1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Calxeda Highbank AHCI SATA platform driver
4 * Copyright 2012 Calxeda, Inc.
5 *
6 * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
7 */
8 #include <linux/kernel.h>
9 #include <linux/gfp.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/spinlock.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/platform_device.h>
19 #include <linux/libata.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/export.h>
23 #include <linux/gpio/consumer.h>
24
25 #include "ahci.h"
26
27 #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f))
28 #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2)
29 #define SERDES_CR_CTL 0x80a0
30 #define SERDES_CR_ADDR 0x80a1
31 #define SERDES_CR_DATA 0x80a2
32 #define CR_BUSY 0x0001
33 #define CR_START 0x0001
34 #define CR_WR_RDN 0x0002
35 #define CPHY_TX_INPUT_STS 0x2001
36 #define CPHY_RX_INPUT_STS 0x2002
37 #define CPHY_SATA_TX_OVERRIDE 0x8000
38 #define CPHY_SATA_RX_OVERRIDE 0x4000
39 #define CPHY_TX_OVERRIDE 0x2004
40 #define CPHY_RX_OVERRIDE 0x2005
41 #define SPHY_LANE 0x100
42 #define SPHY_HALF_RATE 0x0001
43 #define CPHY_SATA_DPLL_MODE 0x0700
44 #define CPHY_SATA_DPLL_SHIFT 8
45 #define CPHY_SATA_DPLL_RESET (1 << 11)
46 #define CPHY_SATA_TX_ATTEN 0x1c00
47 #define CPHY_SATA_TX_ATTEN_SHIFT 10
48 #define CPHY_PHY_COUNT 6
49 #define CPHY_LANE_COUNT 4
50 #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT)
51
52 static DEFINE_SPINLOCK(cphy_lock);
53 /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based
54 * sata ports to their phys and then to their lanes within the phys
55 */
56 struct phy_lane_info {
57 void __iomem *phy_base;
58 u8 lane_mapping;
59 u8 phy_devs;
60 u8 tx_atten;
61 };
62 static struct phy_lane_info port_data[CPHY_PORT_COUNT];
63
64 static DEFINE_SPINLOCK(sgpio_lock);
65 #define SCLOCK 0
66 #define SLOAD 1
67 #define SDATA 2
68 #define SGPIO_PINS 3
69 #define SGPIO_PORTS 8
70
71 struct ecx_plat_data {
72 u32 n_ports;
73 /* number of extra clocks that the SGPIO PIC controller expects */
74 u32 pre_clocks;
75 u32 post_clocks;
76 struct gpio_desc *sgpio_gpiod[SGPIO_PINS];
77 u32 sgpio_pattern;
78 u32 port_to_sgpio[SGPIO_PORTS];
79 };
80
81 #define SGPIO_SIGNALS 3
82 #define ECX_ACTIVITY_BITS 0x300000
83 #define ECX_ACTIVITY_SHIFT 0
84 #define ECX_LOCATE_BITS 0x80000
85 #define ECX_LOCATE_SHIFT 1
86 #define ECX_FAULT_BITS 0x400000
87 #define ECX_FAULT_SHIFT 2
sgpio_bit_shift(struct ecx_plat_data * pdata,u32 port,u32 shift)88 static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port,
89 u32 shift)
90 {
91 return 1 << (3 * pdata->port_to_sgpio[port] + shift);
92 }
93
ecx_parse_sgpio(struct ecx_plat_data * pdata,u32 port,u32 state)94 static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state)
95 {
96 if (state & ECX_ACTIVITY_BITS)
97 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
98 ECX_ACTIVITY_SHIFT);
99 else
100 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
101 ECX_ACTIVITY_SHIFT);
102 if (state & ECX_LOCATE_BITS)
103 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
104 ECX_LOCATE_SHIFT);
105 else
106 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
107 ECX_LOCATE_SHIFT);
108 if (state & ECX_FAULT_BITS)
109 pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
110 ECX_FAULT_SHIFT);
111 else
112 pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
113 ECX_FAULT_SHIFT);
114 }
115
116 /*
117 * Tell the LED controller that the signal has changed by raising the clock
118 * line for 50 uS and then lowering it for 50 uS.
119 */
ecx_led_cycle_clock(struct ecx_plat_data * pdata)120 static void ecx_led_cycle_clock(struct ecx_plat_data *pdata)
121 {
122 gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1);
123 udelay(50);
124 gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0);
125 udelay(50);
126 }
127
ecx_transmit_led_message(struct ata_port * ap,u32 state,ssize_t size)128 static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state,
129 ssize_t size)
130 {
131 struct ahci_host_priv *hpriv = ap->host->private_data;
132 struct ecx_plat_data *pdata = hpriv->plat_data;
133 struct ahci_port_priv *pp = ap->private_data;
134 unsigned long flags;
135 int pmp, i;
136 struct ahci_em_priv *emp;
137 u32 sgpio_out;
138
139 /* get the slot number from the message */
140 pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8;
141 if (pmp < EM_MAX_SLOTS)
142 emp = &pp->em_priv[pmp];
143 else
144 return -EINVAL;
145
146 if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED))
147 return size;
148
149 spin_lock_irqsave(&sgpio_lock, flags);
150 ecx_parse_sgpio(pdata, ap->port_no, state);
151 sgpio_out = pdata->sgpio_pattern;
152 for (i = 0; i < pdata->pre_clocks; i++)
153 ecx_led_cycle_clock(pdata);
154
155 gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1);
156 ecx_led_cycle_clock(pdata);
157 gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0);
158 /*
159 * bit-bang out the SGPIO pattern, by consuming a bit and then
160 * clocking it out.
161 */
162 for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) {
163 gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1);
164 sgpio_out >>= 1;
165 ecx_led_cycle_clock(pdata);
166 }
167 for (i = 0; i < pdata->post_clocks; i++)
168 ecx_led_cycle_clock(pdata);
169
170 /* save off new led state for port/slot */
171 emp->led_state = state;
172
173 spin_unlock_irqrestore(&sgpio_lock, flags);
174 return size;
175 }
176
highbank_set_em_messages(struct device * dev,struct ahci_host_priv * hpriv,struct ata_port_info * pi)177 static void highbank_set_em_messages(struct device *dev,
178 struct ahci_host_priv *hpriv,
179 struct ata_port_info *pi)
180 {
181 struct device_node *np = dev->of_node;
182 struct ecx_plat_data *pdata = hpriv->plat_data;
183 int i;
184
185 for (i = 0; i < SGPIO_PINS; i++) {
186 struct gpio_desc *gpiod;
187
188 gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i,
189 GPIOD_OUT_HIGH);
190 if (IS_ERR(gpiod)) {
191 dev_err(dev, "failed to get GPIO %d\n", i);
192 continue;
193 }
194 gpiod_set_consumer_name(gpiod, "CX SGPIO");
195
196 pdata->sgpio_gpiod[i] = gpiod;
197 }
198 of_property_read_u32_array(np, "calxeda,led-order",
199 pdata->port_to_sgpio,
200 pdata->n_ports);
201 if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks))
202 pdata->pre_clocks = 0;
203 if (of_property_read_u32(np, "calxeda,post-clocks",
204 &pdata->post_clocks))
205 pdata->post_clocks = 0;
206
207 /* store em_loc */
208 hpriv->em_loc = 0;
209 hpriv->em_buf_sz = 4;
210 hpriv->em_msg_type = EM_MSG_TYPE_LED;
211 pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY;
212 }
213
__combo_phy_reg_read(u8 sata_port,u32 addr)214 static u32 __combo_phy_reg_read(u8 sata_port, u32 addr)
215 {
216 u32 data;
217 u8 dev = port_data[sata_port].phy_devs;
218 spin_lock(&cphy_lock);
219 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
220 data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr));
221 spin_unlock(&cphy_lock);
222 return data;
223 }
224
__combo_phy_reg_write(u8 sata_port,u32 addr,u32 data)225 static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data)
226 {
227 u8 dev = port_data[sata_port].phy_devs;
228 spin_lock(&cphy_lock);
229 writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
230 writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr));
231 spin_unlock(&cphy_lock);
232 }
233
combo_phy_wait_for_ready(u8 sata_port)234 static void combo_phy_wait_for_ready(u8 sata_port)
235 {
236 while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY)
237 udelay(5);
238 }
239
combo_phy_read(u8 sata_port,u32 addr)240 static u32 combo_phy_read(u8 sata_port, u32 addr)
241 {
242 combo_phy_wait_for_ready(sata_port);
243 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
244 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START);
245 combo_phy_wait_for_ready(sata_port);
246 return __combo_phy_reg_read(sata_port, SERDES_CR_DATA);
247 }
248
combo_phy_write(u8 sata_port,u32 addr,u32 data)249 static void combo_phy_write(u8 sata_port, u32 addr, u32 data)
250 {
251 combo_phy_wait_for_ready(sata_port);
252 __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
253 __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data);
254 __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START);
255 }
256
highbank_cphy_disable_overrides(u8 sata_port)257 static void highbank_cphy_disable_overrides(u8 sata_port)
258 {
259 u8 lane = port_data[sata_port].lane_mapping;
260 u32 tmp;
261 if (unlikely(port_data[sata_port].phy_base == NULL))
262 return;
263 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
264 tmp &= ~CPHY_SATA_RX_OVERRIDE;
265 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
266 }
267
cphy_override_tx_attenuation(u8 sata_port,u32 val)268 static void cphy_override_tx_attenuation(u8 sata_port, u32 val)
269 {
270 u8 lane = port_data[sata_port].lane_mapping;
271 u32 tmp;
272
273 if (val & 0x8)
274 return;
275
276 tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE);
277 tmp &= ~CPHY_SATA_TX_OVERRIDE;
278 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
279
280 tmp |= CPHY_SATA_TX_OVERRIDE;
281 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
282
283 tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN;
284 combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
285 }
286
cphy_override_rx_mode(u8 sata_port,u32 val)287 static void cphy_override_rx_mode(u8 sata_port, u32 val)
288 {
289 u8 lane = port_data[sata_port].lane_mapping;
290 u32 tmp;
291 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
292 tmp &= ~CPHY_SATA_RX_OVERRIDE;
293 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
294
295 tmp |= CPHY_SATA_RX_OVERRIDE;
296 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
297
298 tmp &= ~CPHY_SATA_DPLL_MODE;
299 tmp |= val << CPHY_SATA_DPLL_SHIFT;
300 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
301
302 tmp |= CPHY_SATA_DPLL_RESET;
303 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
304
305 tmp &= ~CPHY_SATA_DPLL_RESET;
306 combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
307
308 msleep(15);
309 }
310
highbank_cphy_override_lane(u8 sata_port)311 static void highbank_cphy_override_lane(u8 sata_port)
312 {
313 u8 lane = port_data[sata_port].lane_mapping;
314 u32 tmp, k = 0;
315
316 if (unlikely(port_data[sata_port].phy_base == NULL))
317 return;
318 do {
319 tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS +
320 lane * SPHY_LANE);
321 } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000));
322 cphy_override_rx_mode(sata_port, 3);
323 cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten);
324 }
325
highbank_initialize_phys(struct device * dev,void __iomem * addr)326 static int highbank_initialize_phys(struct device *dev, void __iomem *addr)
327 {
328 struct device_node *sata_node = dev->of_node;
329 int phy_count = 0, phy, port = 0, i;
330 void __iomem *cphy_base[CPHY_PHY_COUNT] = {};
331 struct device_node *phy_nodes[CPHY_PHY_COUNT] = {};
332 u32 tx_atten[CPHY_PORT_COUNT] = {};
333
334 memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT);
335
336 do {
337 u32 tmp;
338 struct of_phandle_args phy_data;
339 if (of_parse_phandle_with_args(sata_node,
340 "calxeda,port-phys", "#phy-cells",
341 port, &phy_data))
342 break;
343 for (phy = 0; phy < phy_count; phy++) {
344 if (phy_nodes[phy] == phy_data.np)
345 break;
346 }
347 if (phy_nodes[phy] == NULL) {
348 phy_nodes[phy] = phy_data.np;
349 cphy_base[phy] = of_iomap(phy_nodes[phy], 0);
350 if (cphy_base[phy] == NULL) {
351 return 0;
352 }
353 phy_count += 1;
354 }
355 port_data[port].lane_mapping = phy_data.args[0];
356 of_property_read_u32(phy_nodes[phy], "phydev", &tmp);
357 port_data[port].phy_devs = tmp;
358 port_data[port].phy_base = cphy_base[phy];
359 of_node_put(phy_data.np);
360 port += 1;
361 } while (port < CPHY_PORT_COUNT);
362 of_property_read_u32_array(sata_node, "calxeda,tx-atten",
363 tx_atten, port);
364 for (i = 0; i < port; i++)
365 port_data[i].tx_atten = (u8) tx_atten[i];
366 return 0;
367 }
368
369 /*
370 * The Calxeda SATA phy intermittently fails to bring up a link with Gen3
371 * Retrying the phy hard reset can work around the issue, but the drive
372 * may fail again. In less than 150 out of 15000 test runs, it took more
373 * than 10 tries for the link to be established (but never more than 35).
374 * Triple the maximum observed retry count to provide plenty of margin for
375 * rare events and to guarantee that the link is established.
376 *
377 * Also, the default 2 second time-out on a failed drive is too long in
378 * this situation. The uboot implementation of the same driver function
379 * uses a much shorter time-out period and never experiences a time out
380 * issue. Reducing the time-out to 500ms improves the responsiveness.
381 * The other timing constants were kept the same as the stock AHCI driver.
382 * This change was also tested 15000 times on 24 drives and none of them
383 * experienced a time out.
384 */
ahci_highbank_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)385 static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class,
386 unsigned long deadline)
387 {
388 static const unsigned int timing[] = { 5, 100, 500};
389 struct ata_port *ap = link->ap;
390 struct ahci_port_priv *pp = ap->private_data;
391 struct ahci_host_priv *hpriv = ap->host->private_data;
392 u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG;
393 struct ata_taskfile tf;
394 bool online;
395 u32 sstatus;
396 int rc;
397 int retry = 100;
398
399 hpriv->stop_engine(ap);
400
401 /* clear D2H reception area to properly wait for D2H FIS */
402 ata_tf_init(link->device, &tf);
403 tf.status = ATA_BUSY;
404 ata_tf_to_fis(&tf, 0, 0, d2h_fis);
405
406 do {
407 highbank_cphy_disable_overrides(link->ap->port_no);
408 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
409 highbank_cphy_override_lane(link->ap->port_no);
410
411 /* If the status is 1, we are connected, but the link did not
412 * come up. So retry resetting the link again.
413 */
414 if (sata_scr_read(link, SCR_STATUS, &sstatus))
415 break;
416 if (!(sstatus & 0x3))
417 break;
418 } while (!online && retry--);
419
420 hpriv->start_engine(ap);
421
422 if (online)
423 *class = ahci_dev_classify(ap);
424
425 return rc;
426 }
427
428 static struct ata_port_operations ahci_highbank_ops = {
429 .inherits = &ahci_ops,
430 .hardreset = ahci_highbank_hardreset,
431 .transmit_led_message = ecx_transmit_led_message,
432 };
433
434 static const struct ata_port_info ahci_highbank_port_info = {
435 .flags = AHCI_FLAG_COMMON,
436 .pio_mask = ATA_PIO4,
437 .udma_mask = ATA_UDMA6,
438 .port_ops = &ahci_highbank_ops,
439 };
440
441 static const struct scsi_host_template ahci_highbank_platform_sht = {
442 AHCI_SHT("sata_highbank"),
443 };
444
445 static const struct of_device_id ahci_of_match[] = {
446 { .compatible = "calxeda,hb-ahci" },
447 { /* sentinel */ }
448 };
449 MODULE_DEVICE_TABLE(of, ahci_of_match);
450
ahci_highbank_probe(struct platform_device * pdev)451 static int ahci_highbank_probe(struct platform_device *pdev)
452 {
453 struct device *dev = &pdev->dev;
454 struct ahci_host_priv *hpriv;
455 struct ecx_plat_data *pdata;
456 struct ata_host *host;
457 struct resource *mem;
458 int irq;
459 int i;
460 int rc;
461 u32 n_ports;
462 struct ata_port_info pi = ahci_highbank_port_info;
463 const struct ata_port_info *ppi[] = { &pi, NULL };
464
465 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
466 if (!mem) {
467 dev_err(dev, "no mmio space\n");
468 return -EINVAL;
469 }
470
471 irq = platform_get_irq(pdev, 0);
472 if (irq < 0)
473 return irq;
474 if (!irq)
475 return -EINVAL;
476
477 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
478 if (!hpriv) {
479 dev_err(dev, "can't alloc ahci_host_priv\n");
480 return -ENOMEM;
481 }
482 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
483 if (!pdata) {
484 dev_err(dev, "can't alloc ecx_plat_data\n");
485 return -ENOMEM;
486 }
487
488 hpriv->irq = irq;
489 hpriv->flags |= (unsigned long)pi.private_data;
490
491 hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
492 if (!hpriv->mmio) {
493 dev_err(dev, "can't map %pR\n", mem);
494 return -ENOMEM;
495 }
496
497 rc = highbank_initialize_phys(dev, hpriv->mmio);
498 if (rc)
499 return rc;
500
501
502 ahci_save_initial_config(dev, hpriv);
503
504 /* prepare host */
505 if (hpriv->cap & HOST_CAP_NCQ)
506 pi.flags |= ATA_FLAG_NCQ;
507
508 if (hpriv->cap & HOST_CAP_PMP)
509 pi.flags |= ATA_FLAG_PMP;
510
511 if (hpriv->cap & HOST_CAP_64)
512 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
513
514 /* CAP.NP sometimes indicate the index of the last enabled
515 * port, at other times, that of the last possible port, so
516 * determining the maximum port number requires looking at
517 * both CAP.NP and port_map.
518 */
519 n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map));
520
521 pdata->n_ports = n_ports;
522 hpriv->plat_data = pdata;
523 highbank_set_em_messages(dev, hpriv, &pi);
524
525 host = ata_host_alloc_pinfo(dev, ppi, n_ports);
526 if (!host) {
527 rc = -ENOMEM;
528 goto err0;
529 }
530
531 host->private_data = hpriv;
532
533 if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss)
534 host->flags |= ATA_HOST_PARALLEL_SCAN;
535
536 for (i = 0; i < host->n_ports; i++) {
537 struct ata_port *ap = host->ports[i];
538
539 ata_port_desc(ap, "mmio %pR", mem);
540 ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80);
541
542 /* set enclosure management message type */
543 if (ap->flags & ATA_FLAG_EM)
544 ap->em_message_type = hpriv->em_msg_type;
545
546 /* disabled/not-implemented port */
547 if (!(hpriv->port_map & (1 << i)))
548 ap->ops = &ata_dummy_port_ops;
549 }
550
551 rc = ahci_reset_controller(host);
552 if (rc)
553 goto err0;
554
555 ahci_init_controller(host);
556 ahci_print_info(host, "platform");
557
558 rc = ahci_host_activate(host, &ahci_highbank_platform_sht);
559 if (rc)
560 goto err0;
561
562 return 0;
563 err0:
564 return rc;
565 }
566
567 #ifdef CONFIG_PM_SLEEP
ahci_highbank_suspend(struct device * dev)568 static int ahci_highbank_suspend(struct device *dev)
569 {
570 struct ata_host *host = dev_get_drvdata(dev);
571 struct ahci_host_priv *hpriv = host->private_data;
572 void __iomem *mmio = hpriv->mmio;
573 u32 ctl;
574
575 if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) {
576 dev_err(dev, "firmware update required for suspend/resume\n");
577 return -EIO;
578 }
579
580 /*
581 * AHCI spec rev1.1 section 8.3.3:
582 * Software must disable interrupts prior to requesting a
583 * transition of the HBA to D3 state.
584 */
585 ctl = readl(mmio + HOST_CTL);
586 ctl &= ~HOST_IRQ_EN;
587 writel(ctl, mmio + HOST_CTL);
588 readl(mmio + HOST_CTL); /* flush */
589
590 ata_host_suspend(host, PMSG_SUSPEND);
591 return 0;
592 }
593
ahci_highbank_resume(struct device * dev)594 static int ahci_highbank_resume(struct device *dev)
595 {
596 struct ata_host *host = dev_get_drvdata(dev);
597 int rc;
598
599 if (dev->power.power_state.event == PM_EVENT_SUSPEND) {
600 rc = ahci_reset_controller(host);
601 if (rc)
602 return rc;
603
604 ahci_init_controller(host);
605 }
606
607 ata_host_resume(host);
608
609 return 0;
610 }
611 #endif
612
613 static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops,
614 ahci_highbank_suspend, ahci_highbank_resume);
615
616 static struct platform_driver ahci_highbank_driver = {
617 .remove_new = ata_platform_remove_one,
618 .driver = {
619 .name = "highbank-ahci",
620 .of_match_table = ahci_of_match,
621 .pm = &ahci_highbank_pm_ops,
622 },
623 .probe = ahci_highbank_probe,
624 };
625
626 module_platform_driver(ahci_highbank_driver);
627
628 MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver");
629 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>");
630 MODULE_LICENSE("GPL");
631 MODULE_ALIAS("sata:highbank");
632