xref: /openbmc/linux/drivers/ata/libata-sff.c (revision efe4a1ac)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@qc: queued command
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = qc->dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@qc: queued command
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_device *dev = qc->dev;
617 	struct ata_port *ap = dev->link->ap;
618 	void __iomem *data_addr = ap->ioaddr.data_addr;
619 	unsigned int words = buflen >> 2;
620 	int slop = buflen & 3;
621 
622 	if (!(ap->pflags & ATA_PFLAG_PIO32))
623 		return ata_sff_data_xfer(qc, buf, buflen, rw);
624 
625 	/* Transfer multiple of 4 bytes */
626 	if (rw == READ)
627 		ioread32_rep(data_addr, buf, words);
628 	else
629 		iowrite32_rep(data_addr, buf, words);
630 
631 	/* Transfer trailing bytes, if any */
632 	if (unlikely(slop)) {
633 		unsigned char pad[4] = { };
634 
635 		/* Point buf to the tail of buffer */
636 		buf += buflen - slop;
637 
638 		/*
639 		 * Use io*_rep() accessors here as well to avoid pointlessly
640 		 * swapping bytes to and from on the big endian machines...
641 		 */
642 		if (rw == READ) {
643 			if (slop < 3)
644 				ioread16_rep(data_addr, pad, 1);
645 			else
646 				ioread32_rep(data_addr, pad, 1);
647 			memcpy(buf, pad, slop);
648 		} else {
649 			memcpy(pad, buf, slop);
650 			if (slop < 3)
651 				iowrite16_rep(data_addr, pad, 1);
652 			else
653 				iowrite32_rep(data_addr, pad, 1);
654 		}
655 	}
656 	return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659 
660 /**
661  *	ata_sff_data_xfer_noirq - Transfer data by PIO
662  *	@qc: queued command
663  *	@buf: data buffer
664  *	@buflen: buffer length
665  *	@rw: read/write
666  *
667  *	Transfer data from/to the device data register by PIO. Do the
668  *	transfer with interrupts disabled.
669  *
670  *	LOCKING:
671  *	Inherited from caller.
672  *
673  *	RETURNS:
674  *	Bytes consumed.
675  */
676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 				     unsigned int buflen, int rw)
678 {
679 	unsigned long flags;
680 	unsigned int consumed;
681 
682 	local_irq_save(flags);
683 	consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 	local_irq_restore(flags);
685 
686 	return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689 
690 /**
691  *	ata_pio_sector - Transfer a sector of data.
692  *	@qc: Command on going
693  *
694  *	Transfer qc->sect_size bytes of data from/to the ATA device.
695  *
696  *	LOCKING:
697  *	Inherited from caller.
698  */
699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 	struct ata_port *ap = qc->ap;
703 	struct page *page;
704 	unsigned int offset;
705 	unsigned char *buf;
706 
707 	if (qc->curbytes == qc->nbytes - qc->sect_size)
708 		ap->hsm_task_state = HSM_ST_LAST;
709 
710 	page = sg_page(qc->cursg);
711 	offset = qc->cursg->offset + qc->cursg_ofs;
712 
713 	/* get the current page and offset */
714 	page = nth_page(page, (offset >> PAGE_SHIFT));
715 	offset %= PAGE_SIZE;
716 
717 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718 
719 	if (PageHighMem(page)) {
720 		unsigned long flags;
721 
722 		/* FIXME: use a bounce buffer */
723 		local_irq_save(flags);
724 		buf = kmap_atomic(page);
725 
726 		/* do the actual data transfer */
727 		ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
728 				       do_write);
729 
730 		kunmap_atomic(buf);
731 		local_irq_restore(flags);
732 	} else {
733 		buf = page_address(page);
734 		ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
735 				       do_write);
736 	}
737 
738 	if (!do_write && !PageSlab(page))
739 		flush_dcache_page(page);
740 
741 	qc->curbytes += qc->sect_size;
742 	qc->cursg_ofs += qc->sect_size;
743 
744 	if (qc->cursg_ofs == qc->cursg->length) {
745 		qc->cursg = sg_next(qc->cursg);
746 		qc->cursg_ofs = 0;
747 	}
748 }
749 
750 /**
751  *	ata_pio_sectors - Transfer one or many sectors.
752  *	@qc: Command on going
753  *
754  *	Transfer one or many sectors of data from/to the
755  *	ATA device for the DRQ request.
756  *
757  *	LOCKING:
758  *	Inherited from caller.
759  */
760 static void ata_pio_sectors(struct ata_queued_cmd *qc)
761 {
762 	if (is_multi_taskfile(&qc->tf)) {
763 		/* READ/WRITE MULTIPLE */
764 		unsigned int nsect;
765 
766 		WARN_ON_ONCE(qc->dev->multi_count == 0);
767 
768 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
769 			    qc->dev->multi_count);
770 		while (nsect--)
771 			ata_pio_sector(qc);
772 	} else
773 		ata_pio_sector(qc);
774 
775 	ata_sff_sync(qc->ap); /* flush */
776 }
777 
778 /**
779  *	atapi_send_cdb - Write CDB bytes to hardware
780  *	@ap: Port to which ATAPI device is attached.
781  *	@qc: Taskfile currently active
782  *
783  *	When device has indicated its readiness to accept
784  *	a CDB, this function is called.  Send the CDB.
785  *
786  *	LOCKING:
787  *	caller.
788  */
789 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
790 {
791 	/* send SCSI cdb */
792 	DPRINTK("send cdb\n");
793 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
794 
795 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
796 	ata_sff_sync(ap);
797 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
798 	   or is bmdma_start guaranteed to do it ? */
799 	switch (qc->tf.protocol) {
800 	case ATAPI_PROT_PIO:
801 		ap->hsm_task_state = HSM_ST;
802 		break;
803 	case ATAPI_PROT_NODATA:
804 		ap->hsm_task_state = HSM_ST_LAST;
805 		break;
806 #ifdef CONFIG_ATA_BMDMA
807 	case ATAPI_PROT_DMA:
808 		ap->hsm_task_state = HSM_ST_LAST;
809 		/* initiate bmdma */
810 		ap->ops->bmdma_start(qc);
811 		break;
812 #endif /* CONFIG_ATA_BMDMA */
813 	default:
814 		BUG();
815 	}
816 }
817 
818 /**
819  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
820  *	@qc: Command on going
821  *	@bytes: number of bytes
822  *
823  *	Transfer Transfer data from/to the ATAPI device.
824  *
825  *	LOCKING:
826  *	Inherited from caller.
827  *
828  */
829 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
830 {
831 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
832 	struct ata_port *ap = qc->ap;
833 	struct ata_device *dev = qc->dev;
834 	struct ata_eh_info *ehi = &dev->link->eh_info;
835 	struct scatterlist *sg;
836 	struct page *page;
837 	unsigned char *buf;
838 	unsigned int offset, count, consumed;
839 
840 next_sg:
841 	sg = qc->cursg;
842 	if (unlikely(!sg)) {
843 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
844 				  "buf=%u cur=%u bytes=%u",
845 				  qc->nbytes, qc->curbytes, bytes);
846 		return -1;
847 	}
848 
849 	page = sg_page(sg);
850 	offset = sg->offset + qc->cursg_ofs;
851 
852 	/* get the current page and offset */
853 	page = nth_page(page, (offset >> PAGE_SHIFT));
854 	offset %= PAGE_SIZE;
855 
856 	/* don't overrun current sg */
857 	count = min(sg->length - qc->cursg_ofs, bytes);
858 
859 	/* don't cross page boundaries */
860 	count = min(count, (unsigned int)PAGE_SIZE - offset);
861 
862 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863 
864 	if (PageHighMem(page)) {
865 		unsigned long flags;
866 
867 		/* FIXME: use bounce buffer */
868 		local_irq_save(flags);
869 		buf = kmap_atomic(page);
870 
871 		/* do the actual data transfer */
872 		consumed = ap->ops->sff_data_xfer(qc, buf + offset,
873 								count, rw);
874 
875 		kunmap_atomic(buf);
876 		local_irq_restore(flags);
877 	} else {
878 		buf = page_address(page);
879 		consumed = ap->ops->sff_data_xfer(qc, buf + offset,
880 								count, rw);
881 	}
882 
883 	bytes -= min(bytes, consumed);
884 	qc->curbytes += count;
885 	qc->cursg_ofs += count;
886 
887 	if (qc->cursg_ofs == sg->length) {
888 		qc->cursg = sg_next(qc->cursg);
889 		qc->cursg_ofs = 0;
890 	}
891 
892 	/*
893 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
894 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
895 	 * check correctly as it doesn't know if it is the last request being
896 	 * made. Somebody should implement a proper sanity check.
897 	 */
898 	if (bytes)
899 		goto next_sg;
900 	return 0;
901 }
902 
903 /**
904  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
905  *	@qc: Command on going
906  *
907  *	Transfer Transfer data from/to the ATAPI device.
908  *
909  *	LOCKING:
910  *	Inherited from caller.
911  */
912 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
913 {
914 	struct ata_port *ap = qc->ap;
915 	struct ata_device *dev = qc->dev;
916 	struct ata_eh_info *ehi = &dev->link->eh_info;
917 	unsigned int ireason, bc_lo, bc_hi, bytes;
918 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
919 
920 	/* Abuse qc->result_tf for temp storage of intermediate TF
921 	 * here to save some kernel stack usage.
922 	 * For normal completion, qc->result_tf is not relevant. For
923 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
924 	 * So, the correctness of qc->result_tf is not affected.
925 	 */
926 	ap->ops->sff_tf_read(ap, &qc->result_tf);
927 	ireason = qc->result_tf.nsect;
928 	bc_lo = qc->result_tf.lbam;
929 	bc_hi = qc->result_tf.lbah;
930 	bytes = (bc_hi << 8) | bc_lo;
931 
932 	/* shall be cleared to zero, indicating xfer of data */
933 	if (unlikely(ireason & ATAPI_COD))
934 		goto atapi_check;
935 
936 	/* make sure transfer direction matches expected */
937 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
938 	if (unlikely(do_write != i_write))
939 		goto atapi_check;
940 
941 	if (unlikely(!bytes))
942 		goto atapi_check;
943 
944 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
945 
946 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
947 		goto err_out;
948 	ata_sff_sync(ap); /* flush */
949 
950 	return;
951 
952  atapi_check:
953 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 			  ireason, bytes);
955  err_out:
956 	qc->err_mask |= AC_ERR_HSM;
957 	ap->hsm_task_state = HSM_ST_ERR;
958 }
959 
960 /**
961  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
962  *	@ap: the target ata_port
963  *	@qc: qc on going
964  *
965  *	RETURNS:
966  *	1 if ok in workqueue, 0 otherwise.
967  */
968 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
969 						struct ata_queued_cmd *qc)
970 {
971 	if (qc->tf.flags & ATA_TFLAG_POLLING)
972 		return 1;
973 
974 	if (ap->hsm_task_state == HSM_ST_FIRST) {
975 		if (qc->tf.protocol == ATA_PROT_PIO &&
976 		   (qc->tf.flags & ATA_TFLAG_WRITE))
977 		    return 1;
978 
979 		if (ata_is_atapi(qc->tf.protocol) &&
980 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
981 			return 1;
982 	}
983 
984 	return 0;
985 }
986 
987 /**
988  *	ata_hsm_qc_complete - finish a qc running on standard HSM
989  *	@qc: Command to complete
990  *	@in_wq: 1 if called from workqueue, 0 otherwise
991  *
992  *	Finish @qc which is running on standard HSM.
993  *
994  *	LOCKING:
995  *	If @in_wq is zero, spin_lock_irqsave(host lock).
996  *	Otherwise, none on entry and grabs host lock.
997  */
998 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
999 {
1000 	struct ata_port *ap = qc->ap;
1001 
1002 	if (ap->ops->error_handler) {
1003 		if (in_wq) {
1004 			/* EH might have kicked in while host lock is
1005 			 * released.
1006 			 */
1007 			qc = ata_qc_from_tag(ap, qc->tag);
1008 			if (qc) {
1009 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1010 					ata_sff_irq_on(ap);
1011 					ata_qc_complete(qc);
1012 				} else
1013 					ata_port_freeze(ap);
1014 			}
1015 		} else {
1016 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 				ata_qc_complete(qc);
1018 			else
1019 				ata_port_freeze(ap);
1020 		}
1021 	} else {
1022 		if (in_wq) {
1023 			ata_sff_irq_on(ap);
1024 			ata_qc_complete(qc);
1025 		} else
1026 			ata_qc_complete(qc);
1027 	}
1028 }
1029 
1030 /**
1031  *	ata_sff_hsm_move - move the HSM to the next state.
1032  *	@ap: the target ata_port
1033  *	@qc: qc on going
1034  *	@status: current device status
1035  *	@in_wq: 1 if called from workqueue, 0 otherwise
1036  *
1037  *	RETURNS:
1038  *	1 when poll next status needed, 0 otherwise.
1039  */
1040 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1041 		     u8 status, int in_wq)
1042 {
1043 	struct ata_link *link = qc->dev->link;
1044 	struct ata_eh_info *ehi = &link->eh_info;
1045 	int poll_next;
1046 
1047 	lockdep_assert_held(ap->lock);
1048 
1049 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1050 
1051 	/* Make sure ata_sff_qc_issue() does not throw things
1052 	 * like DMA polling into the workqueue. Notice that
1053 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 	 */
1055 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1056 
1057 fsm_start:
1058 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060 
1061 	switch (ap->hsm_task_state) {
1062 	case HSM_ST_FIRST:
1063 		/* Send first data block or PACKET CDB */
1064 
1065 		/* If polling, we will stay in the work queue after
1066 		 * sending the data. Otherwise, interrupt handler
1067 		 * takes over after sending the data.
1068 		 */
1069 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070 
1071 		/* check device status */
1072 		if (unlikely((status & ATA_DRQ) == 0)) {
1073 			/* handle BSY=0, DRQ=0 as error */
1074 			if (likely(status & (ATA_ERR | ATA_DF)))
1075 				/* device stops HSM for abort/error */
1076 				qc->err_mask |= AC_ERR_DEV;
1077 			else {
1078 				/* HSM violation. Let EH handle this */
1079 				ata_ehi_push_desc(ehi,
1080 					"ST_FIRST: !(DRQ|ERR|DF)");
1081 				qc->err_mask |= AC_ERR_HSM;
1082 			}
1083 
1084 			ap->hsm_task_state = HSM_ST_ERR;
1085 			goto fsm_start;
1086 		}
1087 
1088 		/* Device should not ask for data transfer (DRQ=1)
1089 		 * when it finds something wrong.
1090 		 * We ignore DRQ here and stop the HSM by
1091 		 * changing hsm_task_state to HSM_ST_ERR and
1092 		 * let the EH abort the command or reset the device.
1093 		 */
1094 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 			/* Some ATAPI tape drives forget to clear the ERR bit
1096 			 * when doing the next command (mostly request sense).
1097 			 * We ignore ERR here to workaround and proceed sending
1098 			 * the CDB.
1099 			 */
1100 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1101 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 					"DRQ=1 with device error, "
1103 					"dev_stat 0x%X", status);
1104 				qc->err_mask |= AC_ERR_HSM;
1105 				ap->hsm_task_state = HSM_ST_ERR;
1106 				goto fsm_start;
1107 			}
1108 		}
1109 
1110 		if (qc->tf.protocol == ATA_PROT_PIO) {
1111 			/* PIO data out protocol.
1112 			 * send first data block.
1113 			 */
1114 
1115 			/* ata_pio_sectors() might change the state
1116 			 * to HSM_ST_LAST. so, the state is changed here
1117 			 * before ata_pio_sectors().
1118 			 */
1119 			ap->hsm_task_state = HSM_ST;
1120 			ata_pio_sectors(qc);
1121 		} else
1122 			/* send CDB */
1123 			atapi_send_cdb(ap, qc);
1124 
1125 		/* if polling, ata_sff_pio_task() handles the rest.
1126 		 * otherwise, interrupt handler takes over from here.
1127 		 */
1128 		break;
1129 
1130 	case HSM_ST:
1131 		/* complete command or read/write the data register */
1132 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1133 			/* ATAPI PIO protocol */
1134 			if ((status & ATA_DRQ) == 0) {
1135 				/* No more data to transfer or device error.
1136 				 * Device error will be tagged in HSM_ST_LAST.
1137 				 */
1138 				ap->hsm_task_state = HSM_ST_LAST;
1139 				goto fsm_start;
1140 			}
1141 
1142 			/* Device should not ask for data transfer (DRQ=1)
1143 			 * when it finds something wrong.
1144 			 * We ignore DRQ here and stop the HSM by
1145 			 * changing hsm_task_state to HSM_ST_ERR and
1146 			 * let the EH abort the command or reset the device.
1147 			 */
1148 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1149 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1150 					"DRQ=1 with device error, "
1151 					"dev_stat 0x%X", status);
1152 				qc->err_mask |= AC_ERR_HSM;
1153 				ap->hsm_task_state = HSM_ST_ERR;
1154 				goto fsm_start;
1155 			}
1156 
1157 			atapi_pio_bytes(qc);
1158 
1159 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1160 				/* bad ireason reported by device */
1161 				goto fsm_start;
1162 
1163 		} else {
1164 			/* ATA PIO protocol */
1165 			if (unlikely((status & ATA_DRQ) == 0)) {
1166 				/* handle BSY=0, DRQ=0 as error */
1167 				if (likely(status & (ATA_ERR | ATA_DF))) {
1168 					/* device stops HSM for abort/error */
1169 					qc->err_mask |= AC_ERR_DEV;
1170 
1171 					/* If diagnostic failed and this is
1172 					 * IDENTIFY, it's likely a phantom
1173 					 * device.  Mark hint.
1174 					 */
1175 					if (qc->dev->horkage &
1176 					    ATA_HORKAGE_DIAGNOSTIC)
1177 						qc->err_mask |=
1178 							AC_ERR_NODEV_HINT;
1179 				} else {
1180 					/* HSM violation. Let EH handle this.
1181 					 * Phantom devices also trigger this
1182 					 * condition.  Mark hint.
1183 					 */
1184 					ata_ehi_push_desc(ehi, "ST-ATA: "
1185 						"DRQ=0 without device error, "
1186 						"dev_stat 0x%X", status);
1187 					qc->err_mask |= AC_ERR_HSM |
1188 							AC_ERR_NODEV_HINT;
1189 				}
1190 
1191 				ap->hsm_task_state = HSM_ST_ERR;
1192 				goto fsm_start;
1193 			}
1194 
1195 			/* For PIO reads, some devices may ask for
1196 			 * data transfer (DRQ=1) alone with ERR=1.
1197 			 * We respect DRQ here and transfer one
1198 			 * block of junk data before changing the
1199 			 * hsm_task_state to HSM_ST_ERR.
1200 			 *
1201 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1202 			 * sense since the data block has been
1203 			 * transferred to the device.
1204 			 */
1205 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1206 				/* data might be corrputed */
1207 				qc->err_mask |= AC_ERR_DEV;
1208 
1209 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1210 					ata_pio_sectors(qc);
1211 					status = ata_wait_idle(ap);
1212 				}
1213 
1214 				if (status & (ATA_BUSY | ATA_DRQ)) {
1215 					ata_ehi_push_desc(ehi, "ST-ATA: "
1216 						"BUSY|DRQ persists on ERR|DF, "
1217 						"dev_stat 0x%X", status);
1218 					qc->err_mask |= AC_ERR_HSM;
1219 				}
1220 
1221 				/* There are oddball controllers with
1222 				 * status register stuck at 0x7f and
1223 				 * lbal/m/h at zero which makes it
1224 				 * pass all other presence detection
1225 				 * mechanisms we have.  Set NODEV_HINT
1226 				 * for it.  Kernel bz#7241.
1227 				 */
1228 				if (status == 0x7f)
1229 					qc->err_mask |= AC_ERR_NODEV_HINT;
1230 
1231 				/* ata_pio_sectors() might change the
1232 				 * state to HSM_ST_LAST. so, the state
1233 				 * is changed after ata_pio_sectors().
1234 				 */
1235 				ap->hsm_task_state = HSM_ST_ERR;
1236 				goto fsm_start;
1237 			}
1238 
1239 			ata_pio_sectors(qc);
1240 
1241 			if (ap->hsm_task_state == HSM_ST_LAST &&
1242 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1243 				/* all data read */
1244 				status = ata_wait_idle(ap);
1245 				goto fsm_start;
1246 			}
1247 		}
1248 
1249 		poll_next = 1;
1250 		break;
1251 
1252 	case HSM_ST_LAST:
1253 		if (unlikely(!ata_ok(status))) {
1254 			qc->err_mask |= __ac_err_mask(status);
1255 			ap->hsm_task_state = HSM_ST_ERR;
1256 			goto fsm_start;
1257 		}
1258 
1259 		/* no more data to transfer */
1260 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1261 			ap->print_id, qc->dev->devno, status);
1262 
1263 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1264 
1265 		ap->hsm_task_state = HSM_ST_IDLE;
1266 
1267 		/* complete taskfile transaction */
1268 		ata_hsm_qc_complete(qc, in_wq);
1269 
1270 		poll_next = 0;
1271 		break;
1272 
1273 	case HSM_ST_ERR:
1274 		ap->hsm_task_state = HSM_ST_IDLE;
1275 
1276 		/* complete taskfile transaction */
1277 		ata_hsm_qc_complete(qc, in_wq);
1278 
1279 		poll_next = 0;
1280 		break;
1281 	default:
1282 		poll_next = 0;
1283 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1284 		     ap->print_id, ap->hsm_task_state);
1285 	}
1286 
1287 	return poll_next;
1288 }
1289 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1290 
1291 void ata_sff_queue_work(struct work_struct *work)
1292 {
1293 	queue_work(ata_sff_wq, work);
1294 }
1295 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1296 
1297 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1298 {
1299 	queue_delayed_work(ata_sff_wq, dwork, delay);
1300 }
1301 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1302 
1303 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1304 {
1305 	struct ata_port *ap = link->ap;
1306 
1307 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1308 		(ap->sff_pio_task_link != link));
1309 	ap->sff_pio_task_link = link;
1310 
1311 	/* may fail if ata_sff_flush_pio_task() in progress */
1312 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1313 }
1314 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1315 
1316 void ata_sff_flush_pio_task(struct ata_port *ap)
1317 {
1318 	DPRINTK("ENTER\n");
1319 
1320 	cancel_delayed_work_sync(&ap->sff_pio_task);
1321 
1322 	/*
1323 	 * We wanna reset the HSM state to IDLE.  If we do so without
1324 	 * grabbing the port lock, critical sections protected by it which
1325 	 * expect the HSM state to stay stable may get surprised.  For
1326 	 * example, we may set IDLE in between the time
1327 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1328 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1329 	 */
1330 	spin_lock_irq(ap->lock);
1331 	ap->hsm_task_state = HSM_ST_IDLE;
1332 	spin_unlock_irq(ap->lock);
1333 
1334 	ap->sff_pio_task_link = NULL;
1335 
1336 	if (ata_msg_ctl(ap))
1337 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1338 }
1339 
1340 static void ata_sff_pio_task(struct work_struct *work)
1341 {
1342 	struct ata_port *ap =
1343 		container_of(work, struct ata_port, sff_pio_task.work);
1344 	struct ata_link *link = ap->sff_pio_task_link;
1345 	struct ata_queued_cmd *qc;
1346 	u8 status;
1347 	int poll_next;
1348 
1349 	spin_lock_irq(ap->lock);
1350 
1351 	BUG_ON(ap->sff_pio_task_link == NULL);
1352 	/* qc can be NULL if timeout occurred */
1353 	qc = ata_qc_from_tag(ap, link->active_tag);
1354 	if (!qc) {
1355 		ap->sff_pio_task_link = NULL;
1356 		goto out_unlock;
1357 	}
1358 
1359 fsm_start:
1360 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1361 
1362 	/*
1363 	 * This is purely heuristic.  This is a fast path.
1364 	 * Sometimes when we enter, BSY will be cleared in
1365 	 * a chk-status or two.  If not, the drive is probably seeking
1366 	 * or something.  Snooze for a couple msecs, then
1367 	 * chk-status again.  If still busy, queue delayed work.
1368 	 */
1369 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1370 	if (status & ATA_BUSY) {
1371 		spin_unlock_irq(ap->lock);
1372 		ata_msleep(ap, 2);
1373 		spin_lock_irq(ap->lock);
1374 
1375 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1376 		if (status & ATA_BUSY) {
1377 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1378 			goto out_unlock;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * hsm_move() may trigger another command to be processed.
1384 	 * clean the link beforehand.
1385 	 */
1386 	ap->sff_pio_task_link = NULL;
1387 	/* move the HSM */
1388 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1389 
1390 	/* another command or interrupt handler
1391 	 * may be running at this point.
1392 	 */
1393 	if (poll_next)
1394 		goto fsm_start;
1395 out_unlock:
1396 	spin_unlock_irq(ap->lock);
1397 }
1398 
1399 /**
1400  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1401  *	@qc: command to issue to device
1402  *
1403  *	This function issues a PIO or NODATA command to a SFF
1404  *	controller.
1405  *
1406  *	LOCKING:
1407  *	spin_lock_irqsave(host lock)
1408  *
1409  *	RETURNS:
1410  *	Zero on success, AC_ERR_* mask on failure
1411  */
1412 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1413 {
1414 	struct ata_port *ap = qc->ap;
1415 	struct ata_link *link = qc->dev->link;
1416 
1417 	/* Use polling pio if the LLD doesn't handle
1418 	 * interrupt driven pio and atapi CDB interrupt.
1419 	 */
1420 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1421 		qc->tf.flags |= ATA_TFLAG_POLLING;
1422 
1423 	/* select the device */
1424 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1425 
1426 	/* start the command */
1427 	switch (qc->tf.protocol) {
1428 	case ATA_PROT_NODATA:
1429 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 			ata_qc_set_polling(qc);
1431 
1432 		ata_tf_to_host(ap, &qc->tf);
1433 		ap->hsm_task_state = HSM_ST_LAST;
1434 
1435 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1436 			ata_sff_queue_pio_task(link, 0);
1437 
1438 		break;
1439 
1440 	case ATA_PROT_PIO:
1441 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 			ata_qc_set_polling(qc);
1443 
1444 		ata_tf_to_host(ap, &qc->tf);
1445 
1446 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1447 			/* PIO data out protocol */
1448 			ap->hsm_task_state = HSM_ST_FIRST;
1449 			ata_sff_queue_pio_task(link, 0);
1450 
1451 			/* always send first data block using the
1452 			 * ata_sff_pio_task() codepath.
1453 			 */
1454 		} else {
1455 			/* PIO data in protocol */
1456 			ap->hsm_task_state = HSM_ST;
1457 
1458 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1459 				ata_sff_queue_pio_task(link, 0);
1460 
1461 			/* if polling, ata_sff_pio_task() handles the
1462 			 * rest.  otherwise, interrupt handler takes
1463 			 * over from here.
1464 			 */
1465 		}
1466 
1467 		break;
1468 
1469 	case ATAPI_PROT_PIO:
1470 	case ATAPI_PROT_NODATA:
1471 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1472 			ata_qc_set_polling(qc);
1473 
1474 		ata_tf_to_host(ap, &qc->tf);
1475 
1476 		ap->hsm_task_state = HSM_ST_FIRST;
1477 
1478 		/* send cdb by polling if no cdb interrupt */
1479 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1480 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1481 			ata_sff_queue_pio_task(link, 0);
1482 		break;
1483 
1484 	default:
1485 		return AC_ERR_SYSTEM;
1486 	}
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491 
1492 /**
1493  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494  *	@qc: qc to fill result TF for
1495  *
1496  *	@qc is finished and result TF needs to be filled.  Fill it
1497  *	using ->sff_tf_read.
1498  *
1499  *	LOCKING:
1500  *	spin_lock_irqsave(host lock)
1501  *
1502  *	RETURNS:
1503  *	true indicating that result TF is successfully filled.
1504  */
1505 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506 {
1507 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508 	return true;
1509 }
1510 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511 
1512 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513 {
1514 	ap->stats.idle_irq++;
1515 
1516 #ifdef ATA_IRQ_TRAP
1517 	if ((ap->stats.idle_irq % 1000) == 0) {
1518 		ap->ops->sff_check_status(ap);
1519 		if (ap->ops->sff_irq_clear)
1520 			ap->ops->sff_irq_clear(ap);
1521 		ata_port_warn(ap, "irq trap\n");
1522 		return 1;
1523 	}
1524 #endif
1525 	return 0;	/* irq not handled */
1526 }
1527 
1528 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529 					struct ata_queued_cmd *qc,
1530 					bool hsmv_on_idle)
1531 {
1532 	u8 status;
1533 
1534 	VPRINTK("ata%u: protocol %d task_state %d\n",
1535 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536 
1537 	/* Check whether we are expecting interrupt in this state */
1538 	switch (ap->hsm_task_state) {
1539 	case HSM_ST_FIRST:
1540 		/* Some pre-ATAPI-4 devices assert INTRQ
1541 		 * at this state when ready to receive CDB.
1542 		 */
1543 
1544 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545 		 * The flag was turned on only for atapi devices.  No
1546 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1547 		 */
1548 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549 			return ata_sff_idle_irq(ap);
1550 		break;
1551 	case HSM_ST_IDLE:
1552 		return ata_sff_idle_irq(ap);
1553 	default:
1554 		break;
1555 	}
1556 
1557 	/* check main status, clearing INTRQ if needed */
1558 	status = ata_sff_irq_status(ap);
1559 	if (status & ATA_BUSY) {
1560 		if (hsmv_on_idle) {
1561 			/* BMDMA engine is already stopped, we're screwed */
1562 			qc->err_mask |= AC_ERR_HSM;
1563 			ap->hsm_task_state = HSM_ST_ERR;
1564 		} else
1565 			return ata_sff_idle_irq(ap);
1566 	}
1567 
1568 	/* clear irq events */
1569 	if (ap->ops->sff_irq_clear)
1570 		ap->ops->sff_irq_clear(ap);
1571 
1572 	ata_sff_hsm_move(ap, qc, status, 0);
1573 
1574 	return 1;	/* irq handled */
1575 }
1576 
1577 /**
1578  *	ata_sff_port_intr - Handle SFF port interrupt
1579  *	@ap: Port on which interrupt arrived (possibly...)
1580  *	@qc: Taskfile currently active in engine
1581  *
1582  *	Handle port interrupt for given queued command.
1583  *
1584  *	LOCKING:
1585  *	spin_lock_irqsave(host lock)
1586  *
1587  *	RETURNS:
1588  *	One if interrupt was handled, zero if not (shared irq).
1589  */
1590 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591 {
1592 	return __ata_sff_port_intr(ap, qc, false);
1593 }
1594 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595 
1596 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598 {
1599 	struct ata_host *host = dev_instance;
1600 	bool retried = false;
1601 	unsigned int i;
1602 	unsigned int handled, idle, polling;
1603 	unsigned long flags;
1604 
1605 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606 	spin_lock_irqsave(&host->lock, flags);
1607 
1608 retry:
1609 	handled = idle = polling = 0;
1610 	for (i = 0; i < host->n_ports; i++) {
1611 		struct ata_port *ap = host->ports[i];
1612 		struct ata_queued_cmd *qc;
1613 
1614 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615 		if (qc) {
1616 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617 				handled |= port_intr(ap, qc);
1618 			else
1619 				polling |= 1 << i;
1620 		} else
1621 			idle |= 1 << i;
1622 	}
1623 
1624 	/*
1625 	 * If no port was expecting IRQ but the controller is actually
1626 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1627 	 * pending status if available and clear spurious IRQ.
1628 	 */
1629 	if (!handled && !retried) {
1630 		bool retry = false;
1631 
1632 		for (i = 0; i < host->n_ports; i++) {
1633 			struct ata_port *ap = host->ports[i];
1634 
1635 			if (polling & (1 << i))
1636 				continue;
1637 
1638 			if (!ap->ops->sff_irq_check ||
1639 			    !ap->ops->sff_irq_check(ap))
1640 				continue;
1641 
1642 			if (idle & (1 << i)) {
1643 				ap->ops->sff_check_status(ap);
1644 				if (ap->ops->sff_irq_clear)
1645 					ap->ops->sff_irq_clear(ap);
1646 			} else {
1647 				/* clear INTRQ and check if BUSY cleared */
1648 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649 					retry |= true;
1650 				/*
1651 				 * With command in flight, we can't do
1652 				 * sff_irq_clear() w/o racing with completion.
1653 				 */
1654 			}
1655 		}
1656 
1657 		if (retry) {
1658 			retried = true;
1659 			goto retry;
1660 		}
1661 	}
1662 
1663 	spin_unlock_irqrestore(&host->lock, flags);
1664 
1665 	return IRQ_RETVAL(handled);
1666 }
1667 
1668 /**
1669  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1670  *	@irq: irq line (unused)
1671  *	@dev_instance: pointer to our ata_host information structure
1672  *
1673  *	Default interrupt handler for PCI IDE devices.  Calls
1674  *	ata_sff_port_intr() for each port that is not disabled.
1675  *
1676  *	LOCKING:
1677  *	Obtains host lock during operation.
1678  *
1679  *	RETURNS:
1680  *	IRQ_NONE or IRQ_HANDLED.
1681  */
1682 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683 {
1684 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687 
1688 /**
1689  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1690  *	@ap: port that appears to have timed out
1691  *
1692  *	Called from the libata error handlers when the core code suspects
1693  *	an interrupt has been lost. If it has complete anything we can and
1694  *	then return. Interface must support altstatus for this faster
1695  *	recovery to occur.
1696  *
1697  *	Locking:
1698  *	Caller holds host lock
1699  */
1700 
1701 void ata_sff_lost_interrupt(struct ata_port *ap)
1702 {
1703 	u8 status;
1704 	struct ata_queued_cmd *qc;
1705 
1706 	/* Only one outstanding command per SFF channel */
1707 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708 	/* We cannot lose an interrupt on a non-existent or polled command */
1709 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710 		return;
1711 	/* See if the controller thinks it is still busy - if so the command
1712 	   isn't a lost IRQ but is still in progress */
1713 	status = ata_sff_altstatus(ap);
1714 	if (status & ATA_BUSY)
1715 		return;
1716 
1717 	/* There was a command running, we are no longer busy and we have
1718 	   no interrupt. */
1719 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720 								status);
1721 	/* Run the host interrupt logic as if the interrupt had not been
1722 	   lost */
1723 	ata_sff_port_intr(ap, qc);
1724 }
1725 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726 
1727 /**
1728  *	ata_sff_freeze - Freeze SFF controller port
1729  *	@ap: port to freeze
1730  *
1731  *	Freeze SFF controller port.
1732  *
1733  *	LOCKING:
1734  *	Inherited from caller.
1735  */
1736 void ata_sff_freeze(struct ata_port *ap)
1737 {
1738 	ap->ctl |= ATA_NIEN;
1739 	ap->last_ctl = ap->ctl;
1740 
1741 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742 		ata_sff_set_devctl(ap, ap->ctl);
1743 
1744 	/* Under certain circumstances, some controllers raise IRQ on
1745 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1746 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1747 	 */
1748 	ap->ops->sff_check_status(ap);
1749 
1750 	if (ap->ops->sff_irq_clear)
1751 		ap->ops->sff_irq_clear(ap);
1752 }
1753 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754 
1755 /**
1756  *	ata_sff_thaw - Thaw SFF controller port
1757  *	@ap: port to thaw
1758  *
1759  *	Thaw SFF controller port.
1760  *
1761  *	LOCKING:
1762  *	Inherited from caller.
1763  */
1764 void ata_sff_thaw(struct ata_port *ap)
1765 {
1766 	/* clear & re-enable interrupts */
1767 	ap->ops->sff_check_status(ap);
1768 	if (ap->ops->sff_irq_clear)
1769 		ap->ops->sff_irq_clear(ap);
1770 	ata_sff_irq_on(ap);
1771 }
1772 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773 
1774 /**
1775  *	ata_sff_prereset - prepare SFF link for reset
1776  *	@link: SFF link to be reset
1777  *	@deadline: deadline jiffies for the operation
1778  *
1779  *	SFF link @link is about to be reset.  Initialize it.  It first
1780  *	calls ata_std_prereset() and wait for !BSY if the port is
1781  *	being softreset.
1782  *
1783  *	LOCKING:
1784  *	Kernel thread context (may sleep)
1785  *
1786  *	RETURNS:
1787  *	0 on success, -errno otherwise.
1788  */
1789 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790 {
1791 	struct ata_eh_context *ehc = &link->eh_context;
1792 	int rc;
1793 
1794 	rc = ata_std_prereset(link, deadline);
1795 	if (rc)
1796 		return rc;
1797 
1798 	/* if we're about to do hardreset, nothing more to do */
1799 	if (ehc->i.action & ATA_EH_HARDRESET)
1800 		return 0;
1801 
1802 	/* wait for !BSY if we don't know that no device is attached */
1803 	if (!ata_link_offline(link)) {
1804 		rc = ata_sff_wait_ready(link, deadline);
1805 		if (rc && rc != -ENODEV) {
1806 			ata_link_warn(link,
1807 				      "device not ready (errno=%d), forcing hardreset\n",
1808 				      rc);
1809 			ehc->i.action |= ATA_EH_HARDRESET;
1810 		}
1811 	}
1812 
1813 	return 0;
1814 }
1815 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816 
1817 /**
1818  *	ata_devchk - PATA device presence detection
1819  *	@ap: ATA channel to examine
1820  *	@device: Device to examine (starting at zero)
1821  *
1822  *	This technique was originally described in
1823  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1824  *	later found its way into the ATA/ATAPI spec.
1825  *
1826  *	Write a pattern to the ATA shadow registers,
1827  *	and if a device is present, it will respond by
1828  *	correctly storing and echoing back the
1829  *	ATA shadow register contents.
1830  *
1831  *	LOCKING:
1832  *	caller.
1833  */
1834 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835 {
1836 	struct ata_ioports *ioaddr = &ap->ioaddr;
1837 	u8 nsect, lbal;
1838 
1839 	ap->ops->sff_dev_select(ap, device);
1840 
1841 	iowrite8(0x55, ioaddr->nsect_addr);
1842 	iowrite8(0xaa, ioaddr->lbal_addr);
1843 
1844 	iowrite8(0xaa, ioaddr->nsect_addr);
1845 	iowrite8(0x55, ioaddr->lbal_addr);
1846 
1847 	iowrite8(0x55, ioaddr->nsect_addr);
1848 	iowrite8(0xaa, ioaddr->lbal_addr);
1849 
1850 	nsect = ioread8(ioaddr->nsect_addr);
1851 	lbal = ioread8(ioaddr->lbal_addr);
1852 
1853 	if ((nsect == 0x55) && (lbal == 0xaa))
1854 		return 1;	/* we found a device */
1855 
1856 	return 0;		/* nothing found */
1857 }
1858 
1859 /**
1860  *	ata_sff_dev_classify - Parse returned ATA device signature
1861  *	@dev: ATA device to classify (starting at zero)
1862  *	@present: device seems present
1863  *	@r_err: Value of error register on completion
1864  *
1865  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866  *	an ATA/ATAPI-defined set of values is placed in the ATA
1867  *	shadow registers, indicating the results of device detection
1868  *	and diagnostics.
1869  *
1870  *	Select the ATA device, and read the values from the ATA shadow
1871  *	registers.  Then parse according to the Error register value,
1872  *	and the spec-defined values examined by ata_dev_classify().
1873  *
1874  *	LOCKING:
1875  *	caller.
1876  *
1877  *	RETURNS:
1878  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879  */
1880 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881 				  u8 *r_err)
1882 {
1883 	struct ata_port *ap = dev->link->ap;
1884 	struct ata_taskfile tf;
1885 	unsigned int class;
1886 	u8 err;
1887 
1888 	ap->ops->sff_dev_select(ap, dev->devno);
1889 
1890 	memset(&tf, 0, sizeof(tf));
1891 
1892 	ap->ops->sff_tf_read(ap, &tf);
1893 	err = tf.feature;
1894 	if (r_err)
1895 		*r_err = err;
1896 
1897 	/* see if device passed diags: continue and warn later */
1898 	if (err == 0)
1899 		/* diagnostic fail : do nothing _YET_ */
1900 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901 	else if (err == 1)
1902 		/* do nothing */ ;
1903 	else if ((dev->devno == 0) && (err == 0x81))
1904 		/* do nothing */ ;
1905 	else
1906 		return ATA_DEV_NONE;
1907 
1908 	/* determine if device is ATA or ATAPI */
1909 	class = ata_dev_classify(&tf);
1910 
1911 	if (class == ATA_DEV_UNKNOWN) {
1912 		/* If the device failed diagnostic, it's likely to
1913 		 * have reported incorrect device signature too.
1914 		 * Assume ATA device if the device seems present but
1915 		 * device signature is invalid with diagnostic
1916 		 * failure.
1917 		 */
1918 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919 			class = ATA_DEV_ATA;
1920 		else
1921 			class = ATA_DEV_NONE;
1922 	} else if ((class == ATA_DEV_ATA) &&
1923 		   (ap->ops->sff_check_status(ap) == 0))
1924 		class = ATA_DEV_NONE;
1925 
1926 	return class;
1927 }
1928 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929 
1930 /**
1931  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1932  *	@link: SFF link which is just reset
1933  *	@devmask: mask of present devices
1934  *	@deadline: deadline jiffies for the operation
1935  *
1936  *	Wait devices attached to SFF @link to become ready after
1937  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1938  *	status register too early.
1939  *
1940  *	LOCKING:
1941  *	Kernel thread context (may sleep).
1942  *
1943  *	RETURNS:
1944  *	0 on success, -ENODEV if some or all of devices in @devmask
1945  *	don't seem to exist.  -errno on other errors.
1946  */
1947 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948 			     unsigned long deadline)
1949 {
1950 	struct ata_port *ap = link->ap;
1951 	struct ata_ioports *ioaddr = &ap->ioaddr;
1952 	unsigned int dev0 = devmask & (1 << 0);
1953 	unsigned int dev1 = devmask & (1 << 1);
1954 	int rc, ret = 0;
1955 
1956 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957 
1958 	/* always check readiness of the master device */
1959 	rc = ata_sff_wait_ready(link, deadline);
1960 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961 	 * and TF status is 0xff, bail out on it too.
1962 	 */
1963 	if (rc)
1964 		return rc;
1965 
1966 	/* if device 1 was found in ata_devchk, wait for register
1967 	 * access briefly, then wait for BSY to clear.
1968 	 */
1969 	if (dev1) {
1970 		int i;
1971 
1972 		ap->ops->sff_dev_select(ap, 1);
1973 
1974 		/* Wait for register access.  Some ATAPI devices fail
1975 		 * to set nsect/lbal after reset, so don't waste too
1976 		 * much time on it.  We're gonna wait for !BSY anyway.
1977 		 */
1978 		for (i = 0; i < 2; i++) {
1979 			u8 nsect, lbal;
1980 
1981 			nsect = ioread8(ioaddr->nsect_addr);
1982 			lbal = ioread8(ioaddr->lbal_addr);
1983 			if ((nsect == 1) && (lbal == 1))
1984 				break;
1985 			ata_msleep(ap, 50);	/* give drive a breather */
1986 		}
1987 
1988 		rc = ata_sff_wait_ready(link, deadline);
1989 		if (rc) {
1990 			if (rc != -ENODEV)
1991 				return rc;
1992 			ret = rc;
1993 		}
1994 	}
1995 
1996 	/* is all this really necessary? */
1997 	ap->ops->sff_dev_select(ap, 0);
1998 	if (dev1)
1999 		ap->ops->sff_dev_select(ap, 1);
2000 	if (dev0)
2001 		ap->ops->sff_dev_select(ap, 0);
2002 
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006 
2007 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008 			     unsigned long deadline)
2009 {
2010 	struct ata_ioports *ioaddr = &ap->ioaddr;
2011 
2012 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013 
2014 	if (ap->ioaddr.ctl_addr) {
2015 		/* software reset.  causes dev0 to be selected */
2016 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2017 		udelay(20);	/* FIXME: flush */
2018 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019 		udelay(20);	/* FIXME: flush */
2020 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 		ap->last_ctl = ap->ctl;
2022 	}
2023 
2024 	/* wait the port to become ready */
2025 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026 }
2027 
2028 /**
2029  *	ata_sff_softreset - reset host port via ATA SRST
2030  *	@link: ATA link to reset
2031  *	@classes: resulting classes of attached devices
2032  *	@deadline: deadline jiffies for the operation
2033  *
2034  *	Reset host port using ATA SRST.
2035  *
2036  *	LOCKING:
2037  *	Kernel thread context (may sleep)
2038  *
2039  *	RETURNS:
2040  *	0 on success, -errno otherwise.
2041  */
2042 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043 		      unsigned long deadline)
2044 {
2045 	struct ata_port *ap = link->ap;
2046 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047 	unsigned int devmask = 0;
2048 	int rc;
2049 	u8 err;
2050 
2051 	DPRINTK("ENTER\n");
2052 
2053 	/* determine if device 0/1 are present */
2054 	if (ata_devchk(ap, 0))
2055 		devmask |= (1 << 0);
2056 	if (slave_possible && ata_devchk(ap, 1))
2057 		devmask |= (1 << 1);
2058 
2059 	/* select device 0 again */
2060 	ap->ops->sff_dev_select(ap, 0);
2061 
2062 	/* issue bus reset */
2063 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2064 	rc = ata_bus_softreset(ap, devmask, deadline);
2065 	/* if link is occupied, -ENODEV too is an error */
2066 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068 		return rc;
2069 	}
2070 
2071 	/* determine by signature whether we have ATA or ATAPI devices */
2072 	classes[0] = ata_sff_dev_classify(&link->device[0],
2073 					  devmask & (1 << 0), &err);
2074 	if (slave_possible && err != 0x81)
2075 		classes[1] = ata_sff_dev_classify(&link->device[1],
2076 						  devmask & (1 << 1), &err);
2077 
2078 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082 
2083 /**
2084  *	sata_sff_hardreset - reset host port via SATA phy reset
2085  *	@link: link to reset
2086  *	@class: resulting class of attached device
2087  *	@deadline: deadline jiffies for the operation
2088  *
2089  *	SATA phy-reset host port using DET bits of SControl register,
2090  *	wait for !BSY and classify the attached device.
2091  *
2092  *	LOCKING:
2093  *	Kernel thread context (may sleep)
2094  *
2095  *	RETURNS:
2096  *	0 on success, -errno otherwise.
2097  */
2098 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099 		       unsigned long deadline)
2100 {
2101 	struct ata_eh_context *ehc = &link->eh_context;
2102 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103 	bool online;
2104 	int rc;
2105 
2106 	rc = sata_link_hardreset(link, timing, deadline, &online,
2107 				 ata_sff_check_ready);
2108 	if (online)
2109 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2110 
2111 	DPRINTK("EXIT, class=%u\n", *class);
2112 	return rc;
2113 }
2114 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115 
2116 /**
2117  *	ata_sff_postreset - SFF postreset callback
2118  *	@link: the target SFF ata_link
2119  *	@classes: classes of attached devices
2120  *
2121  *	This function is invoked after a successful reset.  It first
2122  *	calls ata_std_postreset() and performs SFF specific postreset
2123  *	processing.
2124  *
2125  *	LOCKING:
2126  *	Kernel thread context (may sleep)
2127  */
2128 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129 {
2130 	struct ata_port *ap = link->ap;
2131 
2132 	ata_std_postreset(link, classes);
2133 
2134 	/* is double-select really necessary? */
2135 	if (classes[0] != ATA_DEV_NONE)
2136 		ap->ops->sff_dev_select(ap, 1);
2137 	if (classes[1] != ATA_DEV_NONE)
2138 		ap->ops->sff_dev_select(ap, 0);
2139 
2140 	/* bail out if no device is present */
2141 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142 		DPRINTK("EXIT, no device\n");
2143 		return;
2144 	}
2145 
2146 	/* set up device control */
2147 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148 		ata_sff_set_devctl(ap, ap->ctl);
2149 		ap->last_ctl = ap->ctl;
2150 	}
2151 }
2152 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153 
2154 /**
2155  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156  *	@qc: command
2157  *
2158  *	Drain the FIFO and device of any stuck data following a command
2159  *	failing to complete. In some cases this is necessary before a
2160  *	reset will recover the device.
2161  *
2162  */
2163 
2164 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165 {
2166 	int count;
2167 	struct ata_port *ap;
2168 
2169 	/* We only need to flush incoming data when a command was running */
2170 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171 		return;
2172 
2173 	ap = qc->ap;
2174 	/* Drain up to 64K of data before we give up this recovery method */
2175 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176 						&& count < 65536; count += 2)
2177 		ioread16(ap->ioaddr.data_addr);
2178 
2179 	/* Can become DEBUG later */
2180 	if (count)
2181 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182 
2183 }
2184 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185 
2186 /**
2187  *	ata_sff_error_handler - Stock error handler for SFF controller
2188  *	@ap: port to handle error for
2189  *
2190  *	Stock error handler for SFF controller.  It can handle both
2191  *	PATA and SATA controllers.  Many controllers should be able to
2192  *	use this EH as-is or with some added handling before and
2193  *	after.
2194  *
2195  *	LOCKING:
2196  *	Kernel thread context (may sleep)
2197  */
2198 void ata_sff_error_handler(struct ata_port *ap)
2199 {
2200 	ata_reset_fn_t softreset = ap->ops->softreset;
2201 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2202 	struct ata_queued_cmd *qc;
2203 	unsigned long flags;
2204 
2205 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207 		qc = NULL;
2208 
2209 	spin_lock_irqsave(ap->lock, flags);
2210 
2211 	/*
2212 	 * We *MUST* do FIFO draining before we issue a reset as
2213 	 * several devices helpfully clear their internal state and
2214 	 * will lock solid if we touch the data port post reset. Pass
2215 	 * qc in case anyone wants to do different PIO/DMA recovery or
2216 	 * has per command fixups
2217 	 */
2218 	if (ap->ops->sff_drain_fifo)
2219 		ap->ops->sff_drain_fifo(qc);
2220 
2221 	spin_unlock_irqrestore(ap->lock, flags);
2222 
2223 	/* ignore built-in hardresets if SCR access is not available */
2224 	if ((hardreset == sata_std_hardreset ||
2225 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226 		hardreset = NULL;
2227 
2228 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229 		  ap->ops->postreset);
2230 }
2231 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232 
2233 /**
2234  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235  *	@ioaddr: IO address structure to be initialized
2236  *
2237  *	Utility function which initializes data_addr, error_addr,
2238  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239  *	device_addr, status_addr, and command_addr to standard offsets
2240  *	relative to cmd_addr.
2241  *
2242  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243  */
2244 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245 {
2246 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256 }
2257 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258 
2259 #ifdef CONFIG_PCI
2260 
2261 static int ata_resources_present(struct pci_dev *pdev, int port)
2262 {
2263 	int i;
2264 
2265 	/* Check the PCI resources for this channel are enabled */
2266 	port = port * 2;
2267 	for (i = 0; i < 2; i++) {
2268 		if (pci_resource_start(pdev, port + i) == 0 ||
2269 		    pci_resource_len(pdev, port + i) == 0)
2270 			return 0;
2271 	}
2272 	return 1;
2273 }
2274 
2275 /**
2276  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277  *	@host: target ATA host
2278  *
2279  *	Acquire native PCI ATA resources for @host and initialize the
2280  *	first two ports of @host accordingly.  Ports marked dummy are
2281  *	skipped and allocation failure makes the port dummy.
2282  *
2283  *	Note that native PCI resources are valid even for legacy hosts
2284  *	as we fix up pdev resources array early in boot, so this
2285  *	function can be used for both native and legacy SFF hosts.
2286  *
2287  *	LOCKING:
2288  *	Inherited from calling layer (may sleep).
2289  *
2290  *	RETURNS:
2291  *	0 if at least one port is initialized, -ENODEV if no port is
2292  *	available.
2293  */
2294 int ata_pci_sff_init_host(struct ata_host *host)
2295 {
2296 	struct device *gdev = host->dev;
2297 	struct pci_dev *pdev = to_pci_dev(gdev);
2298 	unsigned int mask = 0;
2299 	int i, rc;
2300 
2301 	/* request, iomap BARs and init port addresses accordingly */
2302 	for (i = 0; i < 2; i++) {
2303 		struct ata_port *ap = host->ports[i];
2304 		int base = i * 2;
2305 		void __iomem * const *iomap;
2306 
2307 		if (ata_port_is_dummy(ap))
2308 			continue;
2309 
2310 		/* Discard disabled ports.  Some controllers show
2311 		 * their unused channels this way.  Disabled ports are
2312 		 * made dummy.
2313 		 */
2314 		if (!ata_resources_present(pdev, i)) {
2315 			ap->ops = &ata_dummy_port_ops;
2316 			continue;
2317 		}
2318 
2319 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2320 					dev_driver_string(gdev));
2321 		if (rc) {
2322 			dev_warn(gdev,
2323 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 				 i, rc);
2325 			if (rc == -EBUSY)
2326 				pcim_pin_device(pdev);
2327 			ap->ops = &ata_dummy_port_ops;
2328 			continue;
2329 		}
2330 		host->iomap = iomap = pcim_iomap_table(pdev);
2331 
2332 		ap->ioaddr.cmd_addr = iomap[base];
2333 		ap->ioaddr.altstatus_addr =
2334 		ap->ioaddr.ctl_addr = (void __iomem *)
2335 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336 		ata_sff_std_ports(&ap->ioaddr);
2337 
2338 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339 			(unsigned long long)pci_resource_start(pdev, base),
2340 			(unsigned long long)pci_resource_start(pdev, base + 1));
2341 
2342 		mask |= 1 << i;
2343 	}
2344 
2345 	if (!mask) {
2346 		dev_err(gdev, "no available native port\n");
2347 		return -ENODEV;
2348 	}
2349 
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353 
2354 /**
2355  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356  *	@pdev: target PCI device
2357  *	@ppi: array of port_info, must be enough for two ports
2358  *	@r_host: out argument for the initialized ATA host
2359  *
2360  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361  *	all PCI resources and initialize it accordingly in one go.
2362  *
2363  *	LOCKING:
2364  *	Inherited from calling layer (may sleep).
2365  *
2366  *	RETURNS:
2367  *	0 on success, -errno otherwise.
2368  */
2369 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370 			     const struct ata_port_info * const *ppi,
2371 			     struct ata_host **r_host)
2372 {
2373 	struct ata_host *host;
2374 	int rc;
2375 
2376 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377 		return -ENOMEM;
2378 
2379 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380 	if (!host) {
2381 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382 		rc = -ENOMEM;
2383 		goto err_out;
2384 	}
2385 
2386 	rc = ata_pci_sff_init_host(host);
2387 	if (rc)
2388 		goto err_out;
2389 
2390 	devres_remove_group(&pdev->dev, NULL);
2391 	*r_host = host;
2392 	return 0;
2393 
2394 err_out:
2395 	devres_release_group(&pdev->dev, NULL);
2396 	return rc;
2397 }
2398 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399 
2400 /**
2401  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402  *	@host: target SFF ATA host
2403  *	@irq_handler: irq_handler used when requesting IRQ(s)
2404  *	@sht: scsi_host_template to use when registering the host
2405  *
2406  *	This is the counterpart of ata_host_activate() for SFF ATA
2407  *	hosts.  This separate helper is necessary because SFF hosts
2408  *	use two separate interrupts in legacy mode.
2409  *
2410  *	LOCKING:
2411  *	Inherited from calling layer (may sleep).
2412  *
2413  *	RETURNS:
2414  *	0 on success, -errno otherwise.
2415  */
2416 int ata_pci_sff_activate_host(struct ata_host *host,
2417 			      irq_handler_t irq_handler,
2418 			      struct scsi_host_template *sht)
2419 {
2420 	struct device *dev = host->dev;
2421 	struct pci_dev *pdev = to_pci_dev(dev);
2422 	const char *drv_name = dev_driver_string(host->dev);
2423 	int legacy_mode = 0, rc;
2424 
2425 	rc = ata_host_start(host);
2426 	if (rc)
2427 		return rc;
2428 
2429 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430 		u8 tmp8, mask = 0;
2431 
2432 		/*
2433 		 * ATA spec says we should use legacy mode when one
2434 		 * port is in legacy mode, but disabled ports on some
2435 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2436 		 * on which the secondary port is not wired, so
2437 		 * ignore ports that are marked as 'dummy' during
2438 		 * this check
2439 		 */
2440 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2441 		if (!ata_port_is_dummy(host->ports[0]))
2442 			mask |= (1 << 0);
2443 		if (!ata_port_is_dummy(host->ports[1]))
2444 			mask |= (1 << 2);
2445 		if ((tmp8 & mask) != mask)
2446 			legacy_mode = 1;
2447 	}
2448 
2449 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2450 		return -ENOMEM;
2451 
2452 	if (!legacy_mode && pdev->irq) {
2453 		int i;
2454 
2455 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2456 				      IRQF_SHARED, drv_name, host);
2457 		if (rc)
2458 			goto out;
2459 
2460 		for (i = 0; i < 2; i++) {
2461 			if (ata_port_is_dummy(host->ports[i]))
2462 				continue;
2463 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2464 		}
2465 	} else if (legacy_mode) {
2466 		if (!ata_port_is_dummy(host->ports[0])) {
2467 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2468 					      irq_handler, IRQF_SHARED,
2469 					      drv_name, host);
2470 			if (rc)
2471 				goto out;
2472 
2473 			ata_port_desc(host->ports[0], "irq %d",
2474 				      ATA_PRIMARY_IRQ(pdev));
2475 		}
2476 
2477 		if (!ata_port_is_dummy(host->ports[1])) {
2478 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2479 					      irq_handler, IRQF_SHARED,
2480 					      drv_name, host);
2481 			if (rc)
2482 				goto out;
2483 
2484 			ata_port_desc(host->ports[1], "irq %d",
2485 				      ATA_SECONDARY_IRQ(pdev));
2486 		}
2487 	}
2488 
2489 	rc = ata_host_register(host, sht);
2490 out:
2491 	if (rc == 0)
2492 		devres_remove_group(dev, NULL);
2493 	else
2494 		devres_release_group(dev, NULL);
2495 
2496 	return rc;
2497 }
2498 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2499 
2500 static const struct ata_port_info *ata_sff_find_valid_pi(
2501 					const struct ata_port_info * const *ppi)
2502 {
2503 	int i;
2504 
2505 	/* look up the first valid port_info */
2506 	for (i = 0; i < 2 && ppi[i]; i++)
2507 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2508 			return ppi[i];
2509 
2510 	return NULL;
2511 }
2512 
2513 static int ata_pci_init_one(struct pci_dev *pdev,
2514 		const struct ata_port_info * const *ppi,
2515 		struct scsi_host_template *sht, void *host_priv,
2516 		int hflags, bool bmdma)
2517 {
2518 	struct device *dev = &pdev->dev;
2519 	const struct ata_port_info *pi;
2520 	struct ata_host *host = NULL;
2521 	int rc;
2522 
2523 	DPRINTK("ENTER\n");
2524 
2525 	pi = ata_sff_find_valid_pi(ppi);
2526 	if (!pi) {
2527 		dev_err(&pdev->dev, "no valid port_info specified\n");
2528 		return -EINVAL;
2529 	}
2530 
2531 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2532 		return -ENOMEM;
2533 
2534 	rc = pcim_enable_device(pdev);
2535 	if (rc)
2536 		goto out;
2537 
2538 #ifdef CONFIG_ATA_BMDMA
2539 	if (bmdma)
2540 		/* prepare and activate BMDMA host */
2541 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2542 	else
2543 #endif
2544 		/* prepare and activate SFF host */
2545 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2546 	if (rc)
2547 		goto out;
2548 	host->private_data = host_priv;
2549 	host->flags |= hflags;
2550 
2551 #ifdef CONFIG_ATA_BMDMA
2552 	if (bmdma) {
2553 		pci_set_master(pdev);
2554 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2555 	} else
2556 #endif
2557 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2558 out:
2559 	if (rc == 0)
2560 		devres_remove_group(&pdev->dev, NULL);
2561 	else
2562 		devres_release_group(&pdev->dev, NULL);
2563 
2564 	return rc;
2565 }
2566 
2567 /**
2568  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2569  *	@pdev: Controller to be initialized
2570  *	@ppi: array of port_info, must be enough for two ports
2571  *	@sht: scsi_host_template to use when registering the host
2572  *	@host_priv: host private_data
2573  *	@hflag: host flags
2574  *
2575  *	This is a helper function which can be called from a driver's
2576  *	xxx_init_one() probe function if the hardware uses traditional
2577  *	IDE taskfile registers and is PIO only.
2578  *
2579  *	ASSUMPTION:
2580  *	Nobody makes a single channel controller that appears solely as
2581  *	the secondary legacy port on PCI.
2582  *
2583  *	LOCKING:
2584  *	Inherited from PCI layer (may sleep).
2585  *
2586  *	RETURNS:
2587  *	Zero on success, negative on errno-based value on error.
2588  */
2589 int ata_pci_sff_init_one(struct pci_dev *pdev,
2590 		 const struct ata_port_info * const *ppi,
2591 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2592 {
2593 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2594 }
2595 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2596 
2597 #endif /* CONFIG_PCI */
2598 
2599 /*
2600  *	BMDMA support
2601  */
2602 
2603 #ifdef CONFIG_ATA_BMDMA
2604 
2605 const struct ata_port_operations ata_bmdma_port_ops = {
2606 	.inherits		= &ata_sff_port_ops,
2607 
2608 	.error_handler		= ata_bmdma_error_handler,
2609 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2610 
2611 	.qc_prep		= ata_bmdma_qc_prep,
2612 	.qc_issue		= ata_bmdma_qc_issue,
2613 
2614 	.sff_irq_clear		= ata_bmdma_irq_clear,
2615 	.bmdma_setup		= ata_bmdma_setup,
2616 	.bmdma_start		= ata_bmdma_start,
2617 	.bmdma_stop		= ata_bmdma_stop,
2618 	.bmdma_status		= ata_bmdma_status,
2619 
2620 	.port_start		= ata_bmdma_port_start,
2621 };
2622 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2623 
2624 const struct ata_port_operations ata_bmdma32_port_ops = {
2625 	.inherits		= &ata_bmdma_port_ops,
2626 
2627 	.sff_data_xfer		= ata_sff_data_xfer32,
2628 	.port_start		= ata_bmdma_port_start32,
2629 };
2630 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2631 
2632 /**
2633  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2634  *	@qc: Metadata associated with taskfile to be transferred
2635  *
2636  *	Fill PCI IDE PRD (scatter-gather) table with segments
2637  *	associated with the current disk command.
2638  *
2639  *	LOCKING:
2640  *	spin_lock_irqsave(host lock)
2641  *
2642  */
2643 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2644 {
2645 	struct ata_port *ap = qc->ap;
2646 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2647 	struct scatterlist *sg;
2648 	unsigned int si, pi;
2649 
2650 	pi = 0;
2651 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2652 		u32 addr, offset;
2653 		u32 sg_len, len;
2654 
2655 		/* determine if physical DMA addr spans 64K boundary.
2656 		 * Note h/w doesn't support 64-bit, so we unconditionally
2657 		 * truncate dma_addr_t to u32.
2658 		 */
2659 		addr = (u32) sg_dma_address(sg);
2660 		sg_len = sg_dma_len(sg);
2661 
2662 		while (sg_len) {
2663 			offset = addr & 0xffff;
2664 			len = sg_len;
2665 			if ((offset + sg_len) > 0x10000)
2666 				len = 0x10000 - offset;
2667 
2668 			prd[pi].addr = cpu_to_le32(addr);
2669 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2670 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2671 
2672 			pi++;
2673 			sg_len -= len;
2674 			addr += len;
2675 		}
2676 	}
2677 
2678 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2679 }
2680 
2681 /**
2682  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2683  *	@qc: Metadata associated with taskfile to be transferred
2684  *
2685  *	Fill PCI IDE PRD (scatter-gather) table with segments
2686  *	associated with the current disk command. Perform the fill
2687  *	so that we avoid writing any length 64K records for
2688  *	controllers that don't follow the spec.
2689  *
2690  *	LOCKING:
2691  *	spin_lock_irqsave(host lock)
2692  *
2693  */
2694 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2695 {
2696 	struct ata_port *ap = qc->ap;
2697 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2698 	struct scatterlist *sg;
2699 	unsigned int si, pi;
2700 
2701 	pi = 0;
2702 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2703 		u32 addr, offset;
2704 		u32 sg_len, len, blen;
2705 
2706 		/* determine if physical DMA addr spans 64K boundary.
2707 		 * Note h/w doesn't support 64-bit, so we unconditionally
2708 		 * truncate dma_addr_t to u32.
2709 		 */
2710 		addr = (u32) sg_dma_address(sg);
2711 		sg_len = sg_dma_len(sg);
2712 
2713 		while (sg_len) {
2714 			offset = addr & 0xffff;
2715 			len = sg_len;
2716 			if ((offset + sg_len) > 0x10000)
2717 				len = 0x10000 - offset;
2718 
2719 			blen = len & 0xffff;
2720 			prd[pi].addr = cpu_to_le32(addr);
2721 			if (blen == 0) {
2722 				/* Some PATA chipsets like the CS5530 can't
2723 				   cope with 0x0000 meaning 64K as the spec
2724 				   says */
2725 				prd[pi].flags_len = cpu_to_le32(0x8000);
2726 				blen = 0x8000;
2727 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2728 			}
2729 			prd[pi].flags_len = cpu_to_le32(blen);
2730 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2731 
2732 			pi++;
2733 			sg_len -= len;
2734 			addr += len;
2735 		}
2736 	}
2737 
2738 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2739 }
2740 
2741 /**
2742  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2743  *	@qc: Metadata associated with taskfile to be prepared
2744  *
2745  *	Prepare ATA taskfile for submission.
2746  *
2747  *	LOCKING:
2748  *	spin_lock_irqsave(host lock)
2749  */
2750 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2751 {
2752 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2753 		return;
2754 
2755 	ata_bmdma_fill_sg(qc);
2756 }
2757 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2758 
2759 /**
2760  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2761  *	@qc: Metadata associated with taskfile to be prepared
2762  *
2763  *	Prepare ATA taskfile for submission.
2764  *
2765  *	LOCKING:
2766  *	spin_lock_irqsave(host lock)
2767  */
2768 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2769 {
2770 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2771 		return;
2772 
2773 	ata_bmdma_fill_sg_dumb(qc);
2774 }
2775 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2776 
2777 /**
2778  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2779  *	@qc: command to issue to device
2780  *
2781  *	This function issues a PIO, NODATA or DMA command to a
2782  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2783  *	ata_sff_qc_issue().
2784  *
2785  *	LOCKING:
2786  *	spin_lock_irqsave(host lock)
2787  *
2788  *	RETURNS:
2789  *	Zero on success, AC_ERR_* mask on failure
2790  */
2791 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2792 {
2793 	struct ata_port *ap = qc->ap;
2794 	struct ata_link *link = qc->dev->link;
2795 
2796 	/* defer PIO handling to sff_qc_issue */
2797 	if (!ata_is_dma(qc->tf.protocol))
2798 		return ata_sff_qc_issue(qc);
2799 
2800 	/* select the device */
2801 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2802 
2803 	/* start the command */
2804 	switch (qc->tf.protocol) {
2805 	case ATA_PROT_DMA:
2806 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2807 
2808 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2809 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2810 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2811 		ap->hsm_task_state = HSM_ST_LAST;
2812 		break;
2813 
2814 	case ATAPI_PROT_DMA:
2815 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2816 
2817 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2818 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2819 		ap->hsm_task_state = HSM_ST_FIRST;
2820 
2821 		/* send cdb by polling if no cdb interrupt */
2822 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2823 			ata_sff_queue_pio_task(link, 0);
2824 		break;
2825 
2826 	default:
2827 		WARN_ON(1);
2828 		return AC_ERR_SYSTEM;
2829 	}
2830 
2831 	return 0;
2832 }
2833 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2834 
2835 /**
2836  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2837  *	@ap: Port on which interrupt arrived (possibly...)
2838  *	@qc: Taskfile currently active in engine
2839  *
2840  *	Handle port interrupt for given queued command.
2841  *
2842  *	LOCKING:
2843  *	spin_lock_irqsave(host lock)
2844  *
2845  *	RETURNS:
2846  *	One if interrupt was handled, zero if not (shared irq).
2847  */
2848 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2849 {
2850 	struct ata_eh_info *ehi = &ap->link.eh_info;
2851 	u8 host_stat = 0;
2852 	bool bmdma_stopped = false;
2853 	unsigned int handled;
2854 
2855 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2856 		/* check status of DMA engine */
2857 		host_stat = ap->ops->bmdma_status(ap);
2858 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2859 
2860 		/* if it's not our irq... */
2861 		if (!(host_stat & ATA_DMA_INTR))
2862 			return ata_sff_idle_irq(ap);
2863 
2864 		/* before we do anything else, clear DMA-Start bit */
2865 		ap->ops->bmdma_stop(qc);
2866 		bmdma_stopped = true;
2867 
2868 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2869 			/* error when transferring data to/from memory */
2870 			qc->err_mask |= AC_ERR_HOST_BUS;
2871 			ap->hsm_task_state = HSM_ST_ERR;
2872 		}
2873 	}
2874 
2875 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2876 
2877 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2878 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2879 
2880 	return handled;
2881 }
2882 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2883 
2884 /**
2885  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2886  *	@irq: irq line (unused)
2887  *	@dev_instance: pointer to our ata_host information structure
2888  *
2889  *	Default interrupt handler for PCI IDE devices.  Calls
2890  *	ata_bmdma_port_intr() for each port that is not disabled.
2891  *
2892  *	LOCKING:
2893  *	Obtains host lock during operation.
2894  *
2895  *	RETURNS:
2896  *	IRQ_NONE or IRQ_HANDLED.
2897  */
2898 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2899 {
2900 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2901 }
2902 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2903 
2904 /**
2905  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2906  *	@ap: port to handle error for
2907  *
2908  *	Stock error handler for BMDMA controller.  It can handle both
2909  *	PATA and SATA controllers.  Most BMDMA controllers should be
2910  *	able to use this EH as-is or with some added handling before
2911  *	and after.
2912  *
2913  *	LOCKING:
2914  *	Kernel thread context (may sleep)
2915  */
2916 void ata_bmdma_error_handler(struct ata_port *ap)
2917 {
2918 	struct ata_queued_cmd *qc;
2919 	unsigned long flags;
2920 	bool thaw = false;
2921 
2922 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2923 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2924 		qc = NULL;
2925 
2926 	/* reset PIO HSM and stop DMA engine */
2927 	spin_lock_irqsave(ap->lock, flags);
2928 
2929 	if (qc && ata_is_dma(qc->tf.protocol)) {
2930 		u8 host_stat;
2931 
2932 		host_stat = ap->ops->bmdma_status(ap);
2933 
2934 		/* BMDMA controllers indicate host bus error by
2935 		 * setting DMA_ERR bit and timing out.  As it wasn't
2936 		 * really a timeout event, adjust error mask and
2937 		 * cancel frozen state.
2938 		 */
2939 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2940 			qc->err_mask = AC_ERR_HOST_BUS;
2941 			thaw = true;
2942 		}
2943 
2944 		ap->ops->bmdma_stop(qc);
2945 
2946 		/* if we're gonna thaw, make sure IRQ is clear */
2947 		if (thaw) {
2948 			ap->ops->sff_check_status(ap);
2949 			if (ap->ops->sff_irq_clear)
2950 				ap->ops->sff_irq_clear(ap);
2951 		}
2952 	}
2953 
2954 	spin_unlock_irqrestore(ap->lock, flags);
2955 
2956 	if (thaw)
2957 		ata_eh_thaw_port(ap);
2958 
2959 	ata_sff_error_handler(ap);
2960 }
2961 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2962 
2963 /**
2964  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2965  *	@qc: internal command to clean up
2966  *
2967  *	LOCKING:
2968  *	Kernel thread context (may sleep)
2969  */
2970 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2971 {
2972 	struct ata_port *ap = qc->ap;
2973 	unsigned long flags;
2974 
2975 	if (ata_is_dma(qc->tf.protocol)) {
2976 		spin_lock_irqsave(ap->lock, flags);
2977 		ap->ops->bmdma_stop(qc);
2978 		spin_unlock_irqrestore(ap->lock, flags);
2979 	}
2980 }
2981 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2982 
2983 /**
2984  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2985  *	@ap: Port associated with this ATA transaction.
2986  *
2987  *	Clear interrupt and error flags in DMA status register.
2988  *
2989  *	May be used as the irq_clear() entry in ata_port_operations.
2990  *
2991  *	LOCKING:
2992  *	spin_lock_irqsave(host lock)
2993  */
2994 void ata_bmdma_irq_clear(struct ata_port *ap)
2995 {
2996 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2997 
2998 	if (!mmio)
2999 		return;
3000 
3001 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3002 }
3003 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3004 
3005 /**
3006  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3007  *	@qc: Info associated with this ATA transaction.
3008  *
3009  *	LOCKING:
3010  *	spin_lock_irqsave(host lock)
3011  */
3012 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3013 {
3014 	struct ata_port *ap = qc->ap;
3015 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3016 	u8 dmactl;
3017 
3018 	/* load PRD table addr. */
3019 	mb();	/* make sure PRD table writes are visible to controller */
3020 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3021 
3022 	/* specify data direction, triple-check start bit is clear */
3023 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3024 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3025 	if (!rw)
3026 		dmactl |= ATA_DMA_WR;
3027 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3028 
3029 	/* issue r/w command */
3030 	ap->ops->sff_exec_command(ap, &qc->tf);
3031 }
3032 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3033 
3034 /**
3035  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3036  *	@qc: Info associated with this ATA transaction.
3037  *
3038  *	LOCKING:
3039  *	spin_lock_irqsave(host lock)
3040  */
3041 void ata_bmdma_start(struct ata_queued_cmd *qc)
3042 {
3043 	struct ata_port *ap = qc->ap;
3044 	u8 dmactl;
3045 
3046 	/* start host DMA transaction */
3047 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3048 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3049 
3050 	/* Strictly, one may wish to issue an ioread8() here, to
3051 	 * flush the mmio write.  However, control also passes
3052 	 * to the hardware at this point, and it will interrupt
3053 	 * us when we are to resume control.  So, in effect,
3054 	 * we don't care when the mmio write flushes.
3055 	 * Further, a read of the DMA status register _immediately_
3056 	 * following the write may not be what certain flaky hardware
3057 	 * is expected, so I think it is best to not add a readb()
3058 	 * without first all the MMIO ATA cards/mobos.
3059 	 * Or maybe I'm just being paranoid.
3060 	 *
3061 	 * FIXME: The posting of this write means I/O starts are
3062 	 * unnecessarily delayed for MMIO
3063 	 */
3064 }
3065 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3066 
3067 /**
3068  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3069  *	@qc: Command we are ending DMA for
3070  *
3071  *	Clears the ATA_DMA_START flag in the dma control register
3072  *
3073  *	May be used as the bmdma_stop() entry in ata_port_operations.
3074  *
3075  *	LOCKING:
3076  *	spin_lock_irqsave(host lock)
3077  */
3078 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3079 {
3080 	struct ata_port *ap = qc->ap;
3081 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3082 
3083 	/* clear start/stop bit */
3084 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3085 		 mmio + ATA_DMA_CMD);
3086 
3087 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3088 	ata_sff_dma_pause(ap);
3089 }
3090 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3091 
3092 /**
3093  *	ata_bmdma_status - Read PCI IDE BMDMA status
3094  *	@ap: Port associated with this ATA transaction.
3095  *
3096  *	Read and return BMDMA status register.
3097  *
3098  *	May be used as the bmdma_status() entry in ata_port_operations.
3099  *
3100  *	LOCKING:
3101  *	spin_lock_irqsave(host lock)
3102  */
3103 u8 ata_bmdma_status(struct ata_port *ap)
3104 {
3105 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3106 }
3107 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3108 
3109 
3110 /**
3111  *	ata_bmdma_port_start - Set port up for bmdma.
3112  *	@ap: Port to initialize
3113  *
3114  *	Called just after data structures for each port are
3115  *	initialized.  Allocates space for PRD table.
3116  *
3117  *	May be used as the port_start() entry in ata_port_operations.
3118  *
3119  *	LOCKING:
3120  *	Inherited from caller.
3121  */
3122 int ata_bmdma_port_start(struct ata_port *ap)
3123 {
3124 	if (ap->mwdma_mask || ap->udma_mask) {
3125 		ap->bmdma_prd =
3126 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3127 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3128 		if (!ap->bmdma_prd)
3129 			return -ENOMEM;
3130 	}
3131 
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3135 
3136 /**
3137  *	ata_bmdma_port_start32 - Set port up for dma.
3138  *	@ap: Port to initialize
3139  *
3140  *	Called just after data structures for each port are
3141  *	initialized.  Enables 32bit PIO and allocates space for PRD
3142  *	table.
3143  *
3144  *	May be used as the port_start() entry in ata_port_operations for
3145  *	devices that are capable of 32bit PIO.
3146  *
3147  *	LOCKING:
3148  *	Inherited from caller.
3149  */
3150 int ata_bmdma_port_start32(struct ata_port *ap)
3151 {
3152 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3153 	return ata_bmdma_port_start(ap);
3154 }
3155 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3156 
3157 #ifdef CONFIG_PCI
3158 
3159 /**
3160  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3161  *	@pdev: PCI device
3162  *
3163  *	Some PCI ATA devices report simplex mode but in fact can be told to
3164  *	enter non simplex mode. This implements the necessary logic to
3165  *	perform the task on such devices. Calling it on other devices will
3166  *	have -undefined- behaviour.
3167  */
3168 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3169 {
3170 	unsigned long bmdma = pci_resource_start(pdev, 4);
3171 	u8 simplex;
3172 
3173 	if (bmdma == 0)
3174 		return -ENOENT;
3175 
3176 	simplex = inb(bmdma + 0x02);
3177 	outb(simplex & 0x60, bmdma + 0x02);
3178 	simplex = inb(bmdma + 0x02);
3179 	if (simplex & 0x80)
3180 		return -EOPNOTSUPP;
3181 	return 0;
3182 }
3183 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3184 
3185 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3186 {
3187 	int i;
3188 
3189 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3190 
3191 	for (i = 0; i < 2; i++) {
3192 		host->ports[i]->mwdma_mask = 0;
3193 		host->ports[i]->udma_mask = 0;
3194 	}
3195 }
3196 
3197 /**
3198  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3199  *	@host: target ATA host
3200  *
3201  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3202  *
3203  *	LOCKING:
3204  *	Inherited from calling layer (may sleep).
3205  */
3206 void ata_pci_bmdma_init(struct ata_host *host)
3207 {
3208 	struct device *gdev = host->dev;
3209 	struct pci_dev *pdev = to_pci_dev(gdev);
3210 	int i, rc;
3211 
3212 	/* No BAR4 allocation: No DMA */
3213 	if (pci_resource_start(pdev, 4) == 0) {
3214 		ata_bmdma_nodma(host, "BAR4 is zero");
3215 		return;
3216 	}
3217 
3218 	/*
3219 	 * Some controllers require BMDMA region to be initialized
3220 	 * even if DMA is not in use to clear IRQ status via
3221 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3222 	 * regardless of dma masks.
3223 	 */
3224 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3225 	if (rc)
3226 		ata_bmdma_nodma(host, "failed to set dma mask");
3227 	if (!rc) {
3228 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3229 		if (rc)
3230 			ata_bmdma_nodma(host,
3231 					"failed to set consistent dma mask");
3232 	}
3233 
3234 	/* request and iomap DMA region */
3235 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3236 	if (rc) {
3237 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3238 		return;
3239 	}
3240 	host->iomap = pcim_iomap_table(pdev);
3241 
3242 	for (i = 0; i < 2; i++) {
3243 		struct ata_port *ap = host->ports[i];
3244 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3245 
3246 		if (ata_port_is_dummy(ap))
3247 			continue;
3248 
3249 		ap->ioaddr.bmdma_addr = bmdma;
3250 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3251 		    (ioread8(bmdma + 2) & 0x80))
3252 			host->flags |= ATA_HOST_SIMPLEX;
3253 
3254 		ata_port_desc(ap, "bmdma 0x%llx",
3255 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3256 	}
3257 }
3258 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3259 
3260 /**
3261  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3262  *	@pdev: target PCI device
3263  *	@ppi: array of port_info, must be enough for two ports
3264  *	@r_host: out argument for the initialized ATA host
3265  *
3266  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3267  *	resources and initialize it accordingly in one go.
3268  *
3269  *	LOCKING:
3270  *	Inherited from calling layer (may sleep).
3271  *
3272  *	RETURNS:
3273  *	0 on success, -errno otherwise.
3274  */
3275 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3276 			       const struct ata_port_info * const * ppi,
3277 			       struct ata_host **r_host)
3278 {
3279 	int rc;
3280 
3281 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3282 	if (rc)
3283 		return rc;
3284 
3285 	ata_pci_bmdma_init(*r_host);
3286 	return 0;
3287 }
3288 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3289 
3290 /**
3291  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3292  *	@pdev: Controller to be initialized
3293  *	@ppi: array of port_info, must be enough for two ports
3294  *	@sht: scsi_host_template to use when registering the host
3295  *	@host_priv: host private_data
3296  *	@hflags: host flags
3297  *
3298  *	This function is similar to ata_pci_sff_init_one() but also
3299  *	takes care of BMDMA initialization.
3300  *
3301  *	LOCKING:
3302  *	Inherited from PCI layer (may sleep).
3303  *
3304  *	RETURNS:
3305  *	Zero on success, negative on errno-based value on error.
3306  */
3307 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3308 			   const struct ata_port_info * const * ppi,
3309 			   struct scsi_host_template *sht, void *host_priv,
3310 			   int hflags)
3311 {
3312 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3313 }
3314 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3315 
3316 #endif /* CONFIG_PCI */
3317 #endif /* CONFIG_ATA_BMDMA */
3318 
3319 /**
3320  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3321  *	@ap: Port to initialize
3322  *
3323  *	Called on port allocation to initialize SFF/BMDMA specific
3324  *	fields.
3325  *
3326  *	LOCKING:
3327  *	None.
3328  */
3329 void ata_sff_port_init(struct ata_port *ap)
3330 {
3331 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3332 	ap->ctl = ATA_DEVCTL_OBS;
3333 	ap->last_ctl = 0xFF;
3334 }
3335 
3336 int __init ata_sff_init(void)
3337 {
3338 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3339 	if (!ata_sff_wq)
3340 		return -ENOMEM;
3341 
3342 	return 0;
3343 }
3344 
3345 void ata_sff_exit(void)
3346 {
3347 	destroy_workqueue(ata_sff_wq);
3348 }
3349