xref: /openbmc/linux/drivers/ata/pata_ep93xx.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * EP93XX PATA controller driver.
3  *
4  * Copyright (c) 2012, Metasoft s.c.
5  *	Rafal Prylowski <prylowski@metasoft.pl>
6  *
7  * Based on pata_scc.c, pata_icside.c and on earlier version of EP93XX
8  * PATA driver by Lennert Buytenhek and Alessandro Zummo.
9  * Read/Write timings, resource management and other improvements
10  * from driver by Joao Ramos and Bartlomiej Zolnierkiewicz.
11  * DMA engine support based on spi-ep93xx.c by Mika Westerberg.
12  *
13  * Original copyrights:
14  *
15  * Support for Cirrus Logic's EP93xx (EP9312, EP9315) CPUs
16  * PATA host controller driver.
17  *
18  * Copyright (c) 2009, Bartlomiej Zolnierkiewicz
19  *
20  * Heavily based on the ep93xx-ide.c driver:
21  *
22  * Copyright (c) 2009, Joao Ramos <joao.ramos@inov.pt>
23  *		      INESC Inovacao (INOV)
24  *
25  * EP93XX PATA controller driver.
26  * Copyright (C) 2007 Lennert Buytenhek <buytenh@wantstofly.org>
27  *
28  * An ATA driver for the Cirrus Logic EP93xx PATA controller.
29  *
30  * Based on an earlier version by Alessandro Zummo, which is:
31  *   Copyright (C) 2006 Tower Technologies
32  */
33 
34 #include <linux/err.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/blkdev.h>
38 #include <scsi/scsi_host.h>
39 #include <linux/ata.h>
40 #include <linux/libata.h>
41 #include <linux/platform_device.h>
42 #include <linux/delay.h>
43 #include <linux/dmaengine.h>
44 #include <linux/ktime.h>
45 
46 #include <linux/platform_data/dma-ep93xx.h>
47 #include <mach/platform.h>
48 
49 #define DRV_NAME	"ep93xx-ide"
50 #define DRV_VERSION	"1.0"
51 
52 enum {
53 	/* IDE Control Register */
54 	IDECTRL				= 0x00,
55 	IDECTRL_CS0N			= (1 << 0),
56 	IDECTRL_CS1N			= (1 << 1),
57 	IDECTRL_DIORN			= (1 << 5),
58 	IDECTRL_DIOWN			= (1 << 6),
59 	IDECTRL_INTRQ			= (1 << 9),
60 	IDECTRL_IORDY			= (1 << 10),
61 	/*
62 	 * the device IDE register to be accessed is selected through
63 	 * IDECTRL register's specific bitfields 'DA', 'CS1N' and 'CS0N':
64 	 *   b4   b3   b2    b1     b0
65 	 *   A2   A1   A0   CS1N   CS0N
66 	 * the values filled in this structure allows the value to be directly
67 	 * ORed to the IDECTRL register, hence giving directly the A[2:0] and
68 	 * CS1N/CS0N values for each IDE register.
69 	 * The values correspond to the transformation:
70 	 *   ((real IDE address) << 2) | CS1N value << 1 | CS0N value
71 	 */
72 	IDECTRL_ADDR_CMD		= 0 + 2, /* CS1 */
73 	IDECTRL_ADDR_DATA		= (ATA_REG_DATA << 2) + 2,
74 	IDECTRL_ADDR_ERROR		= (ATA_REG_ERR << 2) + 2,
75 	IDECTRL_ADDR_FEATURE		= (ATA_REG_FEATURE << 2) + 2,
76 	IDECTRL_ADDR_NSECT		= (ATA_REG_NSECT << 2) + 2,
77 	IDECTRL_ADDR_LBAL		= (ATA_REG_LBAL << 2) + 2,
78 	IDECTRL_ADDR_LBAM		= (ATA_REG_LBAM << 2) + 2,
79 	IDECTRL_ADDR_LBAH		= (ATA_REG_LBAH << 2) + 2,
80 	IDECTRL_ADDR_DEVICE		= (ATA_REG_DEVICE << 2) + 2,
81 	IDECTRL_ADDR_STATUS		= (ATA_REG_STATUS << 2) + 2,
82 	IDECTRL_ADDR_COMMAND		= (ATA_REG_CMD << 2) + 2,
83 	IDECTRL_ADDR_ALTSTATUS		= (0x06 << 2) + 1, /* CS0 */
84 	IDECTRL_ADDR_CTL		= (0x06 << 2) + 1, /* CS0 */
85 
86 	/* IDE Configuration Register */
87 	IDECFG				= 0x04,
88 	IDECFG_IDEEN			= (1 << 0),
89 	IDECFG_PIO			= (1 << 1),
90 	IDECFG_MDMA			= (1 << 2),
91 	IDECFG_UDMA			= (1 << 3),
92 	IDECFG_MODE_SHIFT		= 4,
93 	IDECFG_MODE_MASK		= (0xf << 4),
94 	IDECFG_WST_SHIFT		= 8,
95 	IDECFG_WST_MASK			= (0x3 << 8),
96 
97 	/* MDMA Operation Register */
98 	IDEMDMAOP			= 0x08,
99 
100 	/* UDMA Operation Register */
101 	IDEUDMAOP			= 0x0c,
102 	IDEUDMAOP_UEN			= (1 << 0),
103 	IDEUDMAOP_RWOP			= (1 << 1),
104 
105 	/* PIO/MDMA/UDMA Data Registers */
106 	IDEDATAOUT			= 0x10,
107 	IDEDATAIN			= 0x14,
108 	IDEMDMADATAOUT			= 0x18,
109 	IDEMDMADATAIN			= 0x1c,
110 	IDEUDMADATAOUT			= 0x20,
111 	IDEUDMADATAIN			= 0x24,
112 
113 	/* UDMA Status Register */
114 	IDEUDMASTS			= 0x28,
115 	IDEUDMASTS_DMAIDE		= (1 << 16),
116 	IDEUDMASTS_INTIDE		= (1 << 17),
117 	IDEUDMASTS_SBUSY		= (1 << 18),
118 	IDEUDMASTS_NDO			= (1 << 24),
119 	IDEUDMASTS_NDI			= (1 << 25),
120 	IDEUDMASTS_N4X			= (1 << 26),
121 
122 	/* UDMA Debug Status Register */
123 	IDEUDMADEBUG			= 0x2c,
124 };
125 
126 struct ep93xx_pata_data {
127 	const struct platform_device *pdev;
128 	void __iomem *ide_base;
129 	struct ata_timing t;
130 	bool iordy;
131 
132 	unsigned long udma_in_phys;
133 	unsigned long udma_out_phys;
134 
135 	struct dma_chan *dma_rx_channel;
136 	struct ep93xx_dma_data dma_rx_data;
137 	struct dma_chan *dma_tx_channel;
138 	struct ep93xx_dma_data dma_tx_data;
139 };
140 
141 static void ep93xx_pata_clear_regs(void __iomem *base)
142 {
143 	writel(IDECTRL_CS0N | IDECTRL_CS1N | IDECTRL_DIORN |
144 		IDECTRL_DIOWN, base + IDECTRL);
145 
146 	writel(0, base + IDECFG);
147 	writel(0, base + IDEMDMAOP);
148 	writel(0, base + IDEUDMAOP);
149 	writel(0, base + IDEDATAOUT);
150 	writel(0, base + IDEDATAIN);
151 	writel(0, base + IDEMDMADATAOUT);
152 	writel(0, base + IDEMDMADATAIN);
153 	writel(0, base + IDEUDMADATAOUT);
154 	writel(0, base + IDEUDMADATAIN);
155 	writel(0, base + IDEUDMADEBUG);
156 }
157 
158 static bool ep93xx_pata_check_iordy(void __iomem *base)
159 {
160 	return !!(readl(base + IDECTRL) & IDECTRL_IORDY);
161 }
162 
163 /*
164  * According to EP93xx User's Guide, WST field of IDECFG specifies number
165  * of HCLK cycles to hold the data bus after a PIO write operation.
166  * It should be programmed to guarantee following delays:
167  *
168  * PIO Mode   [ns]
169  * 0          30
170  * 1          20
171  * 2          15
172  * 3          10
173  * 4          5
174  *
175  * Maximum possible value for HCLK is 100MHz.
176  */
177 static int ep93xx_pata_get_wst(int pio_mode)
178 {
179 	int val;
180 
181 	if (pio_mode == 0)
182 		val = 3;
183 	else if (pio_mode < 3)
184 		val = 2;
185 	else
186 		val = 1;
187 
188 	return val << IDECFG_WST_SHIFT;
189 }
190 
191 static void ep93xx_pata_enable_pio(void __iomem *base, int pio_mode)
192 {
193 	writel(IDECFG_IDEEN | IDECFG_PIO |
194 		ep93xx_pata_get_wst(pio_mode) |
195 		(pio_mode << IDECFG_MODE_SHIFT), base + IDECFG);
196 }
197 
198 /*
199  * Based on delay loop found in mach-pxa/mp900.c.
200  *
201  * Single iteration should take 5 cpu cycles. This is 25ns assuming the
202  * fastest ep93xx cpu speed (200MHz) and is better optimized for PIO4 timings
203  * than eg. 20ns.
204  */
205 static void ep93xx_pata_delay(unsigned long count)
206 {
207 	__asm__ volatile (
208 		"0:\n"
209 		"mov r0, r0\n"
210 		"subs %0, %1, #1\n"
211 		"bge 0b\n"
212 		: "=r" (count)
213 		: "0" (count)
214 	);
215 }
216 
217 static unsigned long ep93xx_pata_wait_for_iordy(void __iomem *base,
218 						unsigned long t2)
219 {
220 	/*
221 	 * According to ATA specification, IORDY pin can be first sampled
222 	 * tA = 35ns after activation of DIOR-/DIOW-. Maximum IORDY pulse
223 	 * width is tB = 1250ns.
224 	 *
225 	 * We are already t2 delay loop iterations after activation of
226 	 * DIOR-/DIOW-, so we set timeout to (1250 + 35) / 25 - t2 additional
227 	 * delay loop iterations.
228 	 */
229 	unsigned long start = (1250 + 35) / 25 - t2;
230 	unsigned long counter = start;
231 
232 	while (!ep93xx_pata_check_iordy(base) && counter--)
233 		ep93xx_pata_delay(1);
234 	return start - counter;
235 }
236 
237 /* common part at start of ep93xx_pata_read/write() */
238 static void ep93xx_pata_rw_begin(void __iomem *base, unsigned long addr,
239 				 unsigned long t1)
240 {
241 	writel(IDECTRL_DIOWN | IDECTRL_DIORN | addr, base + IDECTRL);
242 	ep93xx_pata_delay(t1);
243 }
244 
245 /* common part at end of ep93xx_pata_read/write() */
246 static void ep93xx_pata_rw_end(void __iomem *base, unsigned long addr,
247 			       bool iordy, unsigned long t0, unsigned long t2,
248 			       unsigned long t2i)
249 {
250 	ep93xx_pata_delay(t2);
251 	/* lengthen t2 if needed */
252 	if (iordy)
253 		t2 += ep93xx_pata_wait_for_iordy(base, t2);
254 	writel(IDECTRL_DIOWN | IDECTRL_DIORN | addr, base + IDECTRL);
255 	if (t0 > t2 && t0 - t2 > t2i)
256 		ep93xx_pata_delay(t0 - t2);
257 	else
258 		ep93xx_pata_delay(t2i);
259 }
260 
261 static u16 ep93xx_pata_read(struct ep93xx_pata_data *drv_data,
262 			    unsigned long addr,
263 			    bool reg)
264 {
265 	void __iomem *base = drv_data->ide_base;
266 	const struct ata_timing *t = &drv_data->t;
267 	unsigned long t0 = reg ? t->cyc8b : t->cycle;
268 	unsigned long t2 = reg ? t->act8b : t->active;
269 	unsigned long t2i = reg ? t->rec8b : t->recover;
270 
271 	ep93xx_pata_rw_begin(base, addr, t->setup);
272 	writel(IDECTRL_DIOWN | addr, base + IDECTRL);
273 	/*
274 	 * The IDEDATAIN register is loaded from the DD pins at the positive
275 	 * edge of the DIORN signal. (EP93xx UG p27-14)
276 	 */
277 	ep93xx_pata_rw_end(base, addr, drv_data->iordy, t0, t2, t2i);
278 	return readl(base + IDEDATAIN);
279 }
280 
281 /* IDE register read */
282 static u16 ep93xx_pata_read_reg(struct ep93xx_pata_data *drv_data,
283 				unsigned long addr)
284 {
285 	return ep93xx_pata_read(drv_data, addr, true);
286 }
287 
288 /* PIO data read */
289 static u16 ep93xx_pata_read_data(struct ep93xx_pata_data *drv_data,
290 				 unsigned long addr)
291 {
292 	return ep93xx_pata_read(drv_data, addr, false);
293 }
294 
295 static void ep93xx_pata_write(struct ep93xx_pata_data *drv_data,
296 			      u16 value, unsigned long addr,
297 			      bool reg)
298 {
299 	void __iomem *base = drv_data->ide_base;
300 	const struct ata_timing *t = &drv_data->t;
301 	unsigned long t0 = reg ? t->cyc8b : t->cycle;
302 	unsigned long t2 = reg ? t->act8b : t->active;
303 	unsigned long t2i = reg ? t->rec8b : t->recover;
304 
305 	ep93xx_pata_rw_begin(base, addr, t->setup);
306 	/*
307 	 * Value from IDEDATAOUT register is driven onto the DD pins when
308 	 * DIOWN is low. (EP93xx UG p27-13)
309 	 */
310 	writel(value, base + IDEDATAOUT);
311 	writel(IDECTRL_DIORN | addr, base + IDECTRL);
312 	ep93xx_pata_rw_end(base, addr, drv_data->iordy, t0, t2, t2i);
313 }
314 
315 /* IDE register write */
316 static void ep93xx_pata_write_reg(struct ep93xx_pata_data *drv_data,
317 				  u16 value, unsigned long addr)
318 {
319 	ep93xx_pata_write(drv_data, value, addr, true);
320 }
321 
322 /* PIO data write */
323 static void ep93xx_pata_write_data(struct ep93xx_pata_data *drv_data,
324 				   u16 value, unsigned long addr)
325 {
326 	ep93xx_pata_write(drv_data, value, addr, false);
327 }
328 
329 static void ep93xx_pata_set_piomode(struct ata_port *ap,
330 				    struct ata_device *adev)
331 {
332 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
333 	struct ata_device *pair = ata_dev_pair(adev);
334 	/*
335 	 * Calculate timings for the delay loop, assuming ep93xx cpu speed
336 	 * is 200MHz (maximum possible for ep93xx). If actual cpu speed is
337 	 * slower, we will wait a bit longer in each delay.
338 	 * Additional division of cpu speed by 5, because single iteration
339 	 * of our delay loop takes 5 cpu cycles (25ns).
340 	 */
341 	unsigned long T = 1000000 / (200 / 5);
342 
343 	ata_timing_compute(adev, adev->pio_mode, &drv_data->t, T, 0);
344 	if (pair && pair->pio_mode) {
345 		struct ata_timing t;
346 		ata_timing_compute(pair, pair->pio_mode, &t, T, 0);
347 		ata_timing_merge(&t, &drv_data->t, &drv_data->t,
348 			ATA_TIMING_SETUP | ATA_TIMING_8BIT);
349 	}
350 	drv_data->iordy = ata_pio_need_iordy(adev);
351 
352 	ep93xx_pata_enable_pio(drv_data->ide_base,
353 			       adev->pio_mode - XFER_PIO_0);
354 }
355 
356 /* Note: original code is ata_sff_check_status */
357 static u8 ep93xx_pata_check_status(struct ata_port *ap)
358 {
359 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
360 
361 	return ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_STATUS);
362 }
363 
364 static u8 ep93xx_pata_check_altstatus(struct ata_port *ap)
365 {
366 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
367 
368 	return ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_ALTSTATUS);
369 }
370 
371 /* Note: original code is ata_sff_tf_load */
372 static void ep93xx_pata_tf_load(struct ata_port *ap,
373 				const struct ata_taskfile *tf)
374 {
375 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
376 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
377 
378 	if (tf->ctl != ap->last_ctl) {
379 		ep93xx_pata_write_reg(drv_data, tf->ctl, IDECTRL_ADDR_CTL);
380 		ap->last_ctl = tf->ctl;
381 		ata_wait_idle(ap);
382 	}
383 
384 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
385 		ep93xx_pata_write_reg(drv_data, tf->hob_feature,
386 			IDECTRL_ADDR_FEATURE);
387 		ep93xx_pata_write_reg(drv_data, tf->hob_nsect,
388 			IDECTRL_ADDR_NSECT);
389 		ep93xx_pata_write_reg(drv_data, tf->hob_lbal,
390 			IDECTRL_ADDR_LBAL);
391 		ep93xx_pata_write_reg(drv_data, tf->hob_lbam,
392 			IDECTRL_ADDR_LBAM);
393 		ep93xx_pata_write_reg(drv_data, tf->hob_lbah,
394 			IDECTRL_ADDR_LBAH);
395 	}
396 
397 	if (is_addr) {
398 		ep93xx_pata_write_reg(drv_data, tf->feature,
399 			IDECTRL_ADDR_FEATURE);
400 		ep93xx_pata_write_reg(drv_data, tf->nsect, IDECTRL_ADDR_NSECT);
401 		ep93xx_pata_write_reg(drv_data, tf->lbal, IDECTRL_ADDR_LBAL);
402 		ep93xx_pata_write_reg(drv_data, tf->lbam, IDECTRL_ADDR_LBAM);
403 		ep93xx_pata_write_reg(drv_data, tf->lbah, IDECTRL_ADDR_LBAH);
404 	}
405 
406 	if (tf->flags & ATA_TFLAG_DEVICE)
407 		ep93xx_pata_write_reg(drv_data, tf->device,
408 			IDECTRL_ADDR_DEVICE);
409 
410 	ata_wait_idle(ap);
411 }
412 
413 /* Note: original code is ata_sff_tf_read */
414 static void ep93xx_pata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
415 {
416 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
417 
418 	tf->command = ep93xx_pata_check_status(ap);
419 	tf->feature = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_FEATURE);
420 	tf->nsect = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_NSECT);
421 	tf->lbal = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAL);
422 	tf->lbam = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAM);
423 	tf->lbah = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAH);
424 	tf->device = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_DEVICE);
425 
426 	if (tf->flags & ATA_TFLAG_LBA48) {
427 		ep93xx_pata_write_reg(drv_data, tf->ctl | ATA_HOB,
428 			IDECTRL_ADDR_CTL);
429 		tf->hob_feature = ep93xx_pata_read_reg(drv_data,
430 			IDECTRL_ADDR_FEATURE);
431 		tf->hob_nsect = ep93xx_pata_read_reg(drv_data,
432 			IDECTRL_ADDR_NSECT);
433 		tf->hob_lbal = ep93xx_pata_read_reg(drv_data,
434 			IDECTRL_ADDR_LBAL);
435 		tf->hob_lbam = ep93xx_pata_read_reg(drv_data,
436 			IDECTRL_ADDR_LBAM);
437 		tf->hob_lbah = ep93xx_pata_read_reg(drv_data,
438 			IDECTRL_ADDR_LBAH);
439 		ep93xx_pata_write_reg(drv_data, tf->ctl, IDECTRL_ADDR_CTL);
440 		ap->last_ctl = tf->ctl;
441 	}
442 }
443 
444 /* Note: original code is ata_sff_exec_command */
445 static void ep93xx_pata_exec_command(struct ata_port *ap,
446 				     const struct ata_taskfile *tf)
447 {
448 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
449 
450 	ep93xx_pata_write_reg(drv_data, tf->command,
451 			  IDECTRL_ADDR_COMMAND);
452 	ata_sff_pause(ap);
453 }
454 
455 /* Note: original code is ata_sff_dev_select */
456 static void ep93xx_pata_dev_select(struct ata_port *ap, unsigned int device)
457 {
458 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
459 	u8 tmp = ATA_DEVICE_OBS;
460 
461 	if (device != 0)
462 		tmp |= ATA_DEV1;
463 
464 	ep93xx_pata_write_reg(drv_data, tmp, IDECTRL_ADDR_DEVICE);
465 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
466 }
467 
468 /* Note: original code is ata_sff_set_devctl */
469 static void ep93xx_pata_set_devctl(struct ata_port *ap, u8 ctl)
470 {
471 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
472 
473 	ep93xx_pata_write_reg(drv_data, ctl, IDECTRL_ADDR_CTL);
474 }
475 
476 /* Note: original code is ata_sff_data_xfer */
477 static unsigned int ep93xx_pata_data_xfer(struct ata_queued_cmd *qc,
478 					  unsigned char *buf,
479 					  unsigned int buflen, int rw)
480 {
481 	struct ata_port *ap = qc->dev->link->ap;
482 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
483 	u16 *data = (u16 *)buf;
484 	unsigned int words = buflen >> 1;
485 
486 	/* Transfer multiple of 2 bytes */
487 	while (words--)
488 		if (rw == READ)
489 			*data++ = cpu_to_le16(
490 				ep93xx_pata_read_data(
491 					drv_data, IDECTRL_ADDR_DATA));
492 		else
493 			ep93xx_pata_write_data(drv_data, le16_to_cpu(*data++),
494 				IDECTRL_ADDR_DATA);
495 
496 	/* Transfer trailing 1 byte, if any. */
497 	if (unlikely(buflen & 0x01)) {
498 		unsigned char pad[2] = { };
499 
500 		buf += buflen - 1;
501 
502 		if (rw == READ) {
503 			*pad = cpu_to_le16(
504 				ep93xx_pata_read_data(
505 					drv_data, IDECTRL_ADDR_DATA));
506 			*buf = pad[0];
507 		} else {
508 			pad[0] = *buf;
509 			ep93xx_pata_write_data(drv_data, le16_to_cpu(*pad),
510 					  IDECTRL_ADDR_DATA);
511 		}
512 		words++;
513 	}
514 
515 	return words << 1;
516 }
517 
518 /* Note: original code is ata_devchk */
519 static bool ep93xx_pata_device_is_present(struct ata_port *ap,
520 					  unsigned int device)
521 {
522 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
523 	u8 nsect, lbal;
524 
525 	ap->ops->sff_dev_select(ap, device);
526 
527 	ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_NSECT);
528 	ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_LBAL);
529 
530 	ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_NSECT);
531 	ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_LBAL);
532 
533 	ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_NSECT);
534 	ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_LBAL);
535 
536 	nsect = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_NSECT);
537 	lbal = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAL);
538 
539 	if ((nsect == 0x55) && (lbal == 0xaa))
540 		return true;
541 
542 	return false;
543 }
544 
545 /* Note: original code is ata_sff_wait_after_reset */
546 static int ep93xx_pata_wait_after_reset(struct ata_link *link,
547 					unsigned int devmask,
548 					unsigned long deadline)
549 {
550 	struct ata_port *ap = link->ap;
551 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
552 	unsigned int dev0 = devmask & (1 << 0);
553 	unsigned int dev1 = devmask & (1 << 1);
554 	int rc, ret = 0;
555 
556 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
557 
558 	/* always check readiness of the master device */
559 	rc = ata_sff_wait_ready(link, deadline);
560 	/*
561 	 * -ENODEV means the odd clown forgot the D7 pulldown resistor
562 	 * and TF status is 0xff, bail out on it too.
563 	 */
564 	if (rc)
565 		return rc;
566 
567 	/*
568 	 * if device 1 was found in ata_devchk, wait for register
569 	 * access briefly, then wait for BSY to clear.
570 	 */
571 	if (dev1) {
572 		int i;
573 
574 		ap->ops->sff_dev_select(ap, 1);
575 
576 		/*
577 		 * Wait for register access.  Some ATAPI devices fail
578 		 * to set nsect/lbal after reset, so don't waste too
579 		 * much time on it.  We're gonna wait for !BSY anyway.
580 		 */
581 		for (i = 0; i < 2; i++) {
582 			u8 nsect, lbal;
583 
584 			nsect = ep93xx_pata_read_reg(drv_data,
585 				IDECTRL_ADDR_NSECT);
586 			lbal = ep93xx_pata_read_reg(drv_data,
587 				IDECTRL_ADDR_LBAL);
588 			if (nsect == 1 && lbal == 1)
589 				break;
590 			msleep(50);	/* give drive a breather */
591 		}
592 
593 		rc = ata_sff_wait_ready(link, deadline);
594 		if (rc) {
595 			if (rc != -ENODEV)
596 				return rc;
597 			ret = rc;
598 		}
599 	}
600 	/* is all this really necessary? */
601 	ap->ops->sff_dev_select(ap, 0);
602 	if (dev1)
603 		ap->ops->sff_dev_select(ap, 1);
604 	if (dev0)
605 		ap->ops->sff_dev_select(ap, 0);
606 
607 	return ret;
608 }
609 
610 /* Note: original code is ata_bus_softreset */
611 static int ep93xx_pata_bus_softreset(struct ata_port *ap, unsigned int devmask,
612 				     unsigned long deadline)
613 {
614 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
615 
616 	ep93xx_pata_write_reg(drv_data, ap->ctl, IDECTRL_ADDR_CTL);
617 	udelay(20);		/* FIXME: flush */
618 	ep93xx_pata_write_reg(drv_data, ap->ctl | ATA_SRST, IDECTRL_ADDR_CTL);
619 	udelay(20);		/* FIXME: flush */
620 	ep93xx_pata_write_reg(drv_data, ap->ctl, IDECTRL_ADDR_CTL);
621 	ap->last_ctl = ap->ctl;
622 
623 	return ep93xx_pata_wait_after_reset(&ap->link, devmask, deadline);
624 }
625 
626 static void ep93xx_pata_release_dma(struct ep93xx_pata_data *drv_data)
627 {
628 	if (drv_data->dma_rx_channel) {
629 		dma_release_channel(drv_data->dma_rx_channel);
630 		drv_data->dma_rx_channel = NULL;
631 	}
632 	if (drv_data->dma_tx_channel) {
633 		dma_release_channel(drv_data->dma_tx_channel);
634 		drv_data->dma_tx_channel = NULL;
635 	}
636 }
637 
638 static bool ep93xx_pata_dma_filter(struct dma_chan *chan, void *filter_param)
639 {
640 	if (ep93xx_dma_chan_is_m2p(chan))
641 		return false;
642 
643 	chan->private = filter_param;
644 	return true;
645 }
646 
647 static void ep93xx_pata_dma_init(struct ep93xx_pata_data *drv_data)
648 {
649 	const struct platform_device *pdev = drv_data->pdev;
650 	dma_cap_mask_t mask;
651 	struct dma_slave_config conf;
652 
653 	dma_cap_zero(mask);
654 	dma_cap_set(DMA_SLAVE, mask);
655 
656 	/*
657 	 * Request two channels for IDE. Another possibility would be
658 	 * to request only one channel, and reprogram it's direction at
659 	 * start of new transfer.
660 	 */
661 	drv_data->dma_rx_data.port = EP93XX_DMA_IDE;
662 	drv_data->dma_rx_data.direction = DMA_DEV_TO_MEM;
663 	drv_data->dma_rx_data.name = "ep93xx-pata-rx";
664 	drv_data->dma_rx_channel = dma_request_channel(mask,
665 		ep93xx_pata_dma_filter, &drv_data->dma_rx_data);
666 	if (!drv_data->dma_rx_channel)
667 		return;
668 
669 	drv_data->dma_tx_data.port = EP93XX_DMA_IDE;
670 	drv_data->dma_tx_data.direction = DMA_MEM_TO_DEV;
671 	drv_data->dma_tx_data.name = "ep93xx-pata-tx";
672 	drv_data->dma_tx_channel = dma_request_channel(mask,
673 		ep93xx_pata_dma_filter, &drv_data->dma_tx_data);
674 	if (!drv_data->dma_tx_channel) {
675 		dma_release_channel(drv_data->dma_rx_channel);
676 		return;
677 	}
678 
679 	/* Configure receive channel direction and source address */
680 	memset(&conf, 0, sizeof(conf));
681 	conf.direction = DMA_DEV_TO_MEM;
682 	conf.src_addr = drv_data->udma_in_phys;
683 	conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
684 	if (dmaengine_slave_config(drv_data->dma_rx_channel, &conf)) {
685 		dev_err(&pdev->dev, "failed to configure rx dma channel\n");
686 		ep93xx_pata_release_dma(drv_data);
687 		return;
688 	}
689 
690 	/* Configure transmit channel direction and destination address */
691 	memset(&conf, 0, sizeof(conf));
692 	conf.direction = DMA_MEM_TO_DEV;
693 	conf.dst_addr = drv_data->udma_out_phys;
694 	conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
695 	if (dmaengine_slave_config(drv_data->dma_tx_channel, &conf)) {
696 		dev_err(&pdev->dev, "failed to configure tx dma channel\n");
697 		ep93xx_pata_release_dma(drv_data);
698 	}
699 }
700 
701 static void ep93xx_pata_dma_start(struct ata_queued_cmd *qc)
702 {
703 	struct dma_async_tx_descriptor *txd;
704 	struct ep93xx_pata_data *drv_data = qc->ap->host->private_data;
705 	void __iomem *base = drv_data->ide_base;
706 	struct ata_device *adev = qc->dev;
707 	u32 v = qc->dma_dir == DMA_TO_DEVICE ? IDEUDMAOP_RWOP : 0;
708 	struct dma_chan *channel = qc->dma_dir == DMA_TO_DEVICE
709 		? drv_data->dma_tx_channel : drv_data->dma_rx_channel;
710 
711 	txd = dmaengine_prep_slave_sg(channel, qc->sg, qc->n_elem, qc->dma_dir,
712 		DMA_CTRL_ACK);
713 	if (!txd) {
714 		dev_err(qc->ap->dev, "failed to prepare slave for sg dma\n");
715 		return;
716 	}
717 	txd->callback = NULL;
718 	txd->callback_param = NULL;
719 
720 	if (dmaengine_submit(txd) < 0) {
721 		dev_err(qc->ap->dev, "failed to submit dma transfer\n");
722 		return;
723 	}
724 	dma_async_issue_pending(channel);
725 
726 	/*
727 	 * When enabling UDMA operation, IDEUDMAOP register needs to be
728 	 * programmed in three step sequence:
729 	 * 1) set or clear the RWOP bit,
730 	 * 2) perform dummy read of the register,
731 	 * 3) set the UEN bit.
732 	 */
733 	writel(v, base + IDEUDMAOP);
734 	readl(base + IDEUDMAOP);
735 	writel(v | IDEUDMAOP_UEN, base + IDEUDMAOP);
736 
737 	writel(IDECFG_IDEEN | IDECFG_UDMA |
738 		((adev->xfer_mode - XFER_UDMA_0) << IDECFG_MODE_SHIFT),
739 		base + IDECFG);
740 }
741 
742 static void ep93xx_pata_dma_stop(struct ata_queued_cmd *qc)
743 {
744 	struct ep93xx_pata_data *drv_data = qc->ap->host->private_data;
745 	void __iomem *base = drv_data->ide_base;
746 
747 	/* terminate all dma transfers, if not yet finished */
748 	dmaengine_terminate_all(drv_data->dma_rx_channel);
749 	dmaengine_terminate_all(drv_data->dma_tx_channel);
750 
751 	/*
752 	 * To properly stop IDE-DMA, IDEUDMAOP register must to be cleared
753 	 * and IDECTRL register must be set to default value.
754 	 */
755 	writel(0, base + IDEUDMAOP);
756 	writel(readl(base + IDECTRL) | IDECTRL_DIOWN | IDECTRL_DIORN |
757 		IDECTRL_CS0N | IDECTRL_CS1N, base + IDECTRL);
758 
759 	ep93xx_pata_enable_pio(drv_data->ide_base,
760 		qc->dev->pio_mode - XFER_PIO_0);
761 
762 	ata_sff_dma_pause(qc->ap);
763 }
764 
765 static void ep93xx_pata_dma_setup(struct ata_queued_cmd *qc)
766 {
767 	qc->ap->ops->sff_exec_command(qc->ap, &qc->tf);
768 }
769 
770 static u8 ep93xx_pata_dma_status(struct ata_port *ap)
771 {
772 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
773 	u32 val = readl(drv_data->ide_base + IDEUDMASTS);
774 
775 	/*
776 	 * UDMA Status Register bits:
777 	 *
778 	 * DMAIDE - DMA request signal from UDMA state machine,
779 	 * INTIDE - INT line generated by UDMA because of errors in the
780 	 *          state machine,
781 	 * SBUSY - UDMA state machine busy, not in idle state,
782 	 * NDO   - error for data-out not completed,
783 	 * NDI   - error for data-in not completed,
784 	 * N4X   - error for data transferred not multiplies of four
785 	 *         32-bit words.
786 	 * (EP93xx UG p27-17)
787 	 */
788 	if (val & IDEUDMASTS_NDO || val & IDEUDMASTS_NDI ||
789 	    val & IDEUDMASTS_N4X || val & IDEUDMASTS_INTIDE)
790 		return ATA_DMA_ERR;
791 
792 	/* read INTRQ (INT[3]) pin input state */
793 	if (readl(drv_data->ide_base + IDECTRL) & IDECTRL_INTRQ)
794 		return ATA_DMA_INTR;
795 
796 	if (val & IDEUDMASTS_SBUSY || val & IDEUDMASTS_DMAIDE)
797 		return ATA_DMA_ACTIVE;
798 
799 	return 0;
800 }
801 
802 /* Note: original code is ata_sff_softreset */
803 static int ep93xx_pata_softreset(struct ata_link *al, unsigned int *classes,
804 				 unsigned long deadline)
805 {
806 	struct ata_port *ap = al->ap;
807 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
808 	unsigned int devmask = 0;
809 	int rc;
810 	u8 err;
811 
812 	/* determine if device 0/1 are present */
813 	if (ep93xx_pata_device_is_present(ap, 0))
814 		devmask |= (1 << 0);
815 	if (slave_possible && ep93xx_pata_device_is_present(ap, 1))
816 		devmask |= (1 << 1);
817 
818 	/* select device 0 again */
819 	ap->ops->sff_dev_select(al->ap, 0);
820 
821 	/* issue bus reset */
822 	rc = ep93xx_pata_bus_softreset(ap, devmask, deadline);
823 	/* if link is ocuppied, -ENODEV too is an error */
824 	if (rc && (rc != -ENODEV || sata_scr_valid(al))) {
825 		ata_link_err(al, "SRST failed (errno=%d)\n", rc);
826 		return rc;
827 	}
828 
829 	/* determine by signature whether we have ATA or ATAPI devices */
830 	classes[0] = ata_sff_dev_classify(&al->device[0], devmask & (1 << 0),
831 					  &err);
832 	if (slave_possible && err != 0x81)
833 		classes[1] = ata_sff_dev_classify(&al->device[1],
834 						  devmask & (1 << 1), &err);
835 
836 	return 0;
837 }
838 
839 /* Note: original code is ata_sff_drain_fifo */
840 static void ep93xx_pata_drain_fifo(struct ata_queued_cmd *qc)
841 {
842 	int count;
843 	struct ata_port *ap;
844 	struct ep93xx_pata_data *drv_data;
845 
846 	/* We only need to flush incoming data when a command was running */
847 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
848 		return;
849 
850 	ap = qc->ap;
851 	drv_data = ap->host->private_data;
852 	/* Drain up to 64K of data before we give up this recovery method */
853 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
854 		     && count < 65536; count += 2)
855 		ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_DATA);
856 
857 	/* Can become DEBUG later */
858 	if (count)
859 		ata_port_dbg(ap, "drained %d bytes to clear DRQ.\n", count);
860 
861 }
862 
863 static int ep93xx_pata_port_start(struct ata_port *ap)
864 {
865 	struct ep93xx_pata_data *drv_data = ap->host->private_data;
866 
867 	/*
868 	 * Set timings to safe values at startup (= number of ns from ATA
869 	 * specification), we'll switch to properly calculated values later.
870 	 */
871 	drv_data->t = *ata_timing_find_mode(XFER_PIO_0);
872 	return 0;
873 }
874 
875 static struct scsi_host_template ep93xx_pata_sht = {
876 	ATA_BASE_SHT(DRV_NAME),
877 	/* ep93xx dma implementation limit */
878 	.sg_tablesize		= 32,
879 	/* ep93xx dma can't transfer 65536 bytes at once */
880 	.dma_boundary		= 0x7fff,
881 };
882 
883 static struct ata_port_operations ep93xx_pata_port_ops = {
884 	.inherits		= &ata_bmdma_port_ops,
885 
886 	.qc_prep		= ata_noop_qc_prep,
887 
888 	.softreset		= ep93xx_pata_softreset,
889 	.hardreset		= ATA_OP_NULL,
890 
891 	.sff_dev_select		= ep93xx_pata_dev_select,
892 	.sff_set_devctl		= ep93xx_pata_set_devctl,
893 	.sff_check_status	= ep93xx_pata_check_status,
894 	.sff_check_altstatus	= ep93xx_pata_check_altstatus,
895 	.sff_tf_load		= ep93xx_pata_tf_load,
896 	.sff_tf_read		= ep93xx_pata_tf_read,
897 	.sff_exec_command	= ep93xx_pata_exec_command,
898 	.sff_data_xfer		= ep93xx_pata_data_xfer,
899 	.sff_drain_fifo		= ep93xx_pata_drain_fifo,
900 	.sff_irq_clear		= ATA_OP_NULL,
901 
902 	.set_piomode		= ep93xx_pata_set_piomode,
903 
904 	.bmdma_setup		= ep93xx_pata_dma_setup,
905 	.bmdma_start		= ep93xx_pata_dma_start,
906 	.bmdma_stop		= ep93xx_pata_dma_stop,
907 	.bmdma_status		= ep93xx_pata_dma_status,
908 
909 	.cable_detect		= ata_cable_unknown,
910 	.port_start		= ep93xx_pata_port_start,
911 };
912 
913 static int ep93xx_pata_probe(struct platform_device *pdev)
914 {
915 	struct ep93xx_pata_data *drv_data;
916 	struct ata_host *host;
917 	struct ata_port *ap;
918 	int irq;
919 	struct resource *mem_res;
920 	void __iomem *ide_base;
921 	int err;
922 
923 	err = ep93xx_ide_acquire_gpio(pdev);
924 	if (err)
925 		return err;
926 
927 	/* INT[3] (IRQ_EP93XX_EXT3) line connected as pull down */
928 	irq = platform_get_irq(pdev, 0);
929 	if (irq < 0) {
930 		err = -ENXIO;
931 		goto err_rel_gpio;
932 	}
933 
934 	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
935 	ide_base = devm_ioremap_resource(&pdev->dev, mem_res);
936 	if (IS_ERR(ide_base)) {
937 		err = PTR_ERR(ide_base);
938 		goto err_rel_gpio;
939 	}
940 
941 	drv_data = devm_kzalloc(&pdev->dev, sizeof(*drv_data), GFP_KERNEL);
942 	if (!drv_data) {
943 		err = -ENXIO;
944 		goto err_rel_gpio;
945 	}
946 
947 	drv_data->pdev = pdev;
948 	drv_data->ide_base = ide_base;
949 	drv_data->udma_in_phys = mem_res->start + IDEUDMADATAIN;
950 	drv_data->udma_out_phys = mem_res->start + IDEUDMADATAOUT;
951 	ep93xx_pata_dma_init(drv_data);
952 
953 	/* allocate host */
954 	host = ata_host_alloc(&pdev->dev, 1);
955 	if (!host) {
956 		err = -ENXIO;
957 		goto err_rel_dma;
958 	}
959 
960 	ep93xx_pata_clear_regs(ide_base);
961 
962 	host->private_data = drv_data;
963 
964 	ap = host->ports[0];
965 	ap->dev = &pdev->dev;
966 	ap->ops = &ep93xx_pata_port_ops;
967 	ap->flags |= ATA_FLAG_SLAVE_POSS;
968 	ap->pio_mask = ATA_PIO4;
969 
970 	/*
971 	 * Maximum UDMA modes:
972 	 * EP931x rev.E0 - UDMA2
973 	 * EP931x rev.E1 - UDMA3
974 	 * EP931x rev.E2 - UDMA4
975 	 *
976 	 * MWDMA support was removed from EP931x rev.E2,
977 	 * so this driver supports only UDMA modes.
978 	 */
979 	if (drv_data->dma_rx_channel && drv_data->dma_tx_channel) {
980 		int chip_rev = ep93xx_chip_revision();
981 
982 		if (chip_rev == EP93XX_CHIP_REV_E1)
983 			ap->udma_mask = ATA_UDMA3;
984 		else if (chip_rev == EP93XX_CHIP_REV_E2)
985 			ap->udma_mask = ATA_UDMA4;
986 		else
987 			ap->udma_mask = ATA_UDMA2;
988 	}
989 
990 	/* defaults, pio 0 */
991 	ep93xx_pata_enable_pio(ide_base, 0);
992 
993 	dev_info(&pdev->dev, "version " DRV_VERSION "\n");
994 
995 	/* activate host */
996 	err = ata_host_activate(host, irq, ata_bmdma_interrupt, 0,
997 		&ep93xx_pata_sht);
998 	if (err == 0)
999 		return 0;
1000 
1001 err_rel_dma:
1002 	ep93xx_pata_release_dma(drv_data);
1003 err_rel_gpio:
1004 	ep93xx_ide_release_gpio(pdev);
1005 	return err;
1006 }
1007 
1008 static int ep93xx_pata_remove(struct platform_device *pdev)
1009 {
1010 	struct ata_host *host = platform_get_drvdata(pdev);
1011 	struct ep93xx_pata_data *drv_data = host->private_data;
1012 
1013 	ata_host_detach(host);
1014 	ep93xx_pata_release_dma(drv_data);
1015 	ep93xx_pata_clear_regs(drv_data->ide_base);
1016 	ep93xx_ide_release_gpio(pdev);
1017 	return 0;
1018 }
1019 
1020 static struct platform_driver ep93xx_pata_platform_driver = {
1021 	.driver = {
1022 		.name = DRV_NAME,
1023 	},
1024 	.probe = ep93xx_pata_probe,
1025 	.remove = ep93xx_pata_remove,
1026 };
1027 
1028 module_platform_driver(ep93xx_pata_platform_driver);
1029 
1030 MODULE_AUTHOR("Alessandro Zummo, Lennert Buytenhek, Joao Ramos, "
1031 		"Bartlomiej Zolnierkiewicz, Rafal Prylowski");
1032 MODULE_DESCRIPTION("low-level driver for cirrus ep93xx IDE controller");
1033 MODULE_LICENSE("GPL");
1034 MODULE_VERSION(DRV_VERSION);
1035 MODULE_ALIAS("platform:pata_ep93xx");
1036