1 /* 2 * Libata driver for the highpoint 366 and 368 UDMA66 ATA controllers. 3 * 4 * This driver is heavily based upon: 5 * 6 * linux/drivers/ide/pci/hpt366.c Version 0.36 April 25, 2003 7 * 8 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org> 9 * Portions Copyright (C) 2001 Sun Microsystems, Inc. 10 * Portions Copyright (C) 2003 Red Hat Inc 11 * 12 * 13 * TODO 14 * Look into engine reset on timeout errors. Should not be required. 15 */ 16 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/pci.h> 21 #include <linux/init.h> 22 #include <linux/blkdev.h> 23 #include <linux/delay.h> 24 #include <scsi/scsi_host.h> 25 #include <linux/libata.h> 26 27 #define DRV_NAME "pata_hpt366" 28 #define DRV_VERSION "0.6.8" 29 30 struct hpt_clock { 31 u8 xfer_mode; 32 u32 timing; 33 }; 34 35 /* key for bus clock timings 36 * bit 37 * 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA. 38 * cycles = value + 1 39 * 4:7 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA. 40 * cycles = value + 1 41 * 8:11 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file 42 * register access. 43 * 12:15 cmd_low_time. Active time of DIOW_/DIOR_ during task file 44 * register access. 45 * 16:18 udma_cycle_time. Clock cycles for UDMA xfer? 46 * 19:21 pre_high_time. Time to initialize 1st cycle for PIO and MW DMA xfer. 47 * 22:24 cmd_pre_high_time. Time to initialize 1st PIO cycle for task file 48 * register access. 49 * 28 UDMA enable. 50 * 29 DMA enable. 51 * 30 PIO_MST enable. If set, the chip is in bus master mode during 52 * PIO xfer. 53 * 31 FIFO enable. 54 */ 55 56 static const struct hpt_clock hpt366_40[] = { 57 { XFER_UDMA_4, 0x900fd943 }, 58 { XFER_UDMA_3, 0x900ad943 }, 59 { XFER_UDMA_2, 0x900bd943 }, 60 { XFER_UDMA_1, 0x9008d943 }, 61 { XFER_UDMA_0, 0x9008d943 }, 62 63 { XFER_MW_DMA_2, 0xa008d943 }, 64 { XFER_MW_DMA_1, 0xa010d955 }, 65 { XFER_MW_DMA_0, 0xa010d9fc }, 66 67 { XFER_PIO_4, 0xc008d963 }, 68 { XFER_PIO_3, 0xc010d974 }, 69 { XFER_PIO_2, 0xc010d997 }, 70 { XFER_PIO_1, 0xc010d9c7 }, 71 { XFER_PIO_0, 0xc018d9d9 }, 72 { 0, 0x0120d9d9 } 73 }; 74 75 static const struct hpt_clock hpt366_33[] = { 76 { XFER_UDMA_4, 0x90c9a731 }, 77 { XFER_UDMA_3, 0x90cfa731 }, 78 { XFER_UDMA_2, 0x90caa731 }, 79 { XFER_UDMA_1, 0x90cba731 }, 80 { XFER_UDMA_0, 0x90c8a731 }, 81 82 { XFER_MW_DMA_2, 0xa0c8a731 }, 83 { XFER_MW_DMA_1, 0xa0c8a732 }, /* 0xa0c8a733 */ 84 { XFER_MW_DMA_0, 0xa0c8a797 }, 85 86 { XFER_PIO_4, 0xc0c8a731 }, 87 { XFER_PIO_3, 0xc0c8a742 }, 88 { XFER_PIO_2, 0xc0d0a753 }, 89 { XFER_PIO_1, 0xc0d0a7a3 }, /* 0xc0d0a793 */ 90 { XFER_PIO_0, 0xc0d0a7aa }, /* 0xc0d0a7a7 */ 91 { 0, 0x0120a7a7 } 92 }; 93 94 static const struct hpt_clock hpt366_25[] = { 95 { XFER_UDMA_4, 0x90c98521 }, 96 { XFER_UDMA_3, 0x90cf8521 }, 97 { XFER_UDMA_2, 0x90cf8521 }, 98 { XFER_UDMA_1, 0x90cb8521 }, 99 { XFER_UDMA_0, 0x90cb8521 }, 100 101 { XFER_MW_DMA_2, 0xa0ca8521 }, 102 { XFER_MW_DMA_1, 0xa0ca8532 }, 103 { XFER_MW_DMA_0, 0xa0ca8575 }, 104 105 { XFER_PIO_4, 0xc0ca8521 }, 106 { XFER_PIO_3, 0xc0ca8532 }, 107 { XFER_PIO_2, 0xc0ca8542 }, 108 { XFER_PIO_1, 0xc0d08572 }, 109 { XFER_PIO_0, 0xc0d08585 }, 110 { 0, 0x01208585 } 111 }; 112 113 static const char *bad_ata33[] = { 114 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2", 115 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2", 116 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4", 117 "Maxtor 90510D4", 118 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2", 119 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4", 120 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2", 121 NULL 122 }; 123 124 static const char *bad_ata66_4[] = { 125 "IBM-DTLA-307075", 126 "IBM-DTLA-307060", 127 "IBM-DTLA-307045", 128 "IBM-DTLA-307030", 129 "IBM-DTLA-307020", 130 "IBM-DTLA-307015", 131 "IBM-DTLA-305040", 132 "IBM-DTLA-305030", 133 "IBM-DTLA-305020", 134 "IC35L010AVER07-0", 135 "IC35L020AVER07-0", 136 "IC35L030AVER07-0", 137 "IC35L040AVER07-0", 138 "IC35L060AVER07-0", 139 "WDC AC310200R", 140 NULL 141 }; 142 143 static const char *bad_ata66_3[] = { 144 "WDC AC310200R", 145 NULL 146 }; 147 148 static int hpt_dma_blacklisted(const struct ata_device *dev, char *modestr, const char *list[]) 149 { 150 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 151 int i = 0; 152 153 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 154 155 while (list[i] != NULL) { 156 if (!strcmp(list[i], model_num)) { 157 printk(KERN_WARNING DRV_NAME ": %s is not supported for %s.\n", 158 modestr, list[i]); 159 return 1; 160 } 161 i++; 162 } 163 return 0; 164 } 165 166 /** 167 * hpt366_filter - mode selection filter 168 * @adev: ATA device 169 * 170 * Block UDMA on devices that cause trouble with this controller. 171 */ 172 173 static unsigned long hpt366_filter(struct ata_device *adev, unsigned long mask) 174 { 175 if (adev->class == ATA_DEV_ATA) { 176 if (hpt_dma_blacklisted(adev, "UDMA", bad_ata33)) 177 mask &= ~ATA_MASK_UDMA; 178 if (hpt_dma_blacklisted(adev, "UDMA3", bad_ata66_3)) 179 mask &= ~(0xF8 << ATA_SHIFT_UDMA); 180 if (hpt_dma_blacklisted(adev, "UDMA4", bad_ata66_4)) 181 mask &= ~(0xF0 << ATA_SHIFT_UDMA); 182 } else if (adev->class == ATA_DEV_ATAPI) 183 mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 184 185 return mask; 186 } 187 188 static int hpt36x_cable_detect(struct ata_port *ap) 189 { 190 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 191 u8 ata66; 192 193 /* 194 * Each channel of pata_hpt366 occupies separate PCI function 195 * as the primary channel and bit1 indicates the cable type. 196 */ 197 pci_read_config_byte(pdev, 0x5A, &ata66); 198 if (ata66 & 2) 199 return ATA_CBL_PATA40; 200 return ATA_CBL_PATA80; 201 } 202 203 static void hpt366_set_mode(struct ata_port *ap, struct ata_device *adev, 204 u8 mode) 205 { 206 struct hpt_clock *clocks = ap->host->private_data; 207 struct pci_dev *pdev = to_pci_dev(ap->host->dev); 208 u32 addr = 0x40 + 4 * adev->devno; 209 u32 mask, reg; 210 211 /* determine timing mask and find matching clock entry */ 212 if (mode < XFER_MW_DMA_0) 213 mask = 0xc1f8ffff; 214 else if (mode < XFER_UDMA_0) 215 mask = 0x303800ff; 216 else 217 mask = 0x30070000; 218 219 while (clocks->xfer_mode) { 220 if (clocks->xfer_mode == mode) 221 break; 222 clocks++; 223 } 224 if (!clocks->xfer_mode) 225 BUG(); 226 227 /* 228 * Combine new mode bits with old config bits and disable 229 * on-chip PIO FIFO/buffer (and PIO MST mode as well) to avoid 230 * problems handling I/O errors later. 231 */ 232 pci_read_config_dword(pdev, addr, ®); 233 reg = ((reg & ~mask) | (clocks->timing & mask)) & ~0xc0000000; 234 pci_write_config_dword(pdev, addr, reg); 235 } 236 237 /** 238 * hpt366_set_piomode - PIO setup 239 * @ap: ATA interface 240 * @adev: device on the interface 241 * 242 * Perform PIO mode setup. 243 */ 244 245 static void hpt366_set_piomode(struct ata_port *ap, struct ata_device *adev) 246 { 247 hpt366_set_mode(ap, adev, adev->pio_mode); 248 } 249 250 /** 251 * hpt366_set_dmamode - DMA timing setup 252 * @ap: ATA interface 253 * @adev: Device being configured 254 * 255 * Set up the channel for MWDMA or UDMA modes. Much the same as with 256 * PIO, load the mode number and then set MWDMA or UDMA flag. 257 */ 258 259 static void hpt366_set_dmamode(struct ata_port *ap, struct ata_device *adev) 260 { 261 hpt366_set_mode(ap, adev, adev->dma_mode); 262 } 263 264 static struct scsi_host_template hpt36x_sht = { 265 ATA_BMDMA_SHT(DRV_NAME), 266 }; 267 268 /* 269 * Configuration for HPT366/68 270 */ 271 272 static struct ata_port_operations hpt366_port_ops = { 273 .inherits = &ata_bmdma_port_ops, 274 .cable_detect = hpt36x_cable_detect, 275 .mode_filter = hpt366_filter, 276 .set_piomode = hpt366_set_piomode, 277 .set_dmamode = hpt366_set_dmamode, 278 }; 279 280 /** 281 * hpt36x_init_chipset - common chip setup 282 * @dev: PCI device 283 * 284 * Perform the chip setup work that must be done at both init and 285 * resume time 286 */ 287 288 static void hpt36x_init_chipset(struct pci_dev *dev) 289 { 290 u8 drive_fast; 291 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4)); 292 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78); 293 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08); 294 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08); 295 296 pci_read_config_byte(dev, 0x51, &drive_fast); 297 if (drive_fast & 0x80) 298 pci_write_config_byte(dev, 0x51, drive_fast & ~0x80); 299 } 300 301 /** 302 * hpt36x_init_one - Initialise an HPT366/368 303 * @dev: PCI device 304 * @id: Entry in match table 305 * 306 * Initialise an HPT36x device. There are some interesting complications 307 * here. Firstly the chip may report 366 and be one of several variants. 308 * Secondly all the timings depend on the clock for the chip which we must 309 * detect and look up 310 * 311 * This is the known chip mappings. It may be missing a couple of later 312 * releases. 313 * 314 * Chip version PCI Rev Notes 315 * HPT366 4 (HPT366) 0 UDMA66 316 * HPT366 4 (HPT366) 1 UDMA66 317 * HPT368 4 (HPT366) 2 UDMA66 318 * HPT37x/30x 4 (HPT366) 3+ Other driver 319 * 320 */ 321 322 static int hpt36x_init_one(struct pci_dev *dev, const struct pci_device_id *id) 323 { 324 static const struct ata_port_info info_hpt366 = { 325 .flags = ATA_FLAG_SLAVE_POSS, 326 .pio_mask = ATA_PIO4, 327 .mwdma_mask = ATA_MWDMA2, 328 .udma_mask = ATA_UDMA4, 329 .port_ops = &hpt366_port_ops 330 }; 331 const struct ata_port_info *ppi[] = { &info_hpt366, NULL }; 332 333 void *hpriv = NULL; 334 u32 reg1; 335 int rc; 336 337 rc = pcim_enable_device(dev); 338 if (rc) 339 return rc; 340 341 /* May be a later chip in disguise. Check */ 342 /* Newer chips are not in the HPT36x driver. Ignore them */ 343 if (dev->revision > 2) 344 return -ENODEV; 345 346 hpt36x_init_chipset(dev); 347 348 pci_read_config_dword(dev, 0x40, ®1); 349 350 /* PCI clocking determines the ATA timing values to use */ 351 /* info_hpt366 is safe against re-entry so we can scribble on it */ 352 switch((reg1 & 0x700) >> 8) { 353 case 9: 354 hpriv = &hpt366_40; 355 break; 356 case 5: 357 hpriv = &hpt366_25; 358 break; 359 default: 360 hpriv = &hpt366_33; 361 break; 362 } 363 /* Now kick off ATA set up */ 364 return ata_pci_bmdma_init_one(dev, ppi, &hpt36x_sht, hpriv, 0); 365 } 366 367 #ifdef CONFIG_PM 368 static int hpt36x_reinit_one(struct pci_dev *dev) 369 { 370 struct ata_host *host = dev_get_drvdata(&dev->dev); 371 int rc; 372 373 rc = ata_pci_device_do_resume(dev); 374 if (rc) 375 return rc; 376 hpt36x_init_chipset(dev); 377 ata_host_resume(host); 378 return 0; 379 } 380 #endif 381 382 static const struct pci_device_id hpt36x[] = { 383 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), }, 384 { }, 385 }; 386 387 static struct pci_driver hpt36x_pci_driver = { 388 .name = DRV_NAME, 389 .id_table = hpt36x, 390 .probe = hpt36x_init_one, 391 .remove = ata_pci_remove_one, 392 #ifdef CONFIG_PM 393 .suspend = ata_pci_device_suspend, 394 .resume = hpt36x_reinit_one, 395 #endif 396 }; 397 398 static int __init hpt36x_init(void) 399 { 400 return pci_register_driver(&hpt36x_pci_driver); 401 } 402 403 static void __exit hpt36x_exit(void) 404 { 405 pci_unregister_driver(&hpt36x_pci_driver); 406 } 407 408 MODULE_AUTHOR("Alan Cox"); 409 MODULE_DESCRIPTION("low-level driver for the Highpoint HPT366/368"); 410 MODULE_LICENSE("GPL"); 411 MODULE_DEVICE_TABLE(pci, hpt36x); 412 MODULE_VERSION(DRV_VERSION); 413 414 module_init(hpt36x_init); 415 module_exit(hpt36x_exit); 416