 	}
1682 	/*
1683 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1684 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1685 	 */
1686 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1687 		if (pp->sg_tbl[tag]) {
1688 			if (tag == 0 || !IS_GEN_I(hpriv))
1689 				dma_pool_free(hpriv->sg_tbl_pool,
1690 					      pp->sg_tbl[tag],
1691 					      pp->sg_tbl_dma[tag]);
1692 			pp->sg_tbl[tag] = NULL;
1693 		}
1694 	}
1695 }
1696 
1697 /**
1698  *      mv_port_start - Port specific init/start routine.
1699  *      @ap: ATA channel to manipulate
1700  *
1701  *      Allocate and point to DMA memory, init port private memory,
1702  *      zero indices.
1703  *
1704  *      LOCKING:
1705  *      Inherited from caller.
1706  */
1707 static int mv_port_start(struct ata_port *ap)
1708 {
1709 	struct device *dev = ap->host->dev;
1710 	struct mv_host_priv *hpriv = ap->host->private_data;
1711 	struct mv_port_priv *pp;
1712 	unsigned long flags;
1713 	int tag;
1714 
1715 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1716 	if (!pp)
1717 		return -ENOMEM;
1718 	ap->private_data = pp;
1719 
1720 	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1721 	if (!pp->crqb)
1722 		return -ENOMEM;
1723 
1724 	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1725 	if (!pp->crpb)
1726 		goto out_port_free_dma_mem;
1727 
1728 	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730 		ap->flags |= ATA_FLAG_AN;
1731 	/*
1732 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1734 	 */
1735 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1737 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739 			if (!pp->sg_tbl[tag])
1740 				goto out_port_free_dma_mem;
1741 		} else {
1742 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1743 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744 		}
1745 	}
1746 
1747 	spin_lock_irqsave(ap->lock, flags);
1748 	mv_save_cached_regs(ap);
1749 	mv_edma_cfg(ap, 0, 0);
1750 	spin_unlock_irqrestore(ap->lock, flags);
1751 
1752 	return 0;
1753 
1754 out_port_free_dma_mem:
1755 	mv_port_free_dma_mem(ap);
1756 	return -ENOMEM;
1757 }
1758 
1759 /**
1760  *      mv_port_stop - Port specific cleanup/stop routine.
1761  *      @ap: ATA channel to manipulate
1762  *
1763  *      Stop DMA, cleanup port memory.
1764  *
1765  *      LOCKING:
1766  *      This routine uses the host lock to protect the DMA stop.
1767  */
1768 static void mv_port_stop(struct ata_port *ap)
1769 {
1770 	unsigned long flags;
1771 
1772 	spin_lock_irqsave(ap->lock, flags);
1773 	mv_stop_edma(ap);
1774 	mv_enable_port_irqs(ap, 0);
1775 	spin_unlock_irqrestore(ap->lock, flags);
1776 	mv_port_free_dma_mem(ap);
1777 }
1778 
1779 /**
1780  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781  *      @qc: queued command whose SG list to source from
1782  *
1783  *      Populate the SG list and mark the last entry.
1784  *
1785  *      LOCKING:
1786  *      Inherited from caller.
1787  */
1788 static void mv_fill_sg(struct ata_queued_cmd *qc)
1789 {
1790 	struct mv_port_priv *pp = qc->ap->private_data;
1791 	struct scatterlist *sg;
1792 	struct mv_sg *mv_sg, *last_sg = NULL;
1793 	unsigned int si;
1794 
1795 	mv_sg = pp->sg_tbl[qc->hw_tag];
1796 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797 		dma_addr_t addr = sg_dma_address(sg);
1798 		u32 sg_len = sg_dma_len(sg);
1799 
1800 		while (sg_len) {
1801 			u32 offset = addr & 0xffff;
1802 			u32 len = sg_len;
1803 
1804 			if (offset + len > 0x10000)
1805 				len = 0x10000 - offset;
1806 
1807 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810 			mv_sg->reserved = 0;
1811 
1812 			sg_len -= len;
1813 			addr += len;
1814 
1815 			last_sg = mv_sg;
1816 			mv_sg++;
1817 		}
1818 	}
1819 
1820 	if (likely(last_sg))
1821 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822 	mb(); /* ensure data structure is visible to the chipset */
1823 }
1824 
1825 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826 {
1827 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828 		(last ? CRQB_CMD_LAST : 0);
1829 	*cmdw = cpu_to_le16(tmp);
1830 }
1831 
1832 /**
1833  *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834  *	@ap: Port associated with this ATA transaction.
1835  *
1836  *	We need this only for ATAPI bmdma transactions,
1837  *	as otherwise we experience spurious interrupts
1838  *	after libata-sff handles the bmdma interrupts.
1839  */
1840 static void mv_sff_irq_clear(struct ata_port *ap)
1841 {
1842 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843 }
1844 
1845 /**
1846  *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847  *	@qc: queued command to check for chipset/DMA compatibility.
1848  *
1849  *	The bmdma engines cannot handle speculative data sizes
1850  *	(bytecount under/over flow).  So only allow DMA for
1851  *	data transfer commands with known data sizes.
1852  *
1853  *	LOCKING:
1854  *	Inherited from caller.
1855  */
1856 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857 {
1858 	struct scsi_cmnd *scmd = qc->scsicmd;
1859 
1860 	if (scmd) {
1861 		switch (scmd->cmnd[0]) {
1862 		case READ_6:
1863 		case READ_10:
1864 		case READ_12:
1865 		case WRITE_6:
1866 		case WRITE_10:
1867 		case WRITE_12:
1868 		case GPCMD_READ_CD:
1869 		case GPCMD_SEND_DVD_STRUCTURE:
1870 		case GPCMD_SEND_CUE_SHEET:
1871 			return 0; /* DMA is safe */
1872 		}
1873 	}
1874 	return -EOPNOTSUPP; /* use PIO instead */
1875 }
1876 
1877 /**
1878  *	mv_bmdma_setup - Set up BMDMA transaction
1879  *	@qc: queued command to prepare DMA for.
1880  *
1881  *	LOCKING:
1882  *	Inherited from caller.
1883  */
1884 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885 {
1886 	struct ata_port *ap = qc->ap;
1887 	void __iomem *port_mmio = mv_ap_base(ap);
1888 	struct mv_port_priv *pp = ap->private_data;
1889 
1890 	mv_fill_sg(qc);
1891 
1892 	/* clear all DMA cmd bits */
1893 	writel(0, port_mmio + BMDMA_CMD);
1894 
1895 	/* load PRD table addr. */
1896 	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1897 		port_mmio + BMDMA_PRD_HIGH);
1898 	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1899 		port_mmio + BMDMA_PRD_LOW);
1900 
1901 	/* issue r/w command */
1902 	ap->ops->sff_exec_command(ap, &qc->tf);
1903 }
1904 
1905 /**
1906  *	mv_bmdma_start - Start a BMDMA transaction
1907  *	@qc: queued command to start DMA on.
1908  *
1909  *	LOCKING:
1910  *	Inherited from caller.
1911  */
1912 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913 {
1914 	struct ata_port *ap = qc->ap;
1915 	void __iomem *port_mmio = mv_ap_base(ap);
1916 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917 	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918 
1919 	/* start host DMA transaction */
1920 	writelfl(cmd, port_mmio + BMDMA_CMD);
1921 }
1922 
1923 /**
1924  *	mv_bmdma_stop_ap - Stop BMDMA transfer
1925  *	@ap: port to stop
1926  *
1927  *	Clears the ATA_DMA_START flag in the bmdma control register
1928  *
1929  *	LOCKING:
1930  *	Inherited from caller.
1931  */
1932 static void mv_bmdma_stop_ap(struct ata_port *ap)
1933 {
1934 	void __iomem *port_mmio = mv_ap_base(ap);
1935 	u32 cmd;
1936 
1937 	/* clear start/stop bit */
1938 	cmd = readl(port_mmio + BMDMA_CMD);
1939 	if (cmd & ATA_DMA_START) {
1940 		cmd &= ~ATA_DMA_START;
1941 		writelfl(cmd, port_mmio + BMDMA_CMD);
1942 
1943 		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 		ata_sff_dma_pause(ap);
1945 	}
1946 }
1947 
1948 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949 {
1950 	mv_bmdma_stop_ap(qc->ap);
1951 }
1952 
1953 /**
1954  *	mv_bmdma_status - Read BMDMA status
1955  *	@ap: port for which to retrieve DMA status.
1956  *
1957  *	Read and return equivalent of the sff BMDMA status register.
1958  *
1959  *	LOCKING:
1960  *	Inherited from caller.
1961  */
1962 static u8 mv_bmdma_status(struct ata_port *ap)
1963 {
1964 	void __iomem *port_mmio = mv_ap_base(ap);
1965 	u32 reg, status;
1966 
1967 	/*
1968 	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 	 * and the ATA_DMA_INTR bit doesn't exist.
1970 	 */
1971 	reg = readl(port_mmio + BMDMA_STATUS);
1972 	if (reg & ATA_DMA_ACTIVE)
1973 		status = ATA_DMA_ACTIVE;
1974 	else if (reg & ATA_DMA_ERR)
1975 		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976 	else {
1977 		/*
1978 		 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 		 * this does _not_ mean the device is "done".
1980 		 * So we should not yet be signalling ATA_DMA_INTR
1981 		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1982 		 */
1983 		mv_bmdma_stop_ap(ap);
1984 		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985 			status = 0;
1986 		else
1987 			status = ATA_DMA_INTR;
1988 	}
1989 	return status;
1990 }
1991 
1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993 {
1994 	struct ata_taskfile *tf = &qc->tf;
1995 	/*
1996 	 * Workaround for 88SX60x1 FEr SATA#24.
1997 	 *
1998 	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 	 * Note that READs are unaffected.
2000 	 *
2001 	 * It's not clear if this errata really means "4K bytes",
2002 	 * or if it always happens for multi_count > 7
2003 	 * regardless of device sector_size.
2004 	 *
2005 	 * So, for safety, any write with multi_count > 7
2006 	 * gets converted here into a regular PIO write instead:
2007 	 */
2008 	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009 		if (qc->dev->multi_count > 7) {
2010 			switch (tf->command) {
2011 			case ATA_CMD_WRITE_MULTI:
2012 				tf->command = ATA_CMD_PIO_WRITE;
2013 				break;
2014 			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015 				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016 				fallthrough;
2017 			case ATA_CMD_WRITE_MULTI_EXT:
2018 				tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 				break;
2020 			}
2021 		}
2022 	}
2023 }
2024 
2025 /**
2026  *      mv_qc_prep - Host specific command preparation.
2027  *      @qc: queued command to prepare
2028  *
2029  *      This routine simply redirects to the general purpose routine
2030  *      if command is not DMA.  Else, it handles prep of the CRQB
2031  *      (command request block), does some sanity checking, and calls
2032  *      the SG load routine.
2033  *
2034  *      LOCKING:
2035  *      Inherited from caller.
2036  */
2037 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2038 {
2039 	struct ata_port *ap = qc->ap;
2040 	struct mv_port_priv *pp = ap->private_data;
2041 	__le16 *cw;
2042 	struct ata_taskfile *tf = &qc->tf;
2043 	u16 flags = 0;
2044 	unsigned in_index;
2045 
2046 	switch (tf->protocol) {
2047 	case ATA_PROT_DMA:
2048 		if (tf->command == ATA_CMD_DSM)
2049 			return AC_ERR_OK;
2050 		fallthrough;
2051 	case ATA_PROT_NCQ:
2052 		break;	/* continue below */
2053 	case ATA_PROT_PIO:
2054 		mv_rw_multi_errata_sata24(qc);
2055 		return AC_ERR_OK;
2056 	default:
2057 		return AC_ERR_OK;
2058 	}
2059 
2060 	/* Fill in command request block
2061 	 */
2062 	if (!(tf->flags & ATA_TFLAG_WRITE))
2063 		flags |= CRQB_FLAG_READ;
2064 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2065 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2066 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067 
2068 	/* get current queue index from software */
2069 	in_index = pp->req_idx;
2070 
2071 	pp->crqb[in_index].sg_addr =
2072 		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2073 	pp->crqb[in_index].sg_addr_hi =
2074 		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2075 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076 
2077 	cw = &pp->crqb[in_index].ata_cmd[0];
2078 
2079 	/* Sadly, the CRQB cannot accommodate all registers--there are
2080 	 * only 11 bytes...so we must pick and choose required
2081 	 * registers based on the command.  So, we drop feature and
2082 	 * hob_feature for [RW] DMA commands, but they are needed for
2083 	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2084 	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085 	 */
2086 	switch (tf->command) {
2087 	case ATA_CMD_READ:
2088 	case ATA_CMD_READ_EXT:
2089 	case ATA_CMD_WRITE:
2090 	case ATA_CMD_WRITE_EXT:
2091 	case ATA_CMD_WRITE_FUA_EXT:
2092 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093 		break;
2094 	case ATA_CMD_FPDMA_READ:
2095 	case ATA_CMD_FPDMA_WRITE:
2096 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098 		break;
2099 	default:
2100 		/* The only other commands EDMA supports in non-queued and
2101 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 		 * of which are defined/used by Linux.  If we get here, this
2103 		 * driver needs work.
2104 		 */
2105 		ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2106 				tf->command);
2107 		return AC_ERR_INVALID;
2108 	}
2109 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2110 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2111 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2112 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2113 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2114 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2115 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2116 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2117 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2118 
2119 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2120 		return AC_ERR_OK;
2121 	mv_fill_sg(qc);
2122 
2123 	return AC_ERR_OK;
2124 }
2125 
2126 /**
2127  *      mv_qc_prep_iie - Host specific command preparation.
2128  *      @qc: queued command to prepare
2129  *
2130  *      This routine simply redirects to the general purpose routine
2131  *      if command is not DMA.  Else, it handles prep of the CRQB
2132  *      (command request block), does some sanity checking, and calls
2133  *      the SG load routine.
2134  *
2135  *      LOCKING:
2136  *      Inherited from caller.
2137  */
2138 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139 {
2140 	struct ata_port *ap = qc->ap;
2141 	struct mv_port_priv *pp = ap->private_data;
2142 	struct mv_crqb_iie *crqb;
2143 	struct ata_taskfile *tf = &qc->tf;
2144 	unsigned in_index;
2145 	u32 flags = 0;
2146 
2147 	if ((tf->protocol != ATA_PROT_DMA) &&
2148 	    (tf->protocol != ATA_PROT_NCQ))
2149 		return AC_ERR_OK;
2150 	if (tf->command == ATA_CMD_DSM)
2151 		return AC_ERR_OK;  /* use bmdma for this */
2152 
2153 	/* Fill in Gen IIE command request block */
2154 	if (!(tf->flags & ATA_TFLAG_WRITE))
2155 		flags |= CRQB_FLAG_READ;
2156 
2157 	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2158 	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2159 	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2160 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161 
2162 	/* get current queue index from software */
2163 	in_index = pp->req_idx;
2164 
2165 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2167 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2168 	crqb->flags = cpu_to_le32(flags);
2169 
2170 	crqb->ata_cmd[0] = cpu_to_le32(
2171 			(tf->command << 16) |
2172 			(tf->feature << 24)
2173 		);
2174 	crqb->ata_cmd[1] = cpu_to_le32(
2175 			(tf->lbal << 0) |
2176 			(tf->lbam << 8) |
2177 			(tf->lbah << 16) |
2178 			(tf->device << 24)
2179 		);
2180 	crqb->ata_cmd[2] = cpu_to_le32(
2181 			(tf->hob_lbal << 0) |
2182 			(tf->hob_lbam << 8) |
2183 			(tf->hob_lbah << 16) |
2184 			(tf->hob_feature << 24)
2185 		);
2186 	crqb->ata_cmd[3] = cpu_to_le32(
2187 			(tf->nsect << 0) |
2188 			(tf->hob_nsect << 8)
2189 		);
2190 
2191 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192 		return AC_ERR_OK;
2193 	mv_fill_sg(qc);
2194 
2195 	return AC_ERR_OK;
2196 }
2197 
2198 /**
2199  *	mv_sff_check_status - fetch device status, if valid
2200  *	@ap: ATA port to fetch status from
2201  *
2202  *	When using command issue via mv_qc_issue_fis(),
2203  *	the initial ATA_BUSY state does not show up in the
2204  *	ATA status (shadow) register.  This can confuse libata!
2205  *
2206  *	So we have a hook here to fake ATA_BUSY for that situation,
2207  *	until the first time a BUSY, DRQ, or ERR bit is seen.
2208  *
2209  *	The rest of the time, it simply returns the ATA status register.
2210  */
2211 static u8 mv_sff_check_status(struct ata_port *ap)
2212 {
2213 	u8 stat = ioread8(ap->ioaddr.status_addr);
2214 	struct mv_port_priv *pp = ap->private_data;
2215 
2216 	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2217 		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2218 			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2219 		else
2220 			stat = ATA_BUSY;
2221 	}
2222 	return stat;
2223 }
2224 
2225 /**
2226  *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2227  *	@ap: ATA port to send a FIS
2228  *	@fis: fis to be sent
2229  *	@nwords: number of 32-bit words in the fis
2230  */
2231 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2232 {
2233 	void __iomem *port_mmio = mv_ap_base(ap);
2234 	u32 ifctl, old_ifctl, ifstat;
2235 	int i, timeout = 200, final_word = nwords - 1;
2236 
2237 	/* Initiate FIS transmission mode */
2238 	old_ifctl = readl(port_mmio + SATA_IFCTL);
2239 	ifctl = 0x100 | (old_ifctl & 0xf);
2240 	writelfl(ifctl, port_mmio + SATA_IFCTL);
2241 
2242 	/* Send all words of the FIS except for the final word */
2243 	for (i = 0; i < final_word; ++i)
2244 		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2245 
2246 	/* Flag end-of-transmission, and then send the final word */
2247 	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2248 	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2249 
2250 	/*
2251 	 * Wait for FIS transmission to complete.
2252 	 * This typically takes just a single iteration.
2253 	 */
2254 	do {
2255 		ifstat = readl(port_mmio + SATA_IFSTAT);
2256 	} while (!(ifstat & 0x1000) && --timeout);
2257 
2258 	/* Restore original port configuration */
2259 	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2260 
2261 	/* See if it worked */
2262 	if ((ifstat & 0x3000) != 0x1000) {
2263 		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2264 			      __func__, ifstat);
2265 		return AC_ERR_OTHER;
2266 	}
2267 	return 0;
2268 }
2269 
2270 /**
2271  *	mv_qc_issue_fis - Issue a command directly as a FIS
2272  *	@qc: queued command to start
2273  *
2274  *	Note that the ATA shadow registers are not updated
2275  *	after command issue, so the device will appear "READY"
2276  *	if polled, even while it is BUSY processing the command.
2277  *
2278  *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2279  *
2280  *	Note: we don't get updated shadow regs on *completion*
2281  *	of non-data commands. So avoid sending them via this function,
2282  *	as they will appear to have completed immediately.
2283  *
2284  *	GEN_IIE has special registers that we could get the result tf from,
2285  *	but earlier chipsets do not.  For now, we ignore those registers.
2286  */
2287 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2288 {
2289 	struct ata_port *ap = qc->ap;
2290 	struct mv_port_priv *pp = ap->private_data;
2291 	struct ata_link *link = qc->dev->link;
2292 	u32 fis[5];
2293 	int err = 0;
2294 
2295 	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2296 	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2297 	if (err)
2298 		return err;
2299 
2300 	switch (qc->tf.protocol) {
2301 	case ATAPI_PROT_PIO:
2302 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2303 		fallthrough;
2304 	case ATAPI_PROT_NODATA:
2305 		ap->hsm_task_state = HSM_ST_FIRST;
2306 		break;
2307 	case ATA_PROT_PIO:
2308 		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2309 		if (qc->tf.flags & ATA_TFLAG_WRITE)
2310 			ap->hsm_task_state = HSM_ST_FIRST;
2311 		else
2312 			ap->hsm_task_state = HSM_ST;
2313 		break;
2314 	default:
2315 		ap->hsm_task_state = HSM_ST_LAST;
2316 		break;
2317 	}
2318 
2319 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2320 		ata_sff_queue_pio_task(link, 0);
2321 	return 0;
2322 }
2323 
2324 /**
2325  *      mv_qc_issue - Initiate a command to the host
2326  *      @qc: queued command to start
2327  *
2328  *      This routine simply redirects to the general purpose routine
2329  *      if command is not DMA.  Else, it sanity checks our local
2330  *      caches of the request producer/consumer indices then enables
2331  *      DMA and bumps the request producer index.
2332  *
2333  *      LOCKING:
2334  *      Inherited from caller.
2335  */
2336 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2337 {
2338 	static int limit_warnings = 10;
2339 	struct ata_port *ap = qc->ap;
2340 	void __iomem *port_mmio = mv_ap_base(ap);
2341 	struct mv_port_priv *pp = ap->private_data;
2342 	u32 in_index;
2343 	unsigned int port_irqs;
2344 
2345 	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2346 
2347 	switch (qc->tf.protocol) {
2348 	case ATA_PROT_DMA:
2349 		if (qc->tf.command == ATA_CMD_DSM) {
2350 			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2351 				return AC_ERR_OTHER;
2352 			break;  /* use bmdma for this */
2353 		}
2354 		fallthrough;
2355 	case ATA_PROT_NCQ:
2356 		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2357 		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2358 		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2359 
2360 		/* Write the request in pointer to kick the EDMA to life */
2361 		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2362 					port_mmio + EDMA_REQ_Q_IN_PTR);
2363 		return 0;
2364 
2365 	case ATA_PROT_PIO:
2366 		/*
2367 		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2368 		 *
2369 		 * Someday, we might implement special polling workarounds
2370 		 * for these, but it all seems rather unnecessary since we
2371 		 * normally use only DMA for commands which transfer more
2372 		 * than a single block of data.
2373 		 *
2374 		 * Much of the time, this could just work regardless.
2375 		 * So for now, just log the incident, and allow the attempt.
2376 		 */
2377 		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2378 			--limit_warnings;
2379 			ata_link_warn(qc->dev->link, DRV_NAME
2380 				      ": attempting PIO w/multiple DRQ: "
2381 				      "this may fail due to h/w errata\n");
2382 		}
2383 		fallthrough;
2384 	case ATA_PROT_NODATA:
2385 	case ATAPI_PROT_PIO:
2386 	case ATAPI_PROT_NODATA:
2387 		if (ap->flags & ATA_FLAG_PIO_POLLING)
2388 			qc->tf.flags |= ATA_TFLAG_POLLING;
2389 		break;
2390 	}
2391 
2392 	if (qc->tf.flags & ATA_TFLAG_POLLING)
2393 		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2394 	else
2395 		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2396 
2397 	/*
2398 	 * We're about to send a non-EDMA capable command to the
2399 	 * port.  Turn off EDMA so there won't be problems accessing
2400 	 * shadow block, etc registers.
2401 	 */
2402 	mv_stop_edma(ap);
2403 	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2404 	mv_pmp_select(ap, qc->dev->link->pmp);
2405 
2406 	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2407 		struct mv_host_priv *hpriv = ap->host->private_data;
2408 		/*
2409 		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2410 		 *
2411 		 * After any NCQ error, the READ_LOG_EXT command
2412 		 * from libata-eh *must* use mv_qc_issue_fis().
2413 		 * Otherwise it might fail, due to chip errata.
2414 		 *
2415 		 * Rather than special-case it, we'll just *always*
2416 		 * use this method here for READ_LOG_EXT, making for
2417 		 * easier testing.
2418 		 */
2419 		if (IS_GEN_II(hpriv))
2420 			return mv_qc_issue_fis(qc);
2421 	}
2422 	return ata_bmdma_qc_issue(qc);
2423 }
2424 
2425 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2426 {
2427 	struct mv_port_priv *pp = ap->private_data;
2428 	struct ata_queued_cmd *qc;
2429 
2430 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2431 		return NULL;
2432 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2433 	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2434 		return qc;
2435 	return NULL;
2436 }
2437 
2438 static void mv_pmp_error_handler(struct ata_port *ap)
2439 {
2440 	unsigned int pmp, pmp_map;
2441 	struct mv_port_priv *pp = ap->private_data;
2442 
2443 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2444 		/*
2445 		 * Perform NCQ error analysis on failed PMPs
2446 		 * before we freeze the port entirely.
2447 		 *
2448 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2449 		 */
2450 		pmp_map = pp->delayed_eh_pmp_map;
2451 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2452 		for (pmp = 0; pmp_map != 0; pmp++) {
2453 			unsigned int this_pmp = (1 << pmp);
2454 			if (pmp_map & this_pmp) {
2455 				struct ata_link *link = &ap->pmp_link[pmp];
2456 				pmp_map &= ~this_pmp;
2457 				ata_eh_analyze_ncq_error(link);
2458 			}
2459 		}
2460 		ata_port_freeze(ap);
2461 	}
2462 	sata_pmp_error_handler(ap);
2463 }
2464 
2465 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2466 {
2467 	void __iomem *port_mmio = mv_ap_base(ap);
2468 
2469 	return readl(port_mmio + SATA_TESTCTL) >> 16;
2470 }
2471 
2472 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2473 {
2474 	unsigned int pmp;
2475 
2476 	/*
2477 	 * Initialize EH info for PMPs which saw device errors
2478 	 */
2479 	for (pmp = 0; pmp_map != 0; pmp++) {
2480 		unsigned int this_pmp = (1 << pmp);
2481 		if (pmp_map & this_pmp) {
2482 			struct ata_link *link = &ap->pmp_link[pmp];
2483 			struct ata_eh_info *ehi = &link->eh_info;
2484 
2485 			pmp_map &= ~this_pmp;
2486 			ata_ehi_clear_desc(ehi);
2487 			ata_ehi_push_desc(ehi, "dev err");
2488 			ehi->err_mask |= AC_ERR_DEV;
2489 			ehi->action |= ATA_EH_RESET;
2490 			ata_link_abort(link);
2491 		}
2492 	}
2493 }
2494 
2495 static int mv_req_q_empty(struct ata_port *ap)
2496 {
2497 	void __iomem *port_mmio = mv_ap_base(ap);
2498 	u32 in_ptr, out_ptr;
2499 
2500 	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2501 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2502 	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2503 			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2504 	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2505 }
2506 
2507 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2508 {
2509 	struct mv_port_priv *pp = ap->private_data;
2510 	int failed_links;
2511 	unsigned int old_map, new_map;
2512 
2513 	/*
2514 	 * Device error during FBS+NCQ operation:
2515 	 *
2516 	 * Set a port flag to prevent further I/O being enqueued.
2517 	 * Leave the EDMA running to drain outstanding commands from this port.
2518 	 * Perform the post-mortem/EH only when all responses are complete.
2519 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2520 	 */
2521 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2522 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2523 		pp->delayed_eh_pmp_map = 0;
2524 	}
2525 	old_map = pp->delayed_eh_pmp_map;
2526 	new_map = old_map | mv_get_err_pmp_map(ap);
2527 
2528 	if (old_map != new_map) {
2529 		pp->delayed_eh_pmp_map = new_map;
2530 		mv_pmp_eh_prep(ap, new_map & ~old_map);
2531 	}
2532 	failed_links = hweight16(new_map);
2533 
2534 	ata_port_info(ap,
2535 		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2536 		      __func__, pp->delayed_eh_pmp_map,
2537 		      ap->qc_active, failed_links,
2538 		      ap->nr_active_links);
2539 
2540 	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2541 		mv_process_crpb_entries(ap, pp);
2542 		mv_stop_edma(ap);
2543 		mv_eh_freeze(ap);
2544 		ata_port_info(ap, "%s: done\n", __func__);
2545 		return 1;	/* handled */
2546 	}
2547 	ata_port_info(ap, "%s: waiting\n", __func__);
2548 	return 1;	/* handled */
2549 }
2550 
2551 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2552 {
2553 	/*
2554 	 * Possible future enhancement:
2555 	 *
2556 	 * FBS+non-NCQ operation is not yet implemented.
2557 	 * See related notes in mv_edma_cfg().
2558 	 *
2559 	 * Device error during FBS+non-NCQ operation:
2560 	 *
2561 	 * We need to snapshot the shadow registers for each failed command.
2562 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2563 	 */
2564 	return 0;	/* not handled */
2565 }
2566 
2567 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2568 {
2569 	struct mv_port_priv *pp = ap->private_data;
2570 
2571 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2572 		return 0;	/* EDMA was not active: not handled */
2573 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2574 		return 0;	/* FBS was not active: not handled */
2575 
2576 	if (!(edma_err_cause & EDMA_ERR_DEV))
2577 		return 0;	/* non DEV error: not handled */
2578 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2579 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2580 		return 0;	/* other problems: not handled */
2581 
2582 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2583 		/*
2584 		 * EDMA should NOT have self-disabled for this case.
2585 		 * If it did, then something is wrong elsewhere,
2586 		 * and we cannot handle it here.
2587 		 */
2588 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2589 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2590 				      __func__, edma_err_cause, pp->pp_flags);
2591 			return 0; /* not handled */
2592 		}
2593 		return mv_handle_fbs_ncq_dev_err(ap);
2594 	} else {
2595 		/*
2596 		 * EDMA should have self-disabled for this case.
2597 		 * If it did not, then something is wrong elsewhere,
2598 		 * and we cannot handle it here.
2599 		 */
2600 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2601 			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2602 				      __func__, edma_err_cause, pp->pp_flags);
2603 			return 0; /* not handled */
2604 		}
2605 		return mv_handle_fbs_non_ncq_dev_err(ap);
2606 	}
2607 	return 0;	/* not handled */
2608 }
2609 
2610 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2611 {
2612 	struct ata_eh_info *ehi = &ap->link.eh_info;
2613 	char *when = "idle";
2614 
2615 	ata_ehi_clear_desc(ehi);
2616 	if (edma_was_enabled) {
2617 		when = "EDMA enabled";
2618 	} else {
2619 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2620 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2621 			when = "polling";
2622 	}
2623 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2624 	ehi->err_mask |= AC_ERR_OTHER;
2625 	ehi->action   |= ATA_EH_RESET;
2626 	ata_port_freeze(ap);
2627 }
2628 
2629 /**
2630  *      mv_err_intr - Handle error interrupts on the port
2631  *      @ap: ATA channel to manipulate
2632  *
2633  *      Most cases require a full reset of the chip's state machine,
2634  *      which also performs a COMRESET.
2635  *      Also, if the port disabled DMA, update our cached copy to match.
2636  *
2637  *      LOCKING:
2638  *      Inherited from caller.
2639  */
2640 static void mv_err_intr(struct ata_port *ap)
2641 {
2642 	void __iomem *port_mmio = mv_ap_base(ap);
2643 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2644 	u32 fis_cause = 0;
2645 	struct mv_port_priv *pp = ap->private_data;
2646 	struct mv_host_priv *hpriv = ap->host->private_data;
2647 	unsigned int action = 0, err_mask = 0;
2648 	struct ata_eh_info *ehi = &ap->link.eh_info;
2649 	struct ata_queued_cmd *qc;
2650 	int abort = 0;
2651 
2652 	/*
2653 	 * Read and clear the SError and err_cause bits.
2654 	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2655 	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2656 	 */
2657 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2658 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2659 
2660 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2661 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2662 		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2663 		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2664 	}
2665 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2666 
2667 	if (edma_err_cause & EDMA_ERR_DEV) {
2668 		/*
2669 		 * Device errors during FIS-based switching operation
2670 		 * require special handling.
2671 		 */
2672 		if (mv_handle_dev_err(ap, edma_err_cause))
2673 			return;
2674 	}
2675 
2676 	qc = mv_get_active_qc(ap);
2677 	ata_ehi_clear_desc(ehi);
2678 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2679 			  edma_err_cause, pp->pp_flags);
2680 
2681 	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2682 		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2683 		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2684 			u32 ec = edma_err_cause &
2685 			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2686 			sata_async_notification(ap);
2687 			if (!ec)
2688 				return; /* Just an AN; no need for the nukes */
2689 			ata_ehi_push_desc(ehi, "SDB notify");
2690 		}
2691 	}
2692 	/*
2693 	 * All generations share these EDMA error cause bits:
2694 	 */
2695 	if (edma_err_cause & EDMA_ERR_DEV) {
2696 		err_mask |= AC_ERR_DEV;
2697 		action |= ATA_EH_RESET;
2698 		ata_ehi_push_desc(ehi, "dev error");
2699 	}
2700 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2701 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2702 			EDMA_ERR_INTRL_PAR)) {
2703 		err_mask |= AC_ERR_ATA_BUS;
2704 		action |= ATA_EH_RESET;
2705 		ata_ehi_push_desc(ehi, "parity error");
2706 	}
2707 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2708 		ata_ehi_hotplugged(ehi);
2709 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2710 			"dev disconnect" : "dev connect");
2711 		action |= ATA_EH_RESET;
2712 	}
2713 
2714 	/*
2715 	 * Gen-I has a different SELF_DIS bit,
2716 	 * different FREEZE bits, and no SERR bit:
2717 	 */
2718 	if (IS_GEN_I(hpriv)) {
2719 		eh_freeze_mask = EDMA_EH_FREEZE_5;
2720 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2721 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2722 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2723 		}
2724 	} else {
2725 		eh_freeze_mask = EDMA_EH_FREEZE;
2726 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2727 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2728 			ata_ehi_push_desc(ehi, "EDMA self-disable");
2729 		}
2730 		if (edma_err_cause & EDMA_ERR_SERR) {
2731 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2732 			err_mask |= AC_ERR_ATA_BUS;
2733 			action |= ATA_EH_RESET;
2734 		}
2735 	}
2736 
2737 	if (!err_mask) {
2738 		err_mask = AC_ERR_OTHER;
2739 		action |= ATA_EH_RESET;
2740 	}
2741 
2742 	ehi->serror |= serr;
2743 	ehi->action |= action;
2744 
2745 	if (qc)
2746 		qc->err_mask |= err_mask;
2747 	else
2748 		ehi->err_mask |= err_mask;
2749 
2750 	if (err_mask == AC_ERR_DEV) {
2751 		/*
2752 		 * Cannot do ata_port_freeze() here,
2753 		 * because it would kill PIO access,
2754 		 * which is needed for further diagnosis.
2755 		 */
2756 		mv_eh_freeze(ap);
2757 		abort = 1;
2758 	} else if (edma_err_cause & eh_freeze_mask) {
2759 		/*
2760 		 * Note to self: ata_port_freeze() calls ata_port_abort()
2761 		 */
2762 		ata_port_freeze(ap);
2763 	} else {
2764 		abort = 1;
2765 	}
2766 
2767 	if (abort) {
2768 		if (qc)
2769 			ata_link_abort(qc->dev->link);
2770 		else
2771 			ata_port_abort(ap);
2772 	}
2773 }
2774 
2775 static bool mv_process_crpb_response(struct ata_port *ap,
2776 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2777 {
2778 	u8 ata_status;
2779 	u16 edma_status = le16_to_cpu(response->flags);
2780 
2781 	/*
2782 	 * edma_status from a response queue entry:
2783 	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2784 	 *   MSB is saved ATA status from command completion.
2785 	 */
2786 	if (!ncq_enabled) {
2787 		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2788 		if (err_cause) {
2789 			/*
2790 			 * Error will be seen/handled by
2791 			 * mv_err_intr().  So do nothing at all here.
2792 			 */
2793 			return false;
2794 		}
2795 	}
2796 	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2797 	if (!ac_err_mask(ata_status))
2798 		return true;
2799 	/* else: leave it for mv_err_intr() */
2800 	return false;
2801 }
2802 
2803 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2804 {
2805 	void __iomem *port_mmio = mv_ap_base(ap);
2806 	struct mv_host_priv *hpriv = ap->host->private_data;
2807 	u32 in_index;
2808 	bool work_done = false;
2809 	u32 done_mask = 0;
2810 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2811 
2812 	/* Get the hardware queue position index */
2813 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2814 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2815 
2816 	/* Process new responses from since the last time we looked */
2817 	while (in_index != pp->resp_idx) {
2818 		unsigned int tag;
2819 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2820 
2821 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2822 
2823 		if (IS_GEN_I(hpriv)) {
2824 			/* 50xx: no NCQ, only one command active at a time */
2825 			tag = ap->link.active_tag;
2826 		} else {
2827 			/* Gen II/IIE: get command tag from CRPB entry */
2828 			tag = le16_to_cpu(response->id) & 0x1f;
2829 		}
2830 		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2831 			done_mask |= 1 << tag;
2832 		work_done = true;
2833 	}
2834 
2835 	if (work_done) {
2836 		ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2837 
2838 		/* Update the software queue position index in hardware */
2839 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2840 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2841 			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2842 	}
2843 }
2844 
2845 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2846 {
2847 	struct mv_port_priv *pp;
2848 	int edma_was_enabled;
2849 
2850 	/*
2851 	 * Grab a snapshot of the EDMA_EN flag setting,
2852 	 * so that we have a consistent view for this port,
2853 	 * even if something we call of our routines changes it.
2854 	 */
2855 	pp = ap->private_data;
2856 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2857 	/*
2858 	 * Process completed CRPB response(s) before other events.
2859 	 */
2860 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2861 		mv_process_crpb_entries(ap, pp);
2862 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2863 			mv_handle_fbs_ncq_dev_err(ap);
2864 	}
2865 	/*
2866 	 * Handle chip-reported errors, or continue on to handle PIO.
2867 	 */
2868 	if (unlikely(port_cause & ERR_IRQ)) {
2869 		mv_err_intr(ap);
2870 	} else if (!edma_was_enabled) {
2871 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2872 		if (qc)
2873 			ata_bmdma_port_intr(ap, qc);
2874 		else
2875 			mv_unexpected_intr(ap, edma_was_enabled);
2876 	}
2877 }
2878 
2879 /**
2880  *      mv_host_intr - Handle all interrupts on the given host controller
2881  *      @host: host specific structure
2882  *      @main_irq_cause: Main interrupt cause register for the chip.
2883  *
2884  *      LOCKING:
2885  *      Inherited from caller.
2886  */
2887 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2888 {
2889 	struct mv_host_priv *hpriv = host->private_data;
2890 	void __iomem *mmio = hpriv->base, *hc_mmio;
2891 	unsigned int handled = 0, port;
2892 
2893 	/* If asserted, clear the "all ports" IRQ coalescing bit */
2894 	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2895 		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2896 
2897 	for (port = 0; port < hpriv->n_ports; port++) {
2898 		struct ata_port *ap = host->ports[port];
2899 		unsigned int p, shift, hardport, port_cause;
2900 
2901 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2902 		/*
2903 		 * Each hc within the host has its own hc_irq_cause register,
2904 		 * where the interrupting ports bits get ack'd.
2905 		 */
2906 		if (hardport == 0) {	/* first port on this hc ? */
2907 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2908 			u32 port_mask, ack_irqs;
2909 			/*
2910 			 * Skip this entire hc if nothing pending for any ports
2911 			 */
2912 			if (!hc_cause) {
2913 				port += MV_PORTS_PER_HC - 1;
2914 				continue;
2915 			}
2916 			/*
2917 			 * We don't need/want to read the hc_irq_cause register,
2918 			 * because doing so hurts performance, and
2919 			 * main_irq_cause already gives us everything we need.
2920 			 *
2921 			 * But we do have to *write* to the hc_irq_cause to ack
2922 			 * the ports that we are handling this time through.
2923 			 *
2924 			 * This requires that we create a bitmap for those
2925 			 * ports which interrupted us, and use that bitmap
2926 			 * to ack (only) those ports via hc_irq_cause.
2927 			 */
2928 			ack_irqs = 0;
2929 			if (hc_cause & PORTS_0_3_COAL_DONE)
2930 				ack_irqs = HC_COAL_IRQ;
2931 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2932 				if ((port + p) >= hpriv->n_ports)
2933 					break;
2934 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2935 				if (hc_cause & port_mask)
2936 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2937 			}
2938 			hc_mmio = mv_hc_base_from_port(mmio, port);
2939 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2940 			handled = 1;
2941 		}
2942 		/*
2943 		 * Handle interrupts signalled for this port:
2944 		 */
2945 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2946 		if (port_cause)
2947 			mv_port_intr(ap, port_cause);
2948 	}
2949 	return handled;
2950 }
2951 
2952 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2953 {
2954 	struct mv_host_priv *hpriv = host->private_data;
2955 	struct ata_port *ap;
2956 	struct ata_queued_cmd *qc;
2957 	struct ata_eh_info *ehi;
2958 	unsigned int i, err_mask, printed = 0;
2959 	u32 err_cause;
2960 
2961 	err_cause = readl(mmio + hpriv->irq_cause_offset);
2962 
2963 	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2964 
2965 	DPRINTK("All regs @ PCI error\n");
2966 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2967 
2968 	writelfl(0, mmio + hpriv->irq_cause_offset);
2969 
2970 	for (i = 0; i < host->n_ports; i++) {
2971 		ap = host->ports[i];
2972 		if (!ata_link_offline(&ap->link)) {
2973 			ehi = &ap->link.eh_info;
2974 			ata_ehi_clear_desc(ehi);
2975 			if (!printed++)
2976 				ata_ehi_push_desc(ehi,
2977 					"PCI err cause 0x%08x", err_cause);
2978 			err_mask = AC_ERR_HOST_BUS;
2979 			ehi->action = ATA_EH_RESET;
2980 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2981 			if (qc)
2982 				qc->err_mask |= err_mask;
2983 			else
2984 				ehi->err_mask |= err_mask;
2985 
2986 			ata_port_freeze(ap);
2987 		}
2988 	}
2989 	return 1;	/* handled */
2990 }
2991 
2992 /**
2993  *      mv_interrupt - Main interrupt event handler
2994  *      @irq: unused
2995  *      @dev_instance: private data; in this case the host structure
2996  *
2997  *      Read the read only register to determine if any host
2998  *      controllers have pending interrupts.  If so, call lower level
2999  *      routine to handle.  Also check for PCI errors which are only
3000  *      reported here.
3001  *
3002  *      LOCKING:
3003  *      This routine holds the host lock while processing pending
3004  *      interrupts.
3005  */
3006 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3007 {
3008 	struct ata_host *host = dev_instance;
3009 	struct mv_host_priv *hpriv = host->private_data;
3010 	unsigned int handled = 0;
3011 	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3012 	u32 main_irq_cause, pending_irqs;
3013 
3014 	spin_lock(&host->lock);
3015 
3016 	/* for MSI:  block new interrupts while in here */
3017 	if (using_msi)
3018 		mv_write_main_irq_mask(0, hpriv);
3019 
3020 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3021 	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3022 	/*
3023 	 * Deal with cases where we either have nothing pending, or have read
3024 	 * a bogus register value which can indicate HW removal or PCI fault.
3025 	 */
3026 	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3027 		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3028 			handled = mv_pci_error(host, hpriv->base);
3029 		else
3030 			handled = mv_host_intr(host, pending_irqs);
3031 	}
3032 
3033 	/* for MSI: unmask; interrupt cause bits will retrigger now */
3034 	if (using_msi)
3035 		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3036 
3037 	spin_unlock(&host->lock);
3038 
3039 	return IRQ_RETVAL(handled);
3040 }
3041 
3042 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3043 {
3044 	unsigned int ofs;
3045 
3046 	switch (sc_reg_in) {
3047 	case SCR_STATUS:
3048 	case SCR_ERROR:
3049 	case SCR_CONTROL:
3050 		ofs = sc_reg_in * sizeof(u32);
3051 		break;
3052 	default:
3053 		ofs = 0xffffffffU;
3054 		break;
3055 	}
3056 	return ofs;
3057 }
3058 
3059 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3060 {
3061 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3062 	void __iomem *mmio = hpriv->base;
3063 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3064 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3065 
3066 	if (ofs != 0xffffffffU) {
3067 		*val = readl(addr + ofs);
3068 		return 0;
3069 	} else
3070 		return -EINVAL;
3071 }
3072 
3073 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3074 {
3075 	struct mv_host_priv *hpriv = link->ap->host->private_data;
3076 	void __iomem *mmio = hpriv->base;
3077 	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3078 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3079 
3080 	if (ofs != 0xffffffffU) {
3081 		writelfl(val, addr + ofs);
3082 		return 0;
3083 	} else
3084 		return -EINVAL;
3085 }
3086 
3087 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3088 {
3089 	struct pci_dev *pdev = to_pci_dev(host->dev);
3090 	int early_5080;
3091 
3092 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3093 
3094 	if (!early_5080) {
3095 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3096 		tmp |= (1 << 0);
3097 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3098 	}
3099 
3100 	mv_reset_pci_bus(host, mmio);
3101 }
3102 
3103 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3104 {
3105 	writel(0x0fcfffff, mmio + FLASH_CTL);
3106 }
3107 
3108 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3109 			   void __iomem *mmio)
3110 {
3111 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3112 	u32 tmp;
3113 
3114 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3115 
3116 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3117 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3118 }
3119 
3120 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3121 {
3122 	u32 tmp;
3123 
3124 	writel(0, mmio + GPIO_PORT_CTL);
3125 
3126 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3127 
3128 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3129 	tmp |= ~(1 << 0);
3130 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3131 }
3132 
3133 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3134 			   unsigned int port)
3135 {
3136 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3137 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3138 	u32 tmp;
3139 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3140 
3141 	if (fix_apm_sq) {
3142 		tmp = readl(phy_mmio + MV5_LTMODE);
3143 		tmp |= (1 << 19);
3144 		writel(tmp, phy_mmio + MV5_LTMODE);
3145 
3146 		tmp = readl(phy_mmio + MV5_PHY_CTL);
3147 		tmp &= ~0x3;
3148 		tmp |= 0x1;
3149 		writel(tmp, phy_mmio + MV5_PHY_CTL);
3150 	}
3151 
3152 	tmp = readl(phy_mmio + MV5_PHY_MODE);
3153 	tmp &= ~mask;
3154 	tmp |= hpriv->signal[port].pre;
3155 	tmp |= hpriv->signal[port].amps;
3156 	writel(tmp, phy_mmio + MV5_PHY_MODE);
3157 }
3158 
3159 
3160 #undef ZERO
3161 #define ZERO(reg) writel(0, port_mmio + (reg))
3162 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3163 			     unsigned int port)
3164 {
3165 	void __iomem *port_mmio = mv_port_base(mmio, port);
3166 
3167 	mv_reset_channel(hpriv, mmio, port);
3168 
3169 	ZERO(0x028);	/* command */
3170 	writel(0x11f, port_mmio + EDMA_CFG);
3171 	ZERO(0x004);	/* timer */
3172 	ZERO(0x008);	/* irq err cause */
3173 	ZERO(0x00c);	/* irq err mask */
3174 	ZERO(0x010);	/* rq bah */
3175 	ZERO(0x014);	/* rq inp */
3176 	ZERO(0x018);	/* rq outp */
3177 	ZERO(0x01c);	/* respq bah */
3178 	ZERO(0x024);	/* respq outp */
3179 	ZERO(0x020);	/* respq inp */
3180 	ZERO(0x02c);	/* test control */
3181 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3182 }
3183 #undef ZERO
3184 
3185 #define ZERO(reg) writel(0, hc_mmio + (reg))
3186 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3187 			unsigned int hc)
3188 {
3189 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3190 	u32 tmp;
3191 
3192 	ZERO(0x00c);
3193 	ZERO(0x010);
3194 	ZERO(0x014);
3195 	ZERO(0x018);
3196 
3197 	tmp = readl(hc_mmio + 0x20);
3198 	tmp &= 0x1c1c1c1c;
3199 	tmp |= 0x03030303;
3200 	writel(tmp, hc_mmio + 0x20);
3201 }
3202 #undef ZERO
3203 
3204 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3205 			unsigned int n_hc)
3206 {
3207 	unsigned int hc, port;
3208 
3209 	for (hc = 0; hc < n_hc; hc++) {
3210 		for (port = 0; port < MV_PORTS_PER_HC; port++)
3211 			mv5_reset_hc_port(hpriv, mmio,
3212 					  (hc * MV_PORTS_PER_HC) + port);
3213 
3214 		mv5_reset_one_hc(hpriv, mmio, hc);
3215 	}
3216 
3217 	return 0;
3218 }
3219 
3220 #undef ZERO
3221 #define ZERO(reg) writel(0, mmio + (reg))
3222 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3223 {
3224 	struct mv_host_priv *hpriv = host->private_data;
3225 	u32 tmp;
3226 
3227 	tmp = readl(mmio + MV_PCI_MODE);
3228 	tmp &= 0xff00ffff;
3229 	writel(tmp, mmio + MV_PCI_MODE);
3230 
3231 	ZERO(MV_PCI_DISC_TIMER);
3232 	ZERO(MV_PCI_MSI_TRIGGER);
3233 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3234 	ZERO(MV_PCI_SERR_MASK);
3235 	ZERO(hpriv->irq_cause_offset);
3236 	ZERO(hpriv->irq_mask_offset);
3237 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3238 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3239 	ZERO(MV_PCI_ERR_ATTRIBUTE);
3240 	ZERO(MV_PCI_ERR_COMMAND);
3241 }
3242 #undef ZERO
3243 
3244 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3245 {
3246 	u32 tmp;
3247 
3248 	mv5_reset_flash(hpriv, mmio);
3249 
3250 	tmp = readl(mmio + GPIO_PORT_CTL);
3251 	tmp &= 0x3;
3252 	tmp |= (1 << 5) | (1 << 6);
3253 	writel(tmp, mmio + GPIO_PORT_CTL);
3254 }
3255 
3256 /*
3257  *      mv6_reset_hc - Perform the 6xxx global soft reset
3258  *      @mmio: base address of the HBA
3259  *
3260  *      This routine only applies to 6xxx parts.
3261  *
3262  *      LOCKING:
3263  *      Inherited from caller.
3264  */
3265 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3266 			unsigned int n_hc)
3267 {
3268 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3269 	int i, rc = 0;
3270 	u32 t;
3271 
3272 	/* Following procedure defined in PCI "main command and status
3273 	 * register" table.
3274 	 */
3275 	t = readl(reg);
3276 	writel(t | STOP_PCI_MASTER, reg);
3277 
3278 	for (i = 0; i < 1000; i++) {
3279 		udelay(1);
3280 		t = readl(reg);
3281 		if (PCI_MASTER_EMPTY & t)
3282 			break;
3283 	}
3284 	if (!(PCI_MASTER_EMPTY & t)) {
3285 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3286 		rc = 1;
3287 		goto done;
3288 	}
3289 
3290 	/* set reset */
3291 	i = 5;
3292 	do {
3293 		writel(t | GLOB_SFT_RST, reg);
3294 		t = readl(reg);
3295 		udelay(1);
3296 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3297 
3298 	if (!(GLOB_SFT_RST & t)) {
3299 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3300 		rc = 1;
3301 		goto done;
3302 	}
3303 
3304 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3305 	i = 5;
3306 	do {
3307 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3308 		t = readl(reg);
3309 		udelay(1);
3310 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3311 
3312 	if (GLOB_SFT_RST & t) {
3313 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3314 		rc = 1;
3315 	}
3316 done:
3317 	return rc;
3318 }
3319 
3320 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3321 			   void __iomem *mmio)
3322 {
3323 	void __iomem *port_mmio;
3324 	u32 tmp;
3325 
3326 	tmp = readl(mmio + RESET_CFG);
3327 	if ((tmp & (1 << 0)) == 0) {
3328 		hpriv->signal[idx].amps = 0x7 << 8;
3329 		hpriv->signal[idx].pre = 0x1 << 5;
3330 		return;
3331 	}
3332 
3333 	port_mmio = mv_port_base(mmio, idx);
3334 	tmp = readl(port_mmio + PHY_MODE2);
3335 
3336 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3337 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3338 }
3339 
3340 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3341 {
3342 	writel(0x00000060, mmio + GPIO_PORT_CTL);
3343 }
3344 
3345 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3346 			   unsigned int port)
3347 {
3348 	void __iomem *port_mmio = mv_port_base(mmio, port);
3349 
3350 	u32 hp_flags = hpriv->hp_flags;
3351 	int fix_phy_mode2 =
3352 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3353 	int fix_phy_mode4 =
3354 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3355 	u32 m2, m3;
3356 
3357 	if (fix_phy_mode2) {
3358 		m2 = readl(port_mmio + PHY_MODE2);
3359 		m2 &= ~(1 << 16);
3360 		m2 |= (1 << 31);
3361 		writel(m2, port_mmio + PHY_MODE2);
3362 
3363 		udelay(200);
3364 
3365 		m2 = readl(port_mmio + PHY_MODE2);
3366 		m2 &= ~((1 << 16) | (1 << 31));
3367 		writel(m2, port_mmio + PHY_MODE2);
3368 
3369 		udelay(200);
3370 	}
3371 
3372 	/*
3373 	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3374 	 * Achieves better receiver noise performance than the h/w default:
3375 	 */
3376 	m3 = readl(port_mmio + PHY_MODE3);
3377 	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3378 
3379 	/* Guideline 88F5182 (GL# SATA-S11) */
3380 	if (IS_SOC(hpriv))
3381 		m3 &= ~0x1c;
3382 
3383 	if (fix_phy_mode4) {
3384 		u32 m4 = readl(port_mmio + PHY_MODE4);
3385 		/*
3386 		 * Enforce reserved-bit restrictions on GenIIe devices only.
3387 		 * For earlier chipsets, force only the internal config field
3388 		 *  (workaround for errata FEr SATA#10 part 1).
3389 		 */
3390 		if (IS_GEN_IIE(hpriv))
3391 			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3392 		else
3393 			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3394 		writel(m4, port_mmio + PHY_MODE4);
3395 	}
3396 	/*
3397 	 * Workaround for 60x1-B2 errata SATA#13:
3398 	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3399 	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3400 	 * Or ensure we use writelfl() when writing PHY_MODE4.
3401 	 */
3402 	writel(m3, port_mmio + PHY_MODE3);
3403 
3404 	/* Revert values of pre-emphasis and signal amps to the saved ones */
3405 	m2 = readl(port_mmio + PHY_MODE2);
3406 
3407 	m2 &= ~MV_M2_PREAMP_MASK;
3408 	m2 |= hpriv->signal[port].amps;
3409 	m2 |= hpriv->signal[port].pre;
3410 	m2 &= ~(1 << 16);
3411 
3412 	/* according to mvSata 3.6.1, some IIE values are fixed */
3413 	if (IS_GEN_IIE(hpriv)) {
3414 		m2 &= ~0xC30FF01F;
3415 		m2 |= 0x0000900F;
3416 	}
3417 
3418 	writel(m2, port_mmio + PHY_MODE2);
3419 }
3420 
3421 /* TODO: use the generic LED interface to configure the SATA Presence */
3422 /* & Acitivy LEDs on the board */
3423 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3424 				      void __iomem *mmio)
3425 {
3426 	return;
3427 }
3428 
3429 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3430 			   void __iomem *mmio)
3431 {
3432 	void __iomem *port_mmio;
3433 	u32 tmp;
3434 
3435 	port_mmio = mv_port_base(mmio, idx);
3436 	tmp = readl(port_mmio + PHY_MODE2);
3437 
3438 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3439 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3440 }
3441 
3442 #undef ZERO
3443 #define ZERO(reg) writel(0, port_mmio + (reg))
3444 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3445 					void __iomem *mmio, unsigned int port)
3446 {
3447 	void __iomem *port_mmio = mv_port_base(mmio, port);
3448 
3449 	mv_reset_channel(hpriv, mmio, port);
3450 
3451 	ZERO(0x028);		/* command */
3452 	writel(0x101f, port_mmio + EDMA_CFG);
3453 	ZERO(0x004);		/* timer */
3454 	ZERO(0x008);		/* irq err cause */
3455 	ZERO(0x00c);		/* irq err mask */
3456 	ZERO(0x010);		/* rq bah */
3457 	ZERO(0x014);		/* rq inp */
3458 	ZERO(0x018);		/* rq outp */
3459 	ZERO(0x01c);		/* respq bah */
3460 	ZERO(0x024);		/* respq outp */
3461 	ZERO(0x020);		/* respq inp */
3462 	ZERO(0x02c);		/* test control */
3463 	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3464 }
3465 
3466 #undef ZERO
3467 
3468 #define ZERO(reg) writel(0, hc_mmio + (reg))
3469 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3470 				       void __iomem *mmio)
3471 {
3472 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3473 
3474 	ZERO(0x00c);
3475 	ZERO(0x010);
3476 	ZERO(0x014);
3477 
3478 }
3479 
3480 #undef ZERO
3481 
3482 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3483 				  void __iomem *mmio, unsigned int n_hc)
3484 {
3485 	unsigned int port;
3486 
3487 	for (port = 0; port < hpriv->n_ports; port++)
3488 		mv_soc_reset_hc_port(hpriv, mmio, port);
3489 
3490 	mv_soc_reset_one_hc(hpriv, mmio);
3491 
3492 	return 0;
3493 }
3494 
3495 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3496 				      void __iomem *mmio)
3497 {
3498 	return;
3499 }
3500 
3501 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3502 {
3503 	return;
3504 }
3505 
3506 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3507 				  void __iomem *mmio, unsigned int port)
3508 {
3509 	void __iomem *port_mmio = mv_port_base(mmio, port);
3510 	u32	reg;
3511 
3512 	reg = readl(port_mmio + PHY_MODE3);
3513 	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3514 	reg |= (0x1 << 27);
3515 	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3516 	reg |= (0x1 << 29);
3517 	writel(reg, port_mmio + PHY_MODE3);
3518 
3519 	reg = readl(port_mmio + PHY_MODE4);
3520 	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3521 	reg |= (0x1 << 16);
3522 	writel(reg, port_mmio + PHY_MODE4);
3523 
3524 	reg = readl(port_mmio + PHY_MODE9_GEN2);
3525 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3526 	reg |= 0x8;
3527 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3528 	writel(reg, port_mmio + PHY_MODE9_GEN2);
3529 
3530 	reg = readl(port_mmio + PHY_MODE9_GEN1);
3531 	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3532 	reg |= 0x8;
3533 	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3534 	writel(reg, port_mmio + PHY_MODE9_GEN1);
3535 }
3536 
3537 /*
3538  *	soc_is_65 - check if the soc is 65 nano device
3539  *
3540  *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3541  *	register, this register should contain non-zero value and it exists only
3542  *	in the 65 nano devices, when reading it from older devices we get 0.
3543  */
3544 static bool soc_is_65n(struct mv_host_priv *hpriv)
3545 {
3546 	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3547 
3548 	if (readl(port0_mmio + PHYCFG_OFS))
3549 		return true;
3550 	return false;
3551 }
3552 
3553 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3554 {
3555 	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3556 
3557 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3558 	if (want_gen2i)
3559 		ifcfg |= (1 << 7);		/* enable gen2i speed */
3560 	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3561 }
3562 
3563 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3564 			     unsigned int port_no)
3565 {
3566 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3567 
3568 	/*
3569 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3570 	 * (but doesn't say what the problem might be).  So we first try
3571 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3572 	 */
3573 	mv_stop_edma_engine(port_mmio);
3574 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3575 
3576 	if (!IS_GEN_I(hpriv)) {
3577 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3578 		mv_setup_ifcfg(port_mmio, 1);
3579 	}
3580 	/*
3581 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3582 	 * link, and physical layers.  It resets all SATA interface registers
3583 	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3584 	 */
3585 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3586 	udelay(25);	/* allow reset propagation */
3587 	writelfl(0, port_mmio + EDMA_CMD);
3588 
3589 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3590 
3591 	if (IS_GEN_I(hpriv))
3592 		usleep_range(500, 1000);
3593 }
3594 
3595 static void mv_pmp_select(struct ata_port *ap, int pmp)
3596 {
3597 	if (sata_pmp_supported(ap)) {
3598 		void __iomem *port_mmio = mv_ap_base(ap);
3599 		u32 reg = readl(port_mmio + SATA_IFCTL);
3600 		int old = reg & 0xf;
3601 
3602 		if (old != pmp) {
3603 			reg = (reg & ~0xf) | pmp;
3604 			writelfl(reg, port_mmio + SATA_IFCTL);
3605 		}
3606 	}
3607 }
3608 
3609 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3610 				unsigned long deadline)
3611 {
3612 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3613 	return sata_std_hardreset(link, class, deadline);
3614 }
3615 
3616 static int mv_softreset(struct ata_link *link, unsigned int *class,
3617 				unsigned long deadline)
3618 {
3619 	mv_pmp_select(link->ap, sata_srst_pmp(link));
3620 	return ata_sff_softreset(link, class, deadline);
3621 }
3622 
3623 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3624 			unsigned long deadline)
3625 {
3626 	struct ata_port *ap = link->ap;
3627 	struct mv_host_priv *hpriv = ap->host->private_data;
3628 	struct mv_port_priv *pp = ap->private_data;
3629 	void __iomem *mmio = hpriv->base;
3630 	int rc, attempts = 0, extra = 0;
3631 	u32 sstatus;
3632 	bool online;
3633 
3634 	mv_reset_channel(hpriv, mmio, ap->port_no);
3635 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3636 	pp->pp_flags &=
3637 	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3638 
3639 	/* Workaround for errata FEr SATA#10 (part 2) */
3640 	do {
3641 		const unsigned long *timing =
3642 				sata_ehc_deb_timing(&link->eh_context);
3643 
3644 		rc = sata_link_hardreset(link, timing, deadline + extra,
3645 					 &online, NULL);
3646 		rc = online ? -EAGAIN : rc;
3647 		if (rc)
3648 			return rc;
3649 		sata_scr_read(link, SCR_STATUS, &sstatus);
3650 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3651 			/* Force 1.5gb/s link speed and try again */
3652 			mv_setup_ifcfg(mv_ap_base(ap), 0);
3653 			if (time_after(jiffies + HZ, deadline))
3654 				extra = HZ; /* only extend it once, max */
3655 		}
3656 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3657 	mv_save_cached_regs(ap);
3658 	mv_edma_cfg(ap, 0, 0);
3659 
3660 	return rc;
3661 }
3662 
3663 static void mv_eh_freeze(struct ata_port *ap)
3664 {
3665 	mv_stop_edma(ap);
3666 	mv_enable_port_irqs(ap, 0);
3667 }
3668 
3669 static void mv_eh_thaw(struct ata_port *ap)
3670 {
3671 	struct mv_host_priv *hpriv = ap->host->private_data;
3672 	unsigned int port = ap->port_no;
3673 	unsigned int hardport = mv_hardport_from_port(port);
3674 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3675 	void __iomem *port_mmio = mv_ap_base(ap);
3676 	u32 hc_irq_cause;
3677 
3678 	/* clear EDMA errors on this port */
3679 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3680 
3681 	/* clear pending irq events */
3682 	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3683 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3684 
3685 	mv_enable_port_irqs(ap, ERR_IRQ);
3686 }
3687 
3688 /**
3689  *      mv_port_init - Perform some early initialization on a single port.
3690  *      @port: libata data structure storing shadow register addresses
3691  *      @port_mmio: base address of the port
3692  *
3693  *      Initialize shadow register mmio addresses, clear outstanding
3694  *      interrupts on the port, and unmask interrupts for the future
3695  *      start of the port.
3696  *
3697  *      LOCKING:
3698  *      Inherited from caller.
3699  */
3700 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3701 {
3702 	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3703 
3704 	/* PIO related setup
3705 	 */
3706 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3707 	port->error_addr =
3708 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3709 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3710 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3711 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3712 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3713 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3714 	port->status_addr =
3715 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3716 	/* special case: control/altstatus doesn't have ATA_REG_ address */
3717 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3718 
3719 	/* Clear any currently outstanding port interrupt conditions */
3720 	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3721 	writelfl(readl(serr), serr);
3722 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3723 
3724 	/* unmask all non-transient EDMA error interrupts */
3725 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3726 
3727 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3728 		readl(port_mmio + EDMA_CFG),
3729 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3730 		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3731 }
3732 
3733 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3734 {
3735 	struct mv_host_priv *hpriv = host->private_data;
3736 	void __iomem *mmio = hpriv->base;
3737 	u32 reg;
3738 
3739 	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3740 		return 0;	/* not PCI-X capable */
3741 	reg = readl(mmio + MV_PCI_MODE);
3742 	if ((reg & MV_PCI_MODE_MASK) == 0)
3743 		return 0;	/* conventional PCI mode */
3744 	return 1;	/* chip is in PCI-X mode */
3745 }
3746 
3747 static int mv_pci_cut_through_okay(struct ata_host *host)
3748 {
3749 	struct mv_host_priv *hpriv = host->private_data;
3750 	void __iomem *mmio = hpriv->base;
3751 	u32 reg;
3752 
3753 	if (!mv_in_pcix_mode(host)) {
3754 		reg = readl(mmio + MV_PCI_COMMAND);
3755 		if (reg & MV_PCI_COMMAND_MRDTRIG)
3756 			return 0; /* not okay */
3757 	}
3758 	return 1; /* okay */
3759 }
3760 
3761 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3762 {
3763 	struct mv_host_priv *hpriv = host->private_data;
3764 	void __iomem *mmio = hpriv->base;
3765 
3766 	/* workaround for 60x1-B2 errata PCI#7 */
3767 	if (mv_in_pcix_mode(host)) {
3768 		u32 reg = readl(mmio + MV_PCI_COMMAND);
3769 		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3770 	}
3771 }
3772 
3773 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3774 {
3775 	struct pci_dev *pdev = to_pci_dev(host->dev);
3776 	struct mv_host_priv *hpriv = host->private_data;
3777 	u32 hp_flags = hpriv->hp_flags;
3778 
3779 	switch (board_idx) {
3780 	case chip_5080:
3781 		hpriv->ops = &mv5xxx_ops;
3782 		hp_flags |= MV_HP_GEN_I;
3783 
3784 		switch (pdev->revision) {
3785 		case 0x1:
3786 			hp_flags |= MV_HP_ERRATA_50XXB0;
3787 			break;
3788 		case 0x3:
3789 			hp_flags |= MV_HP_ERRATA_50XXB2;
3790 			break;
3791 		default:
3792 			dev_warn(&pdev->dev,
3793 				 "Applying 50XXB2 workarounds to unknown rev\n");
3794 			hp_flags |= MV_HP_ERRATA_50XXB2;
3795 			break;
3796 		}
3797 		break;
3798 
3799 	case chip_504x:
3800 	case chip_508x:
3801 		hpriv->ops = &mv5xxx_ops;
3802 		hp_flags |= MV_HP_GEN_I;
3803 
3804 		switch (pdev->revision) {
3805 		case 0x0:
3806 			hp_flags |= MV_HP_ERRATA_50XXB0;
3807 			break;
3808 		case 0x3:
3809 			hp_flags |= MV_HP_ERRATA_50XXB2;
3810 			break;
3811 		default:
3812 			dev_warn(&pdev->dev,
3813 				 "Applying B2 workarounds to unknown rev\n");
3814 			hp_flags |= MV_HP_ERRATA_50XXB2;
3815 			break;
3816 		}
3817 		break;
3818 
3819 	case chip_604x:
3820 	case chip_608x:
3821 		hpriv->ops = &mv6xxx_ops;
3822 		hp_flags |= MV_HP_GEN_II;
3823 
3824 		switch (pdev->revision) {
3825 		case 0x7:
3826 			mv_60x1b2_errata_pci7(host);
3827 			hp_flags |= MV_HP_ERRATA_60X1B2;
3828 			break;
3829 		case 0x9:
3830 			hp_flags |= MV_HP_ERRATA_60X1C0;
3831 			break;
3832 		default:
3833 			dev_warn(&pdev->dev,
3834 				 "Applying B2 workarounds to unknown rev\n");
3835 			hp_flags |= MV_HP_ERRATA_60X1B2;
3836 			break;
3837 		}
3838 		break;
3839 
3840 	case chip_7042:
3841 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3842 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3843 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3844 		{
3845 			/*
3846 			 * Highpoint RocketRAID PCIe 23xx series cards:
3847 			 *
3848 			 * Unconfigured drives are treated as "Legacy"
3849 			 * by the BIOS, and it overwrites sector 8 with
3850 			 * a "Lgcy" metadata block prior to Linux boot.
3851 			 *
3852 			 * Configured drives (RAID or JBOD) leave sector 8
3853 			 * alone, but instead overwrite a high numbered
3854 			 * sector for the RAID metadata.  This sector can
3855 			 * be determined exactly, by truncating the physical
3856 			 * drive capacity to a nice even GB value.
3857 			 *
3858 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3859 			 *
3860 			 * Warn the user, lest they think we're just buggy.
3861 			 */
3862 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3863 				" BIOS CORRUPTS DATA on all attached drives,"
3864 				" regardless of if/how they are configured."
3865 				" BEWARE!\n");
3866 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3867 				" use sectors 8-9 on \"Legacy\" drives,"
3868 				" and avoid the final two gigabytes on"
3869 				" all RocketRAID BIOS initialized drives.\n");
3870 		}
3871 		fallthrough;
3872 	case chip_6042:
3873 		hpriv->ops = &mv6xxx_ops;
3874 		hp_flags |= MV_HP_GEN_IIE;
3875 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3876 			hp_flags |= MV_HP_CUT_THROUGH;
3877 
3878 		switch (pdev->revision) {
3879 		case 0x2: /* Rev.B0: the first/only public release */
3880 			hp_flags |= MV_HP_ERRATA_60X1C0;
3881 			break;
3882 		default:
3883 			dev_warn(&pdev->dev,
3884 				 "Applying 60X1C0 workarounds to unknown rev\n");
3885 			hp_flags |= MV_HP_ERRATA_60X1C0;
3886 			break;
3887 		}
3888 		break;
3889 	case chip_soc:
3890 		if (soc_is_65n(hpriv))
3891 			hpriv->ops = &mv_soc_65n_ops;
3892 		else
3893 			hpriv->ops = &mv_soc_ops;
3894 		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3895 			MV_HP_ERRATA_60X1C0;
3896 		break;
3897 
3898 	default:
3899 		dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3900 		return -EINVAL;
3901 	}
3902 
3903 	hpriv->hp_flags = hp_flags;
3904 	if (hp_flags & MV_HP_PCIE) {
3905 		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3906 		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3907 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3908 	} else {
3909 		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3910 		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3911 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3912 	}
3913 
3914 	return 0;
3915 }
3916 
3917 /**
3918  *      mv_init_host - Perform some early initialization of the host.
3919  *	@host: ATA host to initialize
3920  *
3921  *      If possible, do an early global reset of the host.  Then do
3922  *      our port init and clear/unmask all/relevant host interrupts.
3923  *
3924  *      LOCKING:
3925  *      Inherited from caller.
3926  */
3927 static int mv_init_host(struct ata_host *host)
3928 {
3929 	int rc = 0, n_hc, port, hc;
3930 	struct mv_host_priv *hpriv = host->private_data;
3931 	void __iomem *mmio = hpriv->base;
3932 
3933 	rc = mv_chip_id(host, hpriv->board_idx);
3934 	if (rc)
3935 		goto done;
3936 
3937 	if (IS_SOC(hpriv)) {
3938 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3939 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3940 	} else {
3941 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3942 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3943 	}
3944 
3945 	/* initialize shadow irq mask with register's value */
3946 	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3947 
3948 	/* global interrupt mask: 0 == mask everything */
3949 	mv_set_main_irq_mask(host, ~0, 0);
3950 
3951 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3952 
3953 	for (port = 0; port < host->n_ports; port++)
3954 		if (hpriv->ops->read_preamp)
3955 			hpriv->ops->read_preamp(hpriv, port, mmio);
3956 
3957 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3958 	if (rc)
3959 		goto done;
3960 
3961 	hpriv->ops->reset_flash(hpriv, mmio);
3962 	hpriv->ops->reset_bus(host, mmio);
3963 	hpriv->ops->enable_leds(hpriv, mmio);
3964 
3965 	for (port = 0; port < host->n_ports; port++) {
3966 		struct ata_port *ap = host->ports[port];
3967 		void __iomem *port_mmio = mv_port_base(mmio, port);
3968 
3969 		mv_port_init(&ap->ioaddr, port_mmio);
3970 	}
3971 
3972 	for (hc = 0; hc < n_hc; hc++) {
3973 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3974 
3975 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3976 			"(before clear)=0x%08x\n", hc,
3977 			readl(hc_mmio + HC_CFG),
3978 			readl(hc_mmio + HC_IRQ_CAUSE));
3979 
3980 		/* Clear any currently outstanding hc interrupt conditions */
3981 		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3982 	}
3983 
3984 	if (!IS_SOC(hpriv)) {
3985 		/* Clear any currently outstanding host interrupt conditions */
3986 		writelfl(0, mmio + hpriv->irq_cause_offset);
3987 
3988 		/* and unmask interrupt generation for host regs */
3989 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3990 	}
3991 
3992 	/*
3993 	 * enable only global host interrupts for now.
3994 	 * The per-port interrupts get done later as ports are set up.
3995 	 */
3996 	mv_set_main_irq_mask(host, 0, PCI_ERR);
3997 	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3998 				    irq_coalescing_usecs);
3999 done:
4000 	return rc;
4001 }
4002 
4003 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4004 {
4005 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4006 							     MV_CRQB_Q_SZ, 0);
4007 	if (!hpriv->crqb_pool)
4008 		return -ENOMEM;
4009 
4010 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4011 							     MV_CRPB_Q_SZ, 0);
4012 	if (!hpriv->crpb_pool)
4013 		return -ENOMEM;
4014 
4015 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4016 							     MV_SG_TBL_SZ, 0);
4017 	if (!hpriv->sg_tbl_pool)
4018 		return -ENOMEM;
4019 
4020 	return 0;
4021 }
4022 
4023 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4024 				 const struct mbus_dram_target_info *dram)
4025 {
4026 	int i;
4027 
4028 	for (i = 0; i < 4; i++) {
4029 		writel(0, hpriv->base + WINDOW_CTRL(i));
4030 		writel(0, hpriv->base + WINDOW_BASE(i));
4031 	}
4032 
4033 	for (i = 0; i < dram->num_cs; i++) {
4034 		const struct mbus_dram_window *cs = dram->cs + i;
4035 
4036 		writel(((cs->size - 1) & 0xffff0000) |
4037 			(cs->mbus_attr << 8) |
4038 			(dram->mbus_dram_target_id << 4) | 1,
4039 			hpriv->base + WINDOW_CTRL(i));
4040 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4041 	}
4042 }
4043 
4044 /**
4045  *      mv_platform_probe - handle a positive probe of an soc Marvell
4046  *      host
4047  *      @pdev: platform device found
4048  *
4049  *      LOCKING:
4050  *      Inherited from caller.
4051  */
4052 static int mv_platform_probe(struct platform_device *pdev)
4053 {
4054 	const struct mv_sata_platform_data *mv_platform_data;
4055 	const struct mbus_dram_target_info *dram;
4056 	const struct ata_port_info *ppi[] =
4057 	    { &mv_port_info[chip_soc], NULL };
4058 	struct ata_host *host;
4059 	struct mv_host_priv *hpriv;
4060 	struct resource *res;
4061 	int n_ports = 0, irq = 0;
4062 	int rc;
4063 	int port;
4064 
4065 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4066 
4067 	/*
4068 	 * Simple resource validation ..
4069 	 */
4070 	if (unlikely(pdev->num_resources != 2)) {
4071 		dev_err(&pdev->dev, "invalid number of resources\n");
4072 		return -EINVAL;
4073 	}
4074 
4075 	/*
4076 	 * Get the register base first
4077 	 */
4078 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4079 	if (res == NULL)
4080 		return -EINVAL;
4081 
4082 	/* allocate host */
4083 	if (pdev->dev.of_node) {
4084 		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4085 					   &n_ports);
4086 		if (rc) {
4087 			dev_err(&pdev->dev,
4088 				"error parsing nr-ports property: %d\n", rc);
4089 			return rc;
4090 		}
4091 
4092 		if (n_ports <= 0) {
4093 			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4094 				n_ports);
4095 			return -EINVAL;
4096 		}
4097 
4098 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4099 	} else {
4100 		mv_platform_data = dev_get_platdata(&pdev->dev);
4101 		n_ports = mv_platform_data->n_ports;
4102 		irq = platform_get_irq(pdev, 0);
4103 	}
4104 	if (irq < 0)
4105 		return irq;
4106 	if (!irq)
4107 		return -EINVAL;
4108 
4109 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4110 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4111 
4112 	if (!host || !hpriv)
4113 		return -ENOMEM;
4114 	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4115 					n_ports, sizeof(struct clk *),
4116 					GFP_KERNEL);
4117 	if (!hpriv->port_clks)
4118 		return -ENOMEM;
4119 	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4120 					n_ports, sizeof(struct phy *),
4121 					GFP_KERNEL);
4122 	if (!hpriv->port_phys)
4123 		return -ENOMEM;
4124 	host->private_data = hpriv;
4125 	hpriv->board_idx = chip_soc;
4126 
4127 	host->iomap = NULL;
4128 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4129 				   resource_size(res));
4130 	if (!hpriv->base)
4131 		return -ENOMEM;
4132 
4133 	hpriv->base -= SATAHC0_REG_BASE;
4134 
4135 	hpriv->clk = clk_get(&pdev->dev, NULL);
4136 	if (IS_ERR(hpriv->clk))
4137 		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4138 	else
4139 		clk_prepare_enable(hpriv->clk);
4140 
4141 	for (port = 0; port < n_ports; port++) {
4142 		char port_number[16];
4143 		sprintf(port_number, "%d", port);
4144 		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4145 		if (!IS_ERR(hpriv->port_clks[port]))
4146 			clk_prepare_enable(hpriv->port_clks[port]);
4147 
4148 		sprintf(port_number, "port%d", port);
4149 		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4150 							       port_number);
4151 		if (IS_ERR(hpriv->port_phys[port])) {
4152 			rc = PTR_ERR(hpriv->port_phys[port]);
4153 			hpriv->port_phys[port] = NULL;
4154 			if (rc != -EPROBE_DEFER)
4155 				dev_warn(&pdev->dev, "error getting phy %d", rc);
4156 
4157 			/* Cleanup only the initialized ports */
4158 			hpriv->n_ports = port;
4159 			goto err;
4160 		} else
4161 			phy_power_on(hpriv->port_phys[port]);
4162 	}
4163 
4164 	/* All the ports have been initialized */
4165 	hpriv->n_ports = n_ports;
4166 
4167 	/*
4168 	 * (Re-)program MBUS remapping windows if we are asked to.
4169 	 */
4170 	dram = mv_mbus_dram_info();
4171 	if (dram)
4172 		mv_conf_mbus_windows(hpriv, dram);
4173 
4174 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4175 	if (rc)
4176 		goto err;
4177 
4178 	/*
4179 	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4180 	 * updated in the LP_PHY_CTL register.
4181 	 */
4182 	if (pdev->dev.of_node &&
4183 		of_device_is_compatible(pdev->dev.of_node,
4184 					"marvell,armada-370-sata"))
4185 		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4186 
4187 	/* initialize adapter */
4188 	rc = mv_init_host(host);
4189 	if (rc)
4190 		goto err;
4191 
4192 	dev_info(&pdev->dev, "slots %u ports %d\n",
4193 		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4194 
4195 	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4196 	if (!rc)
4197 		return 0;
4198 
4199 err:
4200 	if (!IS_ERR(hpriv->clk)) {
4201 		clk_disable_unprepare(hpriv->clk);
4202 		clk_put(hpriv->clk);
4203 	}
4204 	for (port = 0; port < hpriv->n_ports; port++) {
4205 		if (!IS_ERR(hpriv->port_clks[port])) {
4206 			clk_disable_unprepare(hpriv->port_clks[port]);
4207 			clk_put(hpriv->port_clks[port]);
4208 		}
4209 		phy_power_off(hpriv->port_phys[port]);
4210 	}
4211 
4212 	return rc;
4213 }
4214 
4215 /*
4216  *
4217  *      mv_platform_remove    -       unplug a platform interface
4218  *      @pdev: platform device
4219  *
4220  *      A platform bus SATA device has been unplugged. Perform the needed
4221  *      cleanup. Also called on module unload for any active devices.
4222  */
4223 static int mv_platform_remove(struct platform_device *pdev)
4224 {
4225 	struct ata_host *host = platform_get_drvdata(pdev);
4226 	struct mv_host_priv *hpriv = host->private_data;
4227 	int port;
4228 	ata_host_detach(host);
4229 
4230 	if (!IS_ERR(hpriv->clk)) {
4231 		clk_disable_unprepare(hpriv->clk);
4232 		clk_put(hpriv->clk);
4233 	}
4234 	for (port = 0; port < host->n_ports; port++) {
4235 		if (!IS_ERR(hpriv->port_clks[port])) {
4236 			clk_disable_unprepare(hpriv->port_clks[port]);
4237 			clk_put(hpriv->port_clks[port]);
4238 		}
4239 		phy_power_off(hpriv->port_phys[port]);
4240 	}
4241 	return 0;
4242 }
4243 
4244 #ifdef CONFIG_PM_SLEEP
4245 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4246 {
4247 	struct ata_host *host = platform_get_drvdata(pdev);
4248 	if (host)
4249 		return ata_host_suspend(host, state);
4250 	else
4251 		return 0;
4252 }
4253 
4254 static int mv_platform_resume(struct platform_device *pdev)
4255 {
4256 	struct ata_host *host = platform_get_drvdata(pdev);
4257 	const struct mbus_dram_target_info *dram;
4258 	int ret;
4259 
4260 	if (host) {
4261 		struct mv_host_priv *hpriv = host->private_data;
4262 
4263 		/*
4264 		 * (Re-)program MBUS remapping windows if we are asked to.
4265 		 */
4266 		dram = mv_mbus_dram_info();
4267 		if (dram)
4268 			mv_conf_mbus_windows(hpriv, dram);
4269 
4270 		/* initialize adapter */
4271 		ret = mv_init_host(host);
4272 		if (ret) {
4273 			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4274 			return ret;
4275 		}
4276 		ata_host_resume(host);
4277 	}
4278 
4279 	return 0;
4280 }
4281 #else
4282 #define mv_platform_suspend NULL
4283 #define mv_platform_resume NULL
4284 #endif
4285 
4286 #ifdef CONFIG_OF
4287 static const struct of_device_id mv_sata_dt_ids[] = {
4288 	{ .compatible = "marvell,armada-370-sata", },
4289 	{ .compatible = "marvell,orion-sata", },
4290 	{},
4291 };
4292 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4293 #endif
4294 
4295 static struct platform_driver mv_platform_driver = {
4296 	.probe		= mv_platform_probe,
4297 	.remove		= mv_platform_remove,
4298 	.suspend	= mv_platform_suspend,
4299 	.resume		= mv_platform_resume,
4300 	.driver		= {
4301 		.name = DRV_NAME,
4302 		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4303 	},
4304 };
4305 
4306 
4307 #ifdef CONFIG_PCI
4308 static int mv_pci_init_one(struct pci_dev *pdev,
4309 			   const struct pci_device_id *ent);
4310 #ifdef CONFIG_PM_SLEEP
4311 static int mv_pci_device_resume(struct pci_dev *pdev);
4312 #endif
4313 
4314 
4315 static struct pci_driver mv_pci_driver = {
4316 	.name			= DRV_NAME,
4317 	.id_table		= mv_pci_tbl,
4318 	.probe			= mv_pci_init_one,
4319 	.remove			= ata_pci_remove_one,
4320 #ifdef CONFIG_PM_SLEEP
4321 	.suspend		= ata_pci_device_suspend,
4322 	.resume			= mv_pci_device_resume,
4323 #endif
4324 
4325 };
4326 
4327 /**
4328  *      mv_print_info - Dump key info to kernel log for perusal.
4329  *      @host: ATA host to print info about
4330  *
4331  *      FIXME: complete this.
4332  *
4333  *      LOCKING:
4334  *      Inherited from caller.
4335  */
4336 static void mv_print_info(struct ata_host *host)
4337 {
4338 	struct pci_dev *pdev = to_pci_dev(host->dev);
4339 	struct mv_host_priv *hpriv = host->private_data;
4340 	u8 scc;
4341 	const char *scc_s, *gen;
4342 
4343 	/* Use this to determine the HW stepping of the chip so we know
4344 	 * what errata to workaround
4345 	 */
4346 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4347 	if (scc == 0)
4348 		scc_s = "SCSI";
4349 	else if (scc == 0x01)
4350 		scc_s = "RAID";
4351 	else
4352 		scc_s = "?";
4353 
4354 	if (IS_GEN_I(hpriv))
4355 		gen = "I";
4356 	else if (IS_GEN_II(hpriv))
4357 		gen = "II";
4358 	else if (IS_GEN_IIE(hpriv))
4359 		gen = "IIE";
4360 	else
4361 		gen = "?";
4362 
4363 	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4364 		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4365 		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4366 }
4367 
4368 /**
4369  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4370  *      @pdev: PCI device found
4371  *      @ent: PCI device ID entry for the matched host
4372  *
4373  *      LOCKING:
4374  *      Inherited from caller.
4375  */
4376 static int mv_pci_init_one(struct pci_dev *pdev,
4377 			   const struct pci_device_id *ent)
4378 {
4379 	unsigned int board_idx = (unsigned int)ent->driver_data;
4380 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4381 	struct ata_host *host;
4382 	struct mv_host_priv *hpriv;
4383 	int n_ports, port, rc;
4384 
4385 	ata_print_version_once(&pdev->dev, DRV_VERSION);
4386 
4387 	/* allocate host */
4388 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4389 
4390 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4391 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4392 	if (!host || !hpriv)
4393 		return -ENOMEM;
4394 	host->private_data = hpriv;
4395 	hpriv->n_ports = n_ports;
4396 	hpriv->board_idx = board_idx;
4397 
4398 	/* acquire resources */
4399 	rc = pcim_enable_device(pdev);
4400 	if (rc)
4401 		return rc;
4402 
4403 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4404 	if (rc == -EBUSY)
4405 		pcim_pin_device(pdev);
4406 	if (rc)
4407 		return rc;
4408 	host->iomap = pcim_iomap_table(pdev);
4409 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4410 
4411 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4412 	if (rc) {
4413 		dev_err(&pdev->dev, "DMA enable failed\n");
4414 		return rc;
4415 	}
4416 
4417 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4418 	if (rc)
4419 		return rc;
4420 
4421 	for (port = 0; port < host->n_ports; port++) {
4422 		struct ata_port *ap = host->ports[port];
4423 		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4424 		unsigned int offset = port_mmio - hpriv->base;
4425 
4426 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4427 		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4428 	}
4429 
4430 	/* initialize adapter */
4431 	rc = mv_init_host(host);
4432 	if (rc)
4433 		return rc;
4434 
4435 	/* Enable message-switched interrupts, if requested */
4436 	if (msi && pci_enable_msi(pdev) == 0)
4437 		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4438 
4439 	mv_dump_pci_cfg(pdev, 0x68);
4440 	mv_print_info(host);
4441 
4442 	pci_set_master(pdev);
4443 	pci_try_set_mwi(pdev);
4444 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4445 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4446 }
4447 
4448 #ifdef CONFIG_PM_SLEEP
4449 static int mv_pci_device_resume(struct pci_dev *pdev)
4450 {
4451 	struct ata_host *host = pci_get_drvdata(pdev);
4452 	int rc;
4453 
4454 	rc = ata_pci_device_do_resume(pdev);
4455 	if (rc)
4456 		return rc;
4457 
4458 	/* initialize adapter */
4459 	rc = mv_init_host(host);
4460 	if (rc)
4461 		return rc;
4462 
4463 	ata_host_resume(host);
4464 
4465 	return 0;
4466 }
4467 #endif
4468 #endif
4469 
4470 static int __init mv_init(void)
4471 {
4472 	int rc = -ENODEV;
4473 #ifdef CONFIG_PCI
4474 	rc = pci_register_driver(&mv_pci_driver);
4475 	if (rc < 0)
4476 		return rc;
4477 #endif
4478 	rc = platform_driver_register(&mv_platform_driver);
4479 
4480 #ifdef CONFIG_PCI
4481 	if (rc < 0)
4482 		pci_unregister_driver(&mv_pci_driver);
4483 #endif
4484 	return rc;
4485 }
4486 
4487 static void __exit mv_exit(void)
4488 {
4489 #ifdef CONFIG_PCI
4490 	pci_unregister_driver(&mv_pci_driver);
4491 #endif
4492 	platform_driver_unregister(&mv_platform_driver);
4493 }
4494 
4495 MODULE_AUTHOR("Brett Russ");
4496 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4497 MODULE_LICENSE("GPL v2");
4498 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4499 MODULE_VERSION(DRV_VERSION);
4500 MODULE_ALIAS("platform:" DRV_NAME);
4501 
4502 module_init(mv_init);
4503 module_exit(mv_exit);
4504