1 /* 2 * Driver for the Octeon bootbus compact flash. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 2005 - 2009 Cavium Networks 9 * Copyright (C) 2008 Wind River Systems 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/libata.h> 15 #include <linux/irq.h> 16 #include <linux/platform_device.h> 17 #include <linux/workqueue.h> 18 #include <scsi/scsi_host.h> 19 20 #include <asm/octeon/octeon.h> 21 22 /* 23 * The Octeon bootbus compact flash interface is connected in at least 24 * 3 different configurations on various evaluation boards: 25 * 26 * -- 8 bits no irq, no DMA 27 * -- 16 bits no irq, no DMA 28 * -- 16 bits True IDE mode with DMA, but no irq. 29 * 30 * In the last case the DMA engine can generate an interrupt when the 31 * transfer is complete. For the first two cases only PIO is supported. 32 * 33 */ 34 35 #define DRV_NAME "pata_octeon_cf" 36 #define DRV_VERSION "2.1" 37 38 39 struct octeon_cf_port { 40 struct workqueue_struct *wq; 41 struct delayed_work delayed_finish; 42 struct ata_port *ap; 43 int dma_finished; 44 }; 45 46 static struct scsi_host_template octeon_cf_sht = { 47 ATA_PIO_SHT(DRV_NAME), 48 }; 49 50 /** 51 * Convert nanosecond based time to setting used in the 52 * boot bus timing register, based on timing multiple 53 */ 54 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) 55 { 56 unsigned int val; 57 58 /* 59 * Compute # of eclock periods to get desired duration in 60 * nanoseconds. 61 */ 62 val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000), 63 1000 * tim_mult); 64 65 return val; 66 } 67 68 static void octeon_cf_set_boot_reg_cfg(int cs) 69 { 70 union cvmx_mio_boot_reg_cfgx reg_cfg; 71 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 72 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ 73 reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */ 74 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ 75 reg_cfg.s.sam = 0; /* Don't combine write and output enable */ 76 reg_cfg.s.we_ext = 0; /* No write enable extension */ 77 reg_cfg.s.oe_ext = 0; /* No read enable extension */ 78 reg_cfg.s.en = 1; /* Enable this region */ 79 reg_cfg.s.orbit = 0; /* Don't combine with previous region */ 80 reg_cfg.s.ale = 0; /* Don't do address multiplexing */ 81 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); 82 } 83 84 /** 85 * Called after libata determines the needed PIO mode. This 86 * function programs the Octeon bootbus regions to support the 87 * timing requirements of the PIO mode. 88 * 89 * @ap: ATA port information 90 * @dev: ATA device 91 */ 92 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) 93 { 94 struct octeon_cf_data *ocd = ap->dev->platform_data; 95 union cvmx_mio_boot_reg_timx reg_tim; 96 int cs = ocd->base_region; 97 int T; 98 struct ata_timing timing; 99 100 int use_iordy; 101 int trh; 102 int pause; 103 /* These names are timing parameters from the ATA spec */ 104 int t1; 105 int t2; 106 int t2i; 107 108 T = (int)(2000000000000LL / octeon_get_clock_rate()); 109 110 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T)) 111 BUG(); 112 113 t1 = timing.setup; 114 if (t1) 115 t1--; 116 t2 = timing.active; 117 if (t2) 118 t2--; 119 t2i = timing.act8b; 120 if (t2i) 121 t2i--; 122 123 trh = ns_to_tim_reg(2, 20); 124 if (trh) 125 trh--; 126 127 pause = timing.cycle - timing.active - timing.setup - trh; 128 if (pause) 129 pause--; 130 131 octeon_cf_set_boot_reg_cfg(cs); 132 if (ocd->dma_engine >= 0) 133 /* True IDE mode, program both chip selects. */ 134 octeon_cf_set_boot_reg_cfg(cs + 1); 135 136 137 use_iordy = ata_pio_need_iordy(dev); 138 139 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs)); 140 /* Disable page mode */ 141 reg_tim.s.pagem = 0; 142 /* Enable dynamic timing */ 143 reg_tim.s.waitm = use_iordy; 144 /* Pages are disabled */ 145 reg_tim.s.pages = 0; 146 /* We don't use multiplexed address mode */ 147 reg_tim.s.ale = 0; 148 /* Not used */ 149 reg_tim.s.page = 0; 150 /* Time after IORDY to coninue to assert the data */ 151 reg_tim.s.wait = 0; 152 /* Time to wait to complete the cycle. */ 153 reg_tim.s.pause = pause; 154 /* How long to hold after a write to de-assert CE. */ 155 reg_tim.s.wr_hld = trh; 156 /* How long to wait after a read to de-assert CE. */ 157 reg_tim.s.rd_hld = trh; 158 /* How long write enable is asserted */ 159 reg_tim.s.we = t2; 160 /* How long read enable is asserted */ 161 reg_tim.s.oe = t2; 162 /* Time after CE that read/write starts */ 163 reg_tim.s.ce = ns_to_tim_reg(2, 5); 164 /* Time before CE that address is valid */ 165 reg_tim.s.adr = 0; 166 167 /* Program the bootbus region timing for the data port chip select. */ 168 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64); 169 if (ocd->dma_engine >= 0) 170 /* True IDE mode, program both chip selects. */ 171 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64); 172 } 173 174 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) 175 { 176 struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data; 177 union cvmx_mio_boot_dma_timx dma_tim; 178 unsigned int oe_a; 179 unsigned int oe_n; 180 unsigned int dma_ackh; 181 unsigned int dma_arq; 182 unsigned int pause; 183 unsigned int T0, Tkr, Td; 184 unsigned int tim_mult; 185 186 const struct ata_timing *timing; 187 188 timing = ata_timing_find_mode(dev->dma_mode); 189 T0 = timing->cycle; 190 Td = timing->active; 191 Tkr = timing->recover; 192 dma_ackh = timing->dmack_hold; 193 194 dma_tim.u64 = 0; 195 /* dma_tim.s.tim_mult = 0 --> 4x */ 196 tim_mult = 4; 197 198 /* not spec'ed, value in eclocks, not affected by tim_mult */ 199 dma_arq = 8; 200 pause = 25 - dma_arq * 1000 / 201 (octeon_get_clock_rate() / 1000000); /* Tz */ 202 203 oe_a = Td; 204 /* Tkr from cf spec, lengthened to meet T0 */ 205 oe_n = max(T0 - oe_a, Tkr); 206 207 dma_tim.s.dmack_pi = 1; 208 209 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); 210 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); 211 212 /* 213 * This is tI, C.F. spec. says 0, but Sony CF card requires 214 * more, we use 20 nS. 215 */ 216 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);; 217 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); 218 219 dma_tim.s.dmarq = dma_arq; 220 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); 221 222 dma_tim.s.rd_dly = 0; /* Sample right on edge */ 223 224 /* writes only */ 225 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); 226 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); 227 228 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, 229 ns_to_tim_reg(tim_mult, 60)); 230 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: " 231 "%d, dmarq: %d, pause: %d\n", 232 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, 233 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); 234 235 cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine), 236 dma_tim.u64); 237 238 } 239 240 /** 241 * Handle an 8 bit I/O request. 242 * 243 * @dev: Device to access 244 * @buffer: Data buffer 245 * @buflen: Length of the buffer. 246 * @rw: True to write. 247 */ 248 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev, 249 unsigned char *buffer, 250 unsigned int buflen, 251 int rw) 252 { 253 struct ata_port *ap = dev->link->ap; 254 void __iomem *data_addr = ap->ioaddr.data_addr; 255 unsigned long words; 256 int count; 257 258 words = buflen; 259 if (rw) { 260 count = 16; 261 while (words--) { 262 iowrite8(*buffer, data_addr); 263 buffer++; 264 /* 265 * Every 16 writes do a read so the bootbus 266 * FIFO doesn't fill up. 267 */ 268 if (--count == 0) { 269 ioread8(ap->ioaddr.altstatus_addr); 270 count = 16; 271 } 272 } 273 } else { 274 ioread8_rep(data_addr, buffer, words); 275 } 276 return buflen; 277 } 278 279 /** 280 * Handle a 16 bit I/O request. 281 * 282 * @dev: Device to access 283 * @buffer: Data buffer 284 * @buflen: Length of the buffer. 285 * @rw: True to write. 286 */ 287 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev, 288 unsigned char *buffer, 289 unsigned int buflen, 290 int rw) 291 { 292 struct ata_port *ap = dev->link->ap; 293 void __iomem *data_addr = ap->ioaddr.data_addr; 294 unsigned long words; 295 int count; 296 297 words = buflen / 2; 298 if (rw) { 299 count = 16; 300 while (words--) { 301 iowrite16(*(uint16_t *)buffer, data_addr); 302 buffer += sizeof(uint16_t); 303 /* 304 * Every 16 writes do a read so the bootbus 305 * FIFO doesn't fill up. 306 */ 307 if (--count == 0) { 308 ioread8(ap->ioaddr.altstatus_addr); 309 count = 16; 310 } 311 } 312 } else { 313 while (words--) { 314 *(uint16_t *)buffer = ioread16(data_addr); 315 buffer += sizeof(uint16_t); 316 } 317 } 318 /* Transfer trailing 1 byte, if any. */ 319 if (unlikely(buflen & 0x01)) { 320 __le16 align_buf[1] = { 0 }; 321 322 if (rw == READ) { 323 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 324 memcpy(buffer, align_buf, 1); 325 } else { 326 memcpy(align_buf, buffer, 1); 327 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 328 } 329 words++; 330 } 331 return buflen; 332 } 333 334 /** 335 * Read the taskfile for 16bit non-True IDE only. 336 */ 337 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) 338 { 339 u16 blob; 340 /* The base of the registers is at ioaddr.data_addr. */ 341 void __iomem *base = ap->ioaddr.data_addr; 342 343 blob = __raw_readw(base + 0xc); 344 tf->feature = blob >> 8; 345 346 blob = __raw_readw(base + 2); 347 tf->nsect = blob & 0xff; 348 tf->lbal = blob >> 8; 349 350 blob = __raw_readw(base + 4); 351 tf->lbam = blob & 0xff; 352 tf->lbah = blob >> 8; 353 354 blob = __raw_readw(base + 6); 355 tf->device = blob & 0xff; 356 tf->command = blob >> 8; 357 358 if (tf->flags & ATA_TFLAG_LBA48) { 359 if (likely(ap->ioaddr.ctl_addr)) { 360 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); 361 362 blob = __raw_readw(base + 0xc); 363 tf->hob_feature = blob >> 8; 364 365 blob = __raw_readw(base + 2); 366 tf->hob_nsect = blob & 0xff; 367 tf->hob_lbal = blob >> 8; 368 369 blob = __raw_readw(base + 4); 370 tf->hob_lbam = blob & 0xff; 371 tf->hob_lbah = blob >> 8; 372 373 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 374 ap->last_ctl = tf->ctl; 375 } else { 376 WARN_ON(1); 377 } 378 } 379 } 380 381 static u8 octeon_cf_check_status16(struct ata_port *ap) 382 { 383 u16 blob; 384 void __iomem *base = ap->ioaddr.data_addr; 385 386 blob = __raw_readw(base + 6); 387 return blob >> 8; 388 } 389 390 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, 391 unsigned long deadline) 392 { 393 struct ata_port *ap = link->ap; 394 void __iomem *base = ap->ioaddr.data_addr; 395 int rc; 396 u8 err; 397 398 DPRINTK("about to softreset\n"); 399 __raw_writew(ap->ctl, base + 0xe); 400 udelay(20); 401 __raw_writew(ap->ctl | ATA_SRST, base + 0xe); 402 udelay(20); 403 __raw_writew(ap->ctl, base + 0xe); 404 405 rc = ata_sff_wait_after_reset(link, 1, deadline); 406 if (rc) { 407 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 408 return rc; 409 } 410 411 /* determine by signature whether we have ATA or ATAPI devices */ 412 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); 413 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 414 return 0; 415 } 416 417 /** 418 * Load the taskfile for 16bit non-True IDE only. The device_addr is 419 * not loaded, we do this as part of octeon_cf_exec_command16. 420 */ 421 static void octeon_cf_tf_load16(struct ata_port *ap, 422 const struct ata_taskfile *tf) 423 { 424 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 425 /* The base of the registers is at ioaddr.data_addr. */ 426 void __iomem *base = ap->ioaddr.data_addr; 427 428 if (tf->ctl != ap->last_ctl) { 429 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 430 ap->last_ctl = tf->ctl; 431 ata_wait_idle(ap); 432 } 433 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 434 __raw_writew(tf->hob_feature << 8, base + 0xc); 435 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); 436 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); 437 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 438 tf->hob_feature, 439 tf->hob_nsect, 440 tf->hob_lbal, 441 tf->hob_lbam, 442 tf->hob_lbah); 443 } 444 if (is_addr) { 445 __raw_writew(tf->feature << 8, base + 0xc); 446 __raw_writew(tf->nsect | tf->lbal << 8, base + 2); 447 __raw_writew(tf->lbam | tf->lbah << 8, base + 4); 448 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 449 tf->feature, 450 tf->nsect, 451 tf->lbal, 452 tf->lbam, 453 tf->lbah); 454 } 455 ata_wait_idle(ap); 456 } 457 458 459 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) 460 { 461 /* There is only one device, do nothing. */ 462 return; 463 } 464 465 /* 466 * Issue ATA command to host controller. The device_addr is also sent 467 * as it must be written in a combined write with the command. 468 */ 469 static void octeon_cf_exec_command16(struct ata_port *ap, 470 const struct ata_taskfile *tf) 471 { 472 /* The base of the registers is at ioaddr.data_addr. */ 473 void __iomem *base = ap->ioaddr.data_addr; 474 u16 blob; 475 476 if (tf->flags & ATA_TFLAG_DEVICE) { 477 VPRINTK("device 0x%X\n", tf->device); 478 blob = tf->device; 479 } else { 480 blob = 0; 481 } 482 483 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 484 blob |= (tf->command << 8); 485 __raw_writew(blob, base + 6); 486 487 488 ata_wait_idle(ap); 489 } 490 491 static u8 octeon_cf_irq_on(struct ata_port *ap) 492 { 493 return 0; 494 } 495 496 static void octeon_cf_irq_clear(struct ata_port *ap) 497 { 498 return; 499 } 500 501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) 502 { 503 struct ata_port *ap = qc->ap; 504 struct octeon_cf_port *cf_port; 505 506 cf_port = ap->private_data; 507 DPRINTK("ENTER\n"); 508 /* issue r/w command */ 509 qc->cursg = qc->sg; 510 cf_port->dma_finished = 0; 511 ap->ops->sff_exec_command(ap, &qc->tf); 512 DPRINTK("EXIT\n"); 513 } 514 515 /** 516 * Start a DMA transfer that was already setup 517 * 518 * @qc: Information about the DMA 519 */ 520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc) 521 { 522 struct octeon_cf_data *ocd = qc->ap->dev->platform_data; 523 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; 524 union cvmx_mio_boot_dma_intx mio_boot_dma_int; 525 struct scatterlist *sg; 526 527 VPRINTK("%d scatterlists\n", qc->n_elem); 528 529 /* Get the scatter list entry we need to DMA into */ 530 sg = qc->cursg; 531 BUG_ON(!sg); 532 533 /* 534 * Clear the DMA complete status. 535 */ 536 mio_boot_dma_int.u64 = 0; 537 mio_boot_dma_int.s.done = 1; 538 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), 539 mio_boot_dma_int.u64); 540 541 /* Enable the interrupt. */ 542 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), 543 mio_boot_dma_int.u64); 544 545 /* Set the direction of the DMA */ 546 mio_boot_dma_cfg.u64 = 0; 547 mio_boot_dma_cfg.s.en = 1; 548 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); 549 550 /* 551 * Don't stop the DMA if the device deasserts DMARQ. Many 552 * compact flashes deassert DMARQ for a short time between 553 * sectors. Instead of stopping and restarting the DMA, we'll 554 * let the hardware do it. If the DMA is really stopped early 555 * due to an error condition, a later timeout will force us to 556 * stop. 557 */ 558 mio_boot_dma_cfg.s.clr = 0; 559 560 /* Size is specified in 16bit words and minus one notation */ 561 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; 562 563 /* We need to swap the high and low bytes of every 16 bits */ 564 mio_boot_dma_cfg.s.swap8 = 1; 565 566 mio_boot_dma_cfg.s.adr = sg_dma_address(sg); 567 568 VPRINTK("%s %d bytes address=%p\n", 569 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length, 570 (void *)(unsigned long)mio_boot_dma_cfg.s.adr); 571 572 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), 573 mio_boot_dma_cfg.u64); 574 } 575 576 /** 577 * 578 * LOCKING: 579 * spin_lock_irqsave(host lock) 580 * 581 */ 582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap, 583 struct ata_queued_cmd *qc) 584 { 585 struct ata_eh_info *ehi = &ap->link.eh_info; 586 struct octeon_cf_data *ocd = ap->dev->platform_data; 587 union cvmx_mio_boot_dma_cfgx dma_cfg; 588 union cvmx_mio_boot_dma_intx dma_int; 589 struct octeon_cf_port *cf_port; 590 u8 status; 591 592 VPRINTK("ata%u: protocol %d task_state %d\n", 593 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 594 595 596 if (ap->hsm_task_state != HSM_ST_LAST) 597 return 0; 598 599 cf_port = ap->private_data; 600 601 dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine)); 602 if (dma_cfg.s.size != 0xfffff) { 603 /* Error, the transfer was not complete. */ 604 qc->err_mask |= AC_ERR_HOST_BUS; 605 ap->hsm_task_state = HSM_ST_ERR; 606 } 607 608 /* Stop and clear the dma engine. */ 609 dma_cfg.u64 = 0; 610 dma_cfg.s.size = -1; 611 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64); 612 613 /* Disable the interrupt. */ 614 dma_int.u64 = 0; 615 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64); 616 617 /* Clear the DMA complete status */ 618 dma_int.s.done = 1; 619 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64); 620 621 status = ap->ops->sff_check_status(ap); 622 623 ata_sff_hsm_move(ap, qc, status, 0); 624 625 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) 626 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); 627 628 return 1; 629 } 630 631 /* 632 * Check if any queued commands have more DMAs, if so start the next 633 * transfer, else do end of transfer handling. 634 */ 635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) 636 { 637 struct ata_host *host = dev_instance; 638 struct octeon_cf_port *cf_port; 639 int i; 640 unsigned int handled = 0; 641 unsigned long flags; 642 643 spin_lock_irqsave(&host->lock, flags); 644 645 DPRINTK("ENTER\n"); 646 for (i = 0; i < host->n_ports; i++) { 647 u8 status; 648 struct ata_port *ap; 649 struct ata_queued_cmd *qc; 650 union cvmx_mio_boot_dma_intx dma_int; 651 union cvmx_mio_boot_dma_cfgx dma_cfg; 652 struct octeon_cf_data *ocd; 653 654 ap = host->ports[i]; 655 ocd = ap->dev->platform_data; 656 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) 657 continue; 658 659 ocd = ap->dev->platform_data; 660 cf_port = ap->private_data; 661 dma_int.u64 = 662 cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine)); 663 dma_cfg.u64 = 664 cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine)); 665 666 qc = ata_qc_from_tag(ap, ap->link.active_tag); 667 668 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 669 (qc->flags & ATA_QCFLAG_ACTIVE)) { 670 if (dma_int.s.done && !dma_cfg.s.en) { 671 if (!sg_is_last(qc->cursg)) { 672 qc->cursg = sg_next(qc->cursg); 673 handled = 1; 674 octeon_cf_dma_start(qc); 675 continue; 676 } else { 677 cf_port->dma_finished = 1; 678 } 679 } 680 if (!cf_port->dma_finished) 681 continue; 682 status = ioread8(ap->ioaddr.altstatus_addr); 683 if (status & (ATA_BUSY | ATA_DRQ)) { 684 /* 685 * We are busy, try to handle it 686 * later. This is the DMA finished 687 * interrupt, and it could take a 688 * little while for the card to be 689 * ready for more commands. 690 */ 691 /* Clear DMA irq. */ 692 dma_int.u64 = 0; 693 dma_int.s.done = 1; 694 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), 695 dma_int.u64); 696 697 queue_delayed_work(cf_port->wq, 698 &cf_port->delayed_finish, 1); 699 handled = 1; 700 } else { 701 handled |= octeon_cf_dma_finished(ap, qc); 702 } 703 } 704 } 705 spin_unlock_irqrestore(&host->lock, flags); 706 DPRINTK("EXIT\n"); 707 return IRQ_RETVAL(handled); 708 } 709 710 static void octeon_cf_delayed_finish(struct work_struct *work) 711 { 712 struct octeon_cf_port *cf_port = container_of(work, 713 struct octeon_cf_port, 714 delayed_finish.work); 715 struct ata_port *ap = cf_port->ap; 716 struct ata_host *host = ap->host; 717 struct ata_queued_cmd *qc; 718 unsigned long flags; 719 u8 status; 720 721 spin_lock_irqsave(&host->lock, flags); 722 723 /* 724 * If the port is not waiting for completion, it must have 725 * handled it previously. The hsm_task_state is 726 * protected by host->lock. 727 */ 728 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) 729 goto out; 730 731 status = ioread8(ap->ioaddr.altstatus_addr); 732 if (status & (ATA_BUSY | ATA_DRQ)) { 733 /* Still busy, try again. */ 734 queue_delayed_work(cf_port->wq, 735 &cf_port->delayed_finish, 1); 736 goto out; 737 } 738 qc = ata_qc_from_tag(ap, ap->link.active_tag); 739 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 740 (qc->flags & ATA_QCFLAG_ACTIVE)) 741 octeon_cf_dma_finished(ap, qc); 742 out: 743 spin_unlock_irqrestore(&host->lock, flags); 744 } 745 746 static void octeon_cf_dev_config(struct ata_device *dev) 747 { 748 /* 749 * A maximum of 2^20 - 1 16 bit transfers are possible with 750 * the bootbus DMA. So we need to throttle max_sectors to 751 * (2^12 - 1 == 4095) to assure that this can never happen. 752 */ 753 dev->max_sectors = min(dev->max_sectors, 4095U); 754 } 755 756 /* 757 * Trap if driver tries to do standard bmdma commands. They are not 758 * supported. 759 */ 760 static void unreachable_qc(struct ata_queued_cmd *qc) 761 { 762 BUG(); 763 } 764 765 static u8 unreachable_port(struct ata_port *ap) 766 { 767 BUG(); 768 } 769 770 /* 771 * We don't do ATAPI DMA so return 0. 772 */ 773 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) 774 { 775 return 0; 776 } 777 778 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) 779 { 780 struct ata_port *ap = qc->ap; 781 782 switch (qc->tf.protocol) { 783 case ATA_PROT_DMA: 784 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 785 786 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 787 octeon_cf_dma_setup(qc); /* set up dma */ 788 octeon_cf_dma_start(qc); /* initiate dma */ 789 ap->hsm_task_state = HSM_ST_LAST; 790 break; 791 792 case ATAPI_PROT_DMA: 793 dev_err(ap->dev, "Error, ATAPI not supported\n"); 794 BUG(); 795 796 default: 797 return ata_sff_qc_issue(qc); 798 } 799 800 return 0; 801 } 802 803 static struct ata_port_operations octeon_cf_ops = { 804 .inherits = &ata_sff_port_ops, 805 .check_atapi_dma = octeon_cf_check_atapi_dma, 806 .qc_prep = ata_noop_qc_prep, 807 .qc_issue = octeon_cf_qc_issue, 808 .sff_dev_select = octeon_cf_dev_select, 809 .sff_irq_on = octeon_cf_irq_on, 810 .sff_irq_clear = octeon_cf_irq_clear, 811 .bmdma_setup = unreachable_qc, 812 .bmdma_start = unreachable_qc, 813 .bmdma_stop = unreachable_qc, 814 .bmdma_status = unreachable_port, 815 .cable_detect = ata_cable_40wire, 816 .set_piomode = octeon_cf_set_piomode, 817 .set_dmamode = octeon_cf_set_dmamode, 818 .dev_config = octeon_cf_dev_config, 819 }; 820 821 static int __devinit octeon_cf_probe(struct platform_device *pdev) 822 { 823 struct resource *res_cs0, *res_cs1; 824 825 void __iomem *cs0; 826 void __iomem *cs1 = NULL; 827 struct ata_host *host; 828 struct ata_port *ap; 829 struct octeon_cf_data *ocd; 830 int irq = 0; 831 irq_handler_t irq_handler = NULL; 832 void __iomem *base; 833 struct octeon_cf_port *cf_port; 834 835 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 836 837 if (!res_cs0) 838 return -EINVAL; 839 840 ocd = pdev->dev.platform_data; 841 842 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start, 843 res_cs0->end - res_cs0->start + 1); 844 845 if (!cs0) 846 return -ENOMEM; 847 848 /* Determine from availability of DMA if True IDE mode or not */ 849 if (ocd->dma_engine >= 0) { 850 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 851 if (!res_cs1) 852 return -EINVAL; 853 854 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start, 855 res_cs0->end - res_cs1->start + 1); 856 857 if (!cs1) 858 return -ENOMEM; 859 } 860 861 cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL); 862 if (!cf_port) 863 return -ENOMEM; 864 865 /* allocate host */ 866 host = ata_host_alloc(&pdev->dev, 1); 867 if (!host) 868 goto free_cf_port; 869 870 ap = host->ports[0]; 871 ap->private_data = cf_port; 872 cf_port->ap = ap; 873 ap->ops = &octeon_cf_ops; 874 ap->pio_mask = ATA_PIO6; 875 ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY 876 | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; 877 878 base = cs0 + ocd->base_region_bias; 879 if (!ocd->is16bit) { 880 ap->ioaddr.cmd_addr = base; 881 ata_sff_std_ports(&ap->ioaddr); 882 883 ap->ioaddr.altstatus_addr = base + 0xe; 884 ap->ioaddr.ctl_addr = base + 0xe; 885 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; 886 } else if (cs1) { 887 /* Presence of cs1 indicates True IDE mode. */ 888 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; 889 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); 890 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; 891 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; 892 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; 893 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; 894 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; 895 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; 896 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; 897 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; 898 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; 899 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; 900 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; 901 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 902 903 ap->mwdma_mask = ATA_MWDMA4; 904 irq = platform_get_irq(pdev, 0); 905 irq_handler = octeon_cf_interrupt; 906 907 /* True IDE mode needs delayed work to poll for not-busy. */ 908 cf_port->wq = create_singlethread_workqueue(DRV_NAME); 909 if (!cf_port->wq) 910 goto free_cf_port; 911 INIT_DELAYED_WORK(&cf_port->delayed_finish, 912 octeon_cf_delayed_finish); 913 914 } else { 915 /* 16 bit but not True IDE */ 916 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 917 octeon_cf_ops.softreset = octeon_cf_softreset16; 918 octeon_cf_ops.sff_check_status = octeon_cf_check_status16; 919 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; 920 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; 921 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; 922 923 ap->ioaddr.data_addr = base + ATA_REG_DATA; 924 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; 925 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; 926 ap->ioaddr.ctl_addr = base + 0xe; 927 ap->ioaddr.altstatus_addr = base + 0xe; 928 } 929 930 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); 931 932 933 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", 934 (ocd->is16bit) ? 16 : 8, 935 (cs1) ? ", True IDE" : ""); 936 937 938 return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht); 939 940 free_cf_port: 941 kfree(cf_port); 942 return -ENOMEM; 943 } 944 945 static struct platform_driver octeon_cf_driver = { 946 .probe = octeon_cf_probe, 947 .driver = { 948 .name = DRV_NAME, 949 .owner = THIS_MODULE, 950 }, 951 }; 952 953 static int __init octeon_cf_init(void) 954 { 955 return platform_driver_register(&octeon_cf_driver); 956 } 957 958 959 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 960 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); 961 MODULE_LICENSE("GPL"); 962 MODULE_VERSION(DRV_VERSION); 963 MODULE_ALIAS("platform:" DRV_NAME); 964 965 module_init(octeon_cf_init); 966