xref: /openbmc/linux/drivers/ata/sata_dwc_460ex.c (revision e23feb16)
1 /*
2  * drivers/ata/sata_dwc_460ex.c
3  *
4  * Synopsys DesignWare Cores (DWC) SATA host driver
5  *
6  * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7  *
8  * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9  * Copyright 2008 DENX Software Engineering
10  *
11  * Based on versions provided by AMCC and Synopsys which are:
12  *          Copyright 2006 Applied Micro Circuits Corporation
13  *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20 
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
24 
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
38 #include "libata.h"
39 
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
42 
43 /* These two are defined in "libata.h" */
44 #undef	DRV_NAME
45 #undef	DRV_VERSION
46 
47 #define DRV_NAME        "sata-dwc"
48 #define DRV_VERSION     "1.3"
49 
50 /* SATA DMA driver Globals */
51 #define DMA_NUM_CHANS		1
52 #define DMA_NUM_CHAN_REGS	8
53 
54 /* SATA DMA Register definitions */
55 #define AHB_DMA_BRST_DFLT	64	/* 16 data items burst length*/
56 
57 struct dmareg {
58 	u32 low;		/* Low bits 0-31 */
59 	u32 high;		/* High bits 32-63 */
60 };
61 
62 /* DMA Per Channel registers */
63 struct dma_chan_regs {
64 	struct dmareg sar;	/* Source Address */
65 	struct dmareg dar;	/* Destination address */
66 	struct dmareg llp;	/* Linked List Pointer */
67 	struct dmareg ctl;	/* Control */
68 	struct dmareg sstat;	/* Source Status not implemented in core */
69 	struct dmareg dstat;	/* Destination Status not implemented in core*/
70 	struct dmareg sstatar;	/* Source Status Address not impl in core */
71 	struct dmareg dstatar;	/* Destination Status Address not implemente */
72 	struct dmareg cfg;	/* Config */
73 	struct dmareg sgr;	/* Source Gather */
74 	struct dmareg dsr;	/* Destination Scatter */
75 };
76 
77 /* Generic Interrupt Registers */
78 struct dma_interrupt_regs {
79 	struct dmareg tfr;	/* Transfer Interrupt */
80 	struct dmareg block;	/* Block Interrupt */
81 	struct dmareg srctran;	/* Source Transfer Interrupt */
82 	struct dmareg dsttran;	/* Dest Transfer Interrupt */
83 	struct dmareg error;	/* Error */
84 };
85 
86 struct ahb_dma_regs {
87 	struct dma_chan_regs	chan_regs[DMA_NUM_CHAN_REGS];
88 	struct dma_interrupt_regs interrupt_raw;	/* Raw Interrupt */
89 	struct dma_interrupt_regs interrupt_status;	/* Interrupt Status */
90 	struct dma_interrupt_regs interrupt_mask;	/* Interrupt Mask */
91 	struct dma_interrupt_regs interrupt_clear;	/* Interrupt Clear */
92 	struct dmareg		statusInt;	/* Interrupt combined*/
93 	struct dmareg		rq_srcreg;	/* Src Trans Req */
94 	struct dmareg		rq_dstreg;	/* Dst Trans Req */
95 	struct dmareg		rq_sgl_srcreg;	/* Sngl Src Trans Req*/
96 	struct dmareg		rq_sgl_dstreg;	/* Sngl Dst Trans Req*/
97 	struct dmareg		rq_lst_srcreg;	/* Last Src Trans Req*/
98 	struct dmareg		rq_lst_dstreg;	/* Last Dst Trans Req*/
99 	struct dmareg		dma_cfg;		/* DMA Config */
100 	struct dmareg		dma_chan_en;		/* DMA Channel Enable*/
101 	struct dmareg		dma_id;			/* DMA ID */
102 	struct dmareg		dma_test;		/* DMA Test */
103 	struct dmareg		res1;			/* reserved */
104 	struct dmareg		res2;			/* reserved */
105 	/*
106 	 * DMA Comp Params
107 	 * Param 6 = dma_param[0], Param 5 = dma_param[1],
108 	 * Param 4 = dma_param[2] ...
109 	 */
110 	struct dmareg		dma_params[6];
111 };
112 
113 /* Data structure for linked list item */
114 struct lli {
115 	u32		sar;		/* Source Address */
116 	u32		dar;		/* Destination address */
117 	u32		llp;		/* Linked List Pointer */
118 	struct dmareg	ctl;		/* Control */
119 	struct dmareg	dstat;		/* Destination Status */
120 };
121 
122 enum {
123 	SATA_DWC_DMAC_LLI_SZ =	(sizeof(struct lli)),
124 	SATA_DWC_DMAC_LLI_NUM =	256,
125 	SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
126 					SATA_DWC_DMAC_LLI_NUM),
127 	SATA_DWC_DMAC_TWIDTH_BYTES = 4,
128 	SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
129 						SATA_DWC_DMAC_TWIDTH_BYTES),
130 };
131 
132 /* DMA Register Operation Bits */
133 enum {
134 	DMA_EN	=		0x00000001, /* Enable AHB DMA */
135 	DMA_CTL_LLP_SRCEN =	0x10000000, /* Blk chain enable Src */
136 	DMA_CTL_LLP_DSTEN =	0x08000000, /* Blk chain enable Dst */
137 };
138 
139 #define	DMA_CTL_BLK_TS(size)	((size) & 0x000000FFF)	/* Blk Transfer size */
140 #define DMA_CHANNEL(ch)		(0x00000001 << (ch))	/* Select channel */
141 	/* Enable channel */
142 #define	DMA_ENABLE_CHAN(ch)	((0x00000001 << (ch)) |			\
143 				 ((0x000000001 << (ch)) << 8))
144 	/* Disable channel */
145 #define	DMA_DISABLE_CHAN(ch)	(0x00000000 | ((0x000000001 << (ch)) << 8))
146 	/* Transfer Type & Flow Controller */
147 #define	DMA_CTL_TTFC(type)	(((type) & 0x7) << 20)
148 #define	DMA_CTL_SMS(num)	(((num) & 0x3) << 25) /* Src Master Select */
149 #define	DMA_CTL_DMS(num)	(((num) & 0x3) << 23)/* Dst Master Select */
150 	/* Src Burst Transaction Length */
151 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
152 	/* Dst Burst Transaction Length */
153 #define	DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
154 	/* Source Transfer Width */
155 #define	DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
156 	/* Destination Transfer Width */
157 #define	DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
158 
159 /* Assign HW handshaking interface (x) to destination / source peripheral */
160 #define	DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
161 #define	DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
162 #define	DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
163 #define	DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
164 
165 /*
166  * This define is used to set block chaining disabled in the control low
167  * register.  It is already in little endian format so it can be &'d dirctly.
168  * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
169  */
170 enum {
171 	DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
172 	DMA_CTL_TTFC_P2M_DMAC =	0x00000002, /* Per to mem, DMAC cntr */
173 	DMA_CTL_TTFC_M2P_PER =	0x00000003, /* Mem to per, peripheral cntr */
174 	DMA_CTL_SINC_INC =	0x00000000, /* Source Address Increment */
175 	DMA_CTL_SINC_DEC =	0x00000200,
176 	DMA_CTL_SINC_NOCHANGE =	0x00000400,
177 	DMA_CTL_DINC_INC =	0x00000000, /* Destination Address Increment */
178 	DMA_CTL_DINC_DEC =	0x00000080,
179 	DMA_CTL_DINC_NOCHANGE =	0x00000100,
180 	DMA_CTL_INT_EN =	0x00000001, /* Interrupt Enable */
181 
182 /* Channel Configuration Register high bits */
183 	DMA_CFG_FCMOD_REQ =	0x00000001, /* Flow Control - request based */
184 	DMA_CFG_PROTCTL	=	(0x00000003 << 2),/* Protection Control */
185 
186 /* Channel Configuration Register low bits */
187 	DMA_CFG_RELD_DST =	0x80000000, /* Reload Dest / Src Addr */
188 	DMA_CFG_RELD_SRC =	0x40000000,
189 	DMA_CFG_HS_SELSRC =	0x00000800, /* Software handshake Src/ Dest */
190 	DMA_CFG_HS_SELDST =	0x00000400,
191 	DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
192 
193 /* Channel Linked List Pointer Register */
194 	DMA_LLP_AHBMASTER1 =	0,	/* List Master Select */
195 	DMA_LLP_AHBMASTER2 =	1,
196 
197 	SATA_DWC_MAX_PORTS = 1,
198 
199 	SATA_DWC_SCR_OFFSET = 0x24,
200 	SATA_DWC_REG_OFFSET = 0x64,
201 };
202 
203 /* DWC SATA Registers */
204 struct sata_dwc_regs {
205 	u32 fptagr;		/* 1st party DMA tag */
206 	u32 fpbor;		/* 1st party DMA buffer offset */
207 	u32 fptcr;		/* 1st party DMA Xfr count */
208 	u32 dmacr;		/* DMA Control */
209 	u32 dbtsr;		/* DMA Burst Transac size */
210 	u32 intpr;		/* Interrupt Pending */
211 	u32 intmr;		/* Interrupt Mask */
212 	u32 errmr;		/* Error Mask */
213 	u32 llcr;		/* Link Layer Control */
214 	u32 phycr;		/* PHY Control */
215 	u32 physr;		/* PHY Status */
216 	u32 rxbistpd;		/* Recvd BIST pattern def register */
217 	u32 rxbistpd1;		/* Recvd BIST data dword1 */
218 	u32 rxbistpd2;		/* Recvd BIST pattern data dword2 */
219 	u32 txbistpd;		/* Trans BIST pattern def register */
220 	u32 txbistpd1;		/* Trans BIST data dword1 */
221 	u32 txbistpd2;		/* Trans BIST data dword2 */
222 	u32 bistcr;		/* BIST Control Register */
223 	u32 bistfctr;		/* BIST FIS Count Register */
224 	u32 bistsr;		/* BIST Status Register */
225 	u32 bistdecr;		/* BIST Dword Error count register */
226 	u32 res[15];		/* Reserved locations */
227 	u32 testr;		/* Test Register */
228 	u32 versionr;		/* Version Register */
229 	u32 idr;		/* ID Register */
230 	u32 unimpl[192];	/* Unimplemented */
231 	u32 dmadr[256];	/* FIFO Locations in DMA Mode */
232 };
233 
234 enum {
235 	SCR_SCONTROL_DET_ENABLE	=	0x00000001,
236 	SCR_SSTATUS_DET_PRESENT	=	0x00000001,
237 	SCR_SERROR_DIAG_X	=	0x04000000,
238 /* DWC SATA Register Operations */
239 	SATA_DWC_TXFIFO_DEPTH	=	0x01FF,
240 	SATA_DWC_RXFIFO_DEPTH	=	0x01FF,
241 	SATA_DWC_DMACR_TMOD_TXCHEN =	0x00000004,
242 	SATA_DWC_DMACR_TXCHEN	= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
243 	SATA_DWC_DMACR_RXCHEN	= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
244 	SATA_DWC_DMACR_TXRXCH_CLEAR =	SATA_DWC_DMACR_TMOD_TXCHEN,
245 	SATA_DWC_INTPR_DMAT	=	0x00000001,
246 	SATA_DWC_INTPR_NEWFP	=	0x00000002,
247 	SATA_DWC_INTPR_PMABRT	=	0x00000004,
248 	SATA_DWC_INTPR_ERR	=	0x00000008,
249 	SATA_DWC_INTPR_NEWBIST	=	0x00000010,
250 	SATA_DWC_INTPR_IPF	=	0x10000000,
251 	SATA_DWC_INTMR_DMATM	=	0x00000001,
252 	SATA_DWC_INTMR_NEWFPM	=	0x00000002,
253 	SATA_DWC_INTMR_PMABRTM	=	0x00000004,
254 	SATA_DWC_INTMR_ERRM	=	0x00000008,
255 	SATA_DWC_INTMR_NEWBISTM	=	0x00000010,
256 	SATA_DWC_LLCR_SCRAMEN	=	0x00000001,
257 	SATA_DWC_LLCR_DESCRAMEN	=	0x00000002,
258 	SATA_DWC_LLCR_RPDEN	=	0x00000004,
259 /* This is all error bits, zero's are reserved fields. */
260 	SATA_DWC_SERROR_ERR_BITS =	0x0FFF0F03
261 };
262 
263 #define SATA_DWC_SCR0_SPD_GET(v)	(((v) >> 4) & 0x0000000F)
264 #define SATA_DWC_DMACR_TX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_TXCHEN) |\
265 						 SATA_DWC_DMACR_TMOD_TXCHEN)
266 #define SATA_DWC_DMACR_RX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_RXCHEN) |\
267 						 SATA_DWC_DMACR_TMOD_TXCHEN)
268 #define SATA_DWC_DBTSR_MWR(size)	(((size)/4) & SATA_DWC_TXFIFO_DEPTH)
269 #define SATA_DWC_DBTSR_MRD(size)	((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
270 						 << 16)
271 struct sata_dwc_device {
272 	struct device		*dev;		/* generic device struct */
273 	struct ata_probe_ent	*pe;		/* ptr to probe-ent */
274 	struct ata_host		*host;
275 	u8			*reg_base;
276 	struct sata_dwc_regs	*sata_dwc_regs;	/* DW Synopsys SATA specific */
277 	int			irq_dma;
278 };
279 
280 #define SATA_DWC_QCMD_MAX	32
281 
282 struct sata_dwc_device_port {
283 	struct sata_dwc_device	*hsdev;
284 	int			cmd_issued[SATA_DWC_QCMD_MAX];
285 	struct lli		*llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
286 	dma_addr_t		llit_dma[SATA_DWC_QCMD_MAX];
287 	u32			dma_chan[SATA_DWC_QCMD_MAX];
288 	int			dma_pending[SATA_DWC_QCMD_MAX];
289 };
290 
291 /*
292  * Commonly used DWC SATA driver Macros
293  */
294 #define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
295 					(host)->private_data)
296 #define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
297 					(ap)->host->private_data)
298 #define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
299 					(ap)->private_data)
300 #define HSDEV_FROM_QC(qc)	((struct sata_dwc_device *)\
301 					(qc)->ap->host->private_data)
302 #define HSDEV_FROM_HSDEVP(p)	((struct sata_dwc_device *)\
303 						(hsdevp)->hsdev)
304 
305 enum {
306 	SATA_DWC_CMD_ISSUED_NOT		= 0,
307 	SATA_DWC_CMD_ISSUED_PEND	= 1,
308 	SATA_DWC_CMD_ISSUED_EXEC	= 2,
309 	SATA_DWC_CMD_ISSUED_NODATA	= 3,
310 
311 	SATA_DWC_DMA_PENDING_NONE	= 0,
312 	SATA_DWC_DMA_PENDING_TX		= 1,
313 	SATA_DWC_DMA_PENDING_RX		= 2,
314 };
315 
316 struct sata_dwc_host_priv {
317 	void	__iomem	 *scr_addr_sstatus;
318 	u32	sata_dwc_sactive_issued ;
319 	u32	sata_dwc_sactive_queued ;
320 	u32	dma_interrupt_count;
321 	struct	ahb_dma_regs	*sata_dma_regs;
322 	struct	device	*dwc_dev;
323 	int	dma_channel;
324 };
325 struct sata_dwc_host_priv host_pvt;
326 /*
327  * Prototypes
328  */
329 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
330 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
331 				u32 check_status);
332 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
333 static void sata_dwc_port_stop(struct ata_port *ap);
334 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
335 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
336 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
337 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
338 			      struct lli *lli, dma_addr_t dma_lli,
339 			      void __iomem *addr, int dir);
340 static void dma_dwc_xfer_start(int dma_ch);
341 
342 static const char *get_prot_descript(u8 protocol)
343 {
344 	switch ((enum ata_tf_protocols)protocol) {
345 	case ATA_PROT_NODATA:
346 		return "ATA no data";
347 	case ATA_PROT_PIO:
348 		return "ATA PIO";
349 	case ATA_PROT_DMA:
350 		return "ATA DMA";
351 	case ATA_PROT_NCQ:
352 		return "ATA NCQ";
353 	case ATAPI_PROT_NODATA:
354 		return "ATAPI no data";
355 	case ATAPI_PROT_PIO:
356 		return "ATAPI PIO";
357 	case ATAPI_PROT_DMA:
358 		return "ATAPI DMA";
359 	default:
360 		return "unknown";
361 	}
362 }
363 
364 static const char *get_dma_dir_descript(int dma_dir)
365 {
366 	switch ((enum dma_data_direction)dma_dir) {
367 	case DMA_BIDIRECTIONAL:
368 		return "bidirectional";
369 	case DMA_TO_DEVICE:
370 		return "to device";
371 	case DMA_FROM_DEVICE:
372 		return "from device";
373 	default:
374 		return "none";
375 	}
376 }
377 
378 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
379 {
380 	dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
381 		"0x%lx device: %x\n", tf->command,
382 		get_prot_descript(tf->protocol), tf->flags, tf->device);
383 	dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
384 		"lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
385 		 tf->lbam, tf->lbah);
386 	dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
387 		"hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
388 		tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
389 		tf->hob_lbah);
390 }
391 
392 /*
393  * Function: get_burst_length_encode
394  * arguments: datalength: length in bytes of data
395  * returns value to be programmed in register corresponding to data length
396  * This value is effectively the log(base 2) of the length
397  */
398 static  int get_burst_length_encode(int datalength)
399 {
400 	int items = datalength >> 2;	/* div by 4 to get lword count */
401 
402 	if (items >= 64)
403 		return 5;
404 
405 	if (items >= 32)
406 		return 4;
407 
408 	if (items >= 16)
409 		return 3;
410 
411 	if (items >= 8)
412 		return 2;
413 
414 	if (items >= 4)
415 		return 1;
416 
417 	return 0;
418 }
419 
420 static  void clear_chan_interrupts(int c)
421 {
422 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
423 		 DMA_CHANNEL(c));
424 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
425 		 DMA_CHANNEL(c));
426 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
427 		 DMA_CHANNEL(c));
428 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
429 		 DMA_CHANNEL(c));
430 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
431 		 DMA_CHANNEL(c));
432 }
433 
434 /*
435  * Function: dma_request_channel
436  * arguments: None
437  * returns channel number if available else -1
438  * This function assigns the next available DMA channel from the list to the
439  * requester
440  */
441 static int dma_request_channel(void)
442 {
443 	/* Check if the channel is not currently in use */
444 	if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
445 		DMA_CHANNEL(host_pvt.dma_channel)))
446 		return host_pvt.dma_channel;
447 	dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
448 		__func__, host_pvt.dma_channel);
449 	return -1;
450 }
451 
452 /*
453  * Function: dma_dwc_interrupt
454  * arguments: irq, dev_id, pt_regs
455  * returns channel number if available else -1
456  * Interrupt Handler for DW AHB SATA DMA
457  */
458 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
459 {
460 	int chan;
461 	u32 tfr_reg, err_reg;
462 	unsigned long flags;
463 	struct sata_dwc_device *hsdev =
464 		(struct sata_dwc_device *)hsdev_instance;
465 	struct ata_host *host = (struct ata_host *)hsdev->host;
466 	struct ata_port *ap;
467 	struct sata_dwc_device_port *hsdevp;
468 	u8 tag = 0;
469 	unsigned int port = 0;
470 
471 	spin_lock_irqsave(&host->lock, flags);
472 	ap = host->ports[port];
473 	hsdevp = HSDEVP_FROM_AP(ap);
474 	tag = ap->link.active_tag;
475 
476 	tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
477 			.low));
478 	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
479 			.low));
480 
481 	dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482 		tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
483 
484 	chan = host_pvt.dma_channel;
485 	if (chan >= 0) {
486 		/* Check for end-of-transfer interrupt. */
487 		if (tfr_reg & DMA_CHANNEL(chan)) {
488 			/*
489 			 * Each DMA command produces 2 interrupts.  Only
490 			 * complete the command after both interrupts have been
491 			 * seen. (See sata_dwc_isr())
492 			 */
493 			host_pvt.dma_interrupt_count++;
494 			sata_dwc_clear_dmacr(hsdevp, tag);
495 
496 			if (hsdevp->dma_pending[tag] ==
497 			    SATA_DWC_DMA_PENDING_NONE) {
498 				dev_err(ap->dev, "DMA not pending eot=0x%08x "
499 					"err=0x%08x tag=0x%02x pending=%d\n",
500 					tfr_reg, err_reg, tag,
501 					hsdevp->dma_pending[tag]);
502 			}
503 
504 			if ((host_pvt.dma_interrupt_count % 2) == 0)
505 				sata_dwc_dma_xfer_complete(ap, 1);
506 
507 			/* Clear the interrupt */
508 			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
509 				.tfr.low),
510 				 DMA_CHANNEL(chan));
511 		}
512 
513 		/* Check for error interrupt. */
514 		if (err_reg & DMA_CHANNEL(chan)) {
515 			/* TODO Need error handler ! */
516 			dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
517 				err_reg);
518 
519 			/* Clear the interrupt. */
520 			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
521 				.error.low),
522 				 DMA_CHANNEL(chan));
523 		}
524 	}
525 	spin_unlock_irqrestore(&host->lock, flags);
526 	return IRQ_HANDLED;
527 }
528 
529 /*
530  * Function: dma_request_interrupts
531  * arguments: hsdev
532  * returns status
533  * This function registers ISR for a particular DMA channel interrupt
534  */
535 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
536 {
537 	int retval = 0;
538 	int chan = host_pvt.dma_channel;
539 
540 	if (chan >= 0) {
541 		/* Unmask error interrupt */
542 		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
543 			 DMA_ENABLE_CHAN(chan));
544 
545 		/* Unmask end-of-transfer interrupt */
546 		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
547 			 DMA_ENABLE_CHAN(chan));
548 	}
549 
550 	retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
551 	if (retval) {
552 		dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
553 		__func__, irq);
554 		return -ENODEV;
555 	}
556 
557 	/* Mark this interrupt as requested */
558 	hsdev->irq_dma = irq;
559 	return 0;
560 }
561 
562 /*
563  * Function: map_sg_to_lli
564  * The Synopsis driver has a comment proposing that better performance
565  * is possible by only enabling interrupts on the last item in the linked list.
566  * However, it seems that could be a problem if an error happened on one of the
567  * first items.  The transfer would halt, but no error interrupt would occur.
568  * Currently this function sets interrupts enabled for each linked list item:
569  * DMA_CTL_INT_EN.
570  */
571 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
572 			struct lli *lli, dma_addr_t dma_lli,
573 			void __iomem *dmadr_addr, int dir)
574 {
575 	int i, idx = 0;
576 	int fis_len = 0;
577 	dma_addr_t next_llp;
578 	int bl;
579 	int sms_val, dms_val;
580 
581 	sms_val = 0;
582 	dms_val = 1 + host_pvt.dma_channel;
583 	dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
584 		" dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
585 		(u32)dmadr_addr);
586 
587 	bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
588 
589 	for (i = 0; i < num_elems; i++, sg++) {
590 		u32 addr, offset;
591 		u32 sg_len, len;
592 
593 		addr = (u32) sg_dma_address(sg);
594 		sg_len = sg_dma_len(sg);
595 
596 		dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
597 			"=%d\n", __func__, i, addr, sg_len);
598 
599 		while (sg_len) {
600 			if (idx >= SATA_DWC_DMAC_LLI_NUM) {
601 				/* The LLI table is not large enough. */
602 				dev_err(host_pvt.dwc_dev, "LLI table overrun "
603 				"(idx=%d)\n", idx);
604 				break;
605 			}
606 			len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
607 				SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
608 
609 			offset = addr & 0xffff;
610 			if ((offset + sg_len) > 0x10000)
611 				len = 0x10000 - offset;
612 
613 			/*
614 			 * Make sure a LLI block is not created that will span
615 			 * 8K max FIS boundary.  If the block spans such a FIS
616 			 * boundary, there is a chance that a DMA burst will
617 			 * cross that boundary -- this results in an error in
618 			 * the host controller.
619 			 */
620 			if (fis_len + len > 8192) {
621 				dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
622 					"%d(0x%x) len=%d(0x%x)\n", fis_len,
623 					 fis_len, len, len);
624 				len = 8192 - fis_len;
625 				fis_len = 0;
626 			} else {
627 				fis_len += len;
628 			}
629 			if (fis_len == 8192)
630 				fis_len = 0;
631 
632 			/*
633 			 * Set DMA addresses and lower half of control register
634 			 * based on direction.
635 			 */
636 			if (dir == DMA_FROM_DEVICE) {
637 				lli[idx].dar = cpu_to_le32(addr);
638 				lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
639 
640 				lli[idx].ctl.low = cpu_to_le32(
641 					DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
642 					DMA_CTL_SMS(sms_val) |
643 					DMA_CTL_DMS(dms_val) |
644 					DMA_CTL_SRC_MSIZE(bl) |
645 					DMA_CTL_DST_MSIZE(bl) |
646 					DMA_CTL_SINC_NOCHANGE |
647 					DMA_CTL_SRC_TRWID(2) |
648 					DMA_CTL_DST_TRWID(2) |
649 					DMA_CTL_INT_EN |
650 					DMA_CTL_LLP_SRCEN |
651 					DMA_CTL_LLP_DSTEN);
652 			} else {	/* DMA_TO_DEVICE */
653 				lli[idx].sar = cpu_to_le32(addr);
654 				lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
655 
656 				lli[idx].ctl.low = cpu_to_le32(
657 					DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
658 					DMA_CTL_SMS(dms_val) |
659 					DMA_CTL_DMS(sms_val) |
660 					DMA_CTL_SRC_MSIZE(bl) |
661 					DMA_CTL_DST_MSIZE(bl) |
662 					DMA_CTL_DINC_NOCHANGE |
663 					DMA_CTL_SRC_TRWID(2) |
664 					DMA_CTL_DST_TRWID(2) |
665 					DMA_CTL_INT_EN |
666 					DMA_CTL_LLP_SRCEN |
667 					DMA_CTL_LLP_DSTEN);
668 			}
669 
670 			dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
671 				"0x%08x val: 0x%08x\n", __func__,
672 				len, DMA_CTL_BLK_TS(len / 4));
673 
674 			/* Program the LLI CTL high register */
675 			lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
676 						(len / 4));
677 
678 			/* Program the next pointer.  The next pointer must be
679 			 * the physical address, not the virtual address.
680 			 */
681 			next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
682 							lli)));
683 
684 			/* The last 2 bits encode the list master select. */
685 			next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
686 
687 			lli[idx].llp = cpu_to_le32(next_llp);
688 			idx++;
689 			sg_len -= len;
690 			addr += len;
691 		}
692 	}
693 
694 	/*
695 	 * The last next ptr has to be zero and the last control low register
696 	 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
697 	 * and destination enable) set back to 0 (disabled.) This is what tells
698 	 * the core that this is the last item in the linked list.
699 	 */
700 	if (idx) {
701 		lli[idx-1].llp = 0x00000000;
702 		lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
703 
704 		/* Flush cache to memory */
705 		dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
706 			       DMA_BIDIRECTIONAL);
707 	}
708 
709 	return idx;
710 }
711 
712 /*
713  * Function: dma_dwc_xfer_start
714  * arguments: Channel number
715  * Return : None
716  * Enables the DMA channel
717  */
718 static void dma_dwc_xfer_start(int dma_ch)
719 {
720 	/* Enable the DMA channel */
721 	out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
722 		 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
723 		 DMA_ENABLE_CHAN(dma_ch));
724 }
725 
726 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
727 			      struct lli *lli, dma_addr_t dma_lli,
728 			      void __iomem *addr, int dir)
729 {
730 	int dma_ch;
731 	int num_lli;
732 	/* Acquire DMA channel */
733 	dma_ch = dma_request_channel();
734 	if (dma_ch == -1) {
735 		dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
736 			 __func__);
737 		return -EAGAIN;
738 	}
739 
740 	/* Convert SG list to linked list of items (LLIs) for AHB DMA */
741 	num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
742 
743 	dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
744 		" 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
745 		 lli, (u32)dma_lli, addr, num_lli);
746 
747 	clear_chan_interrupts(dma_ch);
748 
749 	/* Program the CFG register. */
750 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
751 		 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
752 		 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
753 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
754 		 DMA_CFG_HW_CH_PRIOR(dma_ch));
755 
756 	/* Program the address of the linked list */
757 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
758 		 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
759 
760 	/* Program the CTL register with src enable / dst enable */
761 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
762 		 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
763 	return dma_ch;
764 }
765 
766 /*
767  * Function: dma_dwc_exit
768  * arguments: None
769  * returns status
770  * This function exits the SATA DMA driver
771  */
772 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
773 {
774 	dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
775 	if (host_pvt.sata_dma_regs) {
776 		iounmap(host_pvt.sata_dma_regs);
777 		host_pvt.sata_dma_regs = NULL;
778 	}
779 
780 	if (hsdev->irq_dma) {
781 		free_irq(hsdev->irq_dma, hsdev);
782 		hsdev->irq_dma = 0;
783 	}
784 }
785 
786 /*
787  * Function: dma_dwc_init
788  * arguments: hsdev
789  * returns status
790  * This function initializes the SATA DMA driver
791  */
792 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
793 {
794 	int err;
795 
796 	err = dma_request_interrupts(hsdev, irq);
797 	if (err) {
798 		dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
799 			" %d\n", __func__, err);
800 		goto error_out;
801 	}
802 
803 	/* Enabe DMA */
804 	out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
805 
806 	dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
807 	dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
808 		sata_dma_regs);
809 
810 	return 0;
811 
812 error_out:
813 	dma_dwc_exit(hsdev);
814 
815 	return err;
816 }
817 
818 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
819 {
820 	if (scr > SCR_NOTIFICATION) {
821 		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
822 			__func__, scr);
823 		return -EINVAL;
824 	}
825 
826 	*val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
827 	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
828 		__func__, link->ap->print_id, scr, *val);
829 
830 	return 0;
831 }
832 
833 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
834 {
835 	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
836 		__func__, link->ap->print_id, scr, val);
837 	if (scr > SCR_NOTIFICATION) {
838 		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
839 			 __func__, scr);
840 		return -EINVAL;
841 	}
842 	out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
843 
844 	return 0;
845 }
846 
847 static u32 core_scr_read(unsigned int scr)
848 {
849 	return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
850 			(scr * 4));
851 }
852 
853 static void core_scr_write(unsigned int scr, u32 val)
854 {
855 	out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
856 		val);
857 }
858 
859 static void clear_serror(void)
860 {
861 	u32 val;
862 	val = core_scr_read(SCR_ERROR);
863 	core_scr_write(SCR_ERROR, val);
864 
865 }
866 
867 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
868 {
869 	out_le32(&hsdev->sata_dwc_regs->intpr,
870 		 in_le32(&hsdev->sata_dwc_regs->intpr));
871 }
872 
873 static u32 qcmd_tag_to_mask(u8 tag)
874 {
875 	return 0x00000001 << (tag & 0x1f);
876 }
877 
878 /* See ahci.c */
879 static void sata_dwc_error_intr(struct ata_port *ap,
880 				struct sata_dwc_device *hsdev, uint intpr)
881 {
882 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
883 	struct ata_eh_info *ehi = &ap->link.eh_info;
884 	unsigned int err_mask = 0, action = 0;
885 	struct ata_queued_cmd *qc;
886 	u32 serror;
887 	u8 status, tag;
888 	u32 err_reg;
889 
890 	ata_ehi_clear_desc(ehi);
891 
892 	serror = core_scr_read(SCR_ERROR);
893 	status = ap->ops->sff_check_status(ap);
894 
895 	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
896 			low));
897 	tag = ap->link.active_tag;
898 
899 	dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
900 		"dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
901 		__func__, serror, intpr, status, host_pvt.dma_interrupt_count,
902 		hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
903 
904 	/* Clear error register and interrupt bit */
905 	clear_serror();
906 	clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
907 
908 	/* This is the only error happening now.  TODO check for exact error */
909 
910 	err_mask |= AC_ERR_HOST_BUS;
911 	action |= ATA_EH_RESET;
912 
913 	/* Pass this on to EH */
914 	ehi->serror |= serror;
915 	ehi->action |= action;
916 
917 	qc = ata_qc_from_tag(ap, tag);
918 	if (qc)
919 		qc->err_mask |= err_mask;
920 	else
921 		ehi->err_mask |= err_mask;
922 
923 	ata_port_abort(ap);
924 }
925 
926 /*
927  * Function : sata_dwc_isr
928  * arguments : irq, void *dev_instance, struct pt_regs *regs
929  * Return value : irqreturn_t - status of IRQ
930  * This Interrupt handler called via port ops registered function.
931  * .irq_handler = sata_dwc_isr
932  */
933 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
934 {
935 	struct ata_host *host = (struct ata_host *)dev_instance;
936 	struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
937 	struct ata_port *ap;
938 	struct ata_queued_cmd *qc;
939 	unsigned long flags;
940 	u8 status, tag;
941 	int handled, num_processed, port = 0;
942 	uint intpr, sactive, sactive2, tag_mask;
943 	struct sata_dwc_device_port *hsdevp;
944 	host_pvt.sata_dwc_sactive_issued = 0;
945 
946 	spin_lock_irqsave(&host->lock, flags);
947 
948 	/* Read the interrupt register */
949 	intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
950 
951 	ap = host->ports[port];
952 	hsdevp = HSDEVP_FROM_AP(ap);
953 
954 	dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
955 		ap->link.active_tag);
956 
957 	/* Check for error interrupt */
958 	if (intpr & SATA_DWC_INTPR_ERR) {
959 		sata_dwc_error_intr(ap, hsdev, intpr);
960 		handled = 1;
961 		goto DONE;
962 	}
963 
964 	/* Check for DMA SETUP FIS (FP DMA) interrupt */
965 	if (intpr & SATA_DWC_INTPR_NEWFP) {
966 		clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
967 
968 		tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
969 		dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
970 		if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
971 			dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
972 
973 		host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
974 
975 		qc = ata_qc_from_tag(ap, tag);
976 		/*
977 		 * Start FP DMA for NCQ command.  At this point the tag is the
978 		 * active tag.  It is the tag that matches the command about to
979 		 * be completed.
980 		 */
981 		qc->ap->link.active_tag = tag;
982 		sata_dwc_bmdma_start_by_tag(qc, tag);
983 
984 		handled = 1;
985 		goto DONE;
986 	}
987 	sactive = core_scr_read(SCR_ACTIVE);
988 	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
989 
990 	/* If no sactive issued and tag_mask is zero then this is not NCQ */
991 	if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
992 		if (ap->link.active_tag == ATA_TAG_POISON)
993 			tag = 0;
994 		else
995 			tag = ap->link.active_tag;
996 		qc = ata_qc_from_tag(ap, tag);
997 
998 		/* DEV interrupt w/ no active qc? */
999 		if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1000 			dev_err(ap->dev, "%s interrupt with no active qc "
1001 				"qc=%p\n", __func__, qc);
1002 			ap->ops->sff_check_status(ap);
1003 			handled = 1;
1004 			goto DONE;
1005 		}
1006 		status = ap->ops->sff_check_status(ap);
1007 
1008 		qc->ap->link.active_tag = tag;
1009 		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1010 
1011 		if (status & ATA_ERR) {
1012 			dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1013 			sata_dwc_qc_complete(ap, qc, 1);
1014 			handled = 1;
1015 			goto DONE;
1016 		}
1017 
1018 		dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1019 			__func__, get_prot_descript(qc->tf.protocol));
1020 DRVSTILLBUSY:
1021 		if (ata_is_dma(qc->tf.protocol)) {
1022 			/*
1023 			 * Each DMA transaction produces 2 interrupts. The DMAC
1024 			 * transfer complete interrupt and the SATA controller
1025 			 * operation done interrupt. The command should be
1026 			 * completed only after both interrupts are seen.
1027 			 */
1028 			host_pvt.dma_interrupt_count++;
1029 			if (hsdevp->dma_pending[tag] == \
1030 					SATA_DWC_DMA_PENDING_NONE) {
1031 				dev_err(ap->dev, "%s: DMA not pending "
1032 					"intpr=0x%08x status=0x%08x pending"
1033 					"=%d\n", __func__, intpr, status,
1034 					hsdevp->dma_pending[tag]);
1035 			}
1036 
1037 			if ((host_pvt.dma_interrupt_count % 2) == 0)
1038 				sata_dwc_dma_xfer_complete(ap, 1);
1039 		} else if (ata_is_pio(qc->tf.protocol)) {
1040 			ata_sff_hsm_move(ap, qc, status, 0);
1041 			handled = 1;
1042 			goto DONE;
1043 		} else {
1044 			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1045 				goto DRVSTILLBUSY;
1046 		}
1047 
1048 		handled = 1;
1049 		goto DONE;
1050 	}
1051 
1052 	/*
1053 	 * This is a NCQ command. At this point we need to figure out for which
1054 	 * tags we have gotten a completion interrupt.  One interrupt may serve
1055 	 * as completion for more than one operation when commands are queued
1056 	 * (NCQ).  We need to process each completed command.
1057 	 */
1058 
1059 	 /* process completed commands */
1060 	sactive = core_scr_read(SCR_ACTIVE);
1061 	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1062 
1063 	if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1064 							tag_mask > 1) {
1065 		dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1066 			"tag_mask=0x%08x\n", __func__, sactive,
1067 			host_pvt.sata_dwc_sactive_issued, tag_mask);
1068 	}
1069 
1070 	if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1071 					(host_pvt.sata_dwc_sactive_issued)) {
1072 		dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1073 			 "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1074 			 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1075 			  tag_mask);
1076 	}
1077 
1078 	/* read just to clear ... not bad if currently still busy */
1079 	status = ap->ops->sff_check_status(ap);
1080 	dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1081 
1082 	tag = 0;
1083 	num_processed = 0;
1084 	while (tag_mask) {
1085 		num_processed++;
1086 		while (!(tag_mask & 0x00000001)) {
1087 			tag++;
1088 			tag_mask <<= 1;
1089 		}
1090 
1091 		tag_mask &= (~0x00000001);
1092 		qc = ata_qc_from_tag(ap, tag);
1093 
1094 		/* To be picked up by completion functions */
1095 		qc->ap->link.active_tag = tag;
1096 		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1097 
1098 		/* Let libata/scsi layers handle error */
1099 		if (status & ATA_ERR) {
1100 			dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1101 				status);
1102 			sata_dwc_qc_complete(ap, qc, 1);
1103 			handled = 1;
1104 			goto DONE;
1105 		}
1106 
1107 		/* Process completed command */
1108 		dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1109 			get_prot_descript(qc->tf.protocol));
1110 		if (ata_is_dma(qc->tf.protocol)) {
1111 			host_pvt.dma_interrupt_count++;
1112 			if (hsdevp->dma_pending[tag] == \
1113 					SATA_DWC_DMA_PENDING_NONE)
1114 				dev_warn(ap->dev, "%s: DMA not pending?\n",
1115 					__func__);
1116 			if ((host_pvt.dma_interrupt_count % 2) == 0)
1117 				sata_dwc_dma_xfer_complete(ap, 1);
1118 		} else {
1119 			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1120 				goto STILLBUSY;
1121 		}
1122 		continue;
1123 
1124 STILLBUSY:
1125 		ap->stats.idle_irq++;
1126 		dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1127 			ap->print_id);
1128 	} /* while tag_mask */
1129 
1130 	/*
1131 	 * Check to see if any commands completed while we were processing our
1132 	 * initial set of completed commands (read status clears interrupts,
1133 	 * so we might miss a completed command interrupt if one came in while
1134 	 * we were processing --we read status as part of processing a completed
1135 	 * command).
1136 	 */
1137 	sactive2 = core_scr_read(SCR_ACTIVE);
1138 	if (sactive2 != sactive) {
1139 		dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1140 			"=0x%x\n", sactive, sactive2);
1141 	}
1142 	handled = 1;
1143 
1144 DONE:
1145 	spin_unlock_irqrestore(&host->lock, flags);
1146 	return IRQ_RETVAL(handled);
1147 }
1148 
1149 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1150 {
1151 	struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1152 
1153 	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1154 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1155 			 SATA_DWC_DMACR_RX_CLEAR(
1156 				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1157 	} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1158 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1159 			 SATA_DWC_DMACR_TX_CLEAR(
1160 				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1161 	} else {
1162 		/*
1163 		 * This should not happen, it indicates the driver is out of
1164 		 * sync.  If it does happen, clear dmacr anyway.
1165 		 */
1166 		dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1167 			"TX DMA not pending tag=0x%02x pending=%d"
1168 			" dmacr: 0x%08x\n", __func__, tag,
1169 			hsdevp->dma_pending[tag],
1170 			in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1171 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1172 			SATA_DWC_DMACR_TXRXCH_CLEAR);
1173 	}
1174 }
1175 
1176 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1177 {
1178 	struct ata_queued_cmd *qc;
1179 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1180 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1181 	u8 tag = 0;
1182 
1183 	tag = ap->link.active_tag;
1184 	qc = ata_qc_from_tag(ap, tag);
1185 	if (!qc) {
1186 		dev_err(ap->dev, "failed to get qc");
1187 		return;
1188 	}
1189 
1190 #ifdef DEBUG_NCQ
1191 	if (tag > 0) {
1192 		dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1193 			 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1194 			 get_dma_dir_descript(qc->dma_dir),
1195 			 get_prot_descript(qc->tf.protocol),
1196 			 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1197 	}
1198 #endif
1199 
1200 	if (ata_is_dma(qc->tf.protocol)) {
1201 		if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1202 			dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1203 				"pending dmacr: 0x%08x\n", __func__,
1204 				in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1205 		}
1206 
1207 		hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1208 		sata_dwc_qc_complete(ap, qc, check_status);
1209 		ap->link.active_tag = ATA_TAG_POISON;
1210 	} else {
1211 		sata_dwc_qc_complete(ap, qc, check_status);
1212 	}
1213 }
1214 
1215 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1216 				u32 check_status)
1217 {
1218 	u8 status = 0;
1219 	u32 mask = 0x0;
1220 	u8 tag = qc->tag;
1221 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1222 	host_pvt.sata_dwc_sactive_queued = 0;
1223 	dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1224 
1225 	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1226 		dev_err(ap->dev, "TX DMA PENDING\n");
1227 	else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1228 		dev_err(ap->dev, "RX DMA PENDING\n");
1229 	dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1230 		" protocol=%d\n", qc->tf.command, status, ap->print_id,
1231 		 qc->tf.protocol);
1232 
1233 	/* clear active bit */
1234 	mask = (~(qcmd_tag_to_mask(tag)));
1235 	host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1236 						& mask;
1237 	host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1238 						& mask;
1239 	ata_qc_complete(qc);
1240 	return 0;
1241 }
1242 
1243 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1244 {
1245 	/* Enable selective interrupts by setting the interrupt maskregister*/
1246 	out_le32(&hsdev->sata_dwc_regs->intmr,
1247 		 SATA_DWC_INTMR_ERRM |
1248 		 SATA_DWC_INTMR_NEWFPM |
1249 		 SATA_DWC_INTMR_PMABRTM |
1250 		 SATA_DWC_INTMR_DMATM);
1251 	/*
1252 	 * Unmask the error bits that should trigger an error interrupt by
1253 	 * setting the error mask register.
1254 	 */
1255 	out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1256 
1257 	dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1258 		 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1259 		in_le32(&hsdev->sata_dwc_regs->errmr));
1260 }
1261 
1262 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1263 {
1264 	port->cmd_addr = (void *)base + 0x00;
1265 	port->data_addr = (void *)base + 0x00;
1266 
1267 	port->error_addr = (void *)base + 0x04;
1268 	port->feature_addr = (void *)base + 0x04;
1269 
1270 	port->nsect_addr = (void *)base + 0x08;
1271 
1272 	port->lbal_addr = (void *)base + 0x0c;
1273 	port->lbam_addr = (void *)base + 0x10;
1274 	port->lbah_addr = (void *)base + 0x14;
1275 
1276 	port->device_addr = (void *)base + 0x18;
1277 	port->command_addr = (void *)base + 0x1c;
1278 	port->status_addr = (void *)base + 0x1c;
1279 
1280 	port->altstatus_addr = (void *)base + 0x20;
1281 	port->ctl_addr = (void *)base + 0x20;
1282 }
1283 
1284 /*
1285  * Function : sata_dwc_port_start
1286  * arguments : struct ata_ioports *port
1287  * Return value : returns 0 if success, error code otherwise
1288  * This function allocates the scatter gather LLI table for AHB DMA
1289  */
1290 static int sata_dwc_port_start(struct ata_port *ap)
1291 {
1292 	int err = 0;
1293 	struct sata_dwc_device *hsdev;
1294 	struct sata_dwc_device_port *hsdevp = NULL;
1295 	struct device *pdev;
1296 	int i;
1297 
1298 	hsdev = HSDEV_FROM_AP(ap);
1299 
1300 	dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1301 
1302 	hsdev->host = ap->host;
1303 	pdev = ap->host->dev;
1304 	if (!pdev) {
1305 		dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1306 		err = -ENODEV;
1307 		goto CLEANUP;
1308 	}
1309 
1310 	/* Allocate Port Struct */
1311 	hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1312 	if (!hsdevp) {
1313 		dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1314 		err = -ENOMEM;
1315 		goto CLEANUP;
1316 	}
1317 	hsdevp->hsdev = hsdev;
1318 
1319 	for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1320 		hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1321 
1322 	ap->bmdma_prd = 0;	/* set these so libata doesn't use them */
1323 	ap->bmdma_prd_dma = 0;
1324 
1325 	/*
1326 	 * DMA - Assign scatter gather LLI table. We can't use the libata
1327 	 * version since it's PRD is IDE PCI specific.
1328 	 */
1329 	for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1330 		hsdevp->llit[i] = dma_alloc_coherent(pdev,
1331 						     SATA_DWC_DMAC_LLI_TBL_SZ,
1332 						     &(hsdevp->llit_dma[i]),
1333 						     GFP_ATOMIC);
1334 		if (!hsdevp->llit[i]) {
1335 			dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1336 				 __func__);
1337 			err = -ENOMEM;
1338 			goto CLEANUP_ALLOC;
1339 		}
1340 	}
1341 
1342 	if (ap->port_no == 0)  {
1343 		dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1344 			__func__);
1345 		out_le32(&hsdev->sata_dwc_regs->dmacr,
1346 			 SATA_DWC_DMACR_TXRXCH_CLEAR);
1347 
1348 		dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1349 			 __func__);
1350 		out_le32(&hsdev->sata_dwc_regs->dbtsr,
1351 			 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1352 			  SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1353 	}
1354 
1355 	/* Clear any error bits before libata starts issuing commands */
1356 	clear_serror();
1357 	ap->private_data = hsdevp;
1358 	dev_dbg(ap->dev, "%s: done\n", __func__);
1359 	return 0;
1360 
1361 CLEANUP_ALLOC:
1362 	kfree(hsdevp);
1363 CLEANUP:
1364 	dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1365 	return err;
1366 }
1367 
1368 static void sata_dwc_port_stop(struct ata_port *ap)
1369 {
1370 	int i;
1371 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1372 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1373 
1374 	dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1375 
1376 	if (hsdevp && hsdev) {
1377 		/* deallocate LLI table */
1378 		for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1379 			dma_free_coherent(ap->host->dev,
1380 					  SATA_DWC_DMAC_LLI_TBL_SZ,
1381 					 hsdevp->llit[i], hsdevp->llit_dma[i]);
1382 		}
1383 
1384 		kfree(hsdevp);
1385 	}
1386 	ap->private_data = NULL;
1387 }
1388 
1389 /*
1390  * Function : sata_dwc_exec_command_by_tag
1391  * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1392  * Return value : None
1393  * This function keeps track of individual command tag ids and calls
1394  * ata_exec_command in libata
1395  */
1396 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1397 					 struct ata_taskfile *tf,
1398 					 u8 tag, u32 cmd_issued)
1399 {
1400 	unsigned long flags;
1401 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1402 
1403 	dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1404 		ata_get_cmd_descript(tf->command), tag);
1405 
1406 	spin_lock_irqsave(&ap->host->lock, flags);
1407 	hsdevp->cmd_issued[tag] = cmd_issued;
1408 	spin_unlock_irqrestore(&ap->host->lock, flags);
1409 	/*
1410 	 * Clear SError before executing a new command.
1411 	 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1412 	 * managed SError register for the disk needs to be done before the
1413 	 * task file is loaded.
1414 	 */
1415 	clear_serror();
1416 	ata_sff_exec_command(ap, tf);
1417 }
1418 
1419 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1420 {
1421 	sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1422 				     SATA_DWC_CMD_ISSUED_PEND);
1423 }
1424 
1425 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1426 {
1427 	u8 tag = qc->tag;
1428 
1429 	if (ata_is_ncq(qc->tf.protocol)) {
1430 		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1431 			__func__, qc->ap->link.sactive, tag);
1432 	} else {
1433 		tag = 0;
1434 	}
1435 	sata_dwc_bmdma_setup_by_tag(qc, tag);
1436 }
1437 
1438 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1439 {
1440 	int start_dma;
1441 	u32 reg, dma_chan;
1442 	struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1443 	struct ata_port *ap = qc->ap;
1444 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1445 	int dir = qc->dma_dir;
1446 	dma_chan = hsdevp->dma_chan[tag];
1447 
1448 	if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1449 		start_dma = 1;
1450 		if (dir == DMA_TO_DEVICE)
1451 			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1452 		else
1453 			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1454 	} else {
1455 		dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1456 			"(tag=%d) DMA NOT started\n", __func__,
1457 			hsdevp->cmd_issued[tag], tag);
1458 		start_dma = 0;
1459 	}
1460 
1461 	dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1462 		"start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1463 		get_dma_dir_descript(qc->dma_dir), start_dma);
1464 	sata_dwc_tf_dump(&(qc->tf));
1465 
1466 	if (start_dma) {
1467 		reg = core_scr_read(SCR_ERROR);
1468 		if (reg & SATA_DWC_SERROR_ERR_BITS) {
1469 			dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1470 				__func__, reg);
1471 		}
1472 
1473 		if (dir == DMA_TO_DEVICE)
1474 			out_le32(&hsdev->sata_dwc_regs->dmacr,
1475 				SATA_DWC_DMACR_TXCHEN);
1476 		else
1477 			out_le32(&hsdev->sata_dwc_regs->dmacr,
1478 				SATA_DWC_DMACR_RXCHEN);
1479 
1480 		/* Enable AHB DMA transfer on the specified channel */
1481 		dma_dwc_xfer_start(dma_chan);
1482 	}
1483 }
1484 
1485 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1486 {
1487 	u8 tag = qc->tag;
1488 
1489 	if (ata_is_ncq(qc->tf.protocol)) {
1490 		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1491 			__func__, qc->ap->link.sactive, tag);
1492 	} else {
1493 		tag = 0;
1494 	}
1495 	dev_dbg(qc->ap->dev, "%s\n", __func__);
1496 	sata_dwc_bmdma_start_by_tag(qc, tag);
1497 }
1498 
1499 /*
1500  * Function : sata_dwc_qc_prep_by_tag
1501  * arguments : ata_queued_cmd *qc, u8 tag
1502  * Return value : None
1503  * qc_prep for a particular queued command based on tag
1504  */
1505 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1506 {
1507 	struct scatterlist *sg = qc->sg;
1508 	struct ata_port *ap = qc->ap;
1509 	int dma_chan;
1510 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1511 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1512 
1513 	dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1514 		__func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1515 		 qc->n_elem);
1516 
1517 	dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1518 				      hsdevp->llit_dma[tag],
1519 				      (void *__iomem)(&hsdev->sata_dwc_regs->\
1520 				      dmadr), qc->dma_dir);
1521 	if (dma_chan < 0) {
1522 		dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1523 			__func__, dma_chan);
1524 		return;
1525 	}
1526 	hsdevp->dma_chan[tag] = dma_chan;
1527 }
1528 
1529 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1530 {
1531 	u32 sactive;
1532 	u8 tag = qc->tag;
1533 	struct ata_port *ap = qc->ap;
1534 
1535 #ifdef DEBUG_NCQ
1536 	if (qc->tag > 0 || ap->link.sactive > 1)
1537 		dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1538 			 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1539 			 __func__, ap->print_id, qc->tf.command,
1540 			 ata_get_cmd_descript(qc->tf.command),
1541 			 qc->tag, get_prot_descript(qc->tf.protocol),
1542 			 ap->link.active_tag, ap->link.sactive);
1543 #endif
1544 
1545 	if (!ata_is_ncq(qc->tf.protocol))
1546 		tag = 0;
1547 	sata_dwc_qc_prep_by_tag(qc, tag);
1548 
1549 	if (ata_is_ncq(qc->tf.protocol)) {
1550 		sactive = core_scr_read(SCR_ACTIVE);
1551 		sactive |= (0x00000001 << tag);
1552 		core_scr_write(SCR_ACTIVE, sactive);
1553 
1554 		dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1555 			"sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1556 			sactive);
1557 
1558 		ap->ops->sff_tf_load(ap, &qc->tf);
1559 		sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1560 					     SATA_DWC_CMD_ISSUED_PEND);
1561 	} else {
1562 		ata_sff_qc_issue(qc);
1563 	}
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Function : sata_dwc_qc_prep
1569  * arguments : ata_queued_cmd *qc
1570  * Return value : None
1571  * qc_prep for a particular queued command
1572  */
1573 
1574 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1575 {
1576 	if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1577 		return;
1578 
1579 #ifdef DEBUG_NCQ
1580 	if (qc->tag > 0)
1581 		dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1582 			 __func__, qc->tag, qc->ap->link.active_tag);
1583 
1584 	return ;
1585 #endif
1586 }
1587 
1588 static void sata_dwc_error_handler(struct ata_port *ap)
1589 {
1590 	ata_sff_error_handler(ap);
1591 }
1592 
1593 int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1594 			unsigned long deadline)
1595 {
1596 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1597 	int ret;
1598 
1599 	ret = sata_sff_hardreset(link, class, deadline);
1600 
1601 	sata_dwc_enable_interrupts(hsdev);
1602 
1603 	/* Reconfigure the DMA control register */
1604 	out_le32(&hsdev->sata_dwc_regs->dmacr,
1605 		 SATA_DWC_DMACR_TXRXCH_CLEAR);
1606 
1607 	/* Reconfigure the DMA Burst Transaction Size register */
1608 	out_le32(&hsdev->sata_dwc_regs->dbtsr,
1609 		 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1610 		 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1611 
1612 	return ret;
1613 }
1614 
1615 /*
1616  * scsi mid-layer and libata interface structures
1617  */
1618 static struct scsi_host_template sata_dwc_sht = {
1619 	ATA_NCQ_SHT(DRV_NAME),
1620 	/*
1621 	 * test-only: Currently this driver doesn't handle NCQ
1622 	 * correctly. We enable NCQ but set the queue depth to a
1623 	 * max of 1. This will get fixed in in a future release.
1624 	 */
1625 	.sg_tablesize		= LIBATA_MAX_PRD,
1626 	.can_queue		= ATA_DEF_QUEUE,	/* ATA_MAX_QUEUE */
1627 	.dma_boundary		= ATA_DMA_BOUNDARY,
1628 };
1629 
1630 static struct ata_port_operations sata_dwc_ops = {
1631 	.inherits		= &ata_sff_port_ops,
1632 
1633 	.error_handler		= sata_dwc_error_handler,
1634 	.hardreset		= sata_dwc_hardreset,
1635 
1636 	.qc_prep		= sata_dwc_qc_prep,
1637 	.qc_issue		= sata_dwc_qc_issue,
1638 
1639 	.scr_read		= sata_dwc_scr_read,
1640 	.scr_write		= sata_dwc_scr_write,
1641 
1642 	.port_start		= sata_dwc_port_start,
1643 	.port_stop		= sata_dwc_port_stop,
1644 
1645 	.bmdma_setup		= sata_dwc_bmdma_setup,
1646 	.bmdma_start		= sata_dwc_bmdma_start,
1647 };
1648 
1649 static const struct ata_port_info sata_dwc_port_info[] = {
1650 	{
1651 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
1652 		.pio_mask	= ATA_PIO4,
1653 		.udma_mask	= ATA_UDMA6,
1654 		.port_ops	= &sata_dwc_ops,
1655 	},
1656 };
1657 
1658 static int sata_dwc_probe(struct platform_device *ofdev)
1659 {
1660 	struct sata_dwc_device *hsdev;
1661 	u32 idr, versionr;
1662 	char *ver = (char *)&versionr;
1663 	u8 *base = NULL;
1664 	int err = 0;
1665 	int irq, rc;
1666 	struct ata_host *host;
1667 	struct ata_port_info pi = sata_dwc_port_info[0];
1668 	const struct ata_port_info *ppi[] = { &pi, NULL };
1669 	struct device_node *np = ofdev->dev.of_node;
1670 	u32 dma_chan;
1671 
1672 	/* Allocate DWC SATA device */
1673 	hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1674 	if (hsdev == NULL) {
1675 		dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1676 		err = -ENOMEM;
1677 		goto error;
1678 	}
1679 
1680 	if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1681 		dev_warn(&ofdev->dev, "no dma-channel property set."
1682 			 " Use channel 0\n");
1683 		dma_chan = 0;
1684 	}
1685 	host_pvt.dma_channel = dma_chan;
1686 
1687 	/* Ioremap SATA registers */
1688 	base = of_iomap(ofdev->dev.of_node, 0);
1689 	if (!base) {
1690 		dev_err(&ofdev->dev, "ioremap failed for SATA register"
1691 			" address\n");
1692 		err = -ENODEV;
1693 		goto error_kmalloc;
1694 	}
1695 	hsdev->reg_base = base;
1696 	dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1697 
1698 	/* Synopsys DWC SATA specific Registers */
1699 	hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1700 
1701 	/* Allocate and fill host */
1702 	host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1703 	if (!host) {
1704 		dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1705 		err = -ENOMEM;
1706 		goto error_iomap;
1707 	}
1708 
1709 	host->private_data = hsdev;
1710 
1711 	/* Setup port */
1712 	host->ports[0]->ioaddr.cmd_addr = base;
1713 	host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1714 	host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1715 	sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1716 
1717 	/* Read the ID and Version Registers */
1718 	idr = in_le32(&hsdev->sata_dwc_regs->idr);
1719 	versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1720 	dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1721 		   idr, ver[0], ver[1], ver[2]);
1722 
1723 	/* Get SATA DMA interrupt number */
1724 	irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1725 	if (irq == NO_IRQ) {
1726 		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1727 		err = -ENODEV;
1728 		goto error_out;
1729 	}
1730 
1731 	/* Get physical SATA DMA register base address */
1732 	host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1733 	if (!(host_pvt.sata_dma_regs)) {
1734 		dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1735 			" address\n");
1736 		err = -ENODEV;
1737 		goto error_out;
1738 	}
1739 
1740 	/* Save dev for later use in dev_xxx() routines */
1741 	host_pvt.dwc_dev = &ofdev->dev;
1742 
1743 	/* Initialize AHB DMAC */
1744 	dma_dwc_init(hsdev, irq);
1745 
1746 	/* Enable SATA Interrupts */
1747 	sata_dwc_enable_interrupts(hsdev);
1748 
1749 	/* Get SATA interrupt number */
1750 	irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1751 	if (irq == NO_IRQ) {
1752 		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1753 		err = -ENODEV;
1754 		goto error_out;
1755 	}
1756 
1757 	/*
1758 	 * Now, register with libATA core, this will also initiate the
1759 	 * device discovery process, invoking our port_start() handler &
1760 	 * error_handler() to execute a dummy Softreset EH session
1761 	 */
1762 	rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1763 
1764 	if (rc != 0)
1765 		dev_err(&ofdev->dev, "failed to activate host");
1766 
1767 	dev_set_drvdata(&ofdev->dev, host);
1768 	return 0;
1769 
1770 error_out:
1771 	/* Free SATA DMA resources */
1772 	dma_dwc_exit(hsdev);
1773 
1774 error_iomap:
1775 	iounmap(base);
1776 error_kmalloc:
1777 	kfree(hsdev);
1778 error:
1779 	return err;
1780 }
1781 
1782 static int sata_dwc_remove(struct platform_device *ofdev)
1783 {
1784 	struct device *dev = &ofdev->dev;
1785 	struct ata_host *host = dev_get_drvdata(dev);
1786 	struct sata_dwc_device *hsdev = host->private_data;
1787 
1788 	ata_host_detach(host);
1789 	dev_set_drvdata(dev, NULL);
1790 
1791 	/* Free SATA DMA resources */
1792 	dma_dwc_exit(hsdev);
1793 
1794 	iounmap(hsdev->reg_base);
1795 	kfree(hsdev);
1796 	kfree(host);
1797 	dev_dbg(&ofdev->dev, "done\n");
1798 	return 0;
1799 }
1800 
1801 static const struct of_device_id sata_dwc_match[] = {
1802 	{ .compatible = "amcc,sata-460ex", },
1803 	{}
1804 };
1805 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1806 
1807 static struct platform_driver sata_dwc_driver = {
1808 	.driver = {
1809 		.name = DRV_NAME,
1810 		.owner = THIS_MODULE,
1811 		.of_match_table = sata_dwc_match,
1812 	},
1813 	.probe = sata_dwc_probe,
1814 	.remove = sata_dwc_remove,
1815 };
1816 
1817 module_platform_driver(sata_dwc_driver);
1818 
1819 MODULE_LICENSE("GPL");
1820 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1821 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1822 MODULE_VERSION(DRV_VERSION);
1823