1 /* 2 * drivers/ata/sata_dwc_460ex.c 3 * 4 * Synopsys DesignWare Cores (DWC) SATA host driver 5 * 6 * Author: Mark Miesfeld <mmiesfeld@amcc.com> 7 * 8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> 9 * Copyright 2008 DENX Software Engineering 10 * 11 * Based on versions provided by AMCC and Synopsys which are: 12 * Copyright 2006 Applied Micro Circuits Corporation 13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 */ 20 21 #ifdef CONFIG_SATA_DWC_DEBUG 22 #define DEBUG 23 #endif 24 25 #ifdef CONFIG_SATA_DWC_VDEBUG 26 #define VERBOSE_DEBUG 27 #define DEBUG_NCQ 28 #endif 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/device.h> 33 #include <linux/of_address.h> 34 #include <linux/of_irq.h> 35 #include <linux/of_platform.h> 36 #include <linux/platform_device.h> 37 #include <linux/libata.h> 38 #include <linux/slab.h> 39 #include "libata.h" 40 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_cmnd.h> 43 44 /* These two are defined in "libata.h" */ 45 #undef DRV_NAME 46 #undef DRV_VERSION 47 48 #define DRV_NAME "sata-dwc" 49 #define DRV_VERSION "1.3" 50 51 #ifndef out_le32 52 #define out_le32(a, v) __raw_writel(__cpu_to_le32(v), (void __iomem *)(a)) 53 #endif 54 55 #ifndef in_le32 56 #define in_le32(a) __le32_to_cpu(__raw_readl((void __iomem *)(a))) 57 #endif 58 59 #ifndef NO_IRQ 60 #define NO_IRQ 0 61 #endif 62 63 /* SATA DMA driver Globals */ 64 #define DMA_NUM_CHANS 1 65 #define DMA_NUM_CHAN_REGS 8 66 67 /* SATA DMA Register definitions */ 68 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/ 69 70 struct dmareg { 71 u32 low; /* Low bits 0-31 */ 72 u32 high; /* High bits 32-63 */ 73 }; 74 75 /* DMA Per Channel registers */ 76 struct dma_chan_regs { 77 struct dmareg sar; /* Source Address */ 78 struct dmareg dar; /* Destination address */ 79 struct dmareg llp; /* Linked List Pointer */ 80 struct dmareg ctl; /* Control */ 81 struct dmareg sstat; /* Source Status not implemented in core */ 82 struct dmareg dstat; /* Destination Status not implemented in core*/ 83 struct dmareg sstatar; /* Source Status Address not impl in core */ 84 struct dmareg dstatar; /* Destination Status Address not implemente */ 85 struct dmareg cfg; /* Config */ 86 struct dmareg sgr; /* Source Gather */ 87 struct dmareg dsr; /* Destination Scatter */ 88 }; 89 90 /* Generic Interrupt Registers */ 91 struct dma_interrupt_regs { 92 struct dmareg tfr; /* Transfer Interrupt */ 93 struct dmareg block; /* Block Interrupt */ 94 struct dmareg srctran; /* Source Transfer Interrupt */ 95 struct dmareg dsttran; /* Dest Transfer Interrupt */ 96 struct dmareg error; /* Error */ 97 }; 98 99 struct ahb_dma_regs { 100 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; 101 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ 102 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ 103 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ 104 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ 105 struct dmareg statusInt; /* Interrupt combined*/ 106 struct dmareg rq_srcreg; /* Src Trans Req */ 107 struct dmareg rq_dstreg; /* Dst Trans Req */ 108 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/ 109 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/ 110 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/ 111 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/ 112 struct dmareg dma_cfg; /* DMA Config */ 113 struct dmareg dma_chan_en; /* DMA Channel Enable*/ 114 struct dmareg dma_id; /* DMA ID */ 115 struct dmareg dma_test; /* DMA Test */ 116 struct dmareg res1; /* reserved */ 117 struct dmareg res2; /* reserved */ 118 /* 119 * DMA Comp Params 120 * Param 6 = dma_param[0], Param 5 = dma_param[1], 121 * Param 4 = dma_param[2] ... 122 */ 123 struct dmareg dma_params[6]; 124 }; 125 126 /* Data structure for linked list item */ 127 struct lli { 128 u32 sar; /* Source Address */ 129 u32 dar; /* Destination address */ 130 u32 llp; /* Linked List Pointer */ 131 struct dmareg ctl; /* Control */ 132 struct dmareg dstat; /* Destination Status */ 133 }; 134 135 enum { 136 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)), 137 SATA_DWC_DMAC_LLI_NUM = 256, 138 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \ 139 SATA_DWC_DMAC_LLI_NUM), 140 SATA_DWC_DMAC_TWIDTH_BYTES = 4, 141 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \ 142 SATA_DWC_DMAC_TWIDTH_BYTES), 143 }; 144 145 /* DMA Register Operation Bits */ 146 enum { 147 DMA_EN = 0x00000001, /* Enable AHB DMA */ 148 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */ 149 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */ 150 }; 151 152 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ 153 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ 154 /* Enable channel */ 155 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ 156 ((0x000000001 << (ch)) << 8)) 157 /* Disable channel */ 158 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) 159 /* Transfer Type & Flow Controller */ 160 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20) 161 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */ 162 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */ 163 /* Src Burst Transaction Length */ 164 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14) 165 /* Dst Burst Transaction Length */ 166 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11) 167 /* Source Transfer Width */ 168 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4) 169 /* Destination Transfer Width */ 170 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1) 171 172 /* Assign HW handshaking interface (x) to destination / source peripheral */ 173 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11) 174 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7) 175 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5) 176 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) 177 178 /* 179 * This define is used to set block chaining disabled in the control low 180 * register. It is already in little endian format so it can be &'d dirctly. 181 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) 182 */ 183 enum { 184 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7, 185 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */ 186 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */ 187 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */ 188 DMA_CTL_SINC_DEC = 0x00000200, 189 DMA_CTL_SINC_NOCHANGE = 0x00000400, 190 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */ 191 DMA_CTL_DINC_DEC = 0x00000080, 192 DMA_CTL_DINC_NOCHANGE = 0x00000100, 193 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */ 194 195 /* Channel Configuration Register high bits */ 196 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */ 197 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */ 198 199 /* Channel Configuration Register low bits */ 200 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */ 201 DMA_CFG_RELD_SRC = 0x40000000, 202 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */ 203 DMA_CFG_HS_SELDST = 0x00000400, 204 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */ 205 206 /* Channel Linked List Pointer Register */ 207 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */ 208 DMA_LLP_AHBMASTER2 = 1, 209 210 SATA_DWC_MAX_PORTS = 1, 211 212 SATA_DWC_SCR_OFFSET = 0x24, 213 SATA_DWC_REG_OFFSET = 0x64, 214 }; 215 216 /* DWC SATA Registers */ 217 struct sata_dwc_regs { 218 u32 fptagr; /* 1st party DMA tag */ 219 u32 fpbor; /* 1st party DMA buffer offset */ 220 u32 fptcr; /* 1st party DMA Xfr count */ 221 u32 dmacr; /* DMA Control */ 222 u32 dbtsr; /* DMA Burst Transac size */ 223 u32 intpr; /* Interrupt Pending */ 224 u32 intmr; /* Interrupt Mask */ 225 u32 errmr; /* Error Mask */ 226 u32 llcr; /* Link Layer Control */ 227 u32 phycr; /* PHY Control */ 228 u32 physr; /* PHY Status */ 229 u32 rxbistpd; /* Recvd BIST pattern def register */ 230 u32 rxbistpd1; /* Recvd BIST data dword1 */ 231 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ 232 u32 txbistpd; /* Trans BIST pattern def register */ 233 u32 txbistpd1; /* Trans BIST data dword1 */ 234 u32 txbistpd2; /* Trans BIST data dword2 */ 235 u32 bistcr; /* BIST Control Register */ 236 u32 bistfctr; /* BIST FIS Count Register */ 237 u32 bistsr; /* BIST Status Register */ 238 u32 bistdecr; /* BIST Dword Error count register */ 239 u32 res[15]; /* Reserved locations */ 240 u32 testr; /* Test Register */ 241 u32 versionr; /* Version Register */ 242 u32 idr; /* ID Register */ 243 u32 unimpl[192]; /* Unimplemented */ 244 u32 dmadr[256]; /* FIFO Locations in DMA Mode */ 245 }; 246 247 enum { 248 SCR_SCONTROL_DET_ENABLE = 0x00000001, 249 SCR_SSTATUS_DET_PRESENT = 0x00000001, 250 SCR_SERROR_DIAG_X = 0x04000000, 251 /* DWC SATA Register Operations */ 252 SATA_DWC_TXFIFO_DEPTH = 0x01FF, 253 SATA_DWC_RXFIFO_DEPTH = 0x01FF, 254 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, 255 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), 256 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), 257 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, 258 SATA_DWC_INTPR_DMAT = 0x00000001, 259 SATA_DWC_INTPR_NEWFP = 0x00000002, 260 SATA_DWC_INTPR_PMABRT = 0x00000004, 261 SATA_DWC_INTPR_ERR = 0x00000008, 262 SATA_DWC_INTPR_NEWBIST = 0x00000010, 263 SATA_DWC_INTPR_IPF = 0x10000000, 264 SATA_DWC_INTMR_DMATM = 0x00000001, 265 SATA_DWC_INTMR_NEWFPM = 0x00000002, 266 SATA_DWC_INTMR_PMABRTM = 0x00000004, 267 SATA_DWC_INTMR_ERRM = 0x00000008, 268 SATA_DWC_INTMR_NEWBISTM = 0x00000010, 269 SATA_DWC_LLCR_SCRAMEN = 0x00000001, 270 SATA_DWC_LLCR_DESCRAMEN = 0x00000002, 271 SATA_DWC_LLCR_RPDEN = 0x00000004, 272 /* This is all error bits, zero's are reserved fields. */ 273 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 274 }; 275 276 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) 277 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ 278 SATA_DWC_DMACR_TMOD_TXCHEN) 279 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ 280 SATA_DWC_DMACR_TMOD_TXCHEN) 281 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) 282 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ 283 << 16) 284 struct sata_dwc_device { 285 struct device *dev; /* generic device struct */ 286 struct ata_probe_ent *pe; /* ptr to probe-ent */ 287 struct ata_host *host; 288 u8 __iomem *reg_base; 289 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ 290 int irq_dma; 291 }; 292 293 #define SATA_DWC_QCMD_MAX 32 294 295 struct sata_dwc_device_port { 296 struct sata_dwc_device *hsdev; 297 int cmd_issued[SATA_DWC_QCMD_MAX]; 298 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */ 299 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; 300 u32 dma_chan[SATA_DWC_QCMD_MAX]; 301 int dma_pending[SATA_DWC_QCMD_MAX]; 302 }; 303 304 /* 305 * Commonly used DWC SATA driver Macros 306 */ 307 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\ 308 (host)->private_data) 309 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\ 310 (ap)->host->private_data) 311 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\ 312 (ap)->private_data) 313 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\ 314 (qc)->ap->host->private_data) 315 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\ 316 (hsdevp)->hsdev) 317 318 enum { 319 SATA_DWC_CMD_ISSUED_NOT = 0, 320 SATA_DWC_CMD_ISSUED_PEND = 1, 321 SATA_DWC_CMD_ISSUED_EXEC = 2, 322 SATA_DWC_CMD_ISSUED_NODATA = 3, 323 324 SATA_DWC_DMA_PENDING_NONE = 0, 325 SATA_DWC_DMA_PENDING_TX = 1, 326 SATA_DWC_DMA_PENDING_RX = 2, 327 }; 328 329 struct sata_dwc_host_priv { 330 void __iomem *scr_addr_sstatus; 331 u32 sata_dwc_sactive_issued ; 332 u32 sata_dwc_sactive_queued ; 333 u32 dma_interrupt_count; 334 struct ahb_dma_regs *sata_dma_regs; 335 struct device *dwc_dev; 336 int dma_channel; 337 }; 338 339 static struct sata_dwc_host_priv host_pvt; 340 341 /* 342 * Prototypes 343 */ 344 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); 345 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, 346 u32 check_status); 347 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); 348 static void sata_dwc_port_stop(struct ata_port *ap); 349 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); 350 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); 351 static void dma_dwc_exit(struct sata_dwc_device *hsdev); 352 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, 353 struct lli *lli, dma_addr_t dma_lli, 354 void __iomem *addr, int dir); 355 static void dma_dwc_xfer_start(int dma_ch); 356 357 static const char *get_prot_descript(u8 protocol) 358 { 359 switch ((enum ata_tf_protocols)protocol) { 360 case ATA_PROT_NODATA: 361 return "ATA no data"; 362 case ATA_PROT_PIO: 363 return "ATA PIO"; 364 case ATA_PROT_DMA: 365 return "ATA DMA"; 366 case ATA_PROT_NCQ: 367 return "ATA NCQ"; 368 case ATAPI_PROT_NODATA: 369 return "ATAPI no data"; 370 case ATAPI_PROT_PIO: 371 return "ATAPI PIO"; 372 case ATAPI_PROT_DMA: 373 return "ATAPI DMA"; 374 default: 375 return "unknown"; 376 } 377 } 378 379 static const char *get_dma_dir_descript(int dma_dir) 380 { 381 switch ((enum dma_data_direction)dma_dir) { 382 case DMA_BIDIRECTIONAL: 383 return "bidirectional"; 384 case DMA_TO_DEVICE: 385 return "to device"; 386 case DMA_FROM_DEVICE: 387 return "from device"; 388 default: 389 return "none"; 390 } 391 } 392 393 static void sata_dwc_tf_dump(struct ata_taskfile *tf) 394 { 395 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:" 396 "0x%lx device: %x\n", tf->command, 397 get_prot_descript(tf->protocol), tf->flags, tf->device); 398 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x " 399 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, 400 tf->lbam, tf->lbah); 401 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x " 402 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", 403 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, 404 tf->hob_lbah); 405 } 406 407 /* 408 * Function: get_burst_length_encode 409 * arguments: datalength: length in bytes of data 410 * returns value to be programmed in register corresponding to data length 411 * This value is effectively the log(base 2) of the length 412 */ 413 static int get_burst_length_encode(int datalength) 414 { 415 int items = datalength >> 2; /* div by 4 to get lword count */ 416 417 if (items >= 64) 418 return 5; 419 420 if (items >= 32) 421 return 4; 422 423 if (items >= 16) 424 return 3; 425 426 if (items >= 8) 427 return 2; 428 429 if (items >= 4) 430 return 1; 431 432 return 0; 433 } 434 435 static void clear_chan_interrupts(int c) 436 { 437 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low), 438 DMA_CHANNEL(c)); 439 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low), 440 DMA_CHANNEL(c)); 441 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low), 442 DMA_CHANNEL(c)); 443 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low), 444 DMA_CHANNEL(c)); 445 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low), 446 DMA_CHANNEL(c)); 447 } 448 449 /* 450 * Function: dma_request_channel 451 * arguments: None 452 * returns channel number if available else -1 453 * This function assigns the next available DMA channel from the list to the 454 * requester 455 */ 456 static int dma_request_channel(void) 457 { 458 /* Check if the channel is not currently in use */ 459 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) & 460 DMA_CHANNEL(host_pvt.dma_channel))) 461 return host_pvt.dma_channel; 462 dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n", 463 __func__, host_pvt.dma_channel); 464 return -1; 465 } 466 467 /* 468 * Function: dma_dwc_interrupt 469 * arguments: irq, dev_id, pt_regs 470 * returns channel number if available else -1 471 * Interrupt Handler for DW AHB SATA DMA 472 */ 473 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance) 474 { 475 int chan; 476 u32 tfr_reg, err_reg; 477 unsigned long flags; 478 struct sata_dwc_device *hsdev = hsdev_instance; 479 struct ata_host *host = (struct ata_host *)hsdev->host; 480 struct ata_port *ap; 481 struct sata_dwc_device_port *hsdevp; 482 u8 tag = 0; 483 unsigned int port = 0; 484 485 spin_lock_irqsave(&host->lock, flags); 486 ap = host->ports[port]; 487 hsdevp = HSDEVP_FROM_AP(ap); 488 tag = ap->link.active_tag; 489 490 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\ 491 .low)); 492 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\ 493 .low)); 494 495 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", 496 tfr_reg, err_reg, hsdevp->dma_pending[tag], port); 497 498 chan = host_pvt.dma_channel; 499 if (chan >= 0) { 500 /* Check for end-of-transfer interrupt. */ 501 if (tfr_reg & DMA_CHANNEL(chan)) { 502 /* 503 * Each DMA command produces 2 interrupts. Only 504 * complete the command after both interrupts have been 505 * seen. (See sata_dwc_isr()) 506 */ 507 host_pvt.dma_interrupt_count++; 508 sata_dwc_clear_dmacr(hsdevp, tag); 509 510 if (hsdevp->dma_pending[tag] == 511 SATA_DWC_DMA_PENDING_NONE) { 512 dev_err(ap->dev, "DMA not pending eot=0x%08x " 513 "err=0x%08x tag=0x%02x pending=%d\n", 514 tfr_reg, err_reg, tag, 515 hsdevp->dma_pending[tag]); 516 } 517 518 if ((host_pvt.dma_interrupt_count % 2) == 0) 519 sata_dwc_dma_xfer_complete(ap, 1); 520 521 /* Clear the interrupt */ 522 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ 523 .tfr.low), 524 DMA_CHANNEL(chan)); 525 } 526 527 /* Check for error interrupt. */ 528 if (err_reg & DMA_CHANNEL(chan)) { 529 /* TODO Need error handler ! */ 530 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", 531 err_reg); 532 533 /* Clear the interrupt. */ 534 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ 535 .error.low), 536 DMA_CHANNEL(chan)); 537 } 538 } 539 spin_unlock_irqrestore(&host->lock, flags); 540 return IRQ_HANDLED; 541 } 542 543 /* 544 * Function: dma_request_interrupts 545 * arguments: hsdev 546 * returns status 547 * This function registers ISR for a particular DMA channel interrupt 548 */ 549 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) 550 { 551 int retval = 0; 552 int chan = host_pvt.dma_channel; 553 554 if (chan >= 0) { 555 /* Unmask error interrupt */ 556 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low, 557 DMA_ENABLE_CHAN(chan)); 558 559 /* Unmask end-of-transfer interrupt */ 560 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low, 561 DMA_ENABLE_CHAN(chan)); 562 } 563 564 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev); 565 if (retval) { 566 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n", 567 __func__, irq); 568 return -ENODEV; 569 } 570 571 /* Mark this interrupt as requested */ 572 hsdev->irq_dma = irq; 573 return 0; 574 } 575 576 /* 577 * Function: map_sg_to_lli 578 * The Synopsis driver has a comment proposing that better performance 579 * is possible by only enabling interrupts on the last item in the linked list. 580 * However, it seems that could be a problem if an error happened on one of the 581 * first items. The transfer would halt, but no error interrupt would occur. 582 * Currently this function sets interrupts enabled for each linked list item: 583 * DMA_CTL_INT_EN. 584 */ 585 static int map_sg_to_lli(struct scatterlist *sg, int num_elems, 586 struct lli *lli, dma_addr_t dma_lli, 587 void __iomem *dmadr_addr, int dir) 588 { 589 int i, idx = 0; 590 int fis_len = 0; 591 dma_addr_t next_llp; 592 int bl; 593 int sms_val, dms_val; 594 595 sms_val = 0; 596 dms_val = 1 + host_pvt.dma_channel; 597 dev_dbg(host_pvt.dwc_dev, 598 "%s: sg=%p nelem=%d lli=%p dma_lli=0x%pad dmadr=0x%p\n", 599 __func__, sg, num_elems, lli, &dma_lli, dmadr_addr); 600 601 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); 602 603 for (i = 0; i < num_elems; i++, sg++) { 604 u32 addr, offset; 605 u32 sg_len, len; 606 607 addr = (u32) sg_dma_address(sg); 608 sg_len = sg_dma_len(sg); 609 610 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len" 611 "=%d\n", __func__, i, addr, sg_len); 612 613 while (sg_len) { 614 if (idx >= SATA_DWC_DMAC_LLI_NUM) { 615 /* The LLI table is not large enough. */ 616 dev_err(host_pvt.dwc_dev, "LLI table overrun " 617 "(idx=%d)\n", idx); 618 break; 619 } 620 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? 621 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; 622 623 offset = addr & 0xffff; 624 if ((offset + sg_len) > 0x10000) 625 len = 0x10000 - offset; 626 627 /* 628 * Make sure a LLI block is not created that will span 629 * 8K max FIS boundary. If the block spans such a FIS 630 * boundary, there is a chance that a DMA burst will 631 * cross that boundary -- this results in an error in 632 * the host controller. 633 */ 634 if (fis_len + len > 8192) { 635 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len=" 636 "%d(0x%x) len=%d(0x%x)\n", fis_len, 637 fis_len, len, len); 638 len = 8192 - fis_len; 639 fis_len = 0; 640 } else { 641 fis_len += len; 642 } 643 if (fis_len == 8192) 644 fis_len = 0; 645 646 /* 647 * Set DMA addresses and lower half of control register 648 * based on direction. 649 */ 650 if (dir == DMA_FROM_DEVICE) { 651 lli[idx].dar = cpu_to_le32(addr); 652 lli[idx].sar = cpu_to_le32((u32)dmadr_addr); 653 654 lli[idx].ctl.low = cpu_to_le32( 655 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | 656 DMA_CTL_SMS(sms_val) | 657 DMA_CTL_DMS(dms_val) | 658 DMA_CTL_SRC_MSIZE(bl) | 659 DMA_CTL_DST_MSIZE(bl) | 660 DMA_CTL_SINC_NOCHANGE | 661 DMA_CTL_SRC_TRWID(2) | 662 DMA_CTL_DST_TRWID(2) | 663 DMA_CTL_INT_EN | 664 DMA_CTL_LLP_SRCEN | 665 DMA_CTL_LLP_DSTEN); 666 } else { /* DMA_TO_DEVICE */ 667 lli[idx].sar = cpu_to_le32(addr); 668 lli[idx].dar = cpu_to_le32((u32)dmadr_addr); 669 670 lli[idx].ctl.low = cpu_to_le32( 671 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | 672 DMA_CTL_SMS(dms_val) | 673 DMA_CTL_DMS(sms_val) | 674 DMA_CTL_SRC_MSIZE(bl) | 675 DMA_CTL_DST_MSIZE(bl) | 676 DMA_CTL_DINC_NOCHANGE | 677 DMA_CTL_SRC_TRWID(2) | 678 DMA_CTL_DST_TRWID(2) | 679 DMA_CTL_INT_EN | 680 DMA_CTL_LLP_SRCEN | 681 DMA_CTL_LLP_DSTEN); 682 } 683 684 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: " 685 "0x%08x val: 0x%08x\n", __func__, 686 len, DMA_CTL_BLK_TS(len / 4)); 687 688 /* Program the LLI CTL high register */ 689 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\ 690 (len / 4)); 691 692 /* Program the next pointer. The next pointer must be 693 * the physical address, not the virtual address. 694 */ 695 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \ 696 lli))); 697 698 /* The last 2 bits encode the list master select. */ 699 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); 700 701 lli[idx].llp = cpu_to_le32(next_llp); 702 idx++; 703 sg_len -= len; 704 addr += len; 705 } 706 } 707 708 /* 709 * The last next ptr has to be zero and the last control low register 710 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source 711 * and destination enable) set back to 0 (disabled.) This is what tells 712 * the core that this is the last item in the linked list. 713 */ 714 if (idx) { 715 lli[idx-1].llp = 0x00000000; 716 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; 717 718 /* Flush cache to memory */ 719 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), 720 DMA_BIDIRECTIONAL); 721 } 722 723 return idx; 724 } 725 726 /* 727 * Function: dma_dwc_xfer_start 728 * arguments: Channel number 729 * Return : None 730 * Enables the DMA channel 731 */ 732 static void dma_dwc_xfer_start(int dma_ch) 733 { 734 /* Enable the DMA channel */ 735 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low), 736 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) | 737 DMA_ENABLE_CHAN(dma_ch)); 738 } 739 740 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, 741 struct lli *lli, dma_addr_t dma_lli, 742 void __iomem *addr, int dir) 743 { 744 int dma_ch; 745 int num_lli; 746 /* Acquire DMA channel */ 747 dma_ch = dma_request_channel(); 748 if (dma_ch == -1) { 749 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n", 750 __func__); 751 return -EAGAIN; 752 } 753 754 /* Convert SG list to linked list of items (LLIs) for AHB DMA */ 755 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir); 756 757 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:" 758 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems, 759 lli, (u32)dma_lli, addr, num_lli); 760 761 clear_chan_interrupts(dma_ch); 762 763 /* Program the CFG register. */ 764 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high), 765 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) | 766 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); 767 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 768 DMA_CFG_HW_CH_PRIOR(dma_ch)); 769 770 /* Program the address of the linked list */ 771 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low), 772 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); 773 774 /* Program the CTL register with src enable / dst enable */ 775 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low), 776 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); 777 return dma_ch; 778 } 779 780 /* 781 * Function: dma_dwc_exit 782 * arguments: None 783 * returns status 784 * This function exits the SATA DMA driver 785 */ 786 static void dma_dwc_exit(struct sata_dwc_device *hsdev) 787 { 788 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__); 789 if (host_pvt.sata_dma_regs) { 790 iounmap((void __iomem *)host_pvt.sata_dma_regs); 791 host_pvt.sata_dma_regs = NULL; 792 } 793 794 if (hsdev->irq_dma) { 795 free_irq(hsdev->irq_dma, hsdev); 796 hsdev->irq_dma = 0; 797 } 798 } 799 800 /* 801 * Function: dma_dwc_init 802 * arguments: hsdev 803 * returns status 804 * This function initializes the SATA DMA driver 805 */ 806 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) 807 { 808 int err; 809 810 err = dma_request_interrupts(hsdev, irq); 811 if (err) { 812 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns" 813 " %d\n", __func__, err); 814 return err; 815 } 816 817 /* Enabe DMA */ 818 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN); 819 820 dev_notice(host_pvt.dwc_dev, "DMA initialized\n"); 821 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\ 822 sata_dma_regs); 823 824 return 0; 825 } 826 827 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) 828 { 829 if (scr > SCR_NOTIFICATION) { 830 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", 831 __func__, scr); 832 return -EINVAL; 833 } 834 835 *val = in_le32(link->ap->ioaddr.scr_addr + (scr * 4)); 836 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", 837 __func__, link->ap->print_id, scr, *val); 838 839 return 0; 840 } 841 842 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) 843 { 844 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", 845 __func__, link->ap->print_id, scr, val); 846 if (scr > SCR_NOTIFICATION) { 847 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", 848 __func__, scr); 849 return -EINVAL; 850 } 851 out_le32(link->ap->ioaddr.scr_addr + (scr * 4), val); 852 853 return 0; 854 } 855 856 static u32 core_scr_read(unsigned int scr) 857 { 858 return in_le32(host_pvt.scr_addr_sstatus + (scr * 4)); 859 } 860 861 static void core_scr_write(unsigned int scr, u32 val) 862 { 863 out_le32(host_pvt.scr_addr_sstatus + (scr * 4), val); 864 } 865 866 static void clear_serror(void) 867 { 868 u32 val; 869 val = core_scr_read(SCR_ERROR); 870 core_scr_write(SCR_ERROR, val); 871 } 872 873 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) 874 { 875 out_le32(&hsdev->sata_dwc_regs->intpr, 876 in_le32(&hsdev->sata_dwc_regs->intpr)); 877 } 878 879 static u32 qcmd_tag_to_mask(u8 tag) 880 { 881 return 0x00000001 << (tag & 0x1f); 882 } 883 884 /* See ahci.c */ 885 static void sata_dwc_error_intr(struct ata_port *ap, 886 struct sata_dwc_device *hsdev, uint intpr) 887 { 888 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 889 struct ata_eh_info *ehi = &ap->link.eh_info; 890 unsigned int err_mask = 0, action = 0; 891 struct ata_queued_cmd *qc; 892 u32 serror; 893 u8 status, tag; 894 u32 err_reg; 895 896 ata_ehi_clear_desc(ehi); 897 898 serror = core_scr_read(SCR_ERROR); 899 status = ap->ops->sff_check_status(ap); 900 901 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\ 902 low)); 903 tag = ap->link.active_tag; 904 905 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " 906 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", 907 __func__, serror, intpr, status, host_pvt.dma_interrupt_count, 908 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); 909 910 /* Clear error register and interrupt bit */ 911 clear_serror(); 912 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); 913 914 /* This is the only error happening now. TODO check for exact error */ 915 916 err_mask |= AC_ERR_HOST_BUS; 917 action |= ATA_EH_RESET; 918 919 /* Pass this on to EH */ 920 ehi->serror |= serror; 921 ehi->action |= action; 922 923 qc = ata_qc_from_tag(ap, tag); 924 if (qc) 925 qc->err_mask |= err_mask; 926 else 927 ehi->err_mask |= err_mask; 928 929 ata_port_abort(ap); 930 } 931 932 /* 933 * Function : sata_dwc_isr 934 * arguments : irq, void *dev_instance, struct pt_regs *regs 935 * Return value : irqreturn_t - status of IRQ 936 * This Interrupt handler called via port ops registered function. 937 * .irq_handler = sata_dwc_isr 938 */ 939 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) 940 { 941 struct ata_host *host = (struct ata_host *)dev_instance; 942 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); 943 struct ata_port *ap; 944 struct ata_queued_cmd *qc; 945 unsigned long flags; 946 u8 status, tag; 947 int handled, num_processed, port = 0; 948 uint intpr, sactive, sactive2, tag_mask; 949 struct sata_dwc_device_port *hsdevp; 950 host_pvt.sata_dwc_sactive_issued = 0; 951 952 spin_lock_irqsave(&host->lock, flags); 953 954 /* Read the interrupt register */ 955 intpr = in_le32(&hsdev->sata_dwc_regs->intpr); 956 957 ap = host->ports[port]; 958 hsdevp = HSDEVP_FROM_AP(ap); 959 960 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, 961 ap->link.active_tag); 962 963 /* Check for error interrupt */ 964 if (intpr & SATA_DWC_INTPR_ERR) { 965 sata_dwc_error_intr(ap, hsdev, intpr); 966 handled = 1; 967 goto DONE; 968 } 969 970 /* Check for DMA SETUP FIS (FP DMA) interrupt */ 971 if (intpr & SATA_DWC_INTPR_NEWFP) { 972 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); 973 974 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); 975 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); 976 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) 977 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); 978 979 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); 980 981 qc = ata_qc_from_tag(ap, tag); 982 /* 983 * Start FP DMA for NCQ command. At this point the tag is the 984 * active tag. It is the tag that matches the command about to 985 * be completed. 986 */ 987 qc->ap->link.active_tag = tag; 988 sata_dwc_bmdma_start_by_tag(qc, tag); 989 990 handled = 1; 991 goto DONE; 992 } 993 sactive = core_scr_read(SCR_ACTIVE); 994 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; 995 996 /* If no sactive issued and tag_mask is zero then this is not NCQ */ 997 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) { 998 if (ap->link.active_tag == ATA_TAG_POISON) 999 tag = 0; 1000 else 1001 tag = ap->link.active_tag; 1002 qc = ata_qc_from_tag(ap, tag); 1003 1004 /* DEV interrupt w/ no active qc? */ 1005 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 1006 dev_err(ap->dev, "%s interrupt with no active qc " 1007 "qc=%p\n", __func__, qc); 1008 ap->ops->sff_check_status(ap); 1009 handled = 1; 1010 goto DONE; 1011 } 1012 status = ap->ops->sff_check_status(ap); 1013 1014 qc->ap->link.active_tag = tag; 1015 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; 1016 1017 if (status & ATA_ERR) { 1018 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); 1019 sata_dwc_qc_complete(ap, qc, 1); 1020 handled = 1; 1021 goto DONE; 1022 } 1023 1024 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", 1025 __func__, get_prot_descript(qc->tf.protocol)); 1026 DRVSTILLBUSY: 1027 if (ata_is_dma(qc->tf.protocol)) { 1028 /* 1029 * Each DMA transaction produces 2 interrupts. The DMAC 1030 * transfer complete interrupt and the SATA controller 1031 * operation done interrupt. The command should be 1032 * completed only after both interrupts are seen. 1033 */ 1034 host_pvt.dma_interrupt_count++; 1035 if (hsdevp->dma_pending[tag] == \ 1036 SATA_DWC_DMA_PENDING_NONE) { 1037 dev_err(ap->dev, "%s: DMA not pending " 1038 "intpr=0x%08x status=0x%08x pending" 1039 "=%d\n", __func__, intpr, status, 1040 hsdevp->dma_pending[tag]); 1041 } 1042 1043 if ((host_pvt.dma_interrupt_count % 2) == 0) 1044 sata_dwc_dma_xfer_complete(ap, 1); 1045 } else if (ata_is_pio(qc->tf.protocol)) { 1046 ata_sff_hsm_move(ap, qc, status, 0); 1047 handled = 1; 1048 goto DONE; 1049 } else { 1050 if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) 1051 goto DRVSTILLBUSY; 1052 } 1053 1054 handled = 1; 1055 goto DONE; 1056 } 1057 1058 /* 1059 * This is a NCQ command. At this point we need to figure out for which 1060 * tags we have gotten a completion interrupt. One interrupt may serve 1061 * as completion for more than one operation when commands are queued 1062 * (NCQ). We need to process each completed command. 1063 */ 1064 1065 /* process completed commands */ 1066 sactive = core_scr_read(SCR_ACTIVE); 1067 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; 1068 1069 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \ 1070 tag_mask > 1) { 1071 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x" 1072 "tag_mask=0x%08x\n", __func__, sactive, 1073 host_pvt.sata_dwc_sactive_issued, tag_mask); 1074 } 1075 1076 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \ 1077 (host_pvt.sata_dwc_sactive_issued)) { 1078 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " 1079 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask" 1080 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued, 1081 tag_mask); 1082 } 1083 1084 /* read just to clear ... not bad if currently still busy */ 1085 status = ap->ops->sff_check_status(ap); 1086 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); 1087 1088 tag = 0; 1089 num_processed = 0; 1090 while (tag_mask) { 1091 num_processed++; 1092 while (!(tag_mask & 0x00000001)) { 1093 tag++; 1094 tag_mask <<= 1; 1095 } 1096 1097 tag_mask &= (~0x00000001); 1098 qc = ata_qc_from_tag(ap, tag); 1099 1100 /* To be picked up by completion functions */ 1101 qc->ap->link.active_tag = tag; 1102 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; 1103 1104 /* Let libata/scsi layers handle error */ 1105 if (status & ATA_ERR) { 1106 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, 1107 status); 1108 sata_dwc_qc_complete(ap, qc, 1); 1109 handled = 1; 1110 goto DONE; 1111 } 1112 1113 /* Process completed command */ 1114 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, 1115 get_prot_descript(qc->tf.protocol)); 1116 if (ata_is_dma(qc->tf.protocol)) { 1117 host_pvt.dma_interrupt_count++; 1118 if (hsdevp->dma_pending[tag] == \ 1119 SATA_DWC_DMA_PENDING_NONE) 1120 dev_warn(ap->dev, "%s: DMA not pending?\n", 1121 __func__); 1122 if ((host_pvt.dma_interrupt_count % 2) == 0) 1123 sata_dwc_dma_xfer_complete(ap, 1); 1124 } else { 1125 if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) 1126 goto STILLBUSY; 1127 } 1128 continue; 1129 1130 STILLBUSY: 1131 ap->stats.idle_irq++; 1132 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", 1133 ap->print_id); 1134 } /* while tag_mask */ 1135 1136 /* 1137 * Check to see if any commands completed while we were processing our 1138 * initial set of completed commands (read status clears interrupts, 1139 * so we might miss a completed command interrupt if one came in while 1140 * we were processing --we read status as part of processing a completed 1141 * command). 1142 */ 1143 sactive2 = core_scr_read(SCR_ACTIVE); 1144 if (sactive2 != sactive) { 1145 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2" 1146 "=0x%x\n", sactive, sactive2); 1147 } 1148 handled = 1; 1149 1150 DONE: 1151 spin_unlock_irqrestore(&host->lock, flags); 1152 return IRQ_RETVAL(handled); 1153 } 1154 1155 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) 1156 { 1157 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); 1158 1159 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { 1160 out_le32(&(hsdev->sata_dwc_regs->dmacr), 1161 SATA_DWC_DMACR_RX_CLEAR( 1162 in_le32(&(hsdev->sata_dwc_regs->dmacr)))); 1163 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { 1164 out_le32(&(hsdev->sata_dwc_regs->dmacr), 1165 SATA_DWC_DMACR_TX_CLEAR( 1166 in_le32(&(hsdev->sata_dwc_regs->dmacr)))); 1167 } else { 1168 /* 1169 * This should not happen, it indicates the driver is out of 1170 * sync. If it does happen, clear dmacr anyway. 1171 */ 1172 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and" 1173 "TX DMA not pending tag=0x%02x pending=%d" 1174 " dmacr: 0x%08x\n", __func__, tag, 1175 hsdevp->dma_pending[tag], 1176 in_le32(&(hsdev->sata_dwc_regs->dmacr))); 1177 out_le32(&(hsdev->sata_dwc_regs->dmacr), 1178 SATA_DWC_DMACR_TXRXCH_CLEAR); 1179 } 1180 } 1181 1182 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) 1183 { 1184 struct ata_queued_cmd *qc; 1185 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1186 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 1187 u8 tag = 0; 1188 1189 tag = ap->link.active_tag; 1190 qc = ata_qc_from_tag(ap, tag); 1191 if (!qc) { 1192 dev_err(ap->dev, "failed to get qc"); 1193 return; 1194 } 1195 1196 #ifdef DEBUG_NCQ 1197 if (tag > 0) { 1198 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " 1199 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, 1200 get_dma_dir_descript(qc->dma_dir), 1201 get_prot_descript(qc->tf.protocol), 1202 in_le32(&(hsdev->sata_dwc_regs->dmacr))); 1203 } 1204 #endif 1205 1206 if (ata_is_dma(qc->tf.protocol)) { 1207 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { 1208 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " 1209 "pending dmacr: 0x%08x\n", __func__, 1210 in_le32(&(hsdev->sata_dwc_regs->dmacr))); 1211 } 1212 1213 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; 1214 sata_dwc_qc_complete(ap, qc, check_status); 1215 ap->link.active_tag = ATA_TAG_POISON; 1216 } else { 1217 sata_dwc_qc_complete(ap, qc, check_status); 1218 } 1219 } 1220 1221 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, 1222 u32 check_status) 1223 { 1224 u8 status = 0; 1225 u32 mask = 0x0; 1226 u8 tag = qc->tag; 1227 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1228 host_pvt.sata_dwc_sactive_queued = 0; 1229 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); 1230 1231 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) 1232 dev_err(ap->dev, "TX DMA PENDING\n"); 1233 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) 1234 dev_err(ap->dev, "RX DMA PENDING\n"); 1235 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:" 1236 " protocol=%d\n", qc->tf.command, status, ap->print_id, 1237 qc->tf.protocol); 1238 1239 /* clear active bit */ 1240 mask = (~(qcmd_tag_to_mask(tag))); 1241 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \ 1242 & mask; 1243 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \ 1244 & mask; 1245 ata_qc_complete(qc); 1246 return 0; 1247 } 1248 1249 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) 1250 { 1251 /* Enable selective interrupts by setting the interrupt maskregister*/ 1252 out_le32(&hsdev->sata_dwc_regs->intmr, 1253 SATA_DWC_INTMR_ERRM | 1254 SATA_DWC_INTMR_NEWFPM | 1255 SATA_DWC_INTMR_PMABRTM | 1256 SATA_DWC_INTMR_DMATM); 1257 /* 1258 * Unmask the error bits that should trigger an error interrupt by 1259 * setting the error mask register. 1260 */ 1261 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); 1262 1263 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", 1264 __func__, in_le32(&hsdev->sata_dwc_regs->intmr), 1265 in_le32(&hsdev->sata_dwc_regs->errmr)); 1266 } 1267 1268 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) 1269 { 1270 port->cmd_addr = (void __iomem *)base + 0x00; 1271 port->data_addr = (void __iomem *)base + 0x00; 1272 1273 port->error_addr = (void __iomem *)base + 0x04; 1274 port->feature_addr = (void __iomem *)base + 0x04; 1275 1276 port->nsect_addr = (void __iomem *)base + 0x08; 1277 1278 port->lbal_addr = (void __iomem *)base + 0x0c; 1279 port->lbam_addr = (void __iomem *)base + 0x10; 1280 port->lbah_addr = (void __iomem *)base + 0x14; 1281 1282 port->device_addr = (void __iomem *)base + 0x18; 1283 port->command_addr = (void __iomem *)base + 0x1c; 1284 port->status_addr = (void __iomem *)base + 0x1c; 1285 1286 port->altstatus_addr = (void __iomem *)base + 0x20; 1287 port->ctl_addr = (void __iomem *)base + 0x20; 1288 } 1289 1290 /* 1291 * Function : sata_dwc_port_start 1292 * arguments : struct ata_ioports *port 1293 * Return value : returns 0 if success, error code otherwise 1294 * This function allocates the scatter gather LLI table for AHB DMA 1295 */ 1296 static int sata_dwc_port_start(struct ata_port *ap) 1297 { 1298 int err = 0; 1299 struct sata_dwc_device *hsdev; 1300 struct sata_dwc_device_port *hsdevp = NULL; 1301 struct device *pdev; 1302 int i; 1303 1304 hsdev = HSDEV_FROM_AP(ap); 1305 1306 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); 1307 1308 hsdev->host = ap->host; 1309 pdev = ap->host->dev; 1310 if (!pdev) { 1311 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); 1312 err = -ENODEV; 1313 goto CLEANUP; 1314 } 1315 1316 /* Allocate Port Struct */ 1317 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); 1318 if (!hsdevp) { 1319 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); 1320 err = -ENOMEM; 1321 goto CLEANUP; 1322 } 1323 hsdevp->hsdev = hsdev; 1324 1325 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) 1326 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; 1327 1328 ap->bmdma_prd = NULL; /* set these so libata doesn't use them */ 1329 ap->bmdma_prd_dma = 0; 1330 1331 /* 1332 * DMA - Assign scatter gather LLI table. We can't use the libata 1333 * version since it's PRD is IDE PCI specific. 1334 */ 1335 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { 1336 hsdevp->llit[i] = dma_alloc_coherent(pdev, 1337 SATA_DWC_DMAC_LLI_TBL_SZ, 1338 &(hsdevp->llit_dma[i]), 1339 GFP_ATOMIC); 1340 if (!hsdevp->llit[i]) { 1341 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n", 1342 __func__); 1343 err = -ENOMEM; 1344 goto CLEANUP_ALLOC; 1345 } 1346 } 1347 1348 if (ap->port_no == 0) { 1349 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", 1350 __func__); 1351 out_le32(&hsdev->sata_dwc_regs->dmacr, 1352 SATA_DWC_DMACR_TXRXCH_CLEAR); 1353 1354 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", 1355 __func__); 1356 out_le32(&hsdev->sata_dwc_regs->dbtsr, 1357 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | 1358 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); 1359 } 1360 1361 /* Clear any error bits before libata starts issuing commands */ 1362 clear_serror(); 1363 ap->private_data = hsdevp; 1364 dev_dbg(ap->dev, "%s: done\n", __func__); 1365 return 0; 1366 1367 CLEANUP_ALLOC: 1368 kfree(hsdevp); 1369 CLEANUP: 1370 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); 1371 return err; 1372 } 1373 1374 static void sata_dwc_port_stop(struct ata_port *ap) 1375 { 1376 int i; 1377 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 1378 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1379 1380 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); 1381 1382 if (hsdevp && hsdev) { 1383 /* deallocate LLI table */ 1384 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { 1385 dma_free_coherent(ap->host->dev, 1386 SATA_DWC_DMAC_LLI_TBL_SZ, 1387 hsdevp->llit[i], hsdevp->llit_dma[i]); 1388 } 1389 1390 kfree(hsdevp); 1391 } 1392 ap->private_data = NULL; 1393 } 1394 1395 /* 1396 * Function : sata_dwc_exec_command_by_tag 1397 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued 1398 * Return value : None 1399 * This function keeps track of individual command tag ids and calls 1400 * ata_exec_command in libata 1401 */ 1402 static void sata_dwc_exec_command_by_tag(struct ata_port *ap, 1403 struct ata_taskfile *tf, 1404 u8 tag, u32 cmd_issued) 1405 { 1406 unsigned long flags; 1407 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1408 1409 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, 1410 ata_get_cmd_descript(tf->command), tag); 1411 1412 spin_lock_irqsave(&ap->host->lock, flags); 1413 hsdevp->cmd_issued[tag] = cmd_issued; 1414 spin_unlock_irqrestore(&ap->host->lock, flags); 1415 /* 1416 * Clear SError before executing a new command. 1417 * sata_dwc_scr_write and read can not be used here. Clearing the PM 1418 * managed SError register for the disk needs to be done before the 1419 * task file is loaded. 1420 */ 1421 clear_serror(); 1422 ata_sff_exec_command(ap, tf); 1423 } 1424 1425 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) 1426 { 1427 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, 1428 SATA_DWC_CMD_ISSUED_PEND); 1429 } 1430 1431 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) 1432 { 1433 u8 tag = qc->tag; 1434 1435 if (ata_is_ncq(qc->tf.protocol)) { 1436 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", 1437 __func__, qc->ap->link.sactive, tag); 1438 } else { 1439 tag = 0; 1440 } 1441 sata_dwc_bmdma_setup_by_tag(qc, tag); 1442 } 1443 1444 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) 1445 { 1446 int start_dma; 1447 u32 reg, dma_chan; 1448 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); 1449 struct ata_port *ap = qc->ap; 1450 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1451 int dir = qc->dma_dir; 1452 dma_chan = hsdevp->dma_chan[tag]; 1453 1454 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { 1455 start_dma = 1; 1456 if (dir == DMA_TO_DEVICE) 1457 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; 1458 else 1459 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; 1460 } else { 1461 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " 1462 "(tag=%d) DMA NOT started\n", __func__, 1463 hsdevp->cmd_issued[tag], tag); 1464 start_dma = 0; 1465 } 1466 1467 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " 1468 "start_dma? %x\n", __func__, qc, tag, qc->tf.command, 1469 get_dma_dir_descript(qc->dma_dir), start_dma); 1470 sata_dwc_tf_dump(&(qc->tf)); 1471 1472 if (start_dma) { 1473 reg = core_scr_read(SCR_ERROR); 1474 if (reg & SATA_DWC_SERROR_ERR_BITS) { 1475 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", 1476 __func__, reg); 1477 } 1478 1479 if (dir == DMA_TO_DEVICE) 1480 out_le32(&hsdev->sata_dwc_regs->dmacr, 1481 SATA_DWC_DMACR_TXCHEN); 1482 else 1483 out_le32(&hsdev->sata_dwc_regs->dmacr, 1484 SATA_DWC_DMACR_RXCHEN); 1485 1486 /* Enable AHB DMA transfer on the specified channel */ 1487 dma_dwc_xfer_start(dma_chan); 1488 } 1489 } 1490 1491 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) 1492 { 1493 u8 tag = qc->tag; 1494 1495 if (ata_is_ncq(qc->tf.protocol)) { 1496 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", 1497 __func__, qc->ap->link.sactive, tag); 1498 } else { 1499 tag = 0; 1500 } 1501 dev_dbg(qc->ap->dev, "%s\n", __func__); 1502 sata_dwc_bmdma_start_by_tag(qc, tag); 1503 } 1504 1505 /* 1506 * Function : sata_dwc_qc_prep_by_tag 1507 * arguments : ata_queued_cmd *qc, u8 tag 1508 * Return value : None 1509 * qc_prep for a particular queued command based on tag 1510 */ 1511 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) 1512 { 1513 struct scatterlist *sg = qc->sg; 1514 struct ata_port *ap = qc->ap; 1515 int dma_chan; 1516 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 1517 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1518 1519 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", 1520 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir), 1521 qc->n_elem); 1522 1523 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag], 1524 hsdevp->llit_dma[tag], 1525 (void __iomem *)&hsdev->sata_dwc_regs->dmadr, 1526 qc->dma_dir); 1527 if (dma_chan < 0) { 1528 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", 1529 __func__, dma_chan); 1530 return; 1531 } 1532 hsdevp->dma_chan[tag] = dma_chan; 1533 } 1534 1535 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) 1536 { 1537 u32 sactive; 1538 u8 tag = qc->tag; 1539 struct ata_port *ap = qc->ap; 1540 1541 #ifdef DEBUG_NCQ 1542 if (qc->tag > 0 || ap->link.sactive > 1) 1543 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d " 1544 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", 1545 __func__, ap->print_id, qc->tf.command, 1546 ata_get_cmd_descript(qc->tf.command), 1547 qc->tag, get_prot_descript(qc->tf.protocol), 1548 ap->link.active_tag, ap->link.sactive); 1549 #endif 1550 1551 if (!ata_is_ncq(qc->tf.protocol)) 1552 tag = 0; 1553 sata_dwc_qc_prep_by_tag(qc, tag); 1554 1555 if (ata_is_ncq(qc->tf.protocol)) { 1556 sactive = core_scr_read(SCR_ACTIVE); 1557 sactive |= (0x00000001 << tag); 1558 core_scr_write(SCR_ACTIVE, sactive); 1559 1560 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " 1561 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, 1562 sactive); 1563 1564 ap->ops->sff_tf_load(ap, &qc->tf); 1565 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, 1566 SATA_DWC_CMD_ISSUED_PEND); 1567 } else { 1568 ata_sff_qc_issue(qc); 1569 } 1570 return 0; 1571 } 1572 1573 /* 1574 * Function : sata_dwc_qc_prep 1575 * arguments : ata_queued_cmd *qc 1576 * Return value : None 1577 * qc_prep for a particular queued command 1578 */ 1579 1580 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) 1581 { 1582 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) 1583 return; 1584 1585 #ifdef DEBUG_NCQ 1586 if (qc->tag > 0) 1587 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", 1588 __func__, qc->tag, qc->ap->link.active_tag); 1589 1590 return ; 1591 #endif 1592 } 1593 1594 static void sata_dwc_error_handler(struct ata_port *ap) 1595 { 1596 ata_sff_error_handler(ap); 1597 } 1598 1599 static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, 1600 unsigned long deadline) 1601 { 1602 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); 1603 int ret; 1604 1605 ret = sata_sff_hardreset(link, class, deadline); 1606 1607 sata_dwc_enable_interrupts(hsdev); 1608 1609 /* Reconfigure the DMA control register */ 1610 out_le32(&hsdev->sata_dwc_regs->dmacr, 1611 SATA_DWC_DMACR_TXRXCH_CLEAR); 1612 1613 /* Reconfigure the DMA Burst Transaction Size register */ 1614 out_le32(&hsdev->sata_dwc_regs->dbtsr, 1615 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | 1616 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); 1617 1618 return ret; 1619 } 1620 1621 /* 1622 * scsi mid-layer and libata interface structures 1623 */ 1624 static struct scsi_host_template sata_dwc_sht = { 1625 ATA_NCQ_SHT(DRV_NAME), 1626 /* 1627 * test-only: Currently this driver doesn't handle NCQ 1628 * correctly. We enable NCQ but set the queue depth to a 1629 * max of 1. This will get fixed in in a future release. 1630 */ 1631 .sg_tablesize = LIBATA_MAX_PRD, 1632 /* .can_queue = ATA_MAX_QUEUE, */ 1633 .dma_boundary = ATA_DMA_BOUNDARY, 1634 }; 1635 1636 static struct ata_port_operations sata_dwc_ops = { 1637 .inherits = &ata_sff_port_ops, 1638 1639 .error_handler = sata_dwc_error_handler, 1640 .hardreset = sata_dwc_hardreset, 1641 1642 .qc_prep = sata_dwc_qc_prep, 1643 .qc_issue = sata_dwc_qc_issue, 1644 1645 .scr_read = sata_dwc_scr_read, 1646 .scr_write = sata_dwc_scr_write, 1647 1648 .port_start = sata_dwc_port_start, 1649 .port_stop = sata_dwc_port_stop, 1650 1651 .bmdma_setup = sata_dwc_bmdma_setup, 1652 .bmdma_start = sata_dwc_bmdma_start, 1653 }; 1654 1655 static const struct ata_port_info sata_dwc_port_info[] = { 1656 { 1657 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, 1658 .pio_mask = ATA_PIO4, 1659 .udma_mask = ATA_UDMA6, 1660 .port_ops = &sata_dwc_ops, 1661 }, 1662 }; 1663 1664 static int sata_dwc_probe(struct platform_device *ofdev) 1665 { 1666 struct sata_dwc_device *hsdev; 1667 u32 idr, versionr; 1668 char *ver = (char *)&versionr; 1669 u8 __iomem *base; 1670 int err = 0; 1671 int irq; 1672 struct ata_host *host; 1673 struct ata_port_info pi = sata_dwc_port_info[0]; 1674 const struct ata_port_info *ppi[] = { &pi, NULL }; 1675 struct device_node *np = ofdev->dev.of_node; 1676 u32 dma_chan; 1677 1678 /* Allocate DWC SATA device */ 1679 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); 1680 hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL); 1681 if (!host || !hsdev) 1682 return -ENOMEM; 1683 1684 host->private_data = hsdev; 1685 1686 if (of_property_read_u32(np, "dma-channel", &dma_chan)) { 1687 dev_warn(&ofdev->dev, "no dma-channel property set." 1688 " Use channel 0\n"); 1689 dma_chan = 0; 1690 } 1691 host_pvt.dma_channel = dma_chan; 1692 1693 /* Ioremap SATA registers */ 1694 base = of_iomap(np, 0); 1695 if (!base) { 1696 dev_err(&ofdev->dev, "ioremap failed for SATA register" 1697 " address\n"); 1698 return -ENODEV; 1699 } 1700 hsdev->reg_base = base; 1701 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); 1702 1703 /* Synopsys DWC SATA specific Registers */ 1704 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); 1705 1706 /* Setup port */ 1707 host->ports[0]->ioaddr.cmd_addr = base; 1708 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; 1709 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; 1710 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); 1711 1712 /* Read the ID and Version Registers */ 1713 idr = in_le32(&hsdev->sata_dwc_regs->idr); 1714 versionr = in_le32(&hsdev->sata_dwc_regs->versionr); 1715 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", 1716 idr, ver[0], ver[1], ver[2]); 1717 1718 /* Get SATA DMA interrupt number */ 1719 irq = irq_of_parse_and_map(np, 1); 1720 if (irq == NO_IRQ) { 1721 dev_err(&ofdev->dev, "no SATA DMA irq\n"); 1722 err = -ENODEV; 1723 goto error_iomap; 1724 } 1725 1726 /* Get physical SATA DMA register base address */ 1727 host_pvt.sata_dma_regs = (void *)of_iomap(np, 1); 1728 if (!(host_pvt.sata_dma_regs)) { 1729 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register" 1730 " address\n"); 1731 err = -ENODEV; 1732 goto error_iomap; 1733 } 1734 1735 /* Save dev for later use in dev_xxx() routines */ 1736 host_pvt.dwc_dev = &ofdev->dev; 1737 1738 /* Initialize AHB DMAC */ 1739 err = dma_dwc_init(hsdev, irq); 1740 if (err) 1741 goto error_dma_iomap; 1742 1743 /* Enable SATA Interrupts */ 1744 sata_dwc_enable_interrupts(hsdev); 1745 1746 /* Get SATA interrupt number */ 1747 irq = irq_of_parse_and_map(np, 0); 1748 if (irq == NO_IRQ) { 1749 dev_err(&ofdev->dev, "no SATA DMA irq\n"); 1750 err = -ENODEV; 1751 goto error_out; 1752 } 1753 1754 /* 1755 * Now, register with libATA core, this will also initiate the 1756 * device discovery process, invoking our port_start() handler & 1757 * error_handler() to execute a dummy Softreset EH session 1758 */ 1759 err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); 1760 if (err) 1761 dev_err(&ofdev->dev, "failed to activate host"); 1762 1763 dev_set_drvdata(&ofdev->dev, host); 1764 return 0; 1765 1766 error_out: 1767 /* Free SATA DMA resources */ 1768 dma_dwc_exit(hsdev); 1769 error_dma_iomap: 1770 iounmap((void __iomem *)host_pvt.sata_dma_regs); 1771 error_iomap: 1772 iounmap(base); 1773 return err; 1774 } 1775 1776 static int sata_dwc_remove(struct platform_device *ofdev) 1777 { 1778 struct device *dev = &ofdev->dev; 1779 struct ata_host *host = dev_get_drvdata(dev); 1780 struct sata_dwc_device *hsdev = host->private_data; 1781 1782 ata_host_detach(host); 1783 1784 /* Free SATA DMA resources */ 1785 dma_dwc_exit(hsdev); 1786 1787 iounmap((void __iomem *)host_pvt.sata_dma_regs); 1788 iounmap(hsdev->reg_base); 1789 dev_dbg(&ofdev->dev, "done\n"); 1790 return 0; 1791 } 1792 1793 static const struct of_device_id sata_dwc_match[] = { 1794 { .compatible = "amcc,sata-460ex", }, 1795 {} 1796 }; 1797 MODULE_DEVICE_TABLE(of, sata_dwc_match); 1798 1799 static struct platform_driver sata_dwc_driver = { 1800 .driver = { 1801 .name = DRV_NAME, 1802 .of_match_table = sata_dwc_match, 1803 }, 1804 .probe = sata_dwc_probe, 1805 .remove = sata_dwc_remove, 1806 }; 1807 1808 module_platform_driver(sata_dwc_driver); 1809 1810 MODULE_LICENSE("GPL"); 1811 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); 1812 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver"); 1813 MODULE_VERSION(DRV_VERSION); 1814