xref: /openbmc/linux/drivers/ata/pata_octeon_cf.c (revision 8730046c)
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2012 Cavium Inc.
9  * Copyright (C) 2008 Wind River Systems
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
22 
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
25 
26 /*
27  * The Octeon bootbus compact flash interface is connected in at least
28  * 3 different configurations on various evaluation boards:
29  *
30  * -- 8  bits no irq, no DMA
31  * -- 16 bits no irq, no DMA
32  * -- 16 bits True IDE mode with DMA, but no irq.
33  *
34  * In the last case the DMA engine can generate an interrupt when the
35  * transfer is complete.  For the first two cases only PIO is supported.
36  *
37  */
38 
39 #define DRV_NAME	"pata_octeon_cf"
40 #define DRV_VERSION	"2.2"
41 
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44 
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
49 
50 struct octeon_cf_port {
51 	struct hrtimer delayed_finish;
52 	struct ata_port *ap;
53 	int dma_finished;
54 	void		*c0;
55 	unsigned int cs0;
56 	unsigned int cs1;
57 	bool is_true_ide;
58 	u64 dma_base;
59 };
60 
61 static struct scsi_host_template octeon_cf_sht = {
62 	ATA_PIO_SHT(DRV_NAME),
63 };
64 
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69 
70 /**
71  * Convert nanosecond based time to setting used in the
72  * boot bus timing register, based on timing multiple
73  */
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75 {
76 	unsigned int val;
77 
78 	/*
79 	 * Compute # of eclock periods to get desired duration in
80 	 * nanoseconds.
81 	 */
82 	val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83 			  1000 * tim_mult);
84 
85 	return val;
86 }
87 
88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89 {
90 	union cvmx_mio_boot_reg_cfgx reg_cfg;
91 	unsigned int tim_mult;
92 
93 	switch (multiplier) {
94 	case 8:
95 		tim_mult = 3;
96 		break;
97 	case 4:
98 		tim_mult = 0;
99 		break;
100 	case 2:
101 		tim_mult = 2;
102 		break;
103 	default:
104 		tim_mult = 1;
105 		break;
106 	}
107 
108 	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109 	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
110 	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
111 	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
112 	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
113 	reg_cfg.s.we_ext = 0;	/* No write enable extension */
114 	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
115 	reg_cfg.s.en = 1;	/* Enable this region */
116 	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
117 	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
118 	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
119 }
120 
121 /**
122  * Called after libata determines the needed PIO mode. This
123  * function programs the Octeon bootbus regions to support the
124  * timing requirements of the PIO mode.
125  *
126  * @ap:     ATA port information
127  * @dev:    ATA device
128  */
129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
130 {
131 	struct octeon_cf_port *cf_port = ap->private_data;
132 	union cvmx_mio_boot_reg_timx reg_tim;
133 	int T;
134 	struct ata_timing timing;
135 
136 	unsigned int div;
137 	int use_iordy;
138 	int trh;
139 	int pause;
140 	/* These names are timing parameters from the ATA spec */
141 	int t1;
142 	int t2;
143 	int t2i;
144 
145 	/*
146 	 * A divisor value of four will overflow the timing fields at
147 	 * clock rates greater than 800MHz
148 	 */
149 	if (octeon_get_io_clock_rate() <= 800000000)
150 		div = 4;
151 	else
152 		div = 8;
153 	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
154 
155 	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
156 
157 	t1 = timing.setup;
158 	if (t1)
159 		t1--;
160 	t2 = timing.active;
161 	if (t2)
162 		t2--;
163 	t2i = timing.act8b;
164 	if (t2i)
165 		t2i--;
166 
167 	trh = ns_to_tim_reg(div, 20);
168 	if (trh)
169 		trh--;
170 
171 	pause = (int)timing.cycle - (int)timing.active -
172 		(int)timing.setup - trh;
173 	if (pause < 0)
174 		pause = 0;
175 	if (pause)
176 		pause--;
177 
178 	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
179 	if (cf_port->is_true_ide)
180 		/* True IDE mode, program both chip selects.  */
181 		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
182 
183 
184 	use_iordy = ata_pio_need_iordy(dev);
185 
186 	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
187 	/* Disable page mode */
188 	reg_tim.s.pagem = 0;
189 	/* Enable dynamic timing */
190 	reg_tim.s.waitm = use_iordy;
191 	/* Pages are disabled */
192 	reg_tim.s.pages = 0;
193 	/* We don't use multiplexed address mode */
194 	reg_tim.s.ale = 0;
195 	/* Not used */
196 	reg_tim.s.page = 0;
197 	/* Time after IORDY to coninue to assert the data */
198 	reg_tim.s.wait = 0;
199 	/* Time to wait to complete the cycle. */
200 	reg_tim.s.pause = pause;
201 	/* How long to hold after a write to de-assert CE. */
202 	reg_tim.s.wr_hld = trh;
203 	/* How long to wait after a read to de-assert CE. */
204 	reg_tim.s.rd_hld = trh;
205 	/* How long write enable is asserted */
206 	reg_tim.s.we = t2;
207 	/* How long read enable is asserted */
208 	reg_tim.s.oe = t2;
209 	/* Time after CE that read/write starts */
210 	reg_tim.s.ce = ns_to_tim_reg(div, 5);
211 	/* Time before CE that address is valid */
212 	reg_tim.s.adr = 0;
213 
214 	/* Program the bootbus region timing for the data port chip select. */
215 	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
216 	if (cf_port->is_true_ide)
217 		/* True IDE mode, program both chip selects.  */
218 		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
219 			       reg_tim.u64);
220 }
221 
222 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
223 {
224 	struct octeon_cf_port *cf_port = ap->private_data;
225 	union cvmx_mio_boot_pin_defs pin_defs;
226 	union cvmx_mio_boot_dma_timx dma_tim;
227 	unsigned int oe_a;
228 	unsigned int oe_n;
229 	unsigned int dma_ackh;
230 	unsigned int dma_arq;
231 	unsigned int pause;
232 	unsigned int T0, Tkr, Td;
233 	unsigned int tim_mult;
234 	int c;
235 
236 	const struct ata_timing *timing;
237 
238 	timing = ata_timing_find_mode(dev->dma_mode);
239 	T0	= timing->cycle;
240 	Td	= timing->active;
241 	Tkr	= timing->recover;
242 	dma_ackh = timing->dmack_hold;
243 
244 	dma_tim.u64 = 0;
245 	/* dma_tim.s.tim_mult = 0 --> 4x */
246 	tim_mult = 4;
247 
248 	/* not spec'ed, value in eclocks, not affected by tim_mult */
249 	dma_arq = 8;
250 	pause = 25 - dma_arq * 1000 /
251 		(octeon_get_io_clock_rate() / 1000000); /* Tz */
252 
253 	oe_a = Td;
254 	/* Tkr from cf spec, lengthened to meet T0 */
255 	oe_n = max(T0 - oe_a, Tkr);
256 
257 	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
258 
259 	/* DMA channel number. */
260 	c = (cf_port->dma_base & 8) >> 3;
261 
262 	/* Invert the polarity if the default is 0*/
263 	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
264 
265 	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
266 	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
267 
268 	/*
269 	 * This is tI, C.F. spec. says 0, but Sony CF card requires
270 	 * more, we use 20 nS.
271 	 */
272 	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
273 	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
274 
275 	dma_tim.s.dmarq = dma_arq;
276 	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
277 
278 	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
279 
280 	/*  writes only */
281 	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
282 	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
283 
284 	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
285 		 ns_to_tim_reg(tim_mult, 60));
286 	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
287 		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
288 		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
289 
290 	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
291 }
292 
293 /**
294  * Handle an 8 bit I/O request.
295  *
296  * @dev:        Device to access
297  * @buffer:     Data buffer
298  * @buflen:     Length of the buffer.
299  * @rw:         True to write.
300  */
301 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
302 					 unsigned char *buffer,
303 					 unsigned int buflen,
304 					 int rw)
305 {
306 	struct ata_port *ap		= dev->link->ap;
307 	void __iomem *data_addr		= ap->ioaddr.data_addr;
308 	unsigned long words;
309 	int count;
310 
311 	words = buflen;
312 	if (rw) {
313 		count = 16;
314 		while (words--) {
315 			iowrite8(*buffer, data_addr);
316 			buffer++;
317 			/*
318 			 * Every 16 writes do a read so the bootbus
319 			 * FIFO doesn't fill up.
320 			 */
321 			if (--count == 0) {
322 				ioread8(ap->ioaddr.altstatus_addr);
323 				count = 16;
324 			}
325 		}
326 	} else {
327 		ioread8_rep(data_addr, buffer, words);
328 	}
329 	return buflen;
330 }
331 
332 /**
333  * Handle a 16 bit I/O request.
334  *
335  * @dev:        Device to access
336  * @buffer:     Data buffer
337  * @buflen:     Length of the buffer.
338  * @rw:         True to write.
339  */
340 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
341 					  unsigned char *buffer,
342 					  unsigned int buflen,
343 					  int rw)
344 {
345 	struct ata_port *ap		= dev->link->ap;
346 	void __iomem *data_addr		= ap->ioaddr.data_addr;
347 	unsigned long words;
348 	int count;
349 
350 	words = buflen / 2;
351 	if (rw) {
352 		count = 16;
353 		while (words--) {
354 			iowrite16(*(uint16_t *)buffer, data_addr);
355 			buffer += sizeof(uint16_t);
356 			/*
357 			 * Every 16 writes do a read so the bootbus
358 			 * FIFO doesn't fill up.
359 			 */
360 			if (--count == 0) {
361 				ioread8(ap->ioaddr.altstatus_addr);
362 				count = 16;
363 			}
364 		}
365 	} else {
366 		while (words--) {
367 			*(uint16_t *)buffer = ioread16(data_addr);
368 			buffer += sizeof(uint16_t);
369 		}
370 	}
371 	/* Transfer trailing 1 byte, if any. */
372 	if (unlikely(buflen & 0x01)) {
373 		__le16 align_buf[1] = { 0 };
374 
375 		if (rw == READ) {
376 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
377 			memcpy(buffer, align_buf, 1);
378 		} else {
379 			memcpy(align_buf, buffer, 1);
380 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
381 		}
382 		words++;
383 	}
384 	return buflen;
385 }
386 
387 /**
388  * Read the taskfile for 16bit non-True IDE only.
389  */
390 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
391 {
392 	u16 blob;
393 	/* The base of the registers is at ioaddr.data_addr. */
394 	void __iomem *base = ap->ioaddr.data_addr;
395 
396 	blob = __raw_readw(base + 0xc);
397 	tf->feature = blob >> 8;
398 
399 	blob = __raw_readw(base + 2);
400 	tf->nsect = blob & 0xff;
401 	tf->lbal = blob >> 8;
402 
403 	blob = __raw_readw(base + 4);
404 	tf->lbam = blob & 0xff;
405 	tf->lbah = blob >> 8;
406 
407 	blob = __raw_readw(base + 6);
408 	tf->device = blob & 0xff;
409 	tf->command = blob >> 8;
410 
411 	if (tf->flags & ATA_TFLAG_LBA48) {
412 		if (likely(ap->ioaddr.ctl_addr)) {
413 			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
414 
415 			blob = __raw_readw(base + 0xc);
416 			tf->hob_feature = blob >> 8;
417 
418 			blob = __raw_readw(base + 2);
419 			tf->hob_nsect = blob & 0xff;
420 			tf->hob_lbal = blob >> 8;
421 
422 			blob = __raw_readw(base + 4);
423 			tf->hob_lbam = blob & 0xff;
424 			tf->hob_lbah = blob >> 8;
425 
426 			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
427 			ap->last_ctl = tf->ctl;
428 		} else {
429 			WARN_ON(1);
430 		}
431 	}
432 }
433 
434 static u8 octeon_cf_check_status16(struct ata_port *ap)
435 {
436 	u16 blob;
437 	void __iomem *base = ap->ioaddr.data_addr;
438 
439 	blob = __raw_readw(base + 6);
440 	return blob >> 8;
441 }
442 
443 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
444 				 unsigned long deadline)
445 {
446 	struct ata_port *ap = link->ap;
447 	void __iomem *base = ap->ioaddr.data_addr;
448 	int rc;
449 	u8 err;
450 
451 	DPRINTK("about to softreset\n");
452 	__raw_writew(ap->ctl, base + 0xe);
453 	udelay(20);
454 	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
455 	udelay(20);
456 	__raw_writew(ap->ctl, base + 0xe);
457 
458 	rc = ata_sff_wait_after_reset(link, 1, deadline);
459 	if (rc) {
460 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
461 		return rc;
462 	}
463 
464 	/* determine by signature whether we have ATA or ATAPI devices */
465 	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
466 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
467 	return 0;
468 }
469 
470 /**
471  * Load the taskfile for 16bit non-True IDE only.  The device_addr is
472  * not loaded, we do this as part of octeon_cf_exec_command16.
473  */
474 static void octeon_cf_tf_load16(struct ata_port *ap,
475 				const struct ata_taskfile *tf)
476 {
477 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
478 	/* The base of the registers is at ioaddr.data_addr. */
479 	void __iomem *base = ap->ioaddr.data_addr;
480 
481 	if (tf->ctl != ap->last_ctl) {
482 		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
483 		ap->last_ctl = tf->ctl;
484 		ata_wait_idle(ap);
485 	}
486 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
487 		__raw_writew(tf->hob_feature << 8, base + 0xc);
488 		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
489 		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
490 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
491 			tf->hob_feature,
492 			tf->hob_nsect,
493 			tf->hob_lbal,
494 			tf->hob_lbam,
495 			tf->hob_lbah);
496 	}
497 	if (is_addr) {
498 		__raw_writew(tf->feature << 8, base + 0xc);
499 		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
500 		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
501 		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
502 			tf->feature,
503 			tf->nsect,
504 			tf->lbal,
505 			tf->lbam,
506 			tf->lbah);
507 	}
508 	ata_wait_idle(ap);
509 }
510 
511 
512 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
513 {
514 /*  There is only one device, do nothing. */
515 	return;
516 }
517 
518 /*
519  * Issue ATA command to host controller.  The device_addr is also sent
520  * as it must be written in a combined write with the command.
521  */
522 static void octeon_cf_exec_command16(struct ata_port *ap,
523 				const struct ata_taskfile *tf)
524 {
525 	/* The base of the registers is at ioaddr.data_addr. */
526 	void __iomem *base = ap->ioaddr.data_addr;
527 	u16 blob;
528 
529 	if (tf->flags & ATA_TFLAG_DEVICE) {
530 		VPRINTK("device 0x%X\n", tf->device);
531 		blob = tf->device;
532 	} else {
533 		blob = 0;
534 	}
535 
536 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
537 	blob |= (tf->command << 8);
538 	__raw_writew(blob, base + 6);
539 
540 
541 	ata_wait_idle(ap);
542 }
543 
544 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
545 {
546 }
547 
548 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
549 {
550 	struct ata_port *ap = qc->ap;
551 	struct octeon_cf_port *cf_port;
552 
553 	cf_port = ap->private_data;
554 	DPRINTK("ENTER\n");
555 	/* issue r/w command */
556 	qc->cursg = qc->sg;
557 	cf_port->dma_finished = 0;
558 	ap->ops->sff_exec_command(ap, &qc->tf);
559 	DPRINTK("EXIT\n");
560 }
561 
562 /**
563  * Start a DMA transfer that was already setup
564  *
565  * @qc:     Information about the DMA
566  */
567 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
568 {
569 	struct octeon_cf_port *cf_port = qc->ap->private_data;
570 	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
571 	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
572 	struct scatterlist *sg;
573 
574 	VPRINTK("%d scatterlists\n", qc->n_elem);
575 
576 	/* Get the scatter list entry we need to DMA into */
577 	sg = qc->cursg;
578 	BUG_ON(!sg);
579 
580 	/*
581 	 * Clear the DMA complete status.
582 	 */
583 	mio_boot_dma_int.u64 = 0;
584 	mio_boot_dma_int.s.done = 1;
585 	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
586 
587 	/* Enable the interrupt.  */
588 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
589 
590 	/* Set the direction of the DMA */
591 	mio_boot_dma_cfg.u64 = 0;
592 #ifdef __LITTLE_ENDIAN
593 	mio_boot_dma_cfg.s.endian = 1;
594 #endif
595 	mio_boot_dma_cfg.s.en = 1;
596 	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
597 
598 	/*
599 	 * Don't stop the DMA if the device deasserts DMARQ. Many
600 	 * compact flashes deassert DMARQ for a short time between
601 	 * sectors. Instead of stopping and restarting the DMA, we'll
602 	 * let the hardware do it. If the DMA is really stopped early
603 	 * due to an error condition, a later timeout will force us to
604 	 * stop.
605 	 */
606 	mio_boot_dma_cfg.s.clr = 0;
607 
608 	/* Size is specified in 16bit words and minus one notation */
609 	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
610 
611 	/* We need to swap the high and low bytes of every 16 bits */
612 	mio_boot_dma_cfg.s.swap8 = 1;
613 
614 	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
615 
616 	VPRINTK("%s %d bytes address=%p\n",
617 		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
618 		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
619 
620 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
621 }
622 
623 /**
624  *
625  *	LOCKING:
626  *	spin_lock_irqsave(host lock)
627  *
628  */
629 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
630 					struct ata_queued_cmd *qc)
631 {
632 	struct ata_eh_info *ehi = &ap->link.eh_info;
633 	struct octeon_cf_port *cf_port = ap->private_data;
634 	union cvmx_mio_boot_dma_cfgx dma_cfg;
635 	union cvmx_mio_boot_dma_intx dma_int;
636 	u8 status;
637 
638 	VPRINTK("ata%u: protocol %d task_state %d\n",
639 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
640 
641 
642 	if (ap->hsm_task_state != HSM_ST_LAST)
643 		return 0;
644 
645 	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
646 	if (dma_cfg.s.size != 0xfffff) {
647 		/* Error, the transfer was not complete.  */
648 		qc->err_mask |= AC_ERR_HOST_BUS;
649 		ap->hsm_task_state = HSM_ST_ERR;
650 	}
651 
652 	/* Stop and clear the dma engine.  */
653 	dma_cfg.u64 = 0;
654 	dma_cfg.s.size = -1;
655 	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
656 
657 	/* Disable the interrupt.  */
658 	dma_int.u64 = 0;
659 	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
660 
661 	/* Clear the DMA complete status */
662 	dma_int.s.done = 1;
663 	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
664 
665 	status = ap->ops->sff_check_status(ap);
666 
667 	ata_sff_hsm_move(ap, qc, status, 0);
668 
669 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
670 		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
671 
672 	return 1;
673 }
674 
675 /*
676  * Check if any queued commands have more DMAs, if so start the next
677  * transfer, else do end of transfer handling.
678  */
679 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
680 {
681 	struct ata_host *host = dev_instance;
682 	struct octeon_cf_port *cf_port;
683 	int i;
684 	unsigned int handled = 0;
685 	unsigned long flags;
686 
687 	spin_lock_irqsave(&host->lock, flags);
688 
689 	DPRINTK("ENTER\n");
690 	for (i = 0; i < host->n_ports; i++) {
691 		u8 status;
692 		struct ata_port *ap;
693 		struct ata_queued_cmd *qc;
694 		union cvmx_mio_boot_dma_intx dma_int;
695 		union cvmx_mio_boot_dma_cfgx dma_cfg;
696 
697 		ap = host->ports[i];
698 		cf_port = ap->private_data;
699 
700 		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
701 		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
702 
703 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
704 
705 		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
706 			continue;
707 
708 		if (dma_int.s.done && !dma_cfg.s.en) {
709 			if (!sg_is_last(qc->cursg)) {
710 				qc->cursg = sg_next(qc->cursg);
711 				handled = 1;
712 				octeon_cf_dma_start(qc);
713 				continue;
714 			} else {
715 				cf_port->dma_finished = 1;
716 			}
717 		}
718 		if (!cf_port->dma_finished)
719 			continue;
720 		status = ioread8(ap->ioaddr.altstatus_addr);
721 		if (status & (ATA_BUSY | ATA_DRQ)) {
722 			/*
723 			 * We are busy, try to handle it later.  This
724 			 * is the DMA finished interrupt, and it could
725 			 * take a little while for the card to be
726 			 * ready for more commands.
727 			 */
728 			/* Clear DMA irq. */
729 			dma_int.u64 = 0;
730 			dma_int.s.done = 1;
731 			cvmx_write_csr(cf_port->dma_base + DMA_INT,
732 				       dma_int.u64);
733 			hrtimer_start_range_ns(&cf_port->delayed_finish,
734 					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
735 					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
736 					       HRTIMER_MODE_REL);
737 			handled = 1;
738 		} else {
739 			handled |= octeon_cf_dma_finished(ap, qc);
740 		}
741 	}
742 	spin_unlock_irqrestore(&host->lock, flags);
743 	DPRINTK("EXIT\n");
744 	return IRQ_RETVAL(handled);
745 }
746 
747 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
748 {
749 	struct octeon_cf_port *cf_port = container_of(hrt,
750 						      struct octeon_cf_port,
751 						      delayed_finish);
752 	struct ata_port *ap = cf_port->ap;
753 	struct ata_host *host = ap->host;
754 	struct ata_queued_cmd *qc;
755 	unsigned long flags;
756 	u8 status;
757 	enum hrtimer_restart rv = HRTIMER_NORESTART;
758 
759 	spin_lock_irqsave(&host->lock, flags);
760 
761 	/*
762 	 * If the port is not waiting for completion, it must have
763 	 * handled it previously.  The hsm_task_state is
764 	 * protected by host->lock.
765 	 */
766 	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
767 		goto out;
768 
769 	status = ioread8(ap->ioaddr.altstatus_addr);
770 	if (status & (ATA_BUSY | ATA_DRQ)) {
771 		/* Still busy, try again. */
772 		hrtimer_forward_now(hrt,
773 				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
774 		rv = HRTIMER_RESTART;
775 		goto out;
776 	}
777 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
778 	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
779 		octeon_cf_dma_finished(ap, qc);
780 out:
781 	spin_unlock_irqrestore(&host->lock, flags);
782 	return rv;
783 }
784 
785 static void octeon_cf_dev_config(struct ata_device *dev)
786 {
787 	/*
788 	 * A maximum of 2^20 - 1 16 bit transfers are possible with
789 	 * the bootbus DMA.  So we need to throttle max_sectors to
790 	 * (2^12 - 1 == 4095) to assure that this can never happen.
791 	 */
792 	dev->max_sectors = min(dev->max_sectors, 4095U);
793 }
794 
795 /*
796  * We don't do ATAPI DMA so return 0.
797  */
798 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
799 {
800 	return 0;
801 }
802 
803 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
804 {
805 	struct ata_port *ap = qc->ap;
806 
807 	switch (qc->tf.protocol) {
808 	case ATA_PROT_DMA:
809 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
810 
811 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
812 		octeon_cf_dma_setup(qc);	    /* set up dma */
813 		octeon_cf_dma_start(qc);	    /* initiate dma */
814 		ap->hsm_task_state = HSM_ST_LAST;
815 		break;
816 
817 	case ATAPI_PROT_DMA:
818 		dev_err(ap->dev, "Error, ATAPI not supported\n");
819 		BUG();
820 
821 	default:
822 		return ata_sff_qc_issue(qc);
823 	}
824 
825 	return 0;
826 }
827 
828 static struct ata_port_operations octeon_cf_ops = {
829 	.inherits		= &ata_sff_port_ops,
830 	.check_atapi_dma	= octeon_cf_check_atapi_dma,
831 	.qc_prep		= ata_noop_qc_prep,
832 	.qc_issue		= octeon_cf_qc_issue,
833 	.sff_dev_select		= octeon_cf_dev_select,
834 	.sff_irq_on		= octeon_cf_ata_port_noaction,
835 	.sff_irq_clear		= octeon_cf_ata_port_noaction,
836 	.cable_detect		= ata_cable_40wire,
837 	.set_piomode		= octeon_cf_set_piomode,
838 	.set_dmamode		= octeon_cf_set_dmamode,
839 	.dev_config		= octeon_cf_dev_config,
840 };
841 
842 static int octeon_cf_probe(struct platform_device *pdev)
843 {
844 	struct resource *res_cs0, *res_cs1;
845 
846 	bool is_16bit;
847 	const __be32 *cs_num;
848 	struct property *reg_prop;
849 	int n_addr, n_size, reg_len;
850 	struct device_node *node;
851 	const void *prop;
852 	void __iomem *cs0;
853 	void __iomem *cs1 = NULL;
854 	struct ata_host *host;
855 	struct ata_port *ap;
856 	int irq = 0;
857 	irq_handler_t irq_handler = NULL;
858 	void __iomem *base;
859 	struct octeon_cf_port *cf_port;
860 	int rv = -ENOMEM;
861 
862 
863 	node = pdev->dev.of_node;
864 	if (node == NULL)
865 		return -EINVAL;
866 
867 	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
868 	if (!cf_port)
869 		return -ENOMEM;
870 
871 	cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
872 
873 	prop = of_get_property(node, "cavium,bus-width", NULL);
874 	if (prop)
875 		is_16bit = (be32_to_cpup(prop) == 16);
876 	else
877 		is_16bit = false;
878 
879 	n_addr = of_n_addr_cells(node);
880 	n_size = of_n_size_cells(node);
881 
882 	reg_prop = of_find_property(node, "reg", &reg_len);
883 	if (!reg_prop || reg_len < sizeof(__be32))
884 		return -EINVAL;
885 
886 	cs_num = reg_prop->value;
887 	cf_port->cs0 = be32_to_cpup(cs_num);
888 
889 	if (cf_port->is_true_ide) {
890 		struct device_node *dma_node;
891 		dma_node = of_parse_phandle(node,
892 					    "cavium,dma-engine-handle", 0);
893 		if (dma_node) {
894 			struct platform_device *dma_dev;
895 			dma_dev = of_find_device_by_node(dma_node);
896 			if (dma_dev) {
897 				struct resource *res_dma;
898 				int i;
899 				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
900 				if (!res_dma) {
901 					of_node_put(dma_node);
902 					return -EINVAL;
903 				}
904 				cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
905 									 resource_size(res_dma));
906 				if (!cf_port->dma_base) {
907 					of_node_put(dma_node);
908 					return -EINVAL;
909 				}
910 
911 				irq_handler = octeon_cf_interrupt;
912 				i = platform_get_irq(dma_dev, 0);
913 				if (i > 0)
914 					irq = i;
915 			}
916 			of_node_put(dma_node);
917 		}
918 		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
919 		if (!res_cs1)
920 			return -EINVAL;
921 
922 		cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
923 					   resource_size(res_cs1));
924 		if (!cs1)
925 			return rv;
926 
927 		if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
928 			return -EINVAL;
929 
930 		cs_num += n_addr + n_size;
931 		cf_port->cs1 = be32_to_cpup(cs_num);
932 	}
933 
934 	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
935 	if (!res_cs0)
936 		return -EINVAL;
937 
938 	cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
939 				   resource_size(res_cs0));
940 	if (!cs0)
941 		return rv;
942 
943 	/* allocate host */
944 	host = ata_host_alloc(&pdev->dev, 1);
945 	if (!host)
946 		return rv;
947 
948 	ap = host->ports[0];
949 	ap->private_data = cf_port;
950 	pdev->dev.platform_data = cf_port;
951 	cf_port->ap = ap;
952 	ap->ops = &octeon_cf_ops;
953 	ap->pio_mask = ATA_PIO6;
954 	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
955 
956 	if (!is_16bit) {
957 		base = cs0 + 0x800;
958 		ap->ioaddr.cmd_addr	= base;
959 		ata_sff_std_ports(&ap->ioaddr);
960 
961 		ap->ioaddr.altstatus_addr = base + 0xe;
962 		ap->ioaddr.ctl_addr	= base + 0xe;
963 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
964 	} else if (cf_port->is_true_ide) {
965 		base = cs0;
966 		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
967 		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
968 		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
969 		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
970 		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
971 		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
972 		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
973 		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
974 		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
975 		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
976 		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
977 		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
978 		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
979 		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
980 
981 		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
982 
983 		/* True IDE mode needs a timer to poll for not-busy.  */
984 		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
985 			     HRTIMER_MODE_REL);
986 		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
987 	} else {
988 		/* 16 bit but not True IDE */
989 		base = cs0 + 0x800;
990 		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
991 		octeon_cf_ops.softreset		= octeon_cf_softreset16;
992 		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
993 		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
994 		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
995 		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
996 
997 		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
998 		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
999 		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
1000 		ap->ioaddr.ctl_addr	= base + 0xe;
1001 		ap->ioaddr.altstatus_addr = base + 0xe;
1002 	}
1003 	cf_port->c0 = ap->ioaddr.ctl_addr;
1004 
1005 	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1006 	if (rv)
1007 		return rv;
1008 
1009 	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1010 
1011 	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1012 		 is_16bit ? 16 : 8,
1013 		 cf_port->is_true_ide ? ", True IDE" : "");
1014 
1015 	return ata_host_activate(host, irq, irq_handler,
1016 				 IRQF_SHARED, &octeon_cf_sht);
1017 }
1018 
1019 static void octeon_cf_shutdown(struct device *dev)
1020 {
1021 	union cvmx_mio_boot_dma_cfgx dma_cfg;
1022 	union cvmx_mio_boot_dma_intx dma_int;
1023 
1024 	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1025 
1026 	if (cf_port->dma_base) {
1027 		/* Stop and clear the dma engine.  */
1028 		dma_cfg.u64 = 0;
1029 		dma_cfg.s.size = -1;
1030 		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1031 
1032 		/* Disable the interrupt.  */
1033 		dma_int.u64 = 0;
1034 		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1035 
1036 		/* Clear the DMA complete status */
1037 		dma_int.s.done = 1;
1038 		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1039 
1040 		__raw_writeb(0, cf_port->c0);
1041 		udelay(20);
1042 		__raw_writeb(ATA_SRST, cf_port->c0);
1043 		udelay(20);
1044 		__raw_writeb(0, cf_port->c0);
1045 		mdelay(100);
1046 	}
1047 }
1048 
1049 static struct of_device_id octeon_cf_match[] = {
1050 	{
1051 		.compatible = "cavium,ebt3000-compact-flash",
1052 	},
1053 	{},
1054 };
1055 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1056 
1057 static struct platform_driver octeon_cf_driver = {
1058 	.probe		= octeon_cf_probe,
1059 	.driver		= {
1060 		.name	= DRV_NAME,
1061 		.of_match_table = octeon_cf_match,
1062 		.shutdown = octeon_cf_shutdown
1063 	},
1064 };
1065 
1066 static int __init octeon_cf_init(void)
1067 {
1068 	return platform_driver_register(&octeon_cf_driver);
1069 }
1070 
1071 
1072 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1073 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1074 MODULE_LICENSE("GPL");
1075 MODULE_VERSION(DRV_VERSION);
1076 MODULE_ALIAS("platform:" DRV_NAME);
1077 
1078 module_init(octeon_cf_init);
1079