xref: /openbmc/linux/drivers/ata/sata_dwc_460ex.c (revision 92a2c6b2)
1 /*
2  * drivers/ata/sata_dwc_460ex.c
3  *
4  * Synopsys DesignWare Cores (DWC) SATA host driver
5  *
6  * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7  *
8  * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9  * Copyright 2008 DENX Software Engineering
10  *
11  * Based on versions provided by AMCC and Synopsys which are:
12  *          Copyright 2006 Applied Micro Circuits Corporation
13  *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20 
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
24 
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_platform.h>
36 #include <linux/platform_device.h>
37 #include <linux/libata.h>
38 #include <linux/slab.h>
39 #include "libata.h"
40 
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_cmnd.h>
43 
44 /* These two are defined in "libata.h" */
45 #undef	DRV_NAME
46 #undef	DRV_VERSION
47 
48 #define DRV_NAME        "sata-dwc"
49 #define DRV_VERSION     "1.3"
50 
51 #ifndef out_le32
52 #define out_le32(a, v)	__raw_writel(__cpu_to_le32(v), (void __iomem *)(a))
53 #endif
54 
55 #ifndef in_le32
56 #define in_le32(a)	__le32_to_cpu(__raw_readl((void __iomem *)(a)))
57 #endif
58 
59 #ifndef NO_IRQ
60 #define NO_IRQ		0
61 #endif
62 
63 /* SATA DMA driver Globals */
64 #define DMA_NUM_CHANS		1
65 #define DMA_NUM_CHAN_REGS	8
66 
67 /* SATA DMA Register definitions */
68 #define AHB_DMA_BRST_DFLT	64	/* 16 data items burst length*/
69 
70 struct dmareg {
71 	u32 low;		/* Low bits 0-31 */
72 	u32 high;		/* High bits 32-63 */
73 };
74 
75 /* DMA Per Channel registers */
76 struct dma_chan_regs {
77 	struct dmareg sar;	/* Source Address */
78 	struct dmareg dar;	/* Destination address */
79 	struct dmareg llp;	/* Linked List Pointer */
80 	struct dmareg ctl;	/* Control */
81 	struct dmareg sstat;	/* Source Status not implemented in core */
82 	struct dmareg dstat;	/* Destination Status not implemented in core*/
83 	struct dmareg sstatar;	/* Source Status Address not impl in core */
84 	struct dmareg dstatar;	/* Destination Status Address not implemente */
85 	struct dmareg cfg;	/* Config */
86 	struct dmareg sgr;	/* Source Gather */
87 	struct dmareg dsr;	/* Destination Scatter */
88 };
89 
90 /* Generic Interrupt Registers */
91 struct dma_interrupt_regs {
92 	struct dmareg tfr;	/* Transfer Interrupt */
93 	struct dmareg block;	/* Block Interrupt */
94 	struct dmareg srctran;	/* Source Transfer Interrupt */
95 	struct dmareg dsttran;	/* Dest Transfer Interrupt */
96 	struct dmareg error;	/* Error */
97 };
98 
99 struct ahb_dma_regs {
100 	struct dma_chan_regs	chan_regs[DMA_NUM_CHAN_REGS];
101 	struct dma_interrupt_regs interrupt_raw;	/* Raw Interrupt */
102 	struct dma_interrupt_regs interrupt_status;	/* Interrupt Status */
103 	struct dma_interrupt_regs interrupt_mask;	/* Interrupt Mask */
104 	struct dma_interrupt_regs interrupt_clear;	/* Interrupt Clear */
105 	struct dmareg		statusInt;	/* Interrupt combined*/
106 	struct dmareg		rq_srcreg;	/* Src Trans Req */
107 	struct dmareg		rq_dstreg;	/* Dst Trans Req */
108 	struct dmareg		rq_sgl_srcreg;	/* Sngl Src Trans Req*/
109 	struct dmareg		rq_sgl_dstreg;	/* Sngl Dst Trans Req*/
110 	struct dmareg		rq_lst_srcreg;	/* Last Src Trans Req*/
111 	struct dmareg		rq_lst_dstreg;	/* Last Dst Trans Req*/
112 	struct dmareg		dma_cfg;		/* DMA Config */
113 	struct dmareg		dma_chan_en;		/* DMA Channel Enable*/
114 	struct dmareg		dma_id;			/* DMA ID */
115 	struct dmareg		dma_test;		/* DMA Test */
116 	struct dmareg		res1;			/* reserved */
117 	struct dmareg		res2;			/* reserved */
118 	/*
119 	 * DMA Comp Params
120 	 * Param 6 = dma_param[0], Param 5 = dma_param[1],
121 	 * Param 4 = dma_param[2] ...
122 	 */
123 	struct dmareg		dma_params[6];
124 };
125 
126 /* Data structure for linked list item */
127 struct lli {
128 	u32		sar;		/* Source Address */
129 	u32		dar;		/* Destination address */
130 	u32		llp;		/* Linked List Pointer */
131 	struct dmareg	ctl;		/* Control */
132 	struct dmareg	dstat;		/* Destination Status */
133 };
134 
135 enum {
136 	SATA_DWC_DMAC_LLI_SZ =	(sizeof(struct lli)),
137 	SATA_DWC_DMAC_LLI_NUM =	256,
138 	SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
139 					SATA_DWC_DMAC_LLI_NUM),
140 	SATA_DWC_DMAC_TWIDTH_BYTES = 4,
141 	SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
142 						SATA_DWC_DMAC_TWIDTH_BYTES),
143 };
144 
145 /* DMA Register Operation Bits */
146 enum {
147 	DMA_EN	=		0x00000001, /* Enable AHB DMA */
148 	DMA_CTL_LLP_SRCEN =	0x10000000, /* Blk chain enable Src */
149 	DMA_CTL_LLP_DSTEN =	0x08000000, /* Blk chain enable Dst */
150 };
151 
152 #define	DMA_CTL_BLK_TS(size)	((size) & 0x000000FFF)	/* Blk Transfer size */
153 #define DMA_CHANNEL(ch)		(0x00000001 << (ch))	/* Select channel */
154 	/* Enable channel */
155 #define	DMA_ENABLE_CHAN(ch)	((0x00000001 << (ch)) |			\
156 				 ((0x000000001 << (ch)) << 8))
157 	/* Disable channel */
158 #define	DMA_DISABLE_CHAN(ch)	(0x00000000 | ((0x000000001 << (ch)) << 8))
159 	/* Transfer Type & Flow Controller */
160 #define	DMA_CTL_TTFC(type)	(((type) & 0x7) << 20)
161 #define	DMA_CTL_SMS(num)	(((num) & 0x3) << 25) /* Src Master Select */
162 #define	DMA_CTL_DMS(num)	(((num) & 0x3) << 23)/* Dst Master Select */
163 	/* Src Burst Transaction Length */
164 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
165 	/* Dst Burst Transaction Length */
166 #define	DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
167 	/* Source Transfer Width */
168 #define	DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
169 	/* Destination Transfer Width */
170 #define	DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
171 
172 /* Assign HW handshaking interface (x) to destination / source peripheral */
173 #define	DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
174 #define	DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
175 #define	DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
176 #define	DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
177 
178 /*
179  * This define is used to set block chaining disabled in the control low
180  * register.  It is already in little endian format so it can be &'d dirctly.
181  * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
182  */
183 enum {
184 	DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
185 	DMA_CTL_TTFC_P2M_DMAC =	0x00000002, /* Per to mem, DMAC cntr */
186 	DMA_CTL_TTFC_M2P_PER =	0x00000003, /* Mem to per, peripheral cntr */
187 	DMA_CTL_SINC_INC =	0x00000000, /* Source Address Increment */
188 	DMA_CTL_SINC_DEC =	0x00000200,
189 	DMA_CTL_SINC_NOCHANGE =	0x00000400,
190 	DMA_CTL_DINC_INC =	0x00000000, /* Destination Address Increment */
191 	DMA_CTL_DINC_DEC =	0x00000080,
192 	DMA_CTL_DINC_NOCHANGE =	0x00000100,
193 	DMA_CTL_INT_EN =	0x00000001, /* Interrupt Enable */
194 
195 /* Channel Configuration Register high bits */
196 	DMA_CFG_FCMOD_REQ =	0x00000001, /* Flow Control - request based */
197 	DMA_CFG_PROTCTL	=	(0x00000003 << 2),/* Protection Control */
198 
199 /* Channel Configuration Register low bits */
200 	DMA_CFG_RELD_DST =	0x80000000, /* Reload Dest / Src Addr */
201 	DMA_CFG_RELD_SRC =	0x40000000,
202 	DMA_CFG_HS_SELSRC =	0x00000800, /* Software handshake Src/ Dest */
203 	DMA_CFG_HS_SELDST =	0x00000400,
204 	DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
205 
206 /* Channel Linked List Pointer Register */
207 	DMA_LLP_AHBMASTER1 =	0,	/* List Master Select */
208 	DMA_LLP_AHBMASTER2 =	1,
209 
210 	SATA_DWC_MAX_PORTS = 1,
211 
212 	SATA_DWC_SCR_OFFSET = 0x24,
213 	SATA_DWC_REG_OFFSET = 0x64,
214 };
215 
216 /* DWC SATA Registers */
217 struct sata_dwc_regs {
218 	u32 fptagr;		/* 1st party DMA tag */
219 	u32 fpbor;		/* 1st party DMA buffer offset */
220 	u32 fptcr;		/* 1st party DMA Xfr count */
221 	u32 dmacr;		/* DMA Control */
222 	u32 dbtsr;		/* DMA Burst Transac size */
223 	u32 intpr;		/* Interrupt Pending */
224 	u32 intmr;		/* Interrupt Mask */
225 	u32 errmr;		/* Error Mask */
226 	u32 llcr;		/* Link Layer Control */
227 	u32 phycr;		/* PHY Control */
228 	u32 physr;		/* PHY Status */
229 	u32 rxbistpd;		/* Recvd BIST pattern def register */
230 	u32 rxbistpd1;		/* Recvd BIST data dword1 */
231 	u32 rxbistpd2;		/* Recvd BIST pattern data dword2 */
232 	u32 txbistpd;		/* Trans BIST pattern def register */
233 	u32 txbistpd1;		/* Trans BIST data dword1 */
234 	u32 txbistpd2;		/* Trans BIST data dword2 */
235 	u32 bistcr;		/* BIST Control Register */
236 	u32 bistfctr;		/* BIST FIS Count Register */
237 	u32 bistsr;		/* BIST Status Register */
238 	u32 bistdecr;		/* BIST Dword Error count register */
239 	u32 res[15];		/* Reserved locations */
240 	u32 testr;		/* Test Register */
241 	u32 versionr;		/* Version Register */
242 	u32 idr;		/* ID Register */
243 	u32 unimpl[192];	/* Unimplemented */
244 	u32 dmadr[256];	/* FIFO Locations in DMA Mode */
245 };
246 
247 enum {
248 	SCR_SCONTROL_DET_ENABLE	=	0x00000001,
249 	SCR_SSTATUS_DET_PRESENT	=	0x00000001,
250 	SCR_SERROR_DIAG_X	=	0x04000000,
251 /* DWC SATA Register Operations */
252 	SATA_DWC_TXFIFO_DEPTH	=	0x01FF,
253 	SATA_DWC_RXFIFO_DEPTH	=	0x01FF,
254 	SATA_DWC_DMACR_TMOD_TXCHEN =	0x00000004,
255 	SATA_DWC_DMACR_TXCHEN	= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
256 	SATA_DWC_DMACR_RXCHEN	= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
257 	SATA_DWC_DMACR_TXRXCH_CLEAR =	SATA_DWC_DMACR_TMOD_TXCHEN,
258 	SATA_DWC_INTPR_DMAT	=	0x00000001,
259 	SATA_DWC_INTPR_NEWFP	=	0x00000002,
260 	SATA_DWC_INTPR_PMABRT	=	0x00000004,
261 	SATA_DWC_INTPR_ERR	=	0x00000008,
262 	SATA_DWC_INTPR_NEWBIST	=	0x00000010,
263 	SATA_DWC_INTPR_IPF	=	0x10000000,
264 	SATA_DWC_INTMR_DMATM	=	0x00000001,
265 	SATA_DWC_INTMR_NEWFPM	=	0x00000002,
266 	SATA_DWC_INTMR_PMABRTM	=	0x00000004,
267 	SATA_DWC_INTMR_ERRM	=	0x00000008,
268 	SATA_DWC_INTMR_NEWBISTM	=	0x00000010,
269 	SATA_DWC_LLCR_SCRAMEN	=	0x00000001,
270 	SATA_DWC_LLCR_DESCRAMEN	=	0x00000002,
271 	SATA_DWC_LLCR_RPDEN	=	0x00000004,
272 /* This is all error bits, zero's are reserved fields. */
273 	SATA_DWC_SERROR_ERR_BITS =	0x0FFF0F03
274 };
275 
276 #define SATA_DWC_SCR0_SPD_GET(v)	(((v) >> 4) & 0x0000000F)
277 #define SATA_DWC_DMACR_TX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_TXCHEN) |\
278 						 SATA_DWC_DMACR_TMOD_TXCHEN)
279 #define SATA_DWC_DMACR_RX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_RXCHEN) |\
280 						 SATA_DWC_DMACR_TMOD_TXCHEN)
281 #define SATA_DWC_DBTSR_MWR(size)	(((size)/4) & SATA_DWC_TXFIFO_DEPTH)
282 #define SATA_DWC_DBTSR_MRD(size)	((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
283 						 << 16)
284 struct sata_dwc_device {
285 	struct device		*dev;		/* generic device struct */
286 	struct ata_probe_ent	*pe;		/* ptr to probe-ent */
287 	struct ata_host		*host;
288 	u8 __iomem		*reg_base;
289 	struct sata_dwc_regs	*sata_dwc_regs;	/* DW Synopsys SATA specific */
290 	int			irq_dma;
291 };
292 
293 #define SATA_DWC_QCMD_MAX	32
294 
295 struct sata_dwc_device_port {
296 	struct sata_dwc_device	*hsdev;
297 	int			cmd_issued[SATA_DWC_QCMD_MAX];
298 	struct lli		*llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
299 	dma_addr_t		llit_dma[SATA_DWC_QCMD_MAX];
300 	u32			dma_chan[SATA_DWC_QCMD_MAX];
301 	int			dma_pending[SATA_DWC_QCMD_MAX];
302 };
303 
304 /*
305  * Commonly used DWC SATA driver Macros
306  */
307 #define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
308 					(host)->private_data)
309 #define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
310 					(ap)->host->private_data)
311 #define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
312 					(ap)->private_data)
313 #define HSDEV_FROM_QC(qc)	((struct sata_dwc_device *)\
314 					(qc)->ap->host->private_data)
315 #define HSDEV_FROM_HSDEVP(p)	((struct sata_dwc_device *)\
316 						(hsdevp)->hsdev)
317 
318 enum {
319 	SATA_DWC_CMD_ISSUED_NOT		= 0,
320 	SATA_DWC_CMD_ISSUED_PEND	= 1,
321 	SATA_DWC_CMD_ISSUED_EXEC	= 2,
322 	SATA_DWC_CMD_ISSUED_NODATA	= 3,
323 
324 	SATA_DWC_DMA_PENDING_NONE	= 0,
325 	SATA_DWC_DMA_PENDING_TX		= 1,
326 	SATA_DWC_DMA_PENDING_RX		= 2,
327 };
328 
329 struct sata_dwc_host_priv {
330 	void	__iomem	 *scr_addr_sstatus;
331 	u32	sata_dwc_sactive_issued ;
332 	u32	sata_dwc_sactive_queued ;
333 	u32	dma_interrupt_count;
334 	struct	ahb_dma_regs	*sata_dma_regs;
335 	struct	device	*dwc_dev;
336 	int	dma_channel;
337 };
338 
339 static struct sata_dwc_host_priv host_pvt;
340 
341 /*
342  * Prototypes
343  */
344 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
345 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
346 				u32 check_status);
347 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
348 static void sata_dwc_port_stop(struct ata_port *ap);
349 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
350 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
351 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
352 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
353 			      struct lli *lli, dma_addr_t dma_lli,
354 			      void __iomem *addr, int dir);
355 static void dma_dwc_xfer_start(int dma_ch);
356 
357 static const char *get_prot_descript(u8 protocol)
358 {
359 	switch ((enum ata_tf_protocols)protocol) {
360 	case ATA_PROT_NODATA:
361 		return "ATA no data";
362 	case ATA_PROT_PIO:
363 		return "ATA PIO";
364 	case ATA_PROT_DMA:
365 		return "ATA DMA";
366 	case ATA_PROT_NCQ:
367 		return "ATA NCQ";
368 	case ATAPI_PROT_NODATA:
369 		return "ATAPI no data";
370 	case ATAPI_PROT_PIO:
371 		return "ATAPI PIO";
372 	case ATAPI_PROT_DMA:
373 		return "ATAPI DMA";
374 	default:
375 		return "unknown";
376 	}
377 }
378 
379 static const char *get_dma_dir_descript(int dma_dir)
380 {
381 	switch ((enum dma_data_direction)dma_dir) {
382 	case DMA_BIDIRECTIONAL:
383 		return "bidirectional";
384 	case DMA_TO_DEVICE:
385 		return "to device";
386 	case DMA_FROM_DEVICE:
387 		return "from device";
388 	default:
389 		return "none";
390 	}
391 }
392 
393 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
394 {
395 	dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
396 		"0x%lx device: %x\n", tf->command,
397 		get_prot_descript(tf->protocol), tf->flags, tf->device);
398 	dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
399 		"lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
400 		 tf->lbam, tf->lbah);
401 	dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
402 		"hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
403 		tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
404 		tf->hob_lbah);
405 }
406 
407 /*
408  * Function: get_burst_length_encode
409  * arguments: datalength: length in bytes of data
410  * returns value to be programmed in register corresponding to data length
411  * This value is effectively the log(base 2) of the length
412  */
413 static  int get_burst_length_encode(int datalength)
414 {
415 	int items = datalength >> 2;	/* div by 4 to get lword count */
416 
417 	if (items >= 64)
418 		return 5;
419 
420 	if (items >= 32)
421 		return 4;
422 
423 	if (items >= 16)
424 		return 3;
425 
426 	if (items >= 8)
427 		return 2;
428 
429 	if (items >= 4)
430 		return 1;
431 
432 	return 0;
433 }
434 
435 static  void clear_chan_interrupts(int c)
436 {
437 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
438 		 DMA_CHANNEL(c));
439 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
440 		 DMA_CHANNEL(c));
441 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
442 		 DMA_CHANNEL(c));
443 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
444 		 DMA_CHANNEL(c));
445 	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
446 		 DMA_CHANNEL(c));
447 }
448 
449 /*
450  * Function: dma_request_channel
451  * arguments: None
452  * returns channel number if available else -1
453  * This function assigns the next available DMA channel from the list to the
454  * requester
455  */
456 static int dma_request_channel(void)
457 {
458 	/* Check if the channel is not currently in use */
459 	if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
460 		DMA_CHANNEL(host_pvt.dma_channel)))
461 		return host_pvt.dma_channel;
462 	dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
463 		__func__, host_pvt.dma_channel);
464 	return -1;
465 }
466 
467 /*
468  * Function: dma_dwc_interrupt
469  * arguments: irq, dev_id, pt_regs
470  * returns channel number if available else -1
471  * Interrupt Handler for DW AHB SATA DMA
472  */
473 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
474 {
475 	int chan;
476 	u32 tfr_reg, err_reg;
477 	unsigned long flags;
478 	struct sata_dwc_device *hsdev = hsdev_instance;
479 	struct ata_host *host = (struct ata_host *)hsdev->host;
480 	struct ata_port *ap;
481 	struct sata_dwc_device_port *hsdevp;
482 	u8 tag = 0;
483 	unsigned int port = 0;
484 
485 	spin_lock_irqsave(&host->lock, flags);
486 	ap = host->ports[port];
487 	hsdevp = HSDEVP_FROM_AP(ap);
488 	tag = ap->link.active_tag;
489 
490 	tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
491 			.low));
492 	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
493 			.low));
494 
495 	dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
496 		tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
497 
498 	chan = host_pvt.dma_channel;
499 	if (chan >= 0) {
500 		/* Check for end-of-transfer interrupt. */
501 		if (tfr_reg & DMA_CHANNEL(chan)) {
502 			/*
503 			 * Each DMA command produces 2 interrupts.  Only
504 			 * complete the command after both interrupts have been
505 			 * seen. (See sata_dwc_isr())
506 			 */
507 			host_pvt.dma_interrupt_count++;
508 			sata_dwc_clear_dmacr(hsdevp, tag);
509 
510 			if (hsdevp->dma_pending[tag] ==
511 			    SATA_DWC_DMA_PENDING_NONE) {
512 				dev_err(ap->dev, "DMA not pending eot=0x%08x "
513 					"err=0x%08x tag=0x%02x pending=%d\n",
514 					tfr_reg, err_reg, tag,
515 					hsdevp->dma_pending[tag]);
516 			}
517 
518 			if ((host_pvt.dma_interrupt_count % 2) == 0)
519 				sata_dwc_dma_xfer_complete(ap, 1);
520 
521 			/* Clear the interrupt */
522 			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
523 				.tfr.low),
524 				 DMA_CHANNEL(chan));
525 		}
526 
527 		/* Check for error interrupt. */
528 		if (err_reg & DMA_CHANNEL(chan)) {
529 			/* TODO Need error handler ! */
530 			dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
531 				err_reg);
532 
533 			/* Clear the interrupt. */
534 			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
535 				.error.low),
536 				 DMA_CHANNEL(chan));
537 		}
538 	}
539 	spin_unlock_irqrestore(&host->lock, flags);
540 	return IRQ_HANDLED;
541 }
542 
543 /*
544  * Function: dma_request_interrupts
545  * arguments: hsdev
546  * returns status
547  * This function registers ISR for a particular DMA channel interrupt
548  */
549 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
550 {
551 	int retval = 0;
552 	int chan = host_pvt.dma_channel;
553 
554 	if (chan >= 0) {
555 		/* Unmask error interrupt */
556 		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
557 			 DMA_ENABLE_CHAN(chan));
558 
559 		/* Unmask end-of-transfer interrupt */
560 		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
561 			 DMA_ENABLE_CHAN(chan));
562 	}
563 
564 	retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
565 	if (retval) {
566 		dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
567 		__func__, irq);
568 		return -ENODEV;
569 	}
570 
571 	/* Mark this interrupt as requested */
572 	hsdev->irq_dma = irq;
573 	return 0;
574 }
575 
576 /*
577  * Function: map_sg_to_lli
578  * The Synopsis driver has a comment proposing that better performance
579  * is possible by only enabling interrupts on the last item in the linked list.
580  * However, it seems that could be a problem if an error happened on one of the
581  * first items.  The transfer would halt, but no error interrupt would occur.
582  * Currently this function sets interrupts enabled for each linked list item:
583  * DMA_CTL_INT_EN.
584  */
585 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
586 			struct lli *lli, dma_addr_t dma_lli,
587 			void __iomem *dmadr_addr, int dir)
588 {
589 	int i, idx = 0;
590 	int fis_len = 0;
591 	dma_addr_t next_llp;
592 	int bl;
593 	int sms_val, dms_val;
594 
595 	sms_val = 0;
596 	dms_val = 1 + host_pvt.dma_channel;
597 	dev_dbg(host_pvt.dwc_dev,
598 		"%s: sg=%p nelem=%d lli=%p dma_lli=0x%pad dmadr=0x%p\n",
599 		__func__, sg, num_elems, lli, &dma_lli, dmadr_addr);
600 
601 	bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
602 
603 	for (i = 0; i < num_elems; i++, sg++) {
604 		u32 addr, offset;
605 		u32 sg_len, len;
606 
607 		addr = (u32) sg_dma_address(sg);
608 		sg_len = sg_dma_len(sg);
609 
610 		dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
611 			"=%d\n", __func__, i, addr, sg_len);
612 
613 		while (sg_len) {
614 			if (idx >= SATA_DWC_DMAC_LLI_NUM) {
615 				/* The LLI table is not large enough. */
616 				dev_err(host_pvt.dwc_dev, "LLI table overrun "
617 				"(idx=%d)\n", idx);
618 				break;
619 			}
620 			len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
621 				SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
622 
623 			offset = addr & 0xffff;
624 			if ((offset + sg_len) > 0x10000)
625 				len = 0x10000 - offset;
626 
627 			/*
628 			 * Make sure a LLI block is not created that will span
629 			 * 8K max FIS boundary.  If the block spans such a FIS
630 			 * boundary, there is a chance that a DMA burst will
631 			 * cross that boundary -- this results in an error in
632 			 * the host controller.
633 			 */
634 			if (fis_len + len > 8192) {
635 				dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
636 					"%d(0x%x) len=%d(0x%x)\n", fis_len,
637 					 fis_len, len, len);
638 				len = 8192 - fis_len;
639 				fis_len = 0;
640 			} else {
641 				fis_len += len;
642 			}
643 			if (fis_len == 8192)
644 				fis_len = 0;
645 
646 			/*
647 			 * Set DMA addresses and lower half of control register
648 			 * based on direction.
649 			 */
650 			if (dir == DMA_FROM_DEVICE) {
651 				lli[idx].dar = cpu_to_le32(addr);
652 				lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
653 
654 				lli[idx].ctl.low = cpu_to_le32(
655 					DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
656 					DMA_CTL_SMS(sms_val) |
657 					DMA_CTL_DMS(dms_val) |
658 					DMA_CTL_SRC_MSIZE(bl) |
659 					DMA_CTL_DST_MSIZE(bl) |
660 					DMA_CTL_SINC_NOCHANGE |
661 					DMA_CTL_SRC_TRWID(2) |
662 					DMA_CTL_DST_TRWID(2) |
663 					DMA_CTL_INT_EN |
664 					DMA_CTL_LLP_SRCEN |
665 					DMA_CTL_LLP_DSTEN);
666 			} else {	/* DMA_TO_DEVICE */
667 				lli[idx].sar = cpu_to_le32(addr);
668 				lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
669 
670 				lli[idx].ctl.low = cpu_to_le32(
671 					DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
672 					DMA_CTL_SMS(dms_val) |
673 					DMA_CTL_DMS(sms_val) |
674 					DMA_CTL_SRC_MSIZE(bl) |
675 					DMA_CTL_DST_MSIZE(bl) |
676 					DMA_CTL_DINC_NOCHANGE |
677 					DMA_CTL_SRC_TRWID(2) |
678 					DMA_CTL_DST_TRWID(2) |
679 					DMA_CTL_INT_EN |
680 					DMA_CTL_LLP_SRCEN |
681 					DMA_CTL_LLP_DSTEN);
682 			}
683 
684 			dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
685 				"0x%08x val: 0x%08x\n", __func__,
686 				len, DMA_CTL_BLK_TS(len / 4));
687 
688 			/* Program the LLI CTL high register */
689 			lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
690 						(len / 4));
691 
692 			/* Program the next pointer.  The next pointer must be
693 			 * the physical address, not the virtual address.
694 			 */
695 			next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
696 							lli)));
697 
698 			/* The last 2 bits encode the list master select. */
699 			next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
700 
701 			lli[idx].llp = cpu_to_le32(next_llp);
702 			idx++;
703 			sg_len -= len;
704 			addr += len;
705 		}
706 	}
707 
708 	/*
709 	 * The last next ptr has to be zero and the last control low register
710 	 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
711 	 * and destination enable) set back to 0 (disabled.) This is what tells
712 	 * the core that this is the last item in the linked list.
713 	 */
714 	if (idx) {
715 		lli[idx-1].llp = 0x00000000;
716 		lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
717 
718 		/* Flush cache to memory */
719 		dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
720 			       DMA_BIDIRECTIONAL);
721 	}
722 
723 	return idx;
724 }
725 
726 /*
727  * Function: dma_dwc_xfer_start
728  * arguments: Channel number
729  * Return : None
730  * Enables the DMA channel
731  */
732 static void dma_dwc_xfer_start(int dma_ch)
733 {
734 	/* Enable the DMA channel */
735 	out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
736 		 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
737 		 DMA_ENABLE_CHAN(dma_ch));
738 }
739 
740 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
741 			      struct lli *lli, dma_addr_t dma_lli,
742 			      void __iomem *addr, int dir)
743 {
744 	int dma_ch;
745 	int num_lli;
746 	/* Acquire DMA channel */
747 	dma_ch = dma_request_channel();
748 	if (dma_ch == -1) {
749 		dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
750 			 __func__);
751 		return -EAGAIN;
752 	}
753 
754 	/* Convert SG list to linked list of items (LLIs) for AHB DMA */
755 	num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
756 
757 	dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
758 		" 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
759 		 lli, (u32)dma_lli, addr, num_lli);
760 
761 	clear_chan_interrupts(dma_ch);
762 
763 	/* Program the CFG register. */
764 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
765 		 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
766 		 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
767 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
768 		 DMA_CFG_HW_CH_PRIOR(dma_ch));
769 
770 	/* Program the address of the linked list */
771 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
772 		 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
773 
774 	/* Program the CTL register with src enable / dst enable */
775 	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
776 		 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
777 	return dma_ch;
778 }
779 
780 /*
781  * Function: dma_dwc_exit
782  * arguments: None
783  * returns status
784  * This function exits the SATA DMA driver
785  */
786 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
787 {
788 	dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
789 	if (host_pvt.sata_dma_regs) {
790 		iounmap((void __iomem *)host_pvt.sata_dma_regs);
791 		host_pvt.sata_dma_regs = NULL;
792 	}
793 
794 	if (hsdev->irq_dma) {
795 		free_irq(hsdev->irq_dma, hsdev);
796 		hsdev->irq_dma = 0;
797 	}
798 }
799 
800 /*
801  * Function: dma_dwc_init
802  * arguments: hsdev
803  * returns status
804  * This function initializes the SATA DMA driver
805  */
806 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
807 {
808 	int err;
809 
810 	err = dma_request_interrupts(hsdev, irq);
811 	if (err) {
812 		dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
813 			" %d\n", __func__, err);
814 		return err;
815 	}
816 
817 	/* Enabe DMA */
818 	out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
819 
820 	dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
821 	dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
822 		sata_dma_regs);
823 
824 	return 0;
825 }
826 
827 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
828 {
829 	if (scr > SCR_NOTIFICATION) {
830 		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
831 			__func__, scr);
832 		return -EINVAL;
833 	}
834 
835 	*val = in_le32(link->ap->ioaddr.scr_addr + (scr * 4));
836 	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
837 		__func__, link->ap->print_id, scr, *val);
838 
839 	return 0;
840 }
841 
842 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
843 {
844 	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
845 		__func__, link->ap->print_id, scr, val);
846 	if (scr > SCR_NOTIFICATION) {
847 		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
848 			 __func__, scr);
849 		return -EINVAL;
850 	}
851 	out_le32(link->ap->ioaddr.scr_addr + (scr * 4), val);
852 
853 	return 0;
854 }
855 
856 static u32 core_scr_read(unsigned int scr)
857 {
858 	return in_le32(host_pvt.scr_addr_sstatus + (scr * 4));
859 }
860 
861 static void core_scr_write(unsigned int scr, u32 val)
862 {
863 	out_le32(host_pvt.scr_addr_sstatus + (scr * 4), val);
864 }
865 
866 static void clear_serror(void)
867 {
868 	u32 val;
869 	val = core_scr_read(SCR_ERROR);
870 	core_scr_write(SCR_ERROR, val);
871 }
872 
873 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
874 {
875 	out_le32(&hsdev->sata_dwc_regs->intpr,
876 		 in_le32(&hsdev->sata_dwc_regs->intpr));
877 }
878 
879 static u32 qcmd_tag_to_mask(u8 tag)
880 {
881 	return 0x00000001 << (tag & 0x1f);
882 }
883 
884 /* See ahci.c */
885 static void sata_dwc_error_intr(struct ata_port *ap,
886 				struct sata_dwc_device *hsdev, uint intpr)
887 {
888 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
889 	struct ata_eh_info *ehi = &ap->link.eh_info;
890 	unsigned int err_mask = 0, action = 0;
891 	struct ata_queued_cmd *qc;
892 	u32 serror;
893 	u8 status, tag;
894 	u32 err_reg;
895 
896 	ata_ehi_clear_desc(ehi);
897 
898 	serror = core_scr_read(SCR_ERROR);
899 	status = ap->ops->sff_check_status(ap);
900 
901 	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
902 			low));
903 	tag = ap->link.active_tag;
904 
905 	dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
906 		"dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
907 		__func__, serror, intpr, status, host_pvt.dma_interrupt_count,
908 		hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
909 
910 	/* Clear error register and interrupt bit */
911 	clear_serror();
912 	clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
913 
914 	/* This is the only error happening now.  TODO check for exact error */
915 
916 	err_mask |= AC_ERR_HOST_BUS;
917 	action |= ATA_EH_RESET;
918 
919 	/* Pass this on to EH */
920 	ehi->serror |= serror;
921 	ehi->action |= action;
922 
923 	qc = ata_qc_from_tag(ap, tag);
924 	if (qc)
925 		qc->err_mask |= err_mask;
926 	else
927 		ehi->err_mask |= err_mask;
928 
929 	ata_port_abort(ap);
930 }
931 
932 /*
933  * Function : sata_dwc_isr
934  * arguments : irq, void *dev_instance, struct pt_regs *regs
935  * Return value : irqreturn_t - status of IRQ
936  * This Interrupt handler called via port ops registered function.
937  * .irq_handler = sata_dwc_isr
938  */
939 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
940 {
941 	struct ata_host *host = (struct ata_host *)dev_instance;
942 	struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
943 	struct ata_port *ap;
944 	struct ata_queued_cmd *qc;
945 	unsigned long flags;
946 	u8 status, tag;
947 	int handled, num_processed, port = 0;
948 	uint intpr, sactive, sactive2, tag_mask;
949 	struct sata_dwc_device_port *hsdevp;
950 	host_pvt.sata_dwc_sactive_issued = 0;
951 
952 	spin_lock_irqsave(&host->lock, flags);
953 
954 	/* Read the interrupt register */
955 	intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
956 
957 	ap = host->ports[port];
958 	hsdevp = HSDEVP_FROM_AP(ap);
959 
960 	dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
961 		ap->link.active_tag);
962 
963 	/* Check for error interrupt */
964 	if (intpr & SATA_DWC_INTPR_ERR) {
965 		sata_dwc_error_intr(ap, hsdev, intpr);
966 		handled = 1;
967 		goto DONE;
968 	}
969 
970 	/* Check for DMA SETUP FIS (FP DMA) interrupt */
971 	if (intpr & SATA_DWC_INTPR_NEWFP) {
972 		clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
973 
974 		tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
975 		dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
976 		if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
977 			dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
978 
979 		host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
980 
981 		qc = ata_qc_from_tag(ap, tag);
982 		/*
983 		 * Start FP DMA for NCQ command.  At this point the tag is the
984 		 * active tag.  It is the tag that matches the command about to
985 		 * be completed.
986 		 */
987 		qc->ap->link.active_tag = tag;
988 		sata_dwc_bmdma_start_by_tag(qc, tag);
989 
990 		handled = 1;
991 		goto DONE;
992 	}
993 	sactive = core_scr_read(SCR_ACTIVE);
994 	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
995 
996 	/* If no sactive issued and tag_mask is zero then this is not NCQ */
997 	if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
998 		if (ap->link.active_tag == ATA_TAG_POISON)
999 			tag = 0;
1000 		else
1001 			tag = ap->link.active_tag;
1002 		qc = ata_qc_from_tag(ap, tag);
1003 
1004 		/* DEV interrupt w/ no active qc? */
1005 		if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1006 			dev_err(ap->dev, "%s interrupt with no active qc "
1007 				"qc=%p\n", __func__, qc);
1008 			ap->ops->sff_check_status(ap);
1009 			handled = 1;
1010 			goto DONE;
1011 		}
1012 		status = ap->ops->sff_check_status(ap);
1013 
1014 		qc->ap->link.active_tag = tag;
1015 		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1016 
1017 		if (status & ATA_ERR) {
1018 			dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1019 			sata_dwc_qc_complete(ap, qc, 1);
1020 			handled = 1;
1021 			goto DONE;
1022 		}
1023 
1024 		dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1025 			__func__, get_prot_descript(qc->tf.protocol));
1026 DRVSTILLBUSY:
1027 		if (ata_is_dma(qc->tf.protocol)) {
1028 			/*
1029 			 * Each DMA transaction produces 2 interrupts. The DMAC
1030 			 * transfer complete interrupt and the SATA controller
1031 			 * operation done interrupt. The command should be
1032 			 * completed only after both interrupts are seen.
1033 			 */
1034 			host_pvt.dma_interrupt_count++;
1035 			if (hsdevp->dma_pending[tag] == \
1036 					SATA_DWC_DMA_PENDING_NONE) {
1037 				dev_err(ap->dev, "%s: DMA not pending "
1038 					"intpr=0x%08x status=0x%08x pending"
1039 					"=%d\n", __func__, intpr, status,
1040 					hsdevp->dma_pending[tag]);
1041 			}
1042 
1043 			if ((host_pvt.dma_interrupt_count % 2) == 0)
1044 				sata_dwc_dma_xfer_complete(ap, 1);
1045 		} else if (ata_is_pio(qc->tf.protocol)) {
1046 			ata_sff_hsm_move(ap, qc, status, 0);
1047 			handled = 1;
1048 			goto DONE;
1049 		} else {
1050 			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1051 				goto DRVSTILLBUSY;
1052 		}
1053 
1054 		handled = 1;
1055 		goto DONE;
1056 	}
1057 
1058 	/*
1059 	 * This is a NCQ command. At this point we need to figure out for which
1060 	 * tags we have gotten a completion interrupt.  One interrupt may serve
1061 	 * as completion for more than one operation when commands are queued
1062 	 * (NCQ).  We need to process each completed command.
1063 	 */
1064 
1065 	 /* process completed commands */
1066 	sactive = core_scr_read(SCR_ACTIVE);
1067 	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1068 
1069 	if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1070 							tag_mask > 1) {
1071 		dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1072 			"tag_mask=0x%08x\n", __func__, sactive,
1073 			host_pvt.sata_dwc_sactive_issued, tag_mask);
1074 	}
1075 
1076 	if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1077 					(host_pvt.sata_dwc_sactive_issued)) {
1078 		dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1079 			 "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1080 			 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1081 			  tag_mask);
1082 	}
1083 
1084 	/* read just to clear ... not bad if currently still busy */
1085 	status = ap->ops->sff_check_status(ap);
1086 	dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1087 
1088 	tag = 0;
1089 	num_processed = 0;
1090 	while (tag_mask) {
1091 		num_processed++;
1092 		while (!(tag_mask & 0x00000001)) {
1093 			tag++;
1094 			tag_mask <<= 1;
1095 		}
1096 
1097 		tag_mask &= (~0x00000001);
1098 		qc = ata_qc_from_tag(ap, tag);
1099 
1100 		/* To be picked up by completion functions */
1101 		qc->ap->link.active_tag = tag;
1102 		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1103 
1104 		/* Let libata/scsi layers handle error */
1105 		if (status & ATA_ERR) {
1106 			dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1107 				status);
1108 			sata_dwc_qc_complete(ap, qc, 1);
1109 			handled = 1;
1110 			goto DONE;
1111 		}
1112 
1113 		/* Process completed command */
1114 		dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1115 			get_prot_descript(qc->tf.protocol));
1116 		if (ata_is_dma(qc->tf.protocol)) {
1117 			host_pvt.dma_interrupt_count++;
1118 			if (hsdevp->dma_pending[tag] == \
1119 					SATA_DWC_DMA_PENDING_NONE)
1120 				dev_warn(ap->dev, "%s: DMA not pending?\n",
1121 					__func__);
1122 			if ((host_pvt.dma_interrupt_count % 2) == 0)
1123 				sata_dwc_dma_xfer_complete(ap, 1);
1124 		} else {
1125 			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1126 				goto STILLBUSY;
1127 		}
1128 		continue;
1129 
1130 STILLBUSY:
1131 		ap->stats.idle_irq++;
1132 		dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1133 			ap->print_id);
1134 	} /* while tag_mask */
1135 
1136 	/*
1137 	 * Check to see if any commands completed while we were processing our
1138 	 * initial set of completed commands (read status clears interrupts,
1139 	 * so we might miss a completed command interrupt if one came in while
1140 	 * we were processing --we read status as part of processing a completed
1141 	 * command).
1142 	 */
1143 	sactive2 = core_scr_read(SCR_ACTIVE);
1144 	if (sactive2 != sactive) {
1145 		dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1146 			"=0x%x\n", sactive, sactive2);
1147 	}
1148 	handled = 1;
1149 
1150 DONE:
1151 	spin_unlock_irqrestore(&host->lock, flags);
1152 	return IRQ_RETVAL(handled);
1153 }
1154 
1155 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1156 {
1157 	struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1158 
1159 	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1160 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1161 			 SATA_DWC_DMACR_RX_CLEAR(
1162 				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1163 	} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1164 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1165 			 SATA_DWC_DMACR_TX_CLEAR(
1166 				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1167 	} else {
1168 		/*
1169 		 * This should not happen, it indicates the driver is out of
1170 		 * sync.  If it does happen, clear dmacr anyway.
1171 		 */
1172 		dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1173 			"TX DMA not pending tag=0x%02x pending=%d"
1174 			" dmacr: 0x%08x\n", __func__, tag,
1175 			hsdevp->dma_pending[tag],
1176 			in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1177 		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1178 			SATA_DWC_DMACR_TXRXCH_CLEAR);
1179 	}
1180 }
1181 
1182 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1183 {
1184 	struct ata_queued_cmd *qc;
1185 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1186 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1187 	u8 tag = 0;
1188 
1189 	tag = ap->link.active_tag;
1190 	qc = ata_qc_from_tag(ap, tag);
1191 	if (!qc) {
1192 		dev_err(ap->dev, "failed to get qc");
1193 		return;
1194 	}
1195 
1196 #ifdef DEBUG_NCQ
1197 	if (tag > 0) {
1198 		dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1199 			 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1200 			 get_dma_dir_descript(qc->dma_dir),
1201 			 get_prot_descript(qc->tf.protocol),
1202 			 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1203 	}
1204 #endif
1205 
1206 	if (ata_is_dma(qc->tf.protocol)) {
1207 		if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1208 			dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1209 				"pending dmacr: 0x%08x\n", __func__,
1210 				in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1211 		}
1212 
1213 		hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1214 		sata_dwc_qc_complete(ap, qc, check_status);
1215 		ap->link.active_tag = ATA_TAG_POISON;
1216 	} else {
1217 		sata_dwc_qc_complete(ap, qc, check_status);
1218 	}
1219 }
1220 
1221 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1222 				u32 check_status)
1223 {
1224 	u8 status = 0;
1225 	u32 mask = 0x0;
1226 	u8 tag = qc->tag;
1227 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1228 	host_pvt.sata_dwc_sactive_queued = 0;
1229 	dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1230 
1231 	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1232 		dev_err(ap->dev, "TX DMA PENDING\n");
1233 	else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1234 		dev_err(ap->dev, "RX DMA PENDING\n");
1235 	dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1236 		" protocol=%d\n", qc->tf.command, status, ap->print_id,
1237 		 qc->tf.protocol);
1238 
1239 	/* clear active bit */
1240 	mask = (~(qcmd_tag_to_mask(tag)));
1241 	host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1242 						& mask;
1243 	host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1244 						& mask;
1245 	ata_qc_complete(qc);
1246 	return 0;
1247 }
1248 
1249 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1250 {
1251 	/* Enable selective interrupts by setting the interrupt maskregister*/
1252 	out_le32(&hsdev->sata_dwc_regs->intmr,
1253 		 SATA_DWC_INTMR_ERRM |
1254 		 SATA_DWC_INTMR_NEWFPM |
1255 		 SATA_DWC_INTMR_PMABRTM |
1256 		 SATA_DWC_INTMR_DMATM);
1257 	/*
1258 	 * Unmask the error bits that should trigger an error interrupt by
1259 	 * setting the error mask register.
1260 	 */
1261 	out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1262 
1263 	dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1264 		 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1265 		in_le32(&hsdev->sata_dwc_regs->errmr));
1266 }
1267 
1268 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1269 {
1270 	port->cmd_addr = (void __iomem *)base + 0x00;
1271 	port->data_addr = (void __iomem *)base + 0x00;
1272 
1273 	port->error_addr = (void __iomem *)base + 0x04;
1274 	port->feature_addr = (void __iomem *)base + 0x04;
1275 
1276 	port->nsect_addr = (void __iomem *)base + 0x08;
1277 
1278 	port->lbal_addr = (void __iomem *)base + 0x0c;
1279 	port->lbam_addr = (void __iomem *)base + 0x10;
1280 	port->lbah_addr = (void __iomem *)base + 0x14;
1281 
1282 	port->device_addr = (void __iomem *)base + 0x18;
1283 	port->command_addr = (void __iomem *)base + 0x1c;
1284 	port->status_addr = (void __iomem *)base + 0x1c;
1285 
1286 	port->altstatus_addr = (void __iomem *)base + 0x20;
1287 	port->ctl_addr = (void __iomem *)base + 0x20;
1288 }
1289 
1290 /*
1291  * Function : sata_dwc_port_start
1292  * arguments : struct ata_ioports *port
1293  * Return value : returns 0 if success, error code otherwise
1294  * This function allocates the scatter gather LLI table for AHB DMA
1295  */
1296 static int sata_dwc_port_start(struct ata_port *ap)
1297 {
1298 	int err = 0;
1299 	struct sata_dwc_device *hsdev;
1300 	struct sata_dwc_device_port *hsdevp = NULL;
1301 	struct device *pdev;
1302 	int i;
1303 
1304 	hsdev = HSDEV_FROM_AP(ap);
1305 
1306 	dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1307 
1308 	hsdev->host = ap->host;
1309 	pdev = ap->host->dev;
1310 	if (!pdev) {
1311 		dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1312 		err = -ENODEV;
1313 		goto CLEANUP;
1314 	}
1315 
1316 	/* Allocate Port Struct */
1317 	hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1318 	if (!hsdevp) {
1319 		dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1320 		err = -ENOMEM;
1321 		goto CLEANUP;
1322 	}
1323 	hsdevp->hsdev = hsdev;
1324 
1325 	for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1326 		hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1327 
1328 	ap->bmdma_prd = NULL;	/* set these so libata doesn't use them */
1329 	ap->bmdma_prd_dma = 0;
1330 
1331 	/*
1332 	 * DMA - Assign scatter gather LLI table. We can't use the libata
1333 	 * version since it's PRD is IDE PCI specific.
1334 	 */
1335 	for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1336 		hsdevp->llit[i] = dma_alloc_coherent(pdev,
1337 						     SATA_DWC_DMAC_LLI_TBL_SZ,
1338 						     &(hsdevp->llit_dma[i]),
1339 						     GFP_ATOMIC);
1340 		if (!hsdevp->llit[i]) {
1341 			dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1342 				 __func__);
1343 			err = -ENOMEM;
1344 			goto CLEANUP_ALLOC;
1345 		}
1346 	}
1347 
1348 	if (ap->port_no == 0)  {
1349 		dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1350 			__func__);
1351 		out_le32(&hsdev->sata_dwc_regs->dmacr,
1352 			 SATA_DWC_DMACR_TXRXCH_CLEAR);
1353 
1354 		dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1355 			 __func__);
1356 		out_le32(&hsdev->sata_dwc_regs->dbtsr,
1357 			 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1358 			  SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1359 	}
1360 
1361 	/* Clear any error bits before libata starts issuing commands */
1362 	clear_serror();
1363 	ap->private_data = hsdevp;
1364 	dev_dbg(ap->dev, "%s: done\n", __func__);
1365 	return 0;
1366 
1367 CLEANUP_ALLOC:
1368 	kfree(hsdevp);
1369 CLEANUP:
1370 	dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1371 	return err;
1372 }
1373 
1374 static void sata_dwc_port_stop(struct ata_port *ap)
1375 {
1376 	int i;
1377 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1378 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1379 
1380 	dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1381 
1382 	if (hsdevp && hsdev) {
1383 		/* deallocate LLI table */
1384 		for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1385 			dma_free_coherent(ap->host->dev,
1386 					  SATA_DWC_DMAC_LLI_TBL_SZ,
1387 					 hsdevp->llit[i], hsdevp->llit_dma[i]);
1388 		}
1389 
1390 		kfree(hsdevp);
1391 	}
1392 	ap->private_data = NULL;
1393 }
1394 
1395 /*
1396  * Function : sata_dwc_exec_command_by_tag
1397  * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1398  * Return value : None
1399  * This function keeps track of individual command tag ids and calls
1400  * ata_exec_command in libata
1401  */
1402 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1403 					 struct ata_taskfile *tf,
1404 					 u8 tag, u32 cmd_issued)
1405 {
1406 	unsigned long flags;
1407 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1408 
1409 	dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1410 		ata_get_cmd_descript(tf->command), tag);
1411 
1412 	spin_lock_irqsave(&ap->host->lock, flags);
1413 	hsdevp->cmd_issued[tag] = cmd_issued;
1414 	spin_unlock_irqrestore(&ap->host->lock, flags);
1415 	/*
1416 	 * Clear SError before executing a new command.
1417 	 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1418 	 * managed SError register for the disk needs to be done before the
1419 	 * task file is loaded.
1420 	 */
1421 	clear_serror();
1422 	ata_sff_exec_command(ap, tf);
1423 }
1424 
1425 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1426 {
1427 	sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1428 				     SATA_DWC_CMD_ISSUED_PEND);
1429 }
1430 
1431 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1432 {
1433 	u8 tag = qc->tag;
1434 
1435 	if (ata_is_ncq(qc->tf.protocol)) {
1436 		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1437 			__func__, qc->ap->link.sactive, tag);
1438 	} else {
1439 		tag = 0;
1440 	}
1441 	sata_dwc_bmdma_setup_by_tag(qc, tag);
1442 }
1443 
1444 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1445 {
1446 	int start_dma;
1447 	u32 reg, dma_chan;
1448 	struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1449 	struct ata_port *ap = qc->ap;
1450 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1451 	int dir = qc->dma_dir;
1452 	dma_chan = hsdevp->dma_chan[tag];
1453 
1454 	if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1455 		start_dma = 1;
1456 		if (dir == DMA_TO_DEVICE)
1457 			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1458 		else
1459 			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1460 	} else {
1461 		dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1462 			"(tag=%d) DMA NOT started\n", __func__,
1463 			hsdevp->cmd_issued[tag], tag);
1464 		start_dma = 0;
1465 	}
1466 
1467 	dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1468 		"start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1469 		get_dma_dir_descript(qc->dma_dir), start_dma);
1470 	sata_dwc_tf_dump(&(qc->tf));
1471 
1472 	if (start_dma) {
1473 		reg = core_scr_read(SCR_ERROR);
1474 		if (reg & SATA_DWC_SERROR_ERR_BITS) {
1475 			dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1476 				__func__, reg);
1477 		}
1478 
1479 		if (dir == DMA_TO_DEVICE)
1480 			out_le32(&hsdev->sata_dwc_regs->dmacr,
1481 				SATA_DWC_DMACR_TXCHEN);
1482 		else
1483 			out_le32(&hsdev->sata_dwc_regs->dmacr,
1484 				SATA_DWC_DMACR_RXCHEN);
1485 
1486 		/* Enable AHB DMA transfer on the specified channel */
1487 		dma_dwc_xfer_start(dma_chan);
1488 	}
1489 }
1490 
1491 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1492 {
1493 	u8 tag = qc->tag;
1494 
1495 	if (ata_is_ncq(qc->tf.protocol)) {
1496 		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1497 			__func__, qc->ap->link.sactive, tag);
1498 	} else {
1499 		tag = 0;
1500 	}
1501 	dev_dbg(qc->ap->dev, "%s\n", __func__);
1502 	sata_dwc_bmdma_start_by_tag(qc, tag);
1503 }
1504 
1505 /*
1506  * Function : sata_dwc_qc_prep_by_tag
1507  * arguments : ata_queued_cmd *qc, u8 tag
1508  * Return value : None
1509  * qc_prep for a particular queued command based on tag
1510  */
1511 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1512 {
1513 	struct scatterlist *sg = qc->sg;
1514 	struct ata_port *ap = qc->ap;
1515 	int dma_chan;
1516 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1517 	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1518 
1519 	dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1520 		__func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1521 		 qc->n_elem);
1522 
1523 	dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1524 				      hsdevp->llit_dma[tag],
1525 				      (void __iomem *)&hsdev->sata_dwc_regs->dmadr,
1526 				      qc->dma_dir);
1527 	if (dma_chan < 0) {
1528 		dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1529 			__func__, dma_chan);
1530 		return;
1531 	}
1532 	hsdevp->dma_chan[tag] = dma_chan;
1533 }
1534 
1535 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1536 {
1537 	u32 sactive;
1538 	u8 tag = qc->tag;
1539 	struct ata_port *ap = qc->ap;
1540 
1541 #ifdef DEBUG_NCQ
1542 	if (qc->tag > 0 || ap->link.sactive > 1)
1543 		dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1544 			 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1545 			 __func__, ap->print_id, qc->tf.command,
1546 			 ata_get_cmd_descript(qc->tf.command),
1547 			 qc->tag, get_prot_descript(qc->tf.protocol),
1548 			 ap->link.active_tag, ap->link.sactive);
1549 #endif
1550 
1551 	if (!ata_is_ncq(qc->tf.protocol))
1552 		tag = 0;
1553 	sata_dwc_qc_prep_by_tag(qc, tag);
1554 
1555 	if (ata_is_ncq(qc->tf.protocol)) {
1556 		sactive = core_scr_read(SCR_ACTIVE);
1557 		sactive |= (0x00000001 << tag);
1558 		core_scr_write(SCR_ACTIVE, sactive);
1559 
1560 		dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1561 			"sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1562 			sactive);
1563 
1564 		ap->ops->sff_tf_load(ap, &qc->tf);
1565 		sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1566 					     SATA_DWC_CMD_ISSUED_PEND);
1567 	} else {
1568 		ata_sff_qc_issue(qc);
1569 	}
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Function : sata_dwc_qc_prep
1575  * arguments : ata_queued_cmd *qc
1576  * Return value : None
1577  * qc_prep for a particular queued command
1578  */
1579 
1580 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1581 {
1582 	if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1583 		return;
1584 
1585 #ifdef DEBUG_NCQ
1586 	if (qc->tag > 0)
1587 		dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1588 			 __func__, qc->tag, qc->ap->link.active_tag);
1589 
1590 	return ;
1591 #endif
1592 }
1593 
1594 static void sata_dwc_error_handler(struct ata_port *ap)
1595 {
1596 	ata_sff_error_handler(ap);
1597 }
1598 
1599 static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1600 			      unsigned long deadline)
1601 {
1602 	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1603 	int ret;
1604 
1605 	ret = sata_sff_hardreset(link, class, deadline);
1606 
1607 	sata_dwc_enable_interrupts(hsdev);
1608 
1609 	/* Reconfigure the DMA control register */
1610 	out_le32(&hsdev->sata_dwc_regs->dmacr,
1611 		 SATA_DWC_DMACR_TXRXCH_CLEAR);
1612 
1613 	/* Reconfigure the DMA Burst Transaction Size register */
1614 	out_le32(&hsdev->sata_dwc_regs->dbtsr,
1615 		 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1616 		 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1617 
1618 	return ret;
1619 }
1620 
1621 /*
1622  * scsi mid-layer and libata interface structures
1623  */
1624 static struct scsi_host_template sata_dwc_sht = {
1625 	ATA_NCQ_SHT(DRV_NAME),
1626 	/*
1627 	 * test-only: Currently this driver doesn't handle NCQ
1628 	 * correctly. We enable NCQ but set the queue depth to a
1629 	 * max of 1. This will get fixed in in a future release.
1630 	 */
1631 	.sg_tablesize		= LIBATA_MAX_PRD,
1632 	/* .can_queue		= ATA_MAX_QUEUE, */
1633 	.dma_boundary		= ATA_DMA_BOUNDARY,
1634 };
1635 
1636 static struct ata_port_operations sata_dwc_ops = {
1637 	.inherits		= &ata_sff_port_ops,
1638 
1639 	.error_handler		= sata_dwc_error_handler,
1640 	.hardreset		= sata_dwc_hardreset,
1641 
1642 	.qc_prep		= sata_dwc_qc_prep,
1643 	.qc_issue		= sata_dwc_qc_issue,
1644 
1645 	.scr_read		= sata_dwc_scr_read,
1646 	.scr_write		= sata_dwc_scr_write,
1647 
1648 	.port_start		= sata_dwc_port_start,
1649 	.port_stop		= sata_dwc_port_stop,
1650 
1651 	.bmdma_setup		= sata_dwc_bmdma_setup,
1652 	.bmdma_start		= sata_dwc_bmdma_start,
1653 };
1654 
1655 static const struct ata_port_info sata_dwc_port_info[] = {
1656 	{
1657 		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
1658 		.pio_mask	= ATA_PIO4,
1659 		.udma_mask	= ATA_UDMA6,
1660 		.port_ops	= &sata_dwc_ops,
1661 	},
1662 };
1663 
1664 static int sata_dwc_probe(struct platform_device *ofdev)
1665 {
1666 	struct sata_dwc_device *hsdev;
1667 	u32 idr, versionr;
1668 	char *ver = (char *)&versionr;
1669 	u8 __iomem *base;
1670 	int err = 0;
1671 	int irq;
1672 	struct ata_host *host;
1673 	struct ata_port_info pi = sata_dwc_port_info[0];
1674 	const struct ata_port_info *ppi[] = { &pi, NULL };
1675 	struct device_node *np = ofdev->dev.of_node;
1676 	u32 dma_chan;
1677 
1678 	/* Allocate DWC SATA device */
1679 	host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1680 	hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL);
1681 	if (!host || !hsdev)
1682 		return -ENOMEM;
1683 
1684 	host->private_data = hsdev;
1685 
1686 	if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1687 		dev_warn(&ofdev->dev, "no dma-channel property set."
1688 			 " Use channel 0\n");
1689 		dma_chan = 0;
1690 	}
1691 	host_pvt.dma_channel = dma_chan;
1692 
1693 	/* Ioremap SATA registers */
1694 	base = of_iomap(np, 0);
1695 	if (!base) {
1696 		dev_err(&ofdev->dev, "ioremap failed for SATA register"
1697 			" address\n");
1698 		return -ENODEV;
1699 	}
1700 	hsdev->reg_base = base;
1701 	dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1702 
1703 	/* Synopsys DWC SATA specific Registers */
1704 	hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1705 
1706 	/* Setup port */
1707 	host->ports[0]->ioaddr.cmd_addr = base;
1708 	host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1709 	host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1710 	sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1711 
1712 	/* Read the ID and Version Registers */
1713 	idr = in_le32(&hsdev->sata_dwc_regs->idr);
1714 	versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1715 	dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1716 		   idr, ver[0], ver[1], ver[2]);
1717 
1718 	/* Get SATA DMA interrupt number */
1719 	irq = irq_of_parse_and_map(np, 1);
1720 	if (irq == NO_IRQ) {
1721 		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1722 		err = -ENODEV;
1723 		goto error_iomap;
1724 	}
1725 
1726 	/* Get physical SATA DMA register base address */
1727 	host_pvt.sata_dma_regs = (void *)of_iomap(np, 1);
1728 	if (!(host_pvt.sata_dma_regs)) {
1729 		dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1730 			" address\n");
1731 		err = -ENODEV;
1732 		goto error_iomap;
1733 	}
1734 
1735 	/* Save dev for later use in dev_xxx() routines */
1736 	host_pvt.dwc_dev = &ofdev->dev;
1737 
1738 	/* Initialize AHB DMAC */
1739 	err = dma_dwc_init(hsdev, irq);
1740 	if (err)
1741 		goto error_dma_iomap;
1742 
1743 	/* Enable SATA Interrupts */
1744 	sata_dwc_enable_interrupts(hsdev);
1745 
1746 	/* Get SATA interrupt number */
1747 	irq = irq_of_parse_and_map(np, 0);
1748 	if (irq == NO_IRQ) {
1749 		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1750 		err = -ENODEV;
1751 		goto error_out;
1752 	}
1753 
1754 	/*
1755 	 * Now, register with libATA core, this will also initiate the
1756 	 * device discovery process, invoking our port_start() handler &
1757 	 * error_handler() to execute a dummy Softreset EH session
1758 	 */
1759 	err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1760 	if (err)
1761 		dev_err(&ofdev->dev, "failed to activate host");
1762 
1763 	dev_set_drvdata(&ofdev->dev, host);
1764 	return 0;
1765 
1766 error_out:
1767 	/* Free SATA DMA resources */
1768 	dma_dwc_exit(hsdev);
1769 error_dma_iomap:
1770 	iounmap((void __iomem *)host_pvt.sata_dma_regs);
1771 error_iomap:
1772 	iounmap(base);
1773 	return err;
1774 }
1775 
1776 static int sata_dwc_remove(struct platform_device *ofdev)
1777 {
1778 	struct device *dev = &ofdev->dev;
1779 	struct ata_host *host = dev_get_drvdata(dev);
1780 	struct sata_dwc_device *hsdev = host->private_data;
1781 
1782 	ata_host_detach(host);
1783 
1784 	/* Free SATA DMA resources */
1785 	dma_dwc_exit(hsdev);
1786 
1787 	iounmap((void __iomem *)host_pvt.sata_dma_regs);
1788 	iounmap(hsdev->reg_base);
1789 	dev_dbg(&ofdev->dev, "done\n");
1790 	return 0;
1791 }
1792 
1793 static const struct of_device_id sata_dwc_match[] = {
1794 	{ .compatible = "amcc,sata-460ex", },
1795 	{}
1796 };
1797 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1798 
1799 static struct platform_driver sata_dwc_driver = {
1800 	.driver = {
1801 		.name = DRV_NAME,
1802 		.of_match_table = sata_dwc_match,
1803 	},
1804 	.probe = sata_dwc_probe,
1805 	.remove = sata_dwc_remove,
1806 };
1807 
1808 module_platform_driver(sata_dwc_driver);
1809 
1810 MODULE_LICENSE("GPL");
1811 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1812 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1813 MODULE_VERSION(DRV_VERSION);
1814