1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Calxeda Highbank AHCI SATA platform driver 4 * Copyright 2012 Calxeda, Inc. 5 * 6 * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov 7 */ 8 #include <linux/kernel.h> 9 #include <linux/gfp.h> 10 #include <linux/module.h> 11 #include <linux/types.h> 12 #include <linux/err.h> 13 #include <linux/io.h> 14 #include <linux/spinlock.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/platform_device.h> 19 #include <linux/libata.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include <linux/export.h> 23 #include <linux/gpio/consumer.h> 24 25 #include "ahci.h" 26 27 #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f)) 28 #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2) 29 #define SERDES_CR_CTL 0x80a0 30 #define SERDES_CR_ADDR 0x80a1 31 #define SERDES_CR_DATA 0x80a2 32 #define CR_BUSY 0x0001 33 #define CR_START 0x0001 34 #define CR_WR_RDN 0x0002 35 #define CPHY_TX_INPUT_STS 0x2001 36 #define CPHY_RX_INPUT_STS 0x2002 37 #define CPHY_SATA_TX_OVERRIDE 0x8000 38 #define CPHY_SATA_RX_OVERRIDE 0x4000 39 #define CPHY_TX_OVERRIDE 0x2004 40 #define CPHY_RX_OVERRIDE 0x2005 41 #define SPHY_LANE 0x100 42 #define SPHY_HALF_RATE 0x0001 43 #define CPHY_SATA_DPLL_MODE 0x0700 44 #define CPHY_SATA_DPLL_SHIFT 8 45 #define CPHY_SATA_DPLL_RESET (1 << 11) 46 #define CPHY_SATA_TX_ATTEN 0x1c00 47 #define CPHY_SATA_TX_ATTEN_SHIFT 10 48 #define CPHY_PHY_COUNT 6 49 #define CPHY_LANE_COUNT 4 50 #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT) 51 52 static DEFINE_SPINLOCK(cphy_lock); 53 /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based 54 * sata ports to their phys and then to their lanes within the phys 55 */ 56 struct phy_lane_info { 57 void __iomem *phy_base; 58 u8 lane_mapping; 59 u8 phy_devs; 60 u8 tx_atten; 61 }; 62 static struct phy_lane_info port_data[CPHY_PORT_COUNT]; 63 64 static DEFINE_SPINLOCK(sgpio_lock); 65 #define SCLOCK 0 66 #define SLOAD 1 67 #define SDATA 2 68 #define SGPIO_PINS 3 69 #define SGPIO_PORTS 8 70 71 struct ecx_plat_data { 72 u32 n_ports; 73 /* number of extra clocks that the SGPIO PIC controller expects */ 74 u32 pre_clocks; 75 u32 post_clocks; 76 struct gpio_desc *sgpio_gpiod[SGPIO_PINS]; 77 u32 sgpio_pattern; 78 u32 port_to_sgpio[SGPIO_PORTS]; 79 }; 80 81 #define SGPIO_SIGNALS 3 82 #define ECX_ACTIVITY_BITS 0x300000 83 #define ECX_ACTIVITY_SHIFT 0 84 #define ECX_LOCATE_BITS 0x80000 85 #define ECX_LOCATE_SHIFT 1 86 #define ECX_FAULT_BITS 0x400000 87 #define ECX_FAULT_SHIFT 2 88 static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port, 89 u32 shift) 90 { 91 return 1 << (3 * pdata->port_to_sgpio[port] + shift); 92 } 93 94 static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state) 95 { 96 if (state & ECX_ACTIVITY_BITS) 97 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 98 ECX_ACTIVITY_SHIFT); 99 else 100 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 101 ECX_ACTIVITY_SHIFT); 102 if (state & ECX_LOCATE_BITS) 103 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 104 ECX_LOCATE_SHIFT); 105 else 106 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 107 ECX_LOCATE_SHIFT); 108 if (state & ECX_FAULT_BITS) 109 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, 110 ECX_FAULT_SHIFT); 111 else 112 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, 113 ECX_FAULT_SHIFT); 114 } 115 116 /* 117 * Tell the LED controller that the signal has changed by raising the clock 118 * line for 50 uS and then lowering it for 50 uS. 119 */ 120 static void ecx_led_cycle_clock(struct ecx_plat_data *pdata) 121 { 122 gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1); 123 udelay(50); 124 gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0); 125 udelay(50); 126 } 127 128 static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state, 129 ssize_t size) 130 { 131 struct ahci_host_priv *hpriv = ap->host->private_data; 132 struct ecx_plat_data *pdata = hpriv->plat_data; 133 struct ahci_port_priv *pp = ap->private_data; 134 unsigned long flags; 135 int pmp, i; 136 struct ahci_em_priv *emp; 137 u32 sgpio_out; 138 139 /* get the slot number from the message */ 140 pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8; 141 if (pmp < EM_MAX_SLOTS) 142 emp = &pp->em_priv[pmp]; 143 else 144 return -EINVAL; 145 146 if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED)) 147 return size; 148 149 spin_lock_irqsave(&sgpio_lock, flags); 150 ecx_parse_sgpio(pdata, ap->port_no, state); 151 sgpio_out = pdata->sgpio_pattern; 152 for (i = 0; i < pdata->pre_clocks; i++) 153 ecx_led_cycle_clock(pdata); 154 155 gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1); 156 ecx_led_cycle_clock(pdata); 157 gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0); 158 /* 159 * bit-bang out the SGPIO pattern, by consuming a bit and then 160 * clocking it out. 161 */ 162 for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) { 163 gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1); 164 sgpio_out >>= 1; 165 ecx_led_cycle_clock(pdata); 166 } 167 for (i = 0; i < pdata->post_clocks; i++) 168 ecx_led_cycle_clock(pdata); 169 170 /* save off new led state for port/slot */ 171 emp->led_state = state; 172 173 spin_unlock_irqrestore(&sgpio_lock, flags); 174 return size; 175 } 176 177 static void highbank_set_em_messages(struct device *dev, 178 struct ahci_host_priv *hpriv, 179 struct ata_port_info *pi) 180 { 181 struct device_node *np = dev->of_node; 182 struct ecx_plat_data *pdata = hpriv->plat_data; 183 int i; 184 185 for (i = 0; i < SGPIO_PINS; i++) { 186 struct gpio_desc *gpiod; 187 188 gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i, 189 GPIOD_OUT_HIGH); 190 if (IS_ERR(gpiod)) { 191 dev_err(dev, "failed to get GPIO %d\n", i); 192 continue; 193 } 194 gpiod_set_consumer_name(gpiod, "CX SGPIO"); 195 196 pdata->sgpio_gpiod[i] = gpiod; 197 } 198 of_property_read_u32_array(np, "calxeda,led-order", 199 pdata->port_to_sgpio, 200 pdata->n_ports); 201 if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks)) 202 pdata->pre_clocks = 0; 203 if (of_property_read_u32(np, "calxeda,post-clocks", 204 &pdata->post_clocks)) 205 pdata->post_clocks = 0; 206 207 /* store em_loc */ 208 hpriv->em_loc = 0; 209 hpriv->em_buf_sz = 4; 210 hpriv->em_msg_type = EM_MSG_TYPE_LED; 211 pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY; 212 } 213 214 static u32 __combo_phy_reg_read(u8 sata_port, u32 addr) 215 { 216 u32 data; 217 u8 dev = port_data[sata_port].phy_devs; 218 spin_lock(&cphy_lock); 219 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); 220 data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr)); 221 spin_unlock(&cphy_lock); 222 return data; 223 } 224 225 static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data) 226 { 227 u8 dev = port_data[sata_port].phy_devs; 228 spin_lock(&cphy_lock); 229 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); 230 writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr)); 231 spin_unlock(&cphy_lock); 232 } 233 234 static void combo_phy_wait_for_ready(u8 sata_port) 235 { 236 while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY) 237 udelay(5); 238 } 239 240 static u32 combo_phy_read(u8 sata_port, u32 addr) 241 { 242 combo_phy_wait_for_ready(sata_port); 243 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); 244 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START); 245 combo_phy_wait_for_ready(sata_port); 246 return __combo_phy_reg_read(sata_port, SERDES_CR_DATA); 247 } 248 249 static void combo_phy_write(u8 sata_port, u32 addr, u32 data) 250 { 251 combo_phy_wait_for_ready(sata_port); 252 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); 253 __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data); 254 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START); 255 } 256 257 static void highbank_cphy_disable_overrides(u8 sata_port) 258 { 259 u8 lane = port_data[sata_port].lane_mapping; 260 u32 tmp; 261 if (unlikely(port_data[sata_port].phy_base == NULL)) 262 return; 263 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); 264 tmp &= ~CPHY_SATA_RX_OVERRIDE; 265 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 266 } 267 268 static void cphy_override_tx_attenuation(u8 sata_port, u32 val) 269 { 270 u8 lane = port_data[sata_port].lane_mapping; 271 u32 tmp; 272 273 if (val & 0x8) 274 return; 275 276 tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE); 277 tmp &= ~CPHY_SATA_TX_OVERRIDE; 278 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 279 280 tmp |= CPHY_SATA_TX_OVERRIDE; 281 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 282 283 tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN; 284 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); 285 } 286 287 static void cphy_override_rx_mode(u8 sata_port, u32 val) 288 { 289 u8 lane = port_data[sata_port].lane_mapping; 290 u32 tmp; 291 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); 292 tmp &= ~CPHY_SATA_RX_OVERRIDE; 293 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 294 295 tmp |= CPHY_SATA_RX_OVERRIDE; 296 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 297 298 tmp &= ~CPHY_SATA_DPLL_MODE; 299 tmp |= val << CPHY_SATA_DPLL_SHIFT; 300 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 301 302 tmp |= CPHY_SATA_DPLL_RESET; 303 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 304 305 tmp &= ~CPHY_SATA_DPLL_RESET; 306 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); 307 308 msleep(15); 309 } 310 311 static void highbank_cphy_override_lane(u8 sata_port) 312 { 313 u8 lane = port_data[sata_port].lane_mapping; 314 u32 tmp, k = 0; 315 316 if (unlikely(port_data[sata_port].phy_base == NULL)) 317 return; 318 do { 319 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + 320 lane * SPHY_LANE); 321 } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000)); 322 cphy_override_rx_mode(sata_port, 3); 323 cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten); 324 } 325 326 static int highbank_initialize_phys(struct device *dev, void __iomem *addr) 327 { 328 struct device_node *sata_node = dev->of_node; 329 int phy_count = 0, phy, port = 0, i; 330 void __iomem *cphy_base[CPHY_PHY_COUNT] = {}; 331 struct device_node *phy_nodes[CPHY_PHY_COUNT] = {}; 332 u32 tx_atten[CPHY_PORT_COUNT] = {}; 333 334 memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT); 335 336 do { 337 u32 tmp; 338 struct of_phandle_args phy_data; 339 if (of_parse_phandle_with_args(sata_node, 340 "calxeda,port-phys", "#phy-cells", 341 port, &phy_data)) 342 break; 343 for (phy = 0; phy < phy_count; phy++) { 344 if (phy_nodes[phy] == phy_data.np) 345 break; 346 } 347 if (phy_nodes[phy] == NULL) { 348 phy_nodes[phy] = phy_data.np; 349 cphy_base[phy] = of_iomap(phy_nodes[phy], 0); 350 if (cphy_base[phy] == NULL) { 351 of_node_put(phy_data.np); 352 return 0; 353 } 354 phy_count += 1; 355 } 356 port_data[port].lane_mapping = phy_data.args[0]; 357 of_property_read_u32(phy_nodes[phy], "phydev", &tmp); 358 port_data[port].phy_devs = tmp; 359 port_data[port].phy_base = cphy_base[phy]; 360 of_node_put(phy_data.np); 361 port += 1; 362 } while (port < CPHY_PORT_COUNT); 363 of_property_read_u32_array(sata_node, "calxeda,tx-atten", 364 tx_atten, port); 365 for (i = 0; i < port; i++) 366 port_data[i].tx_atten = (u8) tx_atten[i]; 367 return 0; 368 } 369 370 /* 371 * The Calxeda SATA phy intermittently fails to bring up a link with Gen3 372 * Retrying the phy hard reset can work around the issue, but the drive 373 * may fail again. In less than 150 out of 15000 test runs, it took more 374 * than 10 tries for the link to be established (but never more than 35). 375 * Triple the maximum observed retry count to provide plenty of margin for 376 * rare events and to guarantee that the link is established. 377 * 378 * Also, the default 2 second time-out on a failed drive is too long in 379 * this situation. The uboot implementation of the same driver function 380 * uses a much shorter time-out period and never experiences a time out 381 * issue. Reducing the time-out to 500ms improves the responsiveness. 382 * The other timing constants were kept the same as the stock AHCI driver. 383 * This change was also tested 15000 times on 24 drives and none of them 384 * experienced a time out. 385 */ 386 static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class, 387 unsigned long deadline) 388 { 389 static const unsigned int timing[] = { 5, 100, 500}; 390 struct ata_port *ap = link->ap; 391 struct ahci_port_priv *pp = ap->private_data; 392 struct ahci_host_priv *hpriv = ap->host->private_data; 393 u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG; 394 struct ata_taskfile tf; 395 bool online; 396 u32 sstatus; 397 int rc; 398 int retry = 100; 399 400 hpriv->stop_engine(ap); 401 402 /* clear D2H reception area to properly wait for D2H FIS */ 403 ata_tf_init(link->device, &tf); 404 tf.status = ATA_BUSY; 405 ata_tf_to_fis(&tf, 0, 0, d2h_fis); 406 407 do { 408 highbank_cphy_disable_overrides(link->ap->port_no); 409 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 410 highbank_cphy_override_lane(link->ap->port_no); 411 412 /* If the status is 1, we are connected, but the link did not 413 * come up. So retry resetting the link again. 414 */ 415 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 416 break; 417 if (!(sstatus & 0x3)) 418 break; 419 } while (!online && retry--); 420 421 hpriv->start_engine(ap); 422 423 if (online) 424 *class = ahci_dev_classify(ap); 425 426 return rc; 427 } 428 429 static struct ata_port_operations ahci_highbank_ops = { 430 .inherits = &ahci_ops, 431 .hardreset = ahci_highbank_hardreset, 432 .transmit_led_message = ecx_transmit_led_message, 433 }; 434 435 static const struct ata_port_info ahci_highbank_port_info = { 436 .flags = AHCI_FLAG_COMMON, 437 .pio_mask = ATA_PIO4, 438 .udma_mask = ATA_UDMA6, 439 .port_ops = &ahci_highbank_ops, 440 }; 441 442 static const struct scsi_host_template ahci_highbank_platform_sht = { 443 AHCI_SHT("sata_highbank"), 444 }; 445 446 static const struct of_device_id ahci_of_match[] = { 447 { .compatible = "calxeda,hb-ahci" }, 448 { /* sentinel */ } 449 }; 450 MODULE_DEVICE_TABLE(of, ahci_of_match); 451 452 static int ahci_highbank_probe(struct platform_device *pdev) 453 { 454 struct device *dev = &pdev->dev; 455 struct ahci_host_priv *hpriv; 456 struct ecx_plat_data *pdata; 457 struct ata_host *host; 458 struct resource *mem; 459 int irq; 460 int i; 461 int rc; 462 u32 n_ports; 463 struct ata_port_info pi = ahci_highbank_port_info; 464 const struct ata_port_info *ppi[] = { &pi, NULL }; 465 466 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 467 if (!mem) { 468 dev_err(dev, "no mmio space\n"); 469 return -EINVAL; 470 } 471 472 irq = platform_get_irq(pdev, 0); 473 if (irq < 0) 474 return irq; 475 if (!irq) 476 return -EINVAL; 477 478 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); 479 if (!hpriv) { 480 dev_err(dev, "can't alloc ahci_host_priv\n"); 481 return -ENOMEM; 482 } 483 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 484 if (!pdata) { 485 dev_err(dev, "can't alloc ecx_plat_data\n"); 486 return -ENOMEM; 487 } 488 489 hpriv->irq = irq; 490 hpriv->flags |= (unsigned long)pi.private_data; 491 492 hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); 493 if (!hpriv->mmio) { 494 dev_err(dev, "can't map %pR\n", mem); 495 return -ENOMEM; 496 } 497 498 rc = highbank_initialize_phys(dev, hpriv->mmio); 499 if (rc) 500 return rc; 501 502 503 ahci_save_initial_config(dev, hpriv); 504 505 /* prepare host */ 506 if (hpriv->cap & HOST_CAP_NCQ) 507 pi.flags |= ATA_FLAG_NCQ; 508 509 if (hpriv->cap & HOST_CAP_PMP) 510 pi.flags |= ATA_FLAG_PMP; 511 512 if (hpriv->cap & HOST_CAP_64) 513 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 514 515 /* CAP.NP sometimes indicate the index of the last enabled 516 * port, at other times, that of the last possible port, so 517 * determining the maximum port number requires looking at 518 * both CAP.NP and port_map. 519 */ 520 n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map)); 521 522 pdata->n_ports = n_ports; 523 hpriv->plat_data = pdata; 524 highbank_set_em_messages(dev, hpriv, &pi); 525 526 host = ata_host_alloc_pinfo(dev, ppi, n_ports); 527 if (!host) { 528 rc = -ENOMEM; 529 goto err0; 530 } 531 532 host->private_data = hpriv; 533 534 if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss) 535 host->flags |= ATA_HOST_PARALLEL_SCAN; 536 537 for (i = 0; i < host->n_ports; i++) { 538 struct ata_port *ap = host->ports[i]; 539 540 ata_port_desc(ap, "mmio %pR", mem); 541 ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80); 542 543 /* set enclosure management message type */ 544 if (ap->flags & ATA_FLAG_EM) 545 ap->em_message_type = hpriv->em_msg_type; 546 547 /* disabled/not-implemented port */ 548 if (!(hpriv->port_map & (1 << i))) 549 ap->ops = &ata_dummy_port_ops; 550 } 551 552 rc = ahci_reset_controller(host); 553 if (rc) 554 goto err0; 555 556 ahci_init_controller(host); 557 ahci_print_info(host, "platform"); 558 559 rc = ahci_host_activate(host, &ahci_highbank_platform_sht); 560 if (rc) 561 goto err0; 562 563 return 0; 564 err0: 565 return rc; 566 } 567 568 #ifdef CONFIG_PM_SLEEP 569 static int ahci_highbank_suspend(struct device *dev) 570 { 571 struct ata_host *host = dev_get_drvdata(dev); 572 struct ahci_host_priv *hpriv = host->private_data; 573 void __iomem *mmio = hpriv->mmio; 574 u32 ctl; 575 576 if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) { 577 dev_err(dev, "firmware update required for suspend/resume\n"); 578 return -EIO; 579 } 580 581 /* 582 * AHCI spec rev1.1 section 8.3.3: 583 * Software must disable interrupts prior to requesting a 584 * transition of the HBA to D3 state. 585 */ 586 ctl = readl(mmio + HOST_CTL); 587 ctl &= ~HOST_IRQ_EN; 588 writel(ctl, mmio + HOST_CTL); 589 readl(mmio + HOST_CTL); /* flush */ 590 591 ata_host_suspend(host, PMSG_SUSPEND); 592 return 0; 593 } 594 595 static int ahci_highbank_resume(struct device *dev) 596 { 597 struct ata_host *host = dev_get_drvdata(dev); 598 int rc; 599 600 if (dev->power.power_state.event == PM_EVENT_SUSPEND) { 601 rc = ahci_reset_controller(host); 602 if (rc) 603 return rc; 604 605 ahci_init_controller(host); 606 } 607 608 ata_host_resume(host); 609 610 return 0; 611 } 612 #endif 613 614 static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops, 615 ahci_highbank_suspend, ahci_highbank_resume); 616 617 static struct platform_driver ahci_highbank_driver = { 618 .remove_new = ata_platform_remove_one, 619 .driver = { 620 .name = "highbank-ahci", 621 .of_match_table = ahci_of_match, 622 .pm = &ahci_highbank_pm_ops, 623 }, 624 .probe = ahci_highbank_probe, 625 }; 626 627 module_platform_driver(ahci_highbank_driver); 628 629 MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver"); 630 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>"); 631 MODULE_LICENSE("GPL"); 632 MODULE_ALIAS("sata:highbank"); 633