xref: /openbmc/linux/drivers/ata/sata_mv.c (revision 22246614)
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc.  All rights reserved.
7  *
8  * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 /*
26  * sata_mv TODO list:
27  *
28  * --> Errata workaround for NCQ device errors.
29  *
30  * --> More errata workarounds for PCI-X.
31  *
32  * --> Complete a full errata audit for all chipsets to identify others.
33  *
34  * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
35  *
36  * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
37  *
38  * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
39  *
40  * --> Develop a low-power-consumption strategy, and implement it.
41  *
42  * --> [Experiment, low priority] Investigate interrupt coalescing.
43  *       Quite often, especially with PCI Message Signalled Interrupts (MSI),
44  *       the overhead reduced by interrupt mitigation is quite often not
45  *       worth the latency cost.
46  *
47  * --> [Experiment, Marvell value added] Is it possible to use target
48  *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
49  *       creating LibATA target mode support would be very interesting.
50  *
51  *       Target mode, for those without docs, is the ability to directly
52  *       connect two SATA ports.
53  */
54 
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
73 
74 #define DRV_NAME	"sata_mv"
75 #define DRV_VERSION	"1.20"
76 
77 enum {
78 	/* BAR's are enumerated in terms of pci_resource_start() terms */
79 	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
80 	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
81 	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
82 
83 	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
84 	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
85 
86 	MV_PCI_REG_BASE		= 0,
87 	MV_IRQ_COAL_REG_BASE	= 0x18000,	/* 6xxx part only */
88 	MV_IRQ_COAL_CAUSE		= (MV_IRQ_COAL_REG_BASE + 0x08),
89 	MV_IRQ_COAL_CAUSE_LO		= (MV_IRQ_COAL_REG_BASE + 0x88),
90 	MV_IRQ_COAL_CAUSE_HI		= (MV_IRQ_COAL_REG_BASE + 0x8c),
91 	MV_IRQ_COAL_THRESHOLD		= (MV_IRQ_COAL_REG_BASE + 0xcc),
92 	MV_IRQ_COAL_TIME_THRESHOLD	= (MV_IRQ_COAL_REG_BASE + 0xd0),
93 
94 	MV_SATAHC0_REG_BASE	= 0x20000,
95 	MV_FLASH_CTL_OFS	= 0x1046c,
96 	MV_GPIO_PORT_CTL_OFS	= 0x104f0,
97 	MV_RESET_CFG_OFS	= 0x180d8,
98 
99 	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
100 	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
101 	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
102 	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
103 
104 	MV_MAX_Q_DEPTH		= 32,
105 	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
106 
107 	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 	 * CRPB needs alignment on a 256B boundary. Size == 256B
109 	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
110 	 */
111 	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
112 	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
113 	MV_MAX_SG_CT		= 256,
114 	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
115 
116 	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 	MV_PORT_HC_SHIFT	= 2,
118 	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
119 	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
121 
122 	/* Host Flags */
123 	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
124 	MV_FLAG_IRQ_COALESCE	= (1 << 29),  /* IRQ coalescing capability */
125 	/* SoC integrated controllers, no PCI interface */
126 	MV_FLAG_SOC		= (1 << 28),
127 
128 	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
129 				  ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
130 				  ATA_FLAG_PIO_POLLING,
131 	MV_6XXX_FLAGS		= MV_FLAG_IRQ_COALESCE,
132 
133 	CRQB_FLAG_READ		= (1 << 0),
134 	CRQB_TAG_SHIFT		= 1,
135 	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
136 	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
137 	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
138 	CRQB_CMD_ADDR_SHIFT	= 8,
139 	CRQB_CMD_CS		= (0x2 << 11),
140 	CRQB_CMD_LAST		= (1 << 15),
141 
142 	CRPB_FLAG_STATUS_SHIFT	= 8,
143 	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
144 	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
145 
146 	EPRD_FLAG_END_OF_TBL	= (1 << 31),
147 
148 	/* PCI interface registers */
149 
150 	PCI_COMMAND_OFS		= 0xc00,
151 	PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
152 
153 	PCI_MAIN_CMD_STS_OFS	= 0xd30,
154 	STOP_PCI_MASTER		= (1 << 2),
155 	PCI_MASTER_EMPTY	= (1 << 3),
156 	GLOB_SFT_RST		= (1 << 4),
157 
158 	MV_PCI_MODE_OFS		= 0xd00,
159 	MV_PCI_MODE_MASK	= 0x30,
160 
161 	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
162 	MV_PCI_DISC_TIMER	= 0xd04,
163 	MV_PCI_MSI_TRIGGER	= 0xc38,
164 	MV_PCI_SERR_MASK	= 0xc28,
165 	MV_PCI_XBAR_TMOUT_OFS	= 0x1d04,
166 	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
167 	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
168 	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
169 	MV_PCI_ERR_COMMAND	= 0x1d50,
170 
171 	PCI_IRQ_CAUSE_OFS	= 0x1d58,
172 	PCI_IRQ_MASK_OFS	= 0x1d5c,
173 	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
174 
175 	PCIE_IRQ_CAUSE_OFS	= 0x1900,
176 	PCIE_IRQ_MASK_OFS	= 0x1910,
177 	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
178 
179 	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
180 	PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
181 	PCI_HC_MAIN_IRQ_MASK_OFS  = 0x1d64,
182 	SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
183 	SOC_HC_MAIN_IRQ_MASK_OFS  = 0x20024,
184 	ERR_IRQ			= (1 << 0),	/* shift by port # */
185 	DONE_IRQ		= (1 << 1),	/* shift by port # */
186 	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
187 	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
188 	PCI_ERR			= (1 << 18),
189 	TRAN_LO_DONE		= (1 << 19),	/* 6xxx: IRQ coalescing */
190 	TRAN_HI_DONE		= (1 << 20),	/* 6xxx: IRQ coalescing */
191 	PORTS_0_3_COAL_DONE	= (1 << 8),
192 	PORTS_4_7_COAL_DONE	= (1 << 17),
193 	PORTS_0_7_COAL_DONE	= (1 << 21),	/* 6xxx: IRQ coalescing */
194 	GPIO_INT		= (1 << 22),
195 	SELF_INT		= (1 << 23),
196 	TWSI_INT		= (1 << 24),
197 	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
198 	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
199 	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
200 	HC_MAIN_MASKED_IRQS	= (TRAN_LO_DONE | TRAN_HI_DONE |
201 				   PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
202 				   PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
203 				   HC_MAIN_RSVD),
204 	HC_MAIN_MASKED_IRQS_5	= (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
205 				   HC_MAIN_RSVD_5),
206 	HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
207 
208 	/* SATAHC registers */
209 	HC_CFG_OFS		= 0,
210 
211 	HC_IRQ_CAUSE_OFS	= 0x14,
212 	DMA_IRQ			= (1 << 0),	/* shift by port # */
213 	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
214 	DEV_IRQ			= (1 << 8),	/* shift by port # */
215 
216 	/* Shadow block registers */
217 	SHD_BLK_OFS		= 0x100,
218 	SHD_CTL_AST_OFS		= 0x20,		/* ofs from SHD_BLK_OFS */
219 
220 	/* SATA registers */
221 	SATA_STATUS_OFS		= 0x300,  /* ctrl, err regs follow status */
222 	SATA_ACTIVE_OFS		= 0x350,
223 	SATA_FIS_IRQ_CAUSE_OFS	= 0x364,
224 
225 	LTMODE_OFS		= 0x30c,
226 	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
227 
228 	PHY_MODE3		= 0x310,
229 	PHY_MODE4		= 0x314,
230 	PHY_MODE2		= 0x330,
231 	SATA_IFCTL_OFS		= 0x344,
232 	SATA_TESTCTL_OFS	= 0x348,
233 	SATA_IFSTAT_OFS		= 0x34c,
234 	VENDOR_UNIQUE_FIS_OFS	= 0x35c,
235 
236 	FISCFG_OFS		= 0x360,
237 	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
238 	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
239 
240 	MV5_PHY_MODE		= 0x74,
241 	MV5_LTMODE_OFS		= 0x30,
242 	MV5_PHY_CTL_OFS		= 0x0C,
243 	SATA_INTERFACE_CFG_OFS	= 0x050,
244 
245 	MV_M2_PREAMP_MASK	= 0x7e0,
246 
247 	/* Port registers */
248 	EDMA_CFG_OFS		= 0,
249 	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
250 	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
251 	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
252 	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
253 	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
254 	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
255 	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
256 
257 	EDMA_ERR_IRQ_CAUSE_OFS	= 0x8,
258 	EDMA_ERR_IRQ_MASK_OFS	= 0xc,
259 	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
260 	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
261 	EDMA_ERR_DEV		= (1 << 2),	/* device error */
262 	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
263 	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
264 	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
265 	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
266 	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
267 	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
268 	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
269 	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
270 	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
271 	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
272 	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
273 
274 	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
275 	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
276 	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
277 	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
278 	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
279 
280 	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
281 
282 	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
283 	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
284 	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
285 	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
286 	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
287 	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
288 
289 	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
290 
291 	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
292 	EDMA_ERR_OVERRUN_5	= (1 << 5),
293 	EDMA_ERR_UNDERRUN_5	= (1 << 6),
294 
295 	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
296 				  EDMA_ERR_LNK_CTRL_RX_1 |
297 				  EDMA_ERR_LNK_CTRL_RX_3 |
298 				  EDMA_ERR_LNK_CTRL_TX,
299 
300 	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
301 				  EDMA_ERR_PRD_PAR |
302 				  EDMA_ERR_DEV_DCON |
303 				  EDMA_ERR_DEV_CON |
304 				  EDMA_ERR_SERR |
305 				  EDMA_ERR_SELF_DIS |
306 				  EDMA_ERR_CRQB_PAR |
307 				  EDMA_ERR_CRPB_PAR |
308 				  EDMA_ERR_INTRL_PAR |
309 				  EDMA_ERR_IORDY |
310 				  EDMA_ERR_LNK_CTRL_RX_2 |
311 				  EDMA_ERR_LNK_DATA_RX |
312 				  EDMA_ERR_LNK_DATA_TX |
313 				  EDMA_ERR_TRANS_PROTO,
314 
315 	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
316 				  EDMA_ERR_PRD_PAR |
317 				  EDMA_ERR_DEV_DCON |
318 				  EDMA_ERR_DEV_CON |
319 				  EDMA_ERR_OVERRUN_5 |
320 				  EDMA_ERR_UNDERRUN_5 |
321 				  EDMA_ERR_SELF_DIS_5 |
322 				  EDMA_ERR_CRQB_PAR |
323 				  EDMA_ERR_CRPB_PAR |
324 				  EDMA_ERR_INTRL_PAR |
325 				  EDMA_ERR_IORDY,
326 
327 	EDMA_REQ_Q_BASE_HI_OFS	= 0x10,
328 	EDMA_REQ_Q_IN_PTR_OFS	= 0x14,		/* also contains BASE_LO */
329 
330 	EDMA_REQ_Q_OUT_PTR_OFS	= 0x18,
331 	EDMA_REQ_Q_PTR_SHIFT	= 5,
332 
333 	EDMA_RSP_Q_BASE_HI_OFS	= 0x1c,
334 	EDMA_RSP_Q_IN_PTR_OFS	= 0x20,
335 	EDMA_RSP_Q_OUT_PTR_OFS	= 0x24,		/* also contains BASE_LO */
336 	EDMA_RSP_Q_PTR_SHIFT	= 3,
337 
338 	EDMA_CMD_OFS		= 0x28,		/* EDMA command register */
339 	EDMA_EN			= (1 << 0),	/* enable EDMA */
340 	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
341 	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
342 
343 	EDMA_STATUS_OFS		= 0x30,		/* EDMA engine status */
344 	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
345 	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
346 
347 	EDMA_IORDY_TMOUT_OFS	= 0x34,
348 	EDMA_ARB_CFG_OFS	= 0x38,
349 
350 	EDMA_HALTCOND_OFS	= 0x60,		/* GenIIe halt conditions */
351 
352 	GEN_II_NCQ_MAX_SECTORS	= 256,		/* max sects/io on Gen2 w/NCQ */
353 
354 	/* Host private flags (hp_flags) */
355 	MV_HP_FLAG_MSI		= (1 << 0),
356 	MV_HP_ERRATA_50XXB0	= (1 << 1),
357 	MV_HP_ERRATA_50XXB2	= (1 << 2),
358 	MV_HP_ERRATA_60X1B2	= (1 << 3),
359 	MV_HP_ERRATA_60X1C0	= (1 << 4),
360 	MV_HP_ERRATA_XX42A0	= (1 << 5),
361 	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
362 	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
363 	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
364 	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
365 	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
366 
367 	/* Port private flags (pp_flags) */
368 	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
369 	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
370 	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
371 	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
372 };
373 
374 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
375 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
376 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
377 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
378 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
379 
380 #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
381 #define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
382 
383 enum {
384 	/* DMA boundary 0xffff is required by the s/g splitting
385 	 * we need on /length/ in mv_fill-sg().
386 	 */
387 	MV_DMA_BOUNDARY		= 0xffffU,
388 
389 	/* mask of register bits containing lower 32 bits
390 	 * of EDMA request queue DMA address
391 	 */
392 	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
393 
394 	/* ditto, for response queue */
395 	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
396 };
397 
398 enum chip_type {
399 	chip_504x,
400 	chip_508x,
401 	chip_5080,
402 	chip_604x,
403 	chip_608x,
404 	chip_6042,
405 	chip_7042,
406 	chip_soc,
407 };
408 
409 /* Command ReQuest Block: 32B */
410 struct mv_crqb {
411 	__le32			sg_addr;
412 	__le32			sg_addr_hi;
413 	__le16			ctrl_flags;
414 	__le16			ata_cmd[11];
415 };
416 
417 struct mv_crqb_iie {
418 	__le32			addr;
419 	__le32			addr_hi;
420 	__le32			flags;
421 	__le32			len;
422 	__le32			ata_cmd[4];
423 };
424 
425 /* Command ResPonse Block: 8B */
426 struct mv_crpb {
427 	__le16			id;
428 	__le16			flags;
429 	__le32			tmstmp;
430 };
431 
432 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
433 struct mv_sg {
434 	__le32			addr;
435 	__le32			flags_size;
436 	__le32			addr_hi;
437 	__le32			reserved;
438 };
439 
440 struct mv_port_priv {
441 	struct mv_crqb		*crqb;
442 	dma_addr_t		crqb_dma;
443 	struct mv_crpb		*crpb;
444 	dma_addr_t		crpb_dma;
445 	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
446 	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
447 
448 	unsigned int		req_idx;
449 	unsigned int		resp_idx;
450 
451 	u32			pp_flags;
452 	unsigned int		delayed_eh_pmp_map;
453 };
454 
455 struct mv_port_signal {
456 	u32			amps;
457 	u32			pre;
458 };
459 
460 struct mv_host_priv {
461 	u32			hp_flags;
462 	struct mv_port_signal	signal[8];
463 	const struct mv_hw_ops	*ops;
464 	int			n_ports;
465 	void __iomem		*base;
466 	void __iomem		*main_irq_cause_addr;
467 	void __iomem		*main_irq_mask_addr;
468 	u32			irq_cause_ofs;
469 	u32			irq_mask_ofs;
470 	u32			unmask_all_irqs;
471 	/*
472 	 * These consistent DMA memory pools give us guaranteed
473 	 * alignment for hardware-accessed data structures,
474 	 * and less memory waste in accomplishing the alignment.
475 	 */
476 	struct dma_pool		*crqb_pool;
477 	struct dma_pool		*crpb_pool;
478 	struct dma_pool		*sg_tbl_pool;
479 };
480 
481 struct mv_hw_ops {
482 	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
483 			   unsigned int port);
484 	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
485 	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
486 			   void __iomem *mmio);
487 	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
488 			unsigned int n_hc);
489 	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
490 	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
491 };
492 
493 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
494 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
495 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
496 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
497 static int mv_port_start(struct ata_port *ap);
498 static void mv_port_stop(struct ata_port *ap);
499 static int mv_qc_defer(struct ata_queued_cmd *qc);
500 static void mv_qc_prep(struct ata_queued_cmd *qc);
501 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
502 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
503 static int mv_hardreset(struct ata_link *link, unsigned int *class,
504 			unsigned long deadline);
505 static void mv_eh_freeze(struct ata_port *ap);
506 static void mv_eh_thaw(struct ata_port *ap);
507 static void mv6_dev_config(struct ata_device *dev);
508 
509 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
510 			   unsigned int port);
511 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
512 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
513 			   void __iomem *mmio);
514 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
515 			unsigned int n_hc);
516 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
517 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
518 
519 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
520 			   unsigned int port);
521 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
522 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
523 			   void __iomem *mmio);
524 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
525 			unsigned int n_hc);
526 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
527 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
528 				      void __iomem *mmio);
529 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
530 				      void __iomem *mmio);
531 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
532 				  void __iomem *mmio, unsigned int n_hc);
533 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
534 				      void __iomem *mmio);
535 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
536 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
537 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
538 			     unsigned int port_no);
539 static int mv_stop_edma(struct ata_port *ap);
540 static int mv_stop_edma_engine(void __iomem *port_mmio);
541 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
542 
543 static void mv_pmp_select(struct ata_port *ap, int pmp);
544 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
545 				unsigned long deadline);
546 static int  mv_softreset(struct ata_link *link, unsigned int *class,
547 				unsigned long deadline);
548 static void mv_pmp_error_handler(struct ata_port *ap);
549 static void mv_process_crpb_entries(struct ata_port *ap,
550 					struct mv_port_priv *pp);
551 
552 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
553  * because we have to allow room for worst case splitting of
554  * PRDs for 64K boundaries in mv_fill_sg().
555  */
556 static struct scsi_host_template mv5_sht = {
557 	ATA_BASE_SHT(DRV_NAME),
558 	.sg_tablesize		= MV_MAX_SG_CT / 2,
559 	.dma_boundary		= MV_DMA_BOUNDARY,
560 };
561 
562 static struct scsi_host_template mv6_sht = {
563 	ATA_NCQ_SHT(DRV_NAME),
564 	.can_queue		= MV_MAX_Q_DEPTH - 1,
565 	.sg_tablesize		= MV_MAX_SG_CT / 2,
566 	.dma_boundary		= MV_DMA_BOUNDARY,
567 };
568 
569 static struct ata_port_operations mv5_ops = {
570 	.inherits		= &ata_sff_port_ops,
571 
572 	.qc_defer		= mv_qc_defer,
573 	.qc_prep		= mv_qc_prep,
574 	.qc_issue		= mv_qc_issue,
575 
576 	.freeze			= mv_eh_freeze,
577 	.thaw			= mv_eh_thaw,
578 	.hardreset		= mv_hardreset,
579 	.error_handler		= ata_std_error_handler, /* avoid SFF EH */
580 	.post_internal_cmd	= ATA_OP_NULL,
581 
582 	.scr_read		= mv5_scr_read,
583 	.scr_write		= mv5_scr_write,
584 
585 	.port_start		= mv_port_start,
586 	.port_stop		= mv_port_stop,
587 };
588 
589 static struct ata_port_operations mv6_ops = {
590 	.inherits		= &mv5_ops,
591 	.dev_config             = mv6_dev_config,
592 	.scr_read		= mv_scr_read,
593 	.scr_write		= mv_scr_write,
594 
595 	.pmp_hardreset		= mv_pmp_hardreset,
596 	.pmp_softreset		= mv_softreset,
597 	.softreset		= mv_softreset,
598 	.error_handler		= mv_pmp_error_handler,
599 };
600 
601 static struct ata_port_operations mv_iie_ops = {
602 	.inherits		= &mv6_ops,
603 	.dev_config		= ATA_OP_NULL,
604 	.qc_prep		= mv_qc_prep_iie,
605 };
606 
607 static const struct ata_port_info mv_port_info[] = {
608 	{  /* chip_504x */
609 		.flags		= MV_COMMON_FLAGS,
610 		.pio_mask	= 0x1f,	/* pio0-4 */
611 		.udma_mask	= ATA_UDMA6,
612 		.port_ops	= &mv5_ops,
613 	},
614 	{  /* chip_508x */
615 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
616 		.pio_mask	= 0x1f,	/* pio0-4 */
617 		.udma_mask	= ATA_UDMA6,
618 		.port_ops	= &mv5_ops,
619 	},
620 	{  /* chip_5080 */
621 		.flags		= MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
622 		.pio_mask	= 0x1f,	/* pio0-4 */
623 		.udma_mask	= ATA_UDMA6,
624 		.port_ops	= &mv5_ops,
625 	},
626 	{  /* chip_604x */
627 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
628 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
629 				  ATA_FLAG_NCQ,
630 		.pio_mask	= 0x1f,	/* pio0-4 */
631 		.udma_mask	= ATA_UDMA6,
632 		.port_ops	= &mv6_ops,
633 	},
634 	{  /* chip_608x */
635 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
636 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
637 				  ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
638 		.pio_mask	= 0x1f,	/* pio0-4 */
639 		.udma_mask	= ATA_UDMA6,
640 		.port_ops	= &mv6_ops,
641 	},
642 	{  /* chip_6042 */
643 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
644 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
645 				  ATA_FLAG_NCQ,
646 		.pio_mask	= 0x1f,	/* pio0-4 */
647 		.udma_mask	= ATA_UDMA6,
648 		.port_ops	= &mv_iie_ops,
649 	},
650 	{  /* chip_7042 */
651 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
652 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
653 				  ATA_FLAG_NCQ,
654 		.pio_mask	= 0x1f,	/* pio0-4 */
655 		.udma_mask	= ATA_UDMA6,
656 		.port_ops	= &mv_iie_ops,
657 	},
658 	{  /* chip_soc */
659 		.flags		= MV_COMMON_FLAGS | MV_6XXX_FLAGS |
660 				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
661 				  ATA_FLAG_NCQ | MV_FLAG_SOC,
662 		.pio_mask	= 0x1f,	/* pio0-4 */
663 		.udma_mask	= ATA_UDMA6,
664 		.port_ops	= &mv_iie_ops,
665 	},
666 };
667 
668 static const struct pci_device_id mv_pci_tbl[] = {
669 	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
670 	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
671 	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
672 	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
673 	/* RocketRAID 1740/174x have different identifiers */
674 	{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
675 	{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
676 
677 	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
678 	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
679 	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
680 	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
681 	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
682 
683 	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
684 
685 	/* Adaptec 1430SA */
686 	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
687 
688 	/* Marvell 7042 support */
689 	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
690 
691 	/* Highpoint RocketRAID PCIe series */
692 	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
693 	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
694 
695 	{ }			/* terminate list */
696 };
697 
698 static const struct mv_hw_ops mv5xxx_ops = {
699 	.phy_errata		= mv5_phy_errata,
700 	.enable_leds		= mv5_enable_leds,
701 	.read_preamp		= mv5_read_preamp,
702 	.reset_hc		= mv5_reset_hc,
703 	.reset_flash		= mv5_reset_flash,
704 	.reset_bus		= mv5_reset_bus,
705 };
706 
707 static const struct mv_hw_ops mv6xxx_ops = {
708 	.phy_errata		= mv6_phy_errata,
709 	.enable_leds		= mv6_enable_leds,
710 	.read_preamp		= mv6_read_preamp,
711 	.reset_hc		= mv6_reset_hc,
712 	.reset_flash		= mv6_reset_flash,
713 	.reset_bus		= mv_reset_pci_bus,
714 };
715 
716 static const struct mv_hw_ops mv_soc_ops = {
717 	.phy_errata		= mv6_phy_errata,
718 	.enable_leds		= mv_soc_enable_leds,
719 	.read_preamp		= mv_soc_read_preamp,
720 	.reset_hc		= mv_soc_reset_hc,
721 	.reset_flash		= mv_soc_reset_flash,
722 	.reset_bus		= mv_soc_reset_bus,
723 };
724 
725 /*
726  * Functions
727  */
728 
729 static inline void writelfl(unsigned long data, void __iomem *addr)
730 {
731 	writel(data, addr);
732 	(void) readl(addr);	/* flush to avoid PCI posted write */
733 }
734 
735 static inline unsigned int mv_hc_from_port(unsigned int port)
736 {
737 	return port >> MV_PORT_HC_SHIFT;
738 }
739 
740 static inline unsigned int mv_hardport_from_port(unsigned int port)
741 {
742 	return port & MV_PORT_MASK;
743 }
744 
745 /*
746  * Consolidate some rather tricky bit shift calculations.
747  * This is hot-path stuff, so not a function.
748  * Simple code, with two return values, so macro rather than inline.
749  *
750  * port is the sole input, in range 0..7.
751  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
752  * hardport is the other output, in range 0..3.
753  *
754  * Note that port and hardport may be the same variable in some cases.
755  */
756 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
757 {								\
758 	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
759 	hardport = mv_hardport_from_port(port);			\
760 	shift   += hardport * 2;				\
761 }
762 
763 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
764 {
765 	return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
766 }
767 
768 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
769 						 unsigned int port)
770 {
771 	return mv_hc_base(base, mv_hc_from_port(port));
772 }
773 
774 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
775 {
776 	return  mv_hc_base_from_port(base, port) +
777 		MV_SATAHC_ARBTR_REG_SZ +
778 		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
779 }
780 
781 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
782 {
783 	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
784 	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
785 
786 	return hc_mmio + ofs;
787 }
788 
789 static inline void __iomem *mv_host_base(struct ata_host *host)
790 {
791 	struct mv_host_priv *hpriv = host->private_data;
792 	return hpriv->base;
793 }
794 
795 static inline void __iomem *mv_ap_base(struct ata_port *ap)
796 {
797 	return mv_port_base(mv_host_base(ap->host), ap->port_no);
798 }
799 
800 static inline int mv_get_hc_count(unsigned long port_flags)
801 {
802 	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
803 }
804 
805 static void mv_set_edma_ptrs(void __iomem *port_mmio,
806 			     struct mv_host_priv *hpriv,
807 			     struct mv_port_priv *pp)
808 {
809 	u32 index;
810 
811 	/*
812 	 * initialize request queue
813 	 */
814 	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
815 	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
816 
817 	WARN_ON(pp->crqb_dma & 0x3ff);
818 	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
819 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
820 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
821 
822 	if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
823 		writelfl((pp->crqb_dma & 0xffffffff) | index,
824 			 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
825 	else
826 		writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
827 
828 	/*
829 	 * initialize response queue
830 	 */
831 	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
832 	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
833 
834 	WARN_ON(pp->crpb_dma & 0xff);
835 	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
836 
837 	if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
838 		writelfl((pp->crpb_dma & 0xffffffff) | index,
839 			 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
840 	else
841 		writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
842 
843 	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
844 		 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
845 }
846 
847 /**
848  *      mv_start_dma - Enable eDMA engine
849  *      @base: port base address
850  *      @pp: port private data
851  *
852  *      Verify the local cache of the eDMA state is accurate with a
853  *      WARN_ON.
854  *
855  *      LOCKING:
856  *      Inherited from caller.
857  */
858 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
859 			 struct mv_port_priv *pp, u8 protocol)
860 {
861 	int want_ncq = (protocol == ATA_PROT_NCQ);
862 
863 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
864 		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
865 		if (want_ncq != using_ncq)
866 			mv_stop_edma(ap);
867 	}
868 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
869 		struct mv_host_priv *hpriv = ap->host->private_data;
870 		int hardport = mv_hardport_from_port(ap->port_no);
871 		void __iomem *hc_mmio = mv_hc_base_from_port(
872 					mv_host_base(ap->host), hardport);
873 		u32 hc_irq_cause, ipending;
874 
875 		/* clear EDMA event indicators, if any */
876 		writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
877 
878 		/* clear EDMA interrupt indicator, if any */
879 		hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
880 		ipending = (DEV_IRQ | DMA_IRQ) << hardport;
881 		if (hc_irq_cause & ipending) {
882 			writelfl(hc_irq_cause & ~ipending,
883 				 hc_mmio + HC_IRQ_CAUSE_OFS);
884 		}
885 
886 		mv_edma_cfg(ap, want_ncq);
887 
888 		/* clear FIS IRQ Cause */
889 		writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
890 
891 		mv_set_edma_ptrs(port_mmio, hpriv, pp);
892 
893 		writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
894 		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
895 	}
896 }
897 
898 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
899 {
900 	void __iomem *port_mmio = mv_ap_base(ap);
901 	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
902 	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
903 	int i;
904 
905 	/*
906 	 * Wait for the EDMA engine to finish transactions in progress.
907 	 * No idea what a good "timeout" value might be, but measurements
908 	 * indicate that it often requires hundreds of microseconds
909 	 * with two drives in-use.  So we use the 15msec value above
910 	 * as a rough guess at what even more drives might require.
911 	 */
912 	for (i = 0; i < timeout; ++i) {
913 		u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
914 		if ((edma_stat & empty_idle) == empty_idle)
915 			break;
916 		udelay(per_loop);
917 	}
918 	/* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
919 }
920 
921 /**
922  *      mv_stop_edma_engine - Disable eDMA engine
923  *      @port_mmio: io base address
924  *
925  *      LOCKING:
926  *      Inherited from caller.
927  */
928 static int mv_stop_edma_engine(void __iomem *port_mmio)
929 {
930 	int i;
931 
932 	/* Disable eDMA.  The disable bit auto clears. */
933 	writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
934 
935 	/* Wait for the chip to confirm eDMA is off. */
936 	for (i = 10000; i > 0; i--) {
937 		u32 reg = readl(port_mmio + EDMA_CMD_OFS);
938 		if (!(reg & EDMA_EN))
939 			return 0;
940 		udelay(10);
941 	}
942 	return -EIO;
943 }
944 
945 static int mv_stop_edma(struct ata_port *ap)
946 {
947 	void __iomem *port_mmio = mv_ap_base(ap);
948 	struct mv_port_priv *pp = ap->private_data;
949 
950 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
951 		return 0;
952 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
953 	mv_wait_for_edma_empty_idle(ap);
954 	if (mv_stop_edma_engine(port_mmio)) {
955 		ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
956 		return -EIO;
957 	}
958 	return 0;
959 }
960 
961 #ifdef ATA_DEBUG
962 static void mv_dump_mem(void __iomem *start, unsigned bytes)
963 {
964 	int b, w;
965 	for (b = 0; b < bytes; ) {
966 		DPRINTK("%p: ", start + b);
967 		for (w = 0; b < bytes && w < 4; w++) {
968 			printk("%08x ", readl(start + b));
969 			b += sizeof(u32);
970 		}
971 		printk("\n");
972 	}
973 }
974 #endif
975 
976 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
977 {
978 #ifdef ATA_DEBUG
979 	int b, w;
980 	u32 dw;
981 	for (b = 0; b < bytes; ) {
982 		DPRINTK("%02x: ", b);
983 		for (w = 0; b < bytes && w < 4; w++) {
984 			(void) pci_read_config_dword(pdev, b, &dw);
985 			printk("%08x ", dw);
986 			b += sizeof(u32);
987 		}
988 		printk("\n");
989 	}
990 #endif
991 }
992 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
993 			     struct pci_dev *pdev)
994 {
995 #ifdef ATA_DEBUG
996 	void __iomem *hc_base = mv_hc_base(mmio_base,
997 					   port >> MV_PORT_HC_SHIFT);
998 	void __iomem *port_base;
999 	int start_port, num_ports, p, start_hc, num_hcs, hc;
1000 
1001 	if (0 > port) {
1002 		start_hc = start_port = 0;
1003 		num_ports = 8;		/* shld be benign for 4 port devs */
1004 		num_hcs = 2;
1005 	} else {
1006 		start_hc = port >> MV_PORT_HC_SHIFT;
1007 		start_port = port;
1008 		num_ports = num_hcs = 1;
1009 	}
1010 	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1011 		num_ports > 1 ? num_ports - 1 : start_port);
1012 
1013 	if (NULL != pdev) {
1014 		DPRINTK("PCI config space regs:\n");
1015 		mv_dump_pci_cfg(pdev, 0x68);
1016 	}
1017 	DPRINTK("PCI regs:\n");
1018 	mv_dump_mem(mmio_base+0xc00, 0x3c);
1019 	mv_dump_mem(mmio_base+0xd00, 0x34);
1020 	mv_dump_mem(mmio_base+0xf00, 0x4);
1021 	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1022 	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1023 		hc_base = mv_hc_base(mmio_base, hc);
1024 		DPRINTK("HC regs (HC %i):\n", hc);
1025 		mv_dump_mem(hc_base, 0x1c);
1026 	}
1027 	for (p = start_port; p < start_port + num_ports; p++) {
1028 		port_base = mv_port_base(mmio_base, p);
1029 		DPRINTK("EDMA regs (port %i):\n", p);
1030 		mv_dump_mem(port_base, 0x54);
1031 		DPRINTK("SATA regs (port %i):\n", p);
1032 		mv_dump_mem(port_base+0x300, 0x60);
1033 	}
1034 #endif
1035 }
1036 
1037 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1038 {
1039 	unsigned int ofs;
1040 
1041 	switch (sc_reg_in) {
1042 	case SCR_STATUS:
1043 	case SCR_CONTROL:
1044 	case SCR_ERROR:
1045 		ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1046 		break;
1047 	case SCR_ACTIVE:
1048 		ofs = SATA_ACTIVE_OFS;   /* active is not with the others */
1049 		break;
1050 	default:
1051 		ofs = 0xffffffffU;
1052 		break;
1053 	}
1054 	return ofs;
1055 }
1056 
1057 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1058 {
1059 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1060 
1061 	if (ofs != 0xffffffffU) {
1062 		*val = readl(mv_ap_base(ap) + ofs);
1063 		return 0;
1064 	} else
1065 		return -EINVAL;
1066 }
1067 
1068 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1069 {
1070 	unsigned int ofs = mv_scr_offset(sc_reg_in);
1071 
1072 	if (ofs != 0xffffffffU) {
1073 		writelfl(val, mv_ap_base(ap) + ofs);
1074 		return 0;
1075 	} else
1076 		return -EINVAL;
1077 }
1078 
1079 static void mv6_dev_config(struct ata_device *adev)
1080 {
1081 	/*
1082 	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1083 	 *
1084 	 * Gen-II does not support NCQ over a port multiplier
1085 	 *  (no FIS-based switching).
1086 	 *
1087 	 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1088 	 * See mv_qc_prep() for more info.
1089 	 */
1090 	if (adev->flags & ATA_DFLAG_NCQ) {
1091 		if (sata_pmp_attached(adev->link->ap)) {
1092 			adev->flags &= ~ATA_DFLAG_NCQ;
1093 			ata_dev_printk(adev, KERN_INFO,
1094 				"NCQ disabled for command-based switching\n");
1095 		} else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1096 			adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1097 			ata_dev_printk(adev, KERN_INFO,
1098 				"max_sectors limited to %u for NCQ\n",
1099 				adev->max_sectors);
1100 		}
1101 	}
1102 }
1103 
1104 static int mv_qc_defer(struct ata_queued_cmd *qc)
1105 {
1106 	struct ata_link *link = qc->dev->link;
1107 	struct ata_port *ap = link->ap;
1108 	struct mv_port_priv *pp = ap->private_data;
1109 
1110 	/*
1111 	 * Don't allow new commands if we're in a delayed EH state
1112 	 * for NCQ and/or FIS-based switching.
1113 	 */
1114 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1115 		return ATA_DEFER_PORT;
1116 	/*
1117 	 * If the port is completely idle, then allow the new qc.
1118 	 */
1119 	if (ap->nr_active_links == 0)
1120 		return 0;
1121 
1122 	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1123 		/*
1124 		 * The port is operating in host queuing mode (EDMA).
1125 		 * It can accomodate a new qc if the qc protocol
1126 		 * is compatible with the current host queue mode.
1127 		 */
1128 		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1129 			/*
1130 			 * The host queue (EDMA) is in NCQ mode.
1131 			 * If the new qc is also an NCQ command,
1132 			 * then allow the new qc.
1133 			 */
1134 			if (qc->tf.protocol == ATA_PROT_NCQ)
1135 				return 0;
1136 		} else {
1137 			/*
1138 			 * The host queue (EDMA) is in non-NCQ, DMA mode.
1139 			 * If the new qc is also a non-NCQ, DMA command,
1140 			 * then allow the new qc.
1141 			 */
1142 			if (qc->tf.protocol == ATA_PROT_DMA)
1143 				return 0;
1144 		}
1145 	}
1146 	return ATA_DEFER_PORT;
1147 }
1148 
1149 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1150 {
1151 	u32 new_fiscfg, old_fiscfg;
1152 	u32 new_ltmode, old_ltmode;
1153 	u32 new_haltcond, old_haltcond;
1154 
1155 	old_fiscfg   = readl(port_mmio + FISCFG_OFS);
1156 	old_ltmode   = readl(port_mmio + LTMODE_OFS);
1157 	old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1158 
1159 	new_fiscfg   = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1160 	new_ltmode   = old_ltmode & ~LTMODE_BIT8;
1161 	new_haltcond = old_haltcond | EDMA_ERR_DEV;
1162 
1163 	if (want_fbs) {
1164 		new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1165 		new_ltmode = old_ltmode | LTMODE_BIT8;
1166 		if (want_ncq)
1167 			new_haltcond &= ~EDMA_ERR_DEV;
1168 		else
1169 			new_fiscfg |=  FISCFG_WAIT_DEV_ERR;
1170 	}
1171 
1172 	if (new_fiscfg != old_fiscfg)
1173 		writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1174 	if (new_ltmode != old_ltmode)
1175 		writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1176 	if (new_haltcond != old_haltcond)
1177 		writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1178 }
1179 
1180 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1181 {
1182 	struct mv_host_priv *hpriv = ap->host->private_data;
1183 	u32 old, new;
1184 
1185 	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1186 	old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1187 	if (want_ncq)
1188 		new = old | (1 << 22);
1189 	else
1190 		new = old & ~(1 << 22);
1191 	if (new != old)
1192 		writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1193 }
1194 
1195 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1196 {
1197 	u32 cfg;
1198 	struct mv_port_priv *pp    = ap->private_data;
1199 	struct mv_host_priv *hpriv = ap->host->private_data;
1200 	void __iomem *port_mmio    = mv_ap_base(ap);
1201 
1202 	/* set up non-NCQ EDMA configuration */
1203 	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1204 	pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1205 
1206 	if (IS_GEN_I(hpriv))
1207 		cfg |= (1 << 8);	/* enab config burst size mask */
1208 
1209 	else if (IS_GEN_II(hpriv)) {
1210 		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1211 		mv_60x1_errata_sata25(ap, want_ncq);
1212 
1213 	} else if (IS_GEN_IIE(hpriv)) {
1214 		int want_fbs = sata_pmp_attached(ap);
1215 		/*
1216 		 * Possible future enhancement:
1217 		 *
1218 		 * The chip can use FBS with non-NCQ, if we allow it,
1219 		 * But first we need to have the error handling in place
1220 		 * for this mode (datasheet section 7.3.15.4.2.3).
1221 		 * So disallow non-NCQ FBS for now.
1222 		 */
1223 		want_fbs &= want_ncq;
1224 
1225 		mv_config_fbs(port_mmio, want_ncq, want_fbs);
1226 
1227 		if (want_fbs) {
1228 			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1229 			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1230 		}
1231 
1232 		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1233 		cfg |= (1 << 22);	/* enab 4-entry host queue cache */
1234 		if (HAS_PCI(ap->host))
1235 			cfg |= (1 << 18);	/* enab early completion */
1236 		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1237 			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1238 	}
1239 
1240 	if (want_ncq) {
1241 		cfg |= EDMA_CFG_NCQ;
1242 		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1243 	} else
1244 		pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1245 
1246 	writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1247 }
1248 
1249 static void mv_port_free_dma_mem(struct ata_port *ap)
1250 {
1251 	struct mv_host_priv *hpriv = ap->host->private_data;
1252 	struct mv_port_priv *pp = ap->private_data;
1253 	int tag;
1254 
1255 	if (pp->crqb) {
1256 		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1257 		pp->crqb = NULL;
1258 	}
1259 	if (pp->crpb) {
1260 		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1261 		pp->crpb = NULL;
1262 	}
1263 	/*
1264 	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1265 	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1266 	 */
1267 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1268 		if (pp->sg_tbl[tag]) {
1269 			if (tag == 0 || !IS_GEN_I(hpriv))
1270 				dma_pool_free(hpriv->sg_tbl_pool,
1271 					      pp->sg_tbl[tag],
1272 					      pp->sg_tbl_dma[tag]);
1273 			pp->sg_tbl[tag] = NULL;
1274 		}
1275 	}
1276 }
1277 
1278 /**
1279  *      mv_port_start - Port specific init/start routine.
1280  *      @ap: ATA channel to manipulate
1281  *
1282  *      Allocate and point to DMA memory, init port private memory,
1283  *      zero indices.
1284  *
1285  *      LOCKING:
1286  *      Inherited from caller.
1287  */
1288 static int mv_port_start(struct ata_port *ap)
1289 {
1290 	struct device *dev = ap->host->dev;
1291 	struct mv_host_priv *hpriv = ap->host->private_data;
1292 	struct mv_port_priv *pp;
1293 	int tag;
1294 
1295 	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1296 	if (!pp)
1297 		return -ENOMEM;
1298 	ap->private_data = pp;
1299 
1300 	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1301 	if (!pp->crqb)
1302 		return -ENOMEM;
1303 	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1304 
1305 	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1306 	if (!pp->crpb)
1307 		goto out_port_free_dma_mem;
1308 	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1309 
1310 	/*
1311 	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1312 	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1313 	 */
1314 	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1315 		if (tag == 0 || !IS_GEN_I(hpriv)) {
1316 			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1317 					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1318 			if (!pp->sg_tbl[tag])
1319 				goto out_port_free_dma_mem;
1320 		} else {
1321 			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1322 			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1323 		}
1324 	}
1325 	return 0;
1326 
1327 out_port_free_dma_mem:
1328 	mv_port_free_dma_mem(ap);
1329 	return -ENOMEM;
1330 }
1331 
1332 /**
1333  *      mv_port_stop - Port specific cleanup/stop routine.
1334  *      @ap: ATA channel to manipulate
1335  *
1336  *      Stop DMA, cleanup port memory.
1337  *
1338  *      LOCKING:
1339  *      This routine uses the host lock to protect the DMA stop.
1340  */
1341 static void mv_port_stop(struct ata_port *ap)
1342 {
1343 	mv_stop_edma(ap);
1344 	mv_port_free_dma_mem(ap);
1345 }
1346 
1347 /**
1348  *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1349  *      @qc: queued command whose SG list to source from
1350  *
1351  *      Populate the SG list and mark the last entry.
1352  *
1353  *      LOCKING:
1354  *      Inherited from caller.
1355  */
1356 static void mv_fill_sg(struct ata_queued_cmd *qc)
1357 {
1358 	struct mv_port_priv *pp = qc->ap->private_data;
1359 	struct scatterlist *sg;
1360 	struct mv_sg *mv_sg, *last_sg = NULL;
1361 	unsigned int si;
1362 
1363 	mv_sg = pp->sg_tbl[qc->tag];
1364 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1365 		dma_addr_t addr = sg_dma_address(sg);
1366 		u32 sg_len = sg_dma_len(sg);
1367 
1368 		while (sg_len) {
1369 			u32 offset = addr & 0xffff;
1370 			u32 len = sg_len;
1371 
1372 			if ((offset + sg_len > 0x10000))
1373 				len = 0x10000 - offset;
1374 
1375 			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1376 			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1377 			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1378 
1379 			sg_len -= len;
1380 			addr += len;
1381 
1382 			last_sg = mv_sg;
1383 			mv_sg++;
1384 		}
1385 	}
1386 
1387 	if (likely(last_sg))
1388 		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1389 }
1390 
1391 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1392 {
1393 	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1394 		(last ? CRQB_CMD_LAST : 0);
1395 	*cmdw = cpu_to_le16(tmp);
1396 }
1397 
1398 /**
1399  *      mv_qc_prep - Host specific command preparation.
1400  *      @qc: queued command to prepare
1401  *
1402  *      This routine simply redirects to the general purpose routine
1403  *      if command is not DMA.  Else, it handles prep of the CRQB
1404  *      (command request block), does some sanity checking, and calls
1405  *      the SG load routine.
1406  *
1407  *      LOCKING:
1408  *      Inherited from caller.
1409  */
1410 static void mv_qc_prep(struct ata_queued_cmd *qc)
1411 {
1412 	struct ata_port *ap = qc->ap;
1413 	struct mv_port_priv *pp = ap->private_data;
1414 	__le16 *cw;
1415 	struct ata_taskfile *tf;
1416 	u16 flags = 0;
1417 	unsigned in_index;
1418 
1419 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1420 	    (qc->tf.protocol != ATA_PROT_NCQ))
1421 		return;
1422 
1423 	/* Fill in command request block
1424 	 */
1425 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1426 		flags |= CRQB_FLAG_READ;
1427 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1428 	flags |= qc->tag << CRQB_TAG_SHIFT;
1429 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1430 
1431 	/* get current queue index from software */
1432 	in_index = pp->req_idx;
1433 
1434 	pp->crqb[in_index].sg_addr =
1435 		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1436 	pp->crqb[in_index].sg_addr_hi =
1437 		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1438 	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1439 
1440 	cw = &pp->crqb[in_index].ata_cmd[0];
1441 	tf = &qc->tf;
1442 
1443 	/* Sadly, the CRQB cannot accomodate all registers--there are
1444 	 * only 11 bytes...so we must pick and choose required
1445 	 * registers based on the command.  So, we drop feature and
1446 	 * hob_feature for [RW] DMA commands, but they are needed for
1447 	 * NCQ.  NCQ will drop hob_nsect.
1448 	 */
1449 	switch (tf->command) {
1450 	case ATA_CMD_READ:
1451 	case ATA_CMD_READ_EXT:
1452 	case ATA_CMD_WRITE:
1453 	case ATA_CMD_WRITE_EXT:
1454 	case ATA_CMD_WRITE_FUA_EXT:
1455 		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1456 		break;
1457 	case ATA_CMD_FPDMA_READ:
1458 	case ATA_CMD_FPDMA_WRITE:
1459 		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1460 		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1461 		break;
1462 	default:
1463 		/* The only other commands EDMA supports in non-queued and
1464 		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1465 		 * of which are defined/used by Linux.  If we get here, this
1466 		 * driver needs work.
1467 		 *
1468 		 * FIXME: modify libata to give qc_prep a return value and
1469 		 * return error here.
1470 		 */
1471 		BUG_ON(tf->command);
1472 		break;
1473 	}
1474 	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1475 	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1476 	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1477 	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1478 	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1479 	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1480 	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1481 	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1482 	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
1483 
1484 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1485 		return;
1486 	mv_fill_sg(qc);
1487 }
1488 
1489 /**
1490  *      mv_qc_prep_iie - Host specific command preparation.
1491  *      @qc: queued command to prepare
1492  *
1493  *      This routine simply redirects to the general purpose routine
1494  *      if command is not DMA.  Else, it handles prep of the CRQB
1495  *      (command request block), does some sanity checking, and calls
1496  *      the SG load routine.
1497  *
1498  *      LOCKING:
1499  *      Inherited from caller.
1500  */
1501 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1502 {
1503 	struct ata_port *ap = qc->ap;
1504 	struct mv_port_priv *pp = ap->private_data;
1505 	struct mv_crqb_iie *crqb;
1506 	struct ata_taskfile *tf;
1507 	unsigned in_index;
1508 	u32 flags = 0;
1509 
1510 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1511 	    (qc->tf.protocol != ATA_PROT_NCQ))
1512 		return;
1513 
1514 	/* Fill in Gen IIE command request block */
1515 	if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1516 		flags |= CRQB_FLAG_READ;
1517 
1518 	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1519 	flags |= qc->tag << CRQB_TAG_SHIFT;
1520 	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1521 	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1522 
1523 	/* get current queue index from software */
1524 	in_index = pp->req_idx;
1525 
1526 	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1527 	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1528 	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1529 	crqb->flags = cpu_to_le32(flags);
1530 
1531 	tf = &qc->tf;
1532 	crqb->ata_cmd[0] = cpu_to_le32(
1533 			(tf->command << 16) |
1534 			(tf->feature << 24)
1535 		);
1536 	crqb->ata_cmd[1] = cpu_to_le32(
1537 			(tf->lbal << 0) |
1538 			(tf->lbam << 8) |
1539 			(tf->lbah << 16) |
1540 			(tf->device << 24)
1541 		);
1542 	crqb->ata_cmd[2] = cpu_to_le32(
1543 			(tf->hob_lbal << 0) |
1544 			(tf->hob_lbam << 8) |
1545 			(tf->hob_lbah << 16) |
1546 			(tf->hob_feature << 24)
1547 		);
1548 	crqb->ata_cmd[3] = cpu_to_le32(
1549 			(tf->nsect << 0) |
1550 			(tf->hob_nsect << 8)
1551 		);
1552 
1553 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1554 		return;
1555 	mv_fill_sg(qc);
1556 }
1557 
1558 /**
1559  *      mv_qc_issue - Initiate a command to the host
1560  *      @qc: queued command to start
1561  *
1562  *      This routine simply redirects to the general purpose routine
1563  *      if command is not DMA.  Else, it sanity checks our local
1564  *      caches of the request producer/consumer indices then enables
1565  *      DMA and bumps the request producer index.
1566  *
1567  *      LOCKING:
1568  *      Inherited from caller.
1569  */
1570 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1571 {
1572 	struct ata_port *ap = qc->ap;
1573 	void __iomem *port_mmio = mv_ap_base(ap);
1574 	struct mv_port_priv *pp = ap->private_data;
1575 	u32 in_index;
1576 
1577 	if ((qc->tf.protocol != ATA_PROT_DMA) &&
1578 	    (qc->tf.protocol != ATA_PROT_NCQ)) {
1579 		/*
1580 		 * We're about to send a non-EDMA capable command to the
1581 		 * port.  Turn off EDMA so there won't be problems accessing
1582 		 * shadow block, etc registers.
1583 		 */
1584 		mv_stop_edma(ap);
1585 		mv_pmp_select(ap, qc->dev->link->pmp);
1586 		return ata_sff_qc_issue(qc);
1587 	}
1588 
1589 	mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1590 
1591 	pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1592 	in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1593 
1594 	/* and write the request in pointer to kick the EDMA to life */
1595 	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1596 		 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1597 
1598 	return 0;
1599 }
1600 
1601 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1602 {
1603 	struct mv_port_priv *pp = ap->private_data;
1604 	struct ata_queued_cmd *qc;
1605 
1606 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1607 		return NULL;
1608 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1609 	if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1610 		qc = NULL;
1611 	return qc;
1612 }
1613 
1614 static void mv_pmp_error_handler(struct ata_port *ap)
1615 {
1616 	unsigned int pmp, pmp_map;
1617 	struct mv_port_priv *pp = ap->private_data;
1618 
1619 	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1620 		/*
1621 		 * Perform NCQ error analysis on failed PMPs
1622 		 * before we freeze the port entirely.
1623 		 *
1624 		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1625 		 */
1626 		pmp_map = pp->delayed_eh_pmp_map;
1627 		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1628 		for (pmp = 0; pmp_map != 0; pmp++) {
1629 			unsigned int this_pmp = (1 << pmp);
1630 			if (pmp_map & this_pmp) {
1631 				struct ata_link *link = &ap->pmp_link[pmp];
1632 				pmp_map &= ~this_pmp;
1633 				ata_eh_analyze_ncq_error(link);
1634 			}
1635 		}
1636 		ata_port_freeze(ap);
1637 	}
1638 	sata_pmp_error_handler(ap);
1639 }
1640 
1641 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1642 {
1643 	void __iomem *port_mmio = mv_ap_base(ap);
1644 
1645 	return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1646 }
1647 
1648 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1649 {
1650 	struct ata_eh_info *ehi;
1651 	unsigned int pmp;
1652 
1653 	/*
1654 	 * Initialize EH info for PMPs which saw device errors
1655 	 */
1656 	ehi = &ap->link.eh_info;
1657 	for (pmp = 0; pmp_map != 0; pmp++) {
1658 		unsigned int this_pmp = (1 << pmp);
1659 		if (pmp_map & this_pmp) {
1660 			struct ata_link *link = &ap->pmp_link[pmp];
1661 
1662 			pmp_map &= ~this_pmp;
1663 			ehi = &link->eh_info;
1664 			ata_ehi_clear_desc(ehi);
1665 			ata_ehi_push_desc(ehi, "dev err");
1666 			ehi->err_mask |= AC_ERR_DEV;
1667 			ehi->action |= ATA_EH_RESET;
1668 			ata_link_abort(link);
1669 		}
1670 	}
1671 }
1672 
1673 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1674 {
1675 	struct mv_port_priv *pp = ap->private_data;
1676 	int failed_links;
1677 	unsigned int old_map, new_map;
1678 
1679 	/*
1680 	 * Device error during FBS+NCQ operation:
1681 	 *
1682 	 * Set a port flag to prevent further I/O being enqueued.
1683 	 * Leave the EDMA running to drain outstanding commands from this port.
1684 	 * Perform the post-mortem/EH only when all responses are complete.
1685 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1686 	 */
1687 	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1688 		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1689 		pp->delayed_eh_pmp_map = 0;
1690 	}
1691 	old_map = pp->delayed_eh_pmp_map;
1692 	new_map = old_map | mv_get_err_pmp_map(ap);
1693 
1694 	if (old_map != new_map) {
1695 		pp->delayed_eh_pmp_map = new_map;
1696 		mv_pmp_eh_prep(ap, new_map & ~old_map);
1697 	}
1698 	failed_links = hweight16(new_map);
1699 
1700 	ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1701 			"failed_links=%d nr_active_links=%d\n",
1702 			__func__, pp->delayed_eh_pmp_map,
1703 			ap->qc_active, failed_links,
1704 			ap->nr_active_links);
1705 
1706 	if (ap->nr_active_links <= failed_links) {
1707 		mv_process_crpb_entries(ap, pp);
1708 		mv_stop_edma(ap);
1709 		mv_eh_freeze(ap);
1710 		ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1711 		return 1;	/* handled */
1712 	}
1713 	ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1714 	return 1;	/* handled */
1715 }
1716 
1717 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1718 {
1719 	/*
1720 	 * Possible future enhancement:
1721 	 *
1722 	 * FBS+non-NCQ operation is not yet implemented.
1723 	 * See related notes in mv_edma_cfg().
1724 	 *
1725 	 * Device error during FBS+non-NCQ operation:
1726 	 *
1727 	 * We need to snapshot the shadow registers for each failed command.
1728 	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1729 	 */
1730 	return 0;	/* not handled */
1731 }
1732 
1733 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1734 {
1735 	struct mv_port_priv *pp = ap->private_data;
1736 
1737 	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1738 		return 0;	/* EDMA was not active: not handled */
1739 	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1740 		return 0;	/* FBS was not active: not handled */
1741 
1742 	if (!(edma_err_cause & EDMA_ERR_DEV))
1743 		return 0;	/* non DEV error: not handled */
1744 	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1745 	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1746 		return 0;	/* other problems: not handled */
1747 
1748 	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1749 		/*
1750 		 * EDMA should NOT have self-disabled for this case.
1751 		 * If it did, then something is wrong elsewhere,
1752 		 * and we cannot handle it here.
1753 		 */
1754 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1755 			ata_port_printk(ap, KERN_WARNING,
1756 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1757 				__func__, edma_err_cause, pp->pp_flags);
1758 			return 0; /* not handled */
1759 		}
1760 		return mv_handle_fbs_ncq_dev_err(ap);
1761 	} else {
1762 		/*
1763 		 * EDMA should have self-disabled for this case.
1764 		 * If it did not, then something is wrong elsewhere,
1765 		 * and we cannot handle it here.
1766 		 */
1767 		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1768 			ata_port_printk(ap, KERN_WARNING,
1769 				"%s: err_cause=0x%x pp_flags=0x%x\n",
1770 				__func__, edma_err_cause, pp->pp_flags);
1771 			return 0; /* not handled */
1772 		}
1773 		return mv_handle_fbs_non_ncq_dev_err(ap);
1774 	}
1775 	return 0;	/* not handled */
1776 }
1777 
1778 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1779 {
1780 	struct ata_eh_info *ehi = &ap->link.eh_info;
1781 	char *when = "idle";
1782 
1783 	ata_ehi_clear_desc(ehi);
1784 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1785 		when = "disabled";
1786 	} else if (edma_was_enabled) {
1787 		when = "EDMA enabled";
1788 	} else {
1789 		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1790 		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1791 			when = "polling";
1792 	}
1793 	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1794 	ehi->err_mask |= AC_ERR_OTHER;
1795 	ehi->action   |= ATA_EH_RESET;
1796 	ata_port_freeze(ap);
1797 }
1798 
1799 /**
1800  *      mv_err_intr - Handle error interrupts on the port
1801  *      @ap: ATA channel to manipulate
1802  *      @qc: affected command (non-NCQ), or NULL
1803  *
1804  *      Most cases require a full reset of the chip's state machine,
1805  *      which also performs a COMRESET.
1806  *      Also, if the port disabled DMA, update our cached copy to match.
1807  *
1808  *      LOCKING:
1809  *      Inherited from caller.
1810  */
1811 static void mv_err_intr(struct ata_port *ap)
1812 {
1813 	void __iomem *port_mmio = mv_ap_base(ap);
1814 	u32 edma_err_cause, eh_freeze_mask, serr = 0;
1815 	struct mv_port_priv *pp = ap->private_data;
1816 	struct mv_host_priv *hpriv = ap->host->private_data;
1817 	unsigned int action = 0, err_mask = 0;
1818 	struct ata_eh_info *ehi = &ap->link.eh_info;
1819 	struct ata_queued_cmd *qc;
1820 	int abort = 0;
1821 
1822 	/*
1823 	 * Read and clear the SError and err_cause bits.
1824 	 */
1825 	sata_scr_read(&ap->link, SCR_ERROR, &serr);
1826 	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1827 
1828 	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1829 	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1830 
1831 	ata_port_printk(ap, KERN_INFO, "%s: err_cause=%08x pp_flags=0x%x\n",
1832 			__func__, edma_err_cause, pp->pp_flags);
1833 
1834 	if (edma_err_cause & EDMA_ERR_DEV) {
1835 		/*
1836 		 * Device errors during FIS-based switching operation
1837 		 * require special handling.
1838 		 */
1839 		if (mv_handle_dev_err(ap, edma_err_cause))
1840 			return;
1841 	}
1842 
1843 	qc = mv_get_active_qc(ap);
1844 	ata_ehi_clear_desc(ehi);
1845 	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1846 			  edma_err_cause, pp->pp_flags);
1847 	/*
1848 	 * All generations share these EDMA error cause bits:
1849 	 */
1850 	if (edma_err_cause & EDMA_ERR_DEV) {
1851 		err_mask |= AC_ERR_DEV;
1852 		action |= ATA_EH_RESET;
1853 		ata_ehi_push_desc(ehi, "dev error");
1854 	}
1855 	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1856 			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1857 			EDMA_ERR_INTRL_PAR)) {
1858 		err_mask |= AC_ERR_ATA_BUS;
1859 		action |= ATA_EH_RESET;
1860 		ata_ehi_push_desc(ehi, "parity error");
1861 	}
1862 	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1863 		ata_ehi_hotplugged(ehi);
1864 		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1865 			"dev disconnect" : "dev connect");
1866 		action |= ATA_EH_RESET;
1867 	}
1868 
1869 	/*
1870 	 * Gen-I has a different SELF_DIS bit,
1871 	 * different FREEZE bits, and no SERR bit:
1872 	 */
1873 	if (IS_GEN_I(hpriv)) {
1874 		eh_freeze_mask = EDMA_EH_FREEZE_5;
1875 		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1876 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1877 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1878 		}
1879 	} else {
1880 		eh_freeze_mask = EDMA_EH_FREEZE;
1881 		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1882 			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1883 			ata_ehi_push_desc(ehi, "EDMA self-disable");
1884 		}
1885 		if (edma_err_cause & EDMA_ERR_SERR) {
1886 			ata_ehi_push_desc(ehi, "SError=%08x", serr);
1887 			err_mask |= AC_ERR_ATA_BUS;
1888 			action |= ATA_EH_RESET;
1889 		}
1890 	}
1891 
1892 	if (!err_mask) {
1893 		err_mask = AC_ERR_OTHER;
1894 		action |= ATA_EH_RESET;
1895 	}
1896 
1897 	ehi->serror |= serr;
1898 	ehi->action |= action;
1899 
1900 	if (qc)
1901 		qc->err_mask |= err_mask;
1902 	else
1903 		ehi->err_mask |= err_mask;
1904 
1905 	if (err_mask == AC_ERR_DEV) {
1906 		/*
1907 		 * Cannot do ata_port_freeze() here,
1908 		 * because it would kill PIO access,
1909 		 * which is needed for further diagnosis.
1910 		 */
1911 		mv_eh_freeze(ap);
1912 		abort = 1;
1913 	} else if (edma_err_cause & eh_freeze_mask) {
1914 		/*
1915 		 * Note to self: ata_port_freeze() calls ata_port_abort()
1916 		 */
1917 		ata_port_freeze(ap);
1918 	} else {
1919 		abort = 1;
1920 	}
1921 
1922 	if (abort) {
1923 		if (qc)
1924 			ata_link_abort(qc->dev->link);
1925 		else
1926 			ata_port_abort(ap);
1927 	}
1928 }
1929 
1930 static void mv_process_crpb_response(struct ata_port *ap,
1931 		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1932 {
1933 	struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1934 
1935 	if (qc) {
1936 		u8 ata_status;
1937 		u16 edma_status = le16_to_cpu(response->flags);
1938 		/*
1939 		 * edma_status from a response queue entry:
1940 		 *   LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1941 		 *   MSB is saved ATA status from command completion.
1942 		 */
1943 		if (!ncq_enabled) {
1944 			u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1945 			if (err_cause) {
1946 				/*
1947 				 * Error will be seen/handled by mv_err_intr().
1948 				 * So do nothing at all here.
1949 				 */
1950 				return;
1951 			}
1952 		}
1953 		ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1954 		if (!ac_err_mask(ata_status))
1955 			ata_qc_complete(qc);
1956 		/* else: leave it for mv_err_intr() */
1957 	} else {
1958 		ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
1959 				__func__, tag);
1960 	}
1961 }
1962 
1963 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
1964 {
1965 	void __iomem *port_mmio = mv_ap_base(ap);
1966 	struct mv_host_priv *hpriv = ap->host->private_data;
1967 	u32 in_index;
1968 	bool work_done = false;
1969 	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
1970 
1971 	/* Get the hardware queue position index */
1972 	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1973 			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1974 
1975 	/* Process new responses from since the last time we looked */
1976 	while (in_index != pp->resp_idx) {
1977 		unsigned int tag;
1978 		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
1979 
1980 		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1981 
1982 		if (IS_GEN_I(hpriv)) {
1983 			/* 50xx: no NCQ, only one command active at a time */
1984 			tag = ap->link.active_tag;
1985 		} else {
1986 			/* Gen II/IIE: get command tag from CRPB entry */
1987 			tag = le16_to_cpu(response->id) & 0x1f;
1988 		}
1989 		mv_process_crpb_response(ap, response, tag, ncq_enabled);
1990 		work_done = true;
1991 	}
1992 
1993 	/* Update the software queue position index in hardware */
1994 	if (work_done)
1995 		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
1996 			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
1997 			 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1998 }
1999 
2000 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2001 {
2002 	struct mv_port_priv *pp;
2003 	int edma_was_enabled;
2004 
2005 	if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2006 		mv_unexpected_intr(ap, 0);
2007 		return;
2008 	}
2009 	/*
2010 	 * Grab a snapshot of the EDMA_EN flag setting,
2011 	 * so that we have a consistent view for this port,
2012 	 * even if something we call of our routines changes it.
2013 	 */
2014 	pp = ap->private_data;
2015 	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2016 	/*
2017 	 * Process completed CRPB response(s) before other events.
2018 	 */
2019 	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2020 		mv_process_crpb_entries(ap, pp);
2021 		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2022 			mv_handle_fbs_ncq_dev_err(ap);
2023 	}
2024 	/*
2025 	 * Handle chip-reported errors, or continue on to handle PIO.
2026 	 */
2027 	if (unlikely(port_cause & ERR_IRQ)) {
2028 		mv_err_intr(ap);
2029 	} else if (!edma_was_enabled) {
2030 		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2031 		if (qc)
2032 			ata_sff_host_intr(ap, qc);
2033 		else
2034 			mv_unexpected_intr(ap, edma_was_enabled);
2035 	}
2036 }
2037 
2038 /**
2039  *      mv_host_intr - Handle all interrupts on the given host controller
2040  *      @host: host specific structure
2041  *      @main_irq_cause: Main interrupt cause register for the chip.
2042  *
2043  *      LOCKING:
2044  *      Inherited from caller.
2045  */
2046 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2047 {
2048 	struct mv_host_priv *hpriv = host->private_data;
2049 	void __iomem *mmio = hpriv->base, *hc_mmio;
2050 	unsigned int handled = 0, port;
2051 
2052 	for (port = 0; port < hpriv->n_ports; port++) {
2053 		struct ata_port *ap = host->ports[port];
2054 		unsigned int p, shift, hardport, port_cause;
2055 
2056 		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2057 		/*
2058 		 * Each hc within the host has its own hc_irq_cause register,
2059 		 * where the interrupting ports bits get ack'd.
2060 		 */
2061 		if (hardport == 0) {	/* first port on this hc ? */
2062 			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2063 			u32 port_mask, ack_irqs;
2064 			/*
2065 			 * Skip this entire hc if nothing pending for any ports
2066 			 */
2067 			if (!hc_cause) {
2068 				port += MV_PORTS_PER_HC - 1;
2069 				continue;
2070 			}
2071 			/*
2072 			 * We don't need/want to read the hc_irq_cause register,
2073 			 * because doing so hurts performance, and
2074 			 * main_irq_cause already gives us everything we need.
2075 			 *
2076 			 * But we do have to *write* to the hc_irq_cause to ack
2077 			 * the ports that we are handling this time through.
2078 			 *
2079 			 * This requires that we create a bitmap for those
2080 			 * ports which interrupted us, and use that bitmap
2081 			 * to ack (only) those ports via hc_irq_cause.
2082 			 */
2083 			ack_irqs = 0;
2084 			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2085 				if ((port + p) >= hpriv->n_ports)
2086 					break;
2087 				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2088 				if (hc_cause & port_mask)
2089 					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2090 			}
2091 			hc_mmio = mv_hc_base_from_port(mmio, port);
2092 			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2093 			handled = 1;
2094 		}
2095 		/*
2096 		 * Handle interrupts signalled for this port:
2097 		 */
2098 		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2099 		if (port_cause)
2100 			mv_port_intr(ap, port_cause);
2101 	}
2102 	return handled;
2103 }
2104 
2105 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2106 {
2107 	struct mv_host_priv *hpriv = host->private_data;
2108 	struct ata_port *ap;
2109 	struct ata_queued_cmd *qc;
2110 	struct ata_eh_info *ehi;
2111 	unsigned int i, err_mask, printed = 0;
2112 	u32 err_cause;
2113 
2114 	err_cause = readl(mmio + hpriv->irq_cause_ofs);
2115 
2116 	dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2117 		   err_cause);
2118 
2119 	DPRINTK("All regs @ PCI error\n");
2120 	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2121 
2122 	writelfl(0, mmio + hpriv->irq_cause_ofs);
2123 
2124 	for (i = 0; i < host->n_ports; i++) {
2125 		ap = host->ports[i];
2126 		if (!ata_link_offline(&ap->link)) {
2127 			ehi = &ap->link.eh_info;
2128 			ata_ehi_clear_desc(ehi);
2129 			if (!printed++)
2130 				ata_ehi_push_desc(ehi,
2131 					"PCI err cause 0x%08x", err_cause);
2132 			err_mask = AC_ERR_HOST_BUS;
2133 			ehi->action = ATA_EH_RESET;
2134 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2135 			if (qc)
2136 				qc->err_mask |= err_mask;
2137 			else
2138 				ehi->err_mask |= err_mask;
2139 
2140 			ata_port_freeze(ap);
2141 		}
2142 	}
2143 	return 1;	/* handled */
2144 }
2145 
2146 /**
2147  *      mv_interrupt - Main interrupt event handler
2148  *      @irq: unused
2149  *      @dev_instance: private data; in this case the host structure
2150  *
2151  *      Read the read only register to determine if any host
2152  *      controllers have pending interrupts.  If so, call lower level
2153  *      routine to handle.  Also check for PCI errors which are only
2154  *      reported here.
2155  *
2156  *      LOCKING:
2157  *      This routine holds the host lock while processing pending
2158  *      interrupts.
2159  */
2160 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2161 {
2162 	struct ata_host *host = dev_instance;
2163 	struct mv_host_priv *hpriv = host->private_data;
2164 	unsigned int handled = 0;
2165 	u32 main_irq_cause, main_irq_mask;
2166 
2167 	spin_lock(&host->lock);
2168 	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2169 	main_irq_mask  = readl(hpriv->main_irq_mask_addr);
2170 	/*
2171 	 * Deal with cases where we either have nothing pending, or have read
2172 	 * a bogus register value which can indicate HW removal or PCI fault.
2173 	 */
2174 	if ((main_irq_cause & main_irq_mask) && (main_irq_cause != 0xffffffffU)) {
2175 		if (unlikely((main_irq_cause & PCI_ERR) && HAS_PCI(host)))
2176 			handled = mv_pci_error(host, hpriv->base);
2177 		else
2178 			handled = mv_host_intr(host, main_irq_cause);
2179 	}
2180 	spin_unlock(&host->lock);
2181 	return IRQ_RETVAL(handled);
2182 }
2183 
2184 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2185 {
2186 	unsigned int ofs;
2187 
2188 	switch (sc_reg_in) {
2189 	case SCR_STATUS:
2190 	case SCR_ERROR:
2191 	case SCR_CONTROL:
2192 		ofs = sc_reg_in * sizeof(u32);
2193 		break;
2194 	default:
2195 		ofs = 0xffffffffU;
2196 		break;
2197 	}
2198 	return ofs;
2199 }
2200 
2201 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2202 {
2203 	struct mv_host_priv *hpriv = ap->host->private_data;
2204 	void __iomem *mmio = hpriv->base;
2205 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2206 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2207 
2208 	if (ofs != 0xffffffffU) {
2209 		*val = readl(addr + ofs);
2210 		return 0;
2211 	} else
2212 		return -EINVAL;
2213 }
2214 
2215 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2216 {
2217 	struct mv_host_priv *hpriv = ap->host->private_data;
2218 	void __iomem *mmio = hpriv->base;
2219 	void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2220 	unsigned int ofs = mv5_scr_offset(sc_reg_in);
2221 
2222 	if (ofs != 0xffffffffU) {
2223 		writelfl(val, addr + ofs);
2224 		return 0;
2225 	} else
2226 		return -EINVAL;
2227 }
2228 
2229 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2230 {
2231 	struct pci_dev *pdev = to_pci_dev(host->dev);
2232 	int early_5080;
2233 
2234 	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2235 
2236 	if (!early_5080) {
2237 		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2238 		tmp |= (1 << 0);
2239 		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2240 	}
2241 
2242 	mv_reset_pci_bus(host, mmio);
2243 }
2244 
2245 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2246 {
2247 	writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2248 }
2249 
2250 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2251 			   void __iomem *mmio)
2252 {
2253 	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2254 	u32 tmp;
2255 
2256 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2257 
2258 	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
2259 	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
2260 }
2261 
2262 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2263 {
2264 	u32 tmp;
2265 
2266 	writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2267 
2268 	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2269 
2270 	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2271 	tmp |= ~(1 << 0);
2272 	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2273 }
2274 
2275 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2276 			   unsigned int port)
2277 {
2278 	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2279 	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2280 	u32 tmp;
2281 	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2282 
2283 	if (fix_apm_sq) {
2284 		tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2285 		tmp |= (1 << 19);
2286 		writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2287 
2288 		tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2289 		tmp &= ~0x3;
2290 		tmp |= 0x1;
2291 		writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2292 	}
2293 
2294 	tmp = readl(phy_mmio + MV5_PHY_MODE);
2295 	tmp &= ~mask;
2296 	tmp |= hpriv->signal[port].pre;
2297 	tmp |= hpriv->signal[port].amps;
2298 	writel(tmp, phy_mmio + MV5_PHY_MODE);
2299 }
2300 
2301 
2302 #undef ZERO
2303 #define ZERO(reg) writel(0, port_mmio + (reg))
2304 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2305 			     unsigned int port)
2306 {
2307 	void __iomem *port_mmio = mv_port_base(mmio, port);
2308 
2309 	mv_reset_channel(hpriv, mmio, port);
2310 
2311 	ZERO(0x028);	/* command */
2312 	writel(0x11f, port_mmio + EDMA_CFG_OFS);
2313 	ZERO(0x004);	/* timer */
2314 	ZERO(0x008);	/* irq err cause */
2315 	ZERO(0x00c);	/* irq err mask */
2316 	ZERO(0x010);	/* rq bah */
2317 	ZERO(0x014);	/* rq inp */
2318 	ZERO(0x018);	/* rq outp */
2319 	ZERO(0x01c);	/* respq bah */
2320 	ZERO(0x024);	/* respq outp */
2321 	ZERO(0x020);	/* respq inp */
2322 	ZERO(0x02c);	/* test control */
2323 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2324 }
2325 #undef ZERO
2326 
2327 #define ZERO(reg) writel(0, hc_mmio + (reg))
2328 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2329 			unsigned int hc)
2330 {
2331 	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2332 	u32 tmp;
2333 
2334 	ZERO(0x00c);
2335 	ZERO(0x010);
2336 	ZERO(0x014);
2337 	ZERO(0x018);
2338 
2339 	tmp = readl(hc_mmio + 0x20);
2340 	tmp &= 0x1c1c1c1c;
2341 	tmp |= 0x03030303;
2342 	writel(tmp, hc_mmio + 0x20);
2343 }
2344 #undef ZERO
2345 
2346 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2347 			unsigned int n_hc)
2348 {
2349 	unsigned int hc, port;
2350 
2351 	for (hc = 0; hc < n_hc; hc++) {
2352 		for (port = 0; port < MV_PORTS_PER_HC; port++)
2353 			mv5_reset_hc_port(hpriv, mmio,
2354 					  (hc * MV_PORTS_PER_HC) + port);
2355 
2356 		mv5_reset_one_hc(hpriv, mmio, hc);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 #undef ZERO
2363 #define ZERO(reg) writel(0, mmio + (reg))
2364 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2365 {
2366 	struct mv_host_priv *hpriv = host->private_data;
2367 	u32 tmp;
2368 
2369 	tmp = readl(mmio + MV_PCI_MODE_OFS);
2370 	tmp &= 0xff00ffff;
2371 	writel(tmp, mmio + MV_PCI_MODE_OFS);
2372 
2373 	ZERO(MV_PCI_DISC_TIMER);
2374 	ZERO(MV_PCI_MSI_TRIGGER);
2375 	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2376 	ZERO(PCI_HC_MAIN_IRQ_MASK_OFS);
2377 	ZERO(MV_PCI_SERR_MASK);
2378 	ZERO(hpriv->irq_cause_ofs);
2379 	ZERO(hpriv->irq_mask_ofs);
2380 	ZERO(MV_PCI_ERR_LOW_ADDRESS);
2381 	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2382 	ZERO(MV_PCI_ERR_ATTRIBUTE);
2383 	ZERO(MV_PCI_ERR_COMMAND);
2384 }
2385 #undef ZERO
2386 
2387 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2388 {
2389 	u32 tmp;
2390 
2391 	mv5_reset_flash(hpriv, mmio);
2392 
2393 	tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2394 	tmp &= 0x3;
2395 	tmp |= (1 << 5) | (1 << 6);
2396 	writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2397 }
2398 
2399 /**
2400  *      mv6_reset_hc - Perform the 6xxx global soft reset
2401  *      @mmio: base address of the HBA
2402  *
2403  *      This routine only applies to 6xxx parts.
2404  *
2405  *      LOCKING:
2406  *      Inherited from caller.
2407  */
2408 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2409 			unsigned int n_hc)
2410 {
2411 	void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2412 	int i, rc = 0;
2413 	u32 t;
2414 
2415 	/* Following procedure defined in PCI "main command and status
2416 	 * register" table.
2417 	 */
2418 	t = readl(reg);
2419 	writel(t | STOP_PCI_MASTER, reg);
2420 
2421 	for (i = 0; i < 1000; i++) {
2422 		udelay(1);
2423 		t = readl(reg);
2424 		if (PCI_MASTER_EMPTY & t)
2425 			break;
2426 	}
2427 	if (!(PCI_MASTER_EMPTY & t)) {
2428 		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2429 		rc = 1;
2430 		goto done;
2431 	}
2432 
2433 	/* set reset */
2434 	i = 5;
2435 	do {
2436 		writel(t | GLOB_SFT_RST, reg);
2437 		t = readl(reg);
2438 		udelay(1);
2439 	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
2440 
2441 	if (!(GLOB_SFT_RST & t)) {
2442 		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2443 		rc = 1;
2444 		goto done;
2445 	}
2446 
2447 	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
2448 	i = 5;
2449 	do {
2450 		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2451 		t = readl(reg);
2452 		udelay(1);
2453 	} while ((GLOB_SFT_RST & t) && (i-- > 0));
2454 
2455 	if (GLOB_SFT_RST & t) {
2456 		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2457 		rc = 1;
2458 	}
2459 done:
2460 	return rc;
2461 }
2462 
2463 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2464 			   void __iomem *mmio)
2465 {
2466 	void __iomem *port_mmio;
2467 	u32 tmp;
2468 
2469 	tmp = readl(mmio + MV_RESET_CFG_OFS);
2470 	if ((tmp & (1 << 0)) == 0) {
2471 		hpriv->signal[idx].amps = 0x7 << 8;
2472 		hpriv->signal[idx].pre = 0x1 << 5;
2473 		return;
2474 	}
2475 
2476 	port_mmio = mv_port_base(mmio, idx);
2477 	tmp = readl(port_mmio + PHY_MODE2);
2478 
2479 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2480 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2481 }
2482 
2483 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2484 {
2485 	writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2486 }
2487 
2488 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2489 			   unsigned int port)
2490 {
2491 	void __iomem *port_mmio = mv_port_base(mmio, port);
2492 
2493 	u32 hp_flags = hpriv->hp_flags;
2494 	int fix_phy_mode2 =
2495 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2496 	int fix_phy_mode4 =
2497 		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2498 	u32 m2, tmp;
2499 
2500 	if (fix_phy_mode2) {
2501 		m2 = readl(port_mmio + PHY_MODE2);
2502 		m2 &= ~(1 << 16);
2503 		m2 |= (1 << 31);
2504 		writel(m2, port_mmio + PHY_MODE2);
2505 
2506 		udelay(200);
2507 
2508 		m2 = readl(port_mmio + PHY_MODE2);
2509 		m2 &= ~((1 << 16) | (1 << 31));
2510 		writel(m2, port_mmio + PHY_MODE2);
2511 
2512 		udelay(200);
2513 	}
2514 
2515 	/* who knows what this magic does */
2516 	tmp = readl(port_mmio + PHY_MODE3);
2517 	tmp &= ~0x7F800000;
2518 	tmp |= 0x2A800000;
2519 	writel(tmp, port_mmio + PHY_MODE3);
2520 
2521 	if (fix_phy_mode4) {
2522 		u32 m4;
2523 
2524 		m4 = readl(port_mmio + PHY_MODE4);
2525 
2526 		if (hp_flags & MV_HP_ERRATA_60X1B2)
2527 			tmp = readl(port_mmio + PHY_MODE3);
2528 
2529 		/* workaround for errata FEr SATA#10 (part 1) */
2530 		m4 = (m4 & ~(1 << 1)) | (1 << 0);
2531 
2532 		writel(m4, port_mmio + PHY_MODE4);
2533 
2534 		if (hp_flags & MV_HP_ERRATA_60X1B2)
2535 			writel(tmp, port_mmio + PHY_MODE3);
2536 	}
2537 
2538 	/* Revert values of pre-emphasis and signal amps to the saved ones */
2539 	m2 = readl(port_mmio + PHY_MODE2);
2540 
2541 	m2 &= ~MV_M2_PREAMP_MASK;
2542 	m2 |= hpriv->signal[port].amps;
2543 	m2 |= hpriv->signal[port].pre;
2544 	m2 &= ~(1 << 16);
2545 
2546 	/* according to mvSata 3.6.1, some IIE values are fixed */
2547 	if (IS_GEN_IIE(hpriv)) {
2548 		m2 &= ~0xC30FF01F;
2549 		m2 |= 0x0000900F;
2550 	}
2551 
2552 	writel(m2, port_mmio + PHY_MODE2);
2553 }
2554 
2555 /* TODO: use the generic LED interface to configure the SATA Presence */
2556 /* & Acitivy LEDs on the board */
2557 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2558 				      void __iomem *mmio)
2559 {
2560 	return;
2561 }
2562 
2563 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2564 			   void __iomem *mmio)
2565 {
2566 	void __iomem *port_mmio;
2567 	u32 tmp;
2568 
2569 	port_mmio = mv_port_base(mmio, idx);
2570 	tmp = readl(port_mmio + PHY_MODE2);
2571 
2572 	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
2573 	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
2574 }
2575 
2576 #undef ZERO
2577 #define ZERO(reg) writel(0, port_mmio + (reg))
2578 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2579 					void __iomem *mmio, unsigned int port)
2580 {
2581 	void __iomem *port_mmio = mv_port_base(mmio, port);
2582 
2583 	mv_reset_channel(hpriv, mmio, port);
2584 
2585 	ZERO(0x028);		/* command */
2586 	writel(0x101f, port_mmio + EDMA_CFG_OFS);
2587 	ZERO(0x004);		/* timer */
2588 	ZERO(0x008);		/* irq err cause */
2589 	ZERO(0x00c);		/* irq err mask */
2590 	ZERO(0x010);		/* rq bah */
2591 	ZERO(0x014);		/* rq inp */
2592 	ZERO(0x018);		/* rq outp */
2593 	ZERO(0x01c);		/* respq bah */
2594 	ZERO(0x024);		/* respq outp */
2595 	ZERO(0x020);		/* respq inp */
2596 	ZERO(0x02c);		/* test control */
2597 	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2598 }
2599 
2600 #undef ZERO
2601 
2602 #define ZERO(reg) writel(0, hc_mmio + (reg))
2603 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2604 				       void __iomem *mmio)
2605 {
2606 	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2607 
2608 	ZERO(0x00c);
2609 	ZERO(0x010);
2610 	ZERO(0x014);
2611 
2612 }
2613 
2614 #undef ZERO
2615 
2616 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2617 				  void __iomem *mmio, unsigned int n_hc)
2618 {
2619 	unsigned int port;
2620 
2621 	for (port = 0; port < hpriv->n_ports; port++)
2622 		mv_soc_reset_hc_port(hpriv, mmio, port);
2623 
2624 	mv_soc_reset_one_hc(hpriv, mmio);
2625 
2626 	return 0;
2627 }
2628 
2629 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2630 				      void __iomem *mmio)
2631 {
2632 	return;
2633 }
2634 
2635 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2636 {
2637 	return;
2638 }
2639 
2640 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2641 {
2642 	u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2643 
2644 	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
2645 	if (want_gen2i)
2646 		ifcfg |= (1 << 7);		/* enable gen2i speed */
2647 	writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2648 }
2649 
2650 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2651 			     unsigned int port_no)
2652 {
2653 	void __iomem *port_mmio = mv_port_base(mmio, port_no);
2654 
2655 	/*
2656 	 * The datasheet warns against setting EDMA_RESET when EDMA is active
2657 	 * (but doesn't say what the problem might be).  So we first try
2658 	 * to disable the EDMA engine before doing the EDMA_RESET operation.
2659 	 */
2660 	mv_stop_edma_engine(port_mmio);
2661 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2662 
2663 	if (!IS_GEN_I(hpriv)) {
2664 		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2665 		mv_setup_ifcfg(port_mmio, 1);
2666 	}
2667 	/*
2668 	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2669 	 * link, and physical layers.  It resets all SATA interface registers
2670 	 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2671 	 */
2672 	writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2673 	udelay(25);	/* allow reset propagation */
2674 	writelfl(0, port_mmio + EDMA_CMD_OFS);
2675 
2676 	hpriv->ops->phy_errata(hpriv, mmio, port_no);
2677 
2678 	if (IS_GEN_I(hpriv))
2679 		mdelay(1);
2680 }
2681 
2682 static void mv_pmp_select(struct ata_port *ap, int pmp)
2683 {
2684 	if (sata_pmp_supported(ap)) {
2685 		void __iomem *port_mmio = mv_ap_base(ap);
2686 		u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2687 		int old = reg & 0xf;
2688 
2689 		if (old != pmp) {
2690 			reg = (reg & ~0xf) | pmp;
2691 			writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2692 		}
2693 	}
2694 }
2695 
2696 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2697 				unsigned long deadline)
2698 {
2699 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2700 	return sata_std_hardreset(link, class, deadline);
2701 }
2702 
2703 static int mv_softreset(struct ata_link *link, unsigned int *class,
2704 				unsigned long deadline)
2705 {
2706 	mv_pmp_select(link->ap, sata_srst_pmp(link));
2707 	return ata_sff_softreset(link, class, deadline);
2708 }
2709 
2710 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2711 			unsigned long deadline)
2712 {
2713 	struct ata_port *ap = link->ap;
2714 	struct mv_host_priv *hpriv = ap->host->private_data;
2715 	struct mv_port_priv *pp = ap->private_data;
2716 	void __iomem *mmio = hpriv->base;
2717 	int rc, attempts = 0, extra = 0;
2718 	u32 sstatus;
2719 	bool online;
2720 
2721 	mv_reset_channel(hpriv, mmio, ap->port_no);
2722 	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2723 
2724 	/* Workaround for errata FEr SATA#10 (part 2) */
2725 	do {
2726 		const unsigned long *timing =
2727 				sata_ehc_deb_timing(&link->eh_context);
2728 
2729 		rc = sata_link_hardreset(link, timing, deadline + extra,
2730 					 &online, NULL);
2731 		if (rc)
2732 			return rc;
2733 		sata_scr_read(link, SCR_STATUS, &sstatus);
2734 		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2735 			/* Force 1.5gb/s link speed and try again */
2736 			mv_setup_ifcfg(mv_ap_base(ap), 0);
2737 			if (time_after(jiffies + HZ, deadline))
2738 				extra = HZ; /* only extend it once, max */
2739 		}
2740 	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2741 
2742 	return rc;
2743 }
2744 
2745 static void mv_eh_freeze(struct ata_port *ap)
2746 {
2747 	struct mv_host_priv *hpriv = ap->host->private_data;
2748 	unsigned int shift, hardport, port = ap->port_no;
2749 	u32 main_irq_mask;
2750 
2751 	/* FIXME: handle coalescing completion events properly */
2752 
2753 	mv_stop_edma(ap);
2754 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2755 
2756 	/* disable assertion of portN err, done events */
2757 	main_irq_mask = readl(hpriv->main_irq_mask_addr);
2758 	main_irq_mask &= ~((DONE_IRQ | ERR_IRQ) << shift);
2759 	writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
2760 }
2761 
2762 static void mv_eh_thaw(struct ata_port *ap)
2763 {
2764 	struct mv_host_priv *hpriv = ap->host->private_data;
2765 	unsigned int shift, hardport, port = ap->port_no;
2766 	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2767 	void __iomem *port_mmio = mv_ap_base(ap);
2768 	u32 main_irq_mask, hc_irq_cause;
2769 
2770 	/* FIXME: handle coalescing completion events properly */
2771 
2772 	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2773 
2774 	/* clear EDMA errors on this port */
2775 	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2776 
2777 	/* clear pending irq events */
2778 	hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2779 	hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2780 	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2781 
2782 	/* enable assertion of portN err, done events */
2783 	main_irq_mask = readl(hpriv->main_irq_mask_addr);
2784 	main_irq_mask |= ((DONE_IRQ | ERR_IRQ) << shift);
2785 	writelfl(main_irq_mask, hpriv->main_irq_mask_addr);
2786 }
2787 
2788 /**
2789  *      mv_port_init - Perform some early initialization on a single port.
2790  *      @port: libata data structure storing shadow register addresses
2791  *      @port_mmio: base address of the port
2792  *
2793  *      Initialize shadow register mmio addresses, clear outstanding
2794  *      interrupts on the port, and unmask interrupts for the future
2795  *      start of the port.
2796  *
2797  *      LOCKING:
2798  *      Inherited from caller.
2799  */
2800 static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
2801 {
2802 	void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2803 	unsigned serr_ofs;
2804 
2805 	/* PIO related setup
2806 	 */
2807 	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2808 	port->error_addr =
2809 		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2810 	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2811 	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2812 	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2813 	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2814 	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2815 	port->status_addr =
2816 		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2817 	/* special case: control/altstatus doesn't have ATA_REG_ address */
2818 	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2819 
2820 	/* unused: */
2821 	port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2822 
2823 	/* Clear any currently outstanding port interrupt conditions */
2824 	serr_ofs = mv_scr_offset(SCR_ERROR);
2825 	writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2826 	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2827 
2828 	/* unmask all non-transient EDMA error interrupts */
2829 	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2830 
2831 	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2832 		readl(port_mmio + EDMA_CFG_OFS),
2833 		readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2834 		readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2835 }
2836 
2837 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2838 {
2839 	struct mv_host_priv *hpriv = host->private_data;
2840 	void __iomem *mmio = hpriv->base;
2841 	u32 reg;
2842 
2843 	if (!HAS_PCI(host) || !IS_PCIE(hpriv))
2844 		return 0;	/* not PCI-X capable */
2845 	reg = readl(mmio + MV_PCI_MODE_OFS);
2846 	if ((reg & MV_PCI_MODE_MASK) == 0)
2847 		return 0;	/* conventional PCI mode */
2848 	return 1;	/* chip is in PCI-X mode */
2849 }
2850 
2851 static int mv_pci_cut_through_okay(struct ata_host *host)
2852 {
2853 	struct mv_host_priv *hpriv = host->private_data;
2854 	void __iomem *mmio = hpriv->base;
2855 	u32 reg;
2856 
2857 	if (!mv_in_pcix_mode(host)) {
2858 		reg = readl(mmio + PCI_COMMAND_OFS);
2859 		if (reg & PCI_COMMAND_MRDTRIG)
2860 			return 0; /* not okay */
2861 	}
2862 	return 1; /* okay */
2863 }
2864 
2865 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2866 {
2867 	struct pci_dev *pdev = to_pci_dev(host->dev);
2868 	struct mv_host_priv *hpriv = host->private_data;
2869 	u32 hp_flags = hpriv->hp_flags;
2870 
2871 	switch (board_idx) {
2872 	case chip_5080:
2873 		hpriv->ops = &mv5xxx_ops;
2874 		hp_flags |= MV_HP_GEN_I;
2875 
2876 		switch (pdev->revision) {
2877 		case 0x1:
2878 			hp_flags |= MV_HP_ERRATA_50XXB0;
2879 			break;
2880 		case 0x3:
2881 			hp_flags |= MV_HP_ERRATA_50XXB2;
2882 			break;
2883 		default:
2884 			dev_printk(KERN_WARNING, &pdev->dev,
2885 			   "Applying 50XXB2 workarounds to unknown rev\n");
2886 			hp_flags |= MV_HP_ERRATA_50XXB2;
2887 			break;
2888 		}
2889 		break;
2890 
2891 	case chip_504x:
2892 	case chip_508x:
2893 		hpriv->ops = &mv5xxx_ops;
2894 		hp_flags |= MV_HP_GEN_I;
2895 
2896 		switch (pdev->revision) {
2897 		case 0x0:
2898 			hp_flags |= MV_HP_ERRATA_50XXB0;
2899 			break;
2900 		case 0x3:
2901 			hp_flags |= MV_HP_ERRATA_50XXB2;
2902 			break;
2903 		default:
2904 			dev_printk(KERN_WARNING, &pdev->dev,
2905 			   "Applying B2 workarounds to unknown rev\n");
2906 			hp_flags |= MV_HP_ERRATA_50XXB2;
2907 			break;
2908 		}
2909 		break;
2910 
2911 	case chip_604x:
2912 	case chip_608x:
2913 		hpriv->ops = &mv6xxx_ops;
2914 		hp_flags |= MV_HP_GEN_II;
2915 
2916 		switch (pdev->revision) {
2917 		case 0x7:
2918 			hp_flags |= MV_HP_ERRATA_60X1B2;
2919 			break;
2920 		case 0x9:
2921 			hp_flags |= MV_HP_ERRATA_60X1C0;
2922 			break;
2923 		default:
2924 			dev_printk(KERN_WARNING, &pdev->dev,
2925 				   "Applying B2 workarounds to unknown rev\n");
2926 			hp_flags |= MV_HP_ERRATA_60X1B2;
2927 			break;
2928 		}
2929 		break;
2930 
2931 	case chip_7042:
2932 		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2933 		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2934 		    (pdev->device == 0x2300 || pdev->device == 0x2310))
2935 		{
2936 			/*
2937 			 * Highpoint RocketRAID PCIe 23xx series cards:
2938 			 *
2939 			 * Unconfigured drives are treated as "Legacy"
2940 			 * by the BIOS, and it overwrites sector 8 with
2941 			 * a "Lgcy" metadata block prior to Linux boot.
2942 			 *
2943 			 * Configured drives (RAID or JBOD) leave sector 8
2944 			 * alone, but instead overwrite a high numbered
2945 			 * sector for the RAID metadata.  This sector can
2946 			 * be determined exactly, by truncating the physical
2947 			 * drive capacity to a nice even GB value.
2948 			 *
2949 			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2950 			 *
2951 			 * Warn the user, lest they think we're just buggy.
2952 			 */
2953 			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2954 				" BIOS CORRUPTS DATA on all attached drives,"
2955 				" regardless of if/how they are configured."
2956 				" BEWARE!\n");
2957 			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2958 				" use sectors 8-9 on \"Legacy\" drives,"
2959 				" and avoid the final two gigabytes on"
2960 				" all RocketRAID BIOS initialized drives.\n");
2961 		}
2962 		/* drop through */
2963 	case chip_6042:
2964 		hpriv->ops = &mv6xxx_ops;
2965 		hp_flags |= MV_HP_GEN_IIE;
2966 		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
2967 			hp_flags |= MV_HP_CUT_THROUGH;
2968 
2969 		switch (pdev->revision) {
2970 		case 0x0:
2971 			hp_flags |= MV_HP_ERRATA_XX42A0;
2972 			break;
2973 		case 0x1:
2974 			hp_flags |= MV_HP_ERRATA_60X1C0;
2975 			break;
2976 		default:
2977 			dev_printk(KERN_WARNING, &pdev->dev,
2978 			   "Applying 60X1C0 workarounds to unknown rev\n");
2979 			hp_flags |= MV_HP_ERRATA_60X1C0;
2980 			break;
2981 		}
2982 		break;
2983 	case chip_soc:
2984 		hpriv->ops = &mv_soc_ops;
2985 		hp_flags |= MV_HP_ERRATA_60X1C0;
2986 		break;
2987 
2988 	default:
2989 		dev_printk(KERN_ERR, host->dev,
2990 			   "BUG: invalid board index %u\n", board_idx);
2991 		return 1;
2992 	}
2993 
2994 	hpriv->hp_flags = hp_flags;
2995 	if (hp_flags & MV_HP_PCIE) {
2996 		hpriv->irq_cause_ofs	= PCIE_IRQ_CAUSE_OFS;
2997 		hpriv->irq_mask_ofs	= PCIE_IRQ_MASK_OFS;
2998 		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
2999 	} else {
3000 		hpriv->irq_cause_ofs	= PCI_IRQ_CAUSE_OFS;
3001 		hpriv->irq_mask_ofs	= PCI_IRQ_MASK_OFS;
3002 		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 /**
3009  *      mv_init_host - Perform some early initialization of the host.
3010  *	@host: ATA host to initialize
3011  *      @board_idx: controller index
3012  *
3013  *      If possible, do an early global reset of the host.  Then do
3014  *      our port init and clear/unmask all/relevant host interrupts.
3015  *
3016  *      LOCKING:
3017  *      Inherited from caller.
3018  */
3019 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3020 {
3021 	int rc = 0, n_hc, port, hc;
3022 	struct mv_host_priv *hpriv = host->private_data;
3023 	void __iomem *mmio = hpriv->base;
3024 
3025 	rc = mv_chip_id(host, board_idx);
3026 	if (rc)
3027 		goto done;
3028 
3029 	if (HAS_PCI(host)) {
3030 		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3031 		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3032 	} else {
3033 		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3034 		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3035 	}
3036 
3037 	/* global interrupt mask: 0 == mask everything */
3038 	writel(0, hpriv->main_irq_mask_addr);
3039 
3040 	n_hc = mv_get_hc_count(host->ports[0]->flags);
3041 
3042 	for (port = 0; port < host->n_ports; port++)
3043 		hpriv->ops->read_preamp(hpriv, port, mmio);
3044 
3045 	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3046 	if (rc)
3047 		goto done;
3048 
3049 	hpriv->ops->reset_flash(hpriv, mmio);
3050 	hpriv->ops->reset_bus(host, mmio);
3051 	hpriv->ops->enable_leds(hpriv, mmio);
3052 
3053 	for (port = 0; port < host->n_ports; port++) {
3054 		struct ata_port *ap = host->ports[port];
3055 		void __iomem *port_mmio = mv_port_base(mmio, port);
3056 
3057 		mv_port_init(&ap->ioaddr, port_mmio);
3058 
3059 #ifdef CONFIG_PCI
3060 		if (HAS_PCI(host)) {
3061 			unsigned int offset = port_mmio - mmio;
3062 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3063 			ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3064 		}
3065 #endif
3066 	}
3067 
3068 	for (hc = 0; hc < n_hc; hc++) {
3069 		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3070 
3071 		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3072 			"(before clear)=0x%08x\n", hc,
3073 			readl(hc_mmio + HC_CFG_OFS),
3074 			readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3075 
3076 		/* Clear any currently outstanding hc interrupt conditions */
3077 		writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3078 	}
3079 
3080 	if (HAS_PCI(host)) {
3081 		/* Clear any currently outstanding host interrupt conditions */
3082 		writelfl(0, mmio + hpriv->irq_cause_ofs);
3083 
3084 		/* and unmask interrupt generation for host regs */
3085 		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3086 		if (IS_GEN_I(hpriv))
3087 			writelfl(~HC_MAIN_MASKED_IRQS_5,
3088 				 hpriv->main_irq_mask_addr);
3089 		else
3090 			writelfl(~HC_MAIN_MASKED_IRQS,
3091 				 hpriv->main_irq_mask_addr);
3092 
3093 		VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
3094 			"PCI int cause/mask=0x%08x/0x%08x\n",
3095 			readl(hpriv->main_irq_cause_addr),
3096 			readl(hpriv->main_irq_mask_addr),
3097 			readl(mmio + hpriv->irq_cause_ofs),
3098 			readl(mmio + hpriv->irq_mask_ofs));
3099 	} else {
3100 		writelfl(~HC_MAIN_MASKED_IRQS_SOC,
3101 			 hpriv->main_irq_mask_addr);
3102 		VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
3103 			readl(hpriv->main_irq_cause_addr),
3104 			readl(hpriv->main_irq_mask_addr));
3105 	}
3106 done:
3107 	return rc;
3108 }
3109 
3110 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3111 {
3112 	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3113 							     MV_CRQB_Q_SZ, 0);
3114 	if (!hpriv->crqb_pool)
3115 		return -ENOMEM;
3116 
3117 	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3118 							     MV_CRPB_Q_SZ, 0);
3119 	if (!hpriv->crpb_pool)
3120 		return -ENOMEM;
3121 
3122 	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3123 							     MV_SG_TBL_SZ, 0);
3124 	if (!hpriv->sg_tbl_pool)
3125 		return -ENOMEM;
3126 
3127 	return 0;
3128 }
3129 
3130 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3131 				 struct mbus_dram_target_info *dram)
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < 4; i++) {
3136 		writel(0, hpriv->base + WINDOW_CTRL(i));
3137 		writel(0, hpriv->base + WINDOW_BASE(i));
3138 	}
3139 
3140 	for (i = 0; i < dram->num_cs; i++) {
3141 		struct mbus_dram_window *cs = dram->cs + i;
3142 
3143 		writel(((cs->size - 1) & 0xffff0000) |
3144 			(cs->mbus_attr << 8) |
3145 			(dram->mbus_dram_target_id << 4) | 1,
3146 			hpriv->base + WINDOW_CTRL(i));
3147 		writel(cs->base, hpriv->base + WINDOW_BASE(i));
3148 	}
3149 }
3150 
3151 /**
3152  *      mv_platform_probe - handle a positive probe of an soc Marvell
3153  *      host
3154  *      @pdev: platform device found
3155  *
3156  *      LOCKING:
3157  *      Inherited from caller.
3158  */
3159 static int mv_platform_probe(struct platform_device *pdev)
3160 {
3161 	static int printed_version;
3162 	const struct mv_sata_platform_data *mv_platform_data;
3163 	const struct ata_port_info *ppi[] =
3164 	    { &mv_port_info[chip_soc], NULL };
3165 	struct ata_host *host;
3166 	struct mv_host_priv *hpriv;
3167 	struct resource *res;
3168 	int n_ports, rc;
3169 
3170 	if (!printed_version++)
3171 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3172 
3173 	/*
3174 	 * Simple resource validation ..
3175 	 */
3176 	if (unlikely(pdev->num_resources != 2)) {
3177 		dev_err(&pdev->dev, "invalid number of resources\n");
3178 		return -EINVAL;
3179 	}
3180 
3181 	/*
3182 	 * Get the register base first
3183 	 */
3184 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3185 	if (res == NULL)
3186 		return -EINVAL;
3187 
3188 	/* allocate host */
3189 	mv_platform_data = pdev->dev.platform_data;
3190 	n_ports = mv_platform_data->n_ports;
3191 
3192 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3193 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3194 
3195 	if (!host || !hpriv)
3196 		return -ENOMEM;
3197 	host->private_data = hpriv;
3198 	hpriv->n_ports = n_ports;
3199 
3200 	host->iomap = NULL;
3201 	hpriv->base = devm_ioremap(&pdev->dev, res->start,
3202 				   res->end - res->start + 1);
3203 	hpriv->base -= MV_SATAHC0_REG_BASE;
3204 
3205 	/*
3206 	 * (Re-)program MBUS remapping windows if we are asked to.
3207 	 */
3208 	if (mv_platform_data->dram != NULL)
3209 		mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3210 
3211 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3212 	if (rc)
3213 		return rc;
3214 
3215 	/* initialize adapter */
3216 	rc = mv_init_host(host, chip_soc);
3217 	if (rc)
3218 		return rc;
3219 
3220 	dev_printk(KERN_INFO, &pdev->dev,
3221 		   "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3222 		   host->n_ports);
3223 
3224 	return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3225 				 IRQF_SHARED, &mv6_sht);
3226 }
3227 
3228 /*
3229  *
3230  *      mv_platform_remove    -       unplug a platform interface
3231  *      @pdev: platform device
3232  *
3233  *      A platform bus SATA device has been unplugged. Perform the needed
3234  *      cleanup. Also called on module unload for any active devices.
3235  */
3236 static int __devexit mv_platform_remove(struct platform_device *pdev)
3237 {
3238 	struct device *dev = &pdev->dev;
3239 	struct ata_host *host = dev_get_drvdata(dev);
3240 
3241 	ata_host_detach(host);
3242 	return 0;
3243 }
3244 
3245 static struct platform_driver mv_platform_driver = {
3246 	.probe			= mv_platform_probe,
3247 	.remove			= __devexit_p(mv_platform_remove),
3248 	.driver			= {
3249 				   .name = DRV_NAME,
3250 				   .owner = THIS_MODULE,
3251 				  },
3252 };
3253 
3254 
3255 #ifdef CONFIG_PCI
3256 static int mv_pci_init_one(struct pci_dev *pdev,
3257 			   const struct pci_device_id *ent);
3258 
3259 
3260 static struct pci_driver mv_pci_driver = {
3261 	.name			= DRV_NAME,
3262 	.id_table		= mv_pci_tbl,
3263 	.probe			= mv_pci_init_one,
3264 	.remove			= ata_pci_remove_one,
3265 };
3266 
3267 /*
3268  * module options
3269  */
3270 static int msi;	      /* Use PCI msi; either zero (off, default) or non-zero */
3271 
3272 
3273 /* move to PCI layer or libata core? */
3274 static int pci_go_64(struct pci_dev *pdev)
3275 {
3276 	int rc;
3277 
3278 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3279 		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3280 		if (rc) {
3281 			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3282 			if (rc) {
3283 				dev_printk(KERN_ERR, &pdev->dev,
3284 					   "64-bit DMA enable failed\n");
3285 				return rc;
3286 			}
3287 		}
3288 	} else {
3289 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3290 		if (rc) {
3291 			dev_printk(KERN_ERR, &pdev->dev,
3292 				   "32-bit DMA enable failed\n");
3293 			return rc;
3294 		}
3295 		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3296 		if (rc) {
3297 			dev_printk(KERN_ERR, &pdev->dev,
3298 				   "32-bit consistent DMA enable failed\n");
3299 			return rc;
3300 		}
3301 	}
3302 
3303 	return rc;
3304 }
3305 
3306 /**
3307  *      mv_print_info - Dump key info to kernel log for perusal.
3308  *      @host: ATA host to print info about
3309  *
3310  *      FIXME: complete this.
3311  *
3312  *      LOCKING:
3313  *      Inherited from caller.
3314  */
3315 static void mv_print_info(struct ata_host *host)
3316 {
3317 	struct pci_dev *pdev = to_pci_dev(host->dev);
3318 	struct mv_host_priv *hpriv = host->private_data;
3319 	u8 scc;
3320 	const char *scc_s, *gen;
3321 
3322 	/* Use this to determine the HW stepping of the chip so we know
3323 	 * what errata to workaround
3324 	 */
3325 	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3326 	if (scc == 0)
3327 		scc_s = "SCSI";
3328 	else if (scc == 0x01)
3329 		scc_s = "RAID";
3330 	else
3331 		scc_s = "?";
3332 
3333 	if (IS_GEN_I(hpriv))
3334 		gen = "I";
3335 	else if (IS_GEN_II(hpriv))
3336 		gen = "II";
3337 	else if (IS_GEN_IIE(hpriv))
3338 		gen = "IIE";
3339 	else
3340 		gen = "?";
3341 
3342 	dev_printk(KERN_INFO, &pdev->dev,
3343 	       "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3344 	       gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3345 	       scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3346 }
3347 
3348 /**
3349  *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
3350  *      @pdev: PCI device found
3351  *      @ent: PCI device ID entry for the matched host
3352  *
3353  *      LOCKING:
3354  *      Inherited from caller.
3355  */
3356 static int mv_pci_init_one(struct pci_dev *pdev,
3357 			   const struct pci_device_id *ent)
3358 {
3359 	static int printed_version;
3360 	unsigned int board_idx = (unsigned int)ent->driver_data;
3361 	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3362 	struct ata_host *host;
3363 	struct mv_host_priv *hpriv;
3364 	int n_ports, rc;
3365 
3366 	if (!printed_version++)
3367 		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3368 
3369 	/* allocate host */
3370 	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3371 
3372 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3373 	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3374 	if (!host || !hpriv)
3375 		return -ENOMEM;
3376 	host->private_data = hpriv;
3377 	hpriv->n_ports = n_ports;
3378 
3379 	/* acquire resources */
3380 	rc = pcim_enable_device(pdev);
3381 	if (rc)
3382 		return rc;
3383 
3384 	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3385 	if (rc == -EBUSY)
3386 		pcim_pin_device(pdev);
3387 	if (rc)
3388 		return rc;
3389 	host->iomap = pcim_iomap_table(pdev);
3390 	hpriv->base = host->iomap[MV_PRIMARY_BAR];
3391 
3392 	rc = pci_go_64(pdev);
3393 	if (rc)
3394 		return rc;
3395 
3396 	rc = mv_create_dma_pools(hpriv, &pdev->dev);
3397 	if (rc)
3398 		return rc;
3399 
3400 	/* initialize adapter */
3401 	rc = mv_init_host(host, board_idx);
3402 	if (rc)
3403 		return rc;
3404 
3405 	/* Enable interrupts */
3406 	if (msi && pci_enable_msi(pdev))
3407 		pci_intx(pdev, 1);
3408 
3409 	mv_dump_pci_cfg(pdev, 0x68);
3410 	mv_print_info(host);
3411 
3412 	pci_set_master(pdev);
3413 	pci_try_set_mwi(pdev);
3414 	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3415 				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3416 }
3417 #endif
3418 
3419 static int mv_platform_probe(struct platform_device *pdev);
3420 static int __devexit mv_platform_remove(struct platform_device *pdev);
3421 
3422 static int __init mv_init(void)
3423 {
3424 	int rc = -ENODEV;
3425 #ifdef CONFIG_PCI
3426 	rc = pci_register_driver(&mv_pci_driver);
3427 	if (rc < 0)
3428 		return rc;
3429 #endif
3430 	rc = platform_driver_register(&mv_platform_driver);
3431 
3432 #ifdef CONFIG_PCI
3433 	if (rc < 0)
3434 		pci_unregister_driver(&mv_pci_driver);
3435 #endif
3436 	return rc;
3437 }
3438 
3439 static void __exit mv_exit(void)
3440 {
3441 #ifdef CONFIG_PCI
3442 	pci_unregister_driver(&mv_pci_driver);
3443 #endif
3444 	platform_driver_unregister(&mv_platform_driver);
3445 }
3446 
3447 MODULE_AUTHOR("Brett Russ");
3448 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3449 MODULE_LICENSE("GPL");
3450 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3451 MODULE_VERSION(DRV_VERSION);
3452 MODULE_ALIAS("platform:" DRV_NAME);
3453 
3454 #ifdef CONFIG_PCI
3455 module_param(msi, int, 0444);
3456 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3457 #endif
3458 
3459 module_init(mv_init);
3460 module_exit(mv_exit);
3461