xref: /openbmc/linux/drivers/ata/pata_radisys.c (revision 64c70b1c)
1 /*
2  *    pata_radisys.c - Intel PATA/SATA controllers
3  *
4  *	(C) 2006 Red Hat <alan@redhat.com>
5  *
6  *    Some parts based on ata_piix.c by Jeff Garzik and others.
7  *
8  *    A PIIX relative, this device has a single ATA channel and no
9  *    slave timings, SITRE or PPE. In that sense it is a close relative
10  *    of the original PIIX. It does however support UDMA 33/66 per channel
11  *    although no other modes/timings. Also lacking is 32bit I/O on the ATA
12  *    port.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/blkdev.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <scsi/scsi_host.h>
23 #include <linux/libata.h>
24 #include <linux/ata.h>
25 
26 #define DRV_NAME	"pata_radisys"
27 #define DRV_VERSION	"0.4.4"
28 
29 /**
30  *	radisys_set_piomode - Initialize host controller PATA PIO timings
31  *	@ap: ATA port
32  *	@adev: Device whose timings we are configuring
33  *
34  *	Set PIO mode for device, in host controller PCI config space.
35  *
36  *	LOCKING:
37  *	None (inherited from caller).
38  */
39 
40 static void radisys_set_piomode (struct ata_port *ap, struct ata_device *adev)
41 {
42 	unsigned int pio	= adev->pio_mode - XFER_PIO_0;
43 	struct pci_dev *dev	= to_pci_dev(ap->host->dev);
44 	u16 idetm_data;
45 	int control = 0;
46 
47 	/*
48 	 *	See Intel Document 298600-004 for the timing programing rules
49 	 *	for PIIX/ICH. Note that the early PIIX does not have the slave
50 	 *	timing port at 0x44. The Radisys is a relative of the PIIX
51 	 *	but not the same so be careful.
52 	 */
53 
54 	static const	 /* ISP  RTC */
55 	u8 timings[][2]	= { { 0, 0 },	/* Check me */
56 			    { 0, 0 },
57 			    { 1, 1 },
58 			    { 2, 2 },
59 			    { 3, 3 }, };
60 
61 	if (pio > 0)
62 		control |= 1;	/* TIME1 enable */
63 	if (ata_pio_need_iordy(adev))
64 		control |= 2;	/* IE IORDY */
65 
66 	pci_read_config_word(dev, 0x40, &idetm_data);
67 
68 	/* Enable IE and TIME as appropriate. Clear the other
69 	   drive timing bits */
70 	idetm_data &= 0xCCCC;
71 	idetm_data |= (control << (4 * adev->devno));
72 	idetm_data |= (timings[pio][0] << 12) |
73 			(timings[pio][1] << 8);
74 	pci_write_config_word(dev, 0x40, idetm_data);
75 
76 	/* Track which port is configured */
77 	ap->private_data = adev;
78 }
79 
80 /**
81  *	radisys_set_dmamode - Initialize host controller PATA DMA timings
82  *	@ap: Port whose timings we are configuring
83  *	@adev: Device to program
84  *	@isich: True if the device is an ICH and has IOCFG registers
85  *
86  *	Set MWDMA mode for device, in host controller PCI config space.
87  *
88  *	LOCKING:
89  *	None (inherited from caller).
90  */
91 
92 static void radisys_set_dmamode (struct ata_port *ap, struct ata_device *adev)
93 {
94 	struct pci_dev *dev	= to_pci_dev(ap->host->dev);
95 	u16 idetm_data;
96 	u8 udma_enable;
97 
98 	static const	 /* ISP  RTC */
99 	u8 timings[][2]	= { { 0, 0 },
100 			    { 0, 0 },
101 			    { 1, 1 },
102 			    { 2, 2 },
103 			    { 3, 3 }, };
104 
105 	/*
106 	 * MWDMA is driven by the PIO timings. We must also enable
107 	 * IORDY unconditionally.
108 	 */
109 
110 	pci_read_config_word(dev, 0x40, &idetm_data);
111 	pci_read_config_byte(dev, 0x48, &udma_enable);
112 
113 	if (adev->dma_mode < XFER_UDMA_0) {
114 		unsigned int mwdma	= adev->dma_mode - XFER_MW_DMA_0;
115 		const unsigned int needed_pio[3] = {
116 			XFER_PIO_0, XFER_PIO_3, XFER_PIO_4
117 		};
118 		int pio = needed_pio[mwdma] - XFER_PIO_0;
119 		int control = 3;	/* IORDY|TIME0 */
120 
121 		/* If the drive MWDMA is faster than it can do PIO then
122 		   we must force PIO0 for PIO cycles. */
123 
124 		if (adev->pio_mode < needed_pio[mwdma])
125 			control = 1;
126 
127 		/* Mask out the relevant control and timing bits we will load. Also
128 		   clear the other drive TIME register as a precaution */
129 
130 		idetm_data &= 0xCCCC;
131 		idetm_data |= control << (4 * adev->devno);
132 		idetm_data |= (timings[pio][0] << 12) | (timings[pio][1] << 8);
133 
134 		udma_enable &= ~(1 << adev->devno);
135 	} else {
136 		u8 udma_mode;
137 
138 		/* UDMA66 on: UDMA 33 and 66 are switchable via register 0x4A */
139 
140 		pci_read_config_byte(dev, 0x4A, &udma_mode);
141 
142 		if (adev->xfer_mode == XFER_UDMA_2)
143 			udma_mode &= ~ (1 << adev->devno);
144 		else /* UDMA 4 */
145 			udma_mode |= (1 << adev->devno);
146 
147 		pci_write_config_byte(dev, 0x4A, udma_mode);
148 
149 		udma_enable |= (1 << adev->devno);
150 	}
151 	pci_write_config_word(dev, 0x40, idetm_data);
152 	pci_write_config_byte(dev, 0x48, udma_enable);
153 
154 	/* Track which port is configured */
155 	ap->private_data = adev;
156 }
157 
158 /**
159  *	radisys_qc_issue_prot	-	command issue
160  *	@qc: command pending
161  *
162  *	Called when the libata layer is about to issue a command. We wrap
163  *	this interface so that we can load the correct ATA timings if
164  *	neccessary. Our logic also clears TIME0/TIME1 for the other device so
165  *	that, even if we get this wrong, cycles to the other device will
166  *	be made PIO0.
167  */
168 
169 static unsigned int radisys_qc_issue_prot(struct ata_queued_cmd *qc)
170 {
171 	struct ata_port *ap = qc->ap;
172 	struct ata_device *adev = qc->dev;
173 
174 	if (adev != ap->private_data) {
175 		/* UDMA timing is not shared */
176 		if (adev->dma_mode < XFER_UDMA_0) {
177 			if (adev->dma_mode)
178 				radisys_set_dmamode(ap, adev);
179 			else if (adev->pio_mode)
180 				radisys_set_piomode(ap, adev);
181 		}
182 	}
183 	return ata_qc_issue_prot(qc);
184 }
185 
186 
187 static struct scsi_host_template radisys_sht = {
188 	.module			= THIS_MODULE,
189 	.name			= DRV_NAME,
190 	.ioctl			= ata_scsi_ioctl,
191 	.queuecommand		= ata_scsi_queuecmd,
192 	.can_queue		= ATA_DEF_QUEUE,
193 	.this_id		= ATA_SHT_THIS_ID,
194 	.sg_tablesize		= LIBATA_MAX_PRD,
195 	.cmd_per_lun		= ATA_SHT_CMD_PER_LUN,
196 	.emulated		= ATA_SHT_EMULATED,
197 	.use_clustering		= ATA_SHT_USE_CLUSTERING,
198 	.proc_name		= DRV_NAME,
199 	.dma_boundary		= ATA_DMA_BOUNDARY,
200 	.slave_configure	= ata_scsi_slave_config,
201 	.slave_destroy		= ata_scsi_slave_destroy,
202 	.bios_param		= ata_std_bios_param,
203 };
204 
205 static const struct ata_port_operations radisys_pata_ops = {
206 	.port_disable		= ata_port_disable,
207 	.set_piomode		= radisys_set_piomode,
208 	.set_dmamode		= radisys_set_dmamode,
209 	.mode_filter		= ata_pci_default_filter,
210 
211 	.tf_load		= ata_tf_load,
212 	.tf_read		= ata_tf_read,
213 	.check_status		= ata_check_status,
214 	.exec_command		= ata_exec_command,
215 	.dev_select		= ata_std_dev_select,
216 
217 	.freeze			= ata_bmdma_freeze,
218 	.thaw			= ata_bmdma_thaw,
219 	.error_handler		= ata_bmdma_error_handler,
220 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
221 	.cable_detect		= ata_cable_unknown,
222 
223 	.bmdma_setup		= ata_bmdma_setup,
224 	.bmdma_start		= ata_bmdma_start,
225 	.bmdma_stop		= ata_bmdma_stop,
226 	.bmdma_status		= ata_bmdma_status,
227 	.qc_prep		= ata_qc_prep,
228 	.qc_issue		= radisys_qc_issue_prot,
229 	.data_xfer		= ata_data_xfer,
230 
231 	.irq_handler		= ata_interrupt,
232 	.irq_clear		= ata_bmdma_irq_clear,
233 	.irq_on			= ata_irq_on,
234 	.irq_ack		= ata_irq_ack,
235 
236 	.port_start		= ata_port_start,
237 };
238 
239 
240 /**
241  *	radisys_init_one - Register PIIX ATA PCI device with kernel services
242  *	@pdev: PCI device to register
243  *	@ent: Entry in radisys_pci_tbl matching with @pdev
244  *
245  *	Called from kernel PCI layer.  We probe for combined mode (sigh),
246  *	and then hand over control to libata, for it to do the rest.
247  *
248  *	LOCKING:
249  *	Inherited from PCI layer (may sleep).
250  *
251  *	RETURNS:
252  *	Zero on success, or -ERRNO value.
253  */
254 
255 static int radisys_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
256 {
257 	static int printed_version;
258 	static const struct ata_port_info info = {
259 		.sht		= &radisys_sht,
260 		.flags		= ATA_FLAG_SLAVE_POSS,
261 		.pio_mask	= 0x1f,	/* pio0-4 */
262 		.mwdma_mask	= 0x07, /* mwdma1-2 */
263 		.udma_mask	= 0x14, /* UDMA33/66 only */
264 		.port_ops	= &radisys_pata_ops,
265 	};
266 	const struct ata_port_info *ppi[] = { &info, NULL };
267 
268 	if (!printed_version++)
269 		dev_printk(KERN_DEBUG, &pdev->dev,
270 			   "version " DRV_VERSION "\n");
271 
272 	return ata_pci_init_one(pdev, ppi);
273 }
274 
275 static const struct pci_device_id radisys_pci_tbl[] = {
276 	{ PCI_VDEVICE(RADISYS, 0x8201), },
277 
278 	{ }	/* terminate list */
279 };
280 
281 static struct pci_driver radisys_pci_driver = {
282 	.name			= DRV_NAME,
283 	.id_table		= radisys_pci_tbl,
284 	.probe			= radisys_init_one,
285 	.remove			= ata_pci_remove_one,
286 #ifdef CONFIG_PM
287 	.suspend		= ata_pci_device_suspend,
288 	.resume			= ata_pci_device_resume,
289 #endif
290 };
291 
292 static int __init radisys_init(void)
293 {
294 	return pci_register_driver(&radisys_pci_driver);
295 }
296 
297 static void __exit radisys_exit(void)
298 {
299 	pci_unregister_driver(&radisys_pci_driver);
300 }
301 
302 module_init(radisys_init);
303 module_exit(radisys_exit);
304 
305 MODULE_AUTHOR("Alan Cox");
306 MODULE_DESCRIPTION("SCSI low-level driver for Radisys R82600 controllers");
307 MODULE_LICENSE("GPL");
308 MODULE_DEVICE_TABLE(pci, radisys_pci_tbl);
309 MODULE_VERSION(DRV_VERSION);
310 
311