1 /* 2 * Driver for the Octeon bootbus compact flash. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 2005 - 2012 Cavium Inc. 9 * Copyright (C) 2008 Wind River Systems 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/libata.h> 15 #include <linux/hrtimer.h> 16 #include <linux/slab.h> 17 #include <linux/irq.h> 18 #include <linux/of.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <scsi/scsi_host.h> 22 23 #include <asm/byteorder.h> 24 #include <asm/octeon/octeon.h> 25 26 /* 27 * The Octeon bootbus compact flash interface is connected in at least 28 * 3 different configurations on various evaluation boards: 29 * 30 * -- 8 bits no irq, no DMA 31 * -- 16 bits no irq, no DMA 32 * -- 16 bits True IDE mode with DMA, but no irq. 33 * 34 * In the last case the DMA engine can generate an interrupt when the 35 * transfer is complete. For the first two cases only PIO is supported. 36 * 37 */ 38 39 #define DRV_NAME "pata_octeon_cf" 40 #define DRV_VERSION "2.2" 41 42 /* Poll interval in nS. */ 43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000 44 45 #define DMA_CFG 0 46 #define DMA_TIM 0x20 47 #define DMA_INT 0x38 48 #define DMA_INT_EN 0x50 49 50 struct octeon_cf_port { 51 struct hrtimer delayed_finish; 52 struct ata_port *ap; 53 int dma_finished; 54 void *c0; 55 unsigned int cs0; 56 unsigned int cs1; 57 bool is_true_ide; 58 u64 dma_base; 59 }; 60 61 static struct scsi_host_template octeon_cf_sht = { 62 ATA_PIO_SHT(DRV_NAME), 63 }; 64 65 static int enable_dma; 66 module_param(enable_dma, int, 0444); 67 MODULE_PARM_DESC(enable_dma, 68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)"); 69 70 /** 71 * Convert nanosecond based time to setting used in the 72 * boot bus timing register, based on timing multiple 73 */ 74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) 75 { 76 unsigned int val; 77 78 /* 79 * Compute # of eclock periods to get desired duration in 80 * nanoseconds. 81 */ 82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), 83 1000 * tim_mult); 84 85 return val; 86 } 87 88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier) 89 { 90 union cvmx_mio_boot_reg_cfgx reg_cfg; 91 unsigned int tim_mult; 92 93 switch (multiplier) { 94 case 8: 95 tim_mult = 3; 96 break; 97 case 4: 98 tim_mult = 0; 99 break; 100 case 2: 101 tim_mult = 2; 102 break; 103 default: 104 tim_mult = 1; 105 break; 106 } 107 108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ 110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */ 111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ 112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */ 113 reg_cfg.s.we_ext = 0; /* No write enable extension */ 114 reg_cfg.s.oe_ext = 0; /* No read enable extension */ 115 reg_cfg.s.en = 1; /* Enable this region */ 116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */ 117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */ 118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); 119 } 120 121 /** 122 * Called after libata determines the needed PIO mode. This 123 * function programs the Octeon bootbus regions to support the 124 * timing requirements of the PIO mode. 125 * 126 * @ap: ATA port information 127 * @dev: ATA device 128 */ 129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) 130 { 131 struct octeon_cf_port *cf_port = ap->private_data; 132 union cvmx_mio_boot_reg_timx reg_tim; 133 int T; 134 struct ata_timing timing; 135 136 unsigned int div; 137 int use_iordy; 138 int trh; 139 int pause; 140 /* These names are timing parameters from the ATA spec */ 141 int t1; 142 int t2; 143 int t2i; 144 145 /* 146 * A divisor value of four will overflow the timing fields at 147 * clock rates greater than 800MHz 148 */ 149 if (octeon_get_io_clock_rate() <= 800000000) 150 div = 4; 151 else 152 div = 8; 153 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate()); 154 155 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T)); 156 157 t1 = timing.setup; 158 if (t1) 159 t1--; 160 t2 = timing.active; 161 if (t2) 162 t2--; 163 t2i = timing.act8b; 164 if (t2i) 165 t2i--; 166 167 trh = ns_to_tim_reg(div, 20); 168 if (trh) 169 trh--; 170 171 pause = (int)timing.cycle - (int)timing.active - 172 (int)timing.setup - trh; 173 if (pause < 0) 174 pause = 0; 175 if (pause) 176 pause--; 177 178 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div); 179 if (cf_port->is_true_ide) 180 /* True IDE mode, program both chip selects. */ 181 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div); 182 183 184 use_iordy = ata_pio_need_iordy(dev); 185 186 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0)); 187 /* Disable page mode */ 188 reg_tim.s.pagem = 0; 189 /* Enable dynamic timing */ 190 reg_tim.s.waitm = use_iordy; 191 /* Pages are disabled */ 192 reg_tim.s.pages = 0; 193 /* We don't use multiplexed address mode */ 194 reg_tim.s.ale = 0; 195 /* Not used */ 196 reg_tim.s.page = 0; 197 /* Time after IORDY to coninue to assert the data */ 198 reg_tim.s.wait = 0; 199 /* Time to wait to complete the cycle. */ 200 reg_tim.s.pause = pause; 201 /* How long to hold after a write to de-assert CE. */ 202 reg_tim.s.wr_hld = trh; 203 /* How long to wait after a read to de-assert CE. */ 204 reg_tim.s.rd_hld = trh; 205 /* How long write enable is asserted */ 206 reg_tim.s.we = t2; 207 /* How long read enable is asserted */ 208 reg_tim.s.oe = t2; 209 /* Time after CE that read/write starts */ 210 reg_tim.s.ce = ns_to_tim_reg(div, 5); 211 /* Time before CE that address is valid */ 212 reg_tim.s.adr = 0; 213 214 /* Program the bootbus region timing for the data port chip select. */ 215 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64); 216 if (cf_port->is_true_ide) 217 /* True IDE mode, program both chip selects. */ 218 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1), 219 reg_tim.u64); 220 } 221 222 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) 223 { 224 struct octeon_cf_port *cf_port = ap->private_data; 225 union cvmx_mio_boot_pin_defs pin_defs; 226 union cvmx_mio_boot_dma_timx dma_tim; 227 unsigned int oe_a; 228 unsigned int oe_n; 229 unsigned int dma_ackh; 230 unsigned int dma_arq; 231 unsigned int pause; 232 unsigned int T0, Tkr, Td; 233 unsigned int tim_mult; 234 int c; 235 236 const struct ata_timing *timing; 237 238 timing = ata_timing_find_mode(dev->dma_mode); 239 T0 = timing->cycle; 240 Td = timing->active; 241 Tkr = timing->recover; 242 dma_ackh = timing->dmack_hold; 243 244 dma_tim.u64 = 0; 245 /* dma_tim.s.tim_mult = 0 --> 4x */ 246 tim_mult = 4; 247 248 /* not spec'ed, value in eclocks, not affected by tim_mult */ 249 dma_arq = 8; 250 pause = 25 - dma_arq * 1000 / 251 (octeon_get_io_clock_rate() / 1000000); /* Tz */ 252 253 oe_a = Td; 254 /* Tkr from cf spec, lengthened to meet T0 */ 255 oe_n = max(T0 - oe_a, Tkr); 256 257 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS); 258 259 /* DMA channel number. */ 260 c = (cf_port->dma_base & 8) >> 3; 261 262 /* Invert the polarity if the default is 0*/ 263 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1; 264 265 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); 266 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); 267 268 /* 269 * This is tI, C.F. spec. says 0, but Sony CF card requires 270 * more, we use 20 nS. 271 */ 272 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); 273 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); 274 275 dma_tim.s.dmarq = dma_arq; 276 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); 277 278 dma_tim.s.rd_dly = 0; /* Sample right on edge */ 279 280 /* writes only */ 281 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); 282 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); 283 284 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, 285 ns_to_tim_reg(tim_mult, 60)); 286 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n", 287 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, 288 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); 289 290 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64); 291 } 292 293 /** 294 * Handle an 8 bit I/O request. 295 * 296 * @dev: Device to access 297 * @buffer: Data buffer 298 * @buflen: Length of the buffer. 299 * @rw: True to write. 300 */ 301 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev, 302 unsigned char *buffer, 303 unsigned int buflen, 304 int rw) 305 { 306 struct ata_port *ap = dev->link->ap; 307 void __iomem *data_addr = ap->ioaddr.data_addr; 308 unsigned long words; 309 int count; 310 311 words = buflen; 312 if (rw) { 313 count = 16; 314 while (words--) { 315 iowrite8(*buffer, data_addr); 316 buffer++; 317 /* 318 * Every 16 writes do a read so the bootbus 319 * FIFO doesn't fill up. 320 */ 321 if (--count == 0) { 322 ioread8(ap->ioaddr.altstatus_addr); 323 count = 16; 324 } 325 } 326 } else { 327 ioread8_rep(data_addr, buffer, words); 328 } 329 return buflen; 330 } 331 332 /** 333 * Handle a 16 bit I/O request. 334 * 335 * @dev: Device to access 336 * @buffer: Data buffer 337 * @buflen: Length of the buffer. 338 * @rw: True to write. 339 */ 340 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev, 341 unsigned char *buffer, 342 unsigned int buflen, 343 int rw) 344 { 345 struct ata_port *ap = dev->link->ap; 346 void __iomem *data_addr = ap->ioaddr.data_addr; 347 unsigned long words; 348 int count; 349 350 words = buflen / 2; 351 if (rw) { 352 count = 16; 353 while (words--) { 354 iowrite16(*(uint16_t *)buffer, data_addr); 355 buffer += sizeof(uint16_t); 356 /* 357 * Every 16 writes do a read so the bootbus 358 * FIFO doesn't fill up. 359 */ 360 if (--count == 0) { 361 ioread8(ap->ioaddr.altstatus_addr); 362 count = 16; 363 } 364 } 365 } else { 366 while (words--) { 367 *(uint16_t *)buffer = ioread16(data_addr); 368 buffer += sizeof(uint16_t); 369 } 370 } 371 /* Transfer trailing 1 byte, if any. */ 372 if (unlikely(buflen & 0x01)) { 373 __le16 align_buf[1] = { 0 }; 374 375 if (rw == READ) { 376 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 377 memcpy(buffer, align_buf, 1); 378 } else { 379 memcpy(align_buf, buffer, 1); 380 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 381 } 382 words++; 383 } 384 return buflen; 385 } 386 387 /** 388 * Read the taskfile for 16bit non-True IDE only. 389 */ 390 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) 391 { 392 u16 blob; 393 /* The base of the registers is at ioaddr.data_addr. */ 394 void __iomem *base = ap->ioaddr.data_addr; 395 396 blob = __raw_readw(base + 0xc); 397 tf->feature = blob >> 8; 398 399 blob = __raw_readw(base + 2); 400 tf->nsect = blob & 0xff; 401 tf->lbal = blob >> 8; 402 403 blob = __raw_readw(base + 4); 404 tf->lbam = blob & 0xff; 405 tf->lbah = blob >> 8; 406 407 blob = __raw_readw(base + 6); 408 tf->device = blob & 0xff; 409 tf->command = blob >> 8; 410 411 if (tf->flags & ATA_TFLAG_LBA48) { 412 if (likely(ap->ioaddr.ctl_addr)) { 413 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); 414 415 blob = __raw_readw(base + 0xc); 416 tf->hob_feature = blob >> 8; 417 418 blob = __raw_readw(base + 2); 419 tf->hob_nsect = blob & 0xff; 420 tf->hob_lbal = blob >> 8; 421 422 blob = __raw_readw(base + 4); 423 tf->hob_lbam = blob & 0xff; 424 tf->hob_lbah = blob >> 8; 425 426 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 427 ap->last_ctl = tf->ctl; 428 } else { 429 WARN_ON(1); 430 } 431 } 432 } 433 434 static u8 octeon_cf_check_status16(struct ata_port *ap) 435 { 436 u16 blob; 437 void __iomem *base = ap->ioaddr.data_addr; 438 439 blob = __raw_readw(base + 6); 440 return blob >> 8; 441 } 442 443 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, 444 unsigned long deadline) 445 { 446 struct ata_port *ap = link->ap; 447 void __iomem *base = ap->ioaddr.data_addr; 448 int rc; 449 u8 err; 450 451 DPRINTK("about to softreset\n"); 452 __raw_writew(ap->ctl, base + 0xe); 453 udelay(20); 454 __raw_writew(ap->ctl | ATA_SRST, base + 0xe); 455 udelay(20); 456 __raw_writew(ap->ctl, base + 0xe); 457 458 rc = ata_sff_wait_after_reset(link, 1, deadline); 459 if (rc) { 460 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 461 return rc; 462 } 463 464 /* determine by signature whether we have ATA or ATAPI devices */ 465 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); 466 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 467 return 0; 468 } 469 470 /** 471 * Load the taskfile for 16bit non-True IDE only. The device_addr is 472 * not loaded, we do this as part of octeon_cf_exec_command16. 473 */ 474 static void octeon_cf_tf_load16(struct ata_port *ap, 475 const struct ata_taskfile *tf) 476 { 477 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 478 /* The base of the registers is at ioaddr.data_addr. */ 479 void __iomem *base = ap->ioaddr.data_addr; 480 481 if (tf->ctl != ap->last_ctl) { 482 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 483 ap->last_ctl = tf->ctl; 484 ata_wait_idle(ap); 485 } 486 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 487 __raw_writew(tf->hob_feature << 8, base + 0xc); 488 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); 489 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); 490 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 491 tf->hob_feature, 492 tf->hob_nsect, 493 tf->hob_lbal, 494 tf->hob_lbam, 495 tf->hob_lbah); 496 } 497 if (is_addr) { 498 __raw_writew(tf->feature << 8, base + 0xc); 499 __raw_writew(tf->nsect | tf->lbal << 8, base + 2); 500 __raw_writew(tf->lbam | tf->lbah << 8, base + 4); 501 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 502 tf->feature, 503 tf->nsect, 504 tf->lbal, 505 tf->lbam, 506 tf->lbah); 507 } 508 ata_wait_idle(ap); 509 } 510 511 512 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) 513 { 514 /* There is only one device, do nothing. */ 515 return; 516 } 517 518 /* 519 * Issue ATA command to host controller. The device_addr is also sent 520 * as it must be written in a combined write with the command. 521 */ 522 static void octeon_cf_exec_command16(struct ata_port *ap, 523 const struct ata_taskfile *tf) 524 { 525 /* The base of the registers is at ioaddr.data_addr. */ 526 void __iomem *base = ap->ioaddr.data_addr; 527 u16 blob; 528 529 if (tf->flags & ATA_TFLAG_DEVICE) { 530 VPRINTK("device 0x%X\n", tf->device); 531 blob = tf->device; 532 } else { 533 blob = 0; 534 } 535 536 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 537 blob |= (tf->command << 8); 538 __raw_writew(blob, base + 6); 539 540 541 ata_wait_idle(ap); 542 } 543 544 static void octeon_cf_ata_port_noaction(struct ata_port *ap) 545 { 546 } 547 548 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) 549 { 550 struct ata_port *ap = qc->ap; 551 struct octeon_cf_port *cf_port; 552 553 cf_port = ap->private_data; 554 DPRINTK("ENTER\n"); 555 /* issue r/w command */ 556 qc->cursg = qc->sg; 557 cf_port->dma_finished = 0; 558 ap->ops->sff_exec_command(ap, &qc->tf); 559 DPRINTK("EXIT\n"); 560 } 561 562 /** 563 * Start a DMA transfer that was already setup 564 * 565 * @qc: Information about the DMA 566 */ 567 static void octeon_cf_dma_start(struct ata_queued_cmd *qc) 568 { 569 struct octeon_cf_port *cf_port = qc->ap->private_data; 570 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; 571 union cvmx_mio_boot_dma_intx mio_boot_dma_int; 572 struct scatterlist *sg; 573 574 VPRINTK("%d scatterlists\n", qc->n_elem); 575 576 /* Get the scatter list entry we need to DMA into */ 577 sg = qc->cursg; 578 BUG_ON(!sg); 579 580 /* 581 * Clear the DMA complete status. 582 */ 583 mio_boot_dma_int.u64 = 0; 584 mio_boot_dma_int.s.done = 1; 585 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64); 586 587 /* Enable the interrupt. */ 588 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64); 589 590 /* Set the direction of the DMA */ 591 mio_boot_dma_cfg.u64 = 0; 592 #ifdef __LITTLE_ENDIAN 593 mio_boot_dma_cfg.s.endian = 1; 594 #endif 595 mio_boot_dma_cfg.s.en = 1; 596 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); 597 598 /* 599 * Don't stop the DMA if the device deasserts DMARQ. Many 600 * compact flashes deassert DMARQ for a short time between 601 * sectors. Instead of stopping and restarting the DMA, we'll 602 * let the hardware do it. If the DMA is really stopped early 603 * due to an error condition, a later timeout will force us to 604 * stop. 605 */ 606 mio_boot_dma_cfg.s.clr = 0; 607 608 /* Size is specified in 16bit words and minus one notation */ 609 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; 610 611 /* We need to swap the high and low bytes of every 16 bits */ 612 mio_boot_dma_cfg.s.swap8 = 1; 613 614 mio_boot_dma_cfg.s.adr = sg_dma_address(sg); 615 616 VPRINTK("%s %d bytes address=%p\n", 617 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length, 618 (void *)(unsigned long)mio_boot_dma_cfg.s.adr); 619 620 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64); 621 } 622 623 /** 624 * 625 * LOCKING: 626 * spin_lock_irqsave(host lock) 627 * 628 */ 629 static unsigned int octeon_cf_dma_finished(struct ata_port *ap, 630 struct ata_queued_cmd *qc) 631 { 632 struct ata_eh_info *ehi = &ap->link.eh_info; 633 struct octeon_cf_port *cf_port = ap->private_data; 634 union cvmx_mio_boot_dma_cfgx dma_cfg; 635 union cvmx_mio_boot_dma_intx dma_int; 636 u8 status; 637 638 VPRINTK("ata%u: protocol %d task_state %d\n", 639 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 640 641 642 if (ap->hsm_task_state != HSM_ST_LAST) 643 return 0; 644 645 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 646 if (dma_cfg.s.size != 0xfffff) { 647 /* Error, the transfer was not complete. */ 648 qc->err_mask |= AC_ERR_HOST_BUS; 649 ap->hsm_task_state = HSM_ST_ERR; 650 } 651 652 /* Stop and clear the dma engine. */ 653 dma_cfg.u64 = 0; 654 dma_cfg.s.size = -1; 655 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 656 657 /* Disable the interrupt. */ 658 dma_int.u64 = 0; 659 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 660 661 /* Clear the DMA complete status */ 662 dma_int.s.done = 1; 663 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 664 665 status = ap->ops->sff_check_status(ap); 666 667 ata_sff_hsm_move(ap, qc, status, 0); 668 669 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) 670 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); 671 672 return 1; 673 } 674 675 /* 676 * Check if any queued commands have more DMAs, if so start the next 677 * transfer, else do end of transfer handling. 678 */ 679 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) 680 { 681 struct ata_host *host = dev_instance; 682 struct octeon_cf_port *cf_port; 683 int i; 684 unsigned int handled = 0; 685 unsigned long flags; 686 687 spin_lock_irqsave(&host->lock, flags); 688 689 DPRINTK("ENTER\n"); 690 for (i = 0; i < host->n_ports; i++) { 691 u8 status; 692 struct ata_port *ap; 693 struct ata_queued_cmd *qc; 694 union cvmx_mio_boot_dma_intx dma_int; 695 union cvmx_mio_boot_dma_cfgx dma_cfg; 696 697 ap = host->ports[i]; 698 cf_port = ap->private_data; 699 700 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT); 701 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 702 703 qc = ata_qc_from_tag(ap, ap->link.active_tag); 704 705 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING)) 706 continue; 707 708 if (dma_int.s.done && !dma_cfg.s.en) { 709 if (!sg_is_last(qc->cursg)) { 710 qc->cursg = sg_next(qc->cursg); 711 handled = 1; 712 octeon_cf_dma_start(qc); 713 continue; 714 } else { 715 cf_port->dma_finished = 1; 716 } 717 } 718 if (!cf_port->dma_finished) 719 continue; 720 status = ioread8(ap->ioaddr.altstatus_addr); 721 if (status & (ATA_BUSY | ATA_DRQ)) { 722 /* 723 * We are busy, try to handle it later. This 724 * is the DMA finished interrupt, and it could 725 * take a little while for the card to be 726 * ready for more commands. 727 */ 728 /* Clear DMA irq. */ 729 dma_int.u64 = 0; 730 dma_int.s.done = 1; 731 cvmx_write_csr(cf_port->dma_base + DMA_INT, 732 dma_int.u64); 733 hrtimer_start_range_ns(&cf_port->delayed_finish, 734 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL), 735 OCTEON_CF_BUSY_POLL_INTERVAL / 5, 736 HRTIMER_MODE_REL); 737 handled = 1; 738 } else { 739 handled |= octeon_cf_dma_finished(ap, qc); 740 } 741 } 742 spin_unlock_irqrestore(&host->lock, flags); 743 DPRINTK("EXIT\n"); 744 return IRQ_RETVAL(handled); 745 } 746 747 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt) 748 { 749 struct octeon_cf_port *cf_port = container_of(hrt, 750 struct octeon_cf_port, 751 delayed_finish); 752 struct ata_port *ap = cf_port->ap; 753 struct ata_host *host = ap->host; 754 struct ata_queued_cmd *qc; 755 unsigned long flags; 756 u8 status; 757 enum hrtimer_restart rv = HRTIMER_NORESTART; 758 759 spin_lock_irqsave(&host->lock, flags); 760 761 /* 762 * If the port is not waiting for completion, it must have 763 * handled it previously. The hsm_task_state is 764 * protected by host->lock. 765 */ 766 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) 767 goto out; 768 769 status = ioread8(ap->ioaddr.altstatus_addr); 770 if (status & (ATA_BUSY | ATA_DRQ)) { 771 /* Still busy, try again. */ 772 hrtimer_forward_now(hrt, 773 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL)); 774 rv = HRTIMER_RESTART; 775 goto out; 776 } 777 qc = ata_qc_from_tag(ap, ap->link.active_tag); 778 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 779 octeon_cf_dma_finished(ap, qc); 780 out: 781 spin_unlock_irqrestore(&host->lock, flags); 782 return rv; 783 } 784 785 static void octeon_cf_dev_config(struct ata_device *dev) 786 { 787 /* 788 * A maximum of 2^20 - 1 16 bit transfers are possible with 789 * the bootbus DMA. So we need to throttle max_sectors to 790 * (2^12 - 1 == 4095) to assure that this can never happen. 791 */ 792 dev->max_sectors = min(dev->max_sectors, 4095U); 793 } 794 795 /* 796 * We don't do ATAPI DMA so return 0. 797 */ 798 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) 799 { 800 return 0; 801 } 802 803 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) 804 { 805 struct ata_port *ap = qc->ap; 806 807 switch (qc->tf.protocol) { 808 case ATA_PROT_DMA: 809 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 810 811 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 812 octeon_cf_dma_setup(qc); /* set up dma */ 813 octeon_cf_dma_start(qc); /* initiate dma */ 814 ap->hsm_task_state = HSM_ST_LAST; 815 break; 816 817 case ATAPI_PROT_DMA: 818 dev_err(ap->dev, "Error, ATAPI not supported\n"); 819 BUG(); 820 821 default: 822 return ata_sff_qc_issue(qc); 823 } 824 825 return 0; 826 } 827 828 static struct ata_port_operations octeon_cf_ops = { 829 .inherits = &ata_sff_port_ops, 830 .check_atapi_dma = octeon_cf_check_atapi_dma, 831 .qc_prep = ata_noop_qc_prep, 832 .qc_issue = octeon_cf_qc_issue, 833 .sff_dev_select = octeon_cf_dev_select, 834 .sff_irq_on = octeon_cf_ata_port_noaction, 835 .sff_irq_clear = octeon_cf_ata_port_noaction, 836 .cable_detect = ata_cable_40wire, 837 .set_piomode = octeon_cf_set_piomode, 838 .set_dmamode = octeon_cf_set_dmamode, 839 .dev_config = octeon_cf_dev_config, 840 }; 841 842 static int octeon_cf_probe(struct platform_device *pdev) 843 { 844 struct resource *res_cs0, *res_cs1; 845 846 bool is_16bit; 847 const __be32 *cs_num; 848 struct property *reg_prop; 849 int n_addr, n_size, reg_len; 850 struct device_node *node; 851 const void *prop; 852 void __iomem *cs0; 853 void __iomem *cs1 = NULL; 854 struct ata_host *host; 855 struct ata_port *ap; 856 int irq = 0; 857 irq_handler_t irq_handler = NULL; 858 void __iomem *base; 859 struct octeon_cf_port *cf_port; 860 int rv = -ENOMEM; 861 862 863 node = pdev->dev.of_node; 864 if (node == NULL) 865 return -EINVAL; 866 867 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL); 868 if (!cf_port) 869 return -ENOMEM; 870 871 cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL); 872 873 prop = of_get_property(node, "cavium,bus-width", NULL); 874 if (prop) 875 is_16bit = (be32_to_cpup(prop) == 16); 876 else 877 is_16bit = false; 878 879 n_addr = of_n_addr_cells(node); 880 n_size = of_n_size_cells(node); 881 882 reg_prop = of_find_property(node, "reg", ®_len); 883 if (!reg_prop || reg_len < sizeof(__be32)) 884 return -EINVAL; 885 886 cs_num = reg_prop->value; 887 cf_port->cs0 = be32_to_cpup(cs_num); 888 889 if (cf_port->is_true_ide) { 890 struct device_node *dma_node; 891 dma_node = of_parse_phandle(node, 892 "cavium,dma-engine-handle", 0); 893 if (dma_node) { 894 struct platform_device *dma_dev; 895 dma_dev = of_find_device_by_node(dma_node); 896 if (dma_dev) { 897 struct resource *res_dma; 898 int i; 899 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0); 900 if (!res_dma) { 901 of_node_put(dma_node); 902 return -EINVAL; 903 } 904 cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start, 905 resource_size(res_dma)); 906 if (!cf_port->dma_base) { 907 of_node_put(dma_node); 908 return -EINVAL; 909 } 910 911 irq_handler = octeon_cf_interrupt; 912 i = platform_get_irq(dma_dev, 0); 913 if (i > 0) 914 irq = i; 915 } 916 of_node_put(dma_node); 917 } 918 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 919 if (!res_cs1) 920 return -EINVAL; 921 922 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start, 923 resource_size(res_cs1)); 924 if (!cs1) 925 return rv; 926 927 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32)) 928 return -EINVAL; 929 930 cs_num += n_addr + n_size; 931 cf_port->cs1 = be32_to_cpup(cs_num); 932 } 933 934 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 935 if (!res_cs0) 936 return -EINVAL; 937 938 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start, 939 resource_size(res_cs0)); 940 if (!cs0) 941 return rv; 942 943 /* allocate host */ 944 host = ata_host_alloc(&pdev->dev, 1); 945 if (!host) 946 return rv; 947 948 ap = host->ports[0]; 949 ap->private_data = cf_port; 950 pdev->dev.platform_data = cf_port; 951 cf_port->ap = ap; 952 ap->ops = &octeon_cf_ops; 953 ap->pio_mask = ATA_PIO6; 954 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; 955 956 if (!is_16bit) { 957 base = cs0 + 0x800; 958 ap->ioaddr.cmd_addr = base; 959 ata_sff_std_ports(&ap->ioaddr); 960 961 ap->ioaddr.altstatus_addr = base + 0xe; 962 ap->ioaddr.ctl_addr = base + 0xe; 963 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; 964 } else if (cf_port->is_true_ide) { 965 base = cs0; 966 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; 967 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); 968 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; 969 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; 970 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; 971 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; 972 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; 973 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; 974 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; 975 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; 976 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; 977 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; 978 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; 979 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 980 981 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0; 982 983 /* True IDE mode needs a timer to poll for not-busy. */ 984 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC, 985 HRTIMER_MODE_REL); 986 cf_port->delayed_finish.function = octeon_cf_delayed_finish; 987 } else { 988 /* 16 bit but not True IDE */ 989 base = cs0 + 0x800; 990 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 991 octeon_cf_ops.softreset = octeon_cf_softreset16; 992 octeon_cf_ops.sff_check_status = octeon_cf_check_status16; 993 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; 994 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; 995 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; 996 997 ap->ioaddr.data_addr = base + ATA_REG_DATA; 998 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; 999 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; 1000 ap->ioaddr.ctl_addr = base + 0xe; 1001 ap->ioaddr.altstatus_addr = base + 0xe; 1002 } 1003 cf_port->c0 = ap->ioaddr.ctl_addr; 1004 1005 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1006 if (rv) 1007 return rv; 1008 1009 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); 1010 1011 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", 1012 is_16bit ? 16 : 8, 1013 cf_port->is_true_ide ? ", True IDE" : ""); 1014 1015 return ata_host_activate(host, irq, irq_handler, 1016 IRQF_SHARED, &octeon_cf_sht); 1017 } 1018 1019 static void octeon_cf_shutdown(struct device *dev) 1020 { 1021 union cvmx_mio_boot_dma_cfgx dma_cfg; 1022 union cvmx_mio_boot_dma_intx dma_int; 1023 1024 struct octeon_cf_port *cf_port = dev_get_platdata(dev); 1025 1026 if (cf_port->dma_base) { 1027 /* Stop and clear the dma engine. */ 1028 dma_cfg.u64 = 0; 1029 dma_cfg.s.size = -1; 1030 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 1031 1032 /* Disable the interrupt. */ 1033 dma_int.u64 = 0; 1034 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 1035 1036 /* Clear the DMA complete status */ 1037 dma_int.s.done = 1; 1038 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 1039 1040 __raw_writeb(0, cf_port->c0); 1041 udelay(20); 1042 __raw_writeb(ATA_SRST, cf_port->c0); 1043 udelay(20); 1044 __raw_writeb(0, cf_port->c0); 1045 mdelay(100); 1046 } 1047 } 1048 1049 static struct of_device_id octeon_cf_match[] = { 1050 { 1051 .compatible = "cavium,ebt3000-compact-flash", 1052 }, 1053 {}, 1054 }; 1055 MODULE_DEVICE_TABLE(of, octeon_cf_match); 1056 1057 static struct platform_driver octeon_cf_driver = { 1058 .probe = octeon_cf_probe, 1059 .driver = { 1060 .name = DRV_NAME, 1061 .of_match_table = octeon_cf_match, 1062 .shutdown = octeon_cf_shutdown 1063 }, 1064 }; 1065 1066 static int __init octeon_cf_init(void) 1067 { 1068 return platform_driver_register(&octeon_cf_driver); 1069 } 1070 1071 1072 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 1073 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); 1074 MODULE_LICENSE("GPL"); 1075 MODULE_VERSION(DRV_VERSION); 1076 MODULE_ALIAS("platform:" DRV_NAME); 1077 1078 module_init(octeon_cf_init); 1079