1 /* 2 * drivers/ata/sata_dwc_460ex.c 3 * 4 * Synopsys DesignWare Cores (DWC) SATA host driver 5 * 6 * Author: Mark Miesfeld <mmiesfeld@amcc.com> 7 * 8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> 9 * Copyright 2008 DENX Software Engineering 10 * 11 * Based on versions provided by AMCC and Synopsys which are: 12 * Copyright 2006 Applied Micro Circuits Corporation 13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 */ 20 21 #ifdef CONFIG_SATA_DWC_DEBUG 22 #define DEBUG 23 #endif 24 25 #ifdef CONFIG_SATA_DWC_VDEBUG 26 #define VERBOSE_DEBUG 27 #define DEBUG_NCQ 28 #endif 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/device.h> 33 #include <linux/dmaengine.h> 34 #include <linux/of_address.h> 35 #include <linux/of_irq.h> 36 #include <linux/of_platform.h> 37 #include <linux/platform_device.h> 38 #include <linux/phy/phy.h> 39 #include <linux/libata.h> 40 #include <linux/slab.h> 41 42 #include "libata.h" 43 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_cmnd.h> 46 47 /* These two are defined in "libata.h" */ 48 #undef DRV_NAME 49 #undef DRV_VERSION 50 51 #define DRV_NAME "sata-dwc" 52 #define DRV_VERSION "1.3" 53 54 #define sata_dwc_writel(a, v) writel_relaxed(v, a) 55 #define sata_dwc_readl(a) readl_relaxed(a) 56 57 #ifndef NO_IRQ 58 #define NO_IRQ 0 59 #endif 60 61 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ 62 63 enum { 64 SATA_DWC_MAX_PORTS = 1, 65 66 SATA_DWC_SCR_OFFSET = 0x24, 67 SATA_DWC_REG_OFFSET = 0x64, 68 }; 69 70 /* DWC SATA Registers */ 71 struct sata_dwc_regs { 72 u32 fptagr; /* 1st party DMA tag */ 73 u32 fpbor; /* 1st party DMA buffer offset */ 74 u32 fptcr; /* 1st party DMA Xfr count */ 75 u32 dmacr; /* DMA Control */ 76 u32 dbtsr; /* DMA Burst Transac size */ 77 u32 intpr; /* Interrupt Pending */ 78 u32 intmr; /* Interrupt Mask */ 79 u32 errmr; /* Error Mask */ 80 u32 llcr; /* Link Layer Control */ 81 u32 phycr; /* PHY Control */ 82 u32 physr; /* PHY Status */ 83 u32 rxbistpd; /* Recvd BIST pattern def register */ 84 u32 rxbistpd1; /* Recvd BIST data dword1 */ 85 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ 86 u32 txbistpd; /* Trans BIST pattern def register */ 87 u32 txbistpd1; /* Trans BIST data dword1 */ 88 u32 txbistpd2; /* Trans BIST data dword2 */ 89 u32 bistcr; /* BIST Control Register */ 90 u32 bistfctr; /* BIST FIS Count Register */ 91 u32 bistsr; /* BIST Status Register */ 92 u32 bistdecr; /* BIST Dword Error count register */ 93 u32 res[15]; /* Reserved locations */ 94 u32 testr; /* Test Register */ 95 u32 versionr; /* Version Register */ 96 u32 idr; /* ID Register */ 97 u32 unimpl[192]; /* Unimplemented */ 98 u32 dmadr[256]; /* FIFO Locations in DMA Mode */ 99 }; 100 101 enum { 102 SCR_SCONTROL_DET_ENABLE = 0x00000001, 103 SCR_SSTATUS_DET_PRESENT = 0x00000001, 104 SCR_SERROR_DIAG_X = 0x04000000, 105 /* DWC SATA Register Operations */ 106 SATA_DWC_TXFIFO_DEPTH = 0x01FF, 107 SATA_DWC_RXFIFO_DEPTH = 0x01FF, 108 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, 109 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), 110 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), 111 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, 112 SATA_DWC_INTPR_DMAT = 0x00000001, 113 SATA_DWC_INTPR_NEWFP = 0x00000002, 114 SATA_DWC_INTPR_PMABRT = 0x00000004, 115 SATA_DWC_INTPR_ERR = 0x00000008, 116 SATA_DWC_INTPR_NEWBIST = 0x00000010, 117 SATA_DWC_INTPR_IPF = 0x10000000, 118 SATA_DWC_INTMR_DMATM = 0x00000001, 119 SATA_DWC_INTMR_NEWFPM = 0x00000002, 120 SATA_DWC_INTMR_PMABRTM = 0x00000004, 121 SATA_DWC_INTMR_ERRM = 0x00000008, 122 SATA_DWC_INTMR_NEWBISTM = 0x00000010, 123 SATA_DWC_LLCR_SCRAMEN = 0x00000001, 124 SATA_DWC_LLCR_DESCRAMEN = 0x00000002, 125 SATA_DWC_LLCR_RPDEN = 0x00000004, 126 /* This is all error bits, zero's are reserved fields. */ 127 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 128 }; 129 130 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) 131 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ 132 SATA_DWC_DMACR_TMOD_TXCHEN) 133 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ 134 SATA_DWC_DMACR_TMOD_TXCHEN) 135 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) 136 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ 137 << 16) 138 struct sata_dwc_device { 139 struct device *dev; /* generic device struct */ 140 struct ata_probe_ent *pe; /* ptr to probe-ent */ 141 struct ata_host *host; 142 struct sata_dwc_regs __iomem *sata_dwc_regs; /* DW SATA specific */ 143 u32 sactive_issued; 144 u32 sactive_queued; 145 struct phy *phy; 146 phys_addr_t dmadr; 147 #ifdef CONFIG_SATA_DWC_OLD_DMA 148 struct dw_dma_chip *dma; 149 #endif 150 }; 151 152 #define SATA_DWC_QCMD_MAX 32 153 154 struct sata_dwc_device_port { 155 struct sata_dwc_device *hsdev; 156 int cmd_issued[SATA_DWC_QCMD_MAX]; 157 int dma_pending[SATA_DWC_QCMD_MAX]; 158 159 /* DMA info */ 160 struct dma_chan *chan; 161 struct dma_async_tx_descriptor *desc[SATA_DWC_QCMD_MAX]; 162 u32 dma_interrupt_count; 163 }; 164 165 /* 166 * Commonly used DWC SATA driver macros 167 */ 168 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)(host)->private_data) 169 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)(ap)->host->private_data) 170 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)(ap)->private_data) 171 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)(qc)->ap->host->private_data) 172 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)(p)->hsdev) 173 174 enum { 175 SATA_DWC_CMD_ISSUED_NOT = 0, 176 SATA_DWC_CMD_ISSUED_PEND = 1, 177 SATA_DWC_CMD_ISSUED_EXEC = 2, 178 SATA_DWC_CMD_ISSUED_NODATA = 3, 179 180 SATA_DWC_DMA_PENDING_NONE = 0, 181 SATA_DWC_DMA_PENDING_TX = 1, 182 SATA_DWC_DMA_PENDING_RX = 2, 183 }; 184 185 /* 186 * Prototypes 187 */ 188 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); 189 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, 190 u32 check_status); 191 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); 192 static void sata_dwc_port_stop(struct ata_port *ap); 193 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); 194 195 #ifdef CONFIG_SATA_DWC_OLD_DMA 196 197 #include <linux/platform_data/dma-dw.h> 198 #include <linux/dma/dw.h> 199 200 static struct dw_dma_slave sata_dwc_dma_dws = { 201 .src_id = 0, 202 .dst_id = 0, 203 .m_master = 1, 204 .p_master = 0, 205 }; 206 207 static bool sata_dwc_dma_filter(struct dma_chan *chan, void *param) 208 { 209 struct dw_dma_slave *dws = &sata_dwc_dma_dws; 210 211 if (dws->dma_dev != chan->device->dev) 212 return false; 213 214 chan->private = dws; 215 return true; 216 } 217 218 static int sata_dwc_dma_get_channel_old(struct sata_dwc_device_port *hsdevp) 219 { 220 struct sata_dwc_device *hsdev = hsdevp->hsdev; 221 struct dw_dma_slave *dws = &sata_dwc_dma_dws; 222 dma_cap_mask_t mask; 223 224 dws->dma_dev = hsdev->dev; 225 226 dma_cap_zero(mask); 227 dma_cap_set(DMA_SLAVE, mask); 228 229 /* Acquire DMA channel */ 230 hsdevp->chan = dma_request_channel(mask, sata_dwc_dma_filter, hsdevp); 231 if (!hsdevp->chan) { 232 dev_err(hsdev->dev, "%s: dma channel unavailable\n", 233 __func__); 234 return -EAGAIN; 235 } 236 237 return 0; 238 } 239 240 static int sata_dwc_dma_init_old(struct platform_device *pdev, 241 struct sata_dwc_device *hsdev) 242 { 243 struct device_node *np = pdev->dev.of_node; 244 struct resource *res; 245 246 hsdev->dma = devm_kzalloc(&pdev->dev, sizeof(*hsdev->dma), GFP_KERNEL); 247 if (!hsdev->dma) 248 return -ENOMEM; 249 250 hsdev->dma->dev = &pdev->dev; 251 252 /* Get SATA DMA interrupt number */ 253 hsdev->dma->irq = irq_of_parse_and_map(np, 1); 254 if (hsdev->dma->irq == NO_IRQ) { 255 dev_err(&pdev->dev, "no SATA DMA irq\n"); 256 return -ENODEV; 257 } 258 259 /* Get physical SATA DMA register base address */ 260 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 261 hsdev->dma->regs = devm_ioremap_resource(&pdev->dev, res); 262 if (IS_ERR(hsdev->dma->regs)) { 263 dev_err(&pdev->dev, 264 "ioremap failed for AHBDMA register address\n"); 265 return PTR_ERR(hsdev->dma->regs); 266 } 267 268 /* Initialize AHB DMAC */ 269 return dw_dma_probe(hsdev->dma); 270 } 271 272 static void sata_dwc_dma_exit_old(struct sata_dwc_device *hsdev) 273 { 274 if (!hsdev->dma) 275 return; 276 277 dw_dma_remove(hsdev->dma); 278 } 279 280 #endif 281 282 static const char *get_prot_descript(u8 protocol) 283 { 284 switch ((enum ata_tf_protocols)protocol) { 285 case ATA_PROT_NODATA: 286 return "ATA no data"; 287 case ATA_PROT_PIO: 288 return "ATA PIO"; 289 case ATA_PROT_DMA: 290 return "ATA DMA"; 291 case ATA_PROT_NCQ: 292 return "ATA NCQ"; 293 case ATAPI_PROT_NODATA: 294 return "ATAPI no data"; 295 case ATAPI_PROT_PIO: 296 return "ATAPI PIO"; 297 case ATAPI_PROT_DMA: 298 return "ATAPI DMA"; 299 default: 300 return "unknown"; 301 } 302 } 303 304 static const char *get_dma_dir_descript(int dma_dir) 305 { 306 switch ((enum dma_data_direction)dma_dir) { 307 case DMA_BIDIRECTIONAL: 308 return "bidirectional"; 309 case DMA_TO_DEVICE: 310 return "to device"; 311 case DMA_FROM_DEVICE: 312 return "from device"; 313 default: 314 return "none"; 315 } 316 } 317 318 static void sata_dwc_tf_dump(struct ata_port *ap, struct ata_taskfile *tf) 319 { 320 dev_vdbg(ap->dev, 321 "taskfile cmd: 0x%02x protocol: %s flags: 0x%lx device: %x\n", 322 tf->command, get_prot_descript(tf->protocol), tf->flags, 323 tf->device); 324 dev_vdbg(ap->dev, 325 "feature: 0x%02x nsect: 0x%x lbal: 0x%x lbam: 0x%x lbah: 0x%x\n", 326 tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); 327 dev_vdbg(ap->dev, 328 "hob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", 329 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, 330 tf->hob_lbah); 331 } 332 333 static void dma_dwc_xfer_done(void *hsdev_instance) 334 { 335 unsigned long flags; 336 struct sata_dwc_device *hsdev = hsdev_instance; 337 struct ata_host *host = (struct ata_host *)hsdev->host; 338 struct ata_port *ap; 339 struct sata_dwc_device_port *hsdevp; 340 u8 tag = 0; 341 unsigned int port = 0; 342 343 spin_lock_irqsave(&host->lock, flags); 344 ap = host->ports[port]; 345 hsdevp = HSDEVP_FROM_AP(ap); 346 tag = ap->link.active_tag; 347 348 /* 349 * Each DMA command produces 2 interrupts. Only 350 * complete the command after both interrupts have been 351 * seen. (See sata_dwc_isr()) 352 */ 353 hsdevp->dma_interrupt_count++; 354 sata_dwc_clear_dmacr(hsdevp, tag); 355 356 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { 357 dev_err(ap->dev, "DMA not pending tag=0x%02x pending=%d\n", 358 tag, hsdevp->dma_pending[tag]); 359 } 360 361 if ((hsdevp->dma_interrupt_count % 2) == 0) 362 sata_dwc_dma_xfer_complete(ap, 1); 363 364 spin_unlock_irqrestore(&host->lock, flags); 365 } 366 367 static struct dma_async_tx_descriptor *dma_dwc_xfer_setup(struct ata_queued_cmd *qc) 368 { 369 struct ata_port *ap = qc->ap; 370 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 371 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 372 struct dma_slave_config sconf; 373 struct dma_async_tx_descriptor *desc; 374 375 if (qc->dma_dir == DMA_DEV_TO_MEM) { 376 sconf.src_addr = hsdev->dmadr; 377 sconf.device_fc = false; 378 } else { /* DMA_MEM_TO_DEV */ 379 sconf.dst_addr = hsdev->dmadr; 380 sconf.device_fc = false; 381 } 382 383 sconf.direction = qc->dma_dir; 384 sconf.src_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */ 385 sconf.dst_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */ 386 sconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 387 sconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 388 389 dmaengine_slave_config(hsdevp->chan, &sconf); 390 391 /* Convert SG list to linked list of items (LLIs) for AHB DMA */ 392 desc = dmaengine_prep_slave_sg(hsdevp->chan, qc->sg, qc->n_elem, 393 qc->dma_dir, 394 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 395 396 if (!desc) 397 return NULL; 398 399 desc->callback = dma_dwc_xfer_done; 400 desc->callback_param = hsdev; 401 402 dev_dbg(hsdev->dev, "%s sg: 0x%p, count: %d addr: %pa\n", __func__, 403 qc->sg, qc->n_elem, &hsdev->dmadr); 404 405 return desc; 406 } 407 408 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) 409 { 410 if (scr > SCR_NOTIFICATION) { 411 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", 412 __func__, scr); 413 return -EINVAL; 414 } 415 416 *val = sata_dwc_readl(link->ap->ioaddr.scr_addr + (scr * 4)); 417 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__, 418 link->ap->print_id, scr, *val); 419 420 return 0; 421 } 422 423 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) 424 { 425 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__, 426 link->ap->print_id, scr, val); 427 if (scr > SCR_NOTIFICATION) { 428 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", 429 __func__, scr); 430 return -EINVAL; 431 } 432 sata_dwc_writel(link->ap->ioaddr.scr_addr + (scr * 4), val); 433 434 return 0; 435 } 436 437 static void clear_serror(struct ata_port *ap) 438 { 439 u32 val; 440 sata_dwc_scr_read(&ap->link, SCR_ERROR, &val); 441 sata_dwc_scr_write(&ap->link, SCR_ERROR, val); 442 } 443 444 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) 445 { 446 sata_dwc_writel(&hsdev->sata_dwc_regs->intpr, 447 sata_dwc_readl(&hsdev->sata_dwc_regs->intpr)); 448 } 449 450 static u32 qcmd_tag_to_mask(u8 tag) 451 { 452 return 0x00000001 << (tag & 0x1f); 453 } 454 455 /* See ahci.c */ 456 static void sata_dwc_error_intr(struct ata_port *ap, 457 struct sata_dwc_device *hsdev, uint intpr) 458 { 459 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 460 struct ata_eh_info *ehi = &ap->link.eh_info; 461 unsigned int err_mask = 0, action = 0; 462 struct ata_queued_cmd *qc; 463 u32 serror; 464 u8 status, tag; 465 466 ata_ehi_clear_desc(ehi); 467 468 sata_dwc_scr_read(&ap->link, SCR_ERROR, &serror); 469 status = ap->ops->sff_check_status(ap); 470 471 tag = ap->link.active_tag; 472 473 dev_err(ap->dev, 474 "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x dma_intp=%d pending=%d issued=%d", 475 __func__, serror, intpr, status, hsdevp->dma_interrupt_count, 476 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag]); 477 478 /* Clear error register and interrupt bit */ 479 clear_serror(ap); 480 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); 481 482 /* This is the only error happening now. TODO check for exact error */ 483 484 err_mask |= AC_ERR_HOST_BUS; 485 action |= ATA_EH_RESET; 486 487 /* Pass this on to EH */ 488 ehi->serror |= serror; 489 ehi->action |= action; 490 491 qc = ata_qc_from_tag(ap, tag); 492 if (qc) 493 qc->err_mask |= err_mask; 494 else 495 ehi->err_mask |= err_mask; 496 497 ata_port_abort(ap); 498 } 499 500 /* 501 * Function : sata_dwc_isr 502 * arguments : irq, void *dev_instance, struct pt_regs *regs 503 * Return value : irqreturn_t - status of IRQ 504 * This Interrupt handler called via port ops registered function. 505 * .irq_handler = sata_dwc_isr 506 */ 507 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) 508 { 509 struct ata_host *host = (struct ata_host *)dev_instance; 510 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); 511 struct ata_port *ap; 512 struct ata_queued_cmd *qc; 513 unsigned long flags; 514 u8 status, tag; 515 int handled, num_processed, port = 0; 516 uint intpr, sactive, sactive2, tag_mask; 517 struct sata_dwc_device_port *hsdevp; 518 hsdev->sactive_issued = 0; 519 520 spin_lock_irqsave(&host->lock, flags); 521 522 /* Read the interrupt register */ 523 intpr = sata_dwc_readl(&hsdev->sata_dwc_regs->intpr); 524 525 ap = host->ports[port]; 526 hsdevp = HSDEVP_FROM_AP(ap); 527 528 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, 529 ap->link.active_tag); 530 531 /* Check for error interrupt */ 532 if (intpr & SATA_DWC_INTPR_ERR) { 533 sata_dwc_error_intr(ap, hsdev, intpr); 534 handled = 1; 535 goto DONE; 536 } 537 538 /* Check for DMA SETUP FIS (FP DMA) interrupt */ 539 if (intpr & SATA_DWC_INTPR_NEWFP) { 540 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); 541 542 tag = (u8)(sata_dwc_readl(&hsdev->sata_dwc_regs->fptagr)); 543 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); 544 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) 545 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); 546 547 hsdev->sactive_issued |= qcmd_tag_to_mask(tag); 548 549 qc = ata_qc_from_tag(ap, tag); 550 /* 551 * Start FP DMA for NCQ command. At this point the tag is the 552 * active tag. It is the tag that matches the command about to 553 * be completed. 554 */ 555 qc->ap->link.active_tag = tag; 556 sata_dwc_bmdma_start_by_tag(qc, tag); 557 558 handled = 1; 559 goto DONE; 560 } 561 sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); 562 tag_mask = (hsdev->sactive_issued | sactive) ^ sactive; 563 564 /* If no sactive issued and tag_mask is zero then this is not NCQ */ 565 if (hsdev->sactive_issued == 0 && tag_mask == 0) { 566 if (ap->link.active_tag == ATA_TAG_POISON) 567 tag = 0; 568 else 569 tag = ap->link.active_tag; 570 qc = ata_qc_from_tag(ap, tag); 571 572 /* DEV interrupt w/ no active qc? */ 573 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { 574 dev_err(ap->dev, 575 "%s interrupt with no active qc qc=%p\n", 576 __func__, qc); 577 ap->ops->sff_check_status(ap); 578 handled = 1; 579 goto DONE; 580 } 581 status = ap->ops->sff_check_status(ap); 582 583 qc->ap->link.active_tag = tag; 584 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; 585 586 if (status & ATA_ERR) { 587 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); 588 sata_dwc_qc_complete(ap, qc, 1); 589 handled = 1; 590 goto DONE; 591 } 592 593 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", 594 __func__, get_prot_descript(qc->tf.protocol)); 595 DRVSTILLBUSY: 596 if (ata_is_dma(qc->tf.protocol)) { 597 /* 598 * Each DMA transaction produces 2 interrupts. The DMAC 599 * transfer complete interrupt and the SATA controller 600 * operation done interrupt. The command should be 601 * completed only after both interrupts are seen. 602 */ 603 hsdevp->dma_interrupt_count++; 604 if (hsdevp->dma_pending[tag] == \ 605 SATA_DWC_DMA_PENDING_NONE) { 606 dev_err(ap->dev, 607 "%s: DMA not pending intpr=0x%08x status=0x%08x pending=%d\n", 608 __func__, intpr, status, 609 hsdevp->dma_pending[tag]); 610 } 611 612 if ((hsdevp->dma_interrupt_count % 2) == 0) 613 sata_dwc_dma_xfer_complete(ap, 1); 614 } else if (ata_is_pio(qc->tf.protocol)) { 615 ata_sff_hsm_move(ap, qc, status, 0); 616 handled = 1; 617 goto DONE; 618 } else { 619 if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) 620 goto DRVSTILLBUSY; 621 } 622 623 handled = 1; 624 goto DONE; 625 } 626 627 /* 628 * This is a NCQ command. At this point we need to figure out for which 629 * tags we have gotten a completion interrupt. One interrupt may serve 630 * as completion for more than one operation when commands are queued 631 * (NCQ). We need to process each completed command. 632 */ 633 634 /* process completed commands */ 635 sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); 636 tag_mask = (hsdev->sactive_issued | sactive) ^ sactive; 637 638 if (sactive != 0 || hsdev->sactive_issued > 1 || tag_mask > 1) { 639 dev_dbg(ap->dev, 640 "%s NCQ:sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n", 641 __func__, sactive, hsdev->sactive_issued, tag_mask); 642 } 643 644 if ((tag_mask | hsdev->sactive_issued) != hsdev->sactive_issued) { 645 dev_warn(ap->dev, 646 "Bad tag mask? sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n", 647 sactive, hsdev->sactive_issued, tag_mask); 648 } 649 650 /* read just to clear ... not bad if currently still busy */ 651 status = ap->ops->sff_check_status(ap); 652 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); 653 654 tag = 0; 655 num_processed = 0; 656 while (tag_mask) { 657 num_processed++; 658 while (!(tag_mask & 0x00000001)) { 659 tag++; 660 tag_mask <<= 1; 661 } 662 663 tag_mask &= (~0x00000001); 664 qc = ata_qc_from_tag(ap, tag); 665 666 /* To be picked up by completion functions */ 667 qc->ap->link.active_tag = tag; 668 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; 669 670 /* Let libata/scsi layers handle error */ 671 if (status & ATA_ERR) { 672 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, 673 status); 674 sata_dwc_qc_complete(ap, qc, 1); 675 handled = 1; 676 goto DONE; 677 } 678 679 /* Process completed command */ 680 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, 681 get_prot_descript(qc->tf.protocol)); 682 if (ata_is_dma(qc->tf.protocol)) { 683 hsdevp->dma_interrupt_count++; 684 if (hsdevp->dma_pending[tag] == \ 685 SATA_DWC_DMA_PENDING_NONE) 686 dev_warn(ap->dev, "%s: DMA not pending?\n", 687 __func__); 688 if ((hsdevp->dma_interrupt_count % 2) == 0) 689 sata_dwc_dma_xfer_complete(ap, 1); 690 } else { 691 if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) 692 goto STILLBUSY; 693 } 694 continue; 695 696 STILLBUSY: 697 ap->stats.idle_irq++; 698 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", 699 ap->print_id); 700 } /* while tag_mask */ 701 702 /* 703 * Check to see if any commands completed while we were processing our 704 * initial set of completed commands (read status clears interrupts, 705 * so we might miss a completed command interrupt if one came in while 706 * we were processing --we read status as part of processing a completed 707 * command). 708 */ 709 sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive2); 710 if (sactive2 != sactive) { 711 dev_dbg(ap->dev, 712 "More completed - sactive=0x%x sactive2=0x%x\n", 713 sactive, sactive2); 714 } 715 handled = 1; 716 717 DONE: 718 spin_unlock_irqrestore(&host->lock, flags); 719 return IRQ_RETVAL(handled); 720 } 721 722 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) 723 { 724 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); 725 u32 dmacr = sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr); 726 727 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { 728 dmacr = SATA_DWC_DMACR_RX_CLEAR(dmacr); 729 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr); 730 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { 731 dmacr = SATA_DWC_DMACR_TX_CLEAR(dmacr); 732 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr); 733 } else { 734 /* 735 * This should not happen, it indicates the driver is out of 736 * sync. If it does happen, clear dmacr anyway. 737 */ 738 dev_err(hsdev->dev, 739 "%s DMA protocol RX and TX DMA not pending tag=0x%02x pending=%d dmacr: 0x%08x\n", 740 __func__, tag, hsdevp->dma_pending[tag], dmacr); 741 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, 742 SATA_DWC_DMACR_TXRXCH_CLEAR); 743 } 744 } 745 746 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) 747 { 748 struct ata_queued_cmd *qc; 749 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 750 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 751 u8 tag = 0; 752 753 tag = ap->link.active_tag; 754 qc = ata_qc_from_tag(ap, tag); 755 if (!qc) { 756 dev_err(ap->dev, "failed to get qc"); 757 return; 758 } 759 760 #ifdef DEBUG_NCQ 761 if (tag > 0) { 762 dev_info(ap->dev, 763 "%s tag=%u cmd=0x%02x dma dir=%s proto=%s dmacr=0x%08x\n", 764 __func__, qc->tag, qc->tf.command, 765 get_dma_dir_descript(qc->dma_dir), 766 get_prot_descript(qc->tf.protocol), 767 sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr)); 768 } 769 #endif 770 771 if (ata_is_dma(qc->tf.protocol)) { 772 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { 773 dev_err(ap->dev, 774 "%s DMA protocol RX and TX DMA not pending dmacr: 0x%08x\n", 775 __func__, 776 sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr)); 777 } 778 779 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; 780 sata_dwc_qc_complete(ap, qc, check_status); 781 ap->link.active_tag = ATA_TAG_POISON; 782 } else { 783 sata_dwc_qc_complete(ap, qc, check_status); 784 } 785 } 786 787 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, 788 u32 check_status) 789 { 790 u8 status = 0; 791 u32 mask = 0x0; 792 u8 tag = qc->tag; 793 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 794 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 795 hsdev->sactive_queued = 0; 796 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); 797 798 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) 799 dev_err(ap->dev, "TX DMA PENDING\n"); 800 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) 801 dev_err(ap->dev, "RX DMA PENDING\n"); 802 dev_dbg(ap->dev, 803 "QC complete cmd=0x%02x status=0x%02x ata%u: protocol=%d\n", 804 qc->tf.command, status, ap->print_id, qc->tf.protocol); 805 806 /* clear active bit */ 807 mask = (~(qcmd_tag_to_mask(tag))); 808 hsdev->sactive_queued = hsdev->sactive_queued & mask; 809 hsdev->sactive_issued = hsdev->sactive_issued & mask; 810 ata_qc_complete(qc); 811 return 0; 812 } 813 814 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) 815 { 816 /* Enable selective interrupts by setting the interrupt maskregister*/ 817 sata_dwc_writel(&hsdev->sata_dwc_regs->intmr, 818 SATA_DWC_INTMR_ERRM | 819 SATA_DWC_INTMR_NEWFPM | 820 SATA_DWC_INTMR_PMABRTM | 821 SATA_DWC_INTMR_DMATM); 822 /* 823 * Unmask the error bits that should trigger an error interrupt by 824 * setting the error mask register. 825 */ 826 sata_dwc_writel(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); 827 828 dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", 829 __func__, sata_dwc_readl(&hsdev->sata_dwc_regs->intmr), 830 sata_dwc_readl(&hsdev->sata_dwc_regs->errmr)); 831 } 832 833 static void sata_dwc_setup_port(struct ata_ioports *port, void __iomem *base) 834 { 835 port->cmd_addr = base + 0x00; 836 port->data_addr = base + 0x00; 837 838 port->error_addr = base + 0x04; 839 port->feature_addr = base + 0x04; 840 841 port->nsect_addr = base + 0x08; 842 843 port->lbal_addr = base + 0x0c; 844 port->lbam_addr = base + 0x10; 845 port->lbah_addr = base + 0x14; 846 847 port->device_addr = base + 0x18; 848 port->command_addr = base + 0x1c; 849 port->status_addr = base + 0x1c; 850 851 port->altstatus_addr = base + 0x20; 852 port->ctl_addr = base + 0x20; 853 } 854 855 static int sata_dwc_dma_get_channel(struct sata_dwc_device_port *hsdevp) 856 { 857 struct sata_dwc_device *hsdev = hsdevp->hsdev; 858 struct device *dev = hsdev->dev; 859 860 #ifdef CONFIG_SATA_DWC_OLD_DMA 861 if (!of_find_property(dev->of_node, "dmas", NULL)) 862 return sata_dwc_dma_get_channel_old(hsdevp); 863 #endif 864 865 hsdevp->chan = dma_request_chan(dev, "sata-dma"); 866 if (IS_ERR(hsdevp->chan)) { 867 dev_err(dev, "failed to allocate dma channel: %ld\n", 868 PTR_ERR(hsdevp->chan)); 869 return PTR_ERR(hsdevp->chan); 870 } 871 872 return 0; 873 } 874 875 /* 876 * Function : sata_dwc_port_start 877 * arguments : struct ata_ioports *port 878 * Return value : returns 0 if success, error code otherwise 879 * This function allocates the scatter gather LLI table for AHB DMA 880 */ 881 static int sata_dwc_port_start(struct ata_port *ap) 882 { 883 int err = 0; 884 struct sata_dwc_device *hsdev; 885 struct sata_dwc_device_port *hsdevp = NULL; 886 struct device *pdev; 887 int i; 888 889 hsdev = HSDEV_FROM_AP(ap); 890 891 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); 892 893 hsdev->host = ap->host; 894 pdev = ap->host->dev; 895 if (!pdev) { 896 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); 897 err = -ENODEV; 898 goto CLEANUP; 899 } 900 901 /* Allocate Port Struct */ 902 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); 903 if (!hsdevp) { 904 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); 905 err = -ENOMEM; 906 goto CLEANUP; 907 } 908 hsdevp->hsdev = hsdev; 909 910 err = sata_dwc_dma_get_channel(hsdevp); 911 if (err) 912 goto CLEANUP_ALLOC; 913 914 err = phy_power_on(hsdev->phy); 915 if (err) 916 goto CLEANUP_ALLOC; 917 918 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) 919 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; 920 921 ap->bmdma_prd = NULL; /* set these so libata doesn't use them */ 922 ap->bmdma_prd_dma = 0; 923 924 if (ap->port_no == 0) { 925 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", 926 __func__); 927 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, 928 SATA_DWC_DMACR_TXRXCH_CLEAR); 929 930 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", 931 __func__); 932 sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr, 933 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | 934 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); 935 } 936 937 /* Clear any error bits before libata starts issuing commands */ 938 clear_serror(ap); 939 ap->private_data = hsdevp; 940 dev_dbg(ap->dev, "%s: done\n", __func__); 941 return 0; 942 943 CLEANUP_ALLOC: 944 kfree(hsdevp); 945 CLEANUP: 946 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); 947 return err; 948 } 949 950 static void sata_dwc_port_stop(struct ata_port *ap) 951 { 952 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 953 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); 954 955 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); 956 957 dmaengine_terminate_sync(hsdevp->chan); 958 dma_release_channel(hsdevp->chan); 959 phy_power_off(hsdev->phy); 960 961 kfree(hsdevp); 962 ap->private_data = NULL; 963 } 964 965 /* 966 * Function : sata_dwc_exec_command_by_tag 967 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued 968 * Return value : None 969 * This function keeps track of individual command tag ids and calls 970 * ata_exec_command in libata 971 */ 972 static void sata_dwc_exec_command_by_tag(struct ata_port *ap, 973 struct ata_taskfile *tf, 974 u8 tag, u32 cmd_issued) 975 { 976 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 977 978 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, 979 ata_get_cmd_descript(tf->command), tag); 980 981 hsdevp->cmd_issued[tag] = cmd_issued; 982 983 /* 984 * Clear SError before executing a new command. 985 * sata_dwc_scr_write and read can not be used here. Clearing the PM 986 * managed SError register for the disk needs to be done before the 987 * task file is loaded. 988 */ 989 clear_serror(ap); 990 ata_sff_exec_command(ap, tf); 991 } 992 993 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) 994 { 995 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, 996 SATA_DWC_CMD_ISSUED_PEND); 997 } 998 999 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) 1000 { 1001 u8 tag = qc->tag; 1002 1003 if (ata_is_ncq(qc->tf.protocol)) { 1004 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", 1005 __func__, qc->ap->link.sactive, tag); 1006 } else { 1007 tag = 0; 1008 } 1009 sata_dwc_bmdma_setup_by_tag(qc, tag); 1010 } 1011 1012 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) 1013 { 1014 int start_dma; 1015 u32 reg; 1016 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); 1017 struct ata_port *ap = qc->ap; 1018 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1019 struct dma_async_tx_descriptor *desc = hsdevp->desc[tag]; 1020 int dir = qc->dma_dir; 1021 1022 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { 1023 start_dma = 1; 1024 if (dir == DMA_TO_DEVICE) 1025 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; 1026 else 1027 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; 1028 } else { 1029 dev_err(ap->dev, 1030 "%s: Command not pending cmd_issued=%d (tag=%d) DMA NOT started\n", 1031 __func__, hsdevp->cmd_issued[tag], tag); 1032 start_dma = 0; 1033 } 1034 1035 dev_dbg(ap->dev, 1036 "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s start_dma? %x\n", 1037 __func__, qc, tag, qc->tf.command, 1038 get_dma_dir_descript(qc->dma_dir), start_dma); 1039 sata_dwc_tf_dump(ap, &qc->tf); 1040 1041 if (start_dma) { 1042 sata_dwc_scr_read(&ap->link, SCR_ERROR, ®); 1043 if (reg & SATA_DWC_SERROR_ERR_BITS) { 1044 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", 1045 __func__, reg); 1046 } 1047 1048 if (dir == DMA_TO_DEVICE) 1049 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, 1050 SATA_DWC_DMACR_TXCHEN); 1051 else 1052 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, 1053 SATA_DWC_DMACR_RXCHEN); 1054 1055 /* Enable AHB DMA transfer on the specified channel */ 1056 dmaengine_submit(desc); 1057 dma_async_issue_pending(hsdevp->chan); 1058 } 1059 } 1060 1061 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) 1062 { 1063 u8 tag = qc->tag; 1064 1065 if (ata_is_ncq(qc->tf.protocol)) { 1066 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", 1067 __func__, qc->ap->link.sactive, tag); 1068 } else { 1069 tag = 0; 1070 } 1071 dev_dbg(qc->ap->dev, "%s\n", __func__); 1072 sata_dwc_bmdma_start_by_tag(qc, tag); 1073 } 1074 1075 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) 1076 { 1077 u32 sactive; 1078 u8 tag = qc->tag; 1079 struct ata_port *ap = qc->ap; 1080 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); 1081 1082 #ifdef DEBUG_NCQ 1083 if (qc->tag > 0 || ap->link.sactive > 1) 1084 dev_info(ap->dev, 1085 "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", 1086 __func__, ap->print_id, qc->tf.command, 1087 ata_get_cmd_descript(qc->tf.command), 1088 qc->tag, get_prot_descript(qc->tf.protocol), 1089 ap->link.active_tag, ap->link.sactive); 1090 #endif 1091 1092 if (!ata_is_ncq(qc->tf.protocol)) 1093 tag = 0; 1094 1095 if (ata_is_dma(qc->tf.protocol)) { 1096 hsdevp->desc[tag] = dma_dwc_xfer_setup(qc); 1097 if (!hsdevp->desc[tag]) 1098 return AC_ERR_SYSTEM; 1099 } else { 1100 hsdevp->desc[tag] = NULL; 1101 } 1102 1103 if (ata_is_ncq(qc->tf.protocol)) { 1104 sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive); 1105 sactive |= (0x00000001 << tag); 1106 sata_dwc_scr_write(&ap->link, SCR_ACTIVE, sactive); 1107 1108 dev_dbg(qc->ap->dev, 1109 "%s: tag=%d ap->link.sactive = 0x%08x sactive=0x%08x\n", 1110 __func__, tag, qc->ap->link.sactive, sactive); 1111 1112 ap->ops->sff_tf_load(ap, &qc->tf); 1113 sata_dwc_exec_command_by_tag(ap, &qc->tf, tag, 1114 SATA_DWC_CMD_ISSUED_PEND); 1115 } else { 1116 return ata_bmdma_qc_issue(qc); 1117 } 1118 return 0; 1119 } 1120 1121 static void sata_dwc_error_handler(struct ata_port *ap) 1122 { 1123 ata_sff_error_handler(ap); 1124 } 1125 1126 static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, 1127 unsigned long deadline) 1128 { 1129 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); 1130 int ret; 1131 1132 ret = sata_sff_hardreset(link, class, deadline); 1133 1134 sata_dwc_enable_interrupts(hsdev); 1135 1136 /* Reconfigure the DMA control register */ 1137 sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, 1138 SATA_DWC_DMACR_TXRXCH_CLEAR); 1139 1140 /* Reconfigure the DMA Burst Transaction Size register */ 1141 sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr, 1142 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | 1143 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); 1144 1145 return ret; 1146 } 1147 1148 static void sata_dwc_dev_select(struct ata_port *ap, unsigned int device) 1149 { 1150 /* SATA DWC is master only */ 1151 } 1152 1153 /* 1154 * scsi mid-layer and libata interface structures 1155 */ 1156 static struct scsi_host_template sata_dwc_sht = { 1157 ATA_NCQ_SHT(DRV_NAME), 1158 /* 1159 * test-only: Currently this driver doesn't handle NCQ 1160 * correctly. We enable NCQ but set the queue depth to a 1161 * max of 1. This will get fixed in in a future release. 1162 */ 1163 .sg_tablesize = LIBATA_MAX_PRD, 1164 /* .can_queue = ATA_MAX_QUEUE, */ 1165 /* 1166 * Make sure a LLI block is not created that will span 8K max FIS 1167 * boundary. If the block spans such a FIS boundary, there is a chance 1168 * that a DMA burst will cross that boundary -- this results in an 1169 * error in the host controller. 1170 */ 1171 .dma_boundary = 0x1fff /* ATA_DMA_BOUNDARY */, 1172 }; 1173 1174 static struct ata_port_operations sata_dwc_ops = { 1175 .inherits = &ata_sff_port_ops, 1176 1177 .error_handler = sata_dwc_error_handler, 1178 .hardreset = sata_dwc_hardreset, 1179 1180 .qc_issue = sata_dwc_qc_issue, 1181 1182 .scr_read = sata_dwc_scr_read, 1183 .scr_write = sata_dwc_scr_write, 1184 1185 .port_start = sata_dwc_port_start, 1186 .port_stop = sata_dwc_port_stop, 1187 1188 .sff_dev_select = sata_dwc_dev_select, 1189 1190 .bmdma_setup = sata_dwc_bmdma_setup, 1191 .bmdma_start = sata_dwc_bmdma_start, 1192 }; 1193 1194 static const struct ata_port_info sata_dwc_port_info[] = { 1195 { 1196 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, 1197 .pio_mask = ATA_PIO4, 1198 .udma_mask = ATA_UDMA6, 1199 .port_ops = &sata_dwc_ops, 1200 }, 1201 }; 1202 1203 static int sata_dwc_probe(struct platform_device *ofdev) 1204 { 1205 struct sata_dwc_device *hsdev; 1206 u32 idr, versionr; 1207 char *ver = (char *)&versionr; 1208 void __iomem *base; 1209 int err = 0; 1210 int irq; 1211 struct ata_host *host; 1212 struct ata_port_info pi = sata_dwc_port_info[0]; 1213 const struct ata_port_info *ppi[] = { &pi, NULL }; 1214 struct device_node *np = ofdev->dev.of_node; 1215 struct resource *res; 1216 1217 /* Allocate DWC SATA device */ 1218 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); 1219 hsdev = devm_kzalloc(&ofdev->dev, sizeof(*hsdev), GFP_KERNEL); 1220 if (!host || !hsdev) 1221 return -ENOMEM; 1222 1223 host->private_data = hsdev; 1224 1225 /* Ioremap SATA registers */ 1226 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); 1227 base = devm_ioremap_resource(&ofdev->dev, res); 1228 if (IS_ERR(base)) { 1229 dev_err(&ofdev->dev, 1230 "ioremap failed for SATA register address\n"); 1231 return PTR_ERR(base); 1232 } 1233 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); 1234 1235 /* Synopsys DWC SATA specific Registers */ 1236 hsdev->sata_dwc_regs = base + SATA_DWC_REG_OFFSET; 1237 hsdev->dmadr = res->start + SATA_DWC_REG_OFFSET + offsetof(struct sata_dwc_regs, dmadr); 1238 1239 /* Setup port */ 1240 host->ports[0]->ioaddr.cmd_addr = base; 1241 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; 1242 sata_dwc_setup_port(&host->ports[0]->ioaddr, base); 1243 1244 /* Read the ID and Version Registers */ 1245 idr = sata_dwc_readl(&hsdev->sata_dwc_regs->idr); 1246 versionr = sata_dwc_readl(&hsdev->sata_dwc_regs->versionr); 1247 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", 1248 idr, ver[0], ver[1], ver[2]); 1249 1250 /* Save dev for later use in dev_xxx() routines */ 1251 hsdev->dev = &ofdev->dev; 1252 1253 /* Enable SATA Interrupts */ 1254 sata_dwc_enable_interrupts(hsdev); 1255 1256 /* Get SATA interrupt number */ 1257 irq = irq_of_parse_and_map(np, 0); 1258 if (irq == NO_IRQ) { 1259 dev_err(&ofdev->dev, "no SATA DMA irq\n"); 1260 err = -ENODEV; 1261 goto error_out; 1262 } 1263 1264 #ifdef CONFIG_SATA_DWC_OLD_DMA 1265 if (!of_find_property(np, "dmas", NULL)) { 1266 err = sata_dwc_dma_init_old(ofdev, hsdev); 1267 if (err) 1268 goto error_out; 1269 } 1270 #endif 1271 1272 hsdev->phy = devm_phy_optional_get(hsdev->dev, "sata-phy"); 1273 if (IS_ERR(hsdev->phy)) { 1274 err = PTR_ERR(hsdev->phy); 1275 hsdev->phy = NULL; 1276 goto error_out; 1277 } 1278 1279 err = phy_init(hsdev->phy); 1280 if (err) 1281 goto error_out; 1282 1283 /* 1284 * Now, register with libATA core, this will also initiate the 1285 * device discovery process, invoking our port_start() handler & 1286 * error_handler() to execute a dummy Softreset EH session 1287 */ 1288 err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); 1289 if (err) 1290 dev_err(&ofdev->dev, "failed to activate host"); 1291 1292 dev_set_drvdata(&ofdev->dev, host); 1293 return 0; 1294 1295 error_out: 1296 phy_exit(hsdev->phy); 1297 return err; 1298 } 1299 1300 static int sata_dwc_remove(struct platform_device *ofdev) 1301 { 1302 struct device *dev = &ofdev->dev; 1303 struct ata_host *host = dev_get_drvdata(dev); 1304 struct sata_dwc_device *hsdev = host->private_data; 1305 1306 ata_host_detach(host); 1307 1308 phy_exit(hsdev->phy); 1309 1310 #ifdef CONFIG_SATA_DWC_OLD_DMA 1311 /* Free SATA DMA resources */ 1312 sata_dwc_dma_exit_old(hsdev); 1313 #endif 1314 1315 dev_dbg(&ofdev->dev, "done\n"); 1316 return 0; 1317 } 1318 1319 static const struct of_device_id sata_dwc_match[] = { 1320 { .compatible = "amcc,sata-460ex", }, 1321 {} 1322 }; 1323 MODULE_DEVICE_TABLE(of, sata_dwc_match); 1324 1325 static struct platform_driver sata_dwc_driver = { 1326 .driver = { 1327 .name = DRV_NAME, 1328 .of_match_table = sata_dwc_match, 1329 }, 1330 .probe = sata_dwc_probe, 1331 .remove = sata_dwc_remove, 1332 }; 1333 1334 module_platform_driver(sata_dwc_driver); 1335 1336 MODULE_LICENSE("GPL"); 1337 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); 1338 MODULE_DESCRIPTION("DesignWare Cores SATA controller low level driver"); 1339 MODULE_VERSION(DRV_VERSION); 1340