1 /* 2 * Driver for the Octeon bootbus compact flash. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 2005 - 2012 Cavium Inc. 9 * Copyright (C) 2008 Wind River Systems 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/libata.h> 15 #include <linux/hrtimer.h> 16 #include <linux/slab.h> 17 #include <linux/irq.h> 18 #include <linux/of.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <scsi/scsi_host.h> 22 23 #include <asm/byteorder.h> 24 #include <asm/octeon/octeon.h> 25 26 /* 27 * The Octeon bootbus compact flash interface is connected in at least 28 * 3 different configurations on various evaluation boards: 29 * 30 * -- 8 bits no irq, no DMA 31 * -- 16 bits no irq, no DMA 32 * -- 16 bits True IDE mode with DMA, but no irq. 33 * 34 * In the last case the DMA engine can generate an interrupt when the 35 * transfer is complete. For the first two cases only PIO is supported. 36 * 37 */ 38 39 #define DRV_NAME "pata_octeon_cf" 40 #define DRV_VERSION "2.2" 41 42 /* Poll interval in nS. */ 43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000 44 45 #define DMA_CFG 0 46 #define DMA_TIM 0x20 47 #define DMA_INT 0x38 48 #define DMA_INT_EN 0x50 49 50 struct octeon_cf_port { 51 struct hrtimer delayed_finish; 52 struct ata_port *ap; 53 int dma_finished; 54 void *c0; 55 unsigned int cs0; 56 unsigned int cs1; 57 bool is_true_ide; 58 u64 dma_base; 59 }; 60 61 static struct scsi_host_template octeon_cf_sht = { 62 ATA_PIO_SHT(DRV_NAME), 63 }; 64 65 static int enable_dma; 66 module_param(enable_dma, int, 0444); 67 MODULE_PARM_DESC(enable_dma, 68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)"); 69 70 /** 71 * Convert nanosecond based time to setting used in the 72 * boot bus timing register, based on timing multiple 73 */ 74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) 75 { 76 unsigned int val; 77 78 /* 79 * Compute # of eclock periods to get desired duration in 80 * nanoseconds. 81 */ 82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), 83 1000 * tim_mult); 84 85 return val; 86 } 87 88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier) 89 { 90 union cvmx_mio_boot_reg_cfgx reg_cfg; 91 unsigned int tim_mult; 92 93 switch (multiplier) { 94 case 8: 95 tim_mult = 3; 96 break; 97 case 4: 98 tim_mult = 0; 99 break; 100 case 2: 101 tim_mult = 2; 102 break; 103 default: 104 tim_mult = 1; 105 break; 106 } 107 108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ 110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */ 111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ 112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */ 113 reg_cfg.s.we_ext = 0; /* No write enable extension */ 114 reg_cfg.s.oe_ext = 0; /* No read enable extension */ 115 reg_cfg.s.en = 1; /* Enable this region */ 116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */ 117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */ 118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); 119 } 120 121 /** 122 * Called after libata determines the needed PIO mode. This 123 * function programs the Octeon bootbus regions to support the 124 * timing requirements of the PIO mode. 125 * 126 * @ap: ATA port information 127 * @dev: ATA device 128 */ 129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) 130 { 131 struct octeon_cf_port *cf_port = ap->private_data; 132 union cvmx_mio_boot_reg_timx reg_tim; 133 int T; 134 struct ata_timing timing; 135 136 unsigned int div; 137 int use_iordy; 138 int trh; 139 int pause; 140 /* These names are timing parameters from the ATA spec */ 141 int t2; 142 143 /* 144 * A divisor value of four will overflow the timing fields at 145 * clock rates greater than 800MHz 146 */ 147 if (octeon_get_io_clock_rate() <= 800000000) 148 div = 4; 149 else 150 div = 8; 151 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate()); 152 153 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T)); 154 155 t2 = timing.active; 156 if (t2) 157 t2--; 158 159 trh = ns_to_tim_reg(div, 20); 160 if (trh) 161 trh--; 162 163 pause = (int)timing.cycle - (int)timing.active - 164 (int)timing.setup - trh; 165 if (pause < 0) 166 pause = 0; 167 if (pause) 168 pause--; 169 170 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div); 171 if (cf_port->is_true_ide) 172 /* True IDE mode, program both chip selects. */ 173 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div); 174 175 176 use_iordy = ata_pio_need_iordy(dev); 177 178 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0)); 179 /* Disable page mode */ 180 reg_tim.s.pagem = 0; 181 /* Enable dynamic timing */ 182 reg_tim.s.waitm = use_iordy; 183 /* Pages are disabled */ 184 reg_tim.s.pages = 0; 185 /* We don't use multiplexed address mode */ 186 reg_tim.s.ale = 0; 187 /* Not used */ 188 reg_tim.s.page = 0; 189 /* Time after IORDY to coninue to assert the data */ 190 reg_tim.s.wait = 0; 191 /* Time to wait to complete the cycle. */ 192 reg_tim.s.pause = pause; 193 /* How long to hold after a write to de-assert CE. */ 194 reg_tim.s.wr_hld = trh; 195 /* How long to wait after a read to de-assert CE. */ 196 reg_tim.s.rd_hld = trh; 197 /* How long write enable is asserted */ 198 reg_tim.s.we = t2; 199 /* How long read enable is asserted */ 200 reg_tim.s.oe = t2; 201 /* Time after CE that read/write starts */ 202 reg_tim.s.ce = ns_to_tim_reg(div, 5); 203 /* Time before CE that address is valid */ 204 reg_tim.s.adr = 0; 205 206 /* Program the bootbus region timing for the data port chip select. */ 207 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64); 208 if (cf_port->is_true_ide) 209 /* True IDE mode, program both chip selects. */ 210 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1), 211 reg_tim.u64); 212 } 213 214 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) 215 { 216 struct octeon_cf_port *cf_port = ap->private_data; 217 union cvmx_mio_boot_pin_defs pin_defs; 218 union cvmx_mio_boot_dma_timx dma_tim; 219 unsigned int oe_a; 220 unsigned int oe_n; 221 unsigned int dma_ackh; 222 unsigned int dma_arq; 223 unsigned int pause; 224 unsigned int T0, Tkr, Td; 225 unsigned int tim_mult; 226 int c; 227 228 const struct ata_timing *timing; 229 230 timing = ata_timing_find_mode(dev->dma_mode); 231 T0 = timing->cycle; 232 Td = timing->active; 233 Tkr = timing->recover; 234 dma_ackh = timing->dmack_hold; 235 236 dma_tim.u64 = 0; 237 /* dma_tim.s.tim_mult = 0 --> 4x */ 238 tim_mult = 4; 239 240 /* not spec'ed, value in eclocks, not affected by tim_mult */ 241 dma_arq = 8; 242 pause = 25 - dma_arq * 1000 / 243 (octeon_get_io_clock_rate() / 1000000); /* Tz */ 244 245 oe_a = Td; 246 /* Tkr from cf spec, lengthened to meet T0 */ 247 oe_n = max(T0 - oe_a, Tkr); 248 249 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS); 250 251 /* DMA channel number. */ 252 c = (cf_port->dma_base & 8) >> 3; 253 254 /* Invert the polarity if the default is 0*/ 255 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1; 256 257 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); 258 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); 259 260 /* 261 * This is tI, C.F. spec. says 0, but Sony CF card requires 262 * more, we use 20 nS. 263 */ 264 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); 265 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); 266 267 dma_tim.s.dmarq = dma_arq; 268 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); 269 270 dma_tim.s.rd_dly = 0; /* Sample right on edge */ 271 272 /* writes only */ 273 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); 274 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); 275 276 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, 277 ns_to_tim_reg(tim_mult, 60)); 278 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n", 279 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, 280 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); 281 282 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64); 283 } 284 285 /** 286 * Handle an 8 bit I/O request. 287 * 288 * @qc: Queued command 289 * @buffer: Data buffer 290 * @buflen: Length of the buffer. 291 * @rw: True to write. 292 */ 293 static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc, 294 unsigned char *buffer, 295 unsigned int buflen, 296 int rw) 297 { 298 struct ata_port *ap = qc->dev->link->ap; 299 void __iomem *data_addr = ap->ioaddr.data_addr; 300 unsigned long words; 301 int count; 302 303 words = buflen; 304 if (rw) { 305 count = 16; 306 while (words--) { 307 iowrite8(*buffer, data_addr); 308 buffer++; 309 /* 310 * Every 16 writes do a read so the bootbus 311 * FIFO doesn't fill up. 312 */ 313 if (--count == 0) { 314 ioread8(ap->ioaddr.altstatus_addr); 315 count = 16; 316 } 317 } 318 } else { 319 ioread8_rep(data_addr, buffer, words); 320 } 321 return buflen; 322 } 323 324 /** 325 * Handle a 16 bit I/O request. 326 * 327 * @qc: Queued command 328 * @buffer: Data buffer 329 * @buflen: Length of the buffer. 330 * @rw: True to write. 331 */ 332 static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc, 333 unsigned char *buffer, 334 unsigned int buflen, 335 int rw) 336 { 337 struct ata_port *ap = qc->dev->link->ap; 338 void __iomem *data_addr = ap->ioaddr.data_addr; 339 unsigned long words; 340 int count; 341 342 words = buflen / 2; 343 if (rw) { 344 count = 16; 345 while (words--) { 346 iowrite16(*(uint16_t *)buffer, data_addr); 347 buffer += sizeof(uint16_t); 348 /* 349 * Every 16 writes do a read so the bootbus 350 * FIFO doesn't fill up. 351 */ 352 if (--count == 0) { 353 ioread8(ap->ioaddr.altstatus_addr); 354 count = 16; 355 } 356 } 357 } else { 358 while (words--) { 359 *(uint16_t *)buffer = ioread16(data_addr); 360 buffer += sizeof(uint16_t); 361 } 362 } 363 /* Transfer trailing 1 byte, if any. */ 364 if (unlikely(buflen & 0x01)) { 365 __le16 align_buf[1] = { 0 }; 366 367 if (rw == READ) { 368 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 369 memcpy(buffer, align_buf, 1); 370 } else { 371 memcpy(align_buf, buffer, 1); 372 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 373 } 374 words++; 375 } 376 return buflen; 377 } 378 379 /** 380 * Read the taskfile for 16bit non-True IDE only. 381 */ 382 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) 383 { 384 u16 blob; 385 /* The base of the registers is at ioaddr.data_addr. */ 386 void __iomem *base = ap->ioaddr.data_addr; 387 388 blob = __raw_readw(base + 0xc); 389 tf->feature = blob >> 8; 390 391 blob = __raw_readw(base + 2); 392 tf->nsect = blob & 0xff; 393 tf->lbal = blob >> 8; 394 395 blob = __raw_readw(base + 4); 396 tf->lbam = blob & 0xff; 397 tf->lbah = blob >> 8; 398 399 blob = __raw_readw(base + 6); 400 tf->device = blob & 0xff; 401 tf->command = blob >> 8; 402 403 if (tf->flags & ATA_TFLAG_LBA48) { 404 if (likely(ap->ioaddr.ctl_addr)) { 405 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); 406 407 blob = __raw_readw(base + 0xc); 408 tf->hob_feature = blob >> 8; 409 410 blob = __raw_readw(base + 2); 411 tf->hob_nsect = blob & 0xff; 412 tf->hob_lbal = blob >> 8; 413 414 blob = __raw_readw(base + 4); 415 tf->hob_lbam = blob & 0xff; 416 tf->hob_lbah = blob >> 8; 417 418 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 419 ap->last_ctl = tf->ctl; 420 } else { 421 WARN_ON(1); 422 } 423 } 424 } 425 426 static u8 octeon_cf_check_status16(struct ata_port *ap) 427 { 428 u16 blob; 429 void __iomem *base = ap->ioaddr.data_addr; 430 431 blob = __raw_readw(base + 6); 432 return blob >> 8; 433 } 434 435 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, 436 unsigned long deadline) 437 { 438 struct ata_port *ap = link->ap; 439 void __iomem *base = ap->ioaddr.data_addr; 440 int rc; 441 u8 err; 442 443 DPRINTK("about to softreset\n"); 444 __raw_writew(ap->ctl, base + 0xe); 445 udelay(20); 446 __raw_writew(ap->ctl | ATA_SRST, base + 0xe); 447 udelay(20); 448 __raw_writew(ap->ctl, base + 0xe); 449 450 rc = ata_sff_wait_after_reset(link, 1, deadline); 451 if (rc) { 452 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 453 return rc; 454 } 455 456 /* determine by signature whether we have ATA or ATAPI devices */ 457 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); 458 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 459 return 0; 460 } 461 462 /** 463 * Load the taskfile for 16bit non-True IDE only. The device_addr is 464 * not loaded, we do this as part of octeon_cf_exec_command16. 465 */ 466 static void octeon_cf_tf_load16(struct ata_port *ap, 467 const struct ata_taskfile *tf) 468 { 469 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 470 /* The base of the registers is at ioaddr.data_addr. */ 471 void __iomem *base = ap->ioaddr.data_addr; 472 473 if (tf->ctl != ap->last_ctl) { 474 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 475 ap->last_ctl = tf->ctl; 476 ata_wait_idle(ap); 477 } 478 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 479 __raw_writew(tf->hob_feature << 8, base + 0xc); 480 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); 481 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); 482 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 483 tf->hob_feature, 484 tf->hob_nsect, 485 tf->hob_lbal, 486 tf->hob_lbam, 487 tf->hob_lbah); 488 } 489 if (is_addr) { 490 __raw_writew(tf->feature << 8, base + 0xc); 491 __raw_writew(tf->nsect | tf->lbal << 8, base + 2); 492 __raw_writew(tf->lbam | tf->lbah << 8, base + 4); 493 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 494 tf->feature, 495 tf->nsect, 496 tf->lbal, 497 tf->lbam, 498 tf->lbah); 499 } 500 ata_wait_idle(ap); 501 } 502 503 504 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) 505 { 506 /* There is only one device, do nothing. */ 507 return; 508 } 509 510 /* 511 * Issue ATA command to host controller. The device_addr is also sent 512 * as it must be written in a combined write with the command. 513 */ 514 static void octeon_cf_exec_command16(struct ata_port *ap, 515 const struct ata_taskfile *tf) 516 { 517 /* The base of the registers is at ioaddr.data_addr. */ 518 void __iomem *base = ap->ioaddr.data_addr; 519 u16 blob; 520 521 if (tf->flags & ATA_TFLAG_DEVICE) { 522 VPRINTK("device 0x%X\n", tf->device); 523 blob = tf->device; 524 } else { 525 blob = 0; 526 } 527 528 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 529 blob |= (tf->command << 8); 530 __raw_writew(blob, base + 6); 531 532 533 ata_wait_idle(ap); 534 } 535 536 static void octeon_cf_ata_port_noaction(struct ata_port *ap) 537 { 538 } 539 540 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) 541 { 542 struct ata_port *ap = qc->ap; 543 struct octeon_cf_port *cf_port; 544 545 cf_port = ap->private_data; 546 DPRINTK("ENTER\n"); 547 /* issue r/w command */ 548 qc->cursg = qc->sg; 549 cf_port->dma_finished = 0; 550 ap->ops->sff_exec_command(ap, &qc->tf); 551 DPRINTK("EXIT\n"); 552 } 553 554 /** 555 * Start a DMA transfer that was already setup 556 * 557 * @qc: Information about the DMA 558 */ 559 static void octeon_cf_dma_start(struct ata_queued_cmd *qc) 560 { 561 struct octeon_cf_port *cf_port = qc->ap->private_data; 562 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; 563 union cvmx_mio_boot_dma_intx mio_boot_dma_int; 564 struct scatterlist *sg; 565 566 VPRINTK("%d scatterlists\n", qc->n_elem); 567 568 /* Get the scatter list entry we need to DMA into */ 569 sg = qc->cursg; 570 BUG_ON(!sg); 571 572 /* 573 * Clear the DMA complete status. 574 */ 575 mio_boot_dma_int.u64 = 0; 576 mio_boot_dma_int.s.done = 1; 577 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64); 578 579 /* Enable the interrupt. */ 580 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64); 581 582 /* Set the direction of the DMA */ 583 mio_boot_dma_cfg.u64 = 0; 584 #ifdef __LITTLE_ENDIAN 585 mio_boot_dma_cfg.s.endian = 1; 586 #endif 587 mio_boot_dma_cfg.s.en = 1; 588 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); 589 590 /* 591 * Don't stop the DMA if the device deasserts DMARQ. Many 592 * compact flashes deassert DMARQ for a short time between 593 * sectors. Instead of stopping and restarting the DMA, we'll 594 * let the hardware do it. If the DMA is really stopped early 595 * due to an error condition, a later timeout will force us to 596 * stop. 597 */ 598 mio_boot_dma_cfg.s.clr = 0; 599 600 /* Size is specified in 16bit words and minus one notation */ 601 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; 602 603 /* We need to swap the high and low bytes of every 16 bits */ 604 mio_boot_dma_cfg.s.swap8 = 1; 605 606 mio_boot_dma_cfg.s.adr = sg_dma_address(sg); 607 608 VPRINTK("%s %d bytes address=%p\n", 609 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length, 610 (void *)(unsigned long)mio_boot_dma_cfg.s.adr); 611 612 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64); 613 } 614 615 /** 616 * 617 * LOCKING: 618 * spin_lock_irqsave(host lock) 619 * 620 */ 621 static unsigned int octeon_cf_dma_finished(struct ata_port *ap, 622 struct ata_queued_cmd *qc) 623 { 624 struct ata_eh_info *ehi = &ap->link.eh_info; 625 struct octeon_cf_port *cf_port = ap->private_data; 626 union cvmx_mio_boot_dma_cfgx dma_cfg; 627 union cvmx_mio_boot_dma_intx dma_int; 628 u8 status; 629 630 VPRINTK("ata%u: protocol %d task_state %d\n", 631 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 632 633 634 if (ap->hsm_task_state != HSM_ST_LAST) 635 return 0; 636 637 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 638 if (dma_cfg.s.size != 0xfffff) { 639 /* Error, the transfer was not complete. */ 640 qc->err_mask |= AC_ERR_HOST_BUS; 641 ap->hsm_task_state = HSM_ST_ERR; 642 } 643 644 /* Stop and clear the dma engine. */ 645 dma_cfg.u64 = 0; 646 dma_cfg.s.size = -1; 647 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 648 649 /* Disable the interrupt. */ 650 dma_int.u64 = 0; 651 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 652 653 /* Clear the DMA complete status */ 654 dma_int.s.done = 1; 655 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 656 657 status = ap->ops->sff_check_status(ap); 658 659 ata_sff_hsm_move(ap, qc, status, 0); 660 661 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) 662 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); 663 664 return 1; 665 } 666 667 /* 668 * Check if any queued commands have more DMAs, if so start the next 669 * transfer, else do end of transfer handling. 670 */ 671 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) 672 { 673 struct ata_host *host = dev_instance; 674 struct octeon_cf_port *cf_port; 675 int i; 676 unsigned int handled = 0; 677 unsigned long flags; 678 679 spin_lock_irqsave(&host->lock, flags); 680 681 DPRINTK("ENTER\n"); 682 for (i = 0; i < host->n_ports; i++) { 683 u8 status; 684 struct ata_port *ap; 685 struct ata_queued_cmd *qc; 686 union cvmx_mio_boot_dma_intx dma_int; 687 union cvmx_mio_boot_dma_cfgx dma_cfg; 688 689 ap = host->ports[i]; 690 cf_port = ap->private_data; 691 692 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT); 693 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 694 695 qc = ata_qc_from_tag(ap, ap->link.active_tag); 696 697 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING)) 698 continue; 699 700 if (dma_int.s.done && !dma_cfg.s.en) { 701 if (!sg_is_last(qc->cursg)) { 702 qc->cursg = sg_next(qc->cursg); 703 handled = 1; 704 octeon_cf_dma_start(qc); 705 continue; 706 } else { 707 cf_port->dma_finished = 1; 708 } 709 } 710 if (!cf_port->dma_finished) 711 continue; 712 status = ioread8(ap->ioaddr.altstatus_addr); 713 if (status & (ATA_BUSY | ATA_DRQ)) { 714 /* 715 * We are busy, try to handle it later. This 716 * is the DMA finished interrupt, and it could 717 * take a little while for the card to be 718 * ready for more commands. 719 */ 720 /* Clear DMA irq. */ 721 dma_int.u64 = 0; 722 dma_int.s.done = 1; 723 cvmx_write_csr(cf_port->dma_base + DMA_INT, 724 dma_int.u64); 725 hrtimer_start_range_ns(&cf_port->delayed_finish, 726 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL), 727 OCTEON_CF_BUSY_POLL_INTERVAL / 5, 728 HRTIMER_MODE_REL); 729 handled = 1; 730 } else { 731 handled |= octeon_cf_dma_finished(ap, qc); 732 } 733 } 734 spin_unlock_irqrestore(&host->lock, flags); 735 DPRINTK("EXIT\n"); 736 return IRQ_RETVAL(handled); 737 } 738 739 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt) 740 { 741 struct octeon_cf_port *cf_port = container_of(hrt, 742 struct octeon_cf_port, 743 delayed_finish); 744 struct ata_port *ap = cf_port->ap; 745 struct ata_host *host = ap->host; 746 struct ata_queued_cmd *qc; 747 unsigned long flags; 748 u8 status; 749 enum hrtimer_restart rv = HRTIMER_NORESTART; 750 751 spin_lock_irqsave(&host->lock, flags); 752 753 /* 754 * If the port is not waiting for completion, it must have 755 * handled it previously. The hsm_task_state is 756 * protected by host->lock. 757 */ 758 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) 759 goto out; 760 761 status = ioread8(ap->ioaddr.altstatus_addr); 762 if (status & (ATA_BUSY | ATA_DRQ)) { 763 /* Still busy, try again. */ 764 hrtimer_forward_now(hrt, 765 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL)); 766 rv = HRTIMER_RESTART; 767 goto out; 768 } 769 qc = ata_qc_from_tag(ap, ap->link.active_tag); 770 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 771 octeon_cf_dma_finished(ap, qc); 772 out: 773 spin_unlock_irqrestore(&host->lock, flags); 774 return rv; 775 } 776 777 static void octeon_cf_dev_config(struct ata_device *dev) 778 { 779 /* 780 * A maximum of 2^20 - 1 16 bit transfers are possible with 781 * the bootbus DMA. So we need to throttle max_sectors to 782 * (2^12 - 1 == 4095) to assure that this can never happen. 783 */ 784 dev->max_sectors = min(dev->max_sectors, 4095U); 785 } 786 787 /* 788 * We don't do ATAPI DMA so return 0. 789 */ 790 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) 791 { 792 return 0; 793 } 794 795 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) 796 { 797 struct ata_port *ap = qc->ap; 798 799 switch (qc->tf.protocol) { 800 case ATA_PROT_DMA: 801 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 802 803 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 804 octeon_cf_dma_setup(qc); /* set up dma */ 805 octeon_cf_dma_start(qc); /* initiate dma */ 806 ap->hsm_task_state = HSM_ST_LAST; 807 break; 808 809 case ATAPI_PROT_DMA: 810 dev_err(ap->dev, "Error, ATAPI not supported\n"); 811 BUG(); 812 813 default: 814 return ata_sff_qc_issue(qc); 815 } 816 817 return 0; 818 } 819 820 static struct ata_port_operations octeon_cf_ops = { 821 .inherits = &ata_sff_port_ops, 822 .check_atapi_dma = octeon_cf_check_atapi_dma, 823 .qc_prep = ata_noop_qc_prep, 824 .qc_issue = octeon_cf_qc_issue, 825 .sff_dev_select = octeon_cf_dev_select, 826 .sff_irq_on = octeon_cf_ata_port_noaction, 827 .sff_irq_clear = octeon_cf_ata_port_noaction, 828 .cable_detect = ata_cable_40wire, 829 .set_piomode = octeon_cf_set_piomode, 830 .set_dmamode = octeon_cf_set_dmamode, 831 .dev_config = octeon_cf_dev_config, 832 }; 833 834 static int octeon_cf_probe(struct platform_device *pdev) 835 { 836 struct resource *res_cs0, *res_cs1; 837 838 bool is_16bit; 839 const __be32 *cs_num; 840 struct property *reg_prop; 841 int n_addr, n_size, reg_len; 842 struct device_node *node; 843 void __iomem *cs0; 844 void __iomem *cs1 = NULL; 845 struct ata_host *host; 846 struct ata_port *ap; 847 int irq = 0; 848 irq_handler_t irq_handler = NULL; 849 void __iomem *base; 850 struct octeon_cf_port *cf_port; 851 int rv = -ENOMEM; 852 u32 bus_width; 853 854 node = pdev->dev.of_node; 855 if (node == NULL) 856 return -EINVAL; 857 858 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL); 859 if (!cf_port) 860 return -ENOMEM; 861 862 cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide"); 863 864 if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0) 865 is_16bit = (bus_width == 16); 866 else 867 is_16bit = false; 868 869 n_addr = of_n_addr_cells(node); 870 n_size = of_n_size_cells(node); 871 872 reg_prop = of_find_property(node, "reg", ®_len); 873 if (!reg_prop || reg_len < sizeof(__be32)) 874 return -EINVAL; 875 876 cs_num = reg_prop->value; 877 cf_port->cs0 = be32_to_cpup(cs_num); 878 879 if (cf_port->is_true_ide) { 880 struct device_node *dma_node; 881 dma_node = of_parse_phandle(node, 882 "cavium,dma-engine-handle", 0); 883 if (dma_node) { 884 struct platform_device *dma_dev; 885 dma_dev = of_find_device_by_node(dma_node); 886 if (dma_dev) { 887 struct resource *res_dma; 888 int i; 889 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0); 890 if (!res_dma) { 891 of_node_put(dma_node); 892 return -EINVAL; 893 } 894 cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start, 895 resource_size(res_dma)); 896 if (!cf_port->dma_base) { 897 of_node_put(dma_node); 898 return -EINVAL; 899 } 900 901 irq_handler = octeon_cf_interrupt; 902 i = platform_get_irq(dma_dev, 0); 903 if (i > 0) 904 irq = i; 905 } 906 of_node_put(dma_node); 907 } 908 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 909 if (!res_cs1) 910 return -EINVAL; 911 912 cs1 = devm_ioremap(&pdev->dev, res_cs1->start, 913 resource_size(res_cs1)); 914 if (!cs1) 915 return rv; 916 917 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32)) 918 return -EINVAL; 919 920 cs_num += n_addr + n_size; 921 cf_port->cs1 = be32_to_cpup(cs_num); 922 } 923 924 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 925 if (!res_cs0) 926 return -EINVAL; 927 928 cs0 = devm_ioremap(&pdev->dev, res_cs0->start, 929 resource_size(res_cs0)); 930 if (!cs0) 931 return rv; 932 933 /* allocate host */ 934 host = ata_host_alloc(&pdev->dev, 1); 935 if (!host) 936 return rv; 937 938 ap = host->ports[0]; 939 ap->private_data = cf_port; 940 pdev->dev.platform_data = cf_port; 941 cf_port->ap = ap; 942 ap->ops = &octeon_cf_ops; 943 ap->pio_mask = ATA_PIO6; 944 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; 945 946 if (!is_16bit) { 947 base = cs0 + 0x800; 948 ap->ioaddr.cmd_addr = base; 949 ata_sff_std_ports(&ap->ioaddr); 950 951 ap->ioaddr.altstatus_addr = base + 0xe; 952 ap->ioaddr.ctl_addr = base + 0xe; 953 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; 954 } else if (cf_port->is_true_ide) { 955 base = cs0; 956 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; 957 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); 958 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; 959 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; 960 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; 961 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; 962 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; 963 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; 964 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; 965 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; 966 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; 967 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; 968 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; 969 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 970 971 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0; 972 973 /* True IDE mode needs a timer to poll for not-busy. */ 974 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC, 975 HRTIMER_MODE_REL); 976 cf_port->delayed_finish.function = octeon_cf_delayed_finish; 977 } else { 978 /* 16 bit but not True IDE */ 979 base = cs0 + 0x800; 980 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 981 octeon_cf_ops.softreset = octeon_cf_softreset16; 982 octeon_cf_ops.sff_check_status = octeon_cf_check_status16; 983 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; 984 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; 985 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; 986 987 ap->ioaddr.data_addr = base + ATA_REG_DATA; 988 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; 989 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; 990 ap->ioaddr.ctl_addr = base + 0xe; 991 ap->ioaddr.altstatus_addr = base + 0xe; 992 } 993 cf_port->c0 = ap->ioaddr.ctl_addr; 994 995 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 996 if (rv) 997 return rv; 998 999 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); 1000 1001 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", 1002 is_16bit ? 16 : 8, 1003 cf_port->is_true_ide ? ", True IDE" : ""); 1004 1005 return ata_host_activate(host, irq, irq_handler, 1006 IRQF_SHARED, &octeon_cf_sht); 1007 } 1008 1009 static void octeon_cf_shutdown(struct device *dev) 1010 { 1011 union cvmx_mio_boot_dma_cfgx dma_cfg; 1012 union cvmx_mio_boot_dma_intx dma_int; 1013 1014 struct octeon_cf_port *cf_port = dev_get_platdata(dev); 1015 1016 if (cf_port->dma_base) { 1017 /* Stop and clear the dma engine. */ 1018 dma_cfg.u64 = 0; 1019 dma_cfg.s.size = -1; 1020 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 1021 1022 /* Disable the interrupt. */ 1023 dma_int.u64 = 0; 1024 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 1025 1026 /* Clear the DMA complete status */ 1027 dma_int.s.done = 1; 1028 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 1029 1030 __raw_writeb(0, cf_port->c0); 1031 udelay(20); 1032 __raw_writeb(ATA_SRST, cf_port->c0); 1033 udelay(20); 1034 __raw_writeb(0, cf_port->c0); 1035 mdelay(100); 1036 } 1037 } 1038 1039 static const struct of_device_id octeon_cf_match[] = { 1040 { 1041 .compatible = "cavium,ebt3000-compact-flash", 1042 }, 1043 {}, 1044 }; 1045 MODULE_DEVICE_TABLE(of, octeon_cf_match); 1046 1047 static struct platform_driver octeon_cf_driver = { 1048 .probe = octeon_cf_probe, 1049 .driver = { 1050 .name = DRV_NAME, 1051 .of_match_table = octeon_cf_match, 1052 .shutdown = octeon_cf_shutdown 1053 }, 1054 }; 1055 1056 static int __init octeon_cf_init(void) 1057 { 1058 return platform_driver_register(&octeon_cf_driver); 1059 } 1060 1061 1062 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 1063 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); 1064 MODULE_LICENSE("GPL"); 1065 MODULE_VERSION(DRV_VERSION); 1066 MODULE_ALIAS("platform:" DRV_NAME); 1067 1068 module_init(octeon_cf_init); 1069