1 /* 2 * Driver for the Octeon bootbus compact flash. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 2005 - 2012 Cavium Inc. 9 * Copyright (C) 2008 Wind River Systems 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/libata.h> 15 #include <linux/hrtimer.h> 16 #include <linux/slab.h> 17 #include <linux/irq.h> 18 #include <linux/of.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <scsi/scsi_host.h> 22 23 #include <asm/byteorder.h> 24 #include <asm/octeon/octeon.h> 25 26 /* 27 * The Octeon bootbus compact flash interface is connected in at least 28 * 3 different configurations on various evaluation boards: 29 * 30 * -- 8 bits no irq, no DMA 31 * -- 16 bits no irq, no DMA 32 * -- 16 bits True IDE mode with DMA, but no irq. 33 * 34 * In the last case the DMA engine can generate an interrupt when the 35 * transfer is complete. For the first two cases only PIO is supported. 36 * 37 */ 38 39 #define DRV_NAME "pata_octeon_cf" 40 #define DRV_VERSION "2.2" 41 42 /* Poll interval in nS. */ 43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000 44 45 #define DMA_CFG 0 46 #define DMA_TIM 0x20 47 #define DMA_INT 0x38 48 #define DMA_INT_EN 0x50 49 50 struct octeon_cf_port { 51 struct hrtimer delayed_finish; 52 struct ata_port *ap; 53 int dma_finished; 54 void *c0; 55 unsigned int cs0; 56 unsigned int cs1; 57 bool is_true_ide; 58 u64 dma_base; 59 }; 60 61 static struct scsi_host_template octeon_cf_sht = { 62 ATA_PIO_SHT(DRV_NAME), 63 }; 64 65 static int enable_dma; 66 module_param(enable_dma, int, 0444); 67 MODULE_PARM_DESC(enable_dma, 68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)"); 69 70 /** 71 * Convert nanosecond based time to setting used in the 72 * boot bus timing register, based on timing multiple 73 */ 74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) 75 { 76 unsigned int val; 77 78 /* 79 * Compute # of eclock periods to get desired duration in 80 * nanoseconds. 81 */ 82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), 83 1000 * tim_mult); 84 85 return val; 86 } 87 88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier) 89 { 90 union cvmx_mio_boot_reg_cfgx reg_cfg; 91 unsigned int tim_mult; 92 93 switch (multiplier) { 94 case 8: 95 tim_mult = 3; 96 break; 97 case 4: 98 tim_mult = 0; 99 break; 100 case 2: 101 tim_mult = 2; 102 break; 103 default: 104 tim_mult = 1; 105 break; 106 } 107 108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ 110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */ 111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ 112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */ 113 reg_cfg.s.we_ext = 0; /* No write enable extension */ 114 reg_cfg.s.oe_ext = 0; /* No read enable extension */ 115 reg_cfg.s.en = 1; /* Enable this region */ 116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */ 117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */ 118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); 119 } 120 121 /** 122 * Called after libata determines the needed PIO mode. This 123 * function programs the Octeon bootbus regions to support the 124 * timing requirements of the PIO mode. 125 * 126 * @ap: ATA port information 127 * @dev: ATA device 128 */ 129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) 130 { 131 struct octeon_cf_port *cf_port = ap->private_data; 132 union cvmx_mio_boot_reg_timx reg_tim; 133 int T; 134 struct ata_timing timing; 135 136 unsigned int div; 137 int use_iordy; 138 int trh; 139 int pause; 140 /* These names are timing parameters from the ATA spec */ 141 int t1; 142 int t2; 143 int t2i; 144 145 /* 146 * A divisor value of four will overflow the timing fields at 147 * clock rates greater than 800MHz 148 */ 149 if (octeon_get_io_clock_rate() <= 800000000) 150 div = 4; 151 else 152 div = 8; 153 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate()); 154 155 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T)) 156 BUG(); 157 158 t1 = timing.setup; 159 if (t1) 160 t1--; 161 t2 = timing.active; 162 if (t2) 163 t2--; 164 t2i = timing.act8b; 165 if (t2i) 166 t2i--; 167 168 trh = ns_to_tim_reg(div, 20); 169 if (trh) 170 trh--; 171 172 pause = (int)timing.cycle - (int)timing.active - 173 (int)timing.setup - trh; 174 if (pause < 0) 175 pause = 0; 176 if (pause) 177 pause--; 178 179 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div); 180 if (cf_port->is_true_ide) 181 /* True IDE mode, program both chip selects. */ 182 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div); 183 184 185 use_iordy = ata_pio_need_iordy(dev); 186 187 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0)); 188 /* Disable page mode */ 189 reg_tim.s.pagem = 0; 190 /* Enable dynamic timing */ 191 reg_tim.s.waitm = use_iordy; 192 /* Pages are disabled */ 193 reg_tim.s.pages = 0; 194 /* We don't use multiplexed address mode */ 195 reg_tim.s.ale = 0; 196 /* Not used */ 197 reg_tim.s.page = 0; 198 /* Time after IORDY to coninue to assert the data */ 199 reg_tim.s.wait = 0; 200 /* Time to wait to complete the cycle. */ 201 reg_tim.s.pause = pause; 202 /* How long to hold after a write to de-assert CE. */ 203 reg_tim.s.wr_hld = trh; 204 /* How long to wait after a read to de-assert CE. */ 205 reg_tim.s.rd_hld = trh; 206 /* How long write enable is asserted */ 207 reg_tim.s.we = t2; 208 /* How long read enable is asserted */ 209 reg_tim.s.oe = t2; 210 /* Time after CE that read/write starts */ 211 reg_tim.s.ce = ns_to_tim_reg(div, 5); 212 /* Time before CE that address is valid */ 213 reg_tim.s.adr = 0; 214 215 /* Program the bootbus region timing for the data port chip select. */ 216 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64); 217 if (cf_port->is_true_ide) 218 /* True IDE mode, program both chip selects. */ 219 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1), 220 reg_tim.u64); 221 } 222 223 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) 224 { 225 struct octeon_cf_port *cf_port = ap->private_data; 226 union cvmx_mio_boot_pin_defs pin_defs; 227 union cvmx_mio_boot_dma_timx dma_tim; 228 unsigned int oe_a; 229 unsigned int oe_n; 230 unsigned int dma_ackh; 231 unsigned int dma_arq; 232 unsigned int pause; 233 unsigned int T0, Tkr, Td; 234 unsigned int tim_mult; 235 int c; 236 237 const struct ata_timing *timing; 238 239 timing = ata_timing_find_mode(dev->dma_mode); 240 T0 = timing->cycle; 241 Td = timing->active; 242 Tkr = timing->recover; 243 dma_ackh = timing->dmack_hold; 244 245 dma_tim.u64 = 0; 246 /* dma_tim.s.tim_mult = 0 --> 4x */ 247 tim_mult = 4; 248 249 /* not spec'ed, value in eclocks, not affected by tim_mult */ 250 dma_arq = 8; 251 pause = 25 - dma_arq * 1000 / 252 (octeon_get_io_clock_rate() / 1000000); /* Tz */ 253 254 oe_a = Td; 255 /* Tkr from cf spec, lengthened to meet T0 */ 256 oe_n = max(T0 - oe_a, Tkr); 257 258 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS); 259 260 /* DMA channel number. */ 261 c = (cf_port->dma_base & 8) >> 3; 262 263 /* Invert the polarity if the default is 0*/ 264 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1; 265 266 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); 267 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); 268 269 /* 270 * This is tI, C.F. spec. says 0, but Sony CF card requires 271 * more, we use 20 nS. 272 */ 273 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); 274 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); 275 276 dma_tim.s.dmarq = dma_arq; 277 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); 278 279 dma_tim.s.rd_dly = 0; /* Sample right on edge */ 280 281 /* writes only */ 282 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); 283 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); 284 285 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, 286 ns_to_tim_reg(tim_mult, 60)); 287 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n", 288 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, 289 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); 290 291 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64); 292 } 293 294 /** 295 * Handle an 8 bit I/O request. 296 * 297 * @dev: Device to access 298 * @buffer: Data buffer 299 * @buflen: Length of the buffer. 300 * @rw: True to write. 301 */ 302 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev, 303 unsigned char *buffer, 304 unsigned int buflen, 305 int rw) 306 { 307 struct ata_port *ap = dev->link->ap; 308 void __iomem *data_addr = ap->ioaddr.data_addr; 309 unsigned long words; 310 int count; 311 312 words = buflen; 313 if (rw) { 314 count = 16; 315 while (words--) { 316 iowrite8(*buffer, data_addr); 317 buffer++; 318 /* 319 * Every 16 writes do a read so the bootbus 320 * FIFO doesn't fill up. 321 */ 322 if (--count == 0) { 323 ioread8(ap->ioaddr.altstatus_addr); 324 count = 16; 325 } 326 } 327 } else { 328 ioread8_rep(data_addr, buffer, words); 329 } 330 return buflen; 331 } 332 333 /** 334 * Handle a 16 bit I/O request. 335 * 336 * @dev: Device to access 337 * @buffer: Data buffer 338 * @buflen: Length of the buffer. 339 * @rw: True to write. 340 */ 341 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev, 342 unsigned char *buffer, 343 unsigned int buflen, 344 int rw) 345 { 346 struct ata_port *ap = dev->link->ap; 347 void __iomem *data_addr = ap->ioaddr.data_addr; 348 unsigned long words; 349 int count; 350 351 words = buflen / 2; 352 if (rw) { 353 count = 16; 354 while (words--) { 355 iowrite16(*(uint16_t *)buffer, data_addr); 356 buffer += sizeof(uint16_t); 357 /* 358 * Every 16 writes do a read so the bootbus 359 * FIFO doesn't fill up. 360 */ 361 if (--count == 0) { 362 ioread8(ap->ioaddr.altstatus_addr); 363 count = 16; 364 } 365 } 366 } else { 367 while (words--) { 368 *(uint16_t *)buffer = ioread16(data_addr); 369 buffer += sizeof(uint16_t); 370 } 371 } 372 /* Transfer trailing 1 byte, if any. */ 373 if (unlikely(buflen & 0x01)) { 374 __le16 align_buf[1] = { 0 }; 375 376 if (rw == READ) { 377 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 378 memcpy(buffer, align_buf, 1); 379 } else { 380 memcpy(align_buf, buffer, 1); 381 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 382 } 383 words++; 384 } 385 return buflen; 386 } 387 388 /** 389 * Read the taskfile for 16bit non-True IDE only. 390 */ 391 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) 392 { 393 u16 blob; 394 /* The base of the registers is at ioaddr.data_addr. */ 395 void __iomem *base = ap->ioaddr.data_addr; 396 397 blob = __raw_readw(base + 0xc); 398 tf->feature = blob >> 8; 399 400 blob = __raw_readw(base + 2); 401 tf->nsect = blob & 0xff; 402 tf->lbal = blob >> 8; 403 404 blob = __raw_readw(base + 4); 405 tf->lbam = blob & 0xff; 406 tf->lbah = blob >> 8; 407 408 blob = __raw_readw(base + 6); 409 tf->device = blob & 0xff; 410 tf->command = blob >> 8; 411 412 if (tf->flags & ATA_TFLAG_LBA48) { 413 if (likely(ap->ioaddr.ctl_addr)) { 414 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); 415 416 blob = __raw_readw(base + 0xc); 417 tf->hob_feature = blob >> 8; 418 419 blob = __raw_readw(base + 2); 420 tf->hob_nsect = blob & 0xff; 421 tf->hob_lbal = blob >> 8; 422 423 blob = __raw_readw(base + 4); 424 tf->hob_lbam = blob & 0xff; 425 tf->hob_lbah = blob >> 8; 426 427 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 428 ap->last_ctl = tf->ctl; 429 } else { 430 WARN_ON(1); 431 } 432 } 433 } 434 435 static u8 octeon_cf_check_status16(struct ata_port *ap) 436 { 437 u16 blob; 438 void __iomem *base = ap->ioaddr.data_addr; 439 440 blob = __raw_readw(base + 6); 441 return blob >> 8; 442 } 443 444 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, 445 unsigned long deadline) 446 { 447 struct ata_port *ap = link->ap; 448 void __iomem *base = ap->ioaddr.data_addr; 449 int rc; 450 u8 err; 451 452 DPRINTK("about to softreset\n"); 453 __raw_writew(ap->ctl, base + 0xe); 454 udelay(20); 455 __raw_writew(ap->ctl | ATA_SRST, base + 0xe); 456 udelay(20); 457 __raw_writew(ap->ctl, base + 0xe); 458 459 rc = ata_sff_wait_after_reset(link, 1, deadline); 460 if (rc) { 461 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 462 return rc; 463 } 464 465 /* determine by signature whether we have ATA or ATAPI devices */ 466 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); 467 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 468 return 0; 469 } 470 471 /** 472 * Load the taskfile for 16bit non-True IDE only. The device_addr is 473 * not loaded, we do this as part of octeon_cf_exec_command16. 474 */ 475 static void octeon_cf_tf_load16(struct ata_port *ap, 476 const struct ata_taskfile *tf) 477 { 478 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 479 /* The base of the registers is at ioaddr.data_addr. */ 480 void __iomem *base = ap->ioaddr.data_addr; 481 482 if (tf->ctl != ap->last_ctl) { 483 iowrite8(tf->ctl, ap->ioaddr.ctl_addr); 484 ap->last_ctl = tf->ctl; 485 ata_wait_idle(ap); 486 } 487 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 488 __raw_writew(tf->hob_feature << 8, base + 0xc); 489 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); 490 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); 491 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 492 tf->hob_feature, 493 tf->hob_nsect, 494 tf->hob_lbal, 495 tf->hob_lbam, 496 tf->hob_lbah); 497 } 498 if (is_addr) { 499 __raw_writew(tf->feature << 8, base + 0xc); 500 __raw_writew(tf->nsect | tf->lbal << 8, base + 2); 501 __raw_writew(tf->lbam | tf->lbah << 8, base + 4); 502 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 503 tf->feature, 504 tf->nsect, 505 tf->lbal, 506 tf->lbam, 507 tf->lbah); 508 } 509 ata_wait_idle(ap); 510 } 511 512 513 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) 514 { 515 /* There is only one device, do nothing. */ 516 return; 517 } 518 519 /* 520 * Issue ATA command to host controller. The device_addr is also sent 521 * as it must be written in a combined write with the command. 522 */ 523 static void octeon_cf_exec_command16(struct ata_port *ap, 524 const struct ata_taskfile *tf) 525 { 526 /* The base of the registers is at ioaddr.data_addr. */ 527 void __iomem *base = ap->ioaddr.data_addr; 528 u16 blob; 529 530 if (tf->flags & ATA_TFLAG_DEVICE) { 531 VPRINTK("device 0x%X\n", tf->device); 532 blob = tf->device; 533 } else { 534 blob = 0; 535 } 536 537 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 538 blob |= (tf->command << 8); 539 __raw_writew(blob, base + 6); 540 541 542 ata_wait_idle(ap); 543 } 544 545 static void octeon_cf_ata_port_noaction(struct ata_port *ap) 546 { 547 } 548 549 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) 550 { 551 struct ata_port *ap = qc->ap; 552 struct octeon_cf_port *cf_port; 553 554 cf_port = ap->private_data; 555 DPRINTK("ENTER\n"); 556 /* issue r/w command */ 557 qc->cursg = qc->sg; 558 cf_port->dma_finished = 0; 559 ap->ops->sff_exec_command(ap, &qc->tf); 560 DPRINTK("EXIT\n"); 561 } 562 563 /** 564 * Start a DMA transfer that was already setup 565 * 566 * @qc: Information about the DMA 567 */ 568 static void octeon_cf_dma_start(struct ata_queued_cmd *qc) 569 { 570 struct octeon_cf_port *cf_port = qc->ap->private_data; 571 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; 572 union cvmx_mio_boot_dma_intx mio_boot_dma_int; 573 struct scatterlist *sg; 574 575 VPRINTK("%d scatterlists\n", qc->n_elem); 576 577 /* Get the scatter list entry we need to DMA into */ 578 sg = qc->cursg; 579 BUG_ON(!sg); 580 581 /* 582 * Clear the DMA complete status. 583 */ 584 mio_boot_dma_int.u64 = 0; 585 mio_boot_dma_int.s.done = 1; 586 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64); 587 588 /* Enable the interrupt. */ 589 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64); 590 591 /* Set the direction of the DMA */ 592 mio_boot_dma_cfg.u64 = 0; 593 #ifdef __LITTLE_ENDIAN 594 mio_boot_dma_cfg.s.endian = 1; 595 #endif 596 mio_boot_dma_cfg.s.en = 1; 597 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); 598 599 /* 600 * Don't stop the DMA if the device deasserts DMARQ. Many 601 * compact flashes deassert DMARQ for a short time between 602 * sectors. Instead of stopping and restarting the DMA, we'll 603 * let the hardware do it. If the DMA is really stopped early 604 * due to an error condition, a later timeout will force us to 605 * stop. 606 */ 607 mio_boot_dma_cfg.s.clr = 0; 608 609 /* Size is specified in 16bit words and minus one notation */ 610 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; 611 612 /* We need to swap the high and low bytes of every 16 bits */ 613 mio_boot_dma_cfg.s.swap8 = 1; 614 615 mio_boot_dma_cfg.s.adr = sg_dma_address(sg); 616 617 VPRINTK("%s %d bytes address=%p\n", 618 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length, 619 (void *)(unsigned long)mio_boot_dma_cfg.s.adr); 620 621 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64); 622 } 623 624 /** 625 * 626 * LOCKING: 627 * spin_lock_irqsave(host lock) 628 * 629 */ 630 static unsigned int octeon_cf_dma_finished(struct ata_port *ap, 631 struct ata_queued_cmd *qc) 632 { 633 struct ata_eh_info *ehi = &ap->link.eh_info; 634 struct octeon_cf_port *cf_port = ap->private_data; 635 union cvmx_mio_boot_dma_cfgx dma_cfg; 636 union cvmx_mio_boot_dma_intx dma_int; 637 u8 status; 638 639 VPRINTK("ata%u: protocol %d task_state %d\n", 640 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 641 642 643 if (ap->hsm_task_state != HSM_ST_LAST) 644 return 0; 645 646 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 647 if (dma_cfg.s.size != 0xfffff) { 648 /* Error, the transfer was not complete. */ 649 qc->err_mask |= AC_ERR_HOST_BUS; 650 ap->hsm_task_state = HSM_ST_ERR; 651 } 652 653 /* Stop and clear the dma engine. */ 654 dma_cfg.u64 = 0; 655 dma_cfg.s.size = -1; 656 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 657 658 /* Disable the interrupt. */ 659 dma_int.u64 = 0; 660 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 661 662 /* Clear the DMA complete status */ 663 dma_int.s.done = 1; 664 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 665 666 status = ap->ops->sff_check_status(ap); 667 668 ata_sff_hsm_move(ap, qc, status, 0); 669 670 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) 671 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); 672 673 return 1; 674 } 675 676 /* 677 * Check if any queued commands have more DMAs, if so start the next 678 * transfer, else do end of transfer handling. 679 */ 680 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) 681 { 682 struct ata_host *host = dev_instance; 683 struct octeon_cf_port *cf_port; 684 int i; 685 unsigned int handled = 0; 686 unsigned long flags; 687 688 spin_lock_irqsave(&host->lock, flags); 689 690 DPRINTK("ENTER\n"); 691 for (i = 0; i < host->n_ports; i++) { 692 u8 status; 693 struct ata_port *ap; 694 struct ata_queued_cmd *qc; 695 union cvmx_mio_boot_dma_intx dma_int; 696 union cvmx_mio_boot_dma_cfgx dma_cfg; 697 698 ap = host->ports[i]; 699 cf_port = ap->private_data; 700 701 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT); 702 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); 703 704 qc = ata_qc_from_tag(ap, ap->link.active_tag); 705 706 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING)) 707 continue; 708 709 if (dma_int.s.done && !dma_cfg.s.en) { 710 if (!sg_is_last(qc->cursg)) { 711 qc->cursg = sg_next(qc->cursg); 712 handled = 1; 713 octeon_cf_dma_start(qc); 714 continue; 715 } else { 716 cf_port->dma_finished = 1; 717 } 718 } 719 if (!cf_port->dma_finished) 720 continue; 721 status = ioread8(ap->ioaddr.altstatus_addr); 722 if (status & (ATA_BUSY | ATA_DRQ)) { 723 /* 724 * We are busy, try to handle it later. This 725 * is the DMA finished interrupt, and it could 726 * take a little while for the card to be 727 * ready for more commands. 728 */ 729 /* Clear DMA irq. */ 730 dma_int.u64 = 0; 731 dma_int.s.done = 1; 732 cvmx_write_csr(cf_port->dma_base + DMA_INT, 733 dma_int.u64); 734 hrtimer_start_range_ns(&cf_port->delayed_finish, 735 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL), 736 OCTEON_CF_BUSY_POLL_INTERVAL / 5, 737 HRTIMER_MODE_REL); 738 handled = 1; 739 } else { 740 handled |= octeon_cf_dma_finished(ap, qc); 741 } 742 } 743 spin_unlock_irqrestore(&host->lock, flags); 744 DPRINTK("EXIT\n"); 745 return IRQ_RETVAL(handled); 746 } 747 748 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt) 749 { 750 struct octeon_cf_port *cf_port = container_of(hrt, 751 struct octeon_cf_port, 752 delayed_finish); 753 struct ata_port *ap = cf_port->ap; 754 struct ata_host *host = ap->host; 755 struct ata_queued_cmd *qc; 756 unsigned long flags; 757 u8 status; 758 enum hrtimer_restart rv = HRTIMER_NORESTART; 759 760 spin_lock_irqsave(&host->lock, flags); 761 762 /* 763 * If the port is not waiting for completion, it must have 764 * handled it previously. The hsm_task_state is 765 * protected by host->lock. 766 */ 767 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) 768 goto out; 769 770 status = ioread8(ap->ioaddr.altstatus_addr); 771 if (status & (ATA_BUSY | ATA_DRQ)) { 772 /* Still busy, try again. */ 773 hrtimer_forward_now(hrt, 774 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL)); 775 rv = HRTIMER_RESTART; 776 goto out; 777 } 778 qc = ata_qc_from_tag(ap, ap->link.active_tag); 779 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) 780 octeon_cf_dma_finished(ap, qc); 781 out: 782 spin_unlock_irqrestore(&host->lock, flags); 783 return rv; 784 } 785 786 static void octeon_cf_dev_config(struct ata_device *dev) 787 { 788 /* 789 * A maximum of 2^20 - 1 16 bit transfers are possible with 790 * the bootbus DMA. So we need to throttle max_sectors to 791 * (2^12 - 1 == 4095) to assure that this can never happen. 792 */ 793 dev->max_sectors = min(dev->max_sectors, 4095U); 794 } 795 796 /* 797 * We don't do ATAPI DMA so return 0. 798 */ 799 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) 800 { 801 return 0; 802 } 803 804 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) 805 { 806 struct ata_port *ap = qc->ap; 807 808 switch (qc->tf.protocol) { 809 case ATA_PROT_DMA: 810 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 811 812 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 813 octeon_cf_dma_setup(qc); /* set up dma */ 814 octeon_cf_dma_start(qc); /* initiate dma */ 815 ap->hsm_task_state = HSM_ST_LAST; 816 break; 817 818 case ATAPI_PROT_DMA: 819 dev_err(ap->dev, "Error, ATAPI not supported\n"); 820 BUG(); 821 822 default: 823 return ata_sff_qc_issue(qc); 824 } 825 826 return 0; 827 } 828 829 static struct ata_port_operations octeon_cf_ops = { 830 .inherits = &ata_sff_port_ops, 831 .check_atapi_dma = octeon_cf_check_atapi_dma, 832 .qc_prep = ata_noop_qc_prep, 833 .qc_issue = octeon_cf_qc_issue, 834 .sff_dev_select = octeon_cf_dev_select, 835 .sff_irq_on = octeon_cf_ata_port_noaction, 836 .sff_irq_clear = octeon_cf_ata_port_noaction, 837 .cable_detect = ata_cable_40wire, 838 .set_piomode = octeon_cf_set_piomode, 839 .set_dmamode = octeon_cf_set_dmamode, 840 .dev_config = octeon_cf_dev_config, 841 }; 842 843 static int octeon_cf_probe(struct platform_device *pdev) 844 { 845 struct resource *res_cs0, *res_cs1; 846 847 bool is_16bit; 848 const __be32 *cs_num; 849 struct property *reg_prop; 850 int n_addr, n_size, reg_len; 851 struct device_node *node; 852 const void *prop; 853 void __iomem *cs0; 854 void __iomem *cs1 = NULL; 855 struct ata_host *host; 856 struct ata_port *ap; 857 int irq = 0; 858 irq_handler_t irq_handler = NULL; 859 void __iomem *base; 860 struct octeon_cf_port *cf_port; 861 int rv = -ENOMEM; 862 863 864 node = pdev->dev.of_node; 865 if (node == NULL) 866 return -EINVAL; 867 868 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL); 869 if (!cf_port) 870 return -ENOMEM; 871 872 cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL); 873 874 prop = of_get_property(node, "cavium,bus-width", NULL); 875 if (prop) 876 is_16bit = (be32_to_cpup(prop) == 16); 877 else 878 is_16bit = false; 879 880 n_addr = of_n_addr_cells(node); 881 n_size = of_n_size_cells(node); 882 883 reg_prop = of_find_property(node, "reg", ®_len); 884 if (!reg_prop || reg_len < sizeof(__be32)) 885 return -EINVAL; 886 887 cs_num = reg_prop->value; 888 cf_port->cs0 = be32_to_cpup(cs_num); 889 890 if (cf_port->is_true_ide) { 891 struct device_node *dma_node; 892 dma_node = of_parse_phandle(node, 893 "cavium,dma-engine-handle", 0); 894 if (dma_node) { 895 struct platform_device *dma_dev; 896 dma_dev = of_find_device_by_node(dma_node); 897 if (dma_dev) { 898 struct resource *res_dma; 899 int i; 900 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0); 901 if (!res_dma) { 902 of_node_put(dma_node); 903 return -EINVAL; 904 } 905 cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start, 906 resource_size(res_dma)); 907 if (!cf_port->dma_base) { 908 of_node_put(dma_node); 909 return -EINVAL; 910 } 911 912 irq_handler = octeon_cf_interrupt; 913 i = platform_get_irq(dma_dev, 0); 914 if (i > 0) 915 irq = i; 916 } 917 of_node_put(dma_node); 918 } 919 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 920 if (!res_cs1) 921 return -EINVAL; 922 923 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start, 924 resource_size(res_cs1)); 925 if (!cs1) 926 return rv; 927 928 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32)) 929 return -EINVAL; 930 931 cs_num += n_addr + n_size; 932 cf_port->cs1 = be32_to_cpup(cs_num); 933 } 934 935 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 936 if (!res_cs0) 937 return -EINVAL; 938 939 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start, 940 resource_size(res_cs0)); 941 if (!cs0) 942 return rv; 943 944 /* allocate host */ 945 host = ata_host_alloc(&pdev->dev, 1); 946 if (!host) 947 return rv; 948 949 ap = host->ports[0]; 950 ap->private_data = cf_port; 951 pdev->dev.platform_data = cf_port; 952 cf_port->ap = ap; 953 ap->ops = &octeon_cf_ops; 954 ap->pio_mask = ATA_PIO6; 955 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; 956 957 if (!is_16bit) { 958 base = cs0 + 0x800; 959 ap->ioaddr.cmd_addr = base; 960 ata_sff_std_ports(&ap->ioaddr); 961 962 ap->ioaddr.altstatus_addr = base + 0xe; 963 ap->ioaddr.ctl_addr = base + 0xe; 964 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; 965 } else if (cf_port->is_true_ide) { 966 base = cs0; 967 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; 968 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); 969 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; 970 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; 971 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; 972 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; 973 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; 974 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; 975 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; 976 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; 977 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; 978 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; 979 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; 980 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 981 982 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0; 983 984 /* True IDE mode needs a timer to poll for not-busy. */ 985 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC, 986 HRTIMER_MODE_REL); 987 cf_port->delayed_finish.function = octeon_cf_delayed_finish; 988 } else { 989 /* 16 bit but not True IDE */ 990 base = cs0 + 0x800; 991 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; 992 octeon_cf_ops.softreset = octeon_cf_softreset16; 993 octeon_cf_ops.sff_check_status = octeon_cf_check_status16; 994 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; 995 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; 996 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; 997 998 ap->ioaddr.data_addr = base + ATA_REG_DATA; 999 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; 1000 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; 1001 ap->ioaddr.ctl_addr = base + 0xe; 1002 ap->ioaddr.altstatus_addr = base + 0xe; 1003 } 1004 cf_port->c0 = ap->ioaddr.ctl_addr; 1005 1006 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1007 if (rv) 1008 return rv; 1009 1010 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); 1011 1012 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", 1013 is_16bit ? 16 : 8, 1014 cf_port->is_true_ide ? ", True IDE" : ""); 1015 1016 return ata_host_activate(host, irq, irq_handler, 1017 IRQF_SHARED, &octeon_cf_sht); 1018 } 1019 1020 static void octeon_cf_shutdown(struct device *dev) 1021 { 1022 union cvmx_mio_boot_dma_cfgx dma_cfg; 1023 union cvmx_mio_boot_dma_intx dma_int; 1024 1025 struct octeon_cf_port *cf_port = dev_get_platdata(dev); 1026 1027 if (cf_port->dma_base) { 1028 /* Stop and clear the dma engine. */ 1029 dma_cfg.u64 = 0; 1030 dma_cfg.s.size = -1; 1031 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); 1032 1033 /* Disable the interrupt. */ 1034 dma_int.u64 = 0; 1035 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); 1036 1037 /* Clear the DMA complete status */ 1038 dma_int.s.done = 1; 1039 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); 1040 1041 __raw_writeb(0, cf_port->c0); 1042 udelay(20); 1043 __raw_writeb(ATA_SRST, cf_port->c0); 1044 udelay(20); 1045 __raw_writeb(0, cf_port->c0); 1046 mdelay(100); 1047 } 1048 } 1049 1050 static struct of_device_id octeon_cf_match[] = { 1051 { 1052 .compatible = "cavium,ebt3000-compact-flash", 1053 }, 1054 {}, 1055 }; 1056 MODULE_DEVICE_TABLE(of, octeon_i2c_match); 1057 1058 static struct platform_driver octeon_cf_driver = { 1059 .probe = octeon_cf_probe, 1060 .driver = { 1061 .name = DRV_NAME, 1062 .of_match_table = octeon_cf_match, 1063 .shutdown = octeon_cf_shutdown 1064 }, 1065 }; 1066 1067 static int __init octeon_cf_init(void) 1068 { 1069 return platform_driver_register(&octeon_cf_driver); 1070 } 1071 1072 1073 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 1074 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); 1075 MODULE_LICENSE("GPL"); 1076 MODULE_VERSION(DRV_VERSION); 1077 MODULE_ALIAS("platform:" DRV_NAME); 1078 1079 module_init(octeon_cf_init); 1080