xref: /openbmc/linux/drivers/ata/libata-sff.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-sff.c - helper library for PCI IDE BMDMA
4  *
5  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2006 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23 
24 static struct workqueue_struct *ata_sff_wq;
25 
26 const struct ata_port_operations ata_sff_port_ops = {
27 	.inherits		= &ata_base_port_ops,
28 
29 	.qc_prep		= ata_noop_qc_prep,
30 	.qc_issue		= ata_sff_qc_issue,
31 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32 
33 	.freeze			= ata_sff_freeze,
34 	.thaw			= ata_sff_thaw,
35 	.prereset		= ata_sff_prereset,
36 	.softreset		= ata_sff_softreset,
37 	.hardreset		= sata_sff_hardreset,
38 	.postreset		= ata_sff_postreset,
39 	.error_handler		= ata_sff_error_handler,
40 
41 	.sff_dev_select		= ata_sff_dev_select,
42 	.sff_check_status	= ata_sff_check_status,
43 	.sff_tf_load		= ata_sff_tf_load,
44 	.sff_tf_read		= ata_sff_tf_read,
45 	.sff_exec_command	= ata_sff_exec_command,
46 	.sff_data_xfer		= ata_sff_data_xfer,
47 	.sff_drain_fifo		= ata_sff_drain_fifo,
48 
49 	.lost_interrupt		= ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52 
53 /**
54  *	ata_sff_check_status - Read device status reg & clear interrupt
55  *	@ap: port where the device is
56  *
57  *	Reads ATA taskfile status register for currently-selected device
58  *	and return its value. This also clears pending interrupts
59  *      from this device
60  *
61  *	LOCKING:
62  *	Inherited from caller.
63  */
64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 	return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69 
70 /**
71  *	ata_sff_altstatus - Read device alternate status reg
72  *	@ap: port where the device is
73  *	@status: pointer to a status value
74  *
75  *	Reads ATA alternate status register for currently-selected device
76  *	and return its value.
77  *
78  *	RETURN:
79  *	true if the register exists, false if not.
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 	u8 tmp;
87 
88 	if (ap->ops->sff_check_altstatus) {
89 		tmp = ap->ops->sff_check_altstatus(ap);
90 		goto read;
91 	}
92 	if (ap->ioaddr.altstatus_addr) {
93 		tmp = ioread8(ap->ioaddr.altstatus_addr);
94 		goto read;
95 	}
96 	return false;
97 
98 read:
99 	if (status)
100 		*status = tmp;
101 	return true;
102 }
103 
104 /**
105  *	ata_sff_irq_status - Check if the device is busy
106  *	@ap: port where the device is
107  *
108  *	Determine if the port is currently busy. Uses altstatus
109  *	if available in order to avoid clearing shared IRQ status
110  *	when finding an IRQ source. Non ctl capable devices don't
111  *	share interrupt lines fortunately for us.
112  *
113  *	LOCKING:
114  *	Inherited from caller.
115  */
116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 	u8 status;
119 
120 	/* Not us: We are busy */
121 	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 		return status;
123 	/* Clear INTRQ latch */
124 	status = ap->ops->sff_check_status(ap);
125 	return status;
126 }
127 
128 /**
129  *	ata_sff_sync - Flush writes
130  *	@ap: Port to wait for.
131  *
132  *	CAUTION:
133  *	If we have an mmio device with no ctl and no altstatus
134  *	method this will fail. No such devices are known to exist.
135  *
136  *	LOCKING:
137  *	Inherited from caller.
138  */
139 
140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 	ata_sff_altstatus(ap, NULL);
143 }
144 
145 /**
146  *	ata_sff_pause		-	Flush writes and wait 400nS
147  *	@ap: Port to pause for.
148  *
149  *	CAUTION:
150  *	If we have an mmio device with no ctl and no altstatus
151  *	method this will fail. No such devices are known to exist.
152  *
153  *	LOCKING:
154  *	Inherited from caller.
155  */
156 
157 void ata_sff_pause(struct ata_port *ap)
158 {
159 	ata_sff_sync(ap);
160 	ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163 
164 /**
165  *	ata_sff_dma_pause	-	Pause before commencing DMA
166  *	@ap: Port to pause for.
167  *
168  *	Perform I/O fencing and ensure sufficient cycle delays occur
169  *	for the HDMA1:0 transition
170  */
171 
172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 	/*
175 	 * An altstatus read will cause the needed delay without
176 	 * messing up the IRQ status
177 	 */
178 	if (ata_sff_altstatus(ap, NULL))
179 		return;
180 	/* There are no DMA controllers without ctl. BUG here to ensure
181 	   we never violate the HDMA1:0 transition timing and risk
182 	   corruption. */
183 	BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186 
187 static int ata_sff_check_ready(struct ata_link *link)
188 {
189 	u8 status = link->ap->ops->sff_check_status(link->ap);
190 
191 	return ata_check_ready(status);
192 }
193 
194 /**
195  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
196  *	@link: SFF link to wait ready status for
197  *	@deadline: deadline jiffies for the operation
198  *
199  *	Sleep until ATA Status register bit BSY clears, or timeout
200  *	occurs.
201  *
202  *	LOCKING:
203  *	Kernel thread context (may sleep).
204  *
205  *	RETURNS:
206  *	0 on success, -errno otherwise.
207  */
208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209 {
210 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
211 }
212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213 
214 /**
215  *	ata_sff_set_devctl - Write device control reg
216  *	@ap: port where the device is
217  *	@ctl: value to write
218  *
219  *	Writes ATA device control register.
220  *
221  *	RETURN:
222  *	true if the register exists, false if not.
223  *
224  *	LOCKING:
225  *	Inherited from caller.
226  */
227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228 {
229 	if (ap->ops->sff_set_devctl) {
230 		ap->ops->sff_set_devctl(ap, ctl);
231 		return true;
232 	}
233 	if (ap->ioaddr.ctl_addr) {
234 		iowrite8(ctl, ap->ioaddr.ctl_addr);
235 		return true;
236 	}
237 
238 	return false;
239 }
240 
241 /**
242  *	ata_sff_dev_select - Select device 0/1 on ATA bus
243  *	@ap: ATA channel to manipulate
244  *	@device: ATA device (numbered from zero) to select
245  *
246  *	Use the method defined in the ATA specification to
247  *	make either device 0, or device 1, active on the
248  *	ATA channel.  Works with both PIO and MMIO.
249  *
250  *	May be used as the dev_select() entry in ata_port_operations.
251  *
252  *	LOCKING:
253  *	caller.
254  */
255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256 {
257 	u8 tmp;
258 
259 	if (device == 0)
260 		tmp = ATA_DEVICE_OBS;
261 	else
262 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
263 
264 	iowrite8(tmp, ap->ioaddr.device_addr);
265 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
266 }
267 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268 
269 /**
270  *	ata_dev_select - Select device 0/1 on ATA bus
271  *	@ap: ATA channel to manipulate
272  *	@device: ATA device (numbered from zero) to select
273  *	@wait: non-zero to wait for Status register BSY bit to clear
274  *	@can_sleep: non-zero if context allows sleeping
275  *
276  *	Use the method defined in the ATA specification to
277  *	make either device 0, or device 1, active on the
278  *	ATA channel.
279  *
280  *	This is a high-level version of ata_sff_dev_select(), which
281  *	additionally provides the services of inserting the proper
282  *	pauses and status polling, where needed.
283  *
284  *	LOCKING:
285  *	caller.
286  */
287 static void ata_dev_select(struct ata_port *ap, unsigned int device,
288 			   unsigned int wait, unsigned int can_sleep)
289 {
290 	if (wait)
291 		ata_wait_idle(ap);
292 
293 	ap->ops->sff_dev_select(ap, device);
294 
295 	if (wait) {
296 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297 			ata_msleep(ap, 150);
298 		ata_wait_idle(ap);
299 	}
300 }
301 
302 /**
303  *	ata_sff_irq_on - Enable interrupts on a port.
304  *	@ap: Port on which interrupts are enabled.
305  *
306  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
307  *	wait for idle, clear any pending interrupts.
308  *
309  *	Note: may NOT be used as the sff_irq_on() entry in
310  *	ata_port_operations.
311  *
312  *	LOCKING:
313  *	Inherited from caller.
314  */
315 void ata_sff_irq_on(struct ata_port *ap)
316 {
317 	if (ap->ops->sff_irq_on) {
318 		ap->ops->sff_irq_on(ap);
319 		return;
320 	}
321 
322 	ap->ctl &= ~ATA_NIEN;
323 	ap->last_ctl = ap->ctl;
324 
325 	ata_sff_set_devctl(ap, ap->ctl);
326 	ata_wait_idle(ap);
327 
328 	if (ap->ops->sff_irq_clear)
329 		ap->ops->sff_irq_clear(ap);
330 }
331 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332 
333 /**
334  *	ata_sff_tf_load - send taskfile registers to host controller
335  *	@ap: Port to which output is sent
336  *	@tf: ATA taskfile register set
337  *
338  *	Outputs ATA taskfile to standard ATA host controller.
339  *
340  *	LOCKING:
341  *	Inherited from caller.
342  */
343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344 {
345 	struct ata_ioports *ioaddr = &ap->ioaddr;
346 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347 
348 	if (tf->ctl != ap->last_ctl) {
349 		if (ioaddr->ctl_addr)
350 			iowrite8(tf->ctl, ioaddr->ctl_addr);
351 		ap->last_ctl = tf->ctl;
352 		ata_wait_idle(ap);
353 	}
354 
355 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356 		WARN_ON_ONCE(!ioaddr->ctl_addr);
357 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
358 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362 	}
363 
364 	if (is_addr) {
365 		iowrite8(tf->feature, ioaddr->feature_addr);
366 		iowrite8(tf->nsect, ioaddr->nsect_addr);
367 		iowrite8(tf->lbal, ioaddr->lbal_addr);
368 		iowrite8(tf->lbam, ioaddr->lbam_addr);
369 		iowrite8(tf->lbah, ioaddr->lbah_addr);
370 	}
371 
372 	if (tf->flags & ATA_TFLAG_DEVICE)
373 		iowrite8(tf->device, ioaddr->device_addr);
374 
375 	ata_wait_idle(ap);
376 }
377 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378 
379 /**
380  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
381  *	@ap: Port from which input is read
382  *	@tf: ATA taskfile register set for storing input
383  *
384  *	Reads ATA taskfile registers for currently-selected device
385  *	into @tf. Assumes the device has a fully SFF compliant task file
386  *	layout and behaviour. If you device does not (eg has a different
387  *	status method) then you will need to provide a replacement tf_read
388  *
389  *	LOCKING:
390  *	Inherited from caller.
391  */
392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393 {
394 	struct ata_ioports *ioaddr = &ap->ioaddr;
395 
396 	tf->status = ata_sff_check_status(ap);
397 	tf->error = ioread8(ioaddr->error_addr);
398 	tf->nsect = ioread8(ioaddr->nsect_addr);
399 	tf->lbal = ioread8(ioaddr->lbal_addr);
400 	tf->lbam = ioread8(ioaddr->lbam_addr);
401 	tf->lbah = ioread8(ioaddr->lbah_addr);
402 	tf->device = ioread8(ioaddr->device_addr);
403 
404 	if (tf->flags & ATA_TFLAG_LBA48) {
405 		if (likely(ioaddr->ctl_addr)) {
406 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407 			tf->hob_feature = ioread8(ioaddr->error_addr);
408 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412 			iowrite8(tf->ctl, ioaddr->ctl_addr);
413 			ap->last_ctl = tf->ctl;
414 		} else
415 			WARN_ON_ONCE(1);
416 	}
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419 
420 /**
421  *	ata_sff_exec_command - issue ATA command to host controller
422  *	@ap: port to which command is being issued
423  *	@tf: ATA taskfile register set
424  *
425  *	Issues ATA command, with proper synchronization with interrupt
426  *	handler / other threads.
427  *
428  *	LOCKING:
429  *	spin_lock_irqsave(host lock)
430  */
431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432 {
433 	iowrite8(tf->command, ap->ioaddr.command_addr);
434 	ata_sff_pause(ap);
435 }
436 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437 
438 /**
439  *	ata_tf_to_host - issue ATA taskfile to host controller
440  *	@ap: port to which command is being issued
441  *	@tf: ATA taskfile register set
442  *	@tag: tag of the associated command
443  *
444  *	Issues ATA taskfile register set to ATA host controller,
445  *	with proper synchronization with interrupt handler and
446  *	other threads.
447  *
448  *	LOCKING:
449  *	spin_lock_irqsave(host lock)
450  */
451 static inline void ata_tf_to_host(struct ata_port *ap,
452 				  const struct ata_taskfile *tf,
453 				  unsigned int tag)
454 {
455 	trace_ata_tf_load(ap, tf);
456 	ap->ops->sff_tf_load(ap, tf);
457 	trace_ata_exec_command(ap, tf, tag);
458 	ap->ops->sff_exec_command(ap, tf);
459 }
460 
461 /**
462  *	ata_sff_data_xfer - Transfer data by PIO
463  *	@qc: queued command
464  *	@buf: data buffer
465  *	@buflen: buffer length
466  *	@rw: read/write
467  *
468  *	Transfer data from/to the device data register by PIO.
469  *
470  *	LOCKING:
471  *	Inherited from caller.
472  *
473  *	RETURNS:
474  *	Bytes consumed.
475  */
476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477 			       unsigned int buflen, int rw)
478 {
479 	struct ata_port *ap = qc->dev->link->ap;
480 	void __iomem *data_addr = ap->ioaddr.data_addr;
481 	unsigned int words = buflen >> 1;
482 
483 	/* Transfer multiple of 2 bytes */
484 	if (rw == READ)
485 		ioread16_rep(data_addr, buf, words);
486 	else
487 		iowrite16_rep(data_addr, buf, words);
488 
489 	/* Transfer trailing byte, if any. */
490 	if (unlikely(buflen & 0x01)) {
491 		unsigned char pad[2] = { };
492 
493 		/* Point buf to the tail of buffer */
494 		buf += buflen - 1;
495 
496 		/*
497 		 * Use io*16_rep() accessors here as well to avoid pointlessly
498 		 * swapping bytes to and from on the big endian machines...
499 		 */
500 		if (rw == READ) {
501 			ioread16_rep(data_addr, pad, 1);
502 			*buf = pad[0];
503 		} else {
504 			pad[0] = *buf;
505 			iowrite16_rep(data_addr, pad, 1);
506 		}
507 		words++;
508 	}
509 
510 	return words << 1;
511 }
512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513 
514 /**
515  *	ata_sff_data_xfer32 - Transfer data by PIO
516  *	@qc: queued command
517  *	@buf: data buffer
518  *	@buflen: buffer length
519  *	@rw: read/write
520  *
521  *	Transfer data from/to the device data register by PIO using 32bit
522  *	I/O operations.
523  *
524  *	LOCKING:
525  *	Inherited from caller.
526  *
527  *	RETURNS:
528  *	Bytes consumed.
529  */
530 
531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532 			       unsigned int buflen, int rw)
533 {
534 	struct ata_device *dev = qc->dev;
535 	struct ata_port *ap = dev->link->ap;
536 	void __iomem *data_addr = ap->ioaddr.data_addr;
537 	unsigned int words = buflen >> 2;
538 	int slop = buflen & 3;
539 
540 	if (!(ap->pflags & ATA_PFLAG_PIO32))
541 		return ata_sff_data_xfer(qc, buf, buflen, rw);
542 
543 	/* Transfer multiple of 4 bytes */
544 	if (rw == READ)
545 		ioread32_rep(data_addr, buf, words);
546 	else
547 		iowrite32_rep(data_addr, buf, words);
548 
549 	/* Transfer trailing bytes, if any */
550 	if (unlikely(slop)) {
551 		unsigned char pad[4] = { };
552 
553 		/* Point buf to the tail of buffer */
554 		buf += buflen - slop;
555 
556 		/*
557 		 * Use io*_rep() accessors here as well to avoid pointlessly
558 		 * swapping bytes to and from on the big endian machines...
559 		 */
560 		if (rw == READ) {
561 			if (slop < 3)
562 				ioread16_rep(data_addr, pad, 1);
563 			else
564 				ioread32_rep(data_addr, pad, 1);
565 			memcpy(buf, pad, slop);
566 		} else {
567 			memcpy(pad, buf, slop);
568 			if (slop < 3)
569 				iowrite16_rep(data_addr, pad, 1);
570 			else
571 				iowrite32_rep(data_addr, pad, 1);
572 		}
573 	}
574 	return (buflen + 1) & ~1;
575 }
576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577 
578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579 		unsigned int offset, size_t xfer_size)
580 {
581 	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582 	unsigned char *buf;
583 
584 	buf = kmap_atomic(page);
585 	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586 	kunmap_atomic(buf);
587 
588 	if (!do_write && !PageSlab(page))
589 		flush_dcache_page(page);
590 }
591 
592 /**
593  *	ata_pio_sector - Transfer a sector of data.
594  *	@qc: Command on going
595  *
596  *	Transfer qc->sect_size bytes of data from/to the ATA device.
597  *
598  *	LOCKING:
599  *	Inherited from caller.
600  */
601 static void ata_pio_sector(struct ata_queued_cmd *qc)
602 {
603 	struct ata_port *ap = qc->ap;
604 	struct page *page;
605 	unsigned int offset;
606 
607 	if (!qc->cursg) {
608 		qc->curbytes = qc->nbytes;
609 		return;
610 	}
611 	if (qc->curbytes == qc->nbytes - qc->sect_size)
612 		ap->hsm_task_state = HSM_ST_LAST;
613 
614 	page = sg_page(qc->cursg);
615 	offset = qc->cursg->offset + qc->cursg_ofs;
616 
617 	/* get the current page and offset */
618 	page = nth_page(page, (offset >> PAGE_SHIFT));
619 	offset %= PAGE_SIZE;
620 
621 	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622 
623 	/*
624 	 * Split the transfer when it splits a page boundary.  Note that the
625 	 * split still has to be dword aligned like all ATA data transfers.
626 	 */
627 	WARN_ON_ONCE(offset % 4);
628 	if (offset + qc->sect_size > PAGE_SIZE) {
629 		unsigned int split_len = PAGE_SIZE - offset;
630 
631 		ata_pio_xfer(qc, page, offset, split_len);
632 		ata_pio_xfer(qc, nth_page(page, 1), 0,
633 			     qc->sect_size - split_len);
634 	} else {
635 		ata_pio_xfer(qc, page, offset, qc->sect_size);
636 	}
637 
638 	qc->curbytes += qc->sect_size;
639 	qc->cursg_ofs += qc->sect_size;
640 
641 	if (qc->cursg_ofs == qc->cursg->length) {
642 		qc->cursg = sg_next(qc->cursg);
643 		if (!qc->cursg)
644 			ap->hsm_task_state = HSM_ST_LAST;
645 		qc->cursg_ofs = 0;
646 	}
647 }
648 
649 /**
650  *	ata_pio_sectors - Transfer one or many sectors.
651  *	@qc: Command on going
652  *
653  *	Transfer one or many sectors of data from/to the
654  *	ATA device for the DRQ request.
655  *
656  *	LOCKING:
657  *	Inherited from caller.
658  */
659 static void ata_pio_sectors(struct ata_queued_cmd *qc)
660 {
661 	if (is_multi_taskfile(&qc->tf)) {
662 		/* READ/WRITE MULTIPLE */
663 		unsigned int nsect;
664 
665 		WARN_ON_ONCE(qc->dev->multi_count == 0);
666 
667 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668 			    qc->dev->multi_count);
669 		while (nsect--)
670 			ata_pio_sector(qc);
671 	} else
672 		ata_pio_sector(qc);
673 
674 	ata_sff_sync(qc->ap); /* flush */
675 }
676 
677 /**
678  *	atapi_send_cdb - Write CDB bytes to hardware
679  *	@ap: Port to which ATAPI device is attached.
680  *	@qc: Taskfile currently active
681  *
682  *	When device has indicated its readiness to accept
683  *	a CDB, this function is called.  Send the CDB.
684  *
685  *	LOCKING:
686  *	caller.
687  */
688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689 {
690 	/* send SCSI cdb */
691 	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
693 
694 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695 	ata_sff_sync(ap);
696 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
697 	   or is bmdma_start guaranteed to do it ? */
698 	switch (qc->tf.protocol) {
699 	case ATAPI_PROT_PIO:
700 		ap->hsm_task_state = HSM_ST;
701 		break;
702 	case ATAPI_PROT_NODATA:
703 		ap->hsm_task_state = HSM_ST_LAST;
704 		break;
705 #ifdef CONFIG_ATA_BMDMA
706 	case ATAPI_PROT_DMA:
707 		ap->hsm_task_state = HSM_ST_LAST;
708 		/* initiate bmdma */
709 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710 		ap->ops->bmdma_start(qc);
711 		break;
712 #endif /* CONFIG_ATA_BMDMA */
713 	default:
714 		BUG();
715 	}
716 }
717 
718 /**
719  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
720  *	@qc: Command on going
721  *	@bytes: number of bytes
722  *
723  *	Transfer data from/to the ATAPI device.
724  *
725  *	LOCKING:
726  *	Inherited from caller.
727  *
728  */
729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730 {
731 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732 	struct ata_port *ap = qc->ap;
733 	struct ata_device *dev = qc->dev;
734 	struct ata_eh_info *ehi = &dev->link->eh_info;
735 	struct scatterlist *sg;
736 	struct page *page;
737 	unsigned char *buf;
738 	unsigned int offset, count, consumed;
739 
740 next_sg:
741 	sg = qc->cursg;
742 	if (unlikely(!sg)) {
743 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744 				  "buf=%u cur=%u bytes=%u",
745 				  qc->nbytes, qc->curbytes, bytes);
746 		return -1;
747 	}
748 
749 	page = sg_page(sg);
750 	offset = sg->offset + qc->cursg_ofs;
751 
752 	/* get the current page and offset */
753 	page = nth_page(page, (offset >> PAGE_SHIFT));
754 	offset %= PAGE_SIZE;
755 
756 	/* don't overrun current sg */
757 	count = min(sg->length - qc->cursg_ofs, bytes);
758 
759 	/* don't cross page boundaries */
760 	count = min(count, (unsigned int)PAGE_SIZE - offset);
761 
762 	trace_atapi_pio_transfer_data(qc, offset, count);
763 
764 	/* do the actual data transfer */
765 	buf = kmap_atomic(page);
766 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767 	kunmap_atomic(buf);
768 
769 	bytes -= min(bytes, consumed);
770 	qc->curbytes += count;
771 	qc->cursg_ofs += count;
772 
773 	if (qc->cursg_ofs == sg->length) {
774 		qc->cursg = sg_next(qc->cursg);
775 		qc->cursg_ofs = 0;
776 	}
777 
778 	/*
779 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
780 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781 	 * check correctly as it doesn't know if it is the last request being
782 	 * made. Somebody should implement a proper sanity check.
783 	 */
784 	if (bytes)
785 		goto next_sg;
786 	return 0;
787 }
788 
789 /**
790  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
791  *	@qc: Command on going
792  *
793  *	Transfer Transfer data from/to the ATAPI device.
794  *
795  *	LOCKING:
796  *	Inherited from caller.
797  */
798 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799 {
800 	struct ata_port *ap = qc->ap;
801 	struct ata_device *dev = qc->dev;
802 	struct ata_eh_info *ehi = &dev->link->eh_info;
803 	unsigned int ireason, bc_lo, bc_hi, bytes;
804 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805 
806 	/* Abuse qc->result_tf for temp storage of intermediate TF
807 	 * here to save some kernel stack usage.
808 	 * For normal completion, qc->result_tf is not relevant. For
809 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
810 	 * So, the correctness of qc->result_tf is not affected.
811 	 */
812 	ap->ops->sff_tf_read(ap, &qc->result_tf);
813 	ireason = qc->result_tf.nsect;
814 	bc_lo = qc->result_tf.lbam;
815 	bc_hi = qc->result_tf.lbah;
816 	bytes = (bc_hi << 8) | bc_lo;
817 
818 	/* shall be cleared to zero, indicating xfer of data */
819 	if (unlikely(ireason & ATAPI_COD))
820 		goto atapi_check;
821 
822 	/* make sure transfer direction matches expected */
823 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824 	if (unlikely(do_write != i_write))
825 		goto atapi_check;
826 
827 	if (unlikely(!bytes))
828 		goto atapi_check;
829 
830 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
831 		goto err_out;
832 	ata_sff_sync(ap); /* flush */
833 
834 	return;
835 
836  atapi_check:
837 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838 			  ireason, bytes);
839  err_out:
840 	qc->err_mask |= AC_ERR_HSM;
841 	ap->hsm_task_state = HSM_ST_ERR;
842 }
843 
844 /**
845  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846  *	@ap: the target ata_port
847  *	@qc: qc on going
848  *
849  *	RETURNS:
850  *	1 if ok in workqueue, 0 otherwise.
851  */
852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853 						struct ata_queued_cmd *qc)
854 {
855 	if (qc->tf.flags & ATA_TFLAG_POLLING)
856 		return 1;
857 
858 	if (ap->hsm_task_state == HSM_ST_FIRST) {
859 		if (qc->tf.protocol == ATA_PROT_PIO &&
860 		   (qc->tf.flags & ATA_TFLAG_WRITE))
861 		    return 1;
862 
863 		if (ata_is_atapi(qc->tf.protocol) &&
864 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865 			return 1;
866 	}
867 
868 	return 0;
869 }
870 
871 /**
872  *	ata_hsm_qc_complete - finish a qc running on standard HSM
873  *	@qc: Command to complete
874  *	@in_wq: 1 if called from workqueue, 0 otherwise
875  *
876  *	Finish @qc which is running on standard HSM.
877  *
878  *	LOCKING:
879  *	If @in_wq is zero, spin_lock_irqsave(host lock).
880  *	Otherwise, none on entry and grabs host lock.
881  */
882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883 {
884 	struct ata_port *ap = qc->ap;
885 
886 	if (ap->ops->error_handler) {
887 		if (in_wq) {
888 			/* EH might have kicked in while host lock is
889 			 * released.
890 			 */
891 			qc = ata_qc_from_tag(ap, qc->tag);
892 			if (qc) {
893 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
894 					ata_sff_irq_on(ap);
895 					ata_qc_complete(qc);
896 				} else
897 					ata_port_freeze(ap);
898 			}
899 		} else {
900 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
901 				ata_qc_complete(qc);
902 			else
903 				ata_port_freeze(ap);
904 		}
905 	} else {
906 		if (in_wq) {
907 			ata_sff_irq_on(ap);
908 			ata_qc_complete(qc);
909 		} else
910 			ata_qc_complete(qc);
911 	}
912 }
913 
914 /**
915  *	ata_sff_hsm_move - move the HSM to the next state.
916  *	@ap: the target ata_port
917  *	@qc: qc on going
918  *	@status: current device status
919  *	@in_wq: 1 if called from workqueue, 0 otherwise
920  *
921  *	RETURNS:
922  *	1 when poll next status needed, 0 otherwise.
923  */
924 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
925 		     u8 status, int in_wq)
926 {
927 	struct ata_link *link = qc->dev->link;
928 	struct ata_eh_info *ehi = &link->eh_info;
929 	int poll_next;
930 
931 	lockdep_assert_held(ap->lock);
932 
933 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
934 
935 	/* Make sure ata_sff_qc_issue() does not throw things
936 	 * like DMA polling into the workqueue. Notice that
937 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
938 	 */
939 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
940 
941 fsm_start:
942 	trace_ata_sff_hsm_state(qc, status);
943 
944 	switch (ap->hsm_task_state) {
945 	case HSM_ST_FIRST:
946 		/* Send first data block or PACKET CDB */
947 
948 		/* If polling, we will stay in the work queue after
949 		 * sending the data. Otherwise, interrupt handler
950 		 * takes over after sending the data.
951 		 */
952 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
953 
954 		/* check device status */
955 		if (unlikely((status & ATA_DRQ) == 0)) {
956 			/* handle BSY=0, DRQ=0 as error */
957 			if (likely(status & (ATA_ERR | ATA_DF)))
958 				/* device stops HSM for abort/error */
959 				qc->err_mask |= AC_ERR_DEV;
960 			else {
961 				/* HSM violation. Let EH handle this */
962 				ata_ehi_push_desc(ehi,
963 					"ST_FIRST: !(DRQ|ERR|DF)");
964 				qc->err_mask |= AC_ERR_HSM;
965 			}
966 
967 			ap->hsm_task_state = HSM_ST_ERR;
968 			goto fsm_start;
969 		}
970 
971 		/* Device should not ask for data transfer (DRQ=1)
972 		 * when it finds something wrong.
973 		 * We ignore DRQ here and stop the HSM by
974 		 * changing hsm_task_state to HSM_ST_ERR and
975 		 * let the EH abort the command or reset the device.
976 		 */
977 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
978 			/* Some ATAPI tape drives forget to clear the ERR bit
979 			 * when doing the next command (mostly request sense).
980 			 * We ignore ERR here to workaround and proceed sending
981 			 * the CDB.
982 			 */
983 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
984 				ata_ehi_push_desc(ehi, "ST_FIRST: "
985 					"DRQ=1 with device error, "
986 					"dev_stat 0x%X", status);
987 				qc->err_mask |= AC_ERR_HSM;
988 				ap->hsm_task_state = HSM_ST_ERR;
989 				goto fsm_start;
990 			}
991 		}
992 
993 		if (qc->tf.protocol == ATA_PROT_PIO) {
994 			/* PIO data out protocol.
995 			 * send first data block.
996 			 */
997 
998 			/* ata_pio_sectors() might change the state
999 			 * to HSM_ST_LAST. so, the state is changed here
1000 			 * before ata_pio_sectors().
1001 			 */
1002 			ap->hsm_task_state = HSM_ST;
1003 			ata_pio_sectors(qc);
1004 		} else
1005 			/* send CDB */
1006 			atapi_send_cdb(ap, qc);
1007 
1008 		/* if polling, ata_sff_pio_task() handles the rest.
1009 		 * otherwise, interrupt handler takes over from here.
1010 		 */
1011 		break;
1012 
1013 	case HSM_ST:
1014 		/* complete command or read/write the data register */
1015 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1016 			/* ATAPI PIO protocol */
1017 			if ((status & ATA_DRQ) == 0) {
1018 				/* No more data to transfer or device error.
1019 				 * Device error will be tagged in HSM_ST_LAST.
1020 				 */
1021 				ap->hsm_task_state = HSM_ST_LAST;
1022 				goto fsm_start;
1023 			}
1024 
1025 			/* Device should not ask for data transfer (DRQ=1)
1026 			 * when it finds something wrong.
1027 			 * We ignore DRQ here and stop the HSM by
1028 			 * changing hsm_task_state to HSM_ST_ERR and
1029 			 * let the EH abort the command or reset the device.
1030 			 */
1031 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1032 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1033 					"DRQ=1 with device error, "
1034 					"dev_stat 0x%X", status);
1035 				qc->err_mask |= AC_ERR_HSM;
1036 				ap->hsm_task_state = HSM_ST_ERR;
1037 				goto fsm_start;
1038 			}
1039 
1040 			atapi_pio_bytes(qc);
1041 
1042 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1043 				/* bad ireason reported by device */
1044 				goto fsm_start;
1045 
1046 		} else {
1047 			/* ATA PIO protocol */
1048 			if (unlikely((status & ATA_DRQ) == 0)) {
1049 				/* handle BSY=0, DRQ=0 as error */
1050 				if (likely(status & (ATA_ERR | ATA_DF))) {
1051 					/* device stops HSM for abort/error */
1052 					qc->err_mask |= AC_ERR_DEV;
1053 
1054 					/* If diagnostic failed and this is
1055 					 * IDENTIFY, it's likely a phantom
1056 					 * device.  Mark hint.
1057 					 */
1058 					if (qc->dev->horkage &
1059 					    ATA_HORKAGE_DIAGNOSTIC)
1060 						qc->err_mask |=
1061 							AC_ERR_NODEV_HINT;
1062 				} else {
1063 					/* HSM violation. Let EH handle this.
1064 					 * Phantom devices also trigger this
1065 					 * condition.  Mark hint.
1066 					 */
1067 					ata_ehi_push_desc(ehi, "ST-ATA: "
1068 						"DRQ=0 without device error, "
1069 						"dev_stat 0x%X", status);
1070 					qc->err_mask |= AC_ERR_HSM |
1071 							AC_ERR_NODEV_HINT;
1072 				}
1073 
1074 				ap->hsm_task_state = HSM_ST_ERR;
1075 				goto fsm_start;
1076 			}
1077 
1078 			/* For PIO reads, some devices may ask for
1079 			 * data transfer (DRQ=1) alone with ERR=1.
1080 			 * We respect DRQ here and transfer one
1081 			 * block of junk data before changing the
1082 			 * hsm_task_state to HSM_ST_ERR.
1083 			 *
1084 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1085 			 * sense since the data block has been
1086 			 * transferred to the device.
1087 			 */
1088 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1089 				/* data might be corrputed */
1090 				qc->err_mask |= AC_ERR_DEV;
1091 
1092 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1093 					ata_pio_sectors(qc);
1094 					status = ata_wait_idle(ap);
1095 				}
1096 
1097 				if (status & (ATA_BUSY | ATA_DRQ)) {
1098 					ata_ehi_push_desc(ehi, "ST-ATA: "
1099 						"BUSY|DRQ persists on ERR|DF, "
1100 						"dev_stat 0x%X", status);
1101 					qc->err_mask |= AC_ERR_HSM;
1102 				}
1103 
1104 				/* There are oddball controllers with
1105 				 * status register stuck at 0x7f and
1106 				 * lbal/m/h at zero which makes it
1107 				 * pass all other presence detection
1108 				 * mechanisms we have.  Set NODEV_HINT
1109 				 * for it.  Kernel bz#7241.
1110 				 */
1111 				if (status == 0x7f)
1112 					qc->err_mask |= AC_ERR_NODEV_HINT;
1113 
1114 				/* ata_pio_sectors() might change the
1115 				 * state to HSM_ST_LAST. so, the state
1116 				 * is changed after ata_pio_sectors().
1117 				 */
1118 				ap->hsm_task_state = HSM_ST_ERR;
1119 				goto fsm_start;
1120 			}
1121 
1122 			ata_pio_sectors(qc);
1123 
1124 			if (ap->hsm_task_state == HSM_ST_LAST &&
1125 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1126 				/* all data read */
1127 				status = ata_wait_idle(ap);
1128 				goto fsm_start;
1129 			}
1130 		}
1131 
1132 		poll_next = 1;
1133 		break;
1134 
1135 	case HSM_ST_LAST:
1136 		if (unlikely(!ata_ok(status))) {
1137 			qc->err_mask |= __ac_err_mask(status);
1138 			ap->hsm_task_state = HSM_ST_ERR;
1139 			goto fsm_start;
1140 		}
1141 
1142 		/* no more data to transfer */
1143 		trace_ata_sff_hsm_command_complete(qc, status);
1144 
1145 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1146 
1147 		ap->hsm_task_state = HSM_ST_IDLE;
1148 
1149 		/* complete taskfile transaction */
1150 		ata_hsm_qc_complete(qc, in_wq);
1151 
1152 		poll_next = 0;
1153 		break;
1154 
1155 	case HSM_ST_ERR:
1156 		ap->hsm_task_state = HSM_ST_IDLE;
1157 
1158 		/* complete taskfile transaction */
1159 		ata_hsm_qc_complete(qc, in_wq);
1160 
1161 		poll_next = 0;
1162 		break;
1163 	default:
1164 		poll_next = 0;
1165 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1166 		     ap->print_id, ap->hsm_task_state);
1167 	}
1168 
1169 	return poll_next;
1170 }
1171 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1172 
1173 void ata_sff_queue_work(struct work_struct *work)
1174 {
1175 	queue_work(ata_sff_wq, work);
1176 }
1177 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1178 
1179 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1180 {
1181 	queue_delayed_work(ata_sff_wq, dwork, delay);
1182 }
1183 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1184 
1185 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1186 {
1187 	struct ata_port *ap = link->ap;
1188 
1189 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1190 		(ap->sff_pio_task_link != link));
1191 	ap->sff_pio_task_link = link;
1192 
1193 	/* may fail if ata_sff_flush_pio_task() in progress */
1194 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1195 }
1196 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1197 
1198 void ata_sff_flush_pio_task(struct ata_port *ap)
1199 {
1200 	trace_ata_sff_flush_pio_task(ap);
1201 
1202 	cancel_delayed_work_sync(&ap->sff_pio_task);
1203 
1204 	/*
1205 	 * We wanna reset the HSM state to IDLE.  If we do so without
1206 	 * grabbing the port lock, critical sections protected by it which
1207 	 * expect the HSM state to stay stable may get surprised.  For
1208 	 * example, we may set IDLE in between the time
1209 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1210 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1211 	 */
1212 	spin_lock_irq(ap->lock);
1213 	ap->hsm_task_state = HSM_ST_IDLE;
1214 	spin_unlock_irq(ap->lock);
1215 
1216 	ap->sff_pio_task_link = NULL;
1217 }
1218 
1219 static void ata_sff_pio_task(struct work_struct *work)
1220 {
1221 	struct ata_port *ap =
1222 		container_of(work, struct ata_port, sff_pio_task.work);
1223 	struct ata_link *link = ap->sff_pio_task_link;
1224 	struct ata_queued_cmd *qc;
1225 	u8 status;
1226 	int poll_next;
1227 
1228 	spin_lock_irq(ap->lock);
1229 
1230 	BUG_ON(ap->sff_pio_task_link == NULL);
1231 	/* qc can be NULL if timeout occurred */
1232 	qc = ata_qc_from_tag(ap, link->active_tag);
1233 	if (!qc) {
1234 		ap->sff_pio_task_link = NULL;
1235 		goto out_unlock;
1236 	}
1237 
1238 fsm_start:
1239 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1240 
1241 	/*
1242 	 * This is purely heuristic.  This is a fast path.
1243 	 * Sometimes when we enter, BSY will be cleared in
1244 	 * a chk-status or two.  If not, the drive is probably seeking
1245 	 * or something.  Snooze for a couple msecs, then
1246 	 * chk-status again.  If still busy, queue delayed work.
1247 	 */
1248 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1249 	if (status & ATA_BUSY) {
1250 		spin_unlock_irq(ap->lock);
1251 		ata_msleep(ap, 2);
1252 		spin_lock_irq(ap->lock);
1253 
1254 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1255 		if (status & ATA_BUSY) {
1256 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1257 			goto out_unlock;
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * hsm_move() may trigger another command to be processed.
1263 	 * clean the link beforehand.
1264 	 */
1265 	ap->sff_pio_task_link = NULL;
1266 	/* move the HSM */
1267 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1268 
1269 	/* another command or interrupt handler
1270 	 * may be running at this point.
1271 	 */
1272 	if (poll_next)
1273 		goto fsm_start;
1274 out_unlock:
1275 	spin_unlock_irq(ap->lock);
1276 }
1277 
1278 /**
1279  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1280  *	@qc: command to issue to device
1281  *
1282  *	This function issues a PIO or NODATA command to a SFF
1283  *	controller.
1284  *
1285  *	LOCKING:
1286  *	spin_lock_irqsave(host lock)
1287  *
1288  *	RETURNS:
1289  *	Zero on success, AC_ERR_* mask on failure
1290  */
1291 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1292 {
1293 	struct ata_port *ap = qc->ap;
1294 	struct ata_link *link = qc->dev->link;
1295 
1296 	/* Use polling pio if the LLD doesn't handle
1297 	 * interrupt driven pio and atapi CDB interrupt.
1298 	 */
1299 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1300 		qc->tf.flags |= ATA_TFLAG_POLLING;
1301 
1302 	/* select the device */
1303 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1304 
1305 	/* start the command */
1306 	switch (qc->tf.protocol) {
1307 	case ATA_PROT_NODATA:
1308 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1309 			ata_qc_set_polling(qc);
1310 
1311 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1312 		ap->hsm_task_state = HSM_ST_LAST;
1313 
1314 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1315 			ata_sff_queue_pio_task(link, 0);
1316 
1317 		break;
1318 
1319 	case ATA_PROT_PIO:
1320 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1321 			ata_qc_set_polling(qc);
1322 
1323 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1324 
1325 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1326 			/* PIO data out protocol */
1327 			ap->hsm_task_state = HSM_ST_FIRST;
1328 			ata_sff_queue_pio_task(link, 0);
1329 
1330 			/* always send first data block using the
1331 			 * ata_sff_pio_task() codepath.
1332 			 */
1333 		} else {
1334 			/* PIO data in protocol */
1335 			ap->hsm_task_state = HSM_ST;
1336 
1337 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1338 				ata_sff_queue_pio_task(link, 0);
1339 
1340 			/* if polling, ata_sff_pio_task() handles the
1341 			 * rest.  otherwise, interrupt handler takes
1342 			 * over from here.
1343 			 */
1344 		}
1345 
1346 		break;
1347 
1348 	case ATAPI_PROT_PIO:
1349 	case ATAPI_PROT_NODATA:
1350 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1351 			ata_qc_set_polling(qc);
1352 
1353 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1354 
1355 		ap->hsm_task_state = HSM_ST_FIRST;
1356 
1357 		/* send cdb by polling if no cdb interrupt */
1358 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1359 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1360 			ata_sff_queue_pio_task(link, 0);
1361 		break;
1362 
1363 	default:
1364 		return AC_ERR_SYSTEM;
1365 	}
1366 
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1370 
1371 /**
1372  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1373  *	@qc: qc to fill result TF for
1374  *
1375  *	@qc is finished and result TF needs to be filled.  Fill it
1376  *	using ->sff_tf_read.
1377  *
1378  *	LOCKING:
1379  *	spin_lock_irqsave(host lock)
1380  *
1381  *	RETURNS:
1382  *	true indicating that result TF is successfully filled.
1383  */
1384 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1385 {
1386 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1387 	return true;
1388 }
1389 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1390 
1391 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1392 {
1393 	ap->stats.idle_irq++;
1394 
1395 #ifdef ATA_IRQ_TRAP
1396 	if ((ap->stats.idle_irq % 1000) == 0) {
1397 		ap->ops->sff_check_status(ap);
1398 		if (ap->ops->sff_irq_clear)
1399 			ap->ops->sff_irq_clear(ap);
1400 		ata_port_warn(ap, "irq trap\n");
1401 		return 1;
1402 	}
1403 #endif
1404 	return 0;	/* irq not handled */
1405 }
1406 
1407 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1408 					struct ata_queued_cmd *qc,
1409 					bool hsmv_on_idle)
1410 {
1411 	u8 status;
1412 
1413 	trace_ata_sff_port_intr(qc, hsmv_on_idle);
1414 
1415 	/* Check whether we are expecting interrupt in this state */
1416 	switch (ap->hsm_task_state) {
1417 	case HSM_ST_FIRST:
1418 		/* Some pre-ATAPI-4 devices assert INTRQ
1419 		 * at this state when ready to receive CDB.
1420 		 */
1421 
1422 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1423 		 * The flag was turned on only for atapi devices.  No
1424 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1425 		 */
1426 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1427 			return ata_sff_idle_irq(ap);
1428 		break;
1429 	case HSM_ST_IDLE:
1430 		return ata_sff_idle_irq(ap);
1431 	default:
1432 		break;
1433 	}
1434 
1435 	/* check main status, clearing INTRQ if needed */
1436 	status = ata_sff_irq_status(ap);
1437 	if (status & ATA_BUSY) {
1438 		if (hsmv_on_idle) {
1439 			/* BMDMA engine is already stopped, we're screwed */
1440 			qc->err_mask |= AC_ERR_HSM;
1441 			ap->hsm_task_state = HSM_ST_ERR;
1442 		} else
1443 			return ata_sff_idle_irq(ap);
1444 	}
1445 
1446 	/* clear irq events */
1447 	if (ap->ops->sff_irq_clear)
1448 		ap->ops->sff_irq_clear(ap);
1449 
1450 	ata_sff_hsm_move(ap, qc, status, 0);
1451 
1452 	return 1;	/* irq handled */
1453 }
1454 
1455 /**
1456  *	ata_sff_port_intr - Handle SFF port interrupt
1457  *	@ap: Port on which interrupt arrived (possibly...)
1458  *	@qc: Taskfile currently active in engine
1459  *
1460  *	Handle port interrupt for given queued command.
1461  *
1462  *	LOCKING:
1463  *	spin_lock_irqsave(host lock)
1464  *
1465  *	RETURNS:
1466  *	One if interrupt was handled, zero if not (shared irq).
1467  */
1468 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1469 {
1470 	return __ata_sff_port_intr(ap, qc, false);
1471 }
1472 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1473 
1474 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1475 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1476 {
1477 	struct ata_host *host = dev_instance;
1478 	bool retried = false;
1479 	unsigned int i;
1480 	unsigned int handled, idle, polling;
1481 	unsigned long flags;
1482 
1483 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1484 	spin_lock_irqsave(&host->lock, flags);
1485 
1486 retry:
1487 	handled = idle = polling = 0;
1488 	for (i = 0; i < host->n_ports; i++) {
1489 		struct ata_port *ap = host->ports[i];
1490 		struct ata_queued_cmd *qc;
1491 
1492 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1493 		if (qc) {
1494 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1495 				handled |= port_intr(ap, qc);
1496 			else
1497 				polling |= 1 << i;
1498 		} else
1499 			idle |= 1 << i;
1500 	}
1501 
1502 	/*
1503 	 * If no port was expecting IRQ but the controller is actually
1504 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1505 	 * pending status if available and clear spurious IRQ.
1506 	 */
1507 	if (!handled && !retried) {
1508 		bool retry = false;
1509 
1510 		for (i = 0; i < host->n_ports; i++) {
1511 			struct ata_port *ap = host->ports[i];
1512 
1513 			if (polling & (1 << i))
1514 				continue;
1515 
1516 			if (!ap->ops->sff_irq_check ||
1517 			    !ap->ops->sff_irq_check(ap))
1518 				continue;
1519 
1520 			if (idle & (1 << i)) {
1521 				ap->ops->sff_check_status(ap);
1522 				if (ap->ops->sff_irq_clear)
1523 					ap->ops->sff_irq_clear(ap);
1524 			} else {
1525 				/* clear INTRQ and check if BUSY cleared */
1526 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1527 					retry |= true;
1528 				/*
1529 				 * With command in flight, we can't do
1530 				 * sff_irq_clear() w/o racing with completion.
1531 				 */
1532 			}
1533 		}
1534 
1535 		if (retry) {
1536 			retried = true;
1537 			goto retry;
1538 		}
1539 	}
1540 
1541 	spin_unlock_irqrestore(&host->lock, flags);
1542 
1543 	return IRQ_RETVAL(handled);
1544 }
1545 
1546 /**
1547  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1548  *	@irq: irq line (unused)
1549  *	@dev_instance: pointer to our ata_host information structure
1550  *
1551  *	Default interrupt handler for PCI IDE devices.  Calls
1552  *	ata_sff_port_intr() for each port that is not disabled.
1553  *
1554  *	LOCKING:
1555  *	Obtains host lock during operation.
1556  *
1557  *	RETURNS:
1558  *	IRQ_NONE or IRQ_HANDLED.
1559  */
1560 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1561 {
1562 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1563 }
1564 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1565 
1566 /**
1567  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1568  *	@ap: port that appears to have timed out
1569  *
1570  *	Called from the libata error handlers when the core code suspects
1571  *	an interrupt has been lost. If it has complete anything we can and
1572  *	then return. Interface must support altstatus for this faster
1573  *	recovery to occur.
1574  *
1575  *	Locking:
1576  *	Caller holds host lock
1577  */
1578 
1579 void ata_sff_lost_interrupt(struct ata_port *ap)
1580 {
1581 	u8 status = 0;
1582 	struct ata_queued_cmd *qc;
1583 
1584 	/* Only one outstanding command per SFF channel */
1585 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1586 	/* We cannot lose an interrupt on a non-existent or polled command */
1587 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1588 		return;
1589 	/* See if the controller thinks it is still busy - if so the command
1590 	   isn't a lost IRQ but is still in progress */
1591 	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1592 		return;
1593 	if (status & ATA_BUSY)
1594 		return;
1595 
1596 	/* There was a command running, we are no longer busy and we have
1597 	   no interrupt. */
1598 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1599 	/* Run the host interrupt logic as if the interrupt had not been
1600 	   lost */
1601 	ata_sff_port_intr(ap, qc);
1602 }
1603 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1604 
1605 /**
1606  *	ata_sff_freeze - Freeze SFF controller port
1607  *	@ap: port to freeze
1608  *
1609  *	Freeze SFF controller port.
1610  *
1611  *	LOCKING:
1612  *	Inherited from caller.
1613  */
1614 void ata_sff_freeze(struct ata_port *ap)
1615 {
1616 	ap->ctl |= ATA_NIEN;
1617 	ap->last_ctl = ap->ctl;
1618 
1619 	ata_sff_set_devctl(ap, ap->ctl);
1620 
1621 	/* Under certain circumstances, some controllers raise IRQ on
1622 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1623 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1624 	 */
1625 	ap->ops->sff_check_status(ap);
1626 
1627 	if (ap->ops->sff_irq_clear)
1628 		ap->ops->sff_irq_clear(ap);
1629 }
1630 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1631 
1632 /**
1633  *	ata_sff_thaw - Thaw SFF controller port
1634  *	@ap: port to thaw
1635  *
1636  *	Thaw SFF controller port.
1637  *
1638  *	LOCKING:
1639  *	Inherited from caller.
1640  */
1641 void ata_sff_thaw(struct ata_port *ap)
1642 {
1643 	/* clear & re-enable interrupts */
1644 	ap->ops->sff_check_status(ap);
1645 	if (ap->ops->sff_irq_clear)
1646 		ap->ops->sff_irq_clear(ap);
1647 	ata_sff_irq_on(ap);
1648 }
1649 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1650 
1651 /**
1652  *	ata_sff_prereset - prepare SFF link for reset
1653  *	@link: SFF link to be reset
1654  *	@deadline: deadline jiffies for the operation
1655  *
1656  *	SFF link @link is about to be reset.  Initialize it.  It first
1657  *	calls ata_std_prereset() and wait for !BSY if the port is
1658  *	being softreset.
1659  *
1660  *	LOCKING:
1661  *	Kernel thread context (may sleep)
1662  *
1663  *	RETURNS:
1664  *	Always 0.
1665  */
1666 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1667 {
1668 	struct ata_eh_context *ehc = &link->eh_context;
1669 	int rc;
1670 
1671 	/* The standard prereset is best-effort and always returns 0 */
1672 	ata_std_prereset(link, deadline);
1673 
1674 	/* if we're about to do hardreset, nothing more to do */
1675 	if (ehc->i.action & ATA_EH_HARDRESET)
1676 		return 0;
1677 
1678 	/* wait for !BSY if we don't know that no device is attached */
1679 	if (!ata_link_offline(link)) {
1680 		rc = ata_sff_wait_ready(link, deadline);
1681 		if (rc && rc != -ENODEV) {
1682 			ata_link_warn(link,
1683 				      "device not ready (errno=%d), forcing hardreset\n",
1684 				      rc);
1685 			ehc->i.action |= ATA_EH_HARDRESET;
1686 		}
1687 	}
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1692 
1693 /**
1694  *	ata_devchk - PATA device presence detection
1695  *	@ap: ATA channel to examine
1696  *	@device: Device to examine (starting at zero)
1697  *
1698  *	This technique was originally described in
1699  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1700  *	later found its way into the ATA/ATAPI spec.
1701  *
1702  *	Write a pattern to the ATA shadow registers,
1703  *	and if a device is present, it will respond by
1704  *	correctly storing and echoing back the
1705  *	ATA shadow register contents.
1706  *
1707  *	RETURN:
1708  *	true if device is present, false if not.
1709  *
1710  *	LOCKING:
1711  *	caller.
1712  */
1713 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1714 {
1715 	struct ata_ioports *ioaddr = &ap->ioaddr;
1716 	u8 nsect, lbal;
1717 
1718 	ap->ops->sff_dev_select(ap, device);
1719 
1720 	iowrite8(0x55, ioaddr->nsect_addr);
1721 	iowrite8(0xaa, ioaddr->lbal_addr);
1722 
1723 	iowrite8(0xaa, ioaddr->nsect_addr);
1724 	iowrite8(0x55, ioaddr->lbal_addr);
1725 
1726 	iowrite8(0x55, ioaddr->nsect_addr);
1727 	iowrite8(0xaa, ioaddr->lbal_addr);
1728 
1729 	nsect = ioread8(ioaddr->nsect_addr);
1730 	lbal = ioread8(ioaddr->lbal_addr);
1731 
1732 	if ((nsect == 0x55) && (lbal == 0xaa))
1733 		return true;	/* we found a device */
1734 
1735 	return false;		/* nothing found */
1736 }
1737 
1738 /**
1739  *	ata_sff_dev_classify - Parse returned ATA device signature
1740  *	@dev: ATA device to classify (starting at zero)
1741  *	@present: device seems present
1742  *	@r_err: Value of error register on completion
1743  *
1744  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1745  *	an ATA/ATAPI-defined set of values is placed in the ATA
1746  *	shadow registers, indicating the results of device detection
1747  *	and diagnostics.
1748  *
1749  *	Select the ATA device, and read the values from the ATA shadow
1750  *	registers.  Then parse according to the Error register value,
1751  *	and the spec-defined values examined by ata_dev_classify().
1752  *
1753  *	LOCKING:
1754  *	caller.
1755  *
1756  *	RETURNS:
1757  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1758  */
1759 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1760 				  u8 *r_err)
1761 {
1762 	struct ata_port *ap = dev->link->ap;
1763 	struct ata_taskfile tf;
1764 	unsigned int class;
1765 	u8 err;
1766 
1767 	ap->ops->sff_dev_select(ap, dev->devno);
1768 
1769 	memset(&tf, 0, sizeof(tf));
1770 
1771 	ap->ops->sff_tf_read(ap, &tf);
1772 	err = tf.error;
1773 	if (r_err)
1774 		*r_err = err;
1775 
1776 	/* see if device passed diags: continue and warn later */
1777 	if (err == 0)
1778 		/* diagnostic fail : do nothing _YET_ */
1779 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1780 	else if (err == 1)
1781 		/* do nothing */ ;
1782 	else if ((dev->devno == 0) && (err == 0x81))
1783 		/* do nothing */ ;
1784 	else
1785 		return ATA_DEV_NONE;
1786 
1787 	/* determine if device is ATA or ATAPI */
1788 	class = ata_port_classify(ap, &tf);
1789 	switch (class) {
1790 	case ATA_DEV_UNKNOWN:
1791 		/*
1792 		 * If the device failed diagnostic, it's likely to
1793 		 * have reported incorrect device signature too.
1794 		 * Assume ATA device if the device seems present but
1795 		 * device signature is invalid with diagnostic
1796 		 * failure.
1797 		 */
1798 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1799 			class = ATA_DEV_ATA;
1800 		else
1801 			class = ATA_DEV_NONE;
1802 		break;
1803 	case ATA_DEV_ATA:
1804 		if (ap->ops->sff_check_status(ap) == 0)
1805 			class = ATA_DEV_NONE;
1806 		break;
1807 	}
1808 	return class;
1809 }
1810 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1811 
1812 /**
1813  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1814  *	@link: SFF link which is just reset
1815  *	@devmask: mask of present devices
1816  *	@deadline: deadline jiffies for the operation
1817  *
1818  *	Wait devices attached to SFF @link to become ready after
1819  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1820  *	status register too early.
1821  *
1822  *	LOCKING:
1823  *	Kernel thread context (may sleep).
1824  *
1825  *	RETURNS:
1826  *	0 on success, -ENODEV if some or all of devices in @devmask
1827  *	don't seem to exist.  -errno on other errors.
1828  */
1829 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1830 			     unsigned long deadline)
1831 {
1832 	struct ata_port *ap = link->ap;
1833 	struct ata_ioports *ioaddr = &ap->ioaddr;
1834 	unsigned int dev0 = devmask & (1 << 0);
1835 	unsigned int dev1 = devmask & (1 << 1);
1836 	int rc, ret = 0;
1837 
1838 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1839 
1840 	/* always check readiness of the master device */
1841 	rc = ata_sff_wait_ready(link, deadline);
1842 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1843 	 * and TF status is 0xff, bail out on it too.
1844 	 */
1845 	if (rc)
1846 		return rc;
1847 
1848 	/* if device 1 was found in ata_devchk, wait for register
1849 	 * access briefly, then wait for BSY to clear.
1850 	 */
1851 	if (dev1) {
1852 		int i;
1853 
1854 		ap->ops->sff_dev_select(ap, 1);
1855 
1856 		/* Wait for register access.  Some ATAPI devices fail
1857 		 * to set nsect/lbal after reset, so don't waste too
1858 		 * much time on it.  We're gonna wait for !BSY anyway.
1859 		 */
1860 		for (i = 0; i < 2; i++) {
1861 			u8 nsect, lbal;
1862 
1863 			nsect = ioread8(ioaddr->nsect_addr);
1864 			lbal = ioread8(ioaddr->lbal_addr);
1865 			if ((nsect == 1) && (lbal == 1))
1866 				break;
1867 			ata_msleep(ap, 50);	/* give drive a breather */
1868 		}
1869 
1870 		rc = ata_sff_wait_ready(link, deadline);
1871 		if (rc) {
1872 			if (rc != -ENODEV)
1873 				return rc;
1874 			ret = rc;
1875 		}
1876 	}
1877 
1878 	/* is all this really necessary? */
1879 	ap->ops->sff_dev_select(ap, 0);
1880 	if (dev1)
1881 		ap->ops->sff_dev_select(ap, 1);
1882 	if (dev0)
1883 		ap->ops->sff_dev_select(ap, 0);
1884 
1885 	return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1888 
1889 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1890 			     unsigned long deadline)
1891 {
1892 	struct ata_ioports *ioaddr = &ap->ioaddr;
1893 
1894 	if (ap->ioaddr.ctl_addr) {
1895 		/* software reset.  causes dev0 to be selected */
1896 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1897 		udelay(20);	/* FIXME: flush */
1898 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1899 		udelay(20);	/* FIXME: flush */
1900 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1901 		ap->last_ctl = ap->ctl;
1902 	}
1903 
1904 	/* wait the port to become ready */
1905 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1906 }
1907 
1908 /**
1909  *	ata_sff_softreset - reset host port via ATA SRST
1910  *	@link: ATA link to reset
1911  *	@classes: resulting classes of attached devices
1912  *	@deadline: deadline jiffies for the operation
1913  *
1914  *	Reset host port using ATA SRST.
1915  *
1916  *	LOCKING:
1917  *	Kernel thread context (may sleep)
1918  *
1919  *	RETURNS:
1920  *	0 on success, -errno otherwise.
1921  */
1922 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1923 		      unsigned long deadline)
1924 {
1925 	struct ata_port *ap = link->ap;
1926 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1927 	unsigned int devmask = 0;
1928 	int rc;
1929 	u8 err;
1930 
1931 	/* determine if device 0/1 are present */
1932 	if (ata_devchk(ap, 0))
1933 		devmask |= (1 << 0);
1934 	if (slave_possible && ata_devchk(ap, 1))
1935 		devmask |= (1 << 1);
1936 
1937 	/* select device 0 again */
1938 	ap->ops->sff_dev_select(ap, 0);
1939 
1940 	/* issue bus reset */
1941 	rc = ata_bus_softreset(ap, devmask, deadline);
1942 	/* if link is occupied, -ENODEV too is an error */
1943 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1944 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1945 		return rc;
1946 	}
1947 
1948 	/* determine by signature whether we have ATA or ATAPI devices */
1949 	classes[0] = ata_sff_dev_classify(&link->device[0],
1950 					  devmask & (1 << 0), &err);
1951 	if (slave_possible && err != 0x81)
1952 		classes[1] = ata_sff_dev_classify(&link->device[1],
1953 						  devmask & (1 << 1), &err);
1954 
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1958 
1959 /**
1960  *	sata_sff_hardreset - reset host port via SATA phy reset
1961  *	@link: link to reset
1962  *	@class: resulting class of attached device
1963  *	@deadline: deadline jiffies for the operation
1964  *
1965  *	SATA phy-reset host port using DET bits of SControl register,
1966  *	wait for !BSY and classify the attached device.
1967  *
1968  *	LOCKING:
1969  *	Kernel thread context (may sleep)
1970  *
1971  *	RETURNS:
1972  *	0 on success, -errno otherwise.
1973  */
1974 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1975 		       unsigned long deadline)
1976 {
1977 	struct ata_eh_context *ehc = &link->eh_context;
1978 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
1979 	bool online;
1980 	int rc;
1981 
1982 	rc = sata_link_hardreset(link, timing, deadline, &online,
1983 				 ata_sff_check_ready);
1984 	if (online)
1985 		*class = ata_sff_dev_classify(link->device, 1, NULL);
1986 
1987 	return rc;
1988 }
1989 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1990 
1991 /**
1992  *	ata_sff_postreset - SFF postreset callback
1993  *	@link: the target SFF ata_link
1994  *	@classes: classes of attached devices
1995  *
1996  *	This function is invoked after a successful reset.  It first
1997  *	calls ata_std_postreset() and performs SFF specific postreset
1998  *	processing.
1999  *
2000  *	LOCKING:
2001  *	Kernel thread context (may sleep)
2002  */
2003 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2004 {
2005 	struct ata_port *ap = link->ap;
2006 
2007 	ata_std_postreset(link, classes);
2008 
2009 	/* is double-select really necessary? */
2010 	if (classes[0] != ATA_DEV_NONE)
2011 		ap->ops->sff_dev_select(ap, 1);
2012 	if (classes[1] != ATA_DEV_NONE)
2013 		ap->ops->sff_dev_select(ap, 0);
2014 
2015 	/* bail out if no device is present */
2016 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2017 		return;
2018 
2019 	/* set up device control */
2020 	if (ata_sff_set_devctl(ap, ap->ctl))
2021 		ap->last_ctl = ap->ctl;
2022 }
2023 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2024 
2025 /**
2026  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2027  *	@qc: command
2028  *
2029  *	Drain the FIFO and device of any stuck data following a command
2030  *	failing to complete. In some cases this is necessary before a
2031  *	reset will recover the device.
2032  *
2033  */
2034 
2035 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2036 {
2037 	int count;
2038 	struct ata_port *ap;
2039 
2040 	/* We only need to flush incoming data when a command was running */
2041 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2042 		return;
2043 
2044 	ap = qc->ap;
2045 	/* Drain up to 64K of data before we give up this recovery method */
2046 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2047 						&& count < 65536; count += 2)
2048 		ioread16(ap->ioaddr.data_addr);
2049 
2050 	if (count)
2051 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2052 
2053 }
2054 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2055 
2056 /**
2057  *	ata_sff_error_handler - Stock error handler for SFF controller
2058  *	@ap: port to handle error for
2059  *
2060  *	Stock error handler for SFF controller.  It can handle both
2061  *	PATA and SATA controllers.  Many controllers should be able to
2062  *	use this EH as-is or with some added handling before and
2063  *	after.
2064  *
2065  *	LOCKING:
2066  *	Kernel thread context (may sleep)
2067  */
2068 void ata_sff_error_handler(struct ata_port *ap)
2069 {
2070 	ata_reset_fn_t softreset = ap->ops->softreset;
2071 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2072 	struct ata_queued_cmd *qc;
2073 	unsigned long flags;
2074 
2075 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2076 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2077 		qc = NULL;
2078 
2079 	spin_lock_irqsave(ap->lock, flags);
2080 
2081 	/*
2082 	 * We *MUST* do FIFO draining before we issue a reset as
2083 	 * several devices helpfully clear their internal state and
2084 	 * will lock solid if we touch the data port post reset. Pass
2085 	 * qc in case anyone wants to do different PIO/DMA recovery or
2086 	 * has per command fixups
2087 	 */
2088 	if (ap->ops->sff_drain_fifo)
2089 		ap->ops->sff_drain_fifo(qc);
2090 
2091 	spin_unlock_irqrestore(ap->lock, flags);
2092 
2093 	/* ignore built-in hardresets if SCR access is not available */
2094 	if ((hardreset == sata_std_hardreset ||
2095 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2096 		hardreset = NULL;
2097 
2098 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2099 		  ap->ops->postreset);
2100 }
2101 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2102 
2103 /**
2104  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2105  *	@ioaddr: IO address structure to be initialized
2106  *
2107  *	Utility function which initializes data_addr, error_addr,
2108  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2109  *	device_addr, status_addr, and command_addr to standard offsets
2110  *	relative to cmd_addr.
2111  *
2112  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2113  */
2114 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2115 {
2116 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2117 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2118 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2119 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2120 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2121 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2122 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2123 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2124 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2125 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2126 }
2127 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2128 
2129 #ifdef CONFIG_PCI
2130 
2131 static bool ata_resources_present(struct pci_dev *pdev, int port)
2132 {
2133 	int i;
2134 
2135 	/* Check the PCI resources for this channel are enabled */
2136 	port *= 2;
2137 	for (i = 0; i < 2; i++) {
2138 		if (pci_resource_start(pdev, port + i) == 0 ||
2139 		    pci_resource_len(pdev, port + i) == 0)
2140 			return false;
2141 	}
2142 	return true;
2143 }
2144 
2145 /**
2146  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2147  *	@host: target ATA host
2148  *
2149  *	Acquire native PCI ATA resources for @host and initialize the
2150  *	first two ports of @host accordingly.  Ports marked dummy are
2151  *	skipped and allocation failure makes the port dummy.
2152  *
2153  *	Note that native PCI resources are valid even for legacy hosts
2154  *	as we fix up pdev resources array early in boot, so this
2155  *	function can be used for both native and legacy SFF hosts.
2156  *
2157  *	LOCKING:
2158  *	Inherited from calling layer (may sleep).
2159  *
2160  *	RETURNS:
2161  *	0 if at least one port is initialized, -ENODEV if no port is
2162  *	available.
2163  */
2164 int ata_pci_sff_init_host(struct ata_host *host)
2165 {
2166 	struct device *gdev = host->dev;
2167 	struct pci_dev *pdev = to_pci_dev(gdev);
2168 	unsigned int mask = 0;
2169 	int i, rc;
2170 
2171 	/* request, iomap BARs and init port addresses accordingly */
2172 	for (i = 0; i < 2; i++) {
2173 		struct ata_port *ap = host->ports[i];
2174 		int base = i * 2;
2175 		void __iomem * const *iomap;
2176 
2177 		if (ata_port_is_dummy(ap))
2178 			continue;
2179 
2180 		/* Discard disabled ports.  Some controllers show
2181 		 * their unused channels this way.  Disabled ports are
2182 		 * made dummy.
2183 		 */
2184 		if (!ata_resources_present(pdev, i)) {
2185 			ap->ops = &ata_dummy_port_ops;
2186 			continue;
2187 		}
2188 
2189 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2190 					dev_driver_string(gdev));
2191 		if (rc) {
2192 			dev_warn(gdev,
2193 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2194 				 i, rc);
2195 			if (rc == -EBUSY)
2196 				pcim_pin_device(pdev);
2197 			ap->ops = &ata_dummy_port_ops;
2198 			continue;
2199 		}
2200 		host->iomap = iomap = pcim_iomap_table(pdev);
2201 
2202 		ap->ioaddr.cmd_addr = iomap[base];
2203 		ap->ioaddr.altstatus_addr =
2204 		ap->ioaddr.ctl_addr = (void __iomem *)
2205 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2206 		ata_sff_std_ports(&ap->ioaddr);
2207 
2208 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2209 			(unsigned long long)pci_resource_start(pdev, base),
2210 			(unsigned long long)pci_resource_start(pdev, base + 1));
2211 
2212 		mask |= 1 << i;
2213 	}
2214 
2215 	if (!mask) {
2216 		dev_err(gdev, "no available native port\n");
2217 		return -ENODEV;
2218 	}
2219 
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2223 
2224 /**
2225  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2226  *	@pdev: target PCI device
2227  *	@ppi: array of port_info, must be enough for two ports
2228  *	@r_host: out argument for the initialized ATA host
2229  *
2230  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2231  *	all PCI resources and initialize it accordingly in one go.
2232  *
2233  *	LOCKING:
2234  *	Inherited from calling layer (may sleep).
2235  *
2236  *	RETURNS:
2237  *	0 on success, -errno otherwise.
2238  */
2239 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2240 			     const struct ata_port_info * const *ppi,
2241 			     struct ata_host **r_host)
2242 {
2243 	struct ata_host *host;
2244 	int rc;
2245 
2246 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2247 		return -ENOMEM;
2248 
2249 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2250 	if (!host) {
2251 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2252 		rc = -ENOMEM;
2253 		goto err_out;
2254 	}
2255 
2256 	rc = ata_pci_sff_init_host(host);
2257 	if (rc)
2258 		goto err_out;
2259 
2260 	devres_remove_group(&pdev->dev, NULL);
2261 	*r_host = host;
2262 	return 0;
2263 
2264 err_out:
2265 	devres_release_group(&pdev->dev, NULL);
2266 	return rc;
2267 }
2268 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2269 
2270 /**
2271  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2272  *	@host: target SFF ATA host
2273  *	@irq_handler: irq_handler used when requesting IRQ(s)
2274  *	@sht: scsi_host_template to use when registering the host
2275  *
2276  *	This is the counterpart of ata_host_activate() for SFF ATA
2277  *	hosts.  This separate helper is necessary because SFF hosts
2278  *	use two separate interrupts in legacy mode.
2279  *
2280  *	LOCKING:
2281  *	Inherited from calling layer (may sleep).
2282  *
2283  *	RETURNS:
2284  *	0 on success, -errno otherwise.
2285  */
2286 int ata_pci_sff_activate_host(struct ata_host *host,
2287 			      irq_handler_t irq_handler,
2288 			      struct scsi_host_template *sht)
2289 {
2290 	struct device *dev = host->dev;
2291 	struct pci_dev *pdev = to_pci_dev(dev);
2292 	const char *drv_name = dev_driver_string(host->dev);
2293 	int legacy_mode = 0, rc;
2294 
2295 	rc = ata_host_start(host);
2296 	if (rc)
2297 		return rc;
2298 
2299 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2300 		u8 tmp8, mask = 0;
2301 
2302 		/*
2303 		 * ATA spec says we should use legacy mode when one
2304 		 * port is in legacy mode, but disabled ports on some
2305 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2306 		 * on which the secondary port is not wired, so
2307 		 * ignore ports that are marked as 'dummy' during
2308 		 * this check
2309 		 */
2310 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2311 		if (!ata_port_is_dummy(host->ports[0]))
2312 			mask |= (1 << 0);
2313 		if (!ata_port_is_dummy(host->ports[1]))
2314 			mask |= (1 << 2);
2315 		if ((tmp8 & mask) != mask)
2316 			legacy_mode = 1;
2317 	}
2318 
2319 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2320 		return -ENOMEM;
2321 
2322 	if (!legacy_mode && pdev->irq) {
2323 		int i;
2324 
2325 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2326 				      IRQF_SHARED, drv_name, host);
2327 		if (rc)
2328 			goto out;
2329 
2330 		for (i = 0; i < 2; i++) {
2331 			if (ata_port_is_dummy(host->ports[i]))
2332 				continue;
2333 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2334 		}
2335 	} else if (legacy_mode) {
2336 		if (!ata_port_is_dummy(host->ports[0])) {
2337 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2338 					      irq_handler, IRQF_SHARED,
2339 					      drv_name, host);
2340 			if (rc)
2341 				goto out;
2342 
2343 			ata_port_desc(host->ports[0], "irq %d",
2344 				      ATA_PRIMARY_IRQ(pdev));
2345 		}
2346 
2347 		if (!ata_port_is_dummy(host->ports[1])) {
2348 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2349 					      irq_handler, IRQF_SHARED,
2350 					      drv_name, host);
2351 			if (rc)
2352 				goto out;
2353 
2354 			ata_port_desc(host->ports[1], "irq %d",
2355 				      ATA_SECONDARY_IRQ(pdev));
2356 		}
2357 	}
2358 
2359 	rc = ata_host_register(host, sht);
2360 out:
2361 	if (rc == 0)
2362 		devres_remove_group(dev, NULL);
2363 	else
2364 		devres_release_group(dev, NULL);
2365 
2366 	return rc;
2367 }
2368 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2369 
2370 static const struct ata_port_info *ata_sff_find_valid_pi(
2371 					const struct ata_port_info * const *ppi)
2372 {
2373 	int i;
2374 
2375 	/* look up the first valid port_info */
2376 	for (i = 0; i < 2 && ppi[i]; i++)
2377 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2378 			return ppi[i];
2379 
2380 	return NULL;
2381 }
2382 
2383 static int ata_pci_init_one(struct pci_dev *pdev,
2384 		const struct ata_port_info * const *ppi,
2385 		struct scsi_host_template *sht, void *host_priv,
2386 		int hflags, bool bmdma)
2387 {
2388 	struct device *dev = &pdev->dev;
2389 	const struct ata_port_info *pi;
2390 	struct ata_host *host = NULL;
2391 	int rc;
2392 
2393 	pi = ata_sff_find_valid_pi(ppi);
2394 	if (!pi) {
2395 		dev_err(&pdev->dev, "no valid port_info specified\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2400 		return -ENOMEM;
2401 
2402 	rc = pcim_enable_device(pdev);
2403 	if (rc)
2404 		goto out;
2405 
2406 #ifdef CONFIG_ATA_BMDMA
2407 	if (bmdma)
2408 		/* prepare and activate BMDMA host */
2409 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2410 	else
2411 #endif
2412 		/* prepare and activate SFF host */
2413 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2414 	if (rc)
2415 		goto out;
2416 	host->private_data = host_priv;
2417 	host->flags |= hflags;
2418 
2419 #ifdef CONFIG_ATA_BMDMA
2420 	if (bmdma) {
2421 		pci_set_master(pdev);
2422 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2423 	} else
2424 #endif
2425 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2426 out:
2427 	if (rc == 0)
2428 		devres_remove_group(&pdev->dev, NULL);
2429 	else
2430 		devres_release_group(&pdev->dev, NULL);
2431 
2432 	return rc;
2433 }
2434 
2435 /**
2436  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2437  *	@pdev: Controller to be initialized
2438  *	@ppi: array of port_info, must be enough for two ports
2439  *	@sht: scsi_host_template to use when registering the host
2440  *	@host_priv: host private_data
2441  *	@hflag: host flags
2442  *
2443  *	This is a helper function which can be called from a driver's
2444  *	xxx_init_one() probe function if the hardware uses traditional
2445  *	IDE taskfile registers and is PIO only.
2446  *
2447  *	ASSUMPTION:
2448  *	Nobody makes a single channel controller that appears solely as
2449  *	the secondary legacy port on PCI.
2450  *
2451  *	LOCKING:
2452  *	Inherited from PCI layer (may sleep).
2453  *
2454  *	RETURNS:
2455  *	Zero on success, negative on errno-based value on error.
2456  */
2457 int ata_pci_sff_init_one(struct pci_dev *pdev,
2458 		 const struct ata_port_info * const *ppi,
2459 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2460 {
2461 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2462 }
2463 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2464 
2465 #endif /* CONFIG_PCI */
2466 
2467 /*
2468  *	BMDMA support
2469  */
2470 
2471 #ifdef CONFIG_ATA_BMDMA
2472 
2473 const struct ata_port_operations ata_bmdma_port_ops = {
2474 	.inherits		= &ata_sff_port_ops,
2475 
2476 	.error_handler		= ata_bmdma_error_handler,
2477 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2478 
2479 	.qc_prep		= ata_bmdma_qc_prep,
2480 	.qc_issue		= ata_bmdma_qc_issue,
2481 
2482 	.sff_irq_clear		= ata_bmdma_irq_clear,
2483 	.bmdma_setup		= ata_bmdma_setup,
2484 	.bmdma_start		= ata_bmdma_start,
2485 	.bmdma_stop		= ata_bmdma_stop,
2486 	.bmdma_status		= ata_bmdma_status,
2487 
2488 	.port_start		= ata_bmdma_port_start,
2489 };
2490 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2491 
2492 const struct ata_port_operations ata_bmdma32_port_ops = {
2493 	.inherits		= &ata_bmdma_port_ops,
2494 
2495 	.sff_data_xfer		= ata_sff_data_xfer32,
2496 	.port_start		= ata_bmdma_port_start32,
2497 };
2498 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2499 
2500 /**
2501  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2502  *	@qc: Metadata associated with taskfile to be transferred
2503  *
2504  *	Fill PCI IDE PRD (scatter-gather) table with segments
2505  *	associated with the current disk command.
2506  *
2507  *	LOCKING:
2508  *	spin_lock_irqsave(host lock)
2509  *
2510  */
2511 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2512 {
2513 	struct ata_port *ap = qc->ap;
2514 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2515 	struct scatterlist *sg;
2516 	unsigned int si, pi;
2517 
2518 	pi = 0;
2519 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2520 		u32 addr, offset;
2521 		u32 sg_len, len;
2522 
2523 		/* determine if physical DMA addr spans 64K boundary.
2524 		 * Note h/w doesn't support 64-bit, so we unconditionally
2525 		 * truncate dma_addr_t to u32.
2526 		 */
2527 		addr = (u32) sg_dma_address(sg);
2528 		sg_len = sg_dma_len(sg);
2529 
2530 		while (sg_len) {
2531 			offset = addr & 0xffff;
2532 			len = sg_len;
2533 			if ((offset + sg_len) > 0x10000)
2534 				len = 0x10000 - offset;
2535 
2536 			prd[pi].addr = cpu_to_le32(addr);
2537 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2538 
2539 			pi++;
2540 			sg_len -= len;
2541 			addr += len;
2542 		}
2543 	}
2544 
2545 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2546 }
2547 
2548 /**
2549  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2550  *	@qc: Metadata associated with taskfile to be transferred
2551  *
2552  *	Fill PCI IDE PRD (scatter-gather) table with segments
2553  *	associated with the current disk command. Perform the fill
2554  *	so that we avoid writing any length 64K records for
2555  *	controllers that don't follow the spec.
2556  *
2557  *	LOCKING:
2558  *	spin_lock_irqsave(host lock)
2559  *
2560  */
2561 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2562 {
2563 	struct ata_port *ap = qc->ap;
2564 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2565 	struct scatterlist *sg;
2566 	unsigned int si, pi;
2567 
2568 	pi = 0;
2569 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2570 		u32 addr, offset;
2571 		u32 sg_len, len, blen;
2572 
2573 		/* determine if physical DMA addr spans 64K boundary.
2574 		 * Note h/w doesn't support 64-bit, so we unconditionally
2575 		 * truncate dma_addr_t to u32.
2576 		 */
2577 		addr = (u32) sg_dma_address(sg);
2578 		sg_len = sg_dma_len(sg);
2579 
2580 		while (sg_len) {
2581 			offset = addr & 0xffff;
2582 			len = sg_len;
2583 			if ((offset + sg_len) > 0x10000)
2584 				len = 0x10000 - offset;
2585 
2586 			blen = len & 0xffff;
2587 			prd[pi].addr = cpu_to_le32(addr);
2588 			if (blen == 0) {
2589 				/* Some PATA chipsets like the CS5530 can't
2590 				   cope with 0x0000 meaning 64K as the spec
2591 				   says */
2592 				prd[pi].flags_len = cpu_to_le32(0x8000);
2593 				blen = 0x8000;
2594 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2595 			}
2596 			prd[pi].flags_len = cpu_to_le32(blen);
2597 
2598 			pi++;
2599 			sg_len -= len;
2600 			addr += len;
2601 		}
2602 	}
2603 
2604 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2605 }
2606 
2607 /**
2608  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2609  *	@qc: Metadata associated with taskfile to be prepared
2610  *
2611  *	Prepare ATA taskfile for submission.
2612  *
2613  *	LOCKING:
2614  *	spin_lock_irqsave(host lock)
2615  */
2616 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2617 {
2618 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2619 		return AC_ERR_OK;
2620 
2621 	ata_bmdma_fill_sg(qc);
2622 
2623 	return AC_ERR_OK;
2624 }
2625 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2626 
2627 /**
2628  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2629  *	@qc: Metadata associated with taskfile to be prepared
2630  *
2631  *	Prepare ATA taskfile for submission.
2632  *
2633  *	LOCKING:
2634  *	spin_lock_irqsave(host lock)
2635  */
2636 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2637 {
2638 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2639 		return AC_ERR_OK;
2640 
2641 	ata_bmdma_fill_sg_dumb(qc);
2642 
2643 	return AC_ERR_OK;
2644 }
2645 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2646 
2647 /**
2648  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2649  *	@qc: command to issue to device
2650  *
2651  *	This function issues a PIO, NODATA or DMA command to a
2652  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2653  *	ata_sff_qc_issue().
2654  *
2655  *	LOCKING:
2656  *	spin_lock_irqsave(host lock)
2657  *
2658  *	RETURNS:
2659  *	Zero on success, AC_ERR_* mask on failure
2660  */
2661 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2662 {
2663 	struct ata_port *ap = qc->ap;
2664 	struct ata_link *link = qc->dev->link;
2665 
2666 	/* defer PIO handling to sff_qc_issue */
2667 	if (!ata_is_dma(qc->tf.protocol))
2668 		return ata_sff_qc_issue(qc);
2669 
2670 	/* select the device */
2671 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2672 
2673 	/* start the command */
2674 	switch (qc->tf.protocol) {
2675 	case ATA_PROT_DMA:
2676 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2677 
2678 		trace_ata_tf_load(ap, &qc->tf);
2679 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2680 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2681 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2682 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2683 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2684 		ap->hsm_task_state = HSM_ST_LAST;
2685 		break;
2686 
2687 	case ATAPI_PROT_DMA:
2688 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2689 
2690 		trace_ata_tf_load(ap, &qc->tf);
2691 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2692 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2693 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2694 		ap->hsm_task_state = HSM_ST_FIRST;
2695 
2696 		/* send cdb by polling if no cdb interrupt */
2697 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2698 			ata_sff_queue_pio_task(link, 0);
2699 		break;
2700 
2701 	default:
2702 		WARN_ON(1);
2703 		return AC_ERR_SYSTEM;
2704 	}
2705 
2706 	return 0;
2707 }
2708 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2709 
2710 /**
2711  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2712  *	@ap: Port on which interrupt arrived (possibly...)
2713  *	@qc: Taskfile currently active in engine
2714  *
2715  *	Handle port interrupt for given queued command.
2716  *
2717  *	LOCKING:
2718  *	spin_lock_irqsave(host lock)
2719  *
2720  *	RETURNS:
2721  *	One if interrupt was handled, zero if not (shared irq).
2722  */
2723 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2724 {
2725 	struct ata_eh_info *ehi = &ap->link.eh_info;
2726 	u8 host_stat = 0;
2727 	bool bmdma_stopped = false;
2728 	unsigned int handled;
2729 
2730 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2731 		/* check status of DMA engine */
2732 		host_stat = ap->ops->bmdma_status(ap);
2733 		trace_ata_bmdma_status(ap, host_stat);
2734 
2735 		/* if it's not our irq... */
2736 		if (!(host_stat & ATA_DMA_INTR))
2737 			return ata_sff_idle_irq(ap);
2738 
2739 		/* before we do anything else, clear DMA-Start bit */
2740 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2741 		ap->ops->bmdma_stop(qc);
2742 		bmdma_stopped = true;
2743 
2744 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2745 			/* error when transferring data to/from memory */
2746 			qc->err_mask |= AC_ERR_HOST_BUS;
2747 			ap->hsm_task_state = HSM_ST_ERR;
2748 		}
2749 	}
2750 
2751 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2752 
2753 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2754 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2755 
2756 	return handled;
2757 }
2758 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2759 
2760 /**
2761  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2762  *	@irq: irq line (unused)
2763  *	@dev_instance: pointer to our ata_host information structure
2764  *
2765  *	Default interrupt handler for PCI IDE devices.  Calls
2766  *	ata_bmdma_port_intr() for each port that is not disabled.
2767  *
2768  *	LOCKING:
2769  *	Obtains host lock during operation.
2770  *
2771  *	RETURNS:
2772  *	IRQ_NONE or IRQ_HANDLED.
2773  */
2774 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2775 {
2776 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2777 }
2778 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2779 
2780 /**
2781  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2782  *	@ap: port to handle error for
2783  *
2784  *	Stock error handler for BMDMA controller.  It can handle both
2785  *	PATA and SATA controllers.  Most BMDMA controllers should be
2786  *	able to use this EH as-is or with some added handling before
2787  *	and after.
2788  *
2789  *	LOCKING:
2790  *	Kernel thread context (may sleep)
2791  */
2792 void ata_bmdma_error_handler(struct ata_port *ap)
2793 {
2794 	struct ata_queued_cmd *qc;
2795 	unsigned long flags;
2796 	bool thaw = false;
2797 
2798 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2799 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2800 		qc = NULL;
2801 
2802 	/* reset PIO HSM and stop DMA engine */
2803 	spin_lock_irqsave(ap->lock, flags);
2804 
2805 	if (qc && ata_is_dma(qc->tf.protocol)) {
2806 		u8 host_stat;
2807 
2808 		host_stat = ap->ops->bmdma_status(ap);
2809 		trace_ata_bmdma_status(ap, host_stat);
2810 
2811 		/* BMDMA controllers indicate host bus error by
2812 		 * setting DMA_ERR bit and timing out.  As it wasn't
2813 		 * really a timeout event, adjust error mask and
2814 		 * cancel frozen state.
2815 		 */
2816 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2817 			qc->err_mask = AC_ERR_HOST_BUS;
2818 			thaw = true;
2819 		}
2820 
2821 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2822 		ap->ops->bmdma_stop(qc);
2823 
2824 		/* if we're gonna thaw, make sure IRQ is clear */
2825 		if (thaw) {
2826 			ap->ops->sff_check_status(ap);
2827 			if (ap->ops->sff_irq_clear)
2828 				ap->ops->sff_irq_clear(ap);
2829 		}
2830 	}
2831 
2832 	spin_unlock_irqrestore(ap->lock, flags);
2833 
2834 	if (thaw)
2835 		ata_eh_thaw_port(ap);
2836 
2837 	ata_sff_error_handler(ap);
2838 }
2839 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2840 
2841 /**
2842  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2843  *	@qc: internal command to clean up
2844  *
2845  *	LOCKING:
2846  *	Kernel thread context (may sleep)
2847  */
2848 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2849 {
2850 	struct ata_port *ap = qc->ap;
2851 	unsigned long flags;
2852 
2853 	if (ata_is_dma(qc->tf.protocol)) {
2854 		spin_lock_irqsave(ap->lock, flags);
2855 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2856 		ap->ops->bmdma_stop(qc);
2857 		spin_unlock_irqrestore(ap->lock, flags);
2858 	}
2859 }
2860 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2861 
2862 /**
2863  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2864  *	@ap: Port associated with this ATA transaction.
2865  *
2866  *	Clear interrupt and error flags in DMA status register.
2867  *
2868  *	May be used as the irq_clear() entry in ata_port_operations.
2869  *
2870  *	LOCKING:
2871  *	spin_lock_irqsave(host lock)
2872  */
2873 void ata_bmdma_irq_clear(struct ata_port *ap)
2874 {
2875 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2876 
2877 	if (!mmio)
2878 		return;
2879 
2880 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2881 }
2882 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2883 
2884 /**
2885  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2886  *	@qc: Info associated with this ATA transaction.
2887  *
2888  *	LOCKING:
2889  *	spin_lock_irqsave(host lock)
2890  */
2891 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2892 {
2893 	struct ata_port *ap = qc->ap;
2894 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2895 	u8 dmactl;
2896 
2897 	/* load PRD table addr. */
2898 	mb();	/* make sure PRD table writes are visible to controller */
2899 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2900 
2901 	/* specify data direction, triple-check start bit is clear */
2902 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2903 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2904 	if (!rw)
2905 		dmactl |= ATA_DMA_WR;
2906 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2907 
2908 	/* issue r/w command */
2909 	ap->ops->sff_exec_command(ap, &qc->tf);
2910 }
2911 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2912 
2913 /**
2914  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2915  *	@qc: Info associated with this ATA transaction.
2916  *
2917  *	LOCKING:
2918  *	spin_lock_irqsave(host lock)
2919  */
2920 void ata_bmdma_start(struct ata_queued_cmd *qc)
2921 {
2922 	struct ata_port *ap = qc->ap;
2923 	u8 dmactl;
2924 
2925 	/* start host DMA transaction */
2926 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2927 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2928 
2929 	/* Strictly, one may wish to issue an ioread8() here, to
2930 	 * flush the mmio write.  However, control also passes
2931 	 * to the hardware at this point, and it will interrupt
2932 	 * us when we are to resume control.  So, in effect,
2933 	 * we don't care when the mmio write flushes.
2934 	 * Further, a read of the DMA status register _immediately_
2935 	 * following the write may not be what certain flaky hardware
2936 	 * is expected, so I think it is best to not add a readb()
2937 	 * without first all the MMIO ATA cards/mobos.
2938 	 * Or maybe I'm just being paranoid.
2939 	 *
2940 	 * FIXME: The posting of this write means I/O starts are
2941 	 * unnecessarily delayed for MMIO
2942 	 */
2943 }
2944 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2945 
2946 /**
2947  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2948  *	@qc: Command we are ending DMA for
2949  *
2950  *	Clears the ATA_DMA_START flag in the dma control register
2951  *
2952  *	May be used as the bmdma_stop() entry in ata_port_operations.
2953  *
2954  *	LOCKING:
2955  *	spin_lock_irqsave(host lock)
2956  */
2957 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2958 {
2959 	struct ata_port *ap = qc->ap;
2960 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2961 
2962 	/* clear start/stop bit */
2963 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2964 		 mmio + ATA_DMA_CMD);
2965 
2966 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2967 	ata_sff_dma_pause(ap);
2968 }
2969 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2970 
2971 /**
2972  *	ata_bmdma_status - Read PCI IDE BMDMA status
2973  *	@ap: Port associated with this ATA transaction.
2974  *
2975  *	Read and return BMDMA status register.
2976  *
2977  *	May be used as the bmdma_status() entry in ata_port_operations.
2978  *
2979  *	LOCKING:
2980  *	spin_lock_irqsave(host lock)
2981  */
2982 u8 ata_bmdma_status(struct ata_port *ap)
2983 {
2984 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2985 }
2986 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2987 
2988 
2989 /**
2990  *	ata_bmdma_port_start - Set port up for bmdma.
2991  *	@ap: Port to initialize
2992  *
2993  *	Called just after data structures for each port are
2994  *	initialized.  Allocates space for PRD table.
2995  *
2996  *	May be used as the port_start() entry in ata_port_operations.
2997  *
2998  *	LOCKING:
2999  *	Inherited from caller.
3000  */
3001 int ata_bmdma_port_start(struct ata_port *ap)
3002 {
3003 	if (ap->mwdma_mask || ap->udma_mask) {
3004 		ap->bmdma_prd =
3005 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3006 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3007 		if (!ap->bmdma_prd)
3008 			return -ENOMEM;
3009 	}
3010 
3011 	return 0;
3012 }
3013 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3014 
3015 /**
3016  *	ata_bmdma_port_start32 - Set port up for dma.
3017  *	@ap: Port to initialize
3018  *
3019  *	Called just after data structures for each port are
3020  *	initialized.  Enables 32bit PIO and allocates space for PRD
3021  *	table.
3022  *
3023  *	May be used as the port_start() entry in ata_port_operations for
3024  *	devices that are capable of 32bit PIO.
3025  *
3026  *	LOCKING:
3027  *	Inherited from caller.
3028  */
3029 int ata_bmdma_port_start32(struct ata_port *ap)
3030 {
3031 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3032 	return ata_bmdma_port_start(ap);
3033 }
3034 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3035 
3036 #ifdef CONFIG_PCI
3037 
3038 /**
3039  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3040  *	@pdev: PCI device
3041  *
3042  *	Some PCI ATA devices report simplex mode but in fact can be told to
3043  *	enter non simplex mode. This implements the necessary logic to
3044  *	perform the task on such devices. Calling it on other devices will
3045  *	have -undefined- behaviour.
3046  */
3047 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3048 {
3049 	unsigned long bmdma = pci_resource_start(pdev, 4);
3050 	u8 simplex;
3051 
3052 	if (bmdma == 0)
3053 		return -ENOENT;
3054 
3055 	simplex = inb(bmdma + 0x02);
3056 	outb(simplex & 0x60, bmdma + 0x02);
3057 	simplex = inb(bmdma + 0x02);
3058 	if (simplex & 0x80)
3059 		return -EOPNOTSUPP;
3060 	return 0;
3061 }
3062 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3063 
3064 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3065 {
3066 	int i;
3067 
3068 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3069 
3070 	for (i = 0; i < 2; i++) {
3071 		host->ports[i]->mwdma_mask = 0;
3072 		host->ports[i]->udma_mask = 0;
3073 	}
3074 }
3075 
3076 /**
3077  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3078  *	@host: target ATA host
3079  *
3080  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3081  *
3082  *	LOCKING:
3083  *	Inherited from calling layer (may sleep).
3084  */
3085 void ata_pci_bmdma_init(struct ata_host *host)
3086 {
3087 	struct device *gdev = host->dev;
3088 	struct pci_dev *pdev = to_pci_dev(gdev);
3089 	int i, rc;
3090 
3091 	/* No BAR4 allocation: No DMA */
3092 	if (pci_resource_start(pdev, 4) == 0) {
3093 		ata_bmdma_nodma(host, "BAR4 is zero");
3094 		return;
3095 	}
3096 
3097 	/*
3098 	 * Some controllers require BMDMA region to be initialized
3099 	 * even if DMA is not in use to clear IRQ status via
3100 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3101 	 * regardless of dma masks.
3102 	 */
3103 	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3104 	if (rc)
3105 		ata_bmdma_nodma(host, "failed to set dma mask");
3106 
3107 	/* request and iomap DMA region */
3108 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3109 	if (rc) {
3110 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3111 		return;
3112 	}
3113 	host->iomap = pcim_iomap_table(pdev);
3114 
3115 	for (i = 0; i < 2; i++) {
3116 		struct ata_port *ap = host->ports[i];
3117 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3118 
3119 		if (ata_port_is_dummy(ap))
3120 			continue;
3121 
3122 		ap->ioaddr.bmdma_addr = bmdma;
3123 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3124 		    (ioread8(bmdma + 2) & 0x80))
3125 			host->flags |= ATA_HOST_SIMPLEX;
3126 
3127 		ata_port_desc(ap, "bmdma 0x%llx",
3128 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3129 	}
3130 }
3131 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3132 
3133 /**
3134  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3135  *	@pdev: target PCI device
3136  *	@ppi: array of port_info, must be enough for two ports
3137  *	@r_host: out argument for the initialized ATA host
3138  *
3139  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3140  *	resources and initialize it accordingly in one go.
3141  *
3142  *	LOCKING:
3143  *	Inherited from calling layer (may sleep).
3144  *
3145  *	RETURNS:
3146  *	0 on success, -errno otherwise.
3147  */
3148 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3149 			       const struct ata_port_info * const * ppi,
3150 			       struct ata_host **r_host)
3151 {
3152 	int rc;
3153 
3154 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3155 	if (rc)
3156 		return rc;
3157 
3158 	ata_pci_bmdma_init(*r_host);
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3162 
3163 /**
3164  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3165  *	@pdev: Controller to be initialized
3166  *	@ppi: array of port_info, must be enough for two ports
3167  *	@sht: scsi_host_template to use when registering the host
3168  *	@host_priv: host private_data
3169  *	@hflags: host flags
3170  *
3171  *	This function is similar to ata_pci_sff_init_one() but also
3172  *	takes care of BMDMA initialization.
3173  *
3174  *	LOCKING:
3175  *	Inherited from PCI layer (may sleep).
3176  *
3177  *	RETURNS:
3178  *	Zero on success, negative on errno-based value on error.
3179  */
3180 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3181 			   const struct ata_port_info * const * ppi,
3182 			   struct scsi_host_template *sht, void *host_priv,
3183 			   int hflags)
3184 {
3185 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3186 }
3187 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3188 
3189 #endif /* CONFIG_PCI */
3190 #endif /* CONFIG_ATA_BMDMA */
3191 
3192 /**
3193  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3194  *	@ap: Port to initialize
3195  *
3196  *	Called on port allocation to initialize SFF/BMDMA specific
3197  *	fields.
3198  *
3199  *	LOCKING:
3200  *	None.
3201  */
3202 void ata_sff_port_init(struct ata_port *ap)
3203 {
3204 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3205 	ap->ctl = ATA_DEVCTL_OBS;
3206 	ap->last_ctl = 0xFF;
3207 }
3208 
3209 int __init ata_sff_init(void)
3210 {
3211 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3212 	if (!ata_sff_wq)
3213 		return -ENOMEM;
3214 
3215 	return 0;
3216 }
3217 
3218 void ata_sff_exit(void)
3219 {
3220 	destroy_workqueue(ata_sff_wq);
3221 }
3222