xref: /openbmc/linux/drivers/ata/pata_octeon_cf.c (revision b04b4f78)
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2009 Cavium Networks
9  * Copyright (C) 2008 Wind River Systems
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/workqueue.h>
18 #include <scsi/scsi_host.h>
19 
20 #include <asm/octeon/octeon.h>
21 
22 /*
23  * The Octeon bootbus compact flash interface is connected in at least
24  * 3 different configurations on various evaluation boards:
25  *
26  * -- 8  bits no irq, no DMA
27  * -- 16 bits no irq, no DMA
28  * -- 16 bits True IDE mode with DMA, but no irq.
29  *
30  * In the last case the DMA engine can generate an interrupt when the
31  * transfer is complete.  For the first two cases only PIO is supported.
32  *
33  */
34 
35 #define DRV_NAME	"pata_octeon_cf"
36 #define DRV_VERSION	"2.1"
37 
38 
39 struct octeon_cf_port {
40 	struct workqueue_struct *wq;
41 	struct delayed_work delayed_finish;
42 	struct ata_port *ap;
43 	int dma_finished;
44 };
45 
46 static struct scsi_host_template octeon_cf_sht = {
47 	ATA_PIO_SHT(DRV_NAME),
48 };
49 
50 /**
51  * Convert nanosecond based time to setting used in the
52  * boot bus timing register, based on timing multiple
53  */
54 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
55 {
56 	unsigned int val;
57 
58 	/*
59 	 * Compute # of eclock periods to get desired duration in
60 	 * nanoseconds.
61 	 */
62 	val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
63 			  1000 * tim_mult);
64 
65 	return val;
66 }
67 
68 static void octeon_cf_set_boot_reg_cfg(int cs)
69 {
70 	union cvmx_mio_boot_reg_cfgx reg_cfg;
71 	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
72 	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
73 	reg_cfg.s.tim_mult = 2;	/* Timing mutiplier 2x */
74 	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
75 	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
76 	reg_cfg.s.we_ext = 0;	/* No write enable extension */
77 	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
78 	reg_cfg.s.en = 1;	/* Enable this region */
79 	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
80 	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
81 	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
82 }
83 
84 /**
85  * Called after libata determines the needed PIO mode. This
86  * function programs the Octeon bootbus regions to support the
87  * timing requirements of the PIO mode.
88  *
89  * @ap:     ATA port information
90  * @dev:    ATA device
91  */
92 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
93 {
94 	struct octeon_cf_data *ocd = ap->dev->platform_data;
95 	union cvmx_mio_boot_reg_timx reg_tim;
96 	int cs = ocd->base_region;
97 	int T;
98 	struct ata_timing timing;
99 
100 	int use_iordy;
101 	int trh;
102 	int pause;
103 	/* These names are timing parameters from the ATA spec */
104 	int t1;
105 	int t2;
106 	int t2i;
107 
108 	T = (int)(2000000000000LL / octeon_get_clock_rate());
109 
110 	if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
111 		BUG();
112 
113 	t1 = timing.setup;
114 	if (t1)
115 		t1--;
116 	t2 = timing.active;
117 	if (t2)
118 		t2--;
119 	t2i = timing.act8b;
120 	if (t2i)
121 		t2i--;
122 
123 	trh = ns_to_tim_reg(2, 20);
124 	if (trh)
125 		trh--;
126 
127 	pause = timing.cycle - timing.active - timing.setup - trh;
128 	if (pause)
129 		pause--;
130 
131 	octeon_cf_set_boot_reg_cfg(cs);
132 	if (ocd->dma_engine >= 0)
133 		/* True IDE mode, program both chip selects.  */
134 		octeon_cf_set_boot_reg_cfg(cs + 1);
135 
136 
137 	use_iordy = ata_pio_need_iordy(dev);
138 
139 	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
140 	/* Disable page mode */
141 	reg_tim.s.pagem = 0;
142 	/* Enable dynamic timing */
143 	reg_tim.s.waitm = use_iordy;
144 	/* Pages are disabled */
145 	reg_tim.s.pages = 0;
146 	/* We don't use multiplexed address mode */
147 	reg_tim.s.ale = 0;
148 	/* Not used */
149 	reg_tim.s.page = 0;
150 	/* Time after IORDY to coninue to assert the data */
151 	reg_tim.s.wait = 0;
152 	/* Time to wait to complete the cycle. */
153 	reg_tim.s.pause = pause;
154 	/* How long to hold after a write to de-assert CE. */
155 	reg_tim.s.wr_hld = trh;
156 	/* How long to wait after a read to de-assert CE. */
157 	reg_tim.s.rd_hld = trh;
158 	/* How long write enable is asserted */
159 	reg_tim.s.we = t2;
160 	/* How long read enable is asserted */
161 	reg_tim.s.oe = t2;
162 	/* Time after CE that read/write starts */
163 	reg_tim.s.ce = ns_to_tim_reg(2, 5);
164 	/* Time before CE that address is valid */
165 	reg_tim.s.adr = 0;
166 
167 	/* Program the bootbus region timing for the data port chip select. */
168 	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
169 	if (ocd->dma_engine >= 0)
170 		/* True IDE mode, program both chip selects.  */
171 		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
172 }
173 
174 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
175 {
176 	struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
177 	union cvmx_mio_boot_dma_timx dma_tim;
178 	unsigned int oe_a;
179 	unsigned int oe_n;
180 	unsigned int dma_ackh;
181 	unsigned int dma_arq;
182 	unsigned int pause;
183 	unsigned int T0, Tkr, Td;
184 	unsigned int tim_mult;
185 
186 	const struct ata_timing *timing;
187 
188 	timing = ata_timing_find_mode(dev->dma_mode);
189 	T0	= timing->cycle;
190 	Td	= timing->active;
191 	Tkr	= timing->recover;
192 	dma_ackh = timing->dmack_hold;
193 
194 	dma_tim.u64 = 0;
195 	/* dma_tim.s.tim_mult = 0 --> 4x */
196 	tim_mult = 4;
197 
198 	/* not spec'ed, value in eclocks, not affected by tim_mult */
199 	dma_arq = 8;
200 	pause = 25 - dma_arq * 1000 /
201 		(octeon_get_clock_rate() / 1000000); /* Tz */
202 
203 	oe_a = Td;
204 	/* Tkr from cf spec, lengthened to meet T0 */
205 	oe_n = max(T0 - oe_a, Tkr);
206 
207 	dma_tim.s.dmack_pi = 1;
208 
209 	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
210 	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
211 
212 	/*
213 	 * This is tI, C.F. spec. says 0, but Sony CF card requires
214 	 * more, we use 20 nS.
215 	 */
216 	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);;
217 	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
218 
219 	dma_tim.s.dmarq = dma_arq;
220 	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
221 
222 	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
223 
224 	/*  writes only */
225 	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
226 	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
227 
228 	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
229 		 ns_to_tim_reg(tim_mult, 60));
230 	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
231 		 "%d, dmarq: %d, pause: %d\n",
232 		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
233 		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
234 
235 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
236 		       dma_tim.u64);
237 
238 }
239 
240 /**
241  * Handle an 8 bit I/O request.
242  *
243  * @dev:        Device to access
244  * @buffer:     Data buffer
245  * @buflen:     Length of the buffer.
246  * @rw:         True to write.
247  */
248 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
249 					 unsigned char *buffer,
250 					 unsigned int buflen,
251 					 int rw)
252 {
253 	struct ata_port *ap		= dev->link->ap;
254 	void __iomem *data_addr		= ap->ioaddr.data_addr;
255 	unsigned long words;
256 	int count;
257 
258 	words = buflen;
259 	if (rw) {
260 		count = 16;
261 		while (words--) {
262 			iowrite8(*buffer, data_addr);
263 			buffer++;
264 			/*
265 			 * Every 16 writes do a read so the bootbus
266 			 * FIFO doesn't fill up.
267 			 */
268 			if (--count == 0) {
269 				ioread8(ap->ioaddr.altstatus_addr);
270 				count = 16;
271 			}
272 		}
273 	} else {
274 		ioread8_rep(data_addr, buffer, words);
275 	}
276 	return buflen;
277 }
278 
279 /**
280  * Handle a 16 bit I/O request.
281  *
282  * @dev:        Device to access
283  * @buffer:     Data buffer
284  * @buflen:     Length of the buffer.
285  * @rw:         True to write.
286  */
287 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
288 					  unsigned char *buffer,
289 					  unsigned int buflen,
290 					  int rw)
291 {
292 	struct ata_port *ap		= dev->link->ap;
293 	void __iomem *data_addr		= ap->ioaddr.data_addr;
294 	unsigned long words;
295 	int count;
296 
297 	words = buflen / 2;
298 	if (rw) {
299 		count = 16;
300 		while (words--) {
301 			iowrite16(*(uint16_t *)buffer, data_addr);
302 			buffer += sizeof(uint16_t);
303 			/*
304 			 * Every 16 writes do a read so the bootbus
305 			 * FIFO doesn't fill up.
306 			 */
307 			if (--count == 0) {
308 				ioread8(ap->ioaddr.altstatus_addr);
309 				count = 16;
310 			}
311 		}
312 	} else {
313 		while (words--) {
314 			*(uint16_t *)buffer = ioread16(data_addr);
315 			buffer += sizeof(uint16_t);
316 		}
317 	}
318 	/* Transfer trailing 1 byte, if any. */
319 	if (unlikely(buflen & 0x01)) {
320 		__le16 align_buf[1] = { 0 };
321 
322 		if (rw == READ) {
323 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
324 			memcpy(buffer, align_buf, 1);
325 		} else {
326 			memcpy(align_buf, buffer, 1);
327 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
328 		}
329 		words++;
330 	}
331 	return buflen;
332 }
333 
334 /**
335  * Read the taskfile for 16bit non-True IDE only.
336  */
337 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
338 {
339 	u16 blob;
340 	/* The base of the registers is at ioaddr.data_addr. */
341 	void __iomem *base = ap->ioaddr.data_addr;
342 
343 	blob = __raw_readw(base + 0xc);
344 	tf->feature = blob >> 8;
345 
346 	blob = __raw_readw(base + 2);
347 	tf->nsect = blob & 0xff;
348 	tf->lbal = blob >> 8;
349 
350 	blob = __raw_readw(base + 4);
351 	tf->lbam = blob & 0xff;
352 	tf->lbah = blob >> 8;
353 
354 	blob = __raw_readw(base + 6);
355 	tf->device = blob & 0xff;
356 	tf->command = blob >> 8;
357 
358 	if (tf->flags & ATA_TFLAG_LBA48) {
359 		if (likely(ap->ioaddr.ctl_addr)) {
360 			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
361 
362 			blob = __raw_readw(base + 0xc);
363 			tf->hob_feature = blob >> 8;
364 
365 			blob = __raw_readw(base + 2);
366 			tf->hob_nsect = blob & 0xff;
367 			tf->hob_lbal = blob >> 8;
368 
369 			blob = __raw_readw(base + 4);
370 			tf->hob_lbam = blob & 0xff;
371 			tf->hob_lbah = blob >> 8;
372 
373 			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
374 			ap->last_ctl = tf->ctl;
375 		} else {
376 			WARN_ON(1);
377 		}
378 	}
379 }
380 
381 static u8 octeon_cf_check_status16(struct ata_port *ap)
382 {
383 	u16 blob;
384 	void __iomem *base = ap->ioaddr.data_addr;
385 
386 	blob = __raw_readw(base + 6);
387 	return blob >> 8;
388 }
389 
390 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
391 				 unsigned long deadline)
392 {
393 	struct ata_port *ap = link->ap;
394 	void __iomem *base = ap->ioaddr.data_addr;
395 	int rc;
396 	u8 err;
397 
398 	DPRINTK("about to softreset\n");
399 	__raw_writew(ap->ctl, base + 0xe);
400 	udelay(20);
401 	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
402 	udelay(20);
403 	__raw_writew(ap->ctl, base + 0xe);
404 
405 	rc = ata_sff_wait_after_reset(link, 1, deadline);
406 	if (rc) {
407 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
408 		return rc;
409 	}
410 
411 	/* determine by signature whether we have ATA or ATAPI devices */
412 	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
413 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
414 	return 0;
415 }
416 
417 /**
418  * Load the taskfile for 16bit non-True IDE only.  The device_addr is
419  * not loaded, we do this as part of octeon_cf_exec_command16.
420  */
421 static void octeon_cf_tf_load16(struct ata_port *ap,
422 				const struct ata_taskfile *tf)
423 {
424 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
425 	/* The base of the registers is at ioaddr.data_addr. */
426 	void __iomem *base = ap->ioaddr.data_addr;
427 
428 	if (tf->ctl != ap->last_ctl) {
429 		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
430 		ap->last_ctl = tf->ctl;
431 		ata_wait_idle(ap);
432 	}
433 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
434 		__raw_writew(tf->hob_feature << 8, base + 0xc);
435 		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
436 		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
437 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
438 			tf->hob_feature,
439 			tf->hob_nsect,
440 			tf->hob_lbal,
441 			tf->hob_lbam,
442 			tf->hob_lbah);
443 	}
444 	if (is_addr) {
445 		__raw_writew(tf->feature << 8, base + 0xc);
446 		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
447 		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
448 		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
449 			tf->feature,
450 			tf->nsect,
451 			tf->lbal,
452 			tf->lbam,
453 			tf->lbah);
454 	}
455 	ata_wait_idle(ap);
456 }
457 
458 
459 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
460 {
461 /*  There is only one device, do nothing. */
462 	return;
463 }
464 
465 /*
466  * Issue ATA command to host controller.  The device_addr is also sent
467  * as it must be written in a combined write with the command.
468  */
469 static void octeon_cf_exec_command16(struct ata_port *ap,
470 				const struct ata_taskfile *tf)
471 {
472 	/* The base of the registers is at ioaddr.data_addr. */
473 	void __iomem *base = ap->ioaddr.data_addr;
474 	u16 blob;
475 
476 	if (tf->flags & ATA_TFLAG_DEVICE) {
477 		VPRINTK("device 0x%X\n", tf->device);
478 		blob = tf->device;
479 	} else {
480 		blob = 0;
481 	}
482 
483 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
484 	blob |= (tf->command << 8);
485 	__raw_writew(blob, base + 6);
486 
487 
488 	ata_wait_idle(ap);
489 }
490 
491 static u8 octeon_cf_irq_on(struct ata_port *ap)
492 {
493 	return 0;
494 }
495 
496 static void octeon_cf_irq_clear(struct ata_port *ap)
497 {
498 	return;
499 }
500 
501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
502 {
503 	struct ata_port *ap = qc->ap;
504 	struct octeon_cf_port *cf_port;
505 
506 	cf_port = ap->private_data;
507 	DPRINTK("ENTER\n");
508 	/* issue r/w command */
509 	qc->cursg = qc->sg;
510 	cf_port->dma_finished = 0;
511 	ap->ops->sff_exec_command(ap, &qc->tf);
512 	DPRINTK("EXIT\n");
513 }
514 
515 /**
516  * Start a DMA transfer that was already setup
517  *
518  * @qc:     Information about the DMA
519  */
520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
521 {
522 	struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
523 	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
524 	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
525 	struct scatterlist *sg;
526 
527 	VPRINTK("%d scatterlists\n", qc->n_elem);
528 
529 	/* Get the scatter list entry we need to DMA into */
530 	sg = qc->cursg;
531 	BUG_ON(!sg);
532 
533 	/*
534 	 * Clear the DMA complete status.
535 	 */
536 	mio_boot_dma_int.u64 = 0;
537 	mio_boot_dma_int.s.done = 1;
538 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
539 		       mio_boot_dma_int.u64);
540 
541 	/* Enable the interrupt.  */
542 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
543 		       mio_boot_dma_int.u64);
544 
545 	/* Set the direction of the DMA */
546 	mio_boot_dma_cfg.u64 = 0;
547 	mio_boot_dma_cfg.s.en = 1;
548 	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
549 
550 	/*
551 	 * Don't stop the DMA if the device deasserts DMARQ. Many
552 	 * compact flashes deassert DMARQ for a short time between
553 	 * sectors. Instead of stopping and restarting the DMA, we'll
554 	 * let the hardware do it. If the DMA is really stopped early
555 	 * due to an error condition, a later timeout will force us to
556 	 * stop.
557 	 */
558 	mio_boot_dma_cfg.s.clr = 0;
559 
560 	/* Size is specified in 16bit words and minus one notation */
561 	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
562 
563 	/* We need to swap the high and low bytes of every 16 bits */
564 	mio_boot_dma_cfg.s.swap8 = 1;
565 
566 	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
567 
568 	VPRINTK("%s %d bytes address=%p\n",
569 		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
570 		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
571 
572 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
573 		       mio_boot_dma_cfg.u64);
574 }
575 
576 /**
577  *
578  *	LOCKING:
579  *	spin_lock_irqsave(host lock)
580  *
581  */
582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
583 					struct ata_queued_cmd *qc)
584 {
585 	struct ata_eh_info *ehi = &ap->link.eh_info;
586 	struct octeon_cf_data *ocd = ap->dev->platform_data;
587 	union cvmx_mio_boot_dma_cfgx dma_cfg;
588 	union cvmx_mio_boot_dma_intx dma_int;
589 	struct octeon_cf_port *cf_port;
590 	u8 status;
591 
592 	VPRINTK("ata%u: protocol %d task_state %d\n",
593 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
594 
595 
596 	if (ap->hsm_task_state != HSM_ST_LAST)
597 		return 0;
598 
599 	cf_port = ap->private_data;
600 
601 	dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
602 	if (dma_cfg.s.size != 0xfffff) {
603 		/* Error, the transfer was not complete.  */
604 		qc->err_mask |= AC_ERR_HOST_BUS;
605 		ap->hsm_task_state = HSM_ST_ERR;
606 	}
607 
608 	/* Stop and clear the dma engine.  */
609 	dma_cfg.u64 = 0;
610 	dma_cfg.s.size = -1;
611 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
612 
613 	/* Disable the interrupt.  */
614 	dma_int.u64 = 0;
615 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
616 
617 	/* Clear the DMA complete status */
618 	dma_int.s.done = 1;
619 	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
620 
621 	status = ap->ops->sff_check_status(ap);
622 
623 	ata_sff_hsm_move(ap, qc, status, 0);
624 
625 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
626 		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
627 
628 	return 1;
629 }
630 
631 /*
632  * Check if any queued commands have more DMAs, if so start the next
633  * transfer, else do end of transfer handling.
634  */
635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
636 {
637 	struct ata_host *host = dev_instance;
638 	struct octeon_cf_port *cf_port;
639 	int i;
640 	unsigned int handled = 0;
641 	unsigned long flags;
642 
643 	spin_lock_irqsave(&host->lock, flags);
644 
645 	DPRINTK("ENTER\n");
646 	for (i = 0; i < host->n_ports; i++) {
647 		u8 status;
648 		struct ata_port *ap;
649 		struct ata_queued_cmd *qc;
650 		union cvmx_mio_boot_dma_intx dma_int;
651 		union cvmx_mio_boot_dma_cfgx dma_cfg;
652 		struct octeon_cf_data *ocd;
653 
654 		ap = host->ports[i];
655 		ocd = ap->dev->platform_data;
656 		if (!ap || (ap->flags & ATA_FLAG_DISABLED))
657 			continue;
658 
659 		ocd = ap->dev->platform_data;
660 		cf_port = ap->private_data;
661 		dma_int.u64 =
662 			cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
663 		dma_cfg.u64 =
664 			cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
665 
666 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
667 
668 		if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
669 		    (qc->flags & ATA_QCFLAG_ACTIVE)) {
670 			if (dma_int.s.done && !dma_cfg.s.en) {
671 				if (!sg_is_last(qc->cursg)) {
672 					qc->cursg = sg_next(qc->cursg);
673 					handled = 1;
674 					octeon_cf_dma_start(qc);
675 					continue;
676 				} else {
677 					cf_port->dma_finished = 1;
678 				}
679 			}
680 			if (!cf_port->dma_finished)
681 				continue;
682 			status = ioread8(ap->ioaddr.altstatus_addr);
683 			if (status & (ATA_BUSY | ATA_DRQ)) {
684 				/*
685 				 * We are busy, try to handle it
686 				 * later.  This is the DMA finished
687 				 * interrupt, and it could take a
688 				 * little while for the card to be
689 				 * ready for more commands.
690 				 */
691 				/* Clear DMA irq. */
692 				dma_int.u64 = 0;
693 				dma_int.s.done = 1;
694 				cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
695 					       dma_int.u64);
696 
697 				queue_delayed_work(cf_port->wq,
698 						   &cf_port->delayed_finish, 1);
699 				handled = 1;
700 			} else {
701 				handled |= octeon_cf_dma_finished(ap, qc);
702 			}
703 		}
704 	}
705 	spin_unlock_irqrestore(&host->lock, flags);
706 	DPRINTK("EXIT\n");
707 	return IRQ_RETVAL(handled);
708 }
709 
710 static void octeon_cf_delayed_finish(struct work_struct *work)
711 {
712 	struct octeon_cf_port *cf_port = container_of(work,
713 						      struct octeon_cf_port,
714 						      delayed_finish.work);
715 	struct ata_port *ap = cf_port->ap;
716 	struct ata_host *host = ap->host;
717 	struct ata_queued_cmd *qc;
718 	unsigned long flags;
719 	u8 status;
720 
721 	spin_lock_irqsave(&host->lock, flags);
722 
723 	/*
724 	 * If the port is not waiting for completion, it must have
725 	 * handled it previously.  The hsm_task_state is
726 	 * protected by host->lock.
727 	 */
728 	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
729 		goto out;
730 
731 	status = ioread8(ap->ioaddr.altstatus_addr);
732 	if (status & (ATA_BUSY | ATA_DRQ)) {
733 		/* Still busy, try again. */
734 		queue_delayed_work(cf_port->wq,
735 				   &cf_port->delayed_finish, 1);
736 		goto out;
737 	}
738 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
739 	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
740 	    (qc->flags & ATA_QCFLAG_ACTIVE))
741 		octeon_cf_dma_finished(ap, qc);
742 out:
743 	spin_unlock_irqrestore(&host->lock, flags);
744 }
745 
746 static void octeon_cf_dev_config(struct ata_device *dev)
747 {
748 	/*
749 	 * A maximum of 2^20 - 1 16 bit transfers are possible with
750 	 * the bootbus DMA.  So we need to throttle max_sectors to
751 	 * (2^12 - 1 == 4095) to assure that this can never happen.
752 	 */
753 	dev->max_sectors = min(dev->max_sectors, 4095U);
754 }
755 
756 /*
757  * Trap if driver tries to do standard bmdma commands.  They are not
758  * supported.
759  */
760 static void unreachable_qc(struct ata_queued_cmd *qc)
761 {
762 	BUG();
763 }
764 
765 static u8 unreachable_port(struct ata_port *ap)
766 {
767 	BUG();
768 }
769 
770 /*
771  * We don't do ATAPI DMA so return 0.
772  */
773 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
774 {
775 	return 0;
776 }
777 
778 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
779 {
780 	struct ata_port *ap = qc->ap;
781 
782 	switch (qc->tf.protocol) {
783 	case ATA_PROT_DMA:
784 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
785 
786 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
787 		octeon_cf_dma_setup(qc);	    /* set up dma */
788 		octeon_cf_dma_start(qc);	    /* initiate dma */
789 		ap->hsm_task_state = HSM_ST_LAST;
790 		break;
791 
792 	case ATAPI_PROT_DMA:
793 		dev_err(ap->dev, "Error, ATAPI not supported\n");
794 		BUG();
795 
796 	default:
797 		return ata_sff_qc_issue(qc);
798 	}
799 
800 	return 0;
801 }
802 
803 static struct ata_port_operations octeon_cf_ops = {
804 	.inherits		= &ata_sff_port_ops,
805 	.check_atapi_dma	= octeon_cf_check_atapi_dma,
806 	.qc_prep		= ata_noop_qc_prep,
807 	.qc_issue		= octeon_cf_qc_issue,
808 	.sff_dev_select		= octeon_cf_dev_select,
809 	.sff_irq_on		= octeon_cf_irq_on,
810 	.sff_irq_clear		= octeon_cf_irq_clear,
811 	.bmdma_setup		= unreachable_qc,
812 	.bmdma_start		= unreachable_qc,
813 	.bmdma_stop		= unreachable_qc,
814 	.bmdma_status		= unreachable_port,
815 	.cable_detect		= ata_cable_40wire,
816 	.set_piomode		= octeon_cf_set_piomode,
817 	.set_dmamode		= octeon_cf_set_dmamode,
818 	.dev_config		= octeon_cf_dev_config,
819 };
820 
821 static int __devinit octeon_cf_probe(struct platform_device *pdev)
822 {
823 	struct resource *res_cs0, *res_cs1;
824 
825 	void __iomem *cs0;
826 	void __iomem *cs1 = NULL;
827 	struct ata_host *host;
828 	struct ata_port *ap;
829 	struct octeon_cf_data *ocd;
830 	int irq = 0;
831 	irq_handler_t irq_handler = NULL;
832 	void __iomem *base;
833 	struct octeon_cf_port *cf_port;
834 
835 	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
836 
837 	if (!res_cs0)
838 		return -EINVAL;
839 
840 	ocd = pdev->dev.platform_data;
841 
842 	cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
843 				   res_cs0->end - res_cs0->start + 1);
844 
845 	if (!cs0)
846 		return -ENOMEM;
847 
848 	/* Determine from availability of DMA if True IDE mode or not */
849 	if (ocd->dma_engine >= 0) {
850 		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
851 		if (!res_cs1)
852 			return -EINVAL;
853 
854 		cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
855 					   res_cs0->end - res_cs1->start + 1);
856 
857 		if (!cs1)
858 			return -ENOMEM;
859 	}
860 
861 	cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
862 	if (!cf_port)
863 		return -ENOMEM;
864 
865 	/* allocate host */
866 	host = ata_host_alloc(&pdev->dev, 1);
867 	if (!host)
868 		goto free_cf_port;
869 
870 	ap = host->ports[0];
871 	ap->private_data = cf_port;
872 	cf_port->ap = ap;
873 	ap->ops = &octeon_cf_ops;
874 	ap->pio_mask = ATA_PIO6;
875 	ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
876 		  | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
877 
878 	base = cs0 + ocd->base_region_bias;
879 	if (!ocd->is16bit) {
880 		ap->ioaddr.cmd_addr	= base;
881 		ata_sff_std_ports(&ap->ioaddr);
882 
883 		ap->ioaddr.altstatus_addr = base + 0xe;
884 		ap->ioaddr.ctl_addr	= base + 0xe;
885 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
886 	} else if (cs1) {
887 		/* Presence of cs1 indicates True IDE mode.  */
888 		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
889 		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
890 		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
891 		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
892 		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
893 		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
894 		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
895 		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
896 		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
897 		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
898 		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
899 		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
900 		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
901 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
902 
903 		ap->mwdma_mask	= ATA_MWDMA4;
904 		irq = platform_get_irq(pdev, 0);
905 		irq_handler = octeon_cf_interrupt;
906 
907 		/* True IDE mode needs delayed work to poll for not-busy.  */
908 		cf_port->wq = create_singlethread_workqueue(DRV_NAME);
909 		if (!cf_port->wq)
910 			goto free_cf_port;
911 		INIT_DELAYED_WORK(&cf_port->delayed_finish,
912 				  octeon_cf_delayed_finish);
913 
914 	} else {
915 		/* 16 bit but not True IDE */
916 		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
917 		octeon_cf_ops.softreset		= octeon_cf_softreset16;
918 		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
919 		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
920 		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
921 		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
922 
923 		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
924 		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
925 		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
926 		ap->ioaddr.ctl_addr	= base + 0xe;
927 		ap->ioaddr.altstatus_addr = base + 0xe;
928 	}
929 
930 	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
931 
932 
933 	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
934 		 (ocd->is16bit) ? 16 : 8,
935 		 (cs1) ? ", True IDE" : "");
936 
937 
938 	return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
939 
940 free_cf_port:
941 	kfree(cf_port);
942 	return -ENOMEM;
943 }
944 
945 static struct platform_driver octeon_cf_driver = {
946 	.probe		= octeon_cf_probe,
947 	.driver		= {
948 		.name	= DRV_NAME,
949 		.owner	= THIS_MODULE,
950 	},
951 };
952 
953 static int __init octeon_cf_init(void)
954 {
955 	return platform_driver_register(&octeon_cf_driver);
956 }
957 
958 
959 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
960 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
961 MODULE_LICENSE("GPL");
962 MODULE_VERSION(DRV_VERSION);
963 MODULE_ALIAS("platform:" DRV_NAME);
964 
965 module_init(octeon_cf_init);
966