1 /* 2 * Calxeda Highbank AHCI SATA platform driver 3 * Copyright 2012 Calxeda, Inc. 4 * 5 * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <linux/kernel.h> 20 #include <linux/gfp.h> 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/err.h> 24 #include <linux/io.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/of_device.h> 28 #include <linux/of_address.h> 29 #include <linux/platform_device.h> 30 #include <linux/libata.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/export.h> 34 #include <linux/gpio.h> 35 #include <linux/of_gpio.h> 36 37 #include "ahci.h" 38 39 #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f)) 40 #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2) 41 #define SERDES_CR_CTL 0x80a0 42 #define SERDES_CR_ADDR 0x80a1 43 #define SERDES_CR_DATA 0x80a2 44 #define CR_BUSY 0x0001 45 #define CR_START 0x0001 46 #define CR_WR_RDN 0x0002 47 #define CPHY_TX_INPUT_STS 0x2001 48 #define CPHY_RX_INPUT_STS 0x2002 49 #define CPHY_SATA_TX_OVERRIDE 0x8000 50 #define CPHY_SATA_RX_OVERRIDE 0x4000 51 #define CPHY_TX_OVERRIDE 0x2004 52 #define CPHY_RX_OVERRIDE 0x2005 53 #define SPHY_LANE 0x100 54 #define SPHY_HALF_RATE 0x0001 55 #define CPHY_SATA_DPLL_MODE 0x0700 56 #define CPHY_SATA_DPLL_SHIFT 8 57 #define CPHY_SATA_DPLL_RESET (1 << 11) 58 #define CPHY_SATA_TX_ATTEN 0x1c00 59 #define CPHY_SATA_TX_ATTEN_SHIFT 10 60 #define CPHY_PHY_COUNT 6 61 #define CPHY_LANE_COUNT 4 62 #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT) 63 64 static DEFINE_SPINLOCK(cphy_lock); 65 /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based 66 * sata ports to their phys and then to their lanes within the phys 67 */ 68 struct phy_lane_info { 69 void __iomem *phy_base; 70 u8 lane_mapping; 71 u8 phy_devs; 72 u8 tx_atten; 73 }; 74 static struct phy_lane_info port_data[CPHY_PORT_COUNT]; 75 76 static DEFINE_SPINLOCK(sgpio_lock); 77 #define SCLOCK 0 78 #define SLOAD 1 79 #define SDATA 2 80 #define SGPIO_PINS 3 81 #define SGPIO_PORTS 8 82 83 struct ecx_plat_data { 84 u32 n_ports; 85 /* number of extra clocks that the SGPIO PIC controller expects */ 86 u32 pre_clocks; 87 u32 post_clocks; 88 unsigned sgpio_gpio[SGPIO_PINS]; 89 u32 sgpio_pattern; 90 u32 port_to_sgpio[SGPIO_PORTS]; 91 }; 92 93 #define SGPIO_SIGNALS 3 94 #define ECX_ACTIVITY_BITS 0x300000 95 #define ECX_ACTIVITY_SHIFT 0 96 #define ECX_LOCATE_BITS 0x80000 97 #define ECX_LOCATE_SHIFT 1 98 #define ECX_FAULT_BITS 0x400000 99 #define ECX_FAULT_SHIFT 2 100 static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port, 101 u32 shift) 102 { 103 return 1 << (3 * pdata->port_to_sgpio[port] + shift); 104 } 105 106 static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state) 107 { 108 if (state & ECX_ACTIVITY_BITS) 109 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 110 ECX_ACTIVITY_SHIFT); 111 else 112 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 113 ECX_ACTIVITY_SHIFT); 114 if (state & ECX_LOCATE_BITS) 115 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 116 ECX_LOCATE_SHIFT); 117 else 118 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 119 ECX_LOCATE_SHIFT); 120 if (state & ECX_FAULT_BITS) 121 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 122 ECX_FAULT_SHIFT); 123 else 124 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 125 ECX_FAULT_SHIFT); 126 } 127 128 /* 129 * Tell the LED controller that the signal has changed by raising the clock 130 * line for 50 uS and then lowering it for 50 uS. 131 */ 132 static void ecx_led_cycle_clock(struct ecx_plat_data *pdata) 133 { 134 gpio_set_value(pdata->sgpio_gpio[SCLOCK], 1); 135 udelay(50); 136 gpio_set_value(pdata->sgpio_gpio[SCLOCK], 0); 137 udelay(50); 138 } 139 140 static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state, 141 ssize_t size) 142 { 143 struct ahci_host_priv *hpriv = ap->host->private_data; 144 struct ecx_plat_data *pdata = hpriv->plat_data; 145 struct ahci_port_priv *pp = ap->private_data; 146 unsigned long flags; 147 int pmp, i; 148 struct ahci_em_priv *emp; 149 u32 sgpio_out; 150 151 /* get the slot number from the message */ 152 pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8; 153 if (pmp < EM_MAX_SLOTS) 154 emp = &pp->em_priv[pmp]; 155 else 156 return -EINVAL; 157 158 if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED)) 159 return size; 160 161 spin_lock_irqsave(&sgpio_lock, flags); 162 ecx_parse_sgpio(pdata, ap->port_no, state); 163 sgpio_out = pdata->sgpio_pattern; 164 for (i = 0; i < pdata->pre_clocks; i++) 165 ecx_led_cycle_clock(pdata); 166 167 gpio_set_value(pdata->sgpio_gpio[SLOAD], 1); 168 ecx_led_cycle_clock(pdata); 169 gpio_set_value(pdata->sgpio_gpio[SLOAD], 0); 170 /* 171 * bit-bang out the SGPIO pattern, by consuming a bit and then 172 * clocking it out. 173 */ 174 for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) { 175 gpio_set_value(pdata->sgpio_gpio[SDATA], sgpio_out & 1); 176 sgpio_out >>= 1; 177 ecx_led_cycle_clock(pdata); 178 } 179 for (i = 0; i < pdata->post_clocks; i++) 180 ecx_led_cycle_clock(pdata); 181 182 /* save off new led state for port/slot */ 183 emp->led_state = state; 184 185 spin_unlock_irqrestore(&sgpio_lock, flags); 186 return size; 187 } 188 189 static void highbank_set_em_messages(struct device *dev, 190 struct ahci_host_priv *hpriv, 191 struct ata_port_info *pi) 192 { 193 struct device_node *np = dev->of_node; 194 struct ecx_plat_data *pdata = hpriv->plat_data; 195 int i; 196 int err; 197 198 for (i = 0; i < SGPIO_PINS; i++) { 199 err = of_get_named_gpio(np, "calxeda,sgpio-gpio", i); 200 if (IS_ERR_VALUE(err)) 201 return; 202 203 pdata->sgpio_gpio[i] = err; 204 err = gpio_request(pdata->sgpio_gpio[i], "CX SGPIO"); 205 if (err) { 206 pr_err("sata_highbank gpio_request %d failed: %d\n", 207 i, err); 208 return; 209 } 210 gpio_direction_output(pdata->sgpio_gpio[i], 1); 211 } 212 of_property_read_u32_array(np, "calxeda,led-order", 213 pdata->port_to_sgpio, 214 pdata->n_ports); 215 if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks)) 216 pdata->pre_clocks = 0; 217 if (of_property_read_u32(np, "calxeda,post-clocks", 218 &pdata->post_clocks)) 219 pdata->post_clocks = 0; 220 221 /* store em_loc */ 222 hpriv->em_loc = 0; 223 hpriv->em_buf_sz = 4; 224 hpriv->em_msg_type = EM_MSG_TYPE_LED; 225 pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY; 226 } 227 228 static u32 __combo_phy_reg_read(u8 sata_port, u32 addr) 229 { 230 u32 data; 231 u8 dev = port_data[sata_port].phy_devs; 232 spin_lock(&cphy_lock); 233 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); 234 data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr)); 235 spin_unlock(&cphy_lock); 236 return data; 237 } 238 239 static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data) 240 { 241 u8 dev = port_data[sata_port].phy_devs; 242 spin_lock(&cphy_lock); 243 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); 244 writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr)); 245 spin_unlock(&cphy_lock); 246 } 247 248 static void combo_phy_wait_for_ready(u8 sata_port) 249 { 250 while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY) 251 udelay(5); 252 } 253 254 static u32 combo_phy_read(u8 sata_port, u32 addr) 255 { 256 combo_phy_wait_for_ready(sata_port); 257 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); 258 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START); 259 combo_phy_wait_for_ready(sata_port); 260 return __combo_phy_reg_read(sata_port, SERDES_CR_DATA); 261 } 262 263 static void combo_phy_write(u8 sata_port, u32 addr, u32 data) 264 { 265 combo_phy_wait_for_ready(sata_port); 266 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); 267 __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data); 268 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START); 269 } 270 271 static void highbank_cphy_disable_overrides(u8 sata_port) 272 { 273 u8 lane = port_data[sata_port].lane_mapping; 274 u32 tmp; 275 if (unlikely(port_data[sata_port].phy_base == NULL)) 276 return; 277 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); 278 tmp &= ~CPHY_SATA_RX_OVERRIDE; 279 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 280 } 281 282 static void cphy_override_tx_attenuation(u8 sata_port, u32 val) 283 { 284 u8 lane = port_data[sata_port].lane_mapping; 285 u32 tmp; 286 287 if (val & 0x8) 288 return; 289 290 tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE); 291 tmp &= ~CPHY_SATA_TX_OVERRIDE; 292 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 293 294 tmp |= CPHY_SATA_TX_OVERRIDE; 295 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 296 297 tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN; 298 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 299 } 300 301 static void cphy_override_rx_mode(u8 sata_port, u32 val) 302 { 303 u8 lane = port_data[sata_port].lane_mapping; 304 u32 tmp; 305 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); 306 tmp &= ~CPHY_SATA_RX_OVERRIDE; 307 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 308 309 tmp |= CPHY_SATA_RX_OVERRIDE; 310 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 311 312 tmp &= ~CPHY_SATA_DPLL_MODE; 313 tmp |= val << CPHY_SATA_DPLL_SHIFT; 314 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 315 316 tmp |= CPHY_SATA_DPLL_RESET; 317 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 318 319 tmp &= ~CPHY_SATA_DPLL_RESET; 320 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 321 322 msleep(15); 323 } 324 325 static void highbank_cphy_override_lane(u8 sata_port) 326 { 327 u8 lane = port_data[sata_port].lane_mapping; 328 u32 tmp, k = 0; 329 330 if (unlikely(port_data[sata_port].phy_base == NULL)) 331 return; 332 do { 333 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + 334 lane * SPHY_LANE); 335 } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000)); 336 cphy_override_rx_mode(sata_port, 3); 337 cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten); 338 } 339 340 static int highbank_initialize_phys(struct device *dev, void __iomem *addr) 341 { 342 struct device_node *sata_node = dev->of_node; 343 int phy_count = 0, phy, port = 0, i; 344 void __iomem *cphy_base[CPHY_PHY_COUNT] = {}; 345 struct device_node *phy_nodes[CPHY_PHY_COUNT] = {}; 346 u32 tx_atten[CPHY_PORT_COUNT] = {}; 347 348 memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT); 349 350 do { 351 u32 tmp; 352 struct of_phandle_args phy_data; 353 if (of_parse_phandle_with_args(sata_node, 354 "calxeda,port-phys", "#phy-cells", 355 port, &phy_data)) 356 break; 357 for (phy = 0; phy < phy_count; phy++) { 358 if (phy_nodes[phy] == phy_data.np) 359 break; 360 } 361 if (phy_nodes[phy] == NULL) { 362 phy_nodes[phy] = phy_data.np; 363 cphy_base[phy] = of_iomap(phy_nodes[phy], 0); 364 if (cphy_base[phy] == NULL) { 365 return 0; 366 } 367 phy_count += 1; 368 } 369 port_data[port].lane_mapping = phy_data.args[0]; 370 of_property_read_u32(phy_nodes[phy], "phydev", &tmp); 371 port_data[port].phy_devs = tmp; 372 port_data[port].phy_base = cphy_base[phy]; 373 of_node_put(phy_data.np); 374 port += 1; 375 } while (port < CPHY_PORT_COUNT); 376 of_property_read_u32_array(sata_node, "calxeda,tx-atten", 377 tx_atten, port); 378 for (i = 0; i < port; i++) 379 port_data[i].tx_atten = (u8) tx_atten[i]; 380 return 0; 381 } 382 383 /* 384 * The Calxeda SATA phy intermittently fails to bring up a link with Gen3 385 * Retrying the phy hard reset can work around the issue, but the drive 386 * may fail again. In less than 150 out of 15000 test runs, it took more 387 * than 10 tries for the link to be established (but never more than 35). 388 * Triple the maximum observed retry count to provide plenty of margin for 389 * rare events and to guarantee that the link is established. 390 * 391 * Also, the default 2 second time-out on a failed drive is too long in 392 * this situation. The uboot implementation of the same driver function 393 * uses a much shorter time-out period and never experiences a time out 394 * issue. Reducing the time-out to 500ms improves the responsiveness. 395 * The other timing constants were kept the same as the stock AHCI driver. 396 * This change was also tested 15000 times on 24 drives and none of them 397 * experienced a time out. 398 */ 399 static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class, 400 unsigned long deadline) 401 { 402 static const unsigned long timing[] = { 5, 100, 500}; 403 struct ata_port *ap = link->ap; 404 struct ahci_port_priv *pp = ap->private_data; 405 struct ahci_host_priv *hpriv = ap->host->private_data; 406 u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG; 407 struct ata_taskfile tf; 408 bool online; 409 u32 sstatus; 410 int rc; 411 int retry = 100; 412 413 ahci_stop_engine(ap); 414 415 /* clear D2H reception area to properly wait for D2H FIS */ 416 ata_tf_init(link->device, &tf); 417 tf.command = ATA_BUSY; 418 ata_tf_to_fis(&tf, 0, 0, d2h_fis); 419 420 do { 421 highbank_cphy_disable_overrides(link->ap->port_no); 422 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 423 highbank_cphy_override_lane(link->ap->port_no); 424 425 /* If the status is 1, we are connected, but the link did not 426 * come up. So retry resetting the link again. 427 */ 428 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 429 break; 430 if (!(sstatus & 0x3)) 431 break; 432 } while (!online && retry--); 433 434 hpriv->start_engine(ap); 435 436 if (online) 437 *class = ahci_dev_classify(ap); 438 439 return rc; 440 } 441 442 static struct ata_port_operations ahci_highbank_ops = { 443 .inherits = &ahci_ops, 444 .hardreset = ahci_highbank_hardreset, 445 .transmit_led_message = ecx_transmit_led_message, 446 }; 447 448 static const struct ata_port_info ahci_highbank_port_info = { 449 .flags = AHCI_FLAG_COMMON, 450 .pio_mask = ATA_PIO4, 451 .udma_mask = ATA_UDMA6, 452 .port_ops = &ahci_highbank_ops, 453 }; 454 455 static struct scsi_host_template ahci_highbank_platform_sht = { 456 AHCI_SHT("sata_highbank"), 457 }; 458 459 static const struct of_device_id ahci_of_match[] = { 460 { .compatible = "calxeda,hb-ahci" }, 461 {}, 462 }; 463 MODULE_DEVICE_TABLE(of, ahci_of_match); 464 465 static int ahci_highbank_probe(struct platform_device *pdev) 466 { 467 struct device *dev = &pdev->dev; 468 struct ahci_host_priv *hpriv; 469 struct ecx_plat_data *pdata; 470 struct ata_host *host; 471 struct resource *mem; 472 int irq; 473 int i; 474 int rc; 475 u32 n_ports; 476 struct ata_port_info pi = ahci_highbank_port_info; 477 const struct ata_port_info *ppi[] = { &pi, NULL }; 478 479 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 480 if (!mem) { 481 dev_err(dev, "no mmio space\n"); 482 return -EINVAL; 483 } 484 485 irq = platform_get_irq(pdev, 0); 486 if (irq <= 0) { 487 dev_err(dev, "no irq\n"); 488 return -EINVAL; 489 } 490 491 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); 492 if (!hpriv) { 493 dev_err(dev, "can't alloc ahci_host_priv\n"); 494 return -ENOMEM; 495 } 496 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 497 if (!pdata) { 498 dev_err(dev, "can't alloc ecx_plat_data\n"); 499 return -ENOMEM; 500 } 501 502 hpriv->irq = irq; 503 hpriv->flags |= (unsigned long)pi.private_data; 504 505 hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); 506 if (!hpriv->mmio) { 507 dev_err(dev, "can't map %pR\n", mem); 508 return -ENOMEM; 509 } 510 511 rc = highbank_initialize_phys(dev, hpriv->mmio); 512 if (rc) 513 return rc; 514 515 516 ahci_save_initial_config(dev, hpriv); 517 518 /* prepare host */ 519 if (hpriv->cap & HOST_CAP_NCQ) 520 pi.flags |= ATA_FLAG_NCQ; 521 522 if (hpriv->cap & HOST_CAP_PMP) 523 pi.flags |= ATA_FLAG_PMP; 524 525 if (hpriv->cap & HOST_CAP_64) 526 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 527 528 /* CAP.NP sometimes indicate the index of the last enabled 529 * port, at other times, that of the last possible port, so 530 * determining the maximum port number requires looking at 531 * both CAP.NP and port_map. 532 */ 533 n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map)); 534 535 pdata->n_ports = n_ports; 536 hpriv->plat_data = pdata; 537 highbank_set_em_messages(dev, hpriv, &pi); 538 539 host = ata_host_alloc_pinfo(dev, ppi, n_ports); 540 if (!host) { 541 rc = -ENOMEM; 542 goto err0; 543 } 544 545 host->private_data = hpriv; 546 547 if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss) 548 host->flags |= ATA_HOST_PARALLEL_SCAN; 549 550 for (i = 0; i < host->n_ports; i++) { 551 struct ata_port *ap = host->ports[i]; 552 553 ata_port_desc(ap, "mmio %pR", mem); 554 ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80); 555 556 /* set enclosure management message type */ 557 if (ap->flags & ATA_FLAG_EM) 558 ap->em_message_type = hpriv->em_msg_type; 559 560 /* disabled/not-implemented port */ 561 if (!(hpriv->port_map & (1 << i))) 562 ap->ops = &ata_dummy_port_ops; 563 } 564 565 rc = ahci_reset_controller(host); 566 if (rc) 567 goto err0; 568 569 ahci_init_controller(host); 570 ahci_print_info(host, "platform"); 571 572 rc = ahci_host_activate(host, &ahci_highbank_platform_sht); 573 if (rc) 574 goto err0; 575 576 return 0; 577 err0: 578 return rc; 579 } 580 581 #ifdef CONFIG_PM_SLEEP 582 static int ahci_highbank_suspend(struct device *dev) 583 { 584 struct ata_host *host = dev_get_drvdata(dev); 585 struct ahci_host_priv *hpriv = host->private_data; 586 void __iomem *mmio = hpriv->mmio; 587 u32 ctl; 588 int rc; 589 590 if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) { 591 dev_err(dev, "firmware update required for suspend/resume\n"); 592 return -EIO; 593 } 594 595 /* 596 * AHCI spec rev1.1 section 8.3.3: 597 * Software must disable interrupts prior to requesting a 598 * transition of the HBA to D3 state. 599 */ 600 ctl = readl(mmio + HOST_CTL); 601 ctl &= ~HOST_IRQ_EN; 602 writel(ctl, mmio + HOST_CTL); 603 readl(mmio + HOST_CTL); /* flush */ 604 605 rc = ata_host_suspend(host, PMSG_SUSPEND); 606 if (rc) 607 return rc; 608 609 return 0; 610 } 611 612 static int ahci_highbank_resume(struct device *dev) 613 { 614 struct ata_host *host = dev_get_drvdata(dev); 615 int rc; 616 617 if (dev->power.power_state.event == PM_EVENT_SUSPEND) { 618 rc = ahci_reset_controller(host); 619 if (rc) 620 return rc; 621 622 ahci_init_controller(host); 623 } 624 625 ata_host_resume(host); 626 627 return 0; 628 } 629 #endif 630 631 static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops, 632 ahci_highbank_suspend, ahci_highbank_resume); 633 634 static struct platform_driver ahci_highbank_driver = { 635 .remove = ata_platform_remove_one, 636 .driver = { 637 .name = "highbank-ahci", 638 .of_match_table = ahci_of_match, 639 .pm = &ahci_highbank_pm_ops, 640 }, 641 .probe = ahci_highbank_probe, 642 }; 643 644 module_platform_driver(ahci_highbank_driver); 645 646 MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver"); 647 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>"); 648 MODULE_LICENSE("GPL"); 649 MODULE_ALIAS("sata:highbank"); 650